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ABSTRACT 

 

A Micro-aspirator Chip Using Vacuum Expanded Microchannels for High-throughput 

Mechanical Characterization of Biological Cells. (August 2010) 

Woosik Kim, B.S., Seoul National University 

Chair of Advisory Committee: Dr. Arum Han 

 

This thesis presents the development of a micro-aspirator chip using vacuum 

expanded microchannels for mechanical characterization of single cells.  Mechanical 

properties of cells can offer valuable insights into the pathogenic basis of diseases and 

can serve as a biomarker to identify cells depending on disease state, and thus have the 

potential for use in human disease diagnostic applications. 

Micropipette aspiration and atomic force microscopy (AFM) are the most 

commonly used techniques for measuring mechanical properties of single cells.  Though 

powerful and versatile, both methods have two drawbacks.  First, micromanipulation of 

glass micropipettes and AFM tips require expertise and extensive operator skills.  

Second, the serial manipulation process severely limits the throughput.  Although 

recently reported microfluidic micropipette device showed the potential of microfluidic 

chip type micropipette aspiration, difficulty in cell trapping and unnatural cell 

deformation remain to be solved. 

In order to address these limitations, a high-throughput micro-aspirator chip, 

which can deliver, trap, and deform multiple cells simultaneously with single-cell 
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resolution without skill-dependent micromanipulation was developed.  The micro-

aspirator chip is composed of 20 arrays of cell traps and aspiration channels.  The 

principle of cell trapping is based on differences in flow resistance inside the 

microfluidic channels.  Once the first cell trap is filled with a cell, the next cell coming 

in passes by the trap and is captured in the next trap.  After all traps are filled with cells, 

negative pressure can then be applied to the integrated aspiration channels using 

hydrostatic pressure.  The aspiration channels are positioned at the center of a trapped 

cell both in vertical and horizontal directions to obtain a good seal just like a traditional 

micropipette, a design made possible through a vacuum expanded raised microfluidic 

channel fabrication technique. 

 Device operation was demonstrated using HeLa cells.  The cell trapping 

efficiency was almost 100%.  Using this device, Young‟s modulus of 1.3 ± 0.8 kPa (n = 

54) was obtained for HeLa cells.  Device to device variation was less than 15.2% (n = 3), 

showing good repeatability of the device.  No dependence of the Young‟s modulus on 

the cell diameter was found. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Objective and Motivation 

 The objective of this work is to develop and demonstrate a system for high-

throughput measurement of mechanical properties of single cells.  The research focuses 

in particular on hydrodynamic cell trapping and microfluidic aspiration of single cells 

using a microfluidic chip, as well as developing fabrication techniques to make raised 

microfluidic aspiration channels for efficient aspiration of single cells into the aspiration 

channel.  

 Micropipette aspiration is the most simple and direct method for studying 

mechanical properties of a single cell [1].  This technique uses suction pressure to 

partially or wholly suck a single cell into a glass micropipette and uses microscopy to 

record the shape change of the cell.  By measuring the cell elongation length into the 

pipette as a result of the suction pressure, mechanical properties of the cell can be 

evaluated.  Currently available systems require laborintensive manual operation that 

limits the throughput of such systems.  Micromanipulation of glass micropipettes 

requires expertise and extensive operating skills, and the serial manipulation process 

severely limits the throughput. 

 Recently, microfluidic devices have been widely used for studying cell biology  

_________ 
This thesis follows the style of IEEE Transactions on Electron Devices. 
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since its scale of size is well matched to the physical dimensions of most cells, and 

micron-scale tools make it possible to manipulate individual cells, their immediate 

extracellular environments and ultimately, their shape and internal organization [2].  

Among various microfabrication techniques, soft lithography is being used with 

increasing frequency for the fabrication of microfluidic devices because of their 

simplicity, low cost and compatibility with cells [3].  Previous studies show that flow-

through type microfluidic devices can be used to distinguish stiffness difference of 

single cells depending on the stage of disease but they were not designed to provide 

absolute value of stiffness [4-6].  Microfluidic micropipette device which can deform 

and measure the stiffness of four cells simultaneously was reported in 2007 [7].  

Although this study showed the potential of microfluidic micropipette device for high-

throughput characterization of single cells, it was difficult to obtain a good seal between 

the cell and the aspiration channel, which is critical for accurate measurement of 

pressure in micropipette aspiration, due to the location of the aspiration channel lying on 

the bottom of the device.   

 A micro-aspirator chip that can deliver, trap, and deform 20 cells simultaneously 

with single-cell resolution without skill-dependent micromanipulation was designed and 

fabricated using microfabrication techniques including photolithography and soft 

lithography.  One of the key design concepts of this device is that the aspiration channel 

is positioned at the center of the cell both in vertical and horizontal directions to obtain a 

good seal just like a traditional micropipette.  The developed system is expected to 

eliminate the labor-intensive nature of conventional micropipette aspiration, enable fast 



 3 

and accurate characterization of single cells through cell trapping using flow resistance 

inside microchannel and cell deforming using hydrostatic pressure, and achieve high 

throughput measurement of stiffness.  By realizing micropipette aspiration into a chip-

based system, the developed micro-aspirator chip is expected to provide an in-depth look 

at mechanical deformation occurring at the single-cell level and pathological status of 

single cells with high throughput.  The result of this study is expected to be applied for 

high-throughput single cell study and human disease diagnosis such as cancer by 

providing an accurate and effective analysis instrument. 

 

1.2 Mechanical Properties of Cells and Human Disease 

 Human disease can be defined as a condition, state or process occurring in our 

body that not only impairs our bodily structures and functions but also threatens our 

health and even lives.  According to a study by the World Health Organization (WHO) 

[8], 7.9 million people worldwide died of cancer during 2007 alone.  WHO estimates 

that mortality rates due to cancer will continue to rise worldwide, with 9 million cancer 

deaths by 2015 and 11.4 million by 2030.  Half of the world's population is at risk of 

malaria, and an estimated 243 million cases led to an estimated 863,000 deaths in 2008 

[9].   Every disease is unique and can vary in symptoms, signs and outcomes.  Disease 

not only causes biological and functional alterations but also results in abnormalities in 

the physical and structural characteristics of cells.  Current research on diseases mainly 

focuses on the molecular, microbiological, immunological and pathological aspects, 
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rather than on the mechanical basis, which might make direct contributions to the 

symptoms and pathophysiological outcomes.    

 Mechanical processes like pushing, pulling, and squeezing play a remarkably 

significant role in the biological function of a cell [10-11].  For example, such forces 

turn out to affect biological processes such as cell growth, division, migration, and death.  

In addition, mechanical forces at the cellular level impact the function of biological 

structures ranging from large length scales such as tissues to small length scales such as 

genes.  As a result it is not surprising that when living cells are affected by disease, 

changes in their mechanical properties also occur.  Indeed cell mechanics has been 

implicated in a variety of diseases, such as cancer [12-14], malaria [15], sickle cell 

anemia [16], asthma, and glaucoma [17].  For example, Cross et al. [12] studied 

individual cells taken from the tissues of suspected patients with various cancers.  From 

physiology it is suggested that metastatic cancer cells must be more deformable than 

healthy cells, to be able to invade tissue.  Consistent with this notion, individual 

metastatic cancer cells were indeed found to have lower Young‟s moduli measured via 

atomic force microscope (AFM).  Also, in suspended state, cancerous and metastatic 

cells could be distinguished from healthy breast epithelial cells via their resistance to 

optical stretching [18].  Thus there exists an intimate link between the mechanical 

properties and the disease state of living cells. 

 From a mechanics perspective it is well known that intracellular forces are 

generated and supported via an intracellular framework called the cytoskeleton.  This 

network, containing actin filaments, microtubules, and intermediate filaments, is 
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dynamic in nature, and is regulated via polymerization and depolymerization rates, 

which in turn are controlled via molecular motors and ATP [19].  This coupling between 

intracellular mechanics and chemistry appears to be universal [20-21].  It allows cells to 

respond mechanically to external stresses by activating biochemical signaling cascades 

and also underlies the possibility to restore the mechanical properties of diseased cells by 

pharmacological interventions.  Thus cellular mechanotransduction studies that involve 

understanding and the control of interactions between mechanical forces and 

biochemical signaling pathways could lead to novel therapeutic strategies to treat 

diseases. 

 There are two reasons that characterization of mechanical properties of cells is 

important.  First, studying human diseases from a biomechanics perspective can lead to a 

better understanding of the pathophysiology and pathogenesis of a variety of human 

diseases because changes occurring at the molecular and cellular levels will affect, and 

can be correlated to, changes occurring at the macroscopic level [15].  This will provide 

an alternative and better approach to assess the onset or progression of diseases as well 

as to identify targets for therapeutic interventions.  Second, cell deformability can serve 

as a useful biomarker to identify cells depending on disease state, and thus have the 

potential to be used in human disease diagnostic applications.  For example, currently, 

cancer is diagnosed using a combination of radiological, surgical, and pathologic 

assessments of tissue samples requiring a microscopic evaluation for diagnosis and 

prognostic result generation [22].  The methods require significant sample preparation 

using bench top protocols.  The whole process is time consuming and costly.  In this 
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case, cell deformability measurement system can be used as a potential pre-diagnostic 

tool which can help making a decision for further diagnosis by providing estimation 

about the disease state in simple and easy way. 

 

1.3 Measuring the Mechanical Properties of Single Cells 

 Advances in biomechanical tools have led to the wide availability of 

instrumentations to probe biological cells in physiologically appropriate in vitro 

environments [14].  They have provided new capabilities to generate force vs. 

displacement records of mechanical deformation for cells.  Wide variety of experimental 

techniques have been developed such as micropipette aspiration,  atomic force 

microscopy (AFM), magnetic twisting cytometry, laser/optical tweezer, microplate 

stretcher, micro-postarray deformation, and shear flow experiment [14].  In this section, 

we will take a look at the two most widely used techniques for measuring mechanical 

properties of cells, the micropipette aspiration and AFM techniques. 

 

1.3.1 Conventional Micropipette Aspiration 

 Micropipette aspiration is one of the most widely used techniques for measuring 

mechanical properties of single cells [1].  It is simple and inexpensive but can measure 

the mechanical properties of cells with a sensitivity and range that is unmatched by any 

other instrument.  Mitchison and Swann [23] first developed the micropipette aspiration 

method to measure the elastic properties of sea urchin eggs.  This method was later used 

to measure the mechanical properties of red blood cell membranes [24].  This technique 
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was further developed as a tool to study the viscoelastic properties of membranes and 

thin-shelled vesicles [25].  Subsequently, it has been employed to study the mechanical 

behavior of leukocytes [26], blood cells [27], and various other cell types.  For example, 

using the micropipette aspiration technique, Byfield et al. have shown that cholesterol 

depletion increases membrane stiffness of aortic endothelial cells [28], and Hochmuth 

obtained the Young‟s modulus of chondrocytes and endothelial cells [1]. 

 Micropipette can be created from a glass tube with an internal diameter of several 

millimeters.  One end of the tube is heated and quickly pulled to a tip with an opening of 

only a few microns or less.  A micromanipulator is used to carefully position a 

micropipette in contact with a single cell.  Figure 1.1 shows the schematic of 

micropipette aspiration.  A known negative pressure (-P) is applied, and the cell is 

partially aspirated into the micropipette.  The rigidity of the cell influences the aspiration 

length (Lp) and outer radius of the cell.  These observations can then be used to 

determine the cellular mechanical parameters (e.g., modulus and viscosity).  

 

 

 

Figure 1.1  Schematic of micropipette aspiration. Lp is the aspiration length of the cell 
when suction pressure –P is applied to the micropipette. Rp is the radius of the 
micropipette. 

-P         Cell

Lp

Rp
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 A typical micropipette aspiration system is shown in Figure 1.2.  Raising or 

lowering the reservoir shown in the figure with a micrometer produces a hydrostatic 

pressure that is greater or less than the pressure in the chamber at the tip of the pipette.  

A sensitive pressure transducer is connected to the reservoir and calibrated by raising or 

lowering the reservoir.   

 

 

 

Figure 1.2  Schematic of a micropipette aspiration system. 
 

 

 According to a previously reported researches using micropipette aspiration, 

biological cells can be classified into two categories, cells that behave as liquid and cells 

that behave as solid [1].    

 Neutrophil is an example of liquid-like cells.  Micropipette suction is unique in 

which it can clearly and dramatically show if a cell behaves as a liquid drop with 

constant cortical tension [1].  This comes directly from the law of Laplace when applied 
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to the suction of a cell into a micropipette until Lp/Rp = 1, the point where the cell forms 

a hemispherical projection into the pipette.  In this case,  

 

       c  
 

 p

 
 

 c

                                                               

 

where Tc is the cortical tension, Rc is the radius of the cell outside the pipette and Pc is 

the critical pressure when Lp/Rp = 1.  Because of the small suction pressures relative to 

the osmotic pressure of isotonic saline, the cell will deform at constant volume.  A 

further increase in the suction pressure beyond the critical value will cause the radius of 

the cell outside the pipette to decrease and its reciprocal to increase.  It will be 

impossible to satisfy equation (1) for a cell at equilibrium and, therefore, the cell will 

flow into the pipette [29]. 

 When cells that behave as solids are aspirated into a micropipette, they do not 

flow into the pipette when the aspiration length Lp exceeds the pipette radius Rp.  The 

aspiration length increases linearly with the suction pressure regardless of the value of Lp 

as shown by the experimental data for chondrocytes [30] and endothelial cells [31].  

Jones et al. further showed that chondrocytes continue to behave as an elastic solid for 

values of Lp/Rp that are significantly greater than one [30].  According to Theret et al.‟s 

model [31] for micropipette aspiration, when the pipette radius is very small compared 

to the local radius of the cell surface, the cell can be approximated as an incompressible 
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elastic half-space. The projection length is predicted to be proportional to the aspiration 

pressure ∆P and inversely proportional to the elastic modulus as 

 

  
   ∆ 

    
                                                                

 

where E is the Young‟s modulus, Lp the aspiration length, and Rp is the pipette radius. 

 (η) called “wall function”, a function of the ratio of the pipette wall thickness to the 

pipette radius (wall parameter, η) can be obtained using Equation (3) (ϕ = 2.0 - 2.1 when 

the ratio is equal to 0.2 - 1.0).  Ro is the outer radius of the micropipette.  Equation (2) 

will be used to calculate the Young‟s modulus of HeLa cells to demonstrate the 

performance of the micro-aspirator chip in Chapter III. 

 

       
 

 
 
   

  
 
 

ln  
 

 
                

     
  

                                     

  

There are two assumptions for this analysis model.  First, in order to simplify the 

model, cells are considered as homogeneous incompressible elastic material.  A 

homogeneous, incompressible material is defined as one which has constant density 

throughout.  Elasticity is the physical property of a material that returns to its original 

shape after stress (e.g. external forces) - that makes it deform - is removed.  In Theret et 

al.‟s work, it was assumed that the distribution of organelles and cytoskeletal elements is 

relatively uniform throughout the cell volume and that the homogeneity of a shear 
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stressed cell may be analogous to that of a sponge-like material.  Second, cell surface 

was considered as a half-space compared with the size of the micropipette.  The ideal 

case for this model is elongated flattened cells, i.e., cells that do not become spherical 

after being detached.  If these cells are grown on microcarrier beads, micropipette 

aspiration can be used to obtain the ideal stress-strain relationship of the cell in the 

attached state. 

As we already discussed, micropipette aspiration is a simple, inexpensive, 

powerful, and versatile method that can provide valuable information about the 

mechanical properties of cells.  However, this technique is currently limited by two 

major drawbacks.  First, micromanipulation of glass micropipettes requires expertise and 

extensive operating skills.  This means micropipette aspiration is a technique for a few 

trained personnel even though it is a simple and low-cost system.  Second, the serial 

manipulation process severely limits the throughput.  These factors prevent the 

collection of statistically significant quantities of data on a population of cells.  

 

1.3.2 Atomic Force Microscopy (AFM) 

 AFM is another commonly used technique to determine the mechanical response 

of individual cells to mechanical forces.  Since its invention in 1986 [32], AFM has 

become one of the most widely used biophysical tools in cell biology because of its 

ability to image biomolecules at nanometer-scale resolution, apply forces to cells over an 

extremely wide dynamic range (10~106 pN), and process samples in physiologic media 

and aqueous buffers.  
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Figure 1.3  Schematic of major components of an AFM. 
 

 

 Major components of an AFM are shown in Figure 1.3.  The sharp tip is mounted 

at the very end of a flexible, microscale cantilever.  In a conventional AFM operation 

mode (usually called contact mode), the tip is brought into close proximity to the sample 

surface pressing the latter with a small loading force.  The tip is next raster scanned over 

the sample surface, either by moving the sample beneath the tip or by moving the tip 

over the sample. The movement is controlled by piezoelectric drivers in either a 

horizontal or vertical dimension.  When the tip encounters the sample surface, various 

forces between the tip and the sample lead to a deflection of the cantilever according to 

Hook‟s law.  These forces are measured by the amount of deflection of the cantilever. 

The magnitude of the deflection is captured by a laser beam.  The laser beam reflects off 
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the cantilever, the angular direction of which changes as the tip undergoes deflections.  

The reflected beams are captured and converted into electrical signals by a position-

sensitive photodetector (photodiode).  By calculating the difference in signal of the 

photodiode, the amount of deflection can be correlated with the height, and because the 

flexible cantilever obeys Hook‟s law for small displacements, the interaction force 

between the tip and the sample can be determined.  Hence, it is the variation of the point 

of incidence of the reflected beam on the photodiode that measures any minimal bending 

or twisting of the cantilever and, thus, the interaction of the tip with the sample.  A plot 

of the laser deflection versus the tip position on the sample surface provides the profile 

of the hills and valleys that constitute the topography of the surface, and a three-

dimensional visualization of the surface topography can be obtained [33]. 

 In cell biology, AFM is mainly used for cell imaging and force detection.  AFM 

imaging has been widely used for studying the structures and mechanics of isolated 

biomolecules [34-36], components of cell nucleus [37-38], and subcellular cytoskeletal 

structures [39-40].  In addition to imaging, AFM has been successfully used in a force 

mode in which the tip is held in a fixed horizontal position and used to indent a sample.  

This approach has been applied with great success to measure the mechanical properties 

of many different cell types [41-45] and alterations in stiffnesses associated with cell 

differentiation [46] and disease progression [47-49].  Using AFM, Cross et al. have 

shown that the cell stiffness of metastatic cancer cells is more than 70% lower than the 

benign cells [12]. 
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 Although this method has significant advantages such as high resolution and 

accurate location measurement, it suffers from disadvantages such as difficulty in 

sample finding, onerous cell immobilization steps, and potential damages of the samples 

due to the direct contact between the tip and the sample.  Particularly, immobilization of 

“cell samples” on substrates is a crucial step [50].  Coupling AFM with microscope 

technique is one way to solve the difficult sample finding issue.  Several cell 

immobilization methods for AFM have been reported.  First, air-dried method which 

dries cell samples on the substrate is very simple but dehydration during the drying 

process can affect cell morphology.  Bolshakova et al. modified glass slides with poly-L-

lysine that is positively charged at physiological pH [51].  As cell surfaces are negatively 

charged at physiological pH, cells could be immobilized on these modified glass slides 

through electrostatic interaction.  This cell immobilization method is simple and 

reproducible, and is currently the most frequently used method.  However, disadvantage 

of this method is that poly-L-lysine may interact with cells and possibly induce structural 

alternations.  In 2004, Lu‟s group [52] immobilized living bacterial cells on agarose gel 

coated surfaces and imaged them with AFM.  The agarose layer could immobilize cells 

firmly and provide the necessary nutrients and a relatively wet environment to prevent 

cell alteration.  So this method is more suitable for keeping the native state of cell than 

poly-L-lysine method.  However, the procedure is relatively complicated. 

 Although many efforts to overcome the issues of AFM have been made, AFM 

still have a critical limitation which is its inherent low throughput.  Operator need to pic 

up every starting points of the measurement on the samples by manipulating the AFM 
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tip.  This process is very time consuming and also needs expertise and extensive operator 

skills.  In addition, onerous and complicated cell immobilization step is still required for 

cell sample measurement.  Although it is becoming a common technique, AFM still 

needs expensive equipment.  Due to these reasons, AFM is not suitable for routine 

quantification of mechanical parameters of biological cells in statistically significant 

quantities. 

 

1.4 Microfluidic Devices for the Measurement of Mechanical Properties of 

Single Cells 

 Microfabrication is a method for constructing systems and structures at micron or 

submicron scales first developed for semiconductor devices.  Its scale of size is well 

matched to the physical dimensions of biological cells [2], and microfluidic -  the 

manipulation of fluids in channels with dimensions of tens of micrometers - devices 

make it possible to manipulate individual cells and their immediate extracellular 

environments [53].  Soft lithography refers to a collection of techniques for creating 

microstructures and nanostructures based on printing, molding and embossing [3].  One 

useful characteristic of soft lithography is that hundreds of replicas of the inverse pattern 

can be produced in PDMS from one master [2].  PDMS has been the most widely used 

material for the applications of soft lithography in biology, because of the following 

characteristics: it is soft, flexible, biocompatible, insulating, unreactive, transparent to 

ultraviolet and visible light, permeable to gases and only moderately permeable to water 

[54-55]. The prepolymer of PDMS is commercially available, inexpensive, and easy to 
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prepare.  Due to these advantages, PDMS microfluidic systems have applications in the 

extensive study of many areas of cell biology, including the cytoskeleton [56], the forces 

exerted by cells on the substrate to which they are attached [57], the contents of cells 

(down to the single-cell level) [58-59] and the stiffness of cells. 

 Previous studies have shown that microfluidic device can be used to measure the 

stiffness of biological cells.  These studies can be classified into two categories, flow-

through type and micropipette aspiration type.  

 

1.4.1 Flow-through Type Microfluidic Devices 

 Flow-through type microfluidic devices were extensively used to characterize the 

complex behaviors of single cells by measuring several parameters such as the transit 

time and shape recovery time for single cells to pass through a narrow channel.  The 

transit times can be recorded using optoelectronic [60] or resistive pulse detection [61] 

methods.  Instead of using a single pore, recently, Rosenbluth et al. [62] performed 

many parallel measurements using a microfluidic binary tree network that consists of 

successive bifurcations of a large channel into smaller channels.  In this study, cell size 

and transit times were measured using automated image processing methods.  This 

allowed them to delineate the dependence of transit times on cell size and cell 

deformability and thus establish a link between transit time distributions, cell 

deformability, and their diseased state.  Hou et al. has shown that simple microfluidic 

device can be used to distinguish the difference in stiffness between benign breast 

epithelial cells (MCF-10A) and non-metastatic tumor breast cells (MCF-7) [4].  In 2003, 
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Shelby et al. qualitatively showed that late-stage schizonts can cause blockages in 

narrow elastomeric channels, which were used to mimic the narrow capillaries found in 

the human body [6].  In 2006, Lee et al. designed an on-chip erythrocyte deformability 

test using microfluidics to distinguish cancerous blood from normal blood [5].  They 

have defined useful parameters which are linked to the inherent deformability of the 

cancerous cells and plotted 2D and 3D graphs using these parameters.  This proved to be 

effective as they could discriminate cancerous blood population from normal ones with 

better sensitivity and reliability.  Although flow-through type microfluidic devices can 

provide valuable information about the mechanical properties of cells, it has the 

limitation that one device cannot be used for different kinds of cells.  Since there is no 

theoretical model developed such as for micropipette aspiration, parameters have to be 

defined for each channel design.  In addition, depending on the parameters which need 

to be measured, expensive and bulky equipments may be needed.  

 

1.4.2 Microfluidic Micropipette Devices   

 Micropipette array chip that can measure the deformation of four L929 

fibroblasts simultaneously has been reported by Moraes et al. [7].  Although it showed 

the potential of microfluidic micropipette aspiration device, its design had limitations.  

Lateral cell trapping and deforming technique was used due to its straightforward 

working principle, simple channel design and fabrication.  Two microfluidic channels of 

different sizes in plane form a fluidic junction.  The main channel is large enough to let 

cells pass through and the trapping channel is not.  Applied pressure through the trapping 
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channel simply attracts a cell form the main channel and traps it at the junction.  This 

simple mechanism and geometry have strong potentials since they are simply realizable 

by micro-casting of soft lithography using polydimenthylsiloxane (PDMS) [3].  

However, soft lithography has inherent limitations.  Since it uses replications of on-plane 

patterns, the replicated patterns are on the same plane.  In the case of microfluidic 

replication, the whole microfluidic channels share one sidewall and this can cause 

unnatural deformation of the cells as shown in Figure 1.4 (a).  Good seal between the 

cell and the aspiration channel is essential for micropipette aspiration and 

nonsymmetrical cell deformation can greatly affect accurate measurement.  In addition, 

this lateral cell trapping method to trap the free-floating cells into the aspiration channel 

is very time consuming and needs high suction pressure. 

 

 

 

Figure 1.4  (a) Cross-sectional view of a cell undergoing aspiration into a microfluidic 
channel. (b) Cell aspiration into a raised microfluidic channel. 
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 This issue can be solved by an elevated aspiration channel shown in Figure 1.4 

(b).  This design allow symmetric cell trapping at the self-raised junction, so that 

aspiration pressure distributes uniformly on cellular membranes.  Lee‟s group has 

reported several methods to avoid unnatural deformation of the cell for patch clamp 

application such as lateral cell trapping sites raised above the bottom plane of the chip 

[63] and self-raised circular orifice using vacuum expansion [64] but such raised 

structure has not been used in microfluidic micropipette applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 20 

CHAPTER II 

DEVELOPMENT OF THE MICRO-ASPIRATOR CHIP 

 

2.1 Design Principle 

 As we discussed in Chapter I, traditional glass micropipette aspiration and AFM 

suffer from their inherent low throughput and recently developed microfluidic 

micropipette devices have limitations such as difficult cell trapping and unnatural cell 

deformation.  In order to address these limitations, we propose a high-throughput micro-

aspirator chip, which can deliver, trap, and deform multiple cells simultaneously with 

single-cell resolution without the need for skill-dependent micromanipulation.  The 

micro-aspirator chip is composed of 40 arrays of cell traps and aspiration channels that 

can apply suction pressure to a trapped cell.  In this section, design principle of cell 

trapping and deformation will be described and the dimension of the actual device will 

be shown. 

 

2.1.1 Hydrodynamic Trapping of Single Cells 

 In order to measure the mechanical properties of cells using microfluidic 

micropipette chip, individual cells need to be trapped at the entrance of an aspiration 

channel.  One of the most robust methods to trap cells in relatively high throughput is 

using microwell arrays [65-67].  These platforms allow thousands of single cells to be 

randomly captured by gravity at the bottom of a microwell.  However, this trapping 

method is not appropriate for micropipette aspiration applications since a single empty 
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trap will vary the applied pressures at every other well.  On the other hand, microfluidic 

valves, optical tweezers, dielectrophoresis (DEP), and acoustic waves are powerful 

approaches to trap and manipulate single cells [68].  However optical tweezers or valve-

controlled devices typically are able to handle only one or a few single cells at once, and 

although DEP-based systems have a higher throughput, they are less suitable for 

maintaining cell conditions during the measurement due to high temperature induced by 

Joule-heating. 

 A family of emerging technologies that combines active single cell handling with 

the potential for high-throughput experimentation is microfluidic hydrodynamic traps.  

Cells are drawn into the trap by flow that can either be generated using pressure [69-70], 

pump driven control channels [71-72], or by re-connecting the gap to the main channel 

[73-75].  In the latter case, one fraction of the flow crosses the trap and the other fraction 

passes through the main channel [76].  Once the trap is filled, the flow through the trap is 

reduced and thus no additional cells can be trapped [73].  An example of such a „self-

regulating‟ trap device has been presented by Tan et al. [77]. Using polymer beads, these 

authors demonstrated that the efficiency of hydrodynamic single bead trapping depends 

on the ratio of the flow through the trap and the main channel.  Furthermore, they 

correlated this ratio with the fluidic resistance of the trap and the main channel, and 

obtained a perfect bead trapping efficiency of 100% with a ratio of 1 : 3 [77].  Recently, 

Kobel et al. optimized the microchannel dimension and flow rate for single cell trapping 

using the same scheme [78].  
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 A micro-aspirator chip was designed based on the cell trapping method first 

reported by Tan et al. [77].  Figure 2.1 (a) shows the schematic of the microfluidic trap.  

 

 

 

Figure 2.1  Schematic diagram of the cell trapping and cell aspiration principle. (a) (1, 2) 
When the trap is empty, flow resistance along the straight channel is lower than that of 
the loop channel, and the main flow stream goes through the cell trap. (3) Once a cell is 
trapped, the main flow stream goes through the loop channel. (4) Negative pressure is 
then applied to aspirate the trapped cell. (b) Schematic of flow resistance. 
 

 

It is composed of serpentine channels superimposed onto a straight channel, with 

narrowed regions along the straight channel functioning as traps.  The channels are 

designed such that when a trap is empty, the straight channel has a lower flow resistance 

than that of the loop channel.  As a result, bulk of the fluid flows through the straight 

channel.  A cell in the flow will be carried by this main stream into the trap (trapping 

mode).  This cell acts as a plug, increasing the flow resistance drastically through the 

straight channel, and redirecting the main flow to the loop channel.  Subsequent cells 

will then be carried along the loop channel, by passing the filled trap (bypassing mode).  

Using series of this trap, a cell trapping array can be realized where cells are trapped in 
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sequence from the very first trap.  Using the Darcy-Weisbach equation, pressure 

difference between two points inside a microchannel can be calculated as 

 

∆   
    

  
 
     

  
                                                        

 

where C ( ) = f ×  Re (f: Darcy friction factor, Re: Reynolds number), µ is the fluid 

viscosity, L is the length of the channel, Q is the volumetric flow rate, P is the perimeter 

for the channel and A is the cross-sectional area of the channel.  In Figure 2.1 (b), fluid 

can flow from junction A and B via path 1 and 2.  Equation (4) can be applied separately 

for paths 1 and 2, and because the pressure drop is same for both paths, we can calculate 

the flow rate of path 1 (Q1) and 2 (Q2).  If Q1 is greater than Q2, the cell will be captured 

inside the trap.    

 Before the fabrication of the cell trapping device, we tested several microfluidic 

channel designs that can trap 90 µm diameter microbead.  Three different ratios of the 

fluxes through the trap (Q1) and the main channel (Q2), 1.5:1, 2:1 and 3:1 were tested 

and successful bead trapping with almost 100% efficiency was observed in all three 

cases.  Microbead suspension was injected into the inlet of the microchannel by pushing 

the syringe manually.  Figure 2.2 shows microscopic images of the microbeads trapped 

in order when the flux ratio was 3:1.   
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Figure 2.2  Microscopic images of microbead trapping when the ratio of the fluxes 
through the trap (Q1) and the main channel (Q2) was 3:1.  The beads (90 µm diameter) 
were trapped in sequence from the very first trap. 
 

 

 Based on this result, a flux ratio 3:1 was used to design the real micro-aspirator 

chip for cell trapping.  Figure 2.3 shows the overall design and dimension of the micro-

aspirator chip.  It consisted of 40 cell traps, and all traps were connected to aspiration 

channels through which suction pressure can be applied.    The width of the cell trap and 

the aspiration channel is 15 µm and 3 µm respectively. 
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Figure 2.3  Overall design and dimensions of the micro-aspirator chip (unit: µm) 
 

 

2.1.2 Deforming Single Cells 

 As shown in Figure 1.1 (a), recently developed microfluidic micropipette device 

has unnatural cell deformation issue.  This issue could be solved by positioning the 
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aspiration channel at the center of the cell both in vertical and horizontal direction as 

shown in Figure 1.1 (b). 

 After all traps are filled with cells, negative pressure can be applied to the 

aspiration channel using hydrostatic pressure.  The reservoir setup that was used to 

deform the cells through the aspiration channel was based on the working principles of a 

manometer.  Briefly, the pressure generator setup involved the use of two reservoirs held 

at the same level with a retort stand. The reservoirs were filled with phosphate buffer 

solution (PBS) where the pressure generated in the microfluidic channels is governed by 

a simple mathematical equation:  

 

∆                                                                      

 

where ∆P is the pressure difference between the reservoir, h is the height difference of 

PBS between the reservoir,   is the density of 1×PBS, and g is the gravitational 

acceleration.  In the hydrostatic pressure generation system for micro-aspirator chip, the 

outlet of the microfluidic channel can be considered as one reservoir and the tube filled 

with PBS can be considered as the other.  A pressure transducer was used to accurately 

measure the amount of pressure applied.  We could observe that the measured value of 

pressure using the transducer and the height difference followed the linear relation in 

equation (5). 
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2.2 Microfabrication  

 The micro-aspirator chip was fabricated using photolithography, soft lithography 

and PDMS membrane vacuum expansion method.  Figure 2.4 shows the schematic of 

the microfabrication process. 

 

 

Figure 2.4  Schematic of the microfabrication steps. (a) Bare silicon wafer. (b) 
Aspiration channel patterned silicon wafer using SU-8TM 2002. (c) Cell delivery channel 
patterned silicon wafer using SU-8 TM 2007. (d, e) PDMS replication process. (f) PDMS 
membrane attached to the PDMS replica. (g) PDMS wall structure attached. (h) Pre-
cured PDMS poured inside the wall structure. (i) Whole device placed inside a vacuum 
chamber. Vacuum and heat were applied at the same time. (j) Vacuum expanded 
microfluidic channels resulting in raised cell aspiration channel. 
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Briefly, the 3 µm-thick cell aspiration channels were patterned on a silicon wafer via a 

lithography process with SU-8TM 2002 (Figure 2.4 (b)).  After development, 9 µm-thick 

cell delivery channels were patterned using SU-8TM 2007 (Figure 2.4 (c)).  A PDMS 

layer was replicated from the SU-8TM mold (Figure 2.4 (d, e)).  In order to make the 3 

µm-thick PDMS membrane, PDMS and hexane mixture (PDMS : hexane = 1 : 3 (w/w)) 

was spin-coated at 4500 rpm for 30 seconds on a trichlorosilane coated silicon wafer and 

cured inside an oven for 15 min.  After oxygen plasma treatment, the PDMS membrane 

was bonded to the PDMS replica (Figure 2.4 (f)).   After attaching the wall structure 

made with PDMS, PDMS pre-mixture was poured on the membrane.  Once the whole 

device was placed inside a vacuum chamber, vacuum (1.3 Pa) and heat (130°C) was 

applied simultaneously for 12 min.  Pressure difference between inside and outside of 

the enclosed microfluidic channel caused expansion of the membrane, mainly on the cell 

trap and the cell delivery channel.  Due to the narrow width of the aspiration channel (3 

µm), however, the membrane on the aspiration channel was not expanded.    

 

2.2.1 Photolithography to Form the Soft Lithography Master Mold 

 The master mold was fabricated on a 3 inch diameter silicon substrate using a 

two-layer photolithography process by sequentially patterning two layers of 

photosensitive epoxy (SU-8TM, Microchem, Inc., Newton, MA) with different 

thicknesses.  The first layer forming the aspiration channels was 3 μm thick and the 

second layer forming the cell delivery channels and cell traps was 9 μm thick.   



 29 

 First, aluminum alignment marks were patterned on a silicon wafer through a lift-

off process.  These alignment marks are used to align the aspiration channels and the cell 

delivery channels that will be patterned separately.  Microposit S1818 photoresist (Rohm 

and Haas Electronic Material LLC, Marlborough, MA) was spin coated on bare silicon 

wafer at 4000 rpm for 30 seconds with an acceleration time of 10 seconds.  Next, the 

substrate was soft baked at 100°C for 10 minutes.  The substrate was then exposed using 

a mask aligner (MJB3, SUSS MicroTec Inc., Waterbury Center, VT) at 12 mW/cm2 

(wavelength: 320 nm) for 14 second with a photomask having alignment marks.  After 

baking at 130°C for 10 minutes, the substrate was developed (MF-319, Rohm and Haas 

Electronic Material LLC, Marlborough, MA) for 20-40 seconds.  The substrate was then 

rinsed in DI water and dried with N2 gas.  The resulting silicon wafer was covered with 

photoresist with only the alignment marks opened.  An aluminum layer was evaporated 

on the substrate using an E-beam evaporator to a thickness of 2500 Å.  In order to 

remove the sacrificial photoresist layer, the substrate was sonicated in aceton, isopropyl 

alcohol (IPA) and DI water for 10 minutes, respectively.   

 In order to pattern the aspiration channels, 3 μm thick photoresist (SU-8TM 2002, 

Microchem, Inc., Newton, MA) was spin-coated on the alignment mark pattered silicon 

wafer at 750 RPM for 30 seconds, followed by baking on a 95°C hotplate for 4 minutes.  

The substrate was then exposed using a mask aligner (MA6, SUSS MicroTec Inc., 

Waterbury Center, VT) at 200 mJ/cm2 with a photomask having aspiration channel 

patterns.  After exposure, the substrate was baked at 95°C for 4 minutes, and then 
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developed (Microposit Thinner Type P, Shipley Co., Marlborough, MA) for 1 minute.  

Finally, the substrates were rinsed in DI water and dried with N2 gas. 

 

 

 

Figure 2.5  2-D schematic of the two layer photolithography. (a) 3 µm-thick cell 
aspiration channel patterned using SU-8TM 2002 photoresist. (b) 9 um-thick cell delivery 
channel patterned on top of the aspiration channel patterns using SU-8TM 2007. The end 
of the aspiration channels meets the cell trapping sites. 

 

 

 Photoresist (SU-8TM 2007, Microchem, Inc., Newton, MA) for patterning the cell 

delivery channel (9 μm-thick) was spin-coated on the silicon wafer at 2500 rpm for 25 

seconds with an acceleration time of 5 seconds, followed by baking at 95°C for 5 

minutes.  The substrate was then aligned and exposed using a mask aligner (MA6, SUSS 

MicroTec Inc., Waterbury Center, VT) at 180 mJ/cm2 with a photomask having cell 

delivery channel patterns.  The substrate was baked at 95°C for 5 minutes, and then 
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developed (Microposit Thinner Type P, Shipley Co., Marlborough, MA) for 1 min.  As a 

final step, the substrates were rinsed in DI water and dried with N2 gas.  

 

2.2.2 Photoresist Reflow 

 Microchannels with semicircular cross section can be fabricated through vacuum 

expansion of a PDMS membrane which will be explained in the following section.  This 

means if we can make a semicircular microchannel master mold, PDMS channel having 

a round-shaped cross section can be fabricated.  Round-shaped aspiration channel is 

advantageous in micropipette aspiration applications since good seal between the cell 

and the aspiration channel can be achieved and existing analytical models can be used to 

interpret the results.  In order to make rectangular cross section of microchannels of a 

master mold to semicircular, photoresist reflow method was tried using SU-8TM and 

Futurrex patterns.   

 First, SU-8TM 2002 (Microchem, Inc., Newton, MA) microchannels were 

patterned on a silicon wafer using conventional photolithography techniques and three 

different reflow conditions, 12 hours at 220°C, 10 hours at 250°C and 1 hour at 285°C.  

Reflowed SU-8 pattern were sputter coated with 100Å of Au in argon plasma. Images 

were acquired using a scanning electron microscope (SEM) (12 kV acceleration, JEOL 

6400, JEOL Ltd., Tokyo, Japan).  Figure 2.6 shows the SEM images of reflowed SU-8TM 

patterns.  Although the edge of the channels became slightly smoother, the overall cross 

section did not changed significantly from its original rectangular shape.  
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Figure 2.6  SEM images of reflowed SU-8TM ridge structure. 
 

 

 Futurrex (NR4-8000P, Futurrex, Inc., Franklin, NJ) patterns were heated on a 

150°C hotplate for 15 minutes and 1 hour.  As shown in Figure 2.7, after the photoresist 

is reflowed, the cross section of the channels changed to a circular shape.  There was 

almost no difference of the curvature between 15 minutes and 1 hour of reflow.  Profile 

of the reflowed channel was analyzed using an optical microscope (Eclipse LV100, 

Nikon Instruments Inc., Melville, NY), optical surface profilometer (Veeco NT9100, 

Veeco, Plainview, NY) and stylus profiler (Dektak3, Veeco Instruments Inc., Plainview, 

NY).  Although the reflow was successful, all aspiration channels were removed during 

the development process of the cell delivery channels and this method couldn‟t be used 

for the fabrication of the micro-aspirator chip.   
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Figure 2.7  Reflowed Futurrex NR4-8000P. (a) Images taken using upright Nikon 
microscope. (b) Profile measured by Veeco optical profilometer. (c) Profile measured by 
Dektek. (d) Fringe images using Veeco optical profilometer. 
 

 

2.2.3 Replication of the Master Mold Using Soft Lithography  

 The SU-8TM master that has the aspiration channel and the cell delivery channel 

patterns was coated with (tridecafluoro-1,1,2,2-tetrahydrooctyl) trichlorosilane (United 

Chemical Technologies, Inc., Bristol, PA) inside a desiccator for 15 min to facilitate 

PDMS release from the master after replication.  PDMS layer was replicated from the 

master by pouring PDMS pre-polymer (10:1 mixture, Sylgard® 184, Dow Corning, Inc., 
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Midland, MI), followed by curing at 85°C for 40 min.  This process resulted in partial 

success where small SU-8TM patterns such as the aspiration channels were peeled off or 

partially damaged after repeated replication.  This issue could be solved by using a 

polyurethane master instead of SU-8TM mold, a method first developed by Desai et al. 

[79].  Figure 2.8 shows the polyurethane master fabrication and PDMS casting processes.   

 

 

 

 

Figure 2.8  Polyurethane master fabrication and PDMS casting steps. (a, b) PDMS 
original was replicated from the SU-8TM master. (c) PDMS original was bonded on the 
bottom of a PDMS container. (d) Pre-cured polyurethane mixture was poured into the 
PDMS container.  (e) After the polyurethane was fully cured, it was removed from the 
container. (f) Pre-cured PDMS mixture was poured into the polyurethane master. (g) 
After curing, PDMS copy can be fabricated which has same pattern as the PDMS 
original.   
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 Polyurethane masters were fabricated using a commercially available two-part 

polyurethane plastic (Smooth Cast 310, Smooth-On Inc., Easton, PA). The PDMS 

original to be molded was first affixed to the bottom of an open-topped container 

constructed of PDMS (Sylgard® 184, Dow Corning, Inc., Midland, MI).  Since the 

polyurethane plastic does not adhere to silicone surfaces, the open-topped PDMS 

container ensures that the plastic precursor is only in contact with silicone surfaces.  The 

PDMS container provided a reusable means for casting the polyurethane masters and 

obviated the need for any surface treatments in the casting process.  A thin seed layer of 

PDMS (mixed in a 10 : 1 ratio and subsequently degassed) was poured in the bottom of 

the container and the device was placed on top of it, after which the container and device 

were placed in a 85°C convection oven for 1 hour to cure and hence bond the device to 

the container.  In the meantime, the two parts of the plastic pre-cursor (parts A and B) 

were measured out in equal volumes and degassed separately for approximately 10 min.  

Parts A and B were then mixed together slowly taking care to avoid bubbles and liquid 

plastic pre-cursor mixture was poured into the container.  The plastic was then left to 

cure on a level surface for 2 hours at room temperature.  Upon curing, the polyurethane 

master was removed from the container and ready for molding with PDMS.  PDMS 

devices were fabricated from polyurethane master using conventional soft lithography 

molding techniques.  Briefly, PDMS was mixed in a 10 : 1 base : hardener ratio and 

subsequently degassed in a vacuum chamber for 30 minutes.  Degassed PDMS was then 

poured directly on the polyurethane master and then left to cure at 85°C for 1 hour. 
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2.2.4 Vacuum Expansion 

 Vacuum expansion method first reported by Seo et al. [64] was used to make the 

semicircular cell delivery channels and the cell traps.  The vacuum expansion process 

took 12 minutes through process optimization, significantly reducing the previously 

reported 24-hour processing time [64].  Figure 2.9 shows the 3-D schematics of the 

vacuum expansion process.   

 

 

Figure 2.9  3-D schematic of the vacuum expansion steps. (a) PDMS block made out of 
a double-layer SU-8TM master. (b) PDMS membrane bonded on the microfluidic layer. 
(c) Vacuum expanded microfluidic channels. 
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of PDMS and hexane (PDMS : hexane = 1 : 1, 1 : 3 and 1 : 5 (w/w)) were spin-coated at 

4500 rpm for 30 sec on a trichlorosilane coated silicon wafer and cured inside the oven 

for 15 min.  Cross section of the device was observed using an optical microscope 

(Eclipse LV100, Nikon Instruments Inc., Melville, NY).  Membranes having thickness 

of 7 µm, 2 µm and 1 µm were obtained using mixing ratios of 1 : 1, 1 : 3 and 1 : 5 (w/w) 

respectively.  Figure 2.10 shows the results of the vacuum expansion test using different 

width of straight channels.  1 and 2 µm-thick membranes attached to 100 µm-wide 

channel were collapsed and couldn‟t be expanded.  This represents the ratio between the 

channel geometry (depth and width) and the PDMS membrane thickness needs to be 

optimized for the vacuum expansion method.  

 

 

Figure 2.10  Vacuum expansion preliminary test results. 1 and 2 µm-thick membranes 
attached to 100 µm-wide channel were collapsed and couldn‟t be expanded. 
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Figure 2.11 shows the membrane thickness optimization process using the actual micro-

aspirator device PDMS layer.  When PDMS thickness was 7 µm, expansion was not 

enough.  1 µm-thick membrane collapsed and attached to the bottom of the channel 

during the membrane bonding process.  Cell delivery channels were sufficiently 

expanded using a 2 µm-thick membrane.    

     

 

Figure 2.11  Vacuum expansion process optimization. Microscopic images of cross 
sections of the aspiration channels (1) and the expanded cell delivery channels (2). (a) 
PDMS membrane thickness: 2 µm, sufficient expansion. (b) PDMS membrane thickness: 
7 µm, insufficient expansion. (c) PDMS membrane thickness: 1 µm, collapsed 
membrane attached to the bottom of the channel. 
 

 

 The vacuum expansion process is as following.  The pre-mixture of PDMS was 

cross-linked on a polyurethane mold that has positive microfluidic patterns of aspiration 

channel and cell delivery channel.  It was mechanically detached from the mold.  The 

detached microfluidic devices were bonded to a 2 µm-thick PDMS membrane using O2 

plasma.  As a result, the inside of the microfluidic networks were sealed.  After pre-

cured PDMS was poured on top of the sealed microfluidic device and set in a vacuum 
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chamber, vacuum and heat was applied at the same time in order to minimize time 

needed for the process and also to fix the channel shape when it is fully expanded.  

Vacuum expansion process longer than 30 minutes without full curing decreased the 

amount of expansion since PDMS is air-permeable.  The vacuum chamber was built in 

aluminum and connected to a vacuum pump using heat-resistant tube.  Heat-resistant O-

ring was used to seal the gap between the aluminum container and the lid during the 

vacuum expansion process.   

 As the pressure in the chamber drops, the pressure difference between the inside 

and outside of the microfluidic channels increases and the inside volume of the 

microchannels is expanded.  The expansion mainly occurred on the 2 µm-thick PDMS 

membrane side of the channel.  The flat 2 µm-thick sidewall was transformed to a dome 

shape as shown schematically in Figure 2.9 (c).  The PDMS device was kept in the 

vacuum chamber for 12 minutes at 140°C for cross-linking.  After the cross-linking 

process, the dome shape of the microfluidic channels was fixed.  Each individual device 

was cut and punched for fluidic connections from outside.  Figure 2.12 shows the 

microscopic image and the cross sectional view of the vacuum expanded channels. 
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Figure 2.12  (a) Microscopic image of the vacuum expanded microchannel (b) Cross-
sectional view of the vacuum expanded microchannel. Cell delivery channel (2) was 
expanded but aspiration channel (1) was not.  
 

 

 After the transformation into a dome shape sidewall, the main channel and the 

trapping channel result in different cross-sections, depending on their sizes of the 

original rectangle cross-section.  With a PDMS membrane of fixed thickness, the larger 

cross-sectional area of the channels causes the larger transformation into the dome shape.  

In our cell trapping applications, the cross-sectional area of the trapping channel 3 µm x 

3 µm, which is much smaller than the 9 µm x 19 µm area of the cell delivery channel.  

Thus, the shape of the aspiration channel remains virtually unchanged, while that of the 

cell delivery and trapping channels convert into a dome shape.  This difference in the 

transformation also influences the relative position of the junction.  The junction was 

originally located at the edge of the sidewalls.  After the transformation, the edge gets 

flattened and a new extended sidewall of the dome is formed.  As a result, the junction is 

located relatively in the middle of the extended sidewall as shown in Figure 1.4 (b) and 
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2.9 (c).  The transformed raised junction has a major impact on micropipette aspiration 

application as schematically shown in Figure 1.4 (b).  When a cell was trapped at the on-

plane junction, there was a large gap caused by the asymmetries in the location and the 

shape of the on-plane junction and it needed to deform its shape to be completely 

trapped.  However, at the vacuum expanded junction, these asymmetries are much 

reduced and a cell can be effectively trapped without the large deformation of the shape.  

In addition, the trapped cell experiences more uniformly distributed trapping stress on its 

cellular membrane and it has more possibility to preserve its cell dynamics such as 

membrane integrity, mechanical responses and chemical responses.  Thus suction 

pressure and cell elongation can be measured more accurately.   
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CHAPTER III 

CHARACTERIZATION OF MECHANICAL PROPERTIES OF CANCER 

CELLS USING THE MICRO-ASPIRATOR CHIP 

 

3.1 Cell Preparation 

 Device operation was demonstrated using HeLa cells which is derived from 

cervical cancer cells.  HeLa cells were obtained from Dr. Jayaraman‟s lab at the 

Department of Chemical Engineering, Texas A&M University (College Station, TX).  

These cell lines were maintained in accordance with the American Type Culture 

Collection (ATCC) guidelines [80].  Cells were cultured in 37°C, 5% CO2, and 95% 

humidity environment till 80%-90% confluency in Dulbecco‟s Modified Eagle‟s 

Medium (DMEM, Invitrogen Corp., Carlsbad, CA) with 10% Bovine Serum (BS, 

Invitrogen Corp., Carlsbad, CA).  To harvest the cells, the cells are first rinsed with 

Phosphate-Buffered Saline (Dulbecco‟s  BS  Invitrogen Corp.  Carlsbad, CA) and then 

incubated in 0.25% Trypsin (Invitrogen Corp., Carlsbad, CA) for 3 min at 37°C.  

DMEM with BS is added to neutralize the Trypsin.  The cells are then aspirated and 

centrifuged for 5 min at 800 rpm (Eppendorf Centrifuge, Eppendorf Co., Hauppauge, 

NY).  After the centrifugation, the media is replaced with PBS solution and the cells are 

ready to use.  The cell concentration in the suspension is around 1 x 106 cells ml-1.  

Details about cell culture are described in Appendix E.  
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3.2 Set-up and Device Operation 

The experimental system is shown schematically in Figure 3.1.  Before starting 

the experiment, all microchannels of the micro-aspirator chip including the cell delivery 

channels and the aspiration channels were filled with PBS.  HeLa cell suspension was 

prepared in 1 mL syringe and connected to the inlet of the cell delivery channel using 

silicon tubing.  After installing the micro-aspirator chip on the inverted microscopic 

stage, the reservoir was connected to the outlet of the aspiration channel with silicon 

tubing.  HeLa cell suspension was injected into the microfluidic cell delivery channel by 

manually pressing the syringe to capture the cells inside the traps.  The outlet of the cell 

delivery channel was left open so we can consider the pressure inside the cell delivery 

channel after cell loading same as atmospheric pressure.   

 

 

 

Figure 3.1  Schematic diagram of the experimental set-up.   
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The pressure system is composed of a large volume reservoir, a pressure 

transducer and a voltage indicator.  The reservoir was partially filled with PBS and 

connected to the micro-aspirator chip through the silicon tubing.  The pressure was 

controlled by adjusting the height of the PBS level at the end of the reservoir.  A part of 

the line between the micro-aspirator chip and the reservoir is connected to a pressure 

transducer (PX82B0-005D5V, Omega Engineering Inc., Stamford, CT).  In order to 

measure the actual suction pressure applied to the cells, the T-joint was placed near the 

micro-aspirator chip as close as possible.  The voltage signal from the pressure 

transducer was measured using voltage indicator (DP41-E, Omega Engineering Inc., 

Stamford, CT) and acquired using LabVIEWTM.  VISA library was used for RS-232 

serial cable communication.  LabVIEWTM front panel and block diagram are shown in 

Appendix F.  The transducer is calibrated with a water manometer before each 

experiment.   

When a negative pressure is applied to the aspiration channels, the trapped cells 

are drawn into the aspiration channel.  Conventional micropipette aspiration technique 

needs slight adjustment of pressure to maintain the cell in its initial position before the 

aspiration experiment.  But since the micro-aspirator chip can capture the cells into the 

traps where the aspiration channel is connected, this cell positioning step was not 

required.  Following the cell trapping, 6 steps of suction pressure between 1-6 kPa were 

applied using a height-adjustable, reservoir pressure source, and the aspiration length of 

HeLa cells was measured.  All processes were observed through an inverted microscope 

(Eclipse TS100, Nikon Instruments Inc., Melville, NY) and recorded using CCD camera 
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(Digital Sight DS-2 Mv, Nikon Instruments Inc., Melville, NY).  Cell experiment was 

performed at room temperature, i.e., 22-24°C.   

 

3.3 Results and Discussion 

3.3.1 Trapping HeLa Cells 

 After installing the micro-aspirator chip on the inverted microscopic stage and 

connecting to pressure system, HeLa cell suspension was manually injected into the cell 

delivery channel with 40 cell traps using a syringe.  Figure 3.2 shows the overall image 

of the microchannels of the micro-aspirator chip and the image of HeLa cells captured 

inside arrays of cell traps.  As shown in Figure 3.3, we could observe that the cells were 

trapped in order just like the result of the preliminary test using the 90 µm diameter 

microbeads.   

 

 

Figure 3.2  (a) Image of the micro-aspirator chip. Red color dye was used to show the 
shape of microchannels. Aspiration channel tube was filled with blue color dye. (b) 
Microscopic image of single cells captured inside arrays of cell traps. White arrow heads 
indicate the cells trapped. 
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Figure 3.3  Microscopic images of cell trapping. HeLa cells were trapped in order. White 
arrows indicate the cells trapped. 
 

 

3.3.2 Stiffness of HeLa Cells 

 Three devices were used to demonstrate the performance and repeatability of the 

micro-aspirator chip.  Following cell trapping, 6 steps of suction pressure from 1 to 6 

kPa was applied by lowering the reservoir pressure source.  As same as the principle of 

manometer, 10 cm height difference caused approximately 1 kPa of suction pressure.  
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Since it took approximately 1-3 minutes for the cells to reach the fully aspirated state 

(data not shown), suction pressure was increased step by step with an interval of 3 min.  

Figure 3.4 shows the microscopic images of HeLa cell gradually aspirated into the 

aspiration channel depending on the amount of suction pressure applied.   

 

 

 

Figure 3.4  HeLa cell aspirated at suction pressure (a) 0 kPa, (b) 1 kPa, (c) 2 kPa, (d) 3 
kPa, (e) 4 kPa, (f) 5 kPa and (g) 6 kPa. Time intervals of the images were 3 min. 
 

 

The aspiration length of the cells at each pressure applied was measured using the 

microscopic images (Eclipse TS100, Nikon Instruments Inc., Melville, NY).  Figure 3.5 

shows the result of the experiments using 3 devices.  As shown in Figure 3.5 (a), linear 

trend between the suction pressure applied and the aspiration length was observed in all 

channels of 3 devices.  The application of a step increase in pressure caused step 

increase in the aspiration length and the distance that the cell entered the aspiration 

channel was up to 2-6 times the radius of the aspiration channel.  This shows that HeLa 

cells exhibited solid like behavior in response to a step increase in pressure.  From the 

slope of the trend line for each cell, Young‟s modulus was calculated based on Theret et 
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al.‟s model [31].  HeLa cell Young‟s modulus of  .  ±  .0 k a  n = 17), 1.1 ± 0.5 kPa (n 

= 18) and 1.5 ± 0.7 kPa (n = 19) were obtained for device 1, 2 and 3 respectively.  The 

cells not aspirated were excluded for the calculation.   

 

 

Figure 3.5  Suction pressure vs. aspiration length of HeLa cells. (a) Linear trend between 
the suction pressure applied and the aspiration length was observed in all channels of 3 
devices. (b) The average aspiration length of 3 devices was compared to show the 
repeatability of the micro-aspirator chip.  
 

 

The average Young‟s modulus of all 54 cells was 1.3 ± 0.8 kPa (n = 54).  This is at the 

lower range of previously reported HeLa cell Young‟s modulus.   his might be due to 

the square geometry of the aspiration channel resulting in deviation from the true 
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Young‟s modulus   as well as from the variation in cell  conditions and experimental 

procedures in various reports.  Table 3.1 shows the HeLa cell Young‟s modulus previously 

reported and obtained in this work. 

 

Table 3.1  Comparison of Young‟s modulus of HeLa cell measured using various methods. 

 

 

As previously mentioned in Chapter I, in Theret et al.‟s half-space model, cells 

were considered as homogeneous elastic material to simplify the analysis model.  But in 

reality, biological cell contains a nucleus as well as a variety of organelles and 

cytoskeletal elements which course through the entire cytoplasmic volume. 

The cytoskeleton is a network of filaments that helps to define a cell‟s shape.  

The thinnest of the filaments are actin filaments. The thickest filaments are called 

microtubules because they have the form of minute hollow tubes.  Intermediate in 

thickness between actin filaments and microtubules are the intermediate filaments.  

These three types of filaments, together with other proteins that attach to them, form a 

system of girders, ropes, and motors that gives the cell its mechanical strength and 

Cell type Young's modulus (kPa) Method Reference 

HeLa 1.8 ± 0.8 (nucleus)  Atomic Force Microscopy Yokokawa et al. 2008 [81] 

  5.1 ± 1.4 (cell peripheries) (AFM)    

HeLa 50-500 AFM Gigler et al. 2007 [82] 

HeLa 100-200 AFM Leporatti et al. 2009 [83] 

HeLa 0.25 Magnetic tweezers De Vries et al. 2007 [84] 

HeLa 1.3 ± 0.8 
Microfluidic Micropipette 
Aspiration 

Kim et al. 2010 (This work) 
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controls its shape.  Previous researches have shown that disruption of the cytoskeleton 

contributes to a weakening, i.e., a decrease in the cell mechanical properties [10, 85]. 

 Various inhibitors can be used to verify the main component that determines the 

stiffness of the cell in micropipette aspiration.  For example, phalloidin which inhibits 

disassembly of the actin filaments or cytochalasin which inhibits assembly of the actin 

filaments can be used to see how polymerization or depolymerization of actin filaments 

is related to the stiffness of the cells.  Myosin inhibitor 2,3-Butanedione monoxime 

(BDM) can be used to verify the role of myosin.  

 

3.3.3 Repeatability of the Devices 

In Figure 3.5 (b), the average aspiration length of 3 devices was compared to 

show the repeatability of the micro-aspirator chip.  The average and standard deviation 

of Young‟s modulus of the   devices was 1.3 ± 0.2 kPa (n = 3) (Table 3.2).  Although the 

standard deviation of Young‟s modulus of each channel of the device was high (75.1%, 

45.0% and 48.6% respectively), that of 3 devices was much lower (15.2%) representing 

good repeatability of the devices and the system.   

 

Table 3.2  Repeatability test of the devices using HeLa cells.  

 

 

Ave SD RSD [%] Ave SD RSD [%]

Device 1 17 15.0 1.7 11.0 1.3 1.0 75.1

Device 2 18 15.4 2.0 13.3 1.1 0.5 45.0

Device 3 19 15.5 2.0 12.8 1.5 0.7 48.6

All devices 3 15.3 0.2 1.6 1.3 0.2 15.2

Device # N
Cell Diameter [µm] Young's Modulus [kPa]
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3.3.4 Size of HeLa Cells vs. Stiffness  

 Diameter of each cell was obtained based on circumference measured using 

microscopic images before applying suction pressure.  Linear correlation analysis was 

performed to investigate trends in the cell stiffness versus the cell size (diameter).  As 

shown in Figure 3.6, there was no dependence of the modulus on the cell diameter. 

 

 

 

 

Figure 3.6  Correlation between the Young‟s modulus and the cell diameter. No 
significant correlation was observed, suggesting that the geometry of the test 
configuration did not influence the stiffness.  
 

 

  

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10 12 14 16 18 20

Y
o

u
n

g
's

 M
o

d
u

lu
s

 [
k

P
a

]

Cell Diameter [µm]

Device 1

Device 2

Device 3

Device 1 - trendline

Device 2 - trendline

Device 3 - trendline



 52 

CHAPTER IV 

CONCLUSION AND FUTURE WORK 

 

 Recent researches report that the mechanical properties of cells could be used as 

indicators of its biological state, offering valuable insights into the pathogenic basis of 

diseases, including the possible identification of one disease from another [10, 85].  The 

cytoskeleton - the internal scaffolding comprising a complex network of biopolymeric 

molecules - is known to determine the cell‟s shape and mechanical deformation 

characteristics [10, 85].  However, existing micropipette aspiration techniques are not 

capable of quantifying mechanical parameters of biological cells in statistically 

significant quantities. 

In order to address these limitations, a micro-aspirator chip system that can 

aspirate and measure the deformation of 20 cells simultaneously was developed and 

characterized.  A micro-aspirator chip system can aspirate and measure the deformation 

of 20 cells simultaneously.  The system was fabricated using combinations of 

conventional microfabrication techniques and PDMS membrane vacuum expansion 

techniques. For the PDMS microfluidic layer part, fabrication techniques such as 

photolithography and soft lithography were used.  In order to make semicircular cell trap, 

2 µm-thick PDMS membrane was self-raised through vacuum expansion process.   

The principle of cell trapping is based on differences in flow resistance inside the 

microfluidic channels.  After all traps are filled with cells, negative pressure can be 

applied to the aspiration channel using hydrostatic pressure.  One of the key design 
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concepts of this device is the aspiration channel positioned at the center of the cell both 

in vertical and horizontal direction to obtain a good seal just like a traditional 

micropipette. 

 Device operation was demonstrated using HeLa cells.  The cell trapping 

efficiency was almost 100%.  Using this device, Young‟s modulus of 1.3 ± 0.8 kPa (n = 

54) was obtained for HeLa cells.  Device to device variation was less than 15.2% (n = 3), 

showing good repeatability of the device.  No dependence of the Young‟s modulus on 

the cell diameter was found. 

 In conclusion, a high-throughput micro-aspirator chip, which can deliver, trap, 

and deform multiple cells simultaneously with single-cell resolution without skill-

dependent micromanipulation was developed and demonstrated.  This system can 

improve characterization throughput over traditional micropipette aspiration to obtain 

statistically significant quantities of data, and thus, enabling the evaluation of 

mechanical stiffness as a marker for cell type and condition. 

 Some of the future work is listed.  In order to obtain accurate Young‟s modulus 

using this system, analytical model of micropipette aspiration with square geometry 

needs to be developed.  Repeated studies with different cell lines would provide further 

information about the performance of the system.  Especially, the cell type which has 

inherent round shape such as leukocyte would be of great interest.  In addition, pre-

treatment of the cell using chemical inhibitors might lead to a better understanding of the 

components inside the cells which determine the cell stiffness.  
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APPENDIX A 

MASK DESIGN 

 

 

 

 

 

Figure A.1  Mask design. (a) Aspiration channel layer used for the micro-aspirator chip. 
(b) Cell delivery channel layer used for the micro-aspirator chip. 
 

 

 

 

(a)

(b)
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APPENDIX B 

MASTER MOLD FABRICATION PROCEDURE 

 

Aluminum alignment mark patterning procedure is as follows: 

 

1.  Prepare piranha-cleaned 3 inch silicon wafer. 

2.  Spin coat Microposit S1818 photoresist (Rohm and Haas Electronic Material 

LLC, Marlborough, MA) on the silicon wafer at 4000 rpm for 30 seconds with an 

acceleration time of 10 seconds. 

3. Soft bake at 100°C for 10 minutes. 

4. Expose UV using a mask aligner (MJB3, SUSS MicroTec Inc., Waterbury 

Center, VT) at 12 mW/cm2 (wavelength: 320 nm) for 14 second with a 

photomask having alignment marks. 

5. Post exposure bake at 130°C for 10 minutes. 

6. Develop the pattern using MF-319 developer (Rohm and Haas Electronic 

Material LLC, Marlborough, MA) for 20-40 seconds. 

7. Rinse in DI water and dry with N2 gas. The resulting silicon wafer was covered 

with photoresist with only the alignment marks opened. 

8. Deposit Al layer using an E-beam evaporator to a thickness of 2500 Å. 

9. Sonicate the substrate in aceton, isopropyl alcohol (IPA) and DI water for 10 

minutes, respectively to remove the sacrificial photoresist layer. 
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The fabrication step of SU-8TM master mold is as follows: 

 

1. Spin coat 3 μm thick photoresist (SU-8TM 2002, Microchem, Inc., Newton, MA) 

on the alignment mark pattered silicon wafer at 750 rpm for 30 seconds. 

2. Soft bake on a 95°C hotplate for 4 minutes. 

3. Expose UV using a mask aligner (MA6, SUSS MicroTec Inc., Waterbury Center, 

VT) at 200 mJ/cm2 with a photomask having aspiration channel patterns. 

4. Post exposure bake at 95°C for 4 minutes. 

5. Develop the patterns using Microposit Thinner Type P (Shipley Co., 

Marlborough, MA) for for 1 minute. 

6. Rinse with DI water and dry with N2 gas. 

7. Spin coat 9 μm-thick photoresist (SU-8 2007TM, Microchem, Inc., Newton, MA) 

for patterning the cell delivery channel on the silicon wafer at 2500 rpm for 25 

seconds with an acceleration time of 5 seconds. 

8. Soft bake at 95°C for 5 minutes. 

9. Align and expose UV using a mask aligner (MA6, SUSS MicroTec Inc., 

Waterbury Center, VT) at 180 mJ/cm2 with a photomask having cell delivery 

channel patterns. 

10. Post exposure bake on a hot plate at 95°C for 5 minutes. 

11. Develop the patterns using Microposit Thinner Type P (Shipley Co., 

Marlborough, MA) for 1 minute. 

12. Rinse with DI water and dry with N2 gas. 
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APPENDIX C 

PDMS MEMBRANE FABRICATION PROCEDURE 

 

PDMS membrane fabrication procedure is as follows: 

 

1.  Place 3 inch silicon wafers inside the desiccator with 2 ~ 3 drops of 

(tridecafluoro-1,1,2,2-tetrahydrooctyl) trichlorosilane (United Chemical 

Technologies, Inc., Bristol, PA) on a weight boat. 

2. Apply vacuum for 15 minutes and take them out. 

3. Mix PDMS (Sylgard® 184, Dow Corning, Inc., Midland, MI) in a 10 : 1 base : 

hardener ratio (w/w) and subsequently degassed in a vacuum chamber for 20 

minutes. 

4. Gently mix PDMS pre-polymer with hexane in a 1 : 3 ratio (w/w). 

5. Spin coat the mixture at 4500 rpm for 30 seconds on a trichlorosilane coated 

silicon wafer. 

6. Cure inside the oven at 85°C for 15 minutes. 

7. After O2 plasma treatment, bond the PDMS replica on the top of the PDMS 

membrane. 

8. Peel off the PDMS replica gently and the PDMS membrane will stay bonded to 

the device.  
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APPENDIX D 

PDMS MEMBRANE VACUUM EXPANSION PROCEDURE 

 

 

Figure D.1  Schematic of the vacuum expansion steps. (a) PDMS membrane attached to 
the PDMS replica. (b) PDMS wall structure attached. (c) Pre-cured PDMS poured inside 
the ring structure. (d) Whole device placed inside a vacuum chamber. Vacuum and heat 
were applied at the same time. (e) Vacuum expanded microfluidic channels resulting in 
raised cell aspiration channel. 
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PDMS membrane vacuum expansion procedure is as follows: 

 

1.  After oxygen plasma treatment, bond the ring shape structure made of PDMS on 

the PDMS membrane attached on the PDMS replica. 

2. Mix PDMS (Sylgard® 184, Dow Corning, Inc., Midland, MI) in a 10 : 1 base : 

hardener ratio (w/w) and subsequently degas in a vacuum chamber for 20 

minutes. 

3. Gently pour the pre-cured PDMS inside the ring structure. 

4. Place the whole device inside a vacuum chamber. 

5. Apply vacuum (1E-2 torr = 1.3 Pa) and place the vacuum chamber inside the 

convection oven (140°C). 

6. After 12 minutes, release vacuum and take out the device. 
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APPENDIX E 

CELL CULTURE 

 

HeLa cell line was maintained in accordance with the American Type Culture Collection 

(ATCC) guidelines as follows: 

 

1. Remove and discard culture medium in 25 ml cell culture flask. 

2. Rinse the cell layer with PBS twice. 

3. Briefly rinse the cell layer with 0.25% (w/v) Trypsin- 0.53 mM EDTA solution 

to remove all traces of serum which contains trypsin inhibitor. 

4. Add 500 µl of Trypsin-EDTA solution to flask and observe cells under an 

inverted microscope until cell layer is dispersed (usually within 3 to 5 minutes). 

5. Add 5.0 ml of complete growth medium and aspirate cells by gently pipetting. 

6. Move the cells into conical tube and centrifuge for 5 minutes at 800 rpm. 

7. Remove and discard culture medium. 

8. Add 2.0 ml of complete growth medium and disperse the cells by gently 

pipetting up and down several times. 

9. Prepare new 25 ml cell culture flask and add 5 ml of growth medium inside. 

10. Add appropriate aliquots of the cell suspension to the culture flask. 

11. Incubate cultures at 37°C. 
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The procedure to make culture medium (500 µm) is as follows: 

 

1. Thaw 50 ml of bovine serum (BS) and 10 ml of Pen/Step in water bath. 

2. Pour 425 ml of DI water into a clean 500 ml beaker with stir bar. 

3. Stir and add in 5 g of DMEM. 

4. Add 1.755g D-glucose (Dextrose). 

5. Add 0.75g of NaHCO3 (Sodium bicarbonate). 

6. Pour thawed 10ml of pen/step. 

7. Make total volume 450ml by adding 15 ml of H2O. 

8. Add BS (50 ml) to the mixture. 

9. Adjust pH to 7.3 using 2M HCl and NaOH. 

10. Filter the medium using a 0.2 µm syringe filter (Acrodisk®, Pall Corp., USA) 

inside the bio-hood to sterilize. 
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APPENDIX F 

PRESSURE DATA ACQUISITION  

 

The voltage data from the pressure transducer (Omega) was acquired using LabVIEWTM.  

VISA library was used for RS-232 serial cable communication.  Figure F.1 and F.2 

below show the front panel and block diagram of LabVIEWTM program respectively.   

 

 

Figure F.1  LabVIEWTM front panel for data acquisition from the pressure transducer. 
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Figure F.2  LabVIEWTM block diagram for data acquisition from the pressure transducer. 
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