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ABSTRACT 

 

Longitudinal Data Analysis Using Multilevel Linear Modeling (MLM): Fitting an 

Optimal Variance-Covariance Structure. (August 2010) 

Yuan-Hsuan Lee, B.A., National Tsing Hua University 

Co-Chairs of Advisory Committee: Dr. Victor L. Willson  

    Dr. Oi-Man Kwok 

 

This dissertation focuses on issues related to fitting an optimal variance-

covariance structure in multilevel linear modeling framework with two Monte Carlo 

simulation studies.  

In the first study, the author evaluated the performance of common fit statistics 

such as Likelihood Ratio Test (LRT), Akaike Information Criterion (AIC), and Bayesian 

Information Criterion (BIC) and a new proposed method, standardized root mean square 

residual (SRMR), for selecting the correct within-subject covariance structure. Results 

from the simulated data suggested SRMR had the best performance in selecting the 

optimal covariance structure. A pharmaceutical example was also used to evaluate the 

performance of these fit statistics empirically. The LRT failed to decide which is a better 

model because LRT can only be used for nested models. SRMR, on the other hand, had 

congruent result as AIC and BIC and chose ARMA(1,1) as the optimal variance-

covariance structure. 

In the second study, the author adopted a first-order autoregressive structure as 

the true within-subject V-C structure with variability in the intercept and slope 
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(estimating  and only) and investigated the consequence of misspecifying 

different levels/types of the V-C matrices simultaneously on the estimation and test of 

significance for the growth/fixed-effect and random-effect parameters, considering the 

size of the autoregressive parameter, magnitude of the fixed effect parameters, number 

of cases, and number of waves. The result of the simulation study showed that the 

commonly-used identity  within-subject structure with unstructured between-subject 

matrix performed equally well as the true model in the evaluation of the criterion 

variables. On the other hand, other misspecified conditions, such as Under G & Over R 

conditions and Generally misspecified G & R conditions had biased standard error 

estimates for the fixed effect and lead to inflated Type I error rate or lowered statistical 

power.  

The two studies bridged the gap between the theory and practical application in 

the current literature. More research can be done to test the effectiveness of proposed 

SRMR in searching for the optimal V-C structure under different conditions and 

evaluate the impact of different types/levels of misspecification with various 

specifications of the within- and between- level V-C structures simultaneously. 
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1. INTRODUCTION 

 

Quantitative researchers have made extensive use of multilevel linear modeling 

(MLM) technique to analyze repeated measurement data. MLM has several advantages 

over traditional methods Univariate Analysis of Variance (UANOVA) or Multivariate 

Analysis of Variance (MANOVA) in analyzing repeated measures or longitudinal 

studies, such as allowing unbalanced data or missing data points, not requiring 

observations taken equidistantly, capturing the average growth trend of the outcome 

variable over time, and flexibly modeling the variance-covariance (V-C) structure 

(Diggle, 1988; Ferron, Dailey, & Yi, 2002; Laird & Ware, 1982; Luke, 2004; Wolfinger, 

1993). The focus of this dissertation focuses on the last advantage, that V-C structure in 

MLM can be flexibly specified. Though MLM allow flexibly modeling of the V-C 

structure, the default V-C matrix in most of the commonly used statistical packages is 

still the identity structure, which assumes equal variance of each observation and no 

covariance between any pair of repeated measures. Careless or inexperienced researchers 

in performing MLM studies may just leave the choice of V-C structure to the computer 

software. Misspecification in the covariance structure in MLM or leaving the 

specification of V-C structure to the computer software generally causes no harm to the 

estimation of fixed effect /growth parameters (Ferron et al., 2002; Kwok, West, & 

Green, 2007; Murphy & Pituch, 2009); however, the corresponding estimates for the  

____________ 

This dissertation follows the style of Psychological Methods. 
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standard errors of the fixed effect/ growth parameters are biased, which will in turn lead 

to erroneous statistical inference of the hypothesis testing results (Davis, 2002; Diggle, 

Heagerty, Liang & Zeger, 2002; Kwok et al., 2007; Singer & Willett, 2003). 

To motivate the use of MLM methodology, the second section of this dissertation 

reviews issues related to MLM: its advantages over traditional methods, MLM as a 

mixed effect model, effects of misspecifying the within-subject V-C Structure, types of 

misspecification, and existing methods in selecting an optimal V-C structure. Through 

the review of MLM, two research issues emerge and draw our attention. First, there is a 

lack of an optimal model selection method, and second, the effect of different 

types/levels of misspecification has not been investigated. As  mentioned previously, 

misspecification of the within-subject V-C structure, although it may not have a negative 

influence on the fixed effect estimates, leads to biased estimation in the standard errors 

for the fixed effect. In other words, the statistical inferences drawn from the combination 

of unbiased fixed estimates and biased standard errors of the fixed effects will still be 

erroneous. This issue requires development of effective methods in selecting an optimal 

within-subject V-C structure, which is the third section of the dissertation. In section 3, 

the performance of LRT, AIC, BIC, and SRMR on searching for the correct covariance 

structure will be evaluated. The impact of several design factors, such as number of 

cases, number of repeated measurements, magnitude of the average growth model, and 

magnitude of the between-subject covariance matrix on the performance of these search 

methods, are also considered in the analysis. 
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A second consideration is that misspecification in both the between-subject (G-

side) and the within-subject (R-side) covariance structure has rarely been examined 

simultaneously compared to misspecification of the within-subject V-C structure, which 

has been researched extensively (Ferron et al., 2002; Kwok et al., 2007; Murphy & 

Pituch, 2009; Vallejo, Ato, & Valdés, 2008). In a simple linear growth curve model, the 

G matrix is comprised of random effects, including variance of intercept ( ), variance 

of slope  , and covariance between intercept and slope ( ), capturing the deviation 

of growth parameters from the population means for intercept and slope.  Therefore, 

when fitting a mixed effect model for repeated measurements, researchers need to 

specify both the G- and R- side V-C structure for the data. In the best scenario, 

researchers will specify the V-C structures for the two sides correctly. In other cases, 

researchers may over-, under-, or generally misspecify the V-C structures. The fourth 

section of the dissertation will investigate the effects of different types and levels of 

misspecification in both the G and R side on the estimation of growth parameters, their 

corresponding standard errors, Type I error rate of the fixed effects, and the empirical 

statistical power for nonnull conditions.  

1.1 Organization of Dissertation 

The present dissertation is divided into five distinct sections. Sections 3 and 4 are 

written as individual manuscripts for potential publication in peer-reviewed journals. 

How each of the sections is conceptualized is presented below: 

Section 1 serves as an introductory section that provides a brief overview of the 

topics to be examined along with a theoretical rationale for each of the individual 
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studies. Section 2 provides a comprehensive literature review of issues related to MLM, 

including its advantages over traditional methods, MLM as a mixed effects model, the 

effects of misspecifying the within-subject V-C Structure and types of misspecification, 

and a review of existing methods in selecting an optimal V-C structure. Section 3 reports 

a Monte Carlo simulation study investigating the performance of commonly used fit 

statistics (i.e., AIC, BIC, Likelihood Ratio Test) in selecting the optimal V-C structure. 

A new index, Standardized Root Mean Square Residual (SRMR), is also proposed and 

evaluated. Annotated syntax is given to show how SRMR is calculated using Matlab. 

The third section is the first journal article. Section 4 reports results of a Monte Carlo 

simulation study that examines the effect of different types/levels of V-C 

misspecification in both the between- and within-subject matrices. The fourth section is 

the second journal article. Section 5, the last section, is the concluding section that 

connects the findings from the three manuscripts to provide overall and specific remarks 

for conclusions about MLM.   
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2. REVIEW OF ISSUES RELATED TO MULTILEVEL LINEAR MODELING 

 

Multilevel linear modeling (MLM) for repeated measurement data has drawn 

increased attention in social and psychological studies over the past few decades. MLM 

is widely used for longitudinal studies because, for example, it can track the change of 

normal growth, identify risk factors, and assess the effect of intervention (Raudenbush, 

2001). There are several advantages of modeling repeated measurement data using 

MLM over conventional statistical methods, such as (1) allowing unbalanced data or 

missing data points, (2) no requirement for observations to be taken equidistantly, (3) 

capturing the average growth trend of the outcome variable over time, and (4) flexibly 

modeling the variance-covariance (V-C) structure.  Though MLM has many advantages 

over traditional methods, several issues remain unsolved and there are pitfalls that 

researchers may accidentally fall into when they do not have a thorough understanding 

of the MLM methodology.  This section reviews the common issues related to MLM and 

is intended to function as a guide to introduce novice MLM researchers in the use of 

MLM to analyze repeated measurement data. It includes the advantages of MLM, MLM 

as a mixed effect model, effect of misspecifying a within-subject V-C structure, and 

methods in selecting an optimal V-C structure.  
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2.1 Advantages of MLM 

2.1.1 Unbalanced Data or Missing Data Points  

MLM does not require data to be balanced, where there are equal numbers of 

observations for all the combination of the classification factors, and allows analysis 

with missing data (Luke, 2004). Traditional Multivariate Analysis of Variance 

(MANOVA) deletes all the individuals or experimental units with missing data points 

(Hedeker & Gibbons, 2006); on the contrary, MLM uses all the available data, and the 

requirement of complete data is not necessary in the MLM analysis because the 

estimation method in MLM software packages such as PROC MIXED in SAS uses 

likelihood-based ignorable analysis, which assumes data to be missing at random 

(MAR), which can lead to valid analysis (Verbeke & Molenberghs, 2000).  

2.1.2 No Requirement for Observations to Be Taken Equidistantly 

Even if researchers can overcome the first constraints in traditional analysis 

methods and have complete data, equally-spaced observations will be required for both 

MANOVA and repeated measure ANOVA (Hedeker & Gibbons, 2006). In MLM, 

observations need not to be taken equidistantly. MLM can model pattern of change at 

unequally spaced time points as well as fixed time points.    

2.1.3 Capturing the Average Growth Trend over Time 

MLM allows the modeling of initial status and growth curve of each individual 

on an outcome variable. MLM has the capacity to depict the individual growth trend and 

the variation in the growth curve. The modeling of change is usually conducted in two 
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levels, with level one being a function of time and level two examining individual 

difference in growth rate and initial status (Ferron et al., 2002). Repeated measure 

ANOVA, however, treat repeated measures as a within-subject factor on a nominal scale 

and can only test the difference in the response variable means at the different time 

points; similarly, the focus of MANOVA is on group mean comparison and gives no 

person-specific growth curves (Hedeker & Gibbons, 2006).  

2.1.4 Flexibility in Modeling the V-C Structure 

Most importantly, the focus of this paper is related to the advantage that the 

variance-covariance (V-C) structure can be flexibly modeled in MLM (Diggle, 1988; 

Laird & Ware, 1982; Wolfinger, 1993) while conserving degrees of freedom compared 

to unstructured modeling. Traditional UANOVA for repeated measurements requires the 

sphericity assumption or Huynh-Feldt (H-F) condition (with a compound symmetry V-C 

structure as the sufficient condition) which implies equal error variance for each measure 

within an individual and constant correlation between any pairs of repeated measures. 

This compound symmetry V-C structure may not be suitable for longitudinal data given 

that measures within a subject tend to correlate over time and the association diminishes 

as lags in time decreases (Hedeker & Gibbons, 2006). On the other hand, Multivariate 

Analysis of Variance (MANOVA) assumes an unconditional V-C structure by 

estimating all the unique elements in the V-C matrix which results in relatively low 

statistical power due to the large number of degrees of freedom required.  
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2.2 MLM as Mixed Effect Models 

Alternative names for MLM-related modeling strategies includes “multilevel 

models” (Goldstein, 1995), “hierarchical linear models” (Bryk & Raudenbush, 1992), 

“random coefficient models” (Jennrich & Schluchter, 1986), “random effects 

models”(Laird & Ware, 1982), and “covariance component models” (Longford, 1993). 

Basically, MLM has so many synonymous names because it divides analysis into 

distinctive levels, allows level-specific parameters to vary across different experimental 

units, and accommodates various types of covariance structures. “The logical foundation 

for all longitudinal analysis is thus a statistical model defining parameters of change for 

the trajectory of a single participant. The task of comparing people then becomes the 

task of comparing the parameters of these personal trajectories” noted Raudenbush 

(2001, p. 502).  For example, in the following linear growth curve model, the personal 

trajectory of change is a function of time (e.g. repeated measurement time points) in 

level one. Subject-specific parameters (  and 1i ) are the level two outcome 

variables, varying around their grand means ( 00  and 10  ) with variance 

( 00  and 11 ) and covariance ( 01 ).  

             Level 1: 2

0 1 ,  ~ (0, )ti i i ti ti tiY time e e N    
                          

  

            Level 2: 0 00 0i iu   , 1 10 1i iu                                          (1)       

with 
0 00 01

1 10 11

0
~ ,  

0

i

i

u
N G

u

 

 

     
     

     
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Mathematically, MLM can be represented as a mixed effect model, with fixed 

effects defining the expected value of observations and random effects specifying the 

variance and covariance of the observations (Littell, Pendergast, & Natarajan, 2000). To 

have a clearer picture about how the between- and within- subject variance components 

are decomposed, we can take a simple linear growth curve model with M participants 

measured on T occasions in the same subject area for example. 

    

11 1 1

1

0

1

1 1 1

1 1 0 0 0

1 1 0 0

0 0 0 0

0 0 0 0

1 0 0 1

1 0 0 0 1

T T T

M

TM T T

y TIME TIME

y TIME TIME

y TIME TIME

y TIME TIME





     
     
     
     
    
    

 
      
     
    
    
    
    
    
     

01 11

11

02 1

12

1

0

1

T

M

M

M TM

u e

u

u e

u

e

u

u e

   
   
   
   

    
    
    
    
    
    
    
    
    
   

        (2) 

Where y is a column vector with T repeated measures for M individuals. X is a 

[T*M by 2] matrix with intercept (i.e. 1) and the predictor variable TIME.   is a 

column vector with unknown growth parameters (i.e. 0  and 1 ). Z is a [T*M] by 

[2M] design matrix, and  is a column vector with random effects representing between-

subject variation in the intercept and slope. e is a column vector containing with-subject 

random errors for M individuals on T repeated measures. 

Based on the above equation, the error structure can be divided into two parts, 

between-subject and within-subject error variance. The equation can be written for the 

general mixed effect model in matrix form according to Henderson (1975) as  
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                                                         y X ZU                                           (3)       

Assuming  and  are independently and normally distributed with  

                                
0

0 and Var
0

U U G

R


 

     
      

     
                                      (4)               

where y is a vector of repeated measure outcome, X is the known design matrix of fixed 

effect,  is a vector of unknown fixed effect parameter estimates, Z is the known design 

matrix of the random effect,  is a vector of unknown random effect parameter 

estimates, and  is the error associated with the measurement outcome.  is assumed to 

be  and  is assumed to be . In repeated measurements, R 

corresponds to the within-subject error structure and G is the between-subject error 

matrix. The total variance in Y is , which is a function of  and : 

                                                 ( ) TVar y ZGZ R V                                        (5) 

Under the mixed model assumptions, (1) the means (expected values) of the 

responses are linearly related to the fixed-effects parameters (i.e. ), (2) 

random effect and residuals are normally distributed with mean zero and covariance 

matrices G and R respectively, and (3) random effect and residuals are independent of 

each other. Due to the independence of random effect and residuals, the G and R 

matrices can be flexibly modeled and conform to the structure of sample data.  

2.3 Estimation Method 

In the mixed effect model framework, the estimates for the fixed effects and 

random effects are calculated separately using different estimation methods.  



11 

 

 

 

2.3.1 Fixed Effect 

 For the estimation and hypothesis testing of the fixed effect parameters, 

Generalized Least Square
1
 estimation method (GLS) is used. The GLS method is 

superior to the ordinary least square (OLS) method by taking into account the G and R 

covariance matrices or assuming an appropriate V-C structure (Tao, Littel, Patetta, 

Truxillo, & Wolfinger, 2002). The GLS method for the fixed effect takes into account of 

the covariance matrices for the random effect and residuals and contributes to more 

precise fixed effect parameter estimates (Littell, Milliken, Stroup, Wolfinger, & 

Schabenberber, 2006). In MLM, the fixed effects are estimated using GLS; therefore, the 

inferences directly incorporate the V-C structure the researcher specifies, while in OLS 

regression, ordinary least squares is used to estimate the fixed effects, and the inferences 

are made based on the fixed-effect only model (Tao et al., 2002). With the prediction of 

a random effect and the inclusion of random effect into any linear combination, the 

resulting fixed effect estimates are best linear unbiased prediction (BLUP), where the 

expected value of y given u is , a subject-specific (conditional) 

model; on the other hand, the expected value of y over entire population is 

, which is a population-average (marginal) model 

(Littell et al., 2006).  The estimated BLUP for a random effect shrinks toward the 

                                                 

1 The GLS solutions for are obtained by minimizing  for .  The corresponding 

GLS solution estimate for  is . The estimated GLS solutions for the random 

effects  is obtained by .  The fixed effect estimate in OLS is , a 

special case for GLS if V=  .  is the best linear unbiased estimator (BLUE).  is the best linear 

unbiased predictor (BLUP).  
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population mean with a shrinkage factor equal   , where   is the variance of the 

random effect and  is the residual variance (Tao et al., 2002). 

2.3.2 Random Effect  

The common and popular estimation methods for the random effect parameters 

are maximum likelihood
2
 based functions, such as maximum likelihood (ML) and 

restricted/residual maximum likelihood (REML). The two maximum likelihood 

estimation methods differ in the construction of likelihood function. REML uses the 

correct degrees of freedom by taking into account the degrees of freedom for the fixed 

effects in the model for the random effect and the residual likelihood function to obtain 

ML estimates for the variance components. Therefore, REML covariance component 

estimates are bias-free whereas ML covariance component estimates are biased 

downward when none of the covariance parameter estimates hit the non-negative 

boundary constraint (Tao et al., 2002). REML can be used to specify different V-C 

structures under the same mean model but ML should be used to account for the V-C 

structure the researcher specified when the researchers read the fit statistics for 

comparing the appropriateness of different V-C structures (Tao et al., 2002). REML 

received growing preference over ML for obtaining covariance parameter (McCulloch & 

Searle, 2001). 

                                                 

2 In SAS Mixed Procedure, the log likelihood function for ML and REML are specified as: 

ML  

REML  

Where  and p=rank(X) 

In the default setting, a ridge-stabilized Newton-Raphson algorithm is used to minimize -2 times the log 

likelihood functions and obtain the parameter estimates.  
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2.4 Types of Variance-Covariance Structures 

Though MLM has the flexibility in modeling different types of variance-covariance 

structure, the default V-C structure in popular statistical packages (e.g. HLM, SPSS  

Mixed, SAS Proc MIXED, and STATA XTMixed) is still the identity structure (i.e. ) 

where the variance for all the repeated measures is the same and no covariance exists 

among repeated measures. Assuming no covariance among repeated measures is 

unrealistic as assuming static covariance in UANOVA with repeated measures. In the 

following section, commonly used variance-covariance structures in longitudinal data 

are introduced with the specification on the structures.  According to Wolfinger (1993), a 

wide variety of V-C structures as an alternative to the identity structure can be used for 

repeated measures. These V-C structures include first-order autoregressive, banded, 

unstructured, Toeplitz, banded Toeplitz, and first-order autoregressive plus a diagonal.   

In this section, selected V-C structures are introduced and compared with an illustration 

of the V-C structures presented in Figure 1.  
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Figure 1. Commonly Used Within-Subject V-C Structure. 
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2.4.1 Identity Structure (ID)  

The ID structure specifies that repeated measures are independent for each 

individual and have homogenous variance. The correlation function between all pairs of 

lags equals zero. Repeated measures under the ID structure assumption are unrealistic 

because it assumes no correlation among observation within an individual, though the 

default V-C structure for most of the popular statistical packages is the identity structure. 

In terms of equation (5), the ID structure says G=0 and R= , where  is an identity 

matrix. 

2.4.2 Compound Symmetric (CS)  

The compound symmetric model specifies that individuals have homogeneous 

variance and homogeneous covariance among observations. The correlations were the 

same between any pairs of lags within an individual. There are two ways to specify a CS 

structure in terms of G and R in equation (5), either G=  and R=  or G=0 and 

R= , where J is a matrix of ones (Littell et al., 2000). 

2.4.3 First-Order Autoregressive (AR(1)) 

AR(1) specifies the V-C structure to have homogeneous variance but covariance 

decreasing at an exponential rate with the increase of lags. The AR(1) can be presented 

as , where  is the predicted score at taken at time t,   is the error 

associated with the measurement at time t,   is the autocorrelation coefficient, 

. “AR models represent the most recent observation in a series as a function 

of previous observations within the same series.” (Murphy & Pituch, 2009).  
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2.4.4 First-Order Autoregressive Moving Average Model (ARMA(1,1)) 

 The ARMA(1,1) model is similar to the AR(1) model with the inclusion of an 

additional moving average parameter,  .  The ARMA(1,1) model with lag-1 process 

can be represented as  . Like the AR(1) model, )). 

ARMA(1,1) specifies the V-C structure to have homogeneous variance and covariance 

decreasing at an exponential rate of the autocorrelation coefficient plus a multiplicative 

moving average constant with the increase of lags.  

2.4.5 Toeplitz (TOEP) 

 “Toeplitz structure, sometimes called „banded‟, specifies that covariance 

depends only on lag, but not as a mathematical function with a smaller number of 

parameters.” (Littell et al., 2000). TOEP structure specifies the V-C structure to have 

homogenous variance  and mirrored equal covariance along the same band. In 

terms of equation (5), TOEP structure is specified with G = 0, elements in main diagonal 

of R are , and  for elements in the sub-diagonal, where  

with k equal to the row number and l the column number (Littell et al., 2000). 

2.4.6 Unstructured (UN) 

 Unstructured V-C matrix is the most general/unconditional form of V-C 

structure. Every unique element in the UN V-C structure is estimated with the upper 

triangle mirroring the lower triangle. In SAS PROC MIXED, the variance is constrained 

to be non-negative and the covariance is unconstrained (SAS Institute, 2008). 
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2.5 Effect of Misspecifying the Within-Subject V-C Structure and Types of 

Misspecification 

Researchers have studied the effect of misspecifying the error structure in 

repeated measure data in the MLM context (Ferron et al., 2002; Kwok et al., 2007; 

Murphy & Pituch, 2009; Vallejo et al., 2008). Misspecification in the covariance 

structure generally reflected in negative influences on the estimates of standard errors for 

the fixed effects (Davis, 2002; Diggle, Heagerty, Liang, & Zeger, 2002; Kwok et al., 

2007; Singer & Willett, 2003) and the associated hypothesis tests and caused biased 

statistical inferences or inflated type I error rate and lowered statistical power depending 

on the types of misspecification (Kwok et al., 2007; Murphy & Pituch, 2009; Vallejo et 

al., 2008). However, fixed effect estimate and its corresponding hypothesis test remained 

unbiased for most of the occasions (Ferron et al., 2002). Additionally, misspecification 

or no specification of the V-C structure may risk the potential of losing information of 

the change in the outcome variable over time that is reflected only in the covariance 

matrix of the within-subject residuals (Hedeker & Mermelstein, 2007).  

Kwok et al. (2007) defined three types of misspecification in the covariance 

structure, over-specification, under-specification, and general-misspecification. Over-

specification refers to misspecification of a simpler covariance structure to a more 

complex nested structure, for example, misspecifying an identity structure (ID) to a first-

order autoregressive structure (AR(1)). On the contrary, under-specification means mis-

identifying a more complex covariance structure to a simpler nested structure, for 

example, incorrectly specifying autoregressive moving average structure (ARMA(1,1)) 
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to AR(1).  General misspecification applies to misspecifying covariance structures 

between two non-nested covariance structure such as misspecifying ID  to a banded 

toeplitz structure (TOEP(2)). Under-specification or general-misspecification often led 

to overestimation of the random effects and the corresponding standard errors while 

over-specification may lead to underestimation of the random effects and standard errors 

(Kwok et al., 2007). Though the effect of misspecification in the covariance structure 

has been researched, most of the studies only examined misspecification in the  side 

within-subject covariance structure (Ferron et al., 2002; Kwok et al., 2007; Murphy & 

Pituch, 2009; Vallejo et al., 2008). No research to date has examined the 

misspecification in both the between- and within-subject covariance structure 

simultaneously.  

2.6 Selecting an Optimal V-C Structure 

Littell et al. (2000) suggested four steps in modeling a mixed effect analysis. 

Step 1: Model the mean structure by specifying the fixed effects to ensure 

unbiasedness of the fixed effect estimates 

Step 2: Specify the covariance structure, between subjects as well as 

within subjects 

Step 3: Use GLS estimation method to fit the mean model accounting for 

the covariance structure  

Step 4: Make statistical inference based on the results of step 3 and make 

the mean model parsimonious  
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As a matter of fact, before proceeding from step 3 to step 4, there is an additional 

inexplicit step, that is, the model selection step for an optimal V-C structure. Researcher 

should choose among several competing V-C structures to determine which better 

accounts for the current data under the same mean model. Traditional model selection 

procedure involves using information criteria such as Akaike Information Criterion 

(AIC; Akaike, 1974) or Bayesian/Schwartz Information Criterion (BIC; Schwarz, 1978) 

and likelihood ratio test (LRT). A brief description about the traditional model selection 

methods was provided along with a potential alternative for searching the optimal V-C 

structure. 

2.6.1 Likelihood Ratio Test (LRT) 

Models with nested structures can be evaluated using the likelihood ratio test. 

The likelihood ratio test is the difference of the deviance statistics between one model 

nested in another.  The deviance statistic is defined as -2 times the ratio of the log-

likelihood statistic of the hypothesized model to the log-likelihood statistic of the 

saturated model: 

                     Deviance = 

Hypothesized model

Saturated model

Log-likelihood
2

Log-likelihood

 
  

                            (6) 

It quantifies the degree of badness of fit (to the data) of the current 

(hypothesized) model in comparison to the saturated model.  Likewise, we can compute 

deviance statistics for nested competing models, one with simple covariance structure 

and the other with more complex structure (e.g. Dsimple & Dcomplex), and obtained a 

change/difference in the deviance statistics (∆D = Dsimple-Dcomplex) between the two 
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models. This difference in the deviance statistics between nested models is termed the 

likelihood ratio test (LRT), which follows a chi-square distribution with degrees of 

freedom equal the difference between the total parameters estimated in each model. If 

the test statistic exceeds the value in the chi-square distribution associated with a specific 

alpha level of significance, we conclude that the simpler model (hypothesized model) is 

statistically worse than the more complex model and favor the complex model.  

Nevertheless, this hypothesis test can only reveal the difference but not magnitude of the 

difference between the two nested models. Moreover, model selection based on the 

standard significance test of the nested models is very sensitive to slight deviation 

between the nested models and tends to over-reject the parsimonious model when the 

sample size is large (Kuha, 2004).  

2.6.2 Akaike Information Criteria (AIC) 

 AIC can be used for comparing non-nested covariance structures, for example, 

comparison between banded toeplitz (TOEP(2)) and first order autoregressive and 

moving average structure, (ARMA (1,1)).  The formula for AIC can be written as the 

following expression: 

                                            AIC = d+2k                                                      (7) 

where d is the deviance statistic and k is the number of parameters estimated. Smaller 

AIC is the-better statistic because smaller values indicate better fit of the model to the 

data. AIC penalizes additional parameters to be estimated and the size of penalty is 2 

multiplied by k.  
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2.6.3 Bayesian Information Criteria (BIC) 

 BIC is also used for non-nested models in comparing covariance structures. The 

formula for BIC can be represented as: 

                                                BIC = d+k*ln(N)                                            (8) 

where d is the deviance statistic, k is the number of estimated parameters, ln is the 

natural log, and N is the sample size. Like AIC, smaller BIC is also the-better statistic 

and penalizes for additional estimated parameters. BIC and AIC differ in the size of 

penalty, which is k multiplied by ln(N) for BIC. Therefore, BIC usually favors models 

with fewer parameters (Weakliem, 2004).  

Unlike LRT, AIC and BIC quantify the degree of improvement for a given model 

over a comparison model (O'Connell & McCoach, 2008). However, the results of 

empirical studies showed that the accuracy of using these information criteria in search 

of an optimal covariance structure is not very promising. For example, AIC can 

accurately identify the true covariance structure 47% of the time while for BIC is only 

35% (Keselman, Algina, Kowalchuk, & Wolfinger, 1998).  Research is needed in 

finding an optimal fit statistic or index that can better determine the appropriate V-C 

structure for the data.   
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2.6.4 Standardized Root Mean Square Residual (SRMR) 

A possible indicator that can be used for indentifying the true covariance 

structure is the standardized root mean square residual (SRMR; Bentler, 1995). SRMR is 

one of the absolute fit indices that evaluates how well a model reproduces the sample 

data under the SEM framework (Hu & Bentler, 1998). SRMR is defined as: 

                              

   
2

1 1

ˆ2

SRMR
( 1)

t i

ij ij ii jj

i j

s s s

T T


 

  
   

  



                     (9) 

where ijs  is an element (e.g., the covariance between the i
th

 and j
th

 time points) in the 

observed/unconditional covariance matrix, ˆ
ij is the corresponding element from the 

model-implied covariance matrix based on a specific model, iis and jjs are the observed 

standard deviations of the i
th

 and j
th

 time points respectively. T is the number of repeated 

measures in longitudinal data analysis.  

According to the algebraic definition, SRMR is a measure of the averaged 

difference of the standardized residuals between the observed/unconditional and model-

implied covariance matrices (Bentler, 1995).  SRMR is most sensitive to detecting 

misspecification in factor covariances (Hu & Bentler, 1998) and is a commonly reported 

fit index in SEM studies. We can obtain a similar SRMR under the MLM framework. 

Firstly, we need to confirm and estimate the fixed effect part or the mean model. Once 

we define a reasonable means model, the unstructured within-subject covariance 

structure can be treated as the unconditional covariance matrix because it represents the 

most general form of the covariance structure. With the same means model, we can 
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specify the predicted/model-implied covariance matrix. The SRMR under the MLM 

framework can then be calculated based on these two covariance matrices. The 

effectiveness and performance of SRMR in searching for the optimal V-C structure has, 

however, not yet been evaluated.  

2.7 Discussion 

Through the review in the field of multilevel modeling, two research issues are 

emergent and draw our attention. First, there is a lack of an optimal model selection 

method, and second the effect of different types/levels of misspecification has not been 

investigated. Misspecification of the within-subject V-C structure, although it may not 

have a negative influence on the fixed effect estimates, it can be expected to lead to 

biased estimation of the standard errors for the fixed effects. In other words, the 

statistical inferences drawn from the combination of unbiased fixed estimates and biased 

standard error of the fixed effects will still be erroneous. The first issue is to develop 

effective methods for selecting an optimal within-subject V-C structure. Research can be 

conducted to assess efficacy of traditional fit statistics and evaluate in comparison the 

proposed SRMR index in selecting the optimal V-C structure.   

Second, the misspecification on the R-side of the V-C structure has been 

extensively researched (Ferron et al., 2002; Kwok et al., 2007; Murphy & Pituch, 2009; 

Vallejo et al., 2008). Nevertheless, misspecification in both the G-side (between-subject) 

and the R-side (within-subject) covariance structures has rarely been examined 

simultaneously. In a simple linear growth curve model, the G matrix is comprised of 

random effects, including variance of intercept ( ), variance of slope  , and 
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covariance between intercept and slope ( ), capturing the deviation of growth 

parameters in individuals from the population means for intercept and slope as shown in 

equation (2).  Therefore, whden fitting a mixed effect model for repeated measurements, 

researchers need to specify both the G- and R- side V-C structure for the data. In the 

best scenario, researchers will specify the V-C structures for the two sides correctly. In 

other cases, researchers may over-, under-, or generally misspecify the V-C structures. 

Research will thus be conducted to investigate the effect of different types/levels of 

misspecification in both the G and R side V-C matrices, considering the estimation of 

growth parameters, their standard errors, Type I error rate of the fixed effects, and the 

empirical statistical power so that we can have a general guideline as to the impact of 

different types/levels of misspecification on the interpretation of MLM studies. 
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3. SEARCHING FOR THE OPTIMAL WITHIN-SUBJECT COVARIANCE 

STRUCTURE IN LONGITUDINAL DATA ANALYSIS USING MULTILEVEL 

MODELING (MLM): A MONTE CARLO STUDY 

3.1 Theoretical Framework 

Multilevel linear modeling (MLM) is widely used in educational research 

because many educational data are in a multilevel structure (e.g., repeated measures 

nested within students and students nested with schools).  MLM has also been adopted 

for analyzing longitudinal data (e.g. repeated measures nested within students) not only 

because it can capture the average growth trend of the outcome variable over time but 

also can flexibly model the within-subject covariance structure. However, when 

analyzing longitudinal data, researchers generally impose the simplest within-subject 

covariance structure, the identity structure:
2R= I , which is the default structure of the 

within-subject covariance matrix in many MLM related programs such as HLM, SAS 

PROC MIXED, SPSS MIXED, and STATA XTMIXED. This within-subject covariance 

structure is not realistic for longitudinal data because the repeated measures tend to 

correlate with each other over time and the correlations between measures tend to 

diminish as the lags in time increase (Hedeker & Gibbons, 2006). Failure to model an 

appropriate error covariance structure results in: 1) bias estimation of the standard errors 

of the fixed effects (Davis, 2002; Diggle et al., 2002; Kwok et al., 2007; Singer & 

Willett, 2003) and 2) the potential of losing information of the change in the outcome 

variable over time that is reflected only in the covariance matrix of the within-subject 

residuals (Hedeker & Mermelstein, 2007).  
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The impact of misspecifying the within-subject covariance matrix has been 

examined (Ferron et al., 2002; Kwok et al., 2007) and the importance of obtaining the 

correct covariance structure has been addressed (Singer & Willett, 2003). However, only 

a few studies (e.g., Keselman et al., 1998; Wolfinger, 1993) have examined the 

performance of the traditional methods including the likelihood ratio test (LRT) and the 

information criteria (e.g., Akaike Information Criteria (AIC) and Bayesian Information 

Criteria (BIC)) on searching for the correct covariance structure under the mixed model 

framework. The purpose of this study is to evaluate the performance of these traditional 

methods on searching for the correct within-subject covariance structure in longitudinal 

data analysis under the MLM framework. Additionally, a new alternative, standardized 

root mean square residual (SRMR), is proposed and its performance on searching for the 

correct covariance structure is compared with the traditional methods.  

In this study, the performance of LRT, AIC, BIC, and SRMR on searching for 

the correct within-subject covariance structure were evaluated. The impact of several 

factors including sample size, magnitude of the average growth model, and magnitude of 

the between-subject covariance matrix on the performance of these search methods were 

also considered in the analysis. 

3.2 Method 

In this study, we focused on a common two-level growth model with level-1 

modeling the repeated measures within individuals and level-2 modeling the differences 

of individual growth models between individuals. The level 1 and level 2 models can be 

written as the following expressions:  
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where tiY , the personal trajectory of change, is a function of time ( titime  e.g. 

titime repeated measurement time points) in level one with i indicates individuals, i = 1, 

..., N; and t indicates time points, 4 waves: T = -1.5, -0.5, 0.5, 1.5 or 8 waves: T = -3.5, -

2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5 centered to have a mean of 0 and 1 unit between adjacent 

observations. The level two outcome variables, 0i  (intercept) and 1i  (slope) are 

the growth parameters in a linear growth model.  0i  and 1i  are multivariate 

normally distributed and vary around their grand means ( 00 and 10 ) with 

variance ( 00  and 11 ) ) and covariance ( 01 ). We limited our focus to a 

simple linear growth model with correctly specified fixed effects collected in a balanced 

design.  

3.2.1 Research Design and Model Parameterization  

The simulation used a 2 (30 or 210 cases) x 2 (4 or 8 waves) x 3 (magnitude of 

growth parameter β1: 0, .05 or .16) x 2 (G matrix: small or medium) x 4 (true R matrices 

for generating the data: ID, TOEP(2), AR(1), or ARMA(1,1)) factorial design to 

generate the data. A total of 500 replications were generated for each condition using the 

Mplus (V4.1) Monte Carlo procedure (Muthén & Muthén, 1998), yielding 48,000 total 

datasets. All data were generated under Mplus with a multivariate normal distribution 

(Muthén & Muthén, 1998). Each dataset was then analyzed using five separate 
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specifications of the R matrix (ID, TOEP(2), AR(1), ARMA(1,1) and UN) using SAS 

PROC MIXED (Littell et al., 2006) yielding a total of  240,000 records (i.e., 48,000*5).   

For the number of participants, we chose 30 as a “small” number of individuals 

and 210 as a “medium” number of individuals
 
based on past simulation studies (Ferron 

et al., 2002; Keselman et al., 1998) and the review of the multiwave longitudinal studies 

published in Developmental Psychology by Khoo, West, Wu, & Kwok (2006). 

Additionally, we chose 4 waves as the small number of repeated measures and 8 waves 

as the medium number of measures based on the same review by Khoo and colleagues 

(Khoo et al., 2006). Three different magnitudes of the standardized effect size of the 

growth trajectory were examined in this study, no effect (i.e., β1 = .00), small effect size 

(i.e., β1 = .05) and medium effect size (i.e., β1 = .16).  The standardized effect size is 

calculated with the following equation (Raudenbush & Liu, 2001): 

                                                  11

1






                                                          (11) 

where δ is the standardized effect size, β1 is the average linear growth, and τ11 is 

the variance of the random effect associated with the growth, which captures the 

differences between individual growth trends and the average growth trend. The size of 

τ11 were set at .05 and .10, where τ11 = .05 is recognized as small and τ11 =.10 as medium 

according to Raudenbush and Liu (2001). Given the values of β1 and τ11, the 

corresponding δ could be easily computed and the resulting effect size in our simulated 

data is consistent with small effect size (i.e., δ = .20) and medium effect size (i.e., δ = 

.50) proposed by Cohen (1988). We also included the size of G matrix (small versus 
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medium) as a design factor. According to the criteria provided by Raudenbush and Liu 

(2001), a medium G and a small G could be specified as: 

.200 .050
R

.050 .100
Medium

 
  
 

 and 
.100 .025

R
.025 .050

small

 
  
 

. 

The final design factor to be specified is the true within-subject covariance 

structure. Four covariance structures, namely, ID, AR(1), TOEP(2), and ARMA(1,1) 

were adopted in our study. The four within-subject covariance structures are commonly 

used when analyzing longitudinal data. AR(1) and ARMA(1,1) are commonly 

considered in time series analysis (Velicer & Fava, 2003; West & Hepworth, 1991). 

TOEP(2) is closely related to the moving average (1) structure which is also commonly 

used in time series analysis. 
2  was set as 1 for all the ID, AR(1), TOEP(2), and 

ARMA(1,1) models, which is a common practice in power analysis under MLM studies 

(Bosker, Snijders, & Guldemond, 2003). The autoregressive parameter  was set as 0.8. 

The Toeplitz parameter, 1  , for TOEP(2) and the moving average parameter,   , for 

ARMA(1,1) were set as 0.5. These values were within the reasonable range of prior 

studies (Hamaker, Dolan, & Molenaar, 2002; Sivo & Willson, 2000). 

3.2.2 Selection Criterion for the Optimal Covariance Matrix 

The hit rate (i.e., the percentage of replications with correctly specified within-

subject covariance structure) of each search method was used as the major outcome 

variable. For AIC and BIC, a correct hit in model selection was represented by an event 

that the smallest AIC or BIC value for the hypothesized covariance structure matches the 

true covariance structure. AIC and BIC hit rate for all investigated conditions and 

within-subject covariance structures were computed respectively. With respect to LRT, a 
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correct identification in selecting a true covariance structure was determined in two 

stages. Firstly, LRT was conducted between the model with a hypothesized covariance 

structure and the model with the unstructured covariance (UN-structured) structure to 

examine whether the hypothesized model is statistically worse than the saturated model. 

If the results are statistically significant for the four hypothesized covariance structures 

(i.e., the UN-structured covariance fit the data best), there is no need to proceed to the 

second stage given that LRT fails to select the true covariance structure. Otherwise, 

cases that did not have a significant LRT proceeded to the second stage, indicating that 

the hypothesized models do not fit statistically worse than the saturated model. We 

computed the change in the deviance statistics between pairs of nested competing 

covariance structures and performed the chi-square differential test to determine whether 

the selected covariance structure matched the true covariance structure. After these steps, 

we calculated the overall hit rate for LRT.  

To be selected as the optimal V-C structure for SRMR, two criteria must be met, 

(1) a SRMR value equal or less than 0.08 and (2) a matching target within-subject 

covariance matrix. For example, if ARMA(1,1) is the true within-subject covariance 

structure, one observation has a SRMR value less 0.08 and a target ARMA(1,1) 

covariance matrix, then SRMR succeeds in selecting the optimal within-subject V-C 

structure. The 0.08 criterion was selected as suggested by Hu and Bentler (1999) for the 

cutoff value of SRMR. The hit rate for LRT, AIC, BIC, and SRMR were compared as to 

their performance on searching for the correct covariance structure.  
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3.3 Result 

The 2 (30 or 210 cases) x 2 (4 or 8 waves) x 3 (magnitude of growth parameter 

β1: 0, .05 or .16) x 2 (G matrix: small or medium) factorial design yielded 24 simulation 

settings. The 24 settings were named through Model A to Model X. All condition 

investigated had an UN-structured T matrix with a simulated R matrix which is ID, 

TOEP(2), AR(1), or ARMA(1,1). The unconditional model for calculating SRMR had 

an unstructured within-subject variance covariance matrix with Null G so as to avoid 

model overparametization.  

3.3.1 Convergence Rate 

The average convergence rate across 24 models was 95%. The result from the 

ANOVA test suggested convergence rate was moderated by both number of case, 

number of wave, and their interaction effect (F(3, 20) = 548.603, p < .001). Models with 

30 cases and 4 waves had the lowest mean convergence rate (mean = 0.90). Models with 

210 cases and 8 waves had the highest mean convergence rate (mean = 0.99), followed 

by models with 30 cases and 8 waves (mean = 0.97) and models with 210 cases and 4 

waves (mean = 0.96). 

3.3.2 AIC and BIC Hit Rate 

The AIC hit rate is shown in Table 1. The hit rate for a specific within-subject 

covariance matrix is shown by columns. The hit rate across all within-subject covariance 

matrices within a certain model is presented by rows. For ID covariance structure, the 

AIC statistic was able to correctly classify the covariance structure 68% of the time. For  

TOEP(2), the AIC hit rate was 72%. AR(1) covariance structure had an AIC hit rate of 

65%. However, the AIC hit rate decreased to 41% for a true ARMA(1,1) covariance 
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structure. The overall AIC hit rate across all conditions and within-subject covariance 

structures was about 62%. The BIC hit rate is presented in. For ID covariance structure, 

the BIC hit rate reached 84%, for TOEP(2) within-subject covariance 80%, for AR(1) 

72%, and for ARMA(1,1) 28%. The overall BIC hit rate across all conditions and 

within-subject covariance structures was 66%. Analysis of variance (ANOVA) was 

conducted for both information criteria. The ANOVA test result is presented in Table 3. 

The 
2 statistic, the semipartial 

2 reported in SAS Proc GLM effect size option, was 

used to evaluate the impact of design factors on the hit rate. The semipartial 
2  is the 

proportion of total variation accounted for by the effect being tested, i.e. the ratio of 

observed sum of squares due to the effect being tested and the total corrected sample 

sum of squares. Number of cases (F(5, 18) = 455.37, p < .01) and number of waves (F(5, 

18) = 1094.39, p < .01) were both significant factors for the hit rate of AIC. Number of 

waves alone accounted for 70% of the total variance in the AIC hit rate and number of 

cases explained the remaining 29% of the between factor variation. Models with 210 

cases had a higher AIC hit rate (69.17%) than those with 30 cases (53.42%). Models 

with 8 waves (73.50%) had a higher AIC hit rate than those with 4 waves (49.08%).  
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Table 1. AIC Hit Rate 

      Correct Classification (%)       

Model 

# of 

cases 

# of 

waves 

Magnitude 

of growth 

parameter 

T 

matrix   ID  TOEP(2)  AR(1) ARMA(1,1) Average n Convergence 

A 30 4 0.00 Medium 

 

58 46 39 9 38 1784 89 

B 30 4 0.00 Small 

 

55 52 40 12 40 1802 90 

C 30 4 0.05 Medium 

 

58 48 41 13 40 1795 90 

D 30 4 0.05 Small 

 

60 58 39 14 43 1802 90 

E 30 4 0.16 Medium 

 

57 51 37 15 40 1809 90 

F 30 4 0.16 Small 

 

54 55 40 14 41 1815 91 

G 30 8 0.00 Medium 

 

73 85 77 32 67 1947 97 

H 30 8 0.00 Small 

 

73 82 76 37 67 1953 98 

I 30 8 0.05 Medium 

 

73 82 76 36 66 1935 97 

J 30 8 0.05 Small 

 

73 79 77 38 67 1940 97 

K 30 8 0.16 Medium 

 

73 82 78 32 66 1947 97 

L 30 8 0.16 Small 

 

70 79 75 43 66 1947 97 

M 210 4 0.00 Medium 

 

71 74 60 31 59 1923 96 

N 210 4 0.00 Small 

 

67 65 64 29 59 1915 96 

O 210 4 0.05 Medium 

 

73 75 63 26 59 1925 96 

P 210 4 0.05 Small 

 

63 60 66 32 55 1936 97 

Q 210 4 0.16 Medium 

 

70 74 67 29 60 1915 96 

R 210 4 0.16 Small 

 

63 63 63 33 55 1913 96 

S 210 8 0.00 Medium 

 

78 82 79 83 81 1974 99 

T 210 8 0.00 Small 

 

74 81 81 85 80 1971 99 

U 210 8 0.05 Medium 

 

77 84 81 83 81 1973 99 

V 210 8 0.05 Small 

 

73 82 80 83 80 1978 99 

W 210 8 0.16 Medium 

 

73 83 79 83 80 1973 99 

X 210 8 0.16 Small   74 85 80 86 81 1966 98 

Total           68 72 65 41 62 45838 95 
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Table 2. BIC Hit Rate

      Correct Classification  (%)       

Model 

# of 

cases 

# of 

waves 

Magnitude 

of growth 

parameter T matrix   ID  TOEP(2)  AR(1) ARMA(1,1) Average n Convergence 

A 30 4 0.00 Medium 

 

63 46 43 5 39 1784 89 

B 30 4 0.00 Small 

 

64 54 45 9 43 1802 90 

C 30 4 0.05 Medium 

 

64 46 44 8 41 1795 90 

D 30 4 0.05 Small 

 

67 61 41 11 45 1802 90 

E 30 4 0.16 Medium 

 

66 52 41 9 42 1809 90 

F 30 4 0.16 Small 

 

63 57 44 11 44 1815 91 

G 30 8 0.00 Medium 

 

87 91 83 24 71 1947 97 

H 30 8 0.00 Small 

 

86 88 82 29 71 1953 98 

I 30 8 0.05 Medium 

 

89 90 82 29 72 1935 97 

J 30 8 0.05 Small 

 

86 86 81 30 70 1940 97 

K 30 8 0.16 Medium 

 

90 91 83 25 71 1947 97 

L 30 8 0.16 Small 

 

82 87 80 35 71 1947 97 

M 210 4 0.00 Medium 

 

93 84 68 12 64 1923 96 

N 210 4 0.00 Small 

 

81 76 71 12 59 1915 96 

O 210 4 0.05 Medium 

 

94 85 71 11 64 1925 96 

P 210 4 0.05 Small 

 

81 71 72 13 59 1936 97 

Q 210 4 0.16 Medium 

 

94 86 73 11 65 1915 96 

R 210 4 0.16 Small 

 

81 73 70 13 59 1913 96 

S 210 8 0.00 Medium 

 

96 97 88 61 86 1974 99 

T 210 8 0.00 Small 

 

95 96 89 59 85 1971 99 

U 210 8 0.05 Medium 

 

96 99 90 59 86 1973 99 

V 210 8 0.05 Small 

 

96 97 90 59 85 1978 99 

W 210 8 0.16 Medium 

 

97 98 89 56 85 1973 99 

X 210 8 0.16 Small   96 98 92 63 87 1966 98 

Total           84 80 72 28 66 45838 95 
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The magnitude of the growth parameter (
2  = .0001) and G matrix (

2  = .0001) 

rarely explained any variance in the hit rate of AIC. The hit rate for BIC had similar 

ANOVA result as the AIC hit rate. Only number of cases and number of waves were 

significant factors. They accounted for 98% of the variation in BIC hit rate (number of 

waves, 69%; number of cases, 29%). The 210-case models had a higher BIC hit rate 

(73.67%) than the 30-case models (56.67%). Likewise, 8-wave models (78.33%) had 

higher a BIC hit rate than the 4-wave models (52.00%).  

3.3.3 SRMR Hit Rate 

Table 4 presents the SRMR hit rate. The Matlab codes for calculating SRMR hit 

rate are presented in Appendix A. The overall SRMR hit rate was 81% across all 

investigated conditions and within-subject covariance structures. Correct classification 

of ID structure was 91%, while the TOEP(2) structure had the highest SRMR hit rate, 

92%. AR(1) and ARMA(1,1) had lower SRMR hit rates, 79% and 61% respectively. 

ANOVA tests were conducted to examine the effect of number of cases, number of 

waves, magnitude of growth parameter, and G matrix on the hit rate of SRMR.  
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Table 3. Four-Way Analysis of Variance for AIC and BIC Hit Rate 

  AIC hit rate   BIC hit rate     

Factor levels M SD F (5, 18) 

 

 

M SD F (5, 18) 

 

 
n 

# of cases 

  

455.37** 0.2904 

   

313.16** 0.289 
 

 -30 53.42 13.71 

   

56.67 15.05 

  

 22476 

-210 69.17 11.94 

   

73.67 12.7 

  

 23362 

# of waves 

  

1094.39** 0.698 

   

751.42** 0.6935  

 -4 49.08 9.33 

   

52 10.39 

  

 22334 

-8 73.5 7.33 

   

78.33 7.69 

  

 23504 

Magnitude of 

growth 

parameter 

  

0.05 0.0001 

   

0.21 0.0004 

 

 0 61.38 16.08 

   

64.75 17.36 

  

 15269 

-0.05 61.38 15.24 

   

65.25 15.59 

  

 15284 

-0.16 61.13 15.53 

   

65.5 16.73 

  

 15285 

T matrix 

  

0.11 0.0001 

   

0.48 0.0004  

     -  

Medium 61.42 15.56 

   

65.5 17.01 

 

  

22900 

    -  

Small 61.17 14.95       64.83 15.99   

    

22938 

**p < .0001 for two-tailed test. 
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 Table 4. SRMR Hit Rate 

            Correct classification (%)   

Model 

# of 

cases 

# of 

waves 

Magnitude 

of growth 

parameter 

T 

matrix 

  

ID TOEP(2)  AR(1) ARMA(1,1) Average n Convergence 

A 30 4 0.00 Medium  89 82 66 25 66 1784 89 

B 30 4 0.00 Small  85 87 68 27 67 1802 90 

C 30 4 0.05 Medium  86 82 66 24 65 1795 90 

D 30 4 0.05 Small  82 86 68 29 67 1802 90 

E 30 4 0.16 Medium  87 83 66 26 66 1809 90 

F 30 4 0.16 Small  81 89 68 32 68 1815 91 

G 30 8 0.00 Medium  88 78 63 56 71 1947 97 

H 30 8 0.00 Small  86 87 64 60 74 1953 98 

I 30 8 0.05 Medium  86 77 61 49 67 1935 97 

J 30 8 0.05 Small  84 86 63 60 73 1940 97 

K 30 8 0.16 Medium  86 77 65 56 70 1947 97 

L 30 8 0.16 Small  86 89 67 60 75 1947 97 

M 210 4 0.00 Medium  97 100 84 57 84 1923 96 

N 210 4 0.00 Small  97 100 85 64 86 1915 96 

O 210 4 0.05 Medium  97 100 86 58 85 1925 96 

P 210 4 0.05 Small  97 100 84 63 86 1936 97 

Q 210 4 0.16 Medium  96 100 85 63 86 1915 96 

R 210 4 0.16 Small  96 100 85 66 87 1913 96 

S 210 8 0.00 Medium  98 100 99 97 98 1974 99 

T 210 8 0.00 Small  98 100 97 99 98 1971 99 

U 210 8 0.05 Medium  98 100 99 97 99 1973 99 

V 210 8 0.05 Small  97 100 98 96 98 1978 99 

W 210 8 0.16 Medium  97 100 99 97 98 1973 99 

X 210 8 0.16 Small   98 100 98 99 99 1966 98 

Total           91 92 79 61 81 45838 95 
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The result of ANOVA test is shown in Table 5. Like the ANOVA test for AIC 

and BIC, magnitude of growth parameter and G matrix had small F values and hardly 

contributed to the variation in the SRMR hit rate. Number of cases (F(5, 18) = 503.05, p 

< .01) and number of waves cases (F(5, 18) = 76.16, p < .01) were significant factors in 

the hit rate for SRMR. However, unlike AIC and BIC, number of cases was the largest 

factor and explained 84% of the variance in SRMR hit rate while number of waves 

accounted for 13% of the variability in the SRMR hit rate. In the same vein, models with 

210 cases (92%) had a higher hit rate than models with 30 cases (69.08%). Eight-wave 

models (85%) had higher hit rate than 4-wave models (76.08%).   

3.3.4 Likelihood Ratio Test 

The hit rate of LRT was investigated in four conditions only due to complexity of 

the two-stage process in selecting the optimal within-subject covariance structure. The 

overall correct classification was 69% as shown in the bottom of Table 6. The ID within-

subject covariance structure had an average hit rate of 91% in LRT, TOEP(2) 93%, and 

AR(1)  75%. The drop in the LRT hit rate in AR(1) was due to the sharp decrease of the 

LRT hit rate in the condition with 30 cases and 4 waves, which was 34%. The 

ARMA(1,1) structure had an average LRT hit rate of 17%.  
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As we took a closer examination of the LRT hit rate for ARMA(1,1), the 210-

case and 8-wave combination design had the highest LRT hit rate, 65%. The simulation 

design condition of 30 cases and 4 waves setting for ARMA(1,1) had only a 1% hit rate. 

The two  remaining design combinations had 0% LRT hit rate. On average, the 210-case 

and 8-wave combination design had the highest average LRT hit rate (85%) across all 

within-subject covariance structures. 

Table 5. Four-Way Analysis of Variance for SRMR Hit Rate 

  SRMR hit rate   

Factor levels M SD F (5, 18) 
 

n 

# of cases 

  

503.50** 0. 8363 

 -30 69.03 3.42 

  

22476 

-210 92.00 6.66 

  

23362 

# of waves 

  

76.16** 0.1266 

 -4 76.08 10.06 

  

22334 

-8 85.00 14.07 

  

23504 

Magnitude of growth 

parameter 

  

0.41 0.0013 

 0 80.50 12.98 

  

15269 

-0.05 80.00 13.93 

  

15284 

-0.16 81.13 13.23 

  

15285 

T matrix 

  

3.52 0.0058 

 -  Medium 79.58 13.65 

  

22900 

-  Small 81.50 12.41     22938 

**p < .0001 for two-tailed test.

2
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Table 6. LRT Hit Rate 

 

 

 

 

 

 

 

 

        Correct classification (%)     

Target Σ 

Matrix 

# of 

cases 

# of 

waves  
ID TOEP(2) AR(1) ARMA(1,1) Average n 

ID 30 4  92 

   

55 

2367 

TOEP(2) 30 4  

 

92 

  

2996 

AR(1) 30 4  

  

34 

 

2861 

ARMA(1,1) 30 4         1 2583 

ID 210 4  91 

   

69 

2567 

TOEP(2) 210 4  

 

96 

  

3000 

AR(1) 210 4  

  

91 

 

3000 

ARMA(1,1) 210 4         0 2960 

ID 30 8  93 

   

65 

2680 

TOEP(2) 30 8  

 

87 

  

3000 

AR(1) 30 8  

  

83 

 

3000 

ARMA(1,1) 30 8         0 2989 

ID 210 8  89 

   

85 

2835 

TOEP(2) 210 8  

 

96 

  

3000 

AR(1) 210 8  

  

90 

 

3000 

ARMA(1,1) 210 8         65 3000 

Total      91 93 75 17 69 45835 
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3.4 Demonstration with Empirical Data 

We used a pharmaceutical example (Littell et al., 2000; Littell, Stroup, & Freund, 

2002; Littell et al., 2006) to demonstrate the performance of AIC, BIC, LRT, and SRMR 

in an empirical dataset. The repeated measures data described the effect of three drugs 

(i.e. a standard drug (A), a test drug (C), and a placebo (P)) on respiratory capability of 

asthma patients. The dependent variable was respiratory capability termed FEV1 and 

was measured for 8 consecutive hours following treatment on 24 patients in a crossover 

design, yielding 576 observations. For demonstration purpose, only the time effect was 

considered in the means model in order to investigate the underlying time series profile. 

Four different within-subject structures (R) with an unstructured G matrix were fit to the 

pharmaceutical data. Additionally, an unstructured within-subject matrix with null G 

matrix was fit the empirical data, serving as the overall unconditional variance 

covariance structure. As in the simulated data, we fit the overall model (i.e. R = UN, G = 

Null) instead of an unstructured within-subject structure (R = UN) with unstructured T 

matrix (G = UN) so as to avoid model overparametization.  

3.4.1 Result for Empirical Data 

Table 7 presents the -2 log likelihood, AIC, BIC, and SRMR values for the four 

imposed within-subject structures. Nested models can be evaluated using LRTs. All the 

LRTs between nested models were statistically significant (F(4, 5) = 7, p = .0082 for ID 

versus AR(1); F(5, 6) = 5.9, p = .0151 for AR(1) versus ARMA(1,1); F(4, 5) = 5.9, p 

= .0151 for ID versus TOEP(2)). The result of LRTs indicates a preference for complex 

models over parsimonious models. In terms of performance of AIC and BIC, ARMA(1,1) 

had the smallest AIC (1731.3) and BIC (1738.4) values. The differences of BIC values 
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between ARMA(1,1) and TOEP(2) (∆BIC=3.8) and ARMA(1,1) and AR(1) (∆BIC=2.7) 

suggested positive differences between the competing models while the change of BIC 

between ARMA(1,1) and ID (∆BIC=6.5) corresponded to a strong model difference, 

according to Raftery‟s guideline in interpreting model comparison with BIC (Raftery, 

1995). Regarding the performance of SRMR, three of the four covariance structures had 

SRMR values greater than the traditional .08 cutoff criterion (i.e. ID = .092; 

AR(1 )= .087; TOEP(2) = .088) while the SRMR for ARMA(1,1) was the smallest 

among the four structures and was equal to .080. Therefore, SRMR had a congruent 

result as AIC and BIC and preferred ARMA(1,1) model over the other three models for 

the pharmaceutical data.   

Table 7. Values of Fit Statistics on Four Imposed Σ with Empirical Data.  

Fit Statistics ID AR(1) ARMA(1,1) TOEP(2) 

-2LL 1732.2 1725.2 1719.3 1726.3 

AIC 1740.2 1735.2 1731.3 1736.3 

BIC 1744.9 1741.1 1738.4 1742.2 

SRMR 0.0917 0.0874 0.0801 0.0880 
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3.5 Discussion 

Our findings suggested the SRMR had the best average and individual 

performance in searching for the optimal within-subject variance covariance matrix. In 

the simulated data, the average SRMR hit rate was 81%. In particular, the SRMR correct 

identification for ARMA(1,1) outperformed all the other fit indices classification for 

ARMA(1,1). SRMR hit rate (61%) was higher than AIC (41%), BIC (28%), or 

LRT(17%). For an ID structure BIC had the best hit rate but the worst for an ARMA(1,1) 

structure, which corresponded to the fact that BIC penalizes additional parameters being 

estimated and favors parsimonious models. AIC also penalizes complex models but the 

size of the penalty (i.e. 2 times the number of parameter estimated) was not as striking as 

that for BIC, and thus AIC usually selects the less complex model such as TOEP(2). The 

ANOVA test revealed that number of cases and number of waves played a major role in 

the variability of the hit rate in these fit statistics. For AIC and BIC, number of waves 

was a more significant factor than number of cases while for SRMR number of cases 

accounted for more variation in the hit rate. In the analysis of the empirical dataset, 

LRTs favored more complex models; however, due to the fact that LRTs can only be 

used for nested models we could determine if ARMA(1,1) or TOEP(2) was a better 

model. On the other hand, the SRMR agreed with AIC and BIC in selecting the optimal 

variance structure as ARMA(1,1), which had the smallest value among the four 

structures. 

 

 



44 

 

 

The performance of these fit statistics is associated with their inherent natural fit 

categories. SRMR is categorized as the absolute fit index or more specifically an 

absolute misfit index (Browne, MacCallum, Kim, Andersen, & Glaser, 2002) because it 

decreases as the fit of the model to the data increases (Byrne, 2006).SRMR signifies the 

average discrepancy between the observed/unconditional sample and hypothesized 

correlation matrices with a value of zero indicating perfect fit (Byrne, 2006). On the 

other hand, AIC and BIC are relative fit statistics with lower information index value 

indicating a better fit among competing models. Following this vein, we learned that 

SRMR measures the difference between a hypothesized and an observed/unconditional 

covariance structures and reveals the extent of similarity between the two covariance 

structures while information criteria tell us what model fits better but fail to show the 

degree of similarity between the model-implied structure and the unconditional structure. 

The current study evaluated SRMR, a measure of absolute fit, in selecting the optimal 

variance covariance structure in MLM and found SRMR outperformed other fit statistics 

in the covariance structure selection.  
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4. EVALUATING THE IMPACT OF DIFFERENT TYPES/LEVEL OF 

MISSPECIFICATION IN THE WITHIN- AND BETWEEN-SUBJECT 

VARIANCE-COVARIANCE MATRICES IN MULTILEVEL MODELS WITH 

LONGITUDINAL DATA  

4.1 Theoretical Framework 

The technique of multi-level modeling (MLM) is commonly used to analyze 

repeated measurement data in various disciplines, where multiple observations are 

collected on the same participant over time (Littell et al., 2000). Using MLM for 

analyzing repeated measures has several advantages over the classical statistical 

methods. For example, MLM does not require data to be balanced and allows missing 

data or uneven data points (Luke, 2004). Additionally, observations need not to be taken 

equidistantly. In other words, data can be collected at various time points for different 

individuals.  Most importantly, as the focus of this study, the error structure can be 

flexibly modeled in MLM. Traditional Repeated Measures Univariate Analysis of 

Variance (UANOVA) requires the sphericity assumption (with a compound symmetry 

V-C structure as the sufficient condition) which may not be suitable for longitudinal data 

given that measures within a subject tend to correlate over time and the association 

diminishes as lags over time increase (Hedeker & Gibbons, 2006). On the other hand, 

Multivariate Analysis of Variance (MANOVA) assumes an unconditional V-C structure 

by estimating all the unique elements in the V-C matrix, which results in relatively low 

statistical power. MLM represented as mixed effect models allows the error structure to 

be divided into two parts, a between-subject and a within-subject error variance. Due to 
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the independence of random effects from residuals, the G and R matrices can be flexibly 

modeled and conform to the structure of sample data.  

4.2 Purpose of This Study 

The current study adopted a first-order autoregressive variance-covariance (V-C) 

structure as the true within-subject covariance structure and was intended to investigate 

the consequence of misspecifying simultaneously different levels of the variance-

covariance matrices on the estimation and tests of significance of the growth/fixed-effect 

and random-effect parameters. Evaluation criteria include convergence rate, Type I error 

rate, statistical power, and relative bias of the fixed effects and their corresponding 

standard errors. Within the multilevel modeling framework, the total variance in the 

outcome variable is an additive function of the between-subject V-C structure and 

within-subject V-C structure. Given that the total V-C is the combination of the 

between-subject V-C and the within-subject V-C, a compensatory relation between the 

misspecifications in the between-V-C and the within-V-C may occur.  For example, the 

impact of under-specification at one level may be balanced by over-specification at the 

other level. It is also possible that the impact of misspecification in V-C is not equally 

weighed across levels. In other words, the misspecification in the V-C at different level 

may have differential impact on the estimation and tests of significance of the fixed- and 

random-effect parameters.  Based on the three possible types of misspecification 

proposed by Kwok and colleagues (2007), our research questions include: 

1. What is the effect of an over-specified between-subject V-C 

matrix and an under-specified within-subject V-C matrix (Over G, 
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Under R) on the estimation and tests of significance of the fixed 

and random parameters? 

2. What is the effect of an under-specified between-subject V-C 

matrix and an over-specified within-subject V-C matrix (Under G, 

Over R) on the estimation and tests of significance of the fixed 

and random parameters? 

3. What is the effect of the generally misspecified between- and 

within-subject matrices (Generally misspecified G&R) on the 

estimation and tests of significance of the fixed and random 

parameters? 

Design factors including number of waves of repeated measurement, number of 

participants, the magnitude of the fixed effect/growth  parameters, and the magnitude of 

the autocorrelation parameter ( ) were considered. 

4.3 Method 

The study employed the Monte Carlo Simulation approach in a 2 (number of 

cases: 30 and 210) by 2 (number of waves: 4 and 8) by 3 magnitude of growth 

parameters ( = 0, .05, 0.16) by 3 size of autocorrelation parameter (  = 0.2, 0.5 and 

0.8) factorial design to examine the effect of different combination of under-

specification, over-specification, or general misspecification in the between- and within- 

subject variance-covariance structure on the evaluation criteria. Selection of the levels of 

design factors are based on the past simulation studies (Ferron et al., 2002; Keselman et 

al., 1998; Kwok et al., 2007), the review of the multiwave longitudinal studies (Khoo et 

al., 2006), and the study by Raudenbush & Liu (2001). 500 replications were generated 
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for each of the 36 simulation settings, yielding 18,000 datasets. The 18,000 datasets were 

then analyzed for three misspecified covariance structures and a correctly specified 

structure using SAS PROC MIXED (SAS Institute, 2002, 2008). Restricted maximum 

likelihood (REML) estimation method was used for generating the variance-covariance 

structures. For balanced data, REML solutions are the minimal variance unbiased 

estimators taking into account of the degrees of freedom lost for estimating the fixed 

effects and correcting the downward bias produced by full information maximum 

likelihood (ML) (Diggle, Liang, & Zeger, 1994; Smyth & Verbyla, 1996). A growing 

preference for REML over ML was observed for obtaining covariance parameter 

estimates (McCulloch & Searle, 2001). In terms of degrees of freedom, DDFM = 

KR(Firstorder) in SAS PROC MIXED is used. DDFM = KR(Firstorder) computes 

Satterthwaite-type degree of freedom based on the adjusted covariance matrix and 

eliminates the second derivatives from the calculation of the covariance matrix 

adjustment at the same time; thus, it is preferred for V-C structures that have nonzero 

second derivatives, such as AR(1) and ARMA (1,1). Other specification and evaluation 

of the simulation study are discussed below.  

4.3.1 Model Specification 

We considered a simple linear growth curve model with level-1 outcome variable 

as a function of time. For level-2 we modeled the variability in the common intercept 

and common slope. We focused our study on a correctly specified mean model with 

balanced design data only. The level-1 model can be represented as 

                                                                       (12) 
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where tiy  is the outcome of observation at time t for the i
th

 individual, 0i  is the 

baseline status of the i
th

 individual, 1i  is the linear growth rate of i
th

 individual, 

tiTime  is the time of the t
th

 observation for the i
th

 individual, and tie  is the error 

term corresponding to the i
th

 individual at time t with mean zero and  variance . 

The within-subject structure of tie  is denoted as . In our study, the true within-subject 

covariance structure for our simulated data is an AR(1) structure, which is a commonly 

used covariance structure in longitudinal data analysis (Velicer & Fava, 2003; West & 

Hepworth, 1991). The AR(1) model was favored by Chi and Reinsel (1989) over other  

time series model due to its presentation of a more parsimonious correlation in addition 

to the random effects and a more appropriate display of the repeated measurement data.   

The level-2 model is presented below with level-1 coefficient representing initial 

status ( ) and change of growth rate ( ) as the outcome variables in an unconditional 

random intercept and random slope model:  

                                                                                               (13) 

                                                                                                  (14) 

    with  

where  is the average intercept with  capturing the variability in initial status 

across all individuals.  depicts the average rate of  change of the outcome variable 
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over time with  quantifying the variation in the rate of change (or slope) across all 

individuals.  has mean zero and variance  =  0.2.   has mean zero and variance 

 = 0.1 . We adopted this medium between-subject V-C matrix from Raudenbush and 

Liu (2001) but assumed no covariance (i.e.  ) between  and  The 

size of t  is half of  because the variation in the intercept is usually smaller than 

that in the slope (Kwok et al., 2007).       

Based on our simulated data, we developed three combinations of 

misspecification in the between- and within- covariance structure for this study. As 

shown in Figure 2, the true model 
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Figure 2. Illustration of True Between- and Within-Subject Variance-Covariance Structure and 3 Misspecified Conditions in the 

Between- and Within-Subject Variance-Covariance Structures.
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has an AR(1) within-subject structure with a first-band unstructured (UN(1)) between-

subject structure (i.e. only estimating and in the between-subject covariance 

structure). There are three misspecified conditions: 1) Over R & Under G, an over-

specified ARMA(1,1) within-subject covariance with under-specified between-subject 

structure where there is only variation in the intercept (i.e. );  2) Under R & Over G, 

an under-specified identity (ID) within-subject covariance structure with an over-

specified UN-structured between-subject covariance matrix (i.e. estimating all unique 

elements in the between-subject covariance structure including ); and 3) 

Generally misspecified G&R, TOEP(2) structures in both the within-  and between-

subject covariance structure.  

4.3.2 Evaluation Criterion 

Several evaluation criteria were used to study the effect of misspecification in the 

between- and within-subject covariance structure. The criteria include: 1) rate of 

convergence of the replications, 2) bias of the estimates for the fixed effects (i.e., 0 , 

and 1 ) and their corresponding standard errors (i.e., 0SE , and 1SE ), and 3) Type I 

error rate and statistical power of the test of the fixed effects.  

Relative bias for fixed effects (i.e. RB ) was calculated with population value 

not equal zero (i.e., 1  = 0.05, 0.16, and 0 = 0.1). RB  is defined as 

RB=
 




 

where 
  

was the population parameter value and   is the sample estimate. Simple bias, 

defined as Bsimple      was calculated for the fixed effect with parameter values equal 
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zero (i.e., 0 = 0). We also computed empirical relative bias for the standard errors of the 

regression coefficients. A zero value of RB reflected an unbiased estimate of the 

parameter. A negative value indicated an underestimation of the parameter; on the other 

hand, a positive value indicated an overestimation of the parameter. Type I error rate 

was evaluated using Bradley‟s conservative and liberal criterion (Bradley, 1978). The 

conservative criterion is 0.9α ≤ alpha ≤ 1.1α (or .045 ≤ alpha ≤ .055) and the liberal 

criterion is 0.5α ≤ alpha≤ 1.5α (or .025 ≤ alpha ≤ .075). 

4.4 Result 

We present the result of the analyses in the following order: convergence rate of 

analysis, relative bias and simple bias of the fixed effects, empirical bias of the standard 

error of fixed effects, and finally Type I error rate and empirical statistical power for the 

test of fixed effects. The impact of design factors on the evaluation criteria was 

investigated using Univariate Analysis of Variance (UANOVA) with 
2  as the effect 

size indicator. We reported effects with 
2
 > .005 to evaluate the influence of the design 

factors and avoided the use of significance test to rule out trivial factors.  

4.4.1 Convergence of Analysis 

The 18,000 simulated dataset were analyzed for a true model and 3 misspecified 

conditions, including i) Under  G & Over R, ii) Over G & Under R, and iii) Generally 

misspecified G & R. The convergence rate was 100% for the true model, Over G & 

Under R, and Generally misspecified G & R. Six of 18,000 replications did not converge 

for the Under G & Over R condition ( convergence rate = 99.97% ). Of the six non-
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convergent observations, three were in the condition of  = 0.2, number of cases = 30, 

number of waves = 4, and . The other three were from the condition of   = 

0.2, number of cases = 30, number of waves = 4, and . We considered only the 

results from convergent datasets for further analyses.   

4.4.2 Relative Bias and Simple Bias for the Fixed Effect 

Simple bias was calculated for . The UANOVA test of model 

specification (specification) on the variation of bias for the fixed effect, controlling for 

the number of cases (Ncases), number of waves (Nwaves), magnitude of , and size of 

 (SzRho), revealed no design factors or their interaction terms with 
2 >.005.  

The mean simple bias for detecting   was -0.0004 for the True model, -

0.0005 for the Under G & Over R, -0.0004 for the Over G & Under R, and -0.0005 for 

the Generally-misspecified G&R. Relative biases were computed for  and 

0 (i.e.,  = 0.05 or 0.16). The mean relative bias for detecting 0 was 0.0034 

for the True model, 0.0053 for the Under G & Over R, 0.0019 for the Over G & Under 

R, and 0.0028 for Generally-misspecified G&R. On the other hand, the mean relative 

bias for detecting  0.01 was 0.0026 for the True model, 0.0001 for the Under G & 

Over R, 0.0068 for the Over G & Under R, and 0.0058 for the Generally-misspecified 

G&R.   

4.4.3 Empirical Relative Bias for the Standard Error of the Fixed Effect 

We computed empirical relative bias for the standard errors of the regression 

coefficients. The impact of model specification on the variability of empirical RB was 

evaluated using UANOVA, controlling for number of cases, number of waves, 
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magnitude of 1 , and size of . The results are exhibited in Table 8. The UANOVA test 

showed that model specification (
2
 = .0367) had a differential effect on the empirical 

relative bias of standard error for 1 .  The empirical RB for 1  was near zero (-

6.71475E-17) for the True model,  -0.1181 for the Under G & Over R, 0.0135 for the 

Over G & Under R, and 0.1031 for the Generally-misspecified G&R. 

In addition, the interactions between the specification main effect and SzRho (
2
 

= .0283) and between specification and Nwaves (
2
 = .0196), also had an 

2  greater than 

.005 (p < .0001). A three-way interaction among specification, Nwaves, and SzRho (
2
 = 

.0142) was also found. Under G & Over R tended to underestimate the parameter while 

Over G & Under R tend to overestimate the true parameter especially as size of   

increased to .8 and number of waves increased to 8. 
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Table 8. Impact of Model Specification on Empirical Relative Bias for the Standard 

Error of  under MLM 

 

 

 

 

 

 

 

 

 

 

parameter Effect with
2 >.0050 

Mean Empirical RB 

True 

model 

Under G & 

Over R 

Over G & 

Under R 

Generally-

misspecified 

G&R 

RB of  SE𝛽1 Specification (
2 = 

.0367, p<.0001) 
0 -.1181 .0135 0.1031 

 
Specification*SzRho 

(
2 = .0283,  p<.0001) 

𝛒 = 𝟎. 𝟐 

0 -0.0771 0.0049 0.0014 

  
𝛒 = 𝟎. 𝟓 

0 -0.0999 0.0147 0.0048 

  
𝛒 = 𝟎. 𝟖 

0 -0.1771 0.0209 0.3029 

 
Specification*Nwaves 

(
2 = .0196,  p<.0001) 

4 waves 

0 -0.0381 0.0156 0.0205 

  
8   waves 

0 -0.1980 0.0114 0.1856 

 

Specification*SzRho*N

waves (
2 = .0142,  

p<.0001) 

4 waves, 𝝆 = 𝟎. 𝟐 

0 0.0066 0.0094 0.0029 

  
8 waves, 𝛒 = 𝟎. 𝟐 

0 -0.1608 0.0004 -0.0001 

  
4 waves, 𝛒 = 𝟎. 𝟓 

0 -0.0373 0.0171 -0.0066 

  
8 waves, 𝛒 = 𝟎. 𝟓 

0 -0.1626 0.0123 0.0162 

  
4  waves, 𝛒 = 𝟎. 𝟖 

0 -0.0836 0.0204 0.0652 

  
8 waves, 𝛒 = 𝟎. 𝟖 

0 -0.2705 0.0215 0.5406 
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  The mean empirical RB ranged from -0.2705 to 0.0066 for Under G & Over R, 

and from -0.0066 to 0.5406 for Generally-misspecified G&R. The true model and Over 

G & Under R had near unbiased estimates of the standard error for 1  across conditions 

(mean empirical RB = 0 for Under G & Over R and mean empirical RB < 0.05 for 

Model 2).   

The result of the effect of model specification on the empirical relative bias for 

the standard error of  0 was presented in Table 9. Model specification (
2
 = .6660) was 

found to influence the empirical RB of standard error for  0 . The mean empirical RB 

for 0  was also near zero for True model (3.584151E-17), 0.6153 for Under G & Over 

R, 0.0144 for Over G & Under R, and -0.1522 for Generally-misspecified G&R. We 

observed two similar two-way interaction effects, including specification*Nwaves(
2
 = 

.1841) and specification*SzRho (
2
 = .0140) and a three-way interaction effect, 

specification*Ncases*Nwaves (
2
 = .0062). 
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Table 9. Impact of Model Specification on Empirical Relative Bias for the Standard  

Error of  under MLM 

 

 

parameter Effect with
2 >.0050 

Mean Empirical RB 

True 

model 

Under G 

& Over R 

Over G & 

Under R 

Generally-

misspecified 

G&R 

RB of 

 
Specification (

2 = 

.6660,  p<.0001) 
0 .6153 .0144 -.1522 

 
Specification*SzRho 

(
2 = .0140,  p<.0001) 

 

0 .6917 -.0013 -.0474 

  
 

0 .5893 .0149 -.1396 

  
 

0 .5648 .0295 -.2695 

 
Specification*Nwaves 

(
2 = .1841,  p<.0001) 

4 waves 

0 .2729 .0113 -.1127 

  
8   waves 

0 .9577 .0175 -.1916 

 

Specification*SzRho*

Nwaves (
2 = .0062,  

p<.0001) 

4 waves,  

0 0.2625 0.0009 -0.0263 

  
8 waves,  

0 1.1209 -0.0035 -0.0686 

  
4 waves,  

0 0.2588 0.0117 -0.0906 

  
8 waves,  

0 .9198 .0182 -0.1886 

  
4  waves,  

0 0.2973 0.0212 -0.2213 

  
8 waves,  

0 0.8324 0.0379 -0.3177 
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The impact of these factors on the empirical RB of 0 , however, had a different 

pattern as that on the empirical RB of 1 . Under G & Over R tended to overestimate the 

parameter value as size of   decreased and number of waves increased while Generally-

misspecified G&R tended to underestimate the parameter value as size of   increased 

and number of waves increased. The mean empirical RB ranged from 0.2588 to 1.1209 

for Under G & Over R and from -0.3177 to -0.0263 for Generally-misspecified G&R. 

The true model and Under G & Over R had near unbiased estimates of SEs for  (mean 

empirical RB = 0 for Under G & Over R and mean empirical RB < 0.05 for Model 2).   

4.4.4 Type I Error Rate of Detecting  and  

Type I error rate was computed for conditions whose true parameter value equal 

0 (i.e., 1 =0). The impact of model specification on the variation of Type I error rate was 

evaluated using UANOVA, controlling for design factors including number of cases, 

number of waves, and size of   and their interaction terms. The result was shown in 

Table 10. Model specification (
2
 = .0072) was the only design factor that had 

2  greater 

than .005. True model and Over G & Under R maintained a nominal alpha rate close to 

.05, (  = .0492 for True model and  = .0485 for Over G & Under R). Under G & Over 

R had an inflated Type I error rate (  = .0913) while Generally-misspecified G&R had 

slightly lower Type I error rate (  = .0410) in detecting 1 =0. The mean Type I error 

rate for Generally-misspecified G&R was within Bradley‟s liberal criterion (i.e., .025 ≤ 

alpha ≤ .075) but fell out of his conservative criterion (i.e., .045 ≤ alpha ≤ .055). On the 

other hand, the Type I error rates for the True model and Over G & Under R were within 

Bradley‟s conservative criterion.  
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4.4.5 Statistical Power of Detecting  and  

We examined statistical power for conditions whose population parameter values 

are greater than zero (i.e., 0 = 0.10, and 1  = 0.05 or 0.16). Number of cases, number of 

waves, magnitude of 1 , size of   and their interaction terms were controlled when we 

used UANOVA to evaluate the impact of model specification on the statistical power for 

the test of 0 . Specification (
2
 = .0455), specification*Ncases (

2
 = .0080), and 

specification*Nwaves (
2
 = .0054) were found to influence the variability in the power 

for detecting 0 . On average, Under G & Over R had the lowest statistical power 

(.0277) while Generally-misspecified G&R had the highest statistical power (.2361) in 

detecting . True model (.1513) and Over G & Under R (.1492) had similar statistical 

power in detecting  0 .  Compared to the true model, Under G & Over R tended to 

underestimate the statistical power in detecting as the number of waves increased and 

number of cases decreased. On the contrary, Generally-misspecified G&R tended to 

overestimate the statistical power in detecting  as number of waves and number of 

cases increased. Over G & Under R maintained a similar statistical power as the true 

model across conditions. 
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Table 10. Impact of Model Specification on the Significance Test for Linear Growth 

Model under MLM 

 

parameter Effect with
2 >.0050 

Mean Empirical RB 

True 

model 

Under G & 

Over R 

Over G 

& Under 

R 

Generally-

misspecified 

G&R 

Type I error 

rate of 1  
Specification (

2 = 

.0072, p<.0001) 
0.0492 0.0913 0.0485 0.0410 

Power of 0   
Specification 

(
2 = .0455, p<.0001) 

0.1533 0.0277 0.1492 0.2361 

 
Specification*Nwaves 

(
2 = .0054, p<.0001) 

4 waves 

0.1284 0.0506 0.1251 0.1882 

  
8 waves 

0.1742 0.0048 0.1733 0.2840 

 
Specification*Ncases 

(
2 = .0080,  p<.0001) 

N=30 

0.0722 0.0108 0.0710 0.1359 

  
N=210 

0.2304 0.0446 0.2274 0.3363 

Power of 1  
Specification 

(
2 = .0055, p<.0001) 

0.5099 0.5695 0.5007 0.4668 
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  The impact of model specification was examined for the statistical power in 

testing 1  = 0.05 and 0.16 using UANOVA, holding number of cases, number of waves, 

magnitude of 1 , size of , and their interaction terms constant. We observed a 

differential effect on model specification (
2
 = .0055) for testing 1  ≠ 0, controlling for 

other factors. Compared to the true model, Under G & Over R had an overstatement of 

the power in testing 1  ≠ 0, while Generally-misspecified G&R had an understatement 

of power in testing 1  ≠ 0.  The true model (.5099) and Over G & Under R (.5007) had 

similar power.  The mean power in testing 1  ≠ 0 was .5099 for True model, .5695 for 

Under G & Over R, .5007 for Over G & Under R, and .4668 for Generally-misspecified 

G&R.  

4.5 Discussion 

This study was intended to examine the effect of different types/levels of 

misspecification in the between- and within-subject V-C structures simultaneously on 

the estimation and tests of significance for the growth/fixed-effects and their 

corresponding standard errors while considering the size of the autoregressive 

parameters, magnitude of the growth parameters, number of cases, and number of 

waves. Across all models, the estimates for the fixed/growth parameters were almost 

completely unbiased (RB<.05). This finding was consistent with previous research when 

the within-subject error structure is misspecified (Ferron et al., 2002; Kwok et al., 2007; 

Murphy & Pituch, 2009; Sivo, Fan, & Witta, 2005), a nesting in MLM is ignored 
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(Moerbeek, 2004), or a cross-classified structure is not considered (Luo & Kwok, 2009). 

Regarding the tests of the fixed effects and the estimation of the standard errors of the 

growth parameters, Under G & Over R usually underestimated the standard error of  

but overestimated the standard error of  , which in turn would lead to an inflated Type 

I error rate and power for the test of  and lower statistical power for . Generally-

misspecified G&R had a reverse result compared to that for Under G & Over R. 

Generally misspecified G&R matrices tended to overestimate the standard error of  

but underestimate the standard error of  , which in turn would lead to inflated power 

for the test of  and lowered Type I error rate and statistical power for . On the other 

hand, Over G & Under R had nearly unbiased estimates of standard errors for the fixed 

effects, maintained a Type I error rate close to 0.05, and yielded comparable statistical 

power to the true model in testing the significance of growth parameters. In other words, 

Over G & Under R V-C structures performed equally well as the correctly specified 

model.  
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5. CONCLUSIONS AND LIMITATIONS 

  Researchers make extensive use of MLM when analyzing longitudinal data. 

Several studies showed the impact of mis-specifying the within-subject covariance 

(Ferron et al., 2002; Kwok et al., 2007) and articles addressed the importance of 

modeling the optimal covariance structure (Singer & Willett, 2003) when using MLM 

for longitudinal data analysis. Study 1 examined the performance of common fit 

statistics in selecting the optimal within-subject variance covariance matrix. The 

averaged overall hit rates for AIC, BIC, and LRT were below 70%. The worst concern 

as to these fit statistics was that their stability in searching for the optimal covariance 

structure aggravated as the target covariance structure became more complex. The 

SRMR had an averaged overall hit rate of 81%. The greatest advantage of SRMR over 

the common fit indices was that SRMR maintained its stability in selecting the optimal 

within-subject structure even when the target covariance structure was complex (e.g. 

ARMA(1,1) hit rate for SRMR was 61%). Based on the overall and steady performance 

of SRMR, we concluded SRMR had better discernment in the evaluation of optimal 

within-subject covariance structure. However, there were some limitations in Study 1. 

First of all, only balanced scenarios were considered. As shown in previous studies 

(Keselman et al., 1998; Wolfinger, 1993), the common fit statistics did not perform well 

on searching for the optimal covariance structure under the general mixed model 

framework. Nevertheless, the overall hit rates for AIC, BIC, and LRT were still high in 

the current study due to the research design consisting of balanced observations 

exclusively. Moreover, the size of G matrix, the element in between-subject covariance 

matrix, was known in the study. The observed covariance structure in the MLM 
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framework is composed of the within-subject covariance matrix and the between-subject 

covariance matrix. The combination of different between- and within-subject covariance 

matrices may influence the performance of the fit statistics and test statistics under 

examination. Future research can be conducted to investigate the performance of SRMR 

with unknown G or different specifications of G and include cases with unbalanced 

observations. As more design factors are included, we are moving toward the direction 

of examining the robustness of SRMR as a possible alternative for selecting the optimal 

within-subject covariance structure in MLM.  

Misspecification of covariance structures in MLM can produce bias in the 

statistical inference of the results. Previous studies have only examined the effect of 

misspecified within-subject error structure given a correctly specified between-subject 

covariance structure. Few studies to date have systematically examined the effect of 

misspecification in both between- and within-covariance matrices. Results of study 2 

showed that an Over G& Under R model specification for a linear growth curve model 

performed as well as a correctly specified true model with an UN(1) G & AR(1) R 

structure in terms of unbiasedness of fixed effects, random effects, Type I error rate, and 

statistical power. The finding is consistent with the study by Kwok et al. (2007) in that 

there is a compensatory effect when we over-specify one side of the matrix and under-

specify the other side of the matrix. However, misspecified conditions will cancel each 

other out only when all the essential elements or the diagonal terms in the G & R 

matrices have been estimated. The Under G & Over R condition did not form a 

compensatory effect because only the variation in the intercept was estimated in the G 

side while variation in slope was ignored. On the other hand, the generally misspecified 
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G & R condition also had biased estimation in the criterion variables because the 

variances for the intercept and slope in the G structure were forced to be identical, but in 

fact the variance in the slope was only half the variance in the intercept. The Over G & 

Under R condition had an unstructured between-subject structure which permits the G-

side matrix to be estimated freely and thus can come closer to the true model. Though 

the R matrix was constrained to be an identity structure, as the size of   in the true 

model becomes small the off diagonal elements in R matrix approach zero since they are 

exponential multiples of the parameter. The findings of study 2, however, can only be 

applied to the current study design and specification and cannot be generalized to other 

model misspecifications. More research should be conducted to evaluate different 

types/levels of misspecification in both the between- and within- subject variance 

covariance structures. 

Finally, the current dissertation only evaluated multilevel analysis with a single 

dependent variable; thus, the simulation results may not appropriately extend to 

Structural Equation Modeling (SEM) models, which permit multiple outcome variables. 

In addition, in real situation, there may be second level dependency in the research data, 

for example, repeated measures nested within students and students nested within 

schools. Future research can be conducted to address issues related to model selection 

with second level dependency data and the impact of ignoring the higher level V-C 

structure on the criterion variables.  
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APPENDIX A 

ANNOTATED SYNTAX FOR CALCULATING SRMR 

ID 

% cov=Z*T*Z'+R 

clear element11 element22 element33 element44 element21 element31 element41 element32 

element42 element43 SRMR TargetR select_case N_case element_sum element_sum_square 

element_sum_square_norm Descriptor Fullinfo_ID; 

%Model selection, 4 waves. ID; 

t=4; % # of waves; 

Z=[1 -1.5; 1 -.5;1 .5; 1 1.5]; 

T_large=[.2 .05;.05 .10]; 

T_small=[.1 .025;.025 .05]; 

N=length(ID1); 

% ID is assumed. 

i=0;  

for n=1:N, 

    if nwaves(n)==4, 

        if teffect(n) ==1 , % large t effect; 

            i=i+1; 

            TargetR(i)=targetg(n); 

            % Design factors;  

            Descriptor(i,:)=[nwaves(n) ncases(n) beffect1(n) targetg(n) teffect(n)];  

            select_case(i)=n; 

            G=Z*T_large*Z'; % Computation of G matrix = ZTZ'; 

            % elementij is the ith row and jth column element in computing SRMR index; 

            % Computation of diagonal terms of SRMR index;                  

            element11(i)=(u11_5(n)-res1(n)-G(1,1))/(sqrt(u11_5(n))*sqrt(u11_5(n)));  

            element22(i)=(u22_5(n)-res1(n)-G(2,2))/(sqrt(u22_5(n))*sqrt(u22_5(n)));  

            element33(i)=(u33_5(n)-res1(n)-G(3,3))/(sqrt(u33_5(n))*sqrt(u33_5(n))); 

            element44(i)=(u44_5(n)-res1(n)-G(4,4))/(sqrt(u44_5(n))*sqrt(u44_5(n)));   

            % uij_5 is the unstructured var-cov structure estimates;   

            %Computation of low triangle terms; 

            element21(i)=(u21_5(n)-G(2,1))/(sqrt(u22_5(n))*sqrt(u11_5(n))); % u_21; 

            element31(i)=(u31_5(n)-G(3,1))/(sqrt(u33_5(n))*sqrt(u11_5(n))); % u_31; 

            element41(i)=(u41_5(n)-G(4,1))/(sqrt(u44_5(n))*sqrt(u11_5(n))); % u_41; 

            element32(i)=(u32_5(n)-G(3,2))/(sqrt(u33_5(n))*sqrt(u22_5(n))); % u_32; 

            element42(i)=(u42_5(n)-G(4,2))/(sqrt(u44_5(n))*sqrt(u22_5(n))); % u_42; 

            element43(i)=(u43_5(n)-G(4,3))/(sqrt(u44_5(n))*sqrt(u33_5(n))); % u_43; 

        else                % small t effect; 

            i=i+1; 

            TargetR(i)=targetg(n); 

            % Design factors; 

            Descriptor(i,:)=[nwaves(n) ncases(n) beffect1(n) targetg(n) teffect(n)];  

            select_case(i)=n; 

            G=Z*T_small*Z'; % Computation of G matrix = ZTZ'; 

            % elementij is the ith row and jth column element in computing SRMR index; 

            % Computation of diagonal terms of SRMR index;                         

            element11(i)=(u11_5(n)-res1(n)-G(1,1))/(sqrt(u11_5(n))*sqrt(u11_5(n))); 

            element22(i)=(u22_5(n)-res1(n)-G(2,2))/(sqrt(u22_5(n))*sqrt(u22_5(n)));  

            element33(i)=(u33_5(n)-res1(n)-G(3,3))/(sqrt(u33_5(n))*sqrt(u33_5(n))); 
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            element44(i)=(u44_5(n)-res1(n)-G(4,4))/(sqrt(u44_5(n))*sqrt(u44_5(n))); 

            % uij_5 is the unstructured var-cov structure estimates;  

            %Computation of low triangle terms 

            element21(i)=(u21_5(n)-G(2,1))/(sqrt(u22_5(n))*sqrt(u11_5(n)));   

            element31(i)=(u31_5(n)-G(3,1))/(sqrt(u33_5(n))*sqrt(u11_5(n)));   

            element41(i)=(u41_5(n)-G(4,1))/(sqrt(u44_5(n))*sqrt(u11_5(n))); 

            element32(i)=(u32_5(n)-G(3,2))/(sqrt(u33_5(n))*sqrt(u22_5(n))); 

            element42(i)=(u42_5(n)-G(4,2))/(sqrt(u44_5(n))*sqrt(u22_5(n))); 

            element43(i)=(u43_5(n)-G(4,3))/(sqrt(u44_5(n))*sqrt(u33_5(n))); 

        end 

    end 

end 

% ALL the elements are combined to calculate the SRMR index; 

element_sum_square = 

element11.^2+element22.^2+element33.^2+element44.^2+2*element21.^2+2*element31.^2+2*e

lement41.^2+2*element32.^2+2*element42.^2+2*element43.^2; 

element_sum_square_norm=element_sum_square/(t*(t+1)); 

SRMR=sqrt(element_sum_square_norm)'; % Resulted SRMR index value; 

  

Fullinfo_ID=[Descriptor, SRMR]; 

N_case=sum(select_case~=0) 

% computation of the hit rate of SRMR index; 

hit_ID=0; 

for iIDhit=1:length(Fullinfo_ID),  

%     iARhit 

    if SRMR(iIDhit)<=0.08 && Descriptor(iIDhit,4)==1 

        hit_ID=hit_ID+1; 

    end 

end 

hit_ID 

% figure of SRMR values; 

figure(1) 

subplot(2,1,1) 

stem(SRMR') 

hold on 

plot(1:length(SRMR'),0.05,'y'); 

plot(1:length(SRMR'),0.08,'g'); 

hold off 

title('SRMR for ID') 

AXIS([0 length(SRMR)+0.05*length(SRMR) -0.05 0.5]); 

subplot(2,1,2) 

stem(TargetR) 

AXIS([0 length(SRMR)+0.05*length(SRMR) -inf inf]); 

title('TargetR') 

 

TOEP(2) 

clear element11 element22 element33 element44 element21 element31 element41 element32 

element42 element43 SRMR TargetR select_case N_case element_sum element_sum_square 

element_sum_square_norm Descriptor Fullinfo_Toep; 

%Model selection, 4 waves. Toep(2); 

t=4; 

Z=[1 -1.5; 1 -.5;1 .5; 1 1.5]; 

T_large=[.2 .05;.05 .10]; 
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T_small=[.1 .025;.025 .05]; 

N=length(ID1); 

% Toep is assumed. 

i=0; 

for n=1:N, 

    if nwaves(n)==4  , 

        if teffect(n) ==1, 

            i=i+1; 

            TargetR(i)=targetg(n);  % large t effect; 

            % Design factors; 

            Descriptor(i,:)=[nwaves(n) ncases(n) beffect1(n) targetg(n) teffect(n)];  

            select_case(i)=n; 

            G=Z*T_large*Z';     % Computation of G matrix = ZTZ'; 

            % elementij is the ith row and jth column element in computing SRMR index; 

            % Computation of diagonal terms of SRMR index;             

            element11(i)=(u11_5(n)-res2(n)-G(1,1))/(sqrt(u11_5(n))*sqrt(u11_5(n)));  

            element22(i)=(u22_5(n)-res2(n)-G(2,2))/(sqrt(u22_5(n))*sqrt(u22_5(n)));  

            element33(i)=(u33_5(n)-res2(n)-G(3,3))/(sqrt(u33_5(n))*sqrt(u33_5(n))); 

            element44(i)=(u44_5(n)-res2(n)-G(4,4))/(sqrt(u44_5(n))*sqrt(u44_5(n))); 

            % uij_5 is the unstructured var-cov structure estimates;   

            % Computation of low triangle terms; 

            % toep(n) is the sigma_1e 

            element21(i)=(u21_5(n)-toep(n)-G(2,1))/(sqrt(u22_5(n))*sqrt(u11_5(n)));  

            element31(i)=(u31_5(n)-G(3,1))/(sqrt(u33_5(n))*sqrt(u11_5(n))); 

            element41(i)=(u41_5(n)-G(4,1))/(sqrt(u44_5(n))*sqrt(u11_5(n))); 

            element32(i)=(u32_5(n)-toep(n)-G(3,2))/(sqrt(u33_5(n))*sqrt(u22_5(n))); 

            element42(i)=(u42_5(n)-G(4,2))/(sqrt(u44_5(n))*sqrt(u22_5(n))); 

            element43(i)=(u43_5(n)-toep(n)-G(4,3))/(sqrt(u44_5(n))*sqrt(u33_5(n))); 

        else                        % small t effect; 

            i=i+1; 

            TargetR(i)=targetg(n); 

            Descriptor(i,:)=[nwaves(n) ncases(n) beffect1(n) targetg(n) teffect(n)]; 

            select_case(i)=n; 

            G=Z*T_small*Z';     % Computation of G matrix = ZTZ'; 

            % elementij is the ith row and jth column element in computing SRMR index; 

            % Computation of diagonal terms of SRMR index;                

            element11(i)=(u11_5(n)-res2(n)-G(1,1))/(sqrt(u11_5(n))*sqrt(u11_5(n))); 

            element22(i)=(u22_5(n)-res2(n)-G(2,2))/(sqrt(u22_5(n))*sqrt(u22_5(n))); 

            element33(i)=(u33_5(n)-res2(n)-G(3,3))/(sqrt(u33_5(n))*sqrt(u33_5(n))); 

            element44(i)=(u44_5(n)-res2(n)-G(4,4))/(sqrt(u44_5(n))*sqrt(u44_5(n))); 

            % uij_5 is the unstructured var-cov structure estimates;   

            % Computation of low triangle terms; 

            % toep(n) is the sigma_1e; 

            element21(i)=(u21_5(n)-toep(n)-G(2,1))/(sqrt(u22_5(n))*sqrt(u11_5(n))); 

            element31(i)=(u31_5(n)-G(3,1))/(sqrt(u33_5(n))*sqrt(u11_5(n))); 

            element41(i)=(u41_5(n)-G(4,1))/(sqrt(u44_5(n))*sqrt(u11_5(n))); 

            element32(i)=(u32_5(n)-toep(n)-G(3,2))/(sqrt(u33_5(n))*sqrt(u22_5(n))); 

            element42(i)=(u42_5(n)-G(4,2))/(sqrt(u44_5(n))*sqrt(u22_5(n))); 

            element43(i)=(u43_5(n)-toep(n)-G(4,3))/(sqrt(u44_5(n))*sqrt(u33_5(n))); 

        end 

    end 

end 

% ALL the elements are combined to calculate the adjested SRMR index; 
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element_sum_square = 

element11.^2+element22.^2+element33.^2+element44.^2+2*element21.^2+2*element31.^2+2*e

lement41.^2+2*element32.^2+2*element42.^2+2*element43.^2; 

element_sum_square_norm=element_sum_square/(t*(t+1)); 

SRMR=sqrt(element_sum_square_norm)'/2; % Resulted SRMR index value; 

  

Fullinfo_Toep=[Descriptor, SRMR]; 

N_case=sum(select_case~=0) 

% computation of the hit rate of SRMR index; 

hit_TOEP=0; 

for iTOEPhit=1:length(Fullinfo_Toep),  

    if SRMR(iTOEPhit)<=0.08 && Descriptor(iTOEPhit,4)==1 

        hit_TOEP=hit_TOEP+1; 

    end 

end 

hit_TOEP 

% figure of SRMR values; 

figure(1) 

subplot(2,1,1) 

stem(SRMR') 

hold on 

plot(1:length(SRMR'),0.05,'y'); 

plot(1:length(SRMR'),0.08,'g'); 

hold off 

title('SRMR for Toep') 

AXIS([0 length(SRMR)+0.05*length(SRMR) -0.05 0.5]); 

subplot(2,1,2) 

stem(TargetR) 

AXIS([0 length(SRMR)+0.05*length(SRMR) -inf inf]); 

title('TargetR') 

 

AR(1) 

%Model selection, 4 waves. AR(1); 

t=4; % # of waves; 

Z=[1 -1.5; 1 -.5;1 .5; 1 1.5]; 

T_large=[.2 .05;.05 .10]; 

T_small=[.1 .025;.025 .05]; 

N=length(ID1); 

i=0; 

for n=1:N, 

    if nwaves(n)==4, 

        if teffect(n) ==1,  % large t effect; 

            i=i+1; 

            TargetR(i)=targetg(n);   

            Descriptor(i,:)=[nwaves(n) ncases(n) beffect1(n) targetg(n) teffect(n)]; % Design factors; 

            select_case(i)=n; 

            G=Z*T_large*Z'; % Computation of G matrix = ZTZ'; 

            % Estimates of elements in AR(1) var-cov matrix; 

            AR=zeros(4,4); 

            AR=[res3(n) ar1(n) ar1(n)^2 ar1(n)^3;                                                       

                ar1(n) res3(n) ar1(n) ar1(n)^2;      

                ar1(n)^2 ar1(n) res3(n) ar1(n); 

                ar1(n)^3 ar1(n)^2 ar1(n) res3(n)]; 
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            % elementij is the ith row and jth column element in computing SRMR index; 

            % AR(i,j) is ith row and jth column element estimate in AR matrix;     

            % Computation of diagonal terms: AR(i,i) is the diagonal term; 

            element11(i)=(u11_5(n)-AR(1,1)-G(1,1))/(sqrt(u11_5(n))*sqrt(u11_5(n)));  

            element22(i)=(u22_5(n)-AR(2,2)-G(2,2))/(sqrt(u22_5(n))*sqrt(u22_5(n)));  

            element33(i)=(u33_5(n)-AR(3,3)-G(3,3))/(sqrt(u33_5(n))*sqrt(u33_5(n)));  

            element44(i)=(u44_5(n)-AR(4,4)-G(4,4))/(sqrt(u44_5(n))*sqrt(u44_5(n)));  

            % uij_5 is the unstructured var-cov structure estimates;   

            %Computation of low triangle terms; 

            element21(i)=(u21_5(n)-AR(2,1)-G(2,1))/(sqrt(u22_5(n))*sqrt(u11_5(n))); 

            element31(i)=(u31_5(n)-AR(3,1)-G(3,1))/(sqrt(u33_5(n))*sqrt(u11_5(n))); 

            element41(i)=(u41_5(n)-AR(4,1)-G(4,1))/(sqrt(u44_5(n))*sqrt(u11_5(n))); 

            element32(i)=(u32_5(n)-G(3,2)-AR(3,2))/(sqrt(u33_5(n))*sqrt(u22_5(n))); 

            element42(i)=(u42_5(n)-G(4,2)-AR(4,2))/(sqrt(u44_5(n))*sqrt(u22_5(n))); 

            element43(i)=(u43_5(n)-G(4,3)-AR(4,3))/(sqrt(u44_5(n))*sqrt(u33_5(n))); 

        else  

            i=i+1; 

            TargetR(i)=targetg(n); % small t effect; 

            Descriptor(i,:)=[nwaves(n) ncases(n) beffect1(n) targetg(n) teffect(n)]; 

            select_case(i)=n; 

            G=Z*T_small*Z'; 

            AR=zeros(4,4); 

            AR=[res3(n) ar1(n) ar1(n)^2 ar1(n)^3; 

                ar1(n) res3(n) ar1(n) ar1(n)^2; 

                ar1(n)^2 ar1(n) res3(n) ar1(n); 

                ar1(n)^3 ar1(n)^2 ar1(n) res3(n)]; 

            % elementij is the ith row and jth column element in computing SRMR index; 

            % AR(i,j) is ith row and jth column element estimate in AR matrix;     

            % Computation of diagonal terms: AR(i,i) is the diagonal term; 

            element11(i)=(u11_5(n)-AR(1,1)-G(1,1))/(sqrt(u11_5(n))*sqrt(u11_5(n)));  

            element22(i)=(u22_5(n)-AR(2,2)-G(2,2))/(sqrt(u22_5(n))*sqrt(u22_5(n))); 

            element33(i)=(u33_5(n)-AR(3,3)-G(3,3))/(sqrt(u33_5(n))*sqrt(u33_5(n)));  

            element44(i)=(u44_5(n)-AR(4,4)-G(4,4))/(sqrt(u44_5(n))*sqrt(u44_5(n)));  

            % uij_5 is the unstructured var-cov structure estimates;   

            %Computation of low triangle terms; 

            element21(i)=(u21_5(n)-AR(2,1)-G(2,1))/(sqrt(u22_5(n))*sqrt(u11_5(n))); 

            element31(i)=(u31_5(n)-AR(3,1)-G(3,1))/(sqrt(u33_5(n))*sqrt(u11_5(n))); 

            element41(i)=(u41_5(n)-AR(4,1)-G(4,1))/(sqrt(u44_5(n))*sqrt(u11_5(n))); 

            element32(i)=(u32_5(n)-G(3,2)-AR(3,2))/(sqrt(u33_5(n))*sqrt(u22_5(n))); 

            element42(i)=(u42_5(n)-G(4,2)-AR(4,2))/(sqrt(u44_5(n))*sqrt(u22_5(n))); 

            element43(i)=(u43_5(n)-G(4,3)-AR(4,3))/(sqrt(u44_5(n))*sqrt(u33_5(n))); 

        end 

    end 

end 

% ALL the elements are combined to calculate the adjested SRMR index; 

element_sum_square = 

element11.^2+element22.^2+element33.^2+element44.^2+2*element21.^2+2*element31.^2+2*e

lement41.^2+2*element32.^2+2*element42.^2+2*element43.^2; 

element_sum_square_norm=element_sum_square/(t*(t+1)); 

SRMR=sqrt(element_sum_square_norm)'/2;% Resulted SRMR index value; 

  

Fullinfo_AR=[Descriptor, SRMR]; 

N_case=sum(select_case~=0) 
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N_case_AR=ncase_AR 

% computation of the hit rate of SRMR index; 

hit_AR=0; 

for iARhit=1:length(Fullinfo_AR),  

    if SRMR(iARhit)<=0.1 && Descriptor(iARhit,4)==3 

        hit_AR=hit_AR+1; 

    end 

end 

hit_AR 

% figure of SRMR values; 

figure(1) 

subplot(2,1,1) 

stem(SRMR') 

hold on 

plot(1:length(SRMR'),0.05,'y'); 

plot(1:length(SRMR'),0.08,'g'); 

hold off 

title('SRMR for AR(1)') 

axis([0 length(SRMR)+0.05*length(SRMR) -0.05 0.5]); 

subplot(2,1,2) 

stem(TargetR) 

axis([0 length(SRMR)+0.05*length(SRMR) -inf inf]); 

title('TargetR') 

 

ARMA(1,1) 

%Model selection, 4 waves.ARMA; 

t=4; 

Z=[1 -1.5; 1 -.5;1 .5; 1 1.5]; 

T_large=[.2 .05;.05 .10]; 

T_small=[.1 .025;.025 .05]; 

N=length(ID1); 

% ARMA(1,1) is assumed. 

i=0; 

for n=1:N, 

    if nwaves(n)==4  && ncases(n)==210 && beffect1(n)==.05, 

        if teffect(n) ==1,  % large t effect; 

            i=i+1; 

            TargetR(i)=targetg(n); 

            Descriptor(i,:)=[nwaves(n) ncases(n) beffect1(n) targetg(n) teffect(n)]; 

            select_case(i)=n; 

            G=Z*T_large*Z'; % Computation of G matrix = ZTZ'; 

            % Estimates of elements in ARMA var-cov matrix; 

            % gamma(n) is the gamma parameter; 

            % rho(n) is the rho parameter; 

            ARMA=[  res4(n) gamma(n) gamma(n)*rho(n) gamma(n)*rho(n)^2;  

                    gamma(n) res4(n) gamma(n) gamma(n)*rho(n); 

                    gamma(n)*rho(n) gamma(n) res4(n) gamma(n); 

                    gamma(n)*rho(n)^2 gamma(n)*rho(n) gamma(n) res4(n)]; 

            % elementij is the ith row and jth column element in computing SRMR index; 

            % ARMA(i,j) is ith row and jth column element estimate in ARMA matrix;   

            % Computation of diagonal terms AR(i,i) is the diagonal term; 

            element11(i)=(u11_5(n)-ARMA(1,1)-G(1,1))/(sqrt(u11_5(n))*sqrt(u11_5(n))); 

            element22(i)=(u22_5(n)-ARMA(2,2)-G(2,2))/(sqrt(u22_5(n))*sqrt(u22_5(n))); 
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            element33(i)=(u33_5(n)-ARMA(3,3)-G(3,3))/(sqrt(u33_5(n))*sqrt(u33_5(n))); 

            element44(i)=(u44_5(n)-ARMA(4,4)-G(4,4))/(sqrt(u44_5(n))*sqrt(u44_5(n))); 

            % uij_5 is the unstructured var-cov structure estimates;   

            %Computation of low triangle terms; 

            element21(i)=(u21_5(n)-ARMA(2,1)-G(2,1))/(sqrt(u22_5(n))*sqrt(u11_5(n))); 

            element31(i)=(u31_5(n)-G(3,1)-ARMA(3,1))/(sqrt(u33_5(n))*sqrt(u11_5(n))); 

            element41(i)=(u41_5(n)-G(4,1)-ARMA(4,1))/(sqrt(u44_5(n))*sqrt(u11_5(n))); 

            element32(i)=(u32_5(n)-ARMA(3,2)-G(3,2))/(sqrt(u33_5(n))*sqrt(u22_5(n))); 

            element42(i)=(u42_5(n)-G(4,2)-ARMA(4,2))/(sqrt(u44_5(n))*sqrt(u22_5(n))); 

            element43(i)=(u43_5(n)-ARMA(4,3)-G(4,3))/(sqrt(u44_5(n))*sqrt(u33_5(n))); 

        else        % small t effect; 

            i=i+1; 

            TargetR(i)=targetg(n);   

            Descriptor(i,:)=[nwaves(n) ncases(n) beffect1(n) targetg(n) teffect(n)]; 

            select_case(i)=n; 

            G=Z*T_small*Z';  % Computation of G matrix = ZTZ'; 

            % Estimates of elements in ARMA var-cov matrix; 

            % gamma(n) is the gamma parameter; 

            % rho(n) is the rho parameter; 

            ARMA=[  res4(n) gamma(n) gamma(n)*rho(n) gamma(n)*rho(n)^2;  

                    gamma(n) res4(n) gamma(n) gamma(n)*rho(n); 

                    gamma(n)*rho(n) gamma(n) res4(n) gamma(n); 

                    gamma(n)*rho(n)^2 gamma(n)*rho(n) gamma(n) res4(n)]; 

            % elementij is the ith row and jth column element in computing SRMR index; 

            % ARMA(i,j) is ith row and jth column element estimate in ARMA matrix;   

            % Computation of diagonal terms AR(i,i) is the diagonal term; 

            element11(i)=(u11_5(n)-ARMA(1,1)-G(1,1))/(sqrt(u11_5(n))*sqrt(u11_5(n))); 

            element22(i)=(u22_5(n)-ARMA(2,2)-G(2,2))/(sqrt(u22_5(n))*sqrt(u22_5(n))); 

            element33(i)=(u33_5(n)-ARMA(3,3)-G(3,3))/(sqrt(u33_5(n))*sqrt(u33_5(n))); 

            element44(i)=(u44_5(n)-ARMA(4,4)-G(4,4))/(sqrt(u44_5(n))*sqrt(u44_5(n))); 

            % uij_5 is the unstructured var-cov structure estimates;   

            %Computation of low triangle terms; 

            element21(i)=(u21_5(n)-ARMA(2,1)-G(2,1))/(sqrt(u22_5(n))*sqrt(u11_5(n))); 

            element31(i)=(u31_5(n)-G(3,1)-ARMA(3,1))/(sqrt(u33_5(n))*sqrt(u11_5(n))); 

            element41(i)=(u41_5(n)-G(4,1)-ARMA(4,1))/(sqrt(u44_5(n))*sqrt(u11_5(n))); 

            element32(i)=(u32_5(n)-ARMA(3,2)-G(3,2))/(sqrt(u33_5(n))*sqrt(u22_5(n))); 

            element42(i)=(u42_5(n)-G(4,2)-ARMA(4,2))/(sqrt(u44_5(n))*sqrt(u22_5(n))); 

            element43(i)=(u43_5(n)-ARMA(4,3)-G(4,3))/(sqrt(u44_5(n))*sqrt(u33_5(n))); 

        end 

    end 

end 

% ALL the elements are combined to calculate the adjested SRMR index; 

element_sum_square = 

element11.^2+element22.^2+element33.^2+element44.^2+2*element21.^2+2*element31.^2+2*e

lement41.^2+2*element32.^2+2*element42.^2+2*element43.^2; 

element_sum_square_norm=element_sum_square/(t*(t+1)); 

SRMR=sqrt(element_sum_square_norm)'/3; % Resulted SRMR index value; 

  

Fullinfo_ARMA=[Descriptor, SRMR]; 

N_case=sum(select_case~=0) 

N_case_ARMA=sum(Descriptor(:,4)==4) 

% computation of the hit rate of SRMR index; 

hit_ARMA=0; 
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for iARMAhit=1:length(Fullinfo_ARMA),  

%     iARMAhit 

    if SRMR(iARMAhit)<=0.1 && Descriptor(iARMAhit,4)==4 

        hit_ARMA=hit_ARMA+1; 

    end 

end 

hit_ARMA 

% figure of SRMR values; 

figure(1) 

subplot(2,1,1) 

stem(SRMR') 

hold on 

plot(1:length(SRMR'),0.05,'y'); 

plot(1:length(SRMR'),0.08,'g'); 

hold off 

title('SRMR for ARMA(1)') 

axis([0 length(SRMR)+0.05*length(SRMR) -0.05 0.5]); 

subplot(2,1,2) 

stem(TargetR) 

axis([0 length(SRMR)+0.05*length(SRMR) -inf inf]); 

title('TargetR') 
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