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ABSTRACT

Noncooperative Games for Autonomous Consumer Load Balancing Over Smart

Grid. (August 2010)

Tarun Agarwal, B.Tech., Indian Institute of Technology Madras

Chair of Advisory Committee: Dr. Shuguang (Robert) Cui

Traditionally, most consumers of electricity pay for their consumption accord-

ing to a fixed-rate. The few existing implementations of real time pricing have been

restricted to large industrial consumers, where the benefits could justify the high

implementation cost. With the advancement of Smart Grid technologies, large scale

implementation of variable-rate metering will be more practical. Consumers will be

able to control their electricity consumption in an automated fashion, where one pos-

sible scheme is to have each individual maximize their own utility as a noncooperative

game.

In this thesis, noncooperative games are formulated among the consumers of

Smart Grid with two real-time pricing schemes, where the Nash equilibrium operation

points are investigated for their uniqueness and load balancing properties. The first

pricing scheme charges a price according to the average cost of electricity borne by

the retailer and the second charges according to a time-variant increasing-block price.

The zero revenue model and the constant revenue rate model, are the two revenue

models being considered.

The relationship between these games and certain congestion games, known as

atomic flow games from the computer networking community, is demonstrated. It

is shown that the proposed noncooperative game formulation falls under the class of

atomic splittable flow games. It is shown that the Nash equilibrium exists for four
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different cases, with different pricing schemes and revenue models, and is shown to be

unique for three of the cases, under certain conditions. It is shown that both pricing

schemes lead to similar electricity loading patterns when consumers are interested

only in the minimization of electricity costs. Finally, the conditions under which

the increasing-block pricing scheme is preferred over the average cost based pricing

scheme are discussed.
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Jun Yoon, Prof. Halit Üster, and Prof. Tie Liu, for their time, assistance and support.

I extend my thanks to Prof. Abhijit Deshmukh for teaching an excellent course on

topics in Distributed Decision Making. His excellent course material and teaching

skills helped me solve complex problems associated with Game theory in my thesis.

I would also like to thank all of my fellow lab-mates who offered their help.

I thank my wife, Rajni, for her patience, motivation and support, all of which

have contributed to my success.

Last but not the least, I would like to extend my thanks to everyone, who sup-

ported me in any way during the completion of this thesis.



vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II SYSTEM MODEL . . . . . . . . . . . . . . . . . . . . . . . . . 4

A. Noncooperative Load Balancing Game . . . . . . . . . . . 6

B. Atomic Flow Games with Splittable Flows . . . . . . . . . 9

III NASH EQUILIBRIUM WITH DIURNAL STRATEGIES . . . . 13

A. Average Cost based Pricing . . . . . . . . . . . . . . . . . 13

B. Increasing-Block Pricing . . . . . . . . . . . . . . . . . . . 23

IV CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



viii

LIST OF FIGURES

FIGURE Page

1 A hypothetical marginal cost of supply and the corresponding

total cost curve as seen by the retailer in the wholesale market

within a single time slot. Supply is from five different sources:

hydroelectric, nuclear, coal, natural gas, and oil. Two different

generators may use different technologies for power generation

thus incurring different marginal costs with the same fuel (e.g.,

the two different cost levels for oil in Fig. 1(a)). . . . . . . . . . . . . 5

2 A two node network with T links between source s and destination t. 10

3 Hub-components, the five basic units of nearly-parallel graphs. . . . . 17



1

CHAPTER I

INTRODUCTION

Electricity consumers in most parts of the world, pay a fixed-rate retail price for

their electricity usage, which changes on a seasonal or yearly basis. However, it has

been long recognized in the economics community that charging consumers a flat

rate for electricity creates allocative inefficiencies, i.e., consumers are not charged

equilibrium prices for their consumption (see [1] for a complete reference). This is

shown through an example in [2], which illustrates how flat pricing causes deadweight

loss at off-peak times and excessive demand above the economic equilibrium at the

peak times. The latter leads to blackouts in short run and excessive capacity buildup

over long run. Variable-rate metering that reflects the real-time cost of generation

can influence consumers to defer their power usage from the peak times. The reduced

peak-load can significantly reduce the need for expensive generation during peak times

and excessive capacity requirements. An additional benefit of real-time pricing and

demand elasticity is that producer/generation firms may not be able to charge the

retail providers with unreasonable rates during periods of high consumer demand,

thus exerting undue market power [2, 3].

The main technical hurdle in implementing the real-time pricing has been the lack

of cost-effective smart metering, which can communicate real-time prices to consumers

and their consumption levels back to the energy provider. The claim of social benefits

from real-time pricing also assumes that the consumer demand is elastic and responds

to price changes. But traditional consumers do not possess the equipments that enable

them to quickly alter their demands with changing prices, and significant research

This thesis follows the style of IEEE Transactions on Smart Grid.
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efforts on real-time pricing have involved estimating the consumer demand elasticity

and the level of benefits that real time pricing can achieve [1, 4, 5]. Both these

requirements, smart metering and consumer adaptability, have been unfulfilled till

now. However, with the technological advancements in power generation and cyber-

enabled metering in the framework of Smart Grid, real-time pricing and autonomous

consumer load balancing becomes more practical [6].

In this thesis we formulate noncooperative games [7, 8] among the consumers

of Smart Grid with two real-time pricing schemes. The first pricing scheme charges

a price according to the average cost of electricity production and the second one

charges according to a time-variant increasing-block price [9]. We investigate con-

sumers’ demand at the Nash equilibrium operation points for their uniqueness and

load balancing properties. Two revenue models are considered and we show that

both pricing schemes lead to similar electricity loading patterns when consumers are

interested only in the minimization of electricity costs.

We demonstrate the relationship between these games and certain congestion

games [10], known as atomic flow games [11] from the computer networking commu-

nity. We show that the proposed noncooperative game formulation falls under the

class of atomic splittable flow games [12]. Specifically, we show that the noncoopera-

tive game among the consumer has the same structure as in the atomic splittable flow

game over a two node network with multiple parallel links between them. Finally we

discuss the conditions under which the increasing-block pricing scheme is preferred

over the average cost based pricing scheme.

The thesis is organized as follows. The system model, formulation of the nonco-

operative game, and its relationship to atomic flow games is presented in Chapter II.

The game is analyzed with different real-time pricing schemes under different revenue

models in Chapter III, where the Nash equilibrium properties are investigated. We
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conclude the thesis in Chapter IV.
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CHAPTER II

SYSTEM MODEL

We study the transaction of energy between a single electricity retailer and multiple

consumers. Each consumer has a demand for electrical energy (measured in Watt-

hour, Wh) in a given time slot. The job of the retailer is to satisfy demands from all

the consumers. The electricity supply of the retailer is purchased from a variety of

sources over a wholesale electricity market. The retailer may possess some generation

capacity as well. Each of these sources may use different technologies or fuels to

generate electricity which leads to different marginal costs of electricity generation,

where the marginal cost is the incremental cost incurred to produce an additional

unit of output [13]. Mathematically, the marginal cost function (see an example in

Fig. 1(a) based on data from [4]) is expressed as the first derivative of the total cost

function (see an example in Fig. 1(b)). The retailer therefore attempts to satisfy

demands by procuring the cheapest source first1. This results in a non-decreasing

marginal cost of the supply curve, as illustrated through the example in Fig. 1(a).

The retailer charges each consumer a certain price for its consumption in order to

cover its costs. In real life the sum payments by all the consumers should be enough

to cover the various costs incurred by the retailer as well as its profit margin. In

our model we assume that all these components are incorporated within the marginal

cost of electricity.

While the retailer procures sufficient supply to meet the sum demand of all its

consumers in a given time slot, such supply may be limited by the sum generation

1In real life the base load, i.e., the regular power that is demanded by the consumers,
is satisfied from sources such as hydro, coal, and nuclear as they are cheap. The
fluctuating components of the demand are satisfied from sources such as oil, as the
power-plants based on oil are more flexible to control.
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Fig. 1. A hypothetical marginal cost of supply and the corresponding total cost curve

as seen by the retailer in the wholesale market within a single time slot. Supply

is from five different sources: hydroelectric, nuclear, coal, natural gas, and oil.

Two different generators may use different technologies for power generation

thus incurring different marginal costs with the same fuel (e.g., the two different

cost levels for oil in Fig. 1(a)).
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capacity available to the retailer from the multiple available sources. Thus, the max-

imum sum load that the retailer can service has an upper limit and we model this

capacity limit by setting the marginal cost of electricity to infinity when sum load

exceeds a predetermined threshold. Each consumer has an energy demand in a given

time slot and it pays the retailer the corresponding price, where the price to consumer

is set such that in each time slot the sum of payments made by all consumers meets

the total cost of the retailer in that slot. A particular consumer’s share of this bill

depends on the retailer’s pricing scheme, which is a function of the demands from

all the consumers. Accordingly, as the total load varies over time, each consumer

operates over a time-variant price with time-slotted granularity. Each consumer is

assumed to have a certain total demand for electricity over each day, which it can

distribute throughout the day in a time-slotted manner, to maximize certain utility

function. We model such individual load balancing behaviors as a noncooperative

game.

A. Noncooperative Load Balancing Game

The noncooperative game between these consumers is formulated as follows. We are

given a group of N consumers, who submit their daily demands in a time-slotted

pattern at the beginning of the day (which contains T time slots) to a retailer. The

consumers are selfish, aiming to maximize their personal utility/payoff; hence do

not cooperate with each other to manage their demands. Each consumer i has a

minimum total daily requirement of energy, βi ≥ 0, which is split over the T time

slots. We denote by xit the ith consumer’s demand in the tth time slot. A consumer

can demand any value xit ≥ 0 (negativity constraint) with
∑

t x
i
t ≥ βi (demand

constraint). Another constraint xit ≤ U is imposed on the demand xit, to reflect
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the capacity constraint C(xt) = ∞,∀xt > U . This constraint need not be imposed

explicitly but we mention it in our formulations in order to make the feasible set of

strategies compact. Let

xi = {xi1, xi2, . . . , xit, . . . , xiT}

represent the ith consumer’s demand vector, which is called the strategy for the ith

consumer. Let

xt = {x1
t , . . . , x

N
t }

represent the demand vector from all consumers in time slot t. Let x represent the set

{x1, . . . ,xN}. For ease of notation we use xt to represent
∑

i x
i
t and xi to represent∑

t x
i
t.

The payoff or utility for consumer i is denoted by πi which is the total revenue it

generates from the electricity that it purchases minus the total cost. In particular, let

Ei
t , a function of xit, represent the revenue generated by the ith consumer in the tth

time slot and M i
t , a function of xt, represent its payment to the retailer for purchasing

xit. Then the payoff πi, to be maximized by consumer i, is given by

πi =
∑

t∈{1,...,T}

[
Ei

t −M i
t

]
.

Since M i
t is a function of xt, we see that the consumer payoff is influenced by its load

balancing strategy and that of other consumers. For ease of notation we use M i to

represent the total payments (
∑

tM
i
t ) made by consumer i.

To maximize the payoff at each consumer by designing the distributed load bal-

ancing strategy xi’s, we consider two real time pricing schemes. The first is the aver-

age cost based pricing scheme and the second is the increasing-block pricing scheme.

Specifically, for the first one the retailer charges the consumers the average cost of

electricity procurement. For the second one, the retailer charges according to a certain
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marginal cost function that depends on the vector of demands from all consumers,

xt. Let us represent the wholesale cost of electricity by the function C(xt), where xt

is the total load posed to the retailer, with an example function plotted in Fig. 1(b).

Then under the average cost based pricing, the price per unit charged to the

consumers is given by

A(xt) =
C(xt)

xt
, (2.1)

and at time t consumer i pays

M i
t = xitA(xt) (2.2)

for consuming xit units of electricity. It is easy to see that
∑

iM
i
t = C(xt), i.e., with

average cost based pricing the total payment made by the consumers covers the total

cost to the retailer. In addition C ′(xt) gives the marginal cost in the wholesale market

and an example marginal cost curve is plotted in Fig. 1(a). In the context of electricity

markets, as we discussed before, the marginal cost C ′(xt) is always non-negative and

non-decreasing such that C(xt) is always positive, non-decreasing and convex.

The second scheme is a time-variant version of the increasing-block pricing scheme.

With a typical increasing-block pricing scheme, consumer i is charged a certain rate

b1 for its first z1 units consumed, then charged rate b2 (> b1) for additional z2 units,

and charged rate b3 (> b2) for additional z3 units, and so on. In our scheme, the val-

ues for the above b’s and z’s depend on xt and the function C(.). We formulate the

increasing-block pricing scheme as follows. Consumer i pays an amount determined

by the marginal cost function B(x,xt), which is the same for all consumers at any

instant t but depends on xt, the demand vector of all the consumers. In particular

consumer i pays

M i
t =

∫ xi
t

0

B(x,xt)dx (2.3)
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for consuming xit units of electricity. B(.) is chosen as

B(x,xt) = C ′

(∑
j

min (x, xjt)

)
,

such that
∑

iM
i
t = C(xt) is satisfied.

For each of the two pricing schemes, we study two different revenue models. For

the first case we set Ei
t as zero for all consumers over all time slots, which leads to

payoff maximization being the same as cost minimization from the point of view of

all the consumers. For the second case we assign consumer i a constant revenue rate

φi
t at each time slot t, which gives Ei

t = φi
tx

i
t, and leads to payoff maximization being

the same as profit maximization.

B. Atomic Flow Games with Splittable Flows

The noncooperative game that we have formulated in the previous section is related

to the following problem in the network routing literature [10, 11]. Consider several

agents each of whom wish to establish paths from a specific source node to some

destination node in order to transport a fixed amount of traffic. In the context of

Internet, the agent can be viewed as a manager of packet routing. In the context of

transportation, the agent is a company routing its fleet vehicles across the network of

roads. The problem here is of competitive routing between agents, where each agent

needs to deliver a given amount of flow over the network from its designated origin

node to the corresponding destination node. An agent can choose how to divide its

flow amongst the available routes. On each link the agents experience a certain delay.

In the case of computer networks, if many agents collectively route a large number

of packets through a particular link, the packets will experience larger delays; and

beyond a certain level, the link may even start dropping packets, resulting in infinite
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delay. Such delay can be referred as cost, which is a function of the link congestion

or the total flow through the link. The cost of a path is the sum of the link costs

along the route.

To show the relationship between our noncooperative consumer load balanc-

ing problem and the above routing problem, we can reformulate the load balancing

problem into the following routing game over two node multiple link network, first

described in [10]. We have used notation similar to [10] in the interest of readabil-

ity. Let there be N agents with throughput demands who share a common source

node and a common destination over a two node network connected by T parallel

links (see Fig. 2). It is assumed that the agents do not cooperate. Each agent

s t

xi1

...

xiT

...

xit

(a) Flows from the ith
agent.

s t

x1

...

xT

...

xt

(b) Sum of flows from all
the agents.

s t

J i
1

...

J i
T

...

J i
t

(c) Cost for different links
for the ith agent.

Fig. 2. A two node network with T links between source s and destination t.

i ∈ {1, . . . , N} has a throughput demand βi, which can be split among the T links

as chosen by the agent. Let xit ≥ 0 denote the flow that agent i sends through link

t ∈ {1, . . . , T}. The sum of xit should add upto βi, i.e., βi =
∑

t x
i
t. Let xt =

∑
i x

i
t,

and xt = {x1
t , . . . , x

i
t, . . . , x

N
t }. The flow vector for agent i is denoted by the vector

xi = {xi1, . . . , xit, . . . , xiT}. The system flow vector is the collection of all agent flow
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vectors, denoted by x = {x1, . . . ,xi, . . . ,xN}. A given xi is feasible if its components

obey the non-negativity constraint and the demand constraints. Let X i be the set of

all feasible choices of xi for agent i, and X be the set of all feasible choices of x.

Let J i(x) denote the cost for each agent i, that it wishes to minimize. As J i(x)

is a function of the flow vector of all the agents, the best response of a given agent is

a function of the responses of all the agents; and hence we can have a noncooperative

game formulation. The Nash solution of the game is defined as the system flow vector

such that none of the agents can unilaterally improve their performance. Formally,

x̂ ∈ X i is a Nash Equilibrium Point (NEP) if the following condition holds for all

agents

J i(x̂) = min
xi∈X i

J i(x̂1, . . . , x̂i−1,xi, x̂i+1, . . . , x̂N).

The above noncooperative game is known as an atomic splittable flow game [12,

14]. In [10], the existence of NEP is proved for atomic splittable flow game over the

two node network with parallel links if the following five assumptions (G1-G5) are

satisfied for the cost function.

G1: J i is the sum of link cost functions, i.e., J i(x) =
∑

t J
i
t (xt).

G2: J i
t : [0,∞)N → [0,∞] is a continuous function.

G3: J i
t is convex over xit.

G4: Wherever finite, J i
t is continuously differentiable over xit.

G5: For every system flow configuration x, if not all cost function values are finite

then at least one agent with infinite cost (J i(x) = +∞) can change its own flow

configuration to make its cost finite.
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In the context of two node network with parallel links (Fig. 2), G5 is equivalent to

the assumption that sum capacities of all links is greater than the sum of agent’s

demands [10].

As a side-note, in [10], the uniqueness of NEP is further imposed for two node

network if the cost function J i
t additionally complies with the following assumptions:

A1: J i
t is a function of two arguments, namely agent i’s flow on link t and the total

flow on that link, i.e., J i
t (xt) = J̄ i

t (x
i
t, xt).

A2: J̄ i
t is increasing over each of its two arguments.

A3: Let Ki
j =

∂J̄i
t

∂xi
t
. Wherever J i

t is finite, Ki
t = Ki

t(x
i
t, xt) is strictly increasing in

each of its two arguments.

In particular, functions that comply with the assumptions G1-G5 and A1-A3 are

referred to as type-A functions in [10]. In the following chapters we will apply some

of the results in [10] to facilitate our analysis over the noncooperative consumer load

balancing game. The cost functions in our formulation do not satisfy one or more of

the assumptions A1-A3, and hence we use other means to prove uniqueness of NEP.
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CHAPTER III

NASH EQUILIBRIUM WITH DIURNAL STRATEGIES

For each of the two pricing schemes, discussed previously two different revenue mod-

els are studied to provide more design insights, which leads to two different payoff

structures. In the first case the revenue is set to zero, such that payoff maximization

is the same as cost minimization. In the second case, the rate of revenue generation at

each consumer is set as a non-zero constant, such that payoff maximization is profit

maximization.

A. Average Cost based Pricing

For this scheme, the payment to the retailer in slot t by consumer i is given by (2.2).

Case 1: Zero revenue model

In this case the revenue is set to zero as

Ei
t = 0,

which results in payoff maximization being the same as cost minimization for each

consumer. Specifically, the payoff for consumer i is given by

πi = −
∑
t

M i
t .
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The consumer level optimization problem for each consumer i is given by the following

optimization problem.

maximize πi(xi) = −
∑
t

M i
t

subject to M i
t = xitA(xt), ∀t∑
t

xit ≥ βi

xt =
∑
j

xjt , ∀t

0 ≤ xit ≤ U ∀t.

We have already shown that this game is similar to the routing game described

in [10]. With the average cost based pricing and the zero revenue model, the effective

cost function for agent i to minimize in the routing game is

J i
t = M i

t = xitA(xt) =
xit
xt
C(xt).

This cost function satisfies the assumptions G1-G5 given earlier. In particular, G1

holds as the total payment made by the consumers satisfies

M i =
∑
t

M i
t ,

which is the cost to the agents in the routing formulation. In addition, G2 trivially

holds by the definition of M i
t . In order to satisfy G3, i.e., to show that J i

t is convex
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over xit, we show that
∂2Ji

t

∂xi
t
2 ≥ 0. First we evaluate

∂J i
t

∂xit
=
∂
(

xi
t

xt
C(xt)

)
∂xit

=
C(xt)

xt
+ xit

[
1

xt

∂C(xt)

∂xit
− C(xt)

xt
2

∂xt
∂xit

]

=
C(xt)

xt
+ xit

 1

xt

∂
(∫ xt−xi

t

0
C ′(z).dz +

∫ xt

xt−xi
t
C ′(z).dz

)
∂xit

− C(xt)

xt
2


=
C(xt)

xt
+ xit

 1

xt

∂
(∫ xt

xt−xi
t
C ′(z).dz

)
∂xit

− C(xt)

xt
2


=
C(xt)

xt
+ xit

[
1

xt
C ′(xt)−

C(xt)

xt
2

]
=
C(xt)

xt
+ xit

[
xtC

′(xt)− C(xt)

xt
2

]
=
C(xt)

xt
+ xit

[
xtC

′(xt)− xtA(xt)

xt
2

]
= A(xt) + xit

[
C ′(xt)− A(xt)

xt

]
=
xtA(xt) + xitC

′(xt)− xitA(xt)

xt

=
(xt − xit)A(xt) + xitC

′(xt)

xt
.

(3.1)
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Then we evaluate

∂2J i
t

∂xit
2 =

1

xt

[
(xt − xit)

(
C ′(xt)

xt
− C(xt)

xt
2

)
+ C ′(xt) + xitC

′′(xt)

]
− (xt − xit)A(xt) + xitC

′(xt)

xt
2

=
1

xt
2

[
(xt − xit)

(
C ′(xt)−

C(xt)

xt

)
+ xtC

′(xt) + xtx
i
tC
′′(xt)

− (xt − xit)A(xt)− xitC ′(xt)
]

=
1

xt
2

[
(xt − xit)

(
C ′(xt)−

C(xt)

xt

)
+ xtC

′(xt) + xtx
i
tC
′′(xt)

− (xt − xit)
C(xt)

xt
− xitC ′(xt)

]
=

1

xt
2

[
2(xt − xit)C ′(xt) + xtx

i
tC
′′(xt)− 2(xt − xit)

C(xt)

xt

]
=

1

xt
2

[
2(xt − xit)

(
C ′(xt)−

C(xt)

xt

)
+ xtx

i
tC
′′(xt)

]
.

(3.2)

Given C(x) is convex, both
(
C ′(xt)−

C(xt)

xt

)
≥ 0 and C ′′(xt) ≥ 0; and therefore

∂2Ji
t

∂xi
t
2 ≥ 0. Thus J i

t is convex over xit and G3 holds. The above also shows that J i
t is

continuously differentiable over xit and hence G4 holds. Finally, as mentioned earlier,

in the context of our special case of two node network with all parallel links (Fig. 2),

G5 is equivalent to the assumption that sum capacities of all links is greater than

the sum of agent’s demands. Thus, as we assume that the sum capacity of the retail

provider over the T time slots is enough to satisfy the total demand
∑

i βi, G5 holds

by construction.

By the proof in [10] we know that if the cost function satisfies assumption G2

and G3, there exists an NEP strategy for all agents. Therefore the NEP solution

exists for the noncooperative consumer load balancing game.

The cost function J i
t , does not satisfy the assumption A3, so it does not qualify

as a type-A function from [10] and hence the corresponding uniqueness result cannot
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be extended to our formulation. We prove the uniqueness of the NEP solution by

extending the result in [12], where it is proved that for more than two types of players

playing a routing game over a network with the per unit cost function for each link

belonging to the class of strictly semi-convex, non-negative, and non-decreasing cost

functions, the Nash equilibrium is unique if and only if the graph is generalized nearly-

parallel. The number of types of players in a particular game refers to the number of

different values for βi’s. Thus a single type of players implies that all players have the

same value for βi. Next, we first introduce some definitions and show that the above

atomic flow problem (and hence the load balancing problem) satisfies the conditions

for NEP uniqueness as described in [12]. We now begin with some definitions from

[12].

Definition 1. The component-join operation for two given graphs G1 = (V1, E1) and

G2 = (V2, E2) consists of merging any two vertices v1 ∈ V1 and v2 ∈ V2 into a single

vertex v.

Definition 2. A hub-component is a graph consisting of a set of vertex-disjoint paths

connecting two nodes called hubs. The solid circles shown in Fig. 3 are the hubs.

. . .
. . .

. . .
. . .

...

Fig. 3. Hub-components, the five basic units of nearly-parallel graphs.

Definition 3. A generalized nearly-parallel graph is any graph that can be constructed

from hub-components applying component-join operations.



18

Two node network with parallel links of Fig. 2, is the first of the five basic

units (as drawn in Fig. 3) of nearly-parallel graphs [12, 15], and by definitions a

hub-component, hence is also a generalized nearly-parallel graph.

Definition 4. A cost function f(x) is (strictly) semi-convex if xf(x) is (strictly)

convex.

For the load balancing game with average cost based pricing and zero revenue,

the cost of consumer i is given by (2.2) where the cost per unit A(xt) is given by (2.1),

with A(xt) a non-negative and non-decreasing function. For the function A(xt) to be

strictly semi-convex, xtA(xt) needs to be strictly convex. Since C(xt) = xtA(xt) is

the total cost of electricity to the retailer, and as we assume the marginal cost price

C ′(x) is a monotonically increasing function, C(x) is strictly convex.

Thus our problem can be converted into an atomic flow game with splittable

flows and different player types (i.e., each player controls a different amount of total

flow) over a generalized nearly-parallel graph with strictly semi-convex, non-negative,

and non-decreasing functions for cost per unit flow through links. By Theorem 3.11

of [12] the NEP solution for the load balancing game is unique.

In the following, the value of the unique NEP is evaluated.

Lemma 1. With the average cost based pricing and zero revenue, at the Nash equi-

librium the unit price of electricity faced by all consumers will be same over all time

slots.

Proof. Consider two arbitrary time slots t1 and t2. At the Nash equilibrium the sum

demands on the system are either the same over the two slots or different. If the sum

demands are equal over the two time slots, by (2.1), we know that the unit price of

electricity will be same for the two slots. If the sum demands are not equal, without
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losing generality, let us assume xt1 < xt2 such that

A(xt1) < A(xt2) (3.3)

holds. Then any consumer j with xjt2 > 0 can reduce cost by reducing xjt2 and

increasing xjt1 by the same small quantity. This contradicts our assumption that the

system is in equilibrium. Hence A(xt1) = A(xt2).

In order to prove the following lemma we need C(.) to be strictly convex as

without it, C(xt) = kxt is an admissible cost function and with it A(xt1) = A(xt2)

holds while xt1 < xt2 .

Lemma 2. If C(.) is strictly convex, at the Nash equilibrium, the sum of demands

on the system, xt, keeps the same across each time slot t.

Proof. If C(.) is strictly convex then C ′′(.) > 0. At Nash equilibrium we have A(xt1) =

A(xt2) from Lemma 1 for all possible t1 and t2. The two conditions together imply

A(xt1) = A(xt2)⇔ xt1 = xt2 .

Lemma 3. If C(.) is strictly convex, at Nash equilibrium, each consumer will dis-

tribute its demands equally over the T time slots.

Proof. As the Nash equilibrium is unique, by symmetry over all the time slots, for

consumer i we shall have

xit1 = xit2 , ∀t1, t2,

as otherwise we could swap the demand vectors xt1
and xt2

in time slot t1 and t2

without altering the Nash equilibrium conditions and get another distinct NEP, thus
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contradicting uniqueness. Thus, with
∑

t x
i
t = βi, we have the solution xit = βi/T for

all consumers i and time slots t.

Under the average cost based pricing scheme with zero revenue, if one particular

consumer increases its demand of electricity, the per unit price A(.) will increase,

which increases the payments for all other consumers as well. Theoretically one

consumer may cause indefinite increases in the payments of all others, and in this

sense this scheme does not protect the group from reckless action of some consumer(s).

This issue will be addressed by our second pricing scheme as we will show later.

Case 2: Constant Revenue Rate Model

In this case, the rate of revenue generation for each consumer at each time slot is

taken as a non-negative constant φi
t. Thus,

Ei
t = φi

t × xit.

The consumer level optimization problem for each consumer i is given by the following

optimization problem.

maximize πi(xi) =
∑
t

[
Ei

t −M i
t

]
subject to Ei

t = φi
tx

i
t, ∀t

M i
t = xitA(xt), ∀t∑
t

xit ≥ βi

xt =
∑
j

xjt , ∀t

0 ≤ xit ≤ U ∀t.

We set βi = 0 for all consumers, as βi > 0 will cause those consumers with rate of

revenue less than the per unit price of electricity, to incur a negative payoff. As under
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this formulation, Ei
t 6= 0, hence payoff maximization for each consumer is equivalent

to profit maximization and it will not result in the trivial solution xit = 0, for all i and

t. The side-effect of this however is that the constraint
∑

t x
i
t ≥ βi = 0 vanishes as∑

t x
i
t ≥ 0 is redundant and there is no more a common constraint on demand vectors

from different time slots xt1
and xt2

; hence the payoff for the overall noncooperative

game is a sum of the payoffs for T , single time slot, noncooperative games.

We briefly show that under these assumptions there exists an NEP for this game.

The effective cost function for the corresponding routing game is given as

J i
t = M i

t − φi
t × xit. (3.4)

As M i
t is continuous in xt, J

i
t is continuous in xt as well and satisfies assumption

G2. We have already shown that M i
t under the average cost based pricing scheme

is convex in xit through (3.2). The function −φi
tx

i
t is linear and hence convex in xit.

Thus, by the property that the summation of two convex functions is convex, J i
t from

(3.4) is convex in xit and hence satisfies assumption G3. Following the proof in [10],

we consider the point-to-set mapping x ∈ X → Γ(x) ⊂ X defined as

Γ(x) = {x̂ ∈ X : x̂i ∈ arg min
zi∈X i

J i(x1, . . . , zi, . . . ,xN)},

where Γ is an upper semicontinuous mapping (by the continuity assumption G2) that

maps each point of the convex compact set X into a closed (by G2) convex (by G3)

subset of X . By the Kakutani Fixed Point Theorem [16], there exists a fixed point

x ∈ Γ(x) and such a point is NEP [17].

Lemma 4. At the Nash equilibrium, the consumer(s) with the highest revenue rate

(φi
t) within the time slot, may be the only one(s) buying the power in that time slot.

Proof. For a given time slot t consumer i has an incentive to increase its demand xit
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as long as the payoff can increase, i.e., as long as

∂πi
∂xit

> 0.

Therefore at the equilibrium the following holds for all consumers.

∂πi

∂xit
≤ 0

⇒ ∂ [Ei
t −M i

t ]

∂xit
≤ 0

⇒ ∂Ei
t

∂xit
− ∂M i

t

∂xit
≤ 0

⇒ φi
t ≤

∂M i
t

∂xit
=
C(xt)

xt
= A(xt)

For the consumers with a strict inequality φi
t < A(xt), the rate of revenue is less than

the price per unit of electricity at time t; hence the revenue is less than the cost,

Ei
t < M i

t , such that buying electricity will incur them a negative payoff and hence

all such consumers, with φi
t < A(xt), will not buy any power in that time slot, i.e.,

xit = 0. Therefore only the set of consumers {arg maxk φ
k
t }, i.e., the consumers who

enjoy the maximum rate of revenue may be able to purchase electricity.

Thus if consumer i has the maximum rate of revenue, either it is the only con-

sumer buying non-zero power xit such that φi
t = A(xit) or φi

t < C ′(0) and hence xit = 0

in that time slot, which leads to a unique Nash equilibrium for the sub-game. If in

a given time slot multiple consumers experience the same maximum rate of revenue,

then the sub-game will turn into a Nash Demand Game [18] between the set of con-

sumers, {arg maxk φ
k
t }, and will lead to multiple Nash equilibriums. Thus the overall

noncooperative game has a unique Nash equilibrium if and only if, in each time slot,

at most one consumer experiences the maximum rate of revenue.
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B. Increasing-Block Pricing

In this section we study the load balancing game with the time-variant increasing

block pricing scheme. Under this scheme consumer i pays M i
t for xit units of electricity,

which is given by (2.3) where B(x,xt) is the marginal cost function posed to the

consumer. Thus,

B(x,xt) = C ′

(∑
j

min (x, xjt)

)
.

As an example, if the demand from all consumer’s at time slot t is identical, i.e., if

xit = xjt , for all i and j, then we have,

B(x,xt) = C ′(Nx).

Case 1: Zero revenue model

In this case the payment by consumer i is given by (2.3)

M i
t =

∫ xi
t

0

B(x,xt)dx.

The consumer level optimization problem for each consumer i is given by the following

optimization problem.

maximize πi(xi) = −
∑
t

M i
t

subject to M i
t =

∫ xi
t

0

B(x,xt)dx, ∀t∑
t

xit ≥ βi

0 ≤ xit ≤ U ∀t.
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As M i
t is continuous in xt, therefore in the corresponding routing game

J i
t = M i

t (3.5)

is continuous in xt and satisfies assumption G2. In addition, M i
t is convex in xit as its

derivative, the marginal cost function B(x,xt), is non-decreasing. Thus, J i
t is convex

in xit and hence satisfies assumption G3. Following the proof in [10], we consider the

point-to-set mapping x ∈ X → Γ(x) ⊂ X defined by

Γ(x) = {x̂ ∈ X : x̂i ∈ arg min
zi∈X i

J i(x1, . . . , zi, . . . ,xN)},

where Γ is an upper semicontinuous mapping (by the continuity assumption G2)

that maps each point of the convex compact set X into a closed (by G2) convex (by

G3) subset of X . By the Kakutani Fixed Point Theorem, there exists a fixed point

x ∈ Γ(x) and such a point is NEP.

When each consumer tries to minimize its total cost while satisfying its minimum

daily energy requirement βi, we have the following result.

Lemma 5. If C(.) is strictly convex, the Nash equilibrium is unique and each con-

sumer distributes its demand uniformly over all time slots.

Proof. For the equilibrium conditions to be satisfied,

B(xit1 ,xt1
) = B(xit2 ,xt2

), ∀i, t1, t2,

should hold; otherwise consumer i can increase payoff by varying xit1 and xit2 . The

condition can be rewritten after expanding B(.) as

C ′

(∑
j

min (xit1 , x
j
t1)

)
= C ′

(∑
j

min (xit2 , x
j
t2)

)
, ∀i, t1, t2. (3.6)

Given C(.) is strictly convex and then we have C ′(.) monotonically increasing, which
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gives

C ′(z1) = C ′(z2)⇔ z1 = z2. (3.7)

Therefore, (3.6) implies

∑
j

min (xit1 , x
j
t1) =

∑
j

min (xit2 , x
j
t2), ∀i, t1, t2. (3.8)

Now lets assume that there exist an NEP x with demand vectors xt1
6= xt2

. Let P

represent the subset of consumers with unequal demands in time slots t1 and t2,

P = {k|xkt1 6= xkt2 , k ∈ {1, 2, . . . , N}}.

Then let a represent the consumer from subset P with the highest value of demand

in time slot t1

a = arg max
k∈P

xkt1 , (3.9)

and let b represent the consumer from subset P with the highest value of demand in

time slots t2

b = arg max
k∈P

xkt2 . (3.10)

From (3.8) we have

∑
j

min (xat1 , x
j
t1) =

∑
j

min (xat2 , x
j
t2), ∀i, t1, t2, (3.11)

and ∑
j

min (xbt1 , x
j
t1) =

∑
j

min (xbt2 , x
j
t2), ∀i, t1, t2. (3.12)

Combining (3.8) and (3.9) leads to

∑
j

min (xat1 , x
j
t1) ≥

∑
j

min (xbt1 , x
j
t1); (3.13)
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combining (3.8) and (3.10) leads to

∑
j

min (xat2 , x
j
t2) ≤

∑
j

min (xbt2 , x
j
t2). (3.14)

If xat1 6= xbt1 or xat2 6= xbt2 , (3.13) holds with strict inequality. With (3.11), (3.12), and

(3.13), we have ∑
j

min (xat2 , x
j
t2) >

∑
j

min (xbt2 , x
j
t2),

which contradicts (3.14). If xat1 = xbt1 and xat2 = xbt2 then (3.11) and (3.12) imply

xat1 = xat2 and xbt1 = xbt2 , respectively, which contradicts that a, b ∈ P . This implies

that the set P is empty, which contradicts that xt1
6= xt2

.

Hence we have

xit1 = xit2 ∀i, t1, t2,

and the solution is given by xit = βi/T, ∀i, t. Under the necessary conditions for NEP

(3.6), this is the only solution for the set x, hence NEP is unique.

Notice that for zero revenue model, the resulting value of NEP is the same with

both increasing-block pricing and average cost based pricing. For both the cases, at

NEP, we have xit = βi/T, ∀i, t. However, even though the loading pattern is similar,

the payments M i
t made by the consumers will differ and, with increasing-block pricing,

is likely to be lesser for consumers with relatively lesser consumption. Secondly,

under this pricing scheme, with N consumers in the system, the maximum payment

M i
t made by the ith consumer given xit demand will be C(Nxit)/N , irrespective of

what other consumers demand and consume. Thus this addresses the issue faced

with average cost based pricing and zero revenue model, in which one consumer can

increase their demand indefinitely and cause indefinite increase in the payments of

all other consumers.
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Case 2: Constant Revenue Rate Model

The consumer level optimization problem for each consumer i is given by the following

optimization problem.

maximize πi(xi) =
∑
t

[
Ei

t −M i
t

]
subject to Ei

t = φi
tx

i
t, ∀t

M i
t =

∫ xi
t

0

B(x,xt)dx, ∀t∑
t

xit ≥ βi

0 ≤ xit ≤ U ∀t.

In this case, we briefly show that with increasing-block pricing and a constant revenue

rate, there exists an NEP solution for this game. First, the cost function in the

corresponding routing game is given by

J i
t = M i

t − φi
t × xit, (3.15)

where M i
t is continuous in xt, and therefore J i

t is continuous in xt and satisfies assump-

tion G2. We have already shown that M i
t under the increasing-block pricing scheme

is convex in xit in previous subsection. The function −φi
tx

i
t is linear and hence convex

in xit as well. Thus, J i
t from (3.15) is convex in xit and hence satisfies assumption G3.

Following the proof in [10], we consider the point-to-set mapping x ∈ X → Γ(x) ⊂ X

defined by

Γ(x) = {x̂ ∈ X : x̂i ∈ arg min
zi∈X i

J i(x1, . . . , zi, . . . ,xN)},

where Γ is an upper semicontinuous mapping (by the continuity assumption G2)

that maps each point of the convex compact set X into a closed (by G2) convex (by

G3) subset of X . By the Kakutani Fixed Point Theorem, there exists a fixed point
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x ∈ Γ(x) and such a point is NEP.

Within the average cost based pricing scheme and constant revenue rate model,

we saw that in the given time slot, if a single consumer enjoys the maximum rate

of revenue, then it will be the only consumer who may be able to purchase power.

We show here that within increasing-block pricing scheme and constant revenue rate

model, the consumer with highest earnings coefficient will not be able to dominate

the time slot.

For a given time slot t a consumer i will have an incentive to increase their

demand xit as long as the payoff increases, i.e.,

∂πi

∂xit
> 0.

Therefore at the equilibrium following holds for all consumers.

∂πi

∂xit
≤ 0

⇒ φi
t ≤

∂M i
t

∂xit
= B(xit,xt).

As B(xit,xt) differs with xit for each consumer, it constraints each consumer’s demand

differently. This is unlike the constraint φi
t ≤ A(xt) which has the same value for

A(xt), thus constraining all consumers similarly. Thus any consumer, irrespective of

other’s rate of revenue, will be able to procure a non-zero amount of energy as long

as its rate of revenue is larger than B(0,xt) which is equal to C ′(0).
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CHAPTER IV

CONCLUSION

In this thesis we formulated noncooperative games among the consumers of Smart

Grid with two real-time pricing schemes to derive autonomous load balancing schemes.

The first pricing scheme charges consumers a price that is equal to the average cost

of electricity borne by the retailer and the second one charges consumers an amount

determined by increasing-block pricing, which applies the same marginal cost function

to all consumers. Two revenue models were considered for each of the pricing schemes

and we investigated consumers’ demand at the Nash equilibrium operation points for

their uniqueness and load balancing properties. For the zero revenue model, we

showed that when consumers are interested only in the minimization of electricity

costs the Nash equilibrium point is unique over both the pricing schemes and leads

to similar electricity loading patterns in either case. For the constant revenue rate

model, we showed existence of Nash equilibrium for both the pricing schemes and

showed the uniqueness results for the average cost based pricing scheme. Under the

zero revenue model, consumers get a protection from an arbitrary increase in their

payments with the increasing-block pricing scheme but not with the average cost

based pricing. This is due to existence of an upper bound on the payment that the

consumers maybe expected to make within the former scheme that is not present

in the latter. Under the constant rate revenue model, consumers who enjoy the

maximum rate of revenue may drive the prices up with the average cost based pricing

till only they can profitably buy electricity, an issue that is not faced by the consumers

with lower rate of revenue in the increasing-block pricing scheme.

We demonstrated the relationship between the load balancing games and the

atomic splittable flow games from the computer networking community. We showed
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that the proposed noncooperative game formulation is related to the atomic splittable

flow game over a two node network with parallel links, and used some of the results

for atomic flow games to prove the properties of the load balancing games.
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