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ABSTRACT 

 

Analysis and Design of a Test Apparatus for Resolving Near-field Effects Associated 

With Using a Coarse Sun Sensor as Part of a 6-DOF Solution. (August 2010) 

Devin Aldin Stancliffe, B.S., Texas A&M University;  

B.S., Brigham Young University 

Chair of Advisory Committee: Dr. Helen L. Reed 

 

 Though the Aerospace industry is moving towards small satellites and smaller 

sensor technologies, sensors used for close-proximity operations are generally cost (and 

often size and power) prohibitive for University-class satellites.  Given the need for low-

cost, low-mass solutions for close-proximity relative navigation sensors, this research 

analyzed the expected errors due to near-field effects using a coarse sun sensor as part of 

a 6-degree-of-freedom (6-dof) solution.  To characterize these near-field effects, a test 

bed (Characterization Test Apparatus or CTA) was proposed, its design presented, and 

the design stage uncertainty analysis of the CTA performed.  A candidate coarse sun 

sensor (NorthStarTM) was chosen for testing, and a mathematical model of the sensor’s 

functionality was derived.  Using a Gaussian Least Squares Differential Correction 

(GLSDC) algorithm, the model parameters were estimated and a comparison between 

simulated NorthStarTM measurements and model estimates was performed.  Results 

indicate the CTA is capable of resolving the near-field errors.  Additionally, this research 

found no apparent show stoppers for using coarse sun sensors for 6-dof solutions. 
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CHAPTER I 

INTRODUCTION AND 

MOTIVATION 

 

As advancements in miniaturization in recent decades have decreased the size of 

electronics and sensor systems, there has been a push in the Aerospace industry to move 

towards smaller satellites capable of meeting a wide range of mission requirements and 

objectives for a lower cost than larger satellite systems.  Sadin and Davis noted in 1994 

that “exponential advances in performance per kilogram (“capability density”) for 

spacecraft systems” helped generate renewed interest in small satellites [1].  While there 

is no formal definition of what constitutes a “small satellite,” for the purposes of this 

thesis, a small satellite is defined as having a dry mass of less than 1000 kilograms. 

Rendleman, in a conference paper presented at the AIAA Space 2009 conference, argued 

that large satellites are difficult to resource, to baseline, and the programmatic risks are 

difficult if not impossible to control.  Large satellite systems are complex and take a 

relatively long time to build.  Often times requirements and additional payloads are 

added to the program late in the game, which increase the costs of the mission.  As cost 

increases, so does the amount of testing required to assure the customer that the satellite 

will succeed, increasing the cost further [2].  Small satellites, however, have shorter 

development times and cost less to build and launch, reducing the budgetary risks 

associated with the satellite.   

____________ 
This thesis follows the style of Journal of Spacecraft and Rockets. 
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Small satellites are also capable of performing valuable risk reduction missions 

for key sensors and technology demonstrations.  The Engineering Test Satellite-VII 

(ETS-VII) satellites were Japanese satellites built to demonstrate autonomous 

rendezvous and docking (ARD) technologies in anticipation of the development of the 

H-II transfer vehicle (HTV) [3].  The ETS-VII mission consisted of two satellites, a 

chaser and a target.  While the chaser satellite was not a small satellite (mass of 2900 

kg), the target satellite had a mass of only 400 kg.  The mission was a success and 

demonstrated three different ARD technologies [4]. 

Orbital Express was a small satellite pair which successfully demonstrated 

autonomous rendezvous and capture technologies and the ability to perform on-orbit 

servicing of another spacecraft.  The two satellites in the Orbital Express pair (ASTRO 

and NextSat) had dry masses of ~950 kg and ~230 kg, respectively1. 

Another small satellite mission, XSS-11, was required to safely rendezvous a 

micro-satellite (satellite on the order of 100 kg) with multiple derelict space objects [3].  

XSS-11 proved to be hugely successful, and the satellite won the AIAA technical 

achievement award in 20072. 

A subclass of small satellites is the University-class satellite, defined as a self-

contained satellite on-orbit which has an independent means of communications, utilizes 

untrained personnel to perform a significant fraction of the design, fabrication, testing, 

and flight operations, and in which the training of the personnel is at least as important 
                                                
1 See DARPA’s “Fact Sheet: Orbital Express,” 

http://www.darpa.mil/orbitalexpress/pdf/oe_fact_sheet_final.pdf, March 2007 [retrieved June 2010]. 
2 See “AIAA Honors Air Force Research Laboratory/Lockheed Martin Team With 2007 Technical 
Achievement Award,” http://www.lockheedmartin.com/news/press_releases/2007/0919ss_xss11.html, 
September 2007 [retrieved June 2010]. 
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as the nominal spacecraft mission [5].  Small satellites in this class are generally under 

50 kg, and quite often are on the order of 1-3 kg (cubesats).  Due to tight budgetary 

constraints, University-class satellites typically attack current industry challenges in 

innovative ways.  Out of necessity, these satellites often incorporate Commercial-Off-

The-Shelf (COTS) components which have no spaceflight heritage in mission critical 

subsystems, accepting the associated risks in order to push the envelope on small 

satellite performance. 

One current technological challenge in the Aerospace industry is close-proximity 

operations, including ARD.  Technologies utilized in missions such as ETS-VII, Orbtital 

Express, and XSS-11 are cost prohibitive and often too large for University-class 

satellites.  The Laser mapper (LAMP) proposed for XSS-11 had a mass of 

approximately 6 kg and a power consumption of 35 Watts [6], while the Advanced 

Video Guidance System (AVGS) used on Orbital Express had a mass of 9 kg, consumed 

20 Watts of power, and had external dimensions of 30.5 x 25.4 x 17.8 centimeters [7]. 

Several University-class satellites have been designed to tackle portions of the 

close-proximity problem.  FASTRAC, a University of Texas at Austin satellite 

scheduled to launch in summer 20103, consists of a pair of satellites which intend to use 

Global Positioning System (GPS), magnetometers, inertial measurement units (IMUs), 

and a radio crosslink to perform sub-meter level accuracy relative navigation [8].  

Another satellite, named CUSat and built by Cornell University, intends to perform 

autonomous relative navigation using carrier-phase differential GPS with centimeter 

                                                
3 See “Our Project: Overview,” http://fastrac.ae.utexas.edu/our_project/overview.php, [retrieved June 
2010]. 
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accuracy4.  While both of these satellites intend to perform relative navigation 

demonstrations, neither addresses sensors required to perform an ARD mission. 

In order to perform close-proximity operations, and specifically an ARD mission, 

a satellite must be equipped with a sensor/sensor suite which allows the satellite to 

obtain a 6-degree-of-freedom (6-dof) solution for the target satellite.  As mentioned 

previously, current technologies extant in the Aerospace industry are cost (and often 

mass and power) prohibitive for University-class spacecraft.  University-class spacecraft 

often require sensors to be on the order of hundreds or thousands of dollars instead of 

hundreds of thousands of dollars.  Additionally, University-class spacecraft have little 

surface area for solar panels, so sensors which need to be on for long periods of time will 

need to consume very little power. 

Given the need for low-cost, low-mass, low-power solutions for University-class 

6-dof relative attitude solutions, it is desirable to determine if a coarse sun sensor, a 

sensor many spacecraft already employ, can be used as the cornerstone for a 6-dof close-

proximity operations solution.  Coarse sun sensors have been in use for decades for 

attitude determination.  However, a literature search turned up no information on 

whether coarse sun sensors had ever been tested and/or used for determining the position 

and pose of another spacecraft.  If they can be used as the cornerstone for a 6-dof close-

proximity operations solution, however, they would provide a readily available, low-

cost, low-mass, low-power solution for 6-dof relative attitude determination. 

                                                
4 See “About CUSAT,” http://cusat.cornell.edu/, [retrieved June 2010]. 
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Due to the geometry of coarse sun sensors and assumptions made in their design, 

it is expected that error magnitudes in the 6-dof solution will increase as the sensor 

moves closer to the light source.  In support of determining the viability of using a 

coarse sun sensor for 6-dof relative attitude determination, this research will focus on 

analyzing those errors (termed near-field errors) by modeling a coarse sun sensor/light 

source system.  After determining the magnitudes of the expected near-field errors, a 

Characterization Test Apparatus will be proposed and designed which can be used to test 

a coarse sun sensor in order to characterize its near-field errors.  The Characterization 

Test Apparatus will also be designed to accommodate future testing of the sensor.  

Finally, simulations will be run to determine the expected apparatus performance. 
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CHAPTER II 

COARSE SUN SENSOR 

 

 In order to point sensors and other equipment correctly, a spacecraft must be able 

to determine its orientation with respect to some known inertial frame and then have the 

ability to reorient itself to the desired attitude.  Of the many different sensor types 

available, one of the most widely used attitude determination sensor types is the sun 

sensor [9].  Several of the factors driving the popularity of sun sensors are outlined in 

reference [9], including the angular radius of the Sun being nearly orbit independent and 

small enough to allow it to be modeled as a point source (simplifying the sensor design 

and attitude determination algorithms).  Additionally, many missions need to be able to 

either point solar panels to the Sun or keep other sensors pointed away from the Sun 

(e.g. star trackers) or a combination of both.  In these cases, the spacecraft is already 

required to know the location of the Sun to some specified accuracy in order to 

determine the proper orientation of the spacecraft to meet pointing requirements. 

While the many different applications have led to various types of Sun sensors, 

each different sensor can be grouped into one of three categories: analog sensors, Sun 

presence sensors, and digital sensors [9].  Analog sensors are those whose output signals 

are continuous and are functions of the Sun angle.  Sun presence sensors, as their name 

suggests, provide a signal whenever the Sun is within their field of view (FOV), but no 

signal otherwise.  Digital sensors have outputs which are functions of the Sun angle, but 
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in contrast to the analog sensors, digital sensors provide discrete outputs.  This thesis 

will focus on analog sensors, and specifically cosine-type analog sensors. 

 

Cosine-type Analog Sensor Functionality  

 
One common type of analog sensor is the cosine-type, which derives its name 

from its method of operation.  Analog sensors of this type generate vectors to the Sun 

based on the “sinusoidal variation of the output current of a silicon solar cell” due to Sun 

angle (see Figure 1) [9].  The energy flux through the solar cell (photovoltaic cell or PV 

cell) is only dependent on the component of the incident light which is normal to the PV 

cell.  The energy per area (which generates a voltage and current) on the PV cell is 

therefore proportional to the cosine of the angle of incidence of the incoming light.   

 

 

 Figure 1 Cosine-type analog sensor.  

 
 

The analog sensor shown in Figure 1 is only able to give one angle to the Sun.  If 

the PV cell were rotated around its unit normal ( n̂ ) by any angle, the angle   will not 
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change and therefore the voltage and current generated by the incoming light will not 

change.  Additionally, the field of view of the sensor is limited to only that light which is 

in front of the PV cell (i.e. 90   ).  This simple analog sensor can be improved upon, 

however, by using it in conjunction with one or more additional PV cells.   

Figure 2 depicts two cosine-type analog sensors with unit normals 1n̂ and 2n̂ each 

rotated from a generic axis X by an angle  as shown.  This two cell system has a 

boresight vector as shown, and the Sun is at some angle off of boresight. 

 

Figure 2 Two simple analog sensors used in conjunction. 

 
The incoming sunlight will generate voltages and currents on the two PV cells 

proportional to the angle of incidence of the light with respect to the unit normals of the 

PV cells.  By differencing the two voltages (or currents), and because the geometry of 

the two cell system is known, it is possible to determine where the Sun lies along the X-



 9 

axis.  Notice that as the Sun moves toward the boresight, the angle of incidence of 

incoming light becomes the same for the two cells and the voltage generated on each PV 

cell becomes the same.  When the Sun is at the system boresight, the voltages will cancel 

when differenced, and the result will be a zero value for the Sun along the X-axis.  As 

the Sun moves to the “right,” the voltage on the first panel will increase (as the light 

becomes more parallel with 1n̂ ) even as the voltage on the second panel decreases (the 

light becomes more orthogonal with 2n̂ ). 

Conceptually extending the two PV cell system to a four PV cell system becomes 

trivial, though the implementation of such a system is not.  Imagine the X-axis and the 

boresight vector in Figure 2 are part of a triad whose third member, the Y-axis, is 

generated by the right-hand rule (i.e. into the page).  Imagine that the Y-axis also has a 

two PV cell system oriented such that the four cells create a pyramid of PV cells.  Light 

from the Sun illuminates the PV cells located on of each of the four sides of the pyramid 

at some angle of incidence, causing a signal (e.g. voltage or current) to be generated at 

each cell based on the angle of incidence.  By simply differencing the signals from the 

PV cells on opposite faces of the pyramid, a coarse direction to the sun is obtained.  For 

pyramidal Sun sensors, however, simply differencing the voltages (i.e. 1 2X V V  ) only 

works well when the Sun is near the boresight of the sensor.  This is because the 

voltages on the X-axis pair of PV cells depend on where the Sun is located along the Y-

axis (and vice versa).  
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Figure 3 Plot of voltage output of cells on X-axis with respect to Sun angle boresight in the X and Y 

directions (X = V1-V2 case). 

 
Figure 3 shows the how the X-axis PV cell voltages depend on where the Sun is 

located on the Y-axis.  Close to the sensor boresight, the graph is flat and there is very 

little dependence on Y.  For a CSS, which is only trying to hold the Sun on its boresight, 

performing this simple differencing appears to work well.  Outside of the narrow region 

around the boresight, however, the X output definitely depends on the location of the 

Sun in the Y-direction. 

 If the X distance is scaled by the sum of V1 and V2, however, the Y-location 

dependence is removed.  
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Figure 4 Plot of voltage output of cells on X-axis with respect to Sun angle off boresight in the X and 

Y directions (X = (V1-V2)/(V1+V2) case). 

 
From Figure 4, it can be seen that by scaling the X output by the sum of the two 

voltages, the dependence on the Y location of the light source has been removed. 

These pyramidal-type Sun sensors can be categorized as Coarse Sun Sensors 

(CSS) because the resolution of these sensors tends to be on the order of degrees [9]. 

 

Near-field Error Sources for Sun Sensors 

 
As mentioned previously, Sun sensors are designed specifically to take advantage 

of the fact that the Sun is a bright object far away from the Earth which can be modeled 

as a point-source.  Under these assumptions, light rays from the Sun are parallel when 

they reach the Sun sensor as it orbits the Earth attached to a spacecraft.  Additionally, the 
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light from the Sun has the same intensity when it reaches the four PV cells on a 

pyramidal CSS, so the voltage and/or current the light is capable of generating is the 

same for each PV cell. 

However, if a CSS is to be used for close-proximity operations, its light source 

will not be one astronomical unit away but only feet or meters away.  The question then 

becomes at what distance do the assumptions made for Sun sensors break down when 

using a CSS for close-proximity operations?  As the light source approaches the CSS, 

errors (due to the physical geometry of the sensor) in determining the direction to the 

light source begin to accumulate and at some point become larger than the errors due to 

the sensor noise.  To work as a close-proximity sensor, the CSS must be able to provide 

a vector pointing from the CSS to the light source with some uncertainty bound on the 

accuracy of the vector.  Without any knowledge of how the errors in the vector from the 

CSS to the target change with respect to distance, it is impossible to attach a meaningful 

covariance to the measurements taken by the CSS. 

This thesis defines the near-field as the region in which the errors due to physical 

geometry are greater than errors due to sensor noise.  In the near-field, the assumptions 

which hold for Sun sensing are no longer valid, and the cost of breaking those 

assumptions (far-field assumptions) needs to be determined in order to use CSSs for 

close-proximity operations. 

To begin determining the cost associated with breaking the far-field assumptions, 

a literature search was conducted to see what has already been done.  The literature 

search turned up very little information on cosine-type CSSs in the public domain, and 
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nothing about any near-field effects.  There are a number of companies that manufacture 

coarse sun sensors of this type5,6, but their designs are proprietary and they have not 

published on possible near-field errors.  One general description of how a specific CSS 

works can be found at the European Space Agency’s website
7, but again, not any 

information about errors occurring in the near-field.  As Sun sensors are a well-

established technology, perhaps the information on near-field errors is included in 

reports from the mid-20th century which the author is unable to obtain.  With no previous 

research available, mathematical models based on the geometry of the sensor were 

developed to obtain estimates for the magnitudes of the various near-field errors.   

The baseline for comparing the near-field errors is the nominal model which 

assumes the light source is a point-source located at infinity.  Additionally, the model is 

developed in two dimensions.  The geometry for the baseline model is shown in Figure 

5. 

                                                
5 See “Coarse Sun Sensor,” 

http://www.aeroastro.com/pdfs/Coarse%20Sun%20Sensor%20Apr2010%20WEB.pdf, [retrieved June 
2010]. 
6 See “Coarse Sun Sensor (cosine-type),” http://adcole.com/css-pyramid.html, [retrieved June 2010]. 
7 See “TNO Coarse Sun Sensor using European cells,” 

http://telecom.esa.int/telecom/www/object/index.cfm?fobjectid=28404, 16 Dec. 2009 [retrieved June 
2010]. 
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Figure 5 Baseline 2-D pyramid CSS model geometry 

 
The incoming light makes an angle  with respect to the boresight vector, and the 

voltage on each of the two PV cells can be described as a dot product of the incoming 

light vector and the unit normal to the PV cell.  Writing the vector from the PV cells to 

the light source as 

 inf

sinˆ
cos





 
  
 

b  (1) 

 and the unit normal vectors as 
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the “voltage” on the two PV cells can be expressed as 

 
1 1 inf

2 2 inf

ˆˆ sin sin cos cos

ˆˆ sin sin cos cos

V

V

   

   

  

   





n b

n b

 (3) 

Note that V1 and V2 are not actual voltages.  However, since the actual PV cell voltage is 

proportional to the dot product of the incoming light vector and the PV cell normal 

vector, this thesis uses the term “voltage” as referring to V1 and V2. 

The light source’s orthogonal distance from boresight (Xinf, see Figure 6) is 

obtained by differencing the voltages V1 and V2 and then scaling that value by the sum 

of V1 and V2 in order to non-dimensionalize the X distance.  Additionally, scaling the 

differenced voltages by the sum of V1 and V2 removes the Y dependence in the X 

direction.   The equation for Xinf is written as 

 1 2
inf

1 2

V V
X

V V





 (4) 
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Figure 6 Orthogonal distance to light source from boresight. 

 
The parameter H in Figure 6 represents a scale height between the X-Y plane of 

the CSS as shown in the figure and the plane in which the light source lies.  H is 

assumed to be a constant parameter for each individual sensor.  If Xinf is known at a 

specified angle , then the value for H can be determined using 

 
 
inf

tan

X
H


  (5) 

For the remainder of this work, an angle of 30° is assumed for the angle .    

Note in general that where equation (4) is true and with some given angle , the 

maximum angle off boresight is [-,+] which satisfies the relationship tan cot  .  A 

plot of Xinf which assumes  is in the range [-60°, 60°] is shown in Figure 7. 
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Figure 7 Values of Xinf from -60° to 60° for  = 30° 

 
Notice that the model is fairly linear up to approximately 40° off boresight, but 

then becomes more nonlinear.  Also, by non-dimensionalizing the distance Xinf, it now 

lies on the interval [-1, 1].  The value for inf can be determined by taking the inverse 

tangent of the distance (Xinf) and the scale height H (assumed to be one in Figure 7). 

 1 inf
inf tan

X

H
   

  
 

 (6) 

With a nominal expression for inf, the angle between the vector to the light 

source and the boresight vector, it is possible to determine the expected errors in inf due 

to near-field effects.   
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Light source not infinitely distant 

As mentioned previously, the CSS measurements will contain errors due to 

nonlinear effects which are present in the near-field but negligible in the far-field.  The 

first of these effects discussed herein deals with the assumption that the light source 

(Sun) is infinitely far away from the sensor, so the incoming light rays are parallel.  

When using the CSS as a close-proximity sensor, the light source (beacon) is a finite 

distance from the CSS.  As the distance between the beacon and the sensor decreases, 

the infinitely distant light assumption will break down because the incoming light rays 

are no longer parallel.  As illustrated in Figure 8, the angle between the vectors pointing 

from the beacon(s) to the PV cells will cease being small as the beacon approaches the 

sensor.  As the angle between the vectors opens up, the incoming light can no longer be 

assumed parallel. 
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Figure 8 The nominal model assumes that δ is infinitely small.  As the beacon gets closer to the 

CSS, the angle opens up and the small angle assumption is no longer valid. 

 
Vectors from the two PV cells to the beacon were then calculated in two different 

ways.  The first set of vectors assumed the beacon was infinitely far away (equations (1) 

– (6)).  With this assumption, the incoming light rays are parallel and will make the same 

angle with the PV cells no matter how the two cells are placed on the X-Y plane as long 

as they are not rotated.  To better illustrate this, review Figure 9. 
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Figure 9 Light rays striking the photovoltaic cells from a source infinitely far away are parallel and 

therefore make the same angle with the cells whether the cells are fixed in their proper place or 

virtually moved such that they overlap. 

 
 One result of being able to slide the panels containing the PV cells is that when 

calculating the unit vector from the beacon to the panels, it can be assumed that the two 

PV cells are in the same location.  Making this assumption means a single unit vector 

can be used to point to both panels.  This assumption is valid because in the limit as the 

beacon moves to infinity, the distance between the two panels is effectively zero. 

The second set of vectors from the PV cells to the beacon assumes correctly that 

the beacon is a finite distance away from the cells.  Creating these vectors then includes 

taking the infinitely distant light source vector (binf) and subtracting the vector from the 

origin to the PV cells.  This is represented in Figure 10. 
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Figure 10 Illustration of the creation of the two vectors b1 and b2 required to analyze near-field 

effects.  The short bold lines represent PV cells. 

 
 The equations to calculate the required vectors b1 and b2 are given in (7).  

 
1 inf 1

2 inf 2

 

 

b b d

b b d

 (7) 

where d1 and d2 are vectors representing the offset between the origin of the CSS (blue 

circle on X or Y axis) and the centers of the two PV cells.   

The vectors b1 and b2 shown in Figure 10 actually represent “average” vectors to 

the light source.  PV cells have a finite area, and each infinitesimal portion of that area 

generates voltage based on the angle of incidence of the incoming light with respect to 

the infinitesimal area.  Looking at Figure 10, the voltage generated by the light at each 
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location down the PV cell will be different because the incidence angles will be slightly 

different.  This is illustrated in Figure 11.  The vector from the top of PV cell 1 to the 

beacon (vector b11) is different from the vector from the bottom of PV cell 1 to the 

beacon (vector b1f).  As the distance between the PV cell and the beacon becomes large 

compared to the length (L) of the PV cell, the two vectors (b11 and b1f) become the same. 

 

Figure 11 Illustration of how the angle of incidence changes over the length (L) of each PV cell. 

 
The PV cells, however, do not output voltages at each infinitesimal area.  Instead, 

they will only output a voltage which is the average of all the voltages generated at each 
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infinitesimal area.  The vectors b1 and b2 from Figure 10 represent the vectors from the 

PV cell centers to the beacon which, when dotted with the unit normal of the PV cell, 

will generate the average voltage.  The PV cell centers were chosen based on an analysis 

shown in Appendix, which indicates that average voltage output is effectively located at 

the center of the PV cells.  For all the near-field errors discussed in this thesis (close-

proximity, intensity variations, and non-uniform light sources), the vector from the PV 

cell to the beacon will originate at the center of the PV cell, and the PV cell will be 

treated as a point. 

 Notice that the vectors b1 and b2 (in Figure 10) are not unit vectors, but have 

some length.  The sensor diameter introduced in Figure 12 is a parameter used for non-

dimensionalizing the vectors b1 and b2, and it is defined as the distance between the 

centers of the PV cells on an axis.  By non-dimensionalizing the vectors to the beacon by 

the sensor diameter, the results from this analysis will be able to scale to many different 

coarse sun sensors. This non-dimensionalization holds for any value of  (see Figure 

13).  For the remainder of this chapter, all vectors of length are divided by the sensor 

diameter.  

In order to compare the vectors b1 and b2 to the infinite case, equations (7) need 

to be normalized.  Normalizing equations (7) results in  

 

1 inf 1
1

1 inf 1

2 inf 2
2

2 inf 2

ˆ

ˆ











b b d
b =

b b d

b b d
b =

b b d

 (8) 
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As with the baseline model, incoming light striking the two PV cells will 

generate a voltage in each that is dependent on the incidence angle of the light (with 

respect to the normal to each PV cell). 

 

Figure 12 Unit vectors to the light source and PV cell normal vectors.  The short, bold lines 

represent PV cells.  The sensor diameter is the distance between the origins of the unit vectors to the 

light source. 

 
The vectors ˆ

1n and ˆ
2n  again represent the unit normals to PV cell 1 and PV cell 

2, respectively.  Writing equations for the voltages generated by the incoming light on 

both PV cells yields equations (9), where the subscript “cp” stands for close-proximity.  

 
1, 1 1

2, 2 2

ˆˆ

ˆˆ

cp

cp

V

V









n b

n b

 (9) 

The voltages generated by the incoming light are then converted into an X 

distance in the same manner as in the baseline case, namely: 
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 1, 2,

1, 2,

cp cp

cp

cp cp

V V
X

V V





 (10) 

As in equation (6), the angle cp can be found by taking the inverse tangent of Xcp 

and the scale height H. 

 1tan
cp

cp

X

H
   

  
 

 (11) 

The error in the angle due to proximity effects can then be written as 

 inf cp     (12) 

where  is as shown in Figure 13. 

 

Figure 13 Error in angle due to proximity effects. 

 
In order to quantify the expected errors in angle () due to proximity effects, the 

problem was modeled two dimensionally in MATLAB.  The model assumed a single 

beacon placed about three sensor diameters from the CSS, but offset from the boresight 
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by a specified angle (i.e. fixed inf).  The beacon was then brought in along the line of 

constant inf and the error in the angle was plotted, with results shown in Figure 14.  

Using the listed value of the European coarse sun sensor8 as an order of magnitude check 

on expected errors due to sensor noise, it is assumed that there will be approximately 

0.1° error due to the sensor itself.  Note that the approximate error referenced is for a 

CSS which does not account for near-field effects.  How the noise of the sensor changes 

when the light source is in the near-field is unknown and is only assumed to be constant. 

  Figure 14 shows the errors in the angle  due to proximity effects.  Around 70 

sensor diameters, the errors due to proximity effects (when  equals six degrees) are of 

the same order as the expected errors due to noise. These errors are sensitive to changes 

in the angle , with the errors increasing with increasing  and decreasing as  

decreases. Figure 15 shows a close-up view of Figure 14 with the X-axis being cut at 

350 sensor diameters. 

                                                
8 See “TNO Coarse Sun Sensor using European cells,” 

http://telecom.esa.int/telecom/www/object/index.cfm?fobjectid=28404, 16 Dec. 2009 [retrieved June 
2010]. 
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Figure 14 Error in  () due to beacon proximity plotted as a function of sensor diameter. 
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Figure 15 Close-up view of the errors in the angle due to proximity effects at  = 30°. 

 
Notice that as the light source moves away from the sensor (towards infinity), the 

errors asymptotically approach zero.  However, as the light approaches the sensor, the 

errors asymptotically approach infinity.  Between fifty and one hundred sensor diameters 

separation distance, the errors begin to increase rapidly, continuing to accelerate towards 

infinity with each inward step.   

For close-proximity operations in which the two spacecraft maintain a separation 

of greater than 100 sensor diameters or so (depending on the actual sensor noise), errors 

in the estimated line of sight vector from the CSS to the beacon may not be affected by 

the proximity of the beacon to the CSS; those errors may be lost in the noise of the 
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sensor.  However, in an ARD mission for which the goal is a successful docking 

maneuver, the errors in the estimated line of sight vector become significant as the 

spacecraft approach each other. 

Errors due to intensity variations    

Another assumption inherent in a CSS model is the light incident on all the PV 

cells has the same intensity, meaning it has the same voltage generation potential.  Light 

intensity (with units of energy per area) follows an inverse square law, with the intensity 

falling off as the inverse of the distance squared.  At great distances, the denominator is 

changed very little when account is taken of the fact the PV cells are located some 

distance apart.  In a CSS, the distance from the light source (Sun) to the CSS is on the 

order of one astronomical unit, so adding or subtracting the PV cell separation distance 

is insignificant.   

However, as the light source approaches the sensor, the PV cell separation 

distance becomes more significant.  The X distances are computed based on a 

differencing of voltages on PV cells opposite each other.  Differing intensities on each of 

those PV cells would cause a difference in the voltage generated in each independent of 

the proximity of the sensor to the beacon.  This difference in voltage due to intensity 

differences would generate an inaccurate X distance and therefore an error in the angle 

().   

Referring to Figure 10, it is possible to write 
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where r1 and r2 are the magnitudes of the distance between the sensor and the beacon.  

Using (13) and assuming the beacon radiates in a uniform manner, the intensity at each 

PV cell can be written as 

 

0
1 2

1

0
2 2

2

P
I

r

P
I

r





 (14) 

where P0 is the initial power output at the beacon.  The voltages on the PV cells are 

calculated as in equations (3), and the intensity values from (14) are used to scale the 

result to make XI. 

 1 1 2 2

1 1 2 2

I

I V I V
X

I V I V





 (15) 

Notice that because P0 appears in each term, it can be cancelled so that the X distance 

does not depend on the initial power output at the beacon, only on the relative intensities 

at the PV cells.  Also notice that when I1 equals I2, the intensities will all cancel and 

equation (15) simplifies to equation (4). 

An illustration of the near-field errors in angle () due to intensity is shown in 

Figure 16.  Similar to the near-field errors caused by proximity, the near-field errors in 

angle due to intensity () can be written as 

 inf I     (16) 
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Figure 16 Illustration of errors in angle () due to differences in intensity. 

 
To quantify the magnitude of the expected errors in angle due to differences in 

intensity, a model similar to the one created for the proximity effects was generated in 

Matlab, with a beacon again being placed at three sensor diameters and moved outwards 

from the sensor.  The results of this simulation are shown in Figure 17. 
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Figure 17 Errors in angle () due to differences in intensity at the PV cells plotted to 350 sensor 

diameters. 

 
The results are similar to those for the errors in angle due to proximity.  The 

errors are somewhat larger, with errors greater than the expected noise for all  at around 

100 sensor diameters.  The effect becomes more pronounced as the beacon moves in 

closer to the sensor, with the errors beginning to change rapidly starting between ten and 

twenty inches and moving inward. 

Errors due to a non-uniform light source 

Using a CSS for a close-proximity sensor necessitates the selection of a light 

source to act as a beacon for the sensor to locate.  In the previous section, the light 

source selected was assumed to be a uniform light source, radiating the same in all 
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directions.  In reality, the light source will have some amount of directionality which 

makes the intensity of the incoming light to the CSS not only a function of distance, but 

also a function of direction from the boresight of the light source.  Figure 18 illustrates 

the manner in which beacon orientation and radiant intensity profile affect the intensity 

at the CSS.  The dashed lines represent the radiant intensity profile (i.e. the 

directionality) of the beacon. 

 

 

Figure 18 The intensity of the light at the PV cells depends on the beacon's radiant intensity profile 

and orientation. 

 
Notice that in Figure 18a, the beacon is oriented parallel to the sensor’s XY 

plane.  The light vector to the left PV cell begins its journey with less intensity than the 

vector to the right PV cell due only to the orientation of the beacon.  Due to the 

directionality of the beacon, the PV cell on the left will generate less voltage than it 

would generate if the beacon had a uniform light distribution.  Upon differencing the two 
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sides of the sensor, the net effect will be the sensor predicting the beacon is farther to the 

right than it actually is.   

Figure 18b shows the beacon in the same location as before, but now it is 

oriented differently.  The vectors to the two PV cells pass through portions of the radiant 

intensity profile that are approximately equal, so the effect of the beacon light 

directionality is minimal.  Note that if the beacon had been rotated a little farther, the 

beacon would be oriented such that the sensor would think the beacon was located 

farther to the left than it actually is. 

The effects of these non-uniform errors decrease as the beacon radiant intensity 

profile becomes more uniform, i.e. when the slope of the profile does not change quickly 

with angle off boresight.  To illustrate this point, replace the beacons in Figure 18 with 

beacons with a more evenly distributed intensity profile (see Figure 19). 

 

 

Figure 19 Less directional beacons decrease the magnitude of the errors associated with using a non-

uniform light source. 
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Errors caused by the light source being non-uniform, unlike the other two near-

field error sources, depend on the orientation of the beacon and its radiant intensity 

profile.  While these facts make the errors application specific, a specific geometry will 

be assumed in order to obtain an estimate for the expected magnitude of this effect.  The 

following assumes the use of the Vishay® VSML3710 LED [10] as the light source.  

This Light Emitting Diode (LED) has a half-intensity angle of 60°.  

In order to obtain an expression for the relative radiant intensity of the beacon 

with respect to the angle off boresight, values for the relative intensity versus angle were 

obtained from the component datasheet and plotted in Microsoft Excel.  The data points 

were then fit with a quartic polynomial using Excel’s built-in trend line tool.  The result 

is shown in Figure 20.  The equation for the quartic polynomial which fit the data points 

is  

        7 4 6 3 5 2 34 10 4 10 5 10 1 10 1i i i i ic                  (17) 

where ci is the relative radiant intensity and i is the angle off the LED boresight. 
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Figure 20 VSML3710 relative radiant intensity profile.  The points were taken from the VSML3710 

datasheet. 

 
The VSML3710 has a symmetric radiant intensity profile, so only half of the 

distribution was plotted in Figure 20.  Additionally, the plot displays the relative radiant 

intensity with respect to the angle off the LED’s boresight.  All of the intensity values, 

therefore, have been normalized by the maximum intensity (along the boresight of the 

component). 

In order to isolate the errors caused by the non-uniform beacon, effects due to 

beacon proximity and uniform light source intensity need to be removed.  Begin with 

equation (4) 
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and introduce an intensity as if the light source was at infinity. 
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where binf is defined in Figure 10.  Equation (4) is thus modified as 

 inf 1 inf 2

inf 1 inf 2
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I V I V
X

I V I V





 (19) 

Without any additional manipulation, equation (19) is identical to equation (4).  

However, there are no terms in equation (19) which depend on the radiant intensity 

profile of the beacon.  In order to determine what these terms are, assume the beacon is 

parallel with the sensor XY plane as in Figure 19a.  The relative intensity of each vector 

depends on the angle from the beacon boresight to the vector (Figure 21). 
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Figure 21 Angle from beacon boresight. 

 
    By substituting the angles (1 and 2) into the quartic polynomial obtained 

from fitting the VSML3710 relative radiant intensity profile (see equation (17)), scaling 

factors (c1 and c2) dependent on the angle from boresight are obtained.  Augmenting 

equation (19) with these scaling factors allows the equation to be written as 

 1 inf 1 2 inf 2

1 inf 1 2 inf 2

non

c I V c I V
X

c I V c I V





 (20) 

As with the previous near-field errors, the error in the angle () due to the 

beacon being a non-uniform source can be found by solving the equation  

 inf non     (21) 

where 
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The magnitude of this error is plotted below in Figure 22. 

 

Figure 22 Errors in angle () due to the light source being a non-uniform emitter with 60° half-

intensity angle. 

 
The magnitudes of the errors shown in Figure 22 are on the order of 1.75-2.5 

times less than the error in angle () due to proximity and 2.5-4 times smaller than the 

error in angle () due to differences in intensity for a uniform light source. 

The three near-field errors discussed in this thesis were formulated in such a way 

that they are additive.  Combining the three near-field errors yields total expected error 

magnitudes shown in Figure 23. 
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Figure 23 Combined errors in angle () due to all three near-field effects,  = 30°. 

 
When all three near-field effects are added and plotted together, the magnitudes 

of the errors are greater than the expected noise for all cases by approximately 210 

sensor diameters.  A close-up of Figure 23 is shown in Figure 24. 



 41 

 

Figure 24 Close-up of the magnitudes of the three near-field effects combined. 

 

Near-field Error Analysis 

 
It is clear from Figure 24 that the expected errors in the near-field are greater 

than the expected noise level for a CSS by the time the beacon is located approximately 

210 sensor diameters from the sensor. Additionally, the errors begin to change in 

magnitude rapidly by the time the beacon is separated from the sensor by approximately 

twenty inches.  For an ARD mission in which one chaser spacecraft is coming in to dock 

with a target spacecraft, it will be important to accurately account for the near-field 

errors, especially in the final approach maneuver when the docking mechanism is being 

aligned and engaged.  A failed relative attitude solution at that short range could have 

catastrophic effects for mission success. 
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Fortunately, the proximity and uniform intensity errors are additive and have 

errors in the angles that lead to the target seeming closer than it really is.  The non-

uniform light source errors can be additive or not depending on the orientation of the 

beacon, but they have the smallest magnitudes and will therefore never make the 

estimate of the target’s position farther than it really is.  If the algorithm used to estimate 

the target’s position yields a solution, the solution will err on the side of caution. 

The errors in the angle () due to near-field effects are not large enough to 

negate the use of a CSS for proximity operations.  For many applications (i.e. inspection 

missions, formation flying, etc), the chaser and target spacecraft do not have to dock and 

may never get close enough to each other for near-field errors to matter.   

 

Characterization Test Apparatus (CTA) 

 
In order to utilize a CSS for close-proximity relative navigational solutions 

during docking operations, the magnitude of the total error as the chaser approaches the 

target must be determined and accounted for, especially as the errors are changing 

rapidly.  In order to determine what these errors truly are and validate the analysis above, 

a test bed capable of accurately moving beacons (or conversely a CSS) to known 

positions over these critical dimensions is required.   

This thesis proposes a Characterization Test Apparatus (CTA) composed of two 

one-quarter inch aluminum plates separated from each other by four threaded steel rods, 

nuts, and washers (Figure 25).  On the bottom aluminum plate is mounted a CSS in a 

known position.  The top aluminum plate has an array of beacons mounted in known 

positions.  The top aluminum plate can be adjusted up and down using four nuts (one on 
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each steel rod).  The CSS and the array will be connected via serial cables to a CPU 

running Matlab. 

 

 

Figure 25 CTA illustration, not to scale. 

 
The maximum separation distance between the two plates depends on the length 

of the steel rods, but the plate with the beacon array is able to move through the entire 

range of distances from zero inches out to the maximum allowed by the steel rods.  A 

more detailed description of the CTA design is presented in Chapter IV.   

In order to probe the magnitudes of the near-field errors, the location of each 

beacon with respect to the CSS must have an uncertainty small enough that the error in 
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the angle () due to this CTA uncertainty is small compared to the error due to the near-

field effects.  Several uncertainty contours are plotted against the total error due to all 

near-field effects (Figure 23) in order to get a feel for how accurately the CTA 

uncertainty must be known.  The uncertainty contours were calculated assuming the 

uncertainties were in the direction causing the maximum possible error in the angle (i.e. 

orthogonal to the vector, see Figure 26).  The result is shown in Figure 27. 

 

 

Figure 26 Uncertainty contours calculated assuming all the uncertainty is orthogonal to the true 

vector. 
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Figure 27 CTA uncertainty contours plotted with near-field effects. 

 
All of the uncertainties in Figure 27 are less than the error due to the near-field 

effects when the beacon is off boresight by 6°.  However, the CTA’s ability to resolve 

the near-field effects increase as the ratio between the magnitude of the near-field effects 

and the uncertainty due to the CTA increases.  This means that the smaller the 

uncertainty in the angle due to the CTA, the better the near-field effects can be resolved.  

Obviously, the closer to zero uncertainty the CTA is, the better the resolution.  However, 

at some point it becomes cost prohibitive to reduce the uncertainty any farther.  During 

the design of the CTA, it is desired to keep the uncertainties due to the CTA itself at 

least one order of magnitude less than the near-field effects.  
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CHAPTER III 

NORTHSTAR     SENSOR 

 

Having proposed a test bed for use in quantifying the near-field errors associated 

with using a CSS in close-proximity, it is necessary to select a sensor for testing in the 

CTA.  The NorthStarTM sensor was chosen for the following reasons:  

1. Cost and Availability – The NorthStarTM sensor is manufactured and distributed 

by Evolution Robotics, and AggieSat Lab already has access to a NorthStarTM 

sensor development kit.  Additional units are available (at low cost) by 

purchasing the Rovio robots and then removing the NorthStarTM sensor.   

2. Mass, volume, and power – Due to strict mass and volume constraints placed on 

small satellites (which are usually launched as secondary payloads), components 

must be low mass and low volume in order to maximize the resources remaining 

on the satellite to perform meaningful science and/or technology demonstrations.  

Additionally, low volume for a spacecraft typically translates to less surface area 

available for solar panels, constraining small satellite components to being 

generally low power devices.  The NorthStarTM sensor, with advertised 

dimensions of 3cm x 4cm x 1cm [1.2" x 1.6" x 0.4"] and a mass of approximately 

13 grams [11] is an attractive candidate.  Based on measurements performed at 

AggieSat Lab, a combined NorthStarTM sensor/microprocessor combination 

(utilizing the STM32F103ZET6 microprocessor) consistently draws 

approximately 80 milliamps of current at a voltage of 3.3V. 

TM
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3. Designed to provide a three-degree-of-freedom (3-dof) solution – The 

NorthStarTM sensor is currently used in the RovioTM and MintTM robots9 to 

provide a 3-dof solution locating the robot’s position and angle on the floor.  The 

NorthStarTM sensor hardware has already been engineered and tested for use in a 

3-dof localization system.  Choosing the NorthStarTM sensor for use in the CTA 

saves AggieSat Lab time and money in developing its own CSS at the expense of 

having to model a “black box” and use the NorthStarTM sensor’s outputs to 

generate a 6-dof relative attitude solution. 

4. 6-dof localization potential – Researchers at the Land, Air, and Space Robotics 

(LASR) Lab at Texas A&M University performed testing on the NorthStarTM 

sensor to determine its suitability for use as part of a 6-dof localization system 

[12].  They sampled the NorthStarTM measurement noise versus light intensity at 

various angles and distances, then created a model for estimating how well the 

NorthStarTM sensor would perform as a vision-based 6-dof localization system.  

While they conclude that the NorthStarTM sensor promises to be an effective 6-

dof localization system, they note that the NorthStarTM sensor could function as a 

relative position sensor when performing close-proximity operations.   

 
NorthStar    Sensor Overview 

 
The NorthStarTM sensor is a localization technology manufactured and 

distributed by Evolution Robotics®.  The sensor, shown in Figure 28, is packaged inside 

a protective plastic cover that includes an infrared (IR) window and provides some 

                                                
9 See Evolution Robotics webpage, http://www.evolution.com/, [retrieved June 2010]. 

TM
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protection from electrostatic discharge [11].  The NorthStarTM sensor has four 

photovoltaic (PV) cells arranged in a pyramid configuration seen just off-center when 

viewed from above.  These four cells are arranged like a pyramidal coarse sun sensor of 

the cosine-type described in Chapter II. 

 

 

Figure 28 Top view of the NorthStarTM plastic IR cover (left) and the sensor head (right).  

  
  The NorthStarTM sensor was designed for terrestrial use, meaning the 

components used to fabricate the sensor are not required to be proven in a space 

environment.  In order to determine its suitability for use in an ARD demonstration, 

environmental testing on the NorthStarTM sensor would need to be performed to show 

the sensor could withstand launch loads and the space environment (including radiation, 

thermal cycling, vacuum, etc).  An inspection of the top (Figure 28) and bottom (Figure 

29) of the NorthStarTM sensor reveals components which (excluding the PV cells) could 

be potted to protect them from outgassing when exposed to the hard vacuum of space.  



 49 

In the upper right corner on the top side of the sensor is a cylindrical metal canister 

(covered in a staking compound) which must be identified to determine its suitability for 

space (see boxed component in Figure 28).  Additionally, the materials making up the 

plastic casing and IR window will need to be identified and either confirmed as low 

outgassing materials or replaced with some other casing.  There appear, however, to be 

no immediate show-stoppers which negate the NorthStarTM sensor as a potential 

candidate for a space-based close-proximity relative attitude sensor. 

 

 

Figure 29 Bottom of NorthStarTM sensor. 

 
A look at the bottom of the NorthStarTM sensor reveals a Freescale 

Semiconductor 56F8013 digital signal controller as the major component (see boxed 

component in Figure 29).  This part has Digital Signal Processing (DSP) functionality 
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and two 3-channel 12-bit analog-to-digital converters (ADCs) [13] which together (DSP 

and ADCs) would allow the NorthStarTM sensor to take analog measurements from the 

PV cells and convert those to digital signals to be passed from the NorthStarTM sensor.   

Designed to be an IR based 3-dof localization system, the NorthStarTM sensor 

(detector) tracks the position of IR light spots projected onto some surface in the 

environment or directly tracks the position of light sources [11].  The detector is able to 

determine the relative positions of each of the light sources projected onto the plane of 

the detector in the detector coordinate system (a planar coordinate system with the 

detector at the origin).  By assuming that the detector coordinate plane is always oriented 

parallel to the floor, the detector is able to provide a 3-dof solution (X-Y position and an 

angle) which can be used to navigate about the floor.  The NorthStarTM sensor is already 

utilized in this manner by the Rovio robot, which uses the output from the NorthStarTM 

sensor to navigate around a room by viewing light spots on the ceiling. 

The NorthStarTM sensor itself contains PV cells which detect incoming IR light 

modulated at pre-defined frequencies and generate signals which are converted by the 

sensor into an X-Y position locating the light source in the Detector coordinate system 

[11].  Modulating the IR light at known frequencies allows the signal to be more easily 

distinguished from the ambient IR background.  The X and Y values are then returned 

from the NorthStarTM sensor as dimensionless 16-bit signed integers {-32,768 to 

32,768}.  
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CHAPTER IV 

CHARACTERIZATION TEST APPARATUS (CTA) DESIGN 

AND UNCERTAINTY ANALYSIS 

 

As described previously, in order to characterize a CSS (specifically the 

NorthStarTM sensor) in the near-field, a testing apparatus is required complete with 

measurement instruments and an uncertainty analysis.  The following sections will 

describe the engineering of the CTA and present the uncertainty analysis associated with 

the CTA design and choices of measurement instrumentation. 

 

Characterization Test Apparatus Design Requirements 

 
Before designing the CTA, a list of requirements it must satisfy were determined.  

These requirements were derived based on the results from the expected near-field error 

models described in Chapter II, physical dimension constraints based on available lab 

space, and cost constraints.  The requirements and constraints were traded with the 

requirement to obtain meaningful data and the “desirement” that the CTA be re-useable 

for future testing. 

Uncertainty requirements 

In order to probe the errors in angle () due to near-field effects, the beacon 

locations with respect to the NorthStarTM sensor must be known with a relatively small 

uncertainty.  Ideally, the errors due to the uncertainty in the CTA would be in the noise 

so any observed errors will be near-field errors.  Figure 27 showed the uncertainty 
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contours in the apparatus plotted against the expected magnitude of the combined-near-

field errors.  The CTA is required to have a small enough uncertainty that the combined 

near-field effects can be resolved.  

Quasi-continuous adjustment from zero to twenty inches 

As shown in Figure 23, the errors in angle begin to change rapidly at a separation 

distance of approximately twenty inches, and the changes continue to accelerate as the 

beacon gets closer to the sensor.  More measurements and smaller step sizes are required 

to determine the shape of the error plot when the slope begins to change rapidly.  The 

CTA, therefore, is required to have the ability to be adjusted very finely over those 

distances (0-20 inches).   

CTA must fit in the lab 

The physical dimensions of the CTA are constrained to reasonably fit within the 

lab area available for testing.  Due to the large fields of view which CSSs have, the size 

of any array of beacons which tests the entire field of view of such a sensor increases 

dramatically with separation distance.  The NorthStarTM sensor, for example, has a 120° 

field of view (FOV).  An array of beacons would have to cover an approximately nine 

square foot area in order to cover the entire (FOV) at thirty inches separation distance.  

Tradeoffs between beacon array size and FOV coverage are required. 

Cost-effectiveness 

The CTA and any required measurement instruments must be designed, 

fabricated, and/or acquired for less than the limited budget for this project. 
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Autonomy in data collection 

The CTA design must provide some level of autonomy in data collection.  The 

less the user is required to handle the CTA in any way to obtain the data, the fewer 

opportunities for introducing systemic errors (in the form of observer biases) into the 

system.  Additionally, if the data can be taken autonomously, the user does not have to 

be continuously present in order for data collection to continue.  A simple script telling 

the CTA what actions to perform and the order in which to perform those actions may be 

all that is required. 

 

CTA Design 

Aluminum mounting plates and structural members 

As a result of the constraint on the size of the CTA, a compromise between the 

portion of the field of view characterized and the CTA dimensions was required.  

Recalling that the proposed end use of this sensor is to be the keystone in a close-

proximity relative navigation system, two key assumptions were made.  The first is that 

the two spacecraft involved in the close-proximity operations would have some other 

type of system which will allow the two spacecraft to know where the other is when they 

are far apart (e.g. GPS and communications).  In a chaser/target situation where the 

target is stationary and contains the beacons, the chaser is able to orient the face 

containing the NorthStarTM sensor towards the target because the chaser will know 

where the target is located. 

The next assumption is that the chaser spacecraft in the example above will have 

a control law such that it attempts to keep the target on the boresight of the NorthStarTM 
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sensor.  As the chaser approaches the target from far away, there will be a point at which 

the NorthStarTM sensor itself is able to detect the beacons from the target vehicle and 

determine the direction to the target.  While the initial errors in the light vector may be 

large because the beacon signal is weak and/or the beacons are well off boresight, the 

chaser vehicle’s controller will reorient the chaser such that the angle to the beacons is 

close to the boresight of the NorthStarTM sensor, reducing the errors caused by near-field 

effects.  Additionally, as the chaser approaches the target vehicle, the beacon signals will 

get stronger because the intensity of the light reaching the NorthStarTM sensor is 

increasing. 

With these two assumptions, the CTA was limited to a twenty-four inch square 

cross-sectional area available for mounting beacons.  The majority of this area can be 

covered by beacons, and the end result is the NorthStarTM sensor can be characterized for 

up to approximately twenty degrees off of its boresight at thirty inches and its entire 

FOV at around ten inches. 

The mounting plates are aluminum and are one-quarter inch in thickness.  The 

plates include holes for mounting beacon arrays and the NorthStarTM sensor, alignment 

holes to ensure the two plates are aligned properly, and holes for the stainless steel rods 

(refer to Figure 25 for an illustration).  Since the stainless steel rods are threaded, the 

aluminum mounting plates are only limited in their ability to move up and down by the 

length of the rods.  For the CTA, the rods are one-half inch in diameter and thirty-six 

inches long.  The rod diameter provides stability for the top plate and the rod length 

allows the CTA to move the beacons over the required zero to twenty inches. 
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Beacon array design 

The mounting plates have room for a beacon array covering up to four square 

feet of surface area.  Each beacon needs to be located in a known position, however, and 

must also have access to power, a frequency driver (to modulate the light at one of the 

NorthStarTM sensor’s prescribed frequencies), and the ability to turn on and off when 

commanded.  These needs are most easily met by placing the beacons on a printed 

circuit board (PCB) designed to accommodate the power, frequency, and duty cycle 

needs of the beacon.   

A 12x12 inch beacon array was designed using the EAGLE software package, a 

package used for generating electrical schematics and performing PCB layouts.  It was 

decided to create a beacon array which was only one square foot instead of two square 

feet for a couple of reasons.  The first reason was that a two square foot board is larger 

than any standard size and would therefore need to be custom made, increasing the cost 

of the part.  The second reason was because a two square foot PCB is so large, finding a 

PCB fabrication company with tools capable of creating such a board would be difficult.  

However, a one square foot PCB can be handled using standard tools and techniques 

without any custom pricing. 

The decision was made to fabricate multiple one square foot beacon arrays and 

have the capability to mount them such that as much of the two square foot surface area 

as possible was utilized.  The beacon array consists of a ten inch square grid with one 

hundred LEDs serving as beacons (see Table 1, Figure 30, and Figure 31).  In support of 

the ten inch square grid of LEDs, the beacon array contains a microprocessor with 
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enough general input/output pins (GPIO) to control each LED individually.  The GPIO 

pin for each LED is able to toggle a MOSFET connected to the LED in order to turn the 

LED on or off.  Power is supplied to the PCB via an AC adapter which provides 3.3V 

and up to 1.2 amps.  In order to protect the AC adapter from possible shorts, the PCB is 

fused with a one amp fuse. 

 
Table 1 Beacon array major component list.  Part number refers to Figure 30 and Figure 31. 

Number Part Description 

1 DB-9 serial connector Allows communication between the array and a CPU 

2 Fuse 1 Amp rating 

3 Power jack connector Connector for AC adapter 

4 RS-232 converter Transforms TTL level signals to RS-232 signals 

5 STM32F103ZET6 ARM microprocessor 

6 JTAG header Allows embedded programming of the microprocessor 

7 VSML 3710 IR LED beacon 

8 Slide switch Controls the power output of the LED 

9 N-channel MOSFET Switches the LED on and off 
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Figure 30 Beacon array with major components highlighted. 
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Figure 31 Close-up of one of the one-inch cells which make up the 10 x 10 inch grid. 

 
A serial connector allows the user to communicate with the beacon array via a 

serial port on a CPU, making it possible to command the microprocessor to toggle any of 

the beacons on the grid.  The array also contains a JTAG connector which allows the 

microprocessor to be reprogrammed while embedded on the array.  The custom 

embedded software gives the microprocessor the ability to toggle any beacon on the grid 

at one of ten preset NorthStarTM sensor frequencies, allowing multiple frequencies to be 

on the PCB at the same time.  If desired, the microprocessor can also toggle the same 

beacon at multiple frequencies at one time. 



 59 

The beacon array(s) are attached to the mounting plate at five points using #4-40 

standoffs and #4-40 fasteners.  The mounting plate has a hole pattern which allows one 

beacon array to be mounted in the center of the plate or four beacon arrays to be 

mounted in the four quadrants of the plate (see Figure 32 and Figure 33).  The beacon 

arrays are notched on the sides so that when four are mounted on the plate at one time, 

there is space to pass the steel bars through. 

 

 

Figure 32 Single beacon array configuration. 
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Figure 33 Four beacon array configuration. 

 

NorthStarTM sensor board 

The NorthStarTM sensor is not meant to be a stand-alone system [11].  Instead, it 

is meant to provide a 3-dof solution to whatever system into which it is incorporated.  It 

was necessary, therefore, to design another PCB using the EAGLE software package.  

This PCB, dubbed the NorthStarTM sensor board, includes mounting holes for integrating 

a NorthStarTM sensor.  It also contains an ARM microprocessor (STM32F103X8) which 

commands the NorthStarTM sensor, retrieves measurements from the sensor, and is able 

to pass those measurements to a CPU via a serial communications port.  The user is able 
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to send commands to the microprocessor and/or the NorthStarTM sensor over the serial 

communications line, as well.   

Beacon selection 

The NorthStarTM sensor is able to detect IR light modulated at prescribed 

frequencies and has peak sensitivity to light with a wavelength of 950 nm [11].  Five 

candidate LEDs were selected which have peak emittance near 950 nm.  Each of the 

LEDs was then supplied with power and a switching signal set at one of the NorthStarTM 

sensor prescribed frequencies.  The LEDs were fixed closely to each other and then set 

at specified distances from the NorthStarTM sensor, aligned approximately along the 

NorthStarTM sensor boresight as seen in Figure 34. 

 

 

Figure 34 Illustration of LED test setup. 

 
The goal of this test was to select an LED that performed well (i.e. good intensity 

values) over a wide range of distances from the NorthStarTM sensor.  The intensity of the 
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light output by each LED is a function of the forward current through the LED and the 

supply voltage.  The supply voltage was fixed at 3.3V, the nominal supply voltage for 

the selected microprocessor.  Changing the forward current required the selection of 

different resistor values.  Four separate forward current values were studied: ten 

milliamps, twenty milliamps, fifty milliamps, and one hundred milliamps. 

Note that there was no hard requirement on the distance accuracy as this test was 

only supposed to yield an order of magnitude comparison of the different LEDs in order 

to down-select from five LED options to one candidate LED.  The distances were 

measured with a twenty-four inch ruler with one sixteenth inch gradations.  Angle off of 

boresight was determined by eye.   

None of the LEDs worked well for the entire range required by the CTA.  When 

the forward current was small, the intensity dropped off too much out at the upper range 

of the CTA to yield solid measurements.  For larger forward currents, the intensity at the 

outer ranges was good, but the LEDs would saturate the NorthStarTM sensor as they 

moved in closer.  Based on this finding, it was decided to include a switch into the 

beacon design that allowed the user to switch the resistance values (and therefore the 

forward current) depending on the location of the LEDs. 

The VSML3710 LED from Vishay® was selected as the LED for use in the CTA.  

It exhibited good performance over the desired range, but is also scalable for use at 

greater distances if the CTA is ever modified to extend its range.  It is also packaged in a 

PLCC-2 case which is easier to solder than two of the other LEDs in smaller packages.  

Upon down-selecting to the VSML3710, additional tests (not reported) were performed 
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to select two appropriate resistors that would allow the VSML3710 to work over the 

range of interest.  The larger resistor, 1 kΩ, was chosen for distances out to ten inches, 

and the smaller resistor, 360 Ω, was chosen for distances from ten inches out to thirty 

inches. 

 

Uncertainty Analysis 

 
In order to determine the errors in the angle () due to the CTA, it is required to 

perform an uncertainty analysis on the CTA to ascertain the uncertainty in the vectors to 

each of the beacons.  Due to the fact that the manufacturing tolerances on the 

NorthStarTM sensor are unknown, this analysis will determine the uncertainty in the 

vectors going from the center of the bottom surface of the NorthStarTM sensor board to 

each of the beacons.  The vector from the center of the NorthStarTM sensor board (not the 

center of the NorthStarTM sensor head) to the detectors of the NorthStarTM sensor will be 

estimated as described in Chapter V.   

Represent the vectors from the NorthStarTM sensor board to the ith beacon as  
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n X u =  (23) 

where the vector Xi is the ideal vector from the NorthStarTM sensor board to the ith 

beacon and ui is the uncertainty in the ith beacon.  The vectors ni are written in a 

coordinate frame with its origin at the center of the bottom surface of the NorthStarTM 

sensor board and oriented as shown in Figure 35.   
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Figure 35 Coordinate system for determining uncertainties. 

 
The uncertainties in the X, Y, and Z directions will be determined by moving 

from the origin to each beacon and combining the uncertainties along the way.   

Hole placement on NorthStarTM sensor board 

Beginning from the origin of the coordinate system and moving to the hole in the 

top left corner of the NorthStarTM sensor board, the first uncertainty is the uncertainty in 

the location of the mounting hole.  The NorthStarTM sensor board was fabricated by 

Advanced Circuits, who quote a tolerance of ±5 mils for all internal features (including 

holes).  This leads to a maximum uncertainty in the X and Y directions due to 

NorthStarTM sensor board hole tolerances of ±5 mils. 
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NorthStarTM sensor board standoffs 

The NorthStarTM sensor board is attached to the mounting plate via standoffs 

whose heights will be measured prior to insertion into the mounting plate.  The standoffs 

will be measured using calipers whose smallest divisions are 0.001 inches.  The 

uncertainty in the standoffs (Z direction) will then be ±0.5 mils. 

Hole placement on bottom mounting plate 

The holes in the bottom mounting plate in which the standoffs are inserted are 

drilled in a CNC machine and have a specified tolerance of ±5 mils.  The locations of the 

holes in the bottom plate have an uncertainty in the X and Y directions of ±5 mils. 

Standoff mounting holes to beacon array center hole 

The two mounting plates (top and bottom) are clamped together and drilled at the 

same time, so that both plates have the same hole pattern, and the holes are located in 

exactly the same place relative to each other on both plates.  The uncertainty in the 

distance between the NorthStarTM sensor board standoff mounting holes and the center 

mounting hole for the beacon array is the same whether measured on the top plate or the 

bottom plate (see Figure 36). 

Since the holes were machined using a CNC, and the part drawing specifies a 

tolerance of ±5 mils, the uncertainty in the X and Y distances between the standoff 

mounting holes on the bottom plate and the beacon array center hole on the top plate is 

±5 mils.  This uncertainty assumes the plates are perfectly mounted.  Uncertainties in 

how the plates are mounted are covered hereafter. 
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Figure 36 Distance from the NorthStarTM sensor board standoff mounting hole and the center 

mounting hole for the beacon array. 

 

Plate levelness and separation distance 

In order to make sure the plates are parallel, each plate will be leveled in the X 

and Y directions at the center of the plate with a precision machinist’s level which has a 

resolution of 5 mils per foot.  The distance between the two mounting plates will then be 

measured at four locations around the outer edges of the plates, and the measurements 

will be averaged to obtain the height at the center of the plate.  The uncertainty in the 

center height will be the difference between the center height and the maximum and 
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minimum measurements.  Since the plates were leveled using the precision machinist’s 

level, the expected uncertainty in the Z direction is bounded by ±5 mils (5 mils/foot over 

one foot from the center). 

Beacon array standoffs 

As with the NorthStarTM sensor board, the beacon array will be attached to the 

mounting plate via standoffs.  The standoffs will be measured using calipers, and the Z 

uncertainty in the standoff height measurement will be ±0.5 mils. 

Beacon array thickness 

The beacon array PCB thickness will be measured using calipers, and the Z 

uncertainty in the thickness measurement will be ±0.5 mils. 

Location of beacon solder pads on the beacon array PCB 

The pads to which the beacons will be soldered are located on the beacon array 

PCB with an uncertainty in X and Y of ±5 mils as quoted by the PCB manufacturer 

(Advanced Circuits). 

Placement of beacons on solder pads 

The beacons and other components on the beacon array board will be hand-

soldered to the PCB, so placement of the beacons on the solder pads represents a 

relatively large possible uncertainty in the X and Y directions. 

  The beacons radiate light in a 120° cone, so assuming the beacon is placed 

perfectly and then rotated about its boresight, there will be no change in the light 
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distribution and no errors in the angle ().  However, any displacement of the beacon 

on the pads will cause errors in the angle between the ideal vector and the true vector 

from the NorthStarTM sensor board to the beacon. 

A comparison of the dimensions of the beacon and the dimensions of the solder 

pads results in a maximum uncertainty in the X direction of ±21 mils and a maximum 

uncertainty in the Y direction of ±6.5 mils.  These uncertainties are the result of the 

becason being able to slide farther in the X-direction than the Y-direction and still 

remain on the solder pads (see Figure 37).  In order to ensure these maximum 

uncertainty values, some of the solder pad must be seen on both sides of the beacon after 

it has been soldered, requiring an inspection by the user.   

 

 

Figure 37 Illustration of a beacon (VSML3710) on its solder pads. 
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Distance from PCB to emitter in beacon 

The distance from the bottom of the LED to the emitter is not given in the 

datasheet for the VSML3710.  The VSML3710 is in a PLCC-2 package, however, which 

is a standard package type.  From comparison to other PLCC-2 parts, and by inspection, 

the emitter is located close to the centerline (if not on the centerline) of the part.  It is 

assumed, then, the emitter is at the centerline of the part with an uncertainty of ±1/4 of 

the height of the part.  This equates to an uncertainty in the Z direction of ±16 mils.     

Plate offset 

As mentioned earlier, the two aluminum mounting plates are drilled together so 

that the holes in the top and bottom plates align perfectly.  In addition to the holes 

needed for mounting the PCBs and for the steel rods, two sets of 1/32” holes are drilled 

in the plates to serve as alignment holes.  To ensure alignment of the two plates, masses 

are suspended from 30 AWG wires which are threaded through the alignment holes.  

Several inches of the bottom sections and a small portion of the tops of the wires are 

stripped of insulation.  Digital multimeters which are capable of performing continuity 

checks are connected to each wire and to one of the mounting plates (see Figure 38). 

The mass serves to keep the wire taut and hanging straight down without any 

kinks.  With the multimeter connected to the wire and to the mounting plate, the 

multimeter will produce an audible beep if the bottom section of the wire (which has 

been stripped) touches the side of the alignment hole through the mounting plate. 
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Figure 38 Continuity test setup.  Only one alignment wire is shown. 

 
To align the plates, the top plate is adjusted until there are no beeps coming from 

either multimeter.  When the beeping stops, the wire is hanging through both the top and 

bottom holes without making contact with the bottom hole (the portion of the wire 

through the top hole is still insulated and may be touching the sides of the hole).  The 

alignment holes are 1/32” (31.25 mils) in diameter, and the 30 AWG wire is 10 mils in 

diameter, so the most the holes could be offset is 21.25 mils (see Figure 39). 
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Figure 39 Top view looking down alignment hole. Maximum plate offset is 21.25 mils when the wire 

is not touching the bottom hole. 

 
The worst-case uncertainty in the X and Y directions for the offset of the two 

plates is ±21.25 mils. 

Thermal expansion of the CTA 

The CTA will be set up in a lab in which the temperature is controlled and 

remains fairly constant.  It is unlikely that the temperature will change enough to cause 

any significant effect in the uncertainty.  To find the order of magnitude of the effect of 

thermal expansion on the CTA, imagine the room temperature changed by five degrees 

Fahrenheit over the course of a test run.  The thermal expansion coefficients for 
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aluminum and 304 stainless steel are 12.3e-6 [in/in °F] and 9.6 [in/in °F], respectively10.  

The maximum change will be in the steel rods whose utilized length is thirty inches.  

This translates to a 1.4 mil error when the plate separation is thirty inches and the lab 

temperature changes by five degrees Fahrenheit.  For shorter separation distances, the 

1.4 mil error becomes smaller and smaller (a five inch separation yields less than a 

quarter of a mil change).  In general, all the changes in length are less than one mil and 

are therefore insignificant compared to other uncertainties in the CTA. 

Uncertainties in the X, Y, and Z directions 

The uncertainties in the X, Y, and Z directions are independent of each other; 

therefore, the uncertainties in each direction can be calculated separately. Grouping all 

the X, Y, and Z measurements separately, three equations can be written. 
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where x1 is the first X measurement (e.g. hole placement on NorthStarTM sensor board), 

x2 is the second X measurement (e.g. hole placement on bottom mounting plate), etc.  

The Y and Z terms are defined similarly. 

Using the X-direction measurements as an example, the total uncertainty 

associated with the X-direction can be found by 
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10 See “Coefficients of Linear Expansion,” http://www.engineeringtoolbox.com/linear-expansion-
coefficients-d_95.html, [retrieved June 2010]. 
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where uX represents the total uncertainty associated with the X-direction and u1-un are 

the uncertainties associated with measurements x1-xn, respectively.  Inspection of the X-

equation in (24) shows that the partial derivative of X with respect to all the individual 

measurements is equal to one.  Equation (25) can therefore be reduced to  

 2 2 2

1 2X nu u u u     (26) 

where the un’s represent each of the individual uncertainties in the X direction.  The 

equations for uY and uZ are similar. 

Each of the uncertainties covered in this chapter were combined in a table, and 

the total uncertainty in each direction was calculated using equation (26).  The results are 

shown in Table 2. 

 
Table 2 Uncertainties in the X, Y, and Z directions 

Item 
X (mils) Y (mils) Z (mils) 

+ - + - + - 

NS sensor board hole placement 5.0 5.0 5.0 5.0 0.0 0.0 

NS standoff height 0.0 0.0 0.0 0.0 0.5 0.5 

Plate hole locations 5.0 5.0 5.0 5.0 0.0 0.0 

Plate levelness 0.0 0.0 0.0 0.0 5.0 5.0 

Plate offset 21.3 21.3 21.3 21.3 0.0 0.0 

Plate separation distance 0.0 0.0 0.0 0.0 0.5 0.5 

Array stand-off height 0.0 0.0 0.0 0.0 0.5 0.5 

Array board thickness 0.0 0.0 0.0 0.0 0.5 0.5 

Array pad location uncertainties 5.0 5.0 5.0 5.0 0.0 0.0 

Plate to array hole tolerance 5.0 5.0 5.0 5.0 0.0 0.0 

Upper plate deflection 0.0 0.0 0.0 0.0 5.0 5.0 

LED placement on solder pads 21.0 21.0 6.5 6.5 0.0 0.0 

Light emitter placement in LED 0.0 0.0 0.0 0.0 16.0 16.0 

       Uncertainty 31.5 31.5 24.4 24.4 17.5 17.5 
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The uncertainties in the locations of the beacons now need to be translated into 

an uncertainty in the angle of the vector pointing from the NorthStarTM sensor board to 

each beacon.   

Three-dimensional uncertainty in angle 

The uncertainty in the angle () of the vector pointing from the NorthStarTM 

sensor board to each beacon due to the uncertainties in the CTA provides a measure for 

how well the beacons are known and therefore how well the near-field uncertainties can 

be resolved.  A relationship between the uncertainties in X, Y, and Z and the uncertainty 

in the angle  needs to be established. 

Writing the angle () between the ideal vector to the beacon and the vector which 

contains a perturbation yields 
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where the starred (*) quantities represent perturbed values.  Taking the partial derivative 

of equation (27) with respect to the variable x* results in the equation 
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where 
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Equation (28) can be rewritten as 
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which simplifies to  

    

   
* * * * * *

2 2 222 2
* * * *

* * *

1y yx y x z zx z x

x x y zA B xx yy zz

   


    

 (30) 

Since the starred quantities are just the unstarred quantities plus some arbitrary 

perturbation, they can be represented as 
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and substituted back into equation (30).  Expanding out the equation and eliminating the 

higher order terms, the equation becomes  
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where 

        
2 222 2 2 2 x y z x y x z y zD x y z x y z y x z x z y                    (33) 

In the limit, as , , 0x y z    , the values for the starred quantities become closer to the 

unstarred quantities (i.e. * * *;   ;   x x y y z z   ).  Additionally, assuming the values 

for the different epsilons ( , ,x y z   ) are of the same magnitude, the epsilons can be 

factored out of equation (32) and cancelled.  Those few epsilons which do not cancel 

will go to zero in the limit, and the final result of the derivation is  
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The partial derivatives in the Y and Z directions are determined in the same manner, and 

they result in  
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With the sensitivities of the angle to the uncertainties in the X, Y, and Z 

directions, it is possible to write an equation for the uncertainty in the CTA as 
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Two-dimensional uncertainty in angle 

In order to compare the uncertainties in the CTA with the two-dimensional near-

field error plots, an equation for the uncertainty in the angle in two dimensions is 

required.  First, write the equation for the angle between the ideal vector to the beacon 

and the vector which has some uncertainty. 
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 (37) 

Multiplying the equation for  and taking the partial derivatives of  with respect to x* 

and z* yields the equations 
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The total uncertainty in the angle  is found using the equation 

 
2 2

* *

X Zu u u
x z



     
    

    
 (39) 

As with the three dimensional uncertainty case, the equations for x* and z* from 

(31) can be substituted into (38) and the limits can be taken.  Also, notice that the 
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partials of  with respect to x and z get squared, so the sign() functions are irrelevant.  

Dropping the sign() functions and substituting equations (38) into equation (39) yields 
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where uX and uZ are the uncertainties in the X and Z directions found in Table 2. 

Plotting the uncertainty in  versus the combined uncertainties in the angle due to 

near-field errors results in  

 

 

Figure 40 Uncertainty in  due to CTA versus uncertainty in  due to near-field errors. 
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As shown in Figure 40, the CTA should have the ability to resolve the near-field 

errors.  The uncertainty in  due to the near-field errors at 6° off boresight is over four 

times greater than the uncertainty in  due to the CTA.  That ratio increases to an order 

of magnitude difference by 18° off sensor boresight. 
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CHAPTER V 

NORTHSTAR     MODEL AND SIMULATED RESULTS 

 
In order to calibrate the NorthStarTM sensor for use as a close-proximity sensor 

capable of generating the position and pose of another object, a mathematical model 

which closely simulates the sensor behavior is required.  One reason for requiring an 

accurate mathematical model is the NorthStarTM sensor outputs X-Y coordinates in the 

Detector coordinate frame, but the desired output is a unit vector pointing from the 

sensor to the light source along with the corresponding covariance of the measurement.  

If the model can accurately predict the X-Y outputs of the NorthStarTM sensor given 

known inputs, then the measurements from the NorthStarTM sensor can be transformed 

into the desired unit vector along with the estimated covariance. 

In order to generate such a model, assumptions about how the NorthStarTM 

sensor generated its output were made.  Since the NorthStarTM sensor is proprietary, it is 

treated as a “black box” and its behavior assumed to be based on first principles.  The 

generation of the model which attempts to capture the first-order functionality of the 

NorthStarTM sensor will be discussed later.   

 

NorthStarTM Theory of Operation 

An understanding of how the NorthStarTM sensor likely functions is important for 

developing a model which can accurately predict what the NorthStarTM sensor will 

output given any system inputs.  To begin developing this understanding, make the 

simple assumption that the NorthStarTM sensor has no a priori knowledge of the location 

TM
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of the light source in space.  This assumption is reasonable because the NorthStarTM 

sensor does not know where it is or what its environment is like when it is powered on.  

Since the NorthStarTM sensor is intended for use in many different applications, specific 

information such as beacon location or room size cannot be preprogrammed and stored 

onboard the unit itself.  The only information the NorthStarTM has available to it is IR 

light entering with some measured intensity in some region of its field of view (FOV).   

When the NorthStarTM sensor is powered on, it will “see” the beacons in its field 

of view (up to twenty at a time) and report their X-Y location in Detector coordinates.  

Figure 41 depicts the NorthStarTM sensor sitting on its X-Y plane with its FOV given by 

the outer solid lines.  The dotted line represents a line of sight vector to a light source 

which can be located at any point along the dotted line (in the figure it is shown in two 

possible locations).  The NorthStarTM sensor may be able to locate the angle to the light 

source with respect to the sensor boresight, but there is no way to locate where along the 

vector the light is located.  It cannot use the intensity of the light source to determine the 

distance since there is no way to distinguish between a closer source with a weak signal 

and a source farther away but with a stronger signal. 
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Figure 41 Representation of the NorthStarTM sensor with several light sources in its field of view. 

 
  It is clear that the light source along the vector originating at the NorthStarTM 

sensor origin will have different X or Y values in Detector coordinates depending on 

where along the vector it lies.  How then does the NorthStarTM unit generate a beacon 

position?  

It is reasonable to assume that since the NorthStarTM sensor cannot generate a 

vector with known length to a light source, but it is able to determine a direction to the 

light source, the sensor must be generating a unit vector from the sensor origin to the 
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light source which it locates on its own internal unit hemisphere.  Now instead of the 

representation in Figure 41, we have the representation shown in Figure 42. 

 

Figure 42 Representation of NorthStarTM sensor projecting light directions onto a unit hemisphere. 

 
Locating the light source on a unit hemisphere is only a partial solution to the 

problem of generating an X-Y position in Detector coordinates.  There is still no 

knowledge of where along that unit vector direction the light source is located, and 

therefore no knowledge of its position when projected onto the coordinate plane.  At this 

point, in order to proceed, an assumption was made about the NorthStarTM sensor.  The 

sensor is intended for use in one of two ways: either it can track IR light reflected off a 
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surface (such as a ceiling), or it can track IR lights directly in a beacon mode [11].  In 

either case, the detector is assumed to be indoors with a maximum recommended ceiling 

height of six meters (twenty feet) [14].  It is assumed, therefore, that the NorthStarTM 

sensor “thinks” that all of the light sources it detects are located on a plane (or ceiling) 

that is parallel to the Detector coordinate X-Y plane and is separated by a distance (or 

height) of H.   

 

Figure 43 Representation of the proposed internal assumptions made by the NorthStarTM sensor. 

 
Having the NorthStarTM sensor assume the light sources are all located on a plane 

leads to the representation of the NorthStarTM sensor functionality shown in Figure 43.  

The NorthStarTM sensor locates the direction of the light source on its unit hemisphere, 

then it projects the light onto a parallel plane separated by a distance H (representing the 

room height).  The parameter H, therefore, is a scaling factor for the NorthStarTM 

measurements in much the same way as the focal length of a lens becomes a scaling 

factor in the collinearity equations used in problems dealing with star tracker cameras 
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[15].  Note that the collinearity equations are not necessarily valid in this case because 

the NorthStarTM sensor is not a pinhole camera but a CSS.  However, collinearity-like 

equations will be developed to see what the range of validity is.  The value for H is 

something that could be calibrated at the factory and loaded into the NorthStarTM sensor 

before it is ever shipped to the end user, with variations in the actual room height 

accounted for by the uncertainty bounds quoted in the product data sheet.   

Qualitative experiments were run in which an IR LED was moved around in 

front of the NorthStarTM sensor and the change in the X and Y values generated by the 

sensor noted.  Results from these qualitative experiments indicated that as the angle 

between the light source and the sensor boresight increases, the magnitude of the X 

and/or Y measurement increases.  Defining the angle  as the FOV half-angle such that 

the NorthStarTM FOV equals 2 , it is proposed that the maximum value for X (32,768) 

is achieved when the light source is located on the X-axis of the Detector coordinate 

frame and makes an angle of  with the NorthStarTM sensor boresight (see Figure 44).  

The minimum value of X and the minimum and maximum values of Y are defined 

similarly. 
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Figure 44 Representation of a light source on the edge of the FOV generating a minimum or 

maximum measurement value. 

 

The NorthStarTM product data sheet [14] states that the detector has a square 

FOV.  It is important, then, for the proposed method of operation described above to 

result in a square field of view.  From Figure 44, it can be seen that at any scale height 

H, the FOV of the sensor is a square spanning [-60°, 60°] in the X direction and [-60°, 

60°] in the Y direction.  The method of operation proposed in this section thus passes its 

first sanity check, and may be used to derive a model which can be tested against the 

actual NorthStarTM sensor hardware. 

To summarize, it is proposed that the NorthStarTM sensor detects incoming IR 

light modulated at pre-defined frequencies and determines the direction to the light 

source.  The sensor then presumably projects the direction onto a plane at some height H 

above the Detector X-Y plane and then projects it down onto its own Detector X-Y plane 

to determine the position in its planar coordinate system. 
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Mathematical Model Geometry 

 
Having developed a concept for how the NorthStarTM sensor generates its X and 

Y measurements, it is possible to begin developing a mathematical model to 

approximate this behavior.  In order to locate the beacons with respect to the sensor’s 

Detector coordinate system origin, attach a coordinate system (designated O) to the 

NorthStarTM sensor which has an axis coincident with the Detector frame X-axis and one 

axis coincident with the Detector frame Y-axis, with the third axis completing the triad 

according to the right hand rule.  X and Y measurements from the sensor now have 

meaning in the O-frame.  Note, however, that because the NorthStarTM sensor is a “black 

box,” the origin of the Detector coordinate system is unknown.  A scheme for 

empirically determining the Detector coordinate system origin of each individual 

NorthStarTM sensor might be devised, but that would require additional analyses of the 

uncertainty in the testing procedure and measurement equipment. 

Instead, since the NorthStarTM sensor is not meant to be a stand-alone sensor but 

integrated into some system, it is assumed that the sensor is mounted to the NorthStarTM 

sensor board.  The NorthStarTM sensor PCB also has a coordinate system (designated N) 

affixed at an arbitrary location.  However, since the origin of the N-frame is arbitrarily 

chosen by the user, its location is known.  Figure 45 shows a depiction of the 

NorthStarTM sensor (dubbed NorthStarTM Sensor Head or NSSH) without its protective 

cover mounted to the NorthStarTM sensor board (NS board) with a known coordinate 
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system origin (N).  Note that in the ideal case, the three axes of the N-frame align with 

the three axes of the O-frame but may be offset by some distance.  

 

Figure 45 Depiction of the NorthStarTM sensor attached to the NS board with a known coordinate 

system origin. 

 
The origin of the NSSH frame is not known precisely, but is assumed to be in the 

vicinity of the four PV cells in pyramid formation which measure the incoming light.  A 

side view and a top view of the sensor system are provided in Figure 46 and Figure 47, 

respectively.    
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Figure 46 Side view of NSSH and NS board. Note that while the coordinate axes are offset, they are 

aligned in the same manner. 

 

 

Figure 47 Top view of the NSSH and NS board.  Again note the axes are aligned but offset. 
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As the machining tolerances and assembly imperfections guarantee that the two 

coordinate systems will not be perfectly aligned, assume there exists a direction cosine 

matrix (C) that will rotate the N-frame into alignment with the O-frame such that 
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 Due to the fact that the N-frame was chosen to ideally align with the O-frame, 

the off-diagonal terms in the direction cosine matrix (C) are expected to be small and 

therefore C will be close to the identity matrix.  Equation (41), however, has not been 

specialized for small rotations and is therefore general enough to handle arbitrarily large 

misalignments. 

Equation (41) can be used to discover how the two coordinate frames are 

misaligned, but now the offset between the two coordinate systems needs to be 

accounted for.  Define a vector d which points from the N-frame origin to the O-frame 

origin, and is coordinatized in N-frame components (see Figure 48) such that 

 
1 2 3
ˆ ˆ ˆd x d y d z  d  (42) 

 The vector d is necessarily unknown because the origin of the O-frame is 

unknown.  It can, however, be estimated as will be discussed later.  Assuming the vector 

d and the matrix C can be obtained, the output of the NorthStarTM sensor in its Detector 

coordinate frame can be related directly through a rotation and translation to the N-

frame, a frame whose location is specified and therefore known to some arbitrary 
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tolerance.  The only limits on the knowledge of the location of the N-frame origin are 

machining precision and the precision of the measurement instruments. 

 

Figure 48 Depiction of the relationships between the two coordinate systems and a beacon. 

 
Mathematical Model Development 

Assume there is a beacon located at a known position somewhere in the 

NorthStarTM sensor’s FOV.  The beacon’s location can be described in N-frame 

coordinates as given by (43). 

 
1 2 3
ˆ ˆ ˆr x r y r z  r  (43) 

From Figure 48 and equations (42) and (43), the vector from the NSSH to the 

beacon can be expressed in N-frame coordinates as 

      1 1 2 2 3 3
ˆ ˆ ˆr d x r d y r d z     b  (44) 
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Note that the vector b is not a unit vector.  In developing the theory of how the 

NorthStarTM sensor generates X and Y measurements, it was assumed the sensor 

generated unit vectors pointing in the direction of the light source (in this case a beacon) 

in order to produce X and Y measurements.  Equation (44), then, needs to be 

normalized, resulting in  
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where the carat (^) indicates a unit vector.  The unit vector b̂  can be rewritten simply as  
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The unit vector b̂ is a vector pointing from the O-frame origin to the beacon, but 

it is referenced in N-frame coordinates.  In order to use b̂ to generate estimated X-Y 

measurements, it is required to re-coordinatize b̂ from the N-frame to the O-frame.  This 

is done by utilizing the direction cosine matrix C from equation (41). 
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Equation (49) provides a relationship between the reference vector to a beacon 

and the unit vector pointing from the NorthStarTM sensor to the beacon.  It is now 

required to develop a relationship between this unit vector coordinatized in the O-frame 

and the X-Y measurements produced by the NorthStarTM sensor.   

To begin, recall from the derivation of the proposed NorthStarTM sensor theory of 

operation that the parameter H is a scaling height for the NorthStarTM sensor 

measurements (the same H as in earlier chapters).   Multiplying equation (49) by H 

results in  
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Dividing everything by 
3b , equation (50) is rewritten as  
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 (51) 
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where the tilde symbol (~) indicates a measured value.  The terms xy  and yy  represent 

the X and Y outputs from the NorthStarTM sensor, while zy is a fictitious measurement.  

Equations (51) simplify to  
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 (52) 

Substituting equations (47) into equations (52) (and ignoring zy , which is not an 

output of the NorthStarTM sensor) yields the expressions 
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which finally reduce to the equations relating the known reference vectors r, the O-frame 

origin offset d, and the NorthStarTM sensor X and Y measurements xy and yy . 
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While equations (53) provide a way to relate the measurements from the 

NorthStarTM sensor to the vectors r and d, the direction cosine matrix is still unknown.  It 

is required, then, to estimate the values for the elements of the direction cosine matrix.  

The direction cosine matrix is a proper orthogonal matrix which can be represented in 

many ways.   A minimum representation of C will be a three-element parameterization, 

with examples of these being Euler’s angles, Gibb’s vector, the principal axis/principal 

angle, and the Modified Rodrigues Parameters (MRP) [16].   

As the rotation from the N-frame to the O-frame is expected to be small, a 

parameterization that works well for small rotations is desirable.  For this derivation, the 

MRP will be used to parameterize the direction cosine matrix because they do not have a 

singularity until the principal angle of rotation is equal to 2 .  Defining the MRP as 
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the direction cosine matrix C can be written in compact form as 
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as shown in [16], where I3x3 is a 3x3 identity matrix.  Equations (54) can be expanded to 

find the value of each of the nine elements in the direction cosine matrix.  The result of 

the expansion is given in reference [16] as  
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 (55) 

By taking the correct elements from the direction cosine matrix in (55) and 

substituting them in equations (53), the measurements from the NorthStarTM sensor can 

be related to a known reference frame through seven unknown parameters: three MRP, 

three from the unknown vector d, and one scaling height H.  Equations (53) represent 

two independent equations, five less than the number of unknown parameters.  However, 

taking many independent measurements (i.e. measurements of beacons in different 

locations) and stacking them effectively results in many more equations than unknown 
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parameters.  The solution of a problem with more equations than unknowns can be 

obtained by using a least squares approach.  

Gaussian Least Squares Differential Correction (GLSDC) 

GLSDC is a widely used nonlinear least squares estimation technique for 

iteratively solving problems like the one described above in which there are more 

unknowns than equations.  A GLSDC algorithm seeks to minimize the sum of the 

squares of the residual errors between the measured values and the estimated values, and 

the cost function is written as [15] 
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The matrix W determines how much each measurement weighs in the final cost.  

If each measurement weighs the same amount, W can be replaced with an identity 

matrix.  The cost function J is minimized with respect to the unknown set of corrections 

to the current estimate.  Taking the derivative of the cost function with respect to x and 

then rearranging the equation results in a version of the normal equations written as 

 T

cPG W  x y  (57) 

where  
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
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Equation (57) is calculated, the current estimate is updated using  

 c c x x x  (59) 

and the algorithm iterates until a stopping condition (either some tolerance or a 

maximum number of iterations) is reached. 

 
NorthStarTM Mathematical Model Test 

Emulate NorthStarTM sensor output 

Before the NorthStarTM mathematical model can be tested, emulated NorthStarTM 

sensor outputs must be generated.  First, a ten inch grid with one hundred LEDs spaced 

as they are on the beacon array was simulated in Matlab.  The grid was moved from one 

inch separation from the simulated sensor out to one hundred inches, calculating the 

vectors (ri, see equation (43) and Figure 48) from the N-frame origin to the beacon in N-

frame coordinates (resulting in 10,000 vectors). 

In order to generate simulated voltages for the NorthStarTM sensor, the normal 

vectors to each of the four PV cells must be obtained (see Figure 49).   
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Figure 49 Normal vectors to each of the four PV cells. 

 
Assuming the angle is the same for all four panels (recall that  equals 30° for 

this thesis), the four normal vectors can be written in the O-frame as  
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 (60) 

The normal vectors need to be re-coordinatized in the N-frame in order to 

perform the dot product between the normal vectors and the vectors to the beacons.  

Using equation (55) to compute the direction cosine matrix taking a vector from the N-

frame to the O-frame, the normal vectors are re-coordinatized into the N-frame by 

multiplying each normal vector by CT. 
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Figure 50, as with Figure 10, shows the definition of the vectors from the PV 

cells to the beacon and from the O-frame origin to the PV cells.  The vectors ri from the 

N-frame origin are moved to the O-frame origin (i.e. made into the binf shown in Figure 

50) using equation (44).  The vectors binf are then transformed into the vectors b1 and b2 

(b3 and b4 for the Y-direction) by subtracting the offset vectors. 

 

Figure 50 Illustration of the offset vectors in the X direction. 

 
For this simulation, the offset vectors are arbitrarily chosen to be 
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with units given in inches.  Using these values, the voltages on each of the PV cells can 

be written as 
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Calculating the intensities on each panel and the scaling factors (due to a non-

uniform light source, assume 60° half-intensity angle) as described in Chapter II, the 

emulated NorthStarTM sensor measurements can be written as  
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 (63) 

where the tilde (~) represents a measured value and  is a proportionality constant (here 

 equals 32,768).  Using equation (63), X and Y measurements were generated for all 

the ri vectors.  These measurements take into account all of the expected non-linear near-

field effects. Figure 51 shows the simulated measurements from three inches out to thirty 
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inches.  Notice that as the grid moves away from the sensor, it takes up less of the 

NorthStarTM sensor’s FOV.  By thirty inches separation distance, the beacon array takes 

up only ~20° of the FOV (using the single beacon array configuration).  Additionally, 

the NorthStarTM sensor head is not located directly under the center beacon in the beacon 

array, so there is a noticeable offset in the grid pattern along the X direction.   

 

 

Figure 51 Simulated X and Y measurements from the NorthStarTM sensor spanning the range 3-30 

inches. 

 

Fitting the NorthStarTM mathematical model 

After generating measurement data, they were fit using the NorthStarTM 

mathematical model and the GLSDC algorithm.  The unknown parameters to be solved 

for are 



 103 

  1 2 3 1 2 3

T
d d d p p p Hx  (64) 

and the measurement estimates are given as 
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where the values for the C elements come from equation (55).  The Jacobian matrix G is 

found by taking the partial derivatives of f(x) with respect to the each of the unknown 

parameters in the vector x. 
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For simplicity, the weighting matrix W is assumed to be an identity matrix. 

From Figure 44 and Figure 48, it is apparent that for very small rotations, the 

unknown parameters d3 and H are nearly parallel.  When the parameters represent 

parallel dimensions, one of the parameters is unobservable and the Jacobian matrix 

becomes singular (or nearly singular for nearly parallel parameters).  In order to make 

both parameters observable, the GLSDC can solve for the parameters using two different 

heights from the dataset.  Many combinations of heights were run through the GLSDC 

algorithm to determine which combinations work the best.  Four of the combinations are 
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shown in Table 3, with the true values arbitrarily chosen.  The true value for the scale 

height, H, was determined using equation (5) knowing that at 60   , Xinf is 32,768. 

As expected, solving for the parameters using two heights which are close to the 

sensor (three and five inches) yields a poor solution.  This is due to the fact that the 

simple NorthStarTM mathematical model does not account for near-field errors which are 

significant at these close ranges.  The solution when the beacons are far away (95 and 

100 inches) is not significantly better than the solutions when the beacons are in the 

upper range of the CTA (i.e. the 20 and 25 inch case and 25 and 30 inch case).  

Interestingly, for the final three cases, the GLSDC algorithm solved for the parameter d3 

at a value far from the actual value.  Representing the Z-direction offset between the N-

frame and the O-frame, the solutions for d3 given by the last three cases indicate the 

GLSDC algorithm thinks the NorthStarTM sensor is viewing the beacons from a virtual 

“eye” located three-quarters of an inch below the NorthStarTM sensor board.  All of the 

other parameter solutions are within five percent of their true values, however.  Plots of 

the simulated X/Y measurements and the X/Y estimates are shown in Figure 52-Figure 

56.  Notice that at three inches separation (Figure 52), the emulated data does not form a 

straight line grid due to near-field nonlinearities.  Additionally, because of the near-field 

errors which are unaccounted for, the estimates are significantly different from the 

measurements.  
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Table 3 Comparison of NorthStarTM mathematical model fit using different height data. 

Separation Distances [in] Parameter True value Estimated Value % Diff 

3 and 5 

d1 [in] 0.6000 0.68314 13.9 
d2 [in] 0.1000 0.05273 -47.3 
d3 [in] 0.0620 0.45772 638.3 

p1 0.0010 -0.00190 -289.7 
p2 0.0020 -0.00292 -245.9 
p3 0.0010 0.00112 12.3 
H 18919 15801 -16.5 

20 and 25 

d1 [in] 0.6000 0.60732 1.2 
d2 [in] 0.1000 0.09646 -3.5 
d3 [in] 0.0620 -0.78588 -1367.6 

p1 0.0010 0.00098 -2.1 
p2 0.0020 0.00196 -2.0 
p3 0.0010 0.00105 4.8 
H 18919 18824 -0.5 

25 and 30 

d1 [in] 0.6000 0.60721 1.2 
d2 [in] 0.1000 0.09648 -3.5 
d3 [in] 0.0620 -0.79446 -1381.4 

p1 0.0010 0.00098 -1.7 
p2 0.0020 0.00197 -1.5 
p3 0.0010 0.00104 4.0 
H 18919 18831 -0.5 

95 and 100 

d1 [in] 0.6000 0.60372 0.6 
d2 [in] 0.1000 0.09831 -1.7 
d3 [in] 0.0620 -0.72859 -1275.1 

p1 0.0010 0.00100 0.4 
p2 0.0020 0.00201 0.4 
p3 0.0010 0.00101 1.4 
H 18919 18807 -0.6 
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Figure 52 Plot of emulated NorthStarTM measurements and the NorthStarTM mathematical model 

estimates at three inches separation. 
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Figure 53 Plot of emulated NorthStarTM measurements and the NorthStarTM mathematical model 

estimates at five inches separation. 
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Figure 54 Plot of emulated NorthStarTM measurements and the NorthStarTM mathematical model 

estimates at ten inches separation. 
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Figure 55 Plot of emulated NorthStarTM measurements and the NorthStarTM mathematical model 

estimates at twenty inches separation. 
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Figure 56 Plot of emulated NorthStarTM measurements and the NorthStarTM mathematical model 

estimates at thirty inches separation. 

 
Notice that as the separation distance increases, the estimation more closely 

matches the emulated data.  The near-field effects are less important the farther from the 

sensor the beacons are.  To determine how the estimated X and Y values translate into 

errors in the angle () of the vector from the NorthStarTM sensor head to the beacons, 

estimated vectors best were obtained by the transformation 
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 The dot product between the true vectors to the beacons (binf) and the estimated vectors 

(best) was taken and the error in angle at each beacon at each separation distance was 

calculated.  Additionally, using the three-dimensional equation for the uncertainty in the 

angle (equation (36)), the average uncertainty in the angle () was computed at each 

separation distance. The standard deviation of the error in angle at each separation 

distance was calculated and is plotted with the average uncertainty in the angle () due 

to the CTA in Figure 57. 

 

 

Figure 57 Standard deviation of the error in angle () with respect to separation distance and 

uncertainty in the angle due to the CTA uncertainty. 
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The error in the angle at one inch has one standard deviation of just over five 

degrees, with the error falling off to approximately one-tenth of a degree standard 

deviation at thirty inches and on the order of one-hundredth of a degree standard 

deviation at one hundred inches.  Additionally, the uncertainty in the CTA creates an 

error in the angle which is more than an order of magnitude smaller than the errors in the 

angle due to the near-field effects. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

 

This thesis developed analytical models for proximity, intensity, and non-

uniform light near-field errors arising from the geometry of the cosine-type pyramidal 

coarse sun sensor and determined expected error magnitudes due to these effects.  While 

the magnitudes of these effects become significant as the sensor approaches the 

beacon(s), knowing what the effects are would allow engineers to account for these 

effects during a close-proximity relative navigation or docking maneuver.  The analyses 

presented in this thesis do not find any show stoppers for utilizing a coarse sun sensor as 

the cornerstone of a 6-dof solution. 

In order to characterize these near-field effects, an experimental test bed termed 

the Characterization Test Apparatus (CTA) was proposed, its design presented, and the 

design stage uncertainty analysis of the CTA performed.  A candidate coarse sun sensor, 

the NorthStarTM sensor, was chosen based on availability, cost, and physical parameters 

(low-mass, low-power, small physical envelope).  After developing a simple 

mathematical model for the NorthStarTM sensor, the model was used along with a 

GLSDC algorithm to estimate parameters which allowed the best fit between the 

mathematical model and the simulated NorthStarTM sensor output (accounting for all 

near-field effects).  Calibrating the mathematical model using separation distances 

greater than twenty inches yielded the best results.  Comparing the errors in the angle 

() of the vector from the NorthStarTM sensor to the beacon due to the uncertainty in the 
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CTA to the errors in the angle due to the near-field effects, it appears the proposed CTA 

will provide sufficient resolution to characterize the errors due to the combined near-

field effects. 

 
NorthStarTM Sensor Data Collection Recommendations 

 
Based on the results in Table 3, and due to the limitations on maximum 

separation distance in the CTA, it is recommended that the NorthStarTM model 

parameters be calibrated using separation distances in the vicinity of twenty to thirty 

inches.  Differences in the parameter results for trial runs at those distances were not 

significantly different.  By calibrating the model parameters at separation distances of 

twenty to thirty inches, the errors due to near-field effects at those distances will be 

calibrated into the model parameters as biases (i.e. the error curves will shift towards 

zero).  However, near-field errors at thirty inches are significantly smaller than the near-

field errors as the sensor approaches the beacons.  Collecting experimental 

measurements and using them in place of the simulated measurements, a plot similar to 

Figure 57 should be obtained.  The offset between the experimental data and the 

predicted curve can be determined, and the experimental data can be shifted by that 

offset in order to compare the experimental results with the near-field error analysis. 

When developing a data collection scheme, thought has to be given not only to 

data allowing the resolution of near-field effects, but also collecting data useful for 

characterizing other effects not addressed in this thesis.  Mention has been made about 

the expected noise levels of a coarse sun sensor, but how the noise levels change based 

on beacon intensity, beacon modulation frequency, and beacon position needs to be 
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explored.  Additionally, qualitative experiments performed with the NorthStarTM sensor 

(not reported) indicate that there is a relationship between the NorthStarTM sensor 

measurement output and the frequency with which the beacon is modulated.  The 

NorthStarTM sensor also has four different light sensitivity settings, so information on 

how the noise levels and measurement outputs vary based on light sensitivity settings 

need to be determined. 

Keeping in mind all these questions with using the NorthStarTM sensor as part of 

a 6-dof solution which need to be addressed, the following data collection scheme is 

suggested for both the single beacon array configuration and the quad beacon array 

configuration: 

1. Beginning at a two inch separation distance between the sensor and the beacon 

array, scan the grid at one inch increments all the way to the maximum 

separation distance (approximately thirty inches). 

2. The CTA is capable of modulating the beacons at two separate power levels.  At 

each separation distance, take multiple measurements (100-200) of each beacon 

location at various frequencies for each intensity level so the mean values and 

noise levels can be determined. 

3. At each separation distance, repeat step two with each of the four different 

sensitivity settings. 

4. Keep the ambient lighting conditions the same between experiments. 

5. All desired data at each separation distance should be collected before increasing 

the separation distance.  Doing so will reduce the number of times the CTA must 



 116 

be handled, and it will ensure the physical geometry of the various experiments 

are as similar as possible. 

 

Future Work 

 
All of the components of the CTA are in house or being machined.  The CTA 

must be assembled and an absolute uncertainty analysis performed on the actual 

hardware.  Following the absolute uncertainty analysis, experimental data using a data 

collection scheme based off the suggestions presented herein must be obtained.  Using 

the experimental data, the NorthStarTM sensor model can be calibrated and near-field 

effects resolved. 

With a calibrated sensor model and bounds on the uncertainties in the errors in 

angle (), a real-time 6-dof solution (using a GLSDC or other algorithm) can be 

programmed onto the NorthStarTM sensor board microprocessor and a demonstration of 

the sensor can be performed. 

Additionally, a higher fidelity mathematical model can be derived based on the 

simple model presented herein which includes additional terms which capture the near-

field nonlinear effects on the sensor measurements.  Work also needs to be performed to 

determine a suitable weighting matrix. 
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APPENDIX 

LOCATION OF AVERAGE VOLTAGE ON PHOTOVOLTAIC CELLS 

 

In order to justify treating the PV cells as points instead of plates in the near-field 

analyses presented in this thesis, it is required to determine the magnitude of the error 

incorporated into the results due to this assumption.  The analyses all assume that there 

is a point (leff) on each PV cell from which a vector (reff) can be drawn to the light source 

which, when dotted with the unit normal vector, will generate the same voltage as an 

actual PV cell (which is a plate) would generate.  If the point (leff) does not move as the 

beacon approaches the PV cell, then assuming treating the PV cells as points rather than 

plates is a good assumption.  However, if the point (leff) moves significantly as the 

beacon approaches the PV cell, then the PV cells need to be modeled as plates and the 

uncertainty in the position of (leff) must be accounted for. 

Assume a PV cell of length L oriented as shown in Figure 58.  A beacon is 

located at a position (x,y).  The goal of this analysis is to find the point leff such that the 

effective output signal matches the output of the PV cell when modeled by a plate.  
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Figure 58 PV cell to beacon geometry. 

 
The effective signal output can be modeled by 

  eff eff effX I V  (68) 

where  
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The output signal assuming the PV cell is a plate is the integral of the intensity 

times the voltage at each point n along the plate divided by the length of the plate (L). 
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Since  ˆ 0 1
T

j , equations (68) and (69) can be solved, resulting in the 

equation 
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and equations (70) can be solved to yield 
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Equating (71) and (72) and solving for leff results in a quadratic with two separate 

solutions. 
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Utilizing equations (73), a simulation was constructed to determine the values of 

leff as a beacon approaches the PV cell.  Since the intensity changes according to an 

inverse square law, the location of leff will be most affected by beacons which are at a 

greater angle with respect to the PV cell boresight (because the difference in the 

magnitudes of the vectors from one end of the cell to the other increases as angle 

increases).  A beacon was placed 60° off of the PV cell boresight and moved toward the 

PV cell, and both solutions to leff were calculated. 

The length of the PV cell is unknown, so instead of substituting the cell length L 

in directly, a ratio between the length of the PV cell and the diameter of the sensor was 

used.  The sensor diameter was the same as assumed in the other analyses in Chapter II.   

 *

 

L
L

Sensor Diameter
  (74) 

After calculating both leff solutions, the results were divided by L* and plotted against the 

beacon distance from the PV cell (in numbers of sensor diameters).  Since leff must be 

contained on the plate, dividing the leff by L* should never yield an answer greater than 

one.  The correct solution to (73) can be determined by inspection of the plots.  The 

result of the simulation for differing values of L* are shown in Figure 59.  Note that only 

the correct solution to (73) is shown. 
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Figure 59 Position of leff along the PV cell with respect to beacon distance from PV cell. 

 
Notice leff is located approximately in the middle of the PV cell, and that its 

location remains fairly constant.  As the beacon approaches the PV cell, the location of 

leff changes slightly, but it has only changed by approximately five percent when the 

beacon is at four sensor diameters (for the L* = 1 case).  The NorthStarTM sensor, for 

comparison, has an L* ratio of approximately one.  This analysis indicates that for an 

analysis which is attempting to obtain an order of magnitude estimate of the near-field 

effects (as is the case for this thesis), representing the PV cells as points located at the 

middle of the PV cells is a good approximation. 
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