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ABSTRACT 

 

Natural Organic Matter (NOM) in Aquatic Systems:  

Interactions with Radionuclides (234Th (IV), 129 I) and Biofilms. (August 2010) 

Saijin Zhang, B.S., Yanshan University, China; 

                                                        M.S., Xiamen University, China 

Co-Chairs of Advisory Committee: Dr. Peter H. Santschi 
                                                           Dr. Robin Brinkmeyer 

 

 

    A series of laboratory and field investigations were carried out to elucidate the 

importance of natural organic matter in aquatic systems, i.e., trace element scavenging 

(e.g., 234Th) by exopolymeric substances (EPS), formation of biofilms, as well as 

interactions with 129I. 

A method involving cross flow ultrafiltration, followed by a three-step cartridge 

soaking and stirred-cell diafiltration, was developed for isolating EPS from 

phytoplankton cultures, especially in seawater media. EPS isolated from a marine diatom, 

Amphora sp. was then subjected to semi-quantitative (e.g., carbohydrate, proteins) and 

quantitative analysis (e.g., neutral sugars, acidic sugars, sulfate). It appeared that Th (IV) 

binding by EPS was dominated by the acidic polysaccharides of fraction.  

     For EPS of biofilms collected from polluted streams, hydrophobic proteins were the 

most abundant components in EPS, followed by more hydrophilic carbohydrates. 

However, chemical composition of carbohydrates or proteins, i.e., monosaccharides and 



iv 
 

amino acids, respectively, varied with environmental conditions and substrata applied, 

which suggests that the formation of biofilms on different substrates is regulated by 

specific properties of microorganisms, environmental conditions and nature of 

substratum. No correlation between relative hydrophobicity of substratum and 

development of biofilm was found in this study. 

    A sensitive and rapid GC-MS method was developed to enable the determination of 

isotopic ratios (129I/127I) of speciated iodine in natural waters. At the F-area of the 

Savannah River Site (SRS), iodine species in the groundwater consisted of 48.8% iodide, 

27.3% iodate and 23.9% organo-iodine. Each of these iodine species exhibited vastly 

different transport behavior in the column experiments using surface soil from the SRS.  

Results demonstrated that mobility of iodine species depended greatly on the iodine 

concentration, mostly due to the limited sorptive capacity for anions of the soil. EPS, 

especially enzymes (e.g., haloperoxidases) could facilitate the incorporation of iodide to 

natural organic carbon. At high input concentrations of iodate (78.7 µM), iodate was 

found to be completely reduced and subsequently followed the transport behavior of 

iodide. The marked reduction of iodate was probably associated with natural organic 

carbon and facilitated by bacteria, besides inorganic reductants (e.g., Fe2+) in sediments 

and pore water. 
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CHAPTER I 

INTRODUCTION: THE IMPORTANCE AND RELEVANCE OF THE 

RESEARCH 

 

1.1. Introduction 

    Natural organic matter (NOM) is organic matter in various stages of degradation that 

originates from plants and animals in the environment. NOM is very important in the 

movement of nutrients and trace elements in the environment. However, very little is 

currently known about natural organic matter as it is heterogeneous and very complex in 

composition. The relative size, shape, and composition of the molecular assemblage of 

NOM are quite heterogeneous. NOM can vary greatly, depending on its origin, 

transformation mode, age, and existing environment, thus its bio-physico-chemical 

functions and properties vary for different sources and different environments. Generally, 

NOM, in terms of weight, consist of 45-55% of carbon and 35-45% of oxygen 

(Wikipedia, http://en.wikipedia.org/wiki/Natural_organic_matter). And 10-35% of the 

carbon is present in the form of aromatic rings (Schwehr et al., 2009 and references 

therein).  

Exopolymeric substances (EPS) excreted from phytoplankton and bacteria in oceans 

and freshwaters have more unique properties.   They are important constituents of natural 
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organic matter in aquatic systems and exist in both the dissolved and particulate form, 

and in the size range of few nm to few µm in length. Dissolved EPS account for up to 

50% of semi-labile dissolved organic carbon (DOC) in oceanic waters (Kirchman et al., 

2001). These unique properties make EPS an integral factor regulating marine 

biogeochemical processes, including the cycling of elements (C, N, and S), microbial 

loop, particle dynamics and metal scavenging.  As shown in Fig 1.1, EPS play a crucial 

role in the formation of transparent exopolymeric particles (TEP) (Leppard, 1995, 1997; 

Passow, 2002), marine and freshwater gels (Verdugo et al., 2004), as well as biofilms 

(Decho, 2000), which are all important in regulating sedimentation processes 

(Underwood and Paterson, 1993; Welker et al., 2002), and biogeochemical cycling and 

particle dynamics (Passow and Alldredge, 1994; Logan et al., 1995). When EPS in the 

form of micro- and nano-particles are stained by alcian-blue, it is called transparent 

exopolymeric particles (TEP). TEP provide a microhabitat for bacteria by forming 

relatively stable microzones in aggregates and impact all concentration-dependent 

processes, like nutrient uptake and grazing rates, by allowing the development of 

chemical gradients. Many studies have found elevated bacterial productivity within 

aggregates compared to the surrounding seawater (Herndl, 1988; Grossart and Simon 

1993, 1998). Observational evidence from Logan et al. (1995) confirmed that the 

formation of aggregates at the decline of diatom blooms is frequently controlled by the 

chemical composition of EPS. The studies of Passow and Alldrege (1994) provide a 

detailed description of the aggregation dynamics during diatom blooms. Aggregation 

becomes the dominant process in particle dynamics when particle concentrations reach a 
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critical concentration threshold (Jackson 1990). Besides, EPS also take part in the 

scavenging of stable and radioactive trace elements. This dissertation will focus on three 

of those roles of EPS (highlighted in the Figure 1.1), 1) trace element scavenging, 2) 

formation of biofilms, and 3) cell adhesion during biofilm formation. As a result, I will 

attempt a comprehensive and systematic understanding of EPS in environments.  

EPS are biopolymers produced by living organisms and primarily consist of 

polysaccharides, proteins, and small amounts of DNA and RNA. Lipids are also present 

in small quantities in EPS by forming complexes with proteins or polysaccharides (as 

lipopolysaccharides or lipoproteins; Bhaskar and Bhosle, 2005). A major but defining 

difference between polymers and biopolymers can be found in their structures 

(Wikipedia, http://en.wikipedia.org/wiki/Biopolymer). Polymers, including biopolymers, 

are made of repetitive units called monomers. However, biopolymers often also have a 

well defined structure. The exact chemical composition or the sequence in which these 

units are arranged is called the primary structure. Many biopolymers spontaneously fold 

into characteristic compact shapes, such as proteins, which can fold in a number of 

different ways (sheets, helices, etc). In contrast, most synthetic polymers have a much 

simpler and more random structure. 

    Distinct physico-chemical properties of EPS can be attributed to some unique 

components in their otherwise diverse and complex chemical composition. For example, 

arabinose in EPS helps in cell aggregation of bacteria (Bhaskar et al., 2005 and 

references therein) and whereas deoxy sugars like fucose and rhamnose found in EPS 

from diatoms can help in foaming and flocculation (Zhou et al., 1998). Apart from 
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monosaccharides, EPS also contain non-sugar moieties like uronic acids that may 

constitute up to 20-50% of the polysaccharide fraction in marine bacterial EPS 

(Majumdar et.al., 1999). The acidic groups give an overall negative charge to the 

polymers and make EPS highly surface-active and facilitate binding with metal ions. On 

the other hand, proteins and lipids provide more hydrophobicity to EPS. 

     Apart from EPS, aromatic carbon, e.g., from lignin, is also an important moiety of 

natural organic matter in aquatic systems, such as humic substrances. Humic substances 

are major importers, exporters and transporters of solutes in soils and natural waters. For 

example, Moulin and Moulin (2001) reviewed the effects of humic substances on the 

solubility, speciation, bioavailability and toxicity of radionuclides in aquatic systems. 

Radionuclides can be transported and chelated by functional groups of humic substances, 

or they can be covalently bound to carbon or specific moieties. For example, 

experimental evidence (Moulin et al., 2001; Steinberg et al., 2008a, 2008b) has shown 

that iodine isotopes, major nuclear waste components, are covalently bound to aromatic 

constituents by electrophilic substitution.  



5 
 

 

 

 

 

 

 

     

 

 

 

 

 

Fig 1.1 Roles of exopolymeric substances (EPS) in aquatic systems (the three double-

lined roles are what the dissertation is going to focus on) 

  

1.1.1. 234Th (IV) binding of EPS 

      234Th (IV) is a naturally occurring radionuclide produced from the alpha decay of 

uranium-238. Uranium-238 has a near constant concentration in ocean water, which 

results in a constant production rate of 234Th (2430 atoms min-1 m-3). So any departure 

from the equilibrium is attributed to 234Th (IV) removal to particles due to its highly 

particle-reactive properties. Therefore, 234Th (IV) has become an important proxy in 

oceanographic investigations of particle dynamics (e.g., a tracer for particle and colloid 
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scavenging that might involve spontaneous assembly or aggregation of biopolymers 

leading to the formation of larger particles). For example, the fluxes of particulate 

organic carbon can then be determined though the use of 234Th/POC ratios (Buesseler et 

al., 2006). 234Th/POC ratios might be controlled, in parts, by the abundance of 

exopolymeric substances (EPS) because of their chelating properties and surface activity, 

and the affinity of Th (IV) to particles. As summarized in Santschi et al. (2006), both 

experimental (Quigley et al., 2002) and field results (Guo et al., 2002; Santschi et al., 

2003; Passow et al., 2006) demonstrate that 234Th (IV) in the ocean is strongly associated 

with acidic polysaccharide (APS)- rich compounds. Different acidic functional groups in 

exopolysaccharides, including carboxylate, phosphate and sulfate, have been implicated 

to contribute to the binding of 234Th (IV) to different EPS compounds (Alvarado-Quiroz 

et al., 2006). However, very few studies of the chemical composition of EPS have been 

conducted, at the molecular level, to locate and closely investigate the agents that are 

responsible for the binding of 234Th (IV) to EPS. One purpose of this study is to 

understand the relationship between EPS composition at the molecular level and their 

binding properties to 234Th (IV. 

1.1.2. The roles of EPS in the formation of biofilms 

     Another area where EPS are important and of environmental and health concern is 

their formation of a matrix of biofilms. A biofilm is a community of microorganisms in 

which cells adhere to each other on a surface. These adherent cells are frequently 

embedded within a self-produced matrix of extracellular polymeric substances (EPS). 

EPS allow a structure that provides enhancement of microbial activities of the 
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surrounding cells by forming a stable and protective microenvironment (Decho 2000). 

Biofilms play critical roles in the remineralization of nutrients (Azam, 1998; Azam et al., 

1993), primary production in coastal systems (Paerl, 1997) and even sediment 

stabilization (Paterson, 1995). In recent years, increasing numbers of studies indicate that 

fecal coliforms can grow and replicate in non-host habitats such as surface waters and 

sediments (Desmarais et al., 2002; Byappanahalli et al., 2003; Whitman et al., 2006). 

Under harsh conditions (e.g., antibiotics, toxic metals, chlorination), the structure of 

biofilms may favor the formation of microsites with specific physicochemical conditions 

that permit the survival of fecal bacteria (Costerton et al., 1995). The colonization of 

solid surfaces by microorganisms depends mostly on the production of extracellular 

substances, i.e., EPS (Czaczyk and Myszka, 2007). Many studies of biofilms in natural 

aquatic systems have observed that the nature of the substratum can influence the 

bacterial biomass (Hunt and Parry, 1998), species richness (Baldy et al., 1995; Barbiero, 

2000), species succession and colonization patterns (Tank and Dodds, 2003), 

heterotrophic activity (Romani and Sabater, 2000), and pollutant concentrations in the 

EPS (Kroepfl et al., 2006), all of which could influence pathogen and indicator survival 

in a biofilm. However, relatively little is known about the relationship between physico-

chemical properties of EPS and the nature of the substratum. Here, Buffalo Bayou and 

White Bayou are chosen as the sites of interest because they are both on the Clean Water 

Act Section 303(d) List for impaired environments due to chronically elevated bacterial 

levels. Besides generally accepted non-point source inputs (e.g., storm water run-off, 

septic tanks and leaking sewer pipes and illegal discharges), non-human sources of these 
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bacteria, including extended survival and replication of these bacteria in non-host 

habitats such as biofilms, may also influence the bacterial concentrations. Therefore, this 

study applies different substrata to investigate their effects on biofilm formation using a 

chemical approach, e.g., the relationship between chemical composition and EPS 

production.  

1.1.3. The roles of natural organic matter in mobility and transport of iodine species, 

including 127I and 129I isotopes 

      Unlike 234Th (IV), the main source of 129I in the aquatic environment is from 

accidental and purposeful releases, mostly from nuclear fuel reprocessing (Raisbeck and 

Yiou, 1999; Schnabel et al., 2001). At a number of sites all over the world, accidentally-

released 129I has migrated into groundwaters, where the high mobility of iodine and long 

half-life (16,000,000 years) of 129I has led to a contamination problem. For example, the 

F-area of the Savannah River Site (Riley and Zachara, 1992) is one such highly 

contaminated area.  

    Iodine is a biophilic element which in mammals is concentrated mainly in the thyroid 

in the form of triiodothyronine (T3) and thyroxin (T4), which are responsible for 

regulation of metabolism. In aquatic environments, iodine mainly exists as iodide, iodate 

and organic iodine. Each of these iodine species sorbs differently to sediment and 

therefore moves through the environment vastly differently. Inorganic iodine (iodide and 

iodate) has been assumed to be the dominant and also the most mobile species in 

groundwater (Schwehr and Santschi, 2003), but little is actually known about organo-

iodine in groundwater. Organo-iodine formation could significantly modify its transport 
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and bioavailability. The importance of organo-iodine in the chemical speciation of iodine 

has recently been established for fresh (Krupp and Aumann, 1999, Oktay et al., 2001; 

Schwehr and Santschi, 2003; Santschi and Schwehr, 2004; Schwehr et al., 2009) and 

marine surface waters (Wong and Cheng, 2001; Santschi and Schwehr, 2004; Schwehr et 

al., 2005a, 2005b). However, little is known on the importance of organo-iodine species 

in the chemical speciation scheme of 129I in groudwater, particulatly on how 

microbiological and chemical factors affect their mobility and properties. I hypothesize 

that in surface (e.g., soil) and subsurface environments (e.g. groundwater sediment), the 

transformation of 129I from an inorganic to an organic form might be mediated by 

microbial processes. The most recent advances in research concerning microbial-iodine 

interactions have been contributed by Amachi et al. (2001, 2003 and 2005a, 2005b). 

Different bacteria which can accumulate, oxidize or methylate iodine have been isolated 

from various environments. Microorganisms might bind iodine in a kinetically fast 

reaction into labile nitrogen-rich compounds (i.e. proteins with aromatic moieties) over 

short time scales (days to weeks) and then evolve into more refractory aromatic 

compounds (humic acids) over longer time scales. Phenol and alpha-methyl carbonyl 

groups are hypothesized to be most reactive toward iodine, based on what is known from 

basic organic chemistry (Warner et al., 2000; Steinberg et al., 2008a, 2008b). Therefore, 

special attention has been paid to speciation of 129I at a contaminated site and the 

mechanisms of transport in the aquatic system. 
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1.2. Hypothesis and objectives for the binding of 234 Th (IV) with EPS  

1.2.1. Hypothesis 

     Acidic polysaccharides (e.g., uronic acids, sulfates and phosphates) in extracellular 

polymers excreted by phytoplankton are the reactive agents that bind with 234Th (IV) in 

marine environments. 

 1.2.2. Objectives 

     • Establish an efficient method for large-scale EPS isolation from aqueous samples as 

well as an effective method to purify and fractionate EPS. 

     • Develop an understanding of the relationship between EPS composition at molecular 

level and its binding properties to 234 Th (IV).  

 

1.3. Hypothesis and objectives for the roles of EPS in the formation of biofilms 

1.3.1. Hypothesis 

      Chemical and physical properties of EPS in biofilms will be affected by the nature of 

the substratum and environmental conditions. 

1.3.2. Objectives 

     Investigate chemical and physical properties of natural EPS in biofilm collected from 

Buffalo Bayou and White Oak Bayou in order to understand the relationships between 

physico-chemical properties of EPS and substratum. 
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1.4. Hypothesis and objectives for the roles of natural organic matter in mobility 

and transport of iodine species, including 127I and 129I 

1.4.1. Hypothesis  

Iodine mobility through sediment is highly dependent on its speciation as well as its 

corresponding concentration. Organo-iodine mobility can be enhanced or retarded 

depending on the organic moiety, whereas inorganic iodine mobility is largely dependent 

on its oxidation state.  

 1.4.2. Objectives  

    • To develop a sensitive and rapid method for determination of isotopic ratios of 

speciated iodine in order to assess the distribution of 129I and stable 127I in environmental 

     systems. 

     • Determine the mobility of iodine species, including iodide, iodate and organo-iodine 

using columns loaded with sediments from Savannah River sites, thus understand the 

environmental consequence of radioactive contamination of 129I. 
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CHAPTER II 

APPLICATION OF CROSS-FLOW ULTRAFILTRATION FOR ISOLATING 

EXOPOLYMERIC SUBSTANCES FROM A MARINE 

 DIATOM (AMPHORA SP.)* 

 

2.1. Overview 

 The increasing recognition of the roles that exopolymeric substances (EPS) play in 

the aquatic environment necessitates obtaining sufficient quantities of purified EPS for 

exploration of its physical, chemical and biological properties, as well as for quantitative 

and structural analysis of its composition. For this purpose, three 

preconcentration/purification techniques, i.e., 1) ethanol precipitation, 2) stirred-cell 

ultrafiltration, 3) cross-flow ultrafiltration, followed by stirred-cell diafiltration, were 

compared for their effectiveness in quantitatively isolating EPS from laboratory cultures 

of Amphora sp. The results showed that the classical ethanol precipitation method was 

not effective in isolating and concentrating EPS from this seawater culture medium. 

Stirred-cell ultrafiltration appeared best for harvesting EPS from this diatom. However, 

because of its limitations in terms of time and volume, cross flow ultrafiltration needed 

to be first applied, along with some necessary improvements, followed by a three-step 

cartridge soaking and stirred-cell diafiltration. After cartridge soaking, the yields of the  

 
*Reprinted with permission from “Application of cross-flow ultrafiltration for isolating 
exopolymeric substances from a marine diatom (Amphora sp.)” by Saijin Zhang and 
Peter H. Santschi, 2009. Limnology and Oceanography: Methods, 7, 419-429, Copyright 
[2009] by the American Society of Limnology and Oceanography, Inc. 
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two ultrafiltration methods were comparable. Two different fractions were obtained from 

EPS of Amphora sp. by anion exchange chromatography and were characterized 

respectively. While these purified fractions had similar molecular weights of 1000 kDa, 

their monosaccharide composition was different. In conclusion, cross-flow ultrafiltration 

followed by stirred-cell diafiltration with additional cartridge washing turned out to be 

the optimal method for EPS separation, based on time, cost, and yield. 

 

2.2. Introduction 

      Exopolymeric substances (EPS) secreted from phytoplankton and bacteria in the 

ocean are colloidal polysaccharide-rich polymers that play a crucial role in the formation 

of marine gels, marine snow and biofilms, as well as in colloid and trace element 

scavenging (Hoagland et al., 1993; Costerton, 1995; Myklestad, 1995; Verdugo et al., 

2004). Diatoms are well known for releasing polysaccharide-rich EPS during all phases 

of their growth (Hama and Handa, 1983; Sundh, 1989; Williams, 1990). The production 

and structural characteristics of EPS vary with species, with a production ranging from 1 

mg/L to 27.5 mg/L (Myklestad, 1974; Brouwer et al., 2006). Fucose and galactose are 

sugar monomers that figure prominently in the polysaccharide composition of EPS from 

diatoms (Myklestad, 1995), while galactose is absent in EPS from Coscinodiscus nobilis 

(Percival et al., 1980) and fucose being absent in EPS from Nitzhia (Allan et al., 1972). 

The composition of EPS from Amphora sp. has, however, not been reported before. 

Amphora is a common benthic microalga found in coastal benthic and pelagic 

environments (Welker et al., 2002; Kasim and Mukai, 2006; Facca and Sfriso, 2007). 
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Benthic microalgal communities are important primary producers in a wide variety of 

shallow coastal areas (Cadee and Hegeman, 1974; Colijn and De Jonge, 1984; Cahoon 

and Cooke, 1992; Barranguet, 1997; Nelson et al., 1999). Up to 40% of the 

photosynthetically fixed carbon is lost by benthic and pelagic diatoms as an extracellular 

release (Fogg, 1983; Smith and Underwood, 1998; Taylor and Paterson, 1998). 

Furthermore, a positive correlation between sediment colloidal carbohydrate 

concentrations (as a proxy of EPS) and benthic diatom biomass has been reported in 

many studies (Underwood and Paterson, 1993; Fabiano and Danovaro, 1994; Underwood 

et al., 1995; Welker et al., 2002).  Therefore, a comprehensive understanding of EPS 

from Amphora sp. will advance our knowledge of the roles benthic diatoms play in 

releasing EPS, particle dynamics and sedimentation processes.       

Exopolysaccharides are composed principally of monosaccharide residues and their 

derivatives, but can also be covalently linked to proteins (e.g., glycoproteins and 

proteoglycans) and lipids (e.g., lipopolysaccharides). Because of the large number of 

possible monomers and the multiple types of inter- and extra-polysaccharidic linkages, it 

would be a great challenge to derive the exact chemical composition and conformation 

for these types of polysaccharides. Repetitive structural features and repeating units form 

the basis of the structural classification of polysaccharides. Structural variations within 

the repeating units and the sequence of the units can be controlled by the 

microorganisms, which release them at particular times in their life cycle, and in 

response to environmental stressors. For example, under harsh environmental conditions 

(e.g., high concentrations of antibiotics, toxic metals, chlorination), the structure of EPS 
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released by fecal bacteria may favor the formation of microsites with specific 

physicochemical conditions that permit the survival of fecal bacteria (Costerton et al., 

1995). Compositional factors can influence ion selectivity and other chemical properties 

(Bhaskar and Bhosle, 2005). For example, the presence of sugars like arabinose in EPS 

helps cell aggregation in bacteria assemblages (Efrat et al., 2004), whereas deoxy sugars 

like fucose and rhamnose found in diatom EPS help to enhance foaming and flocculation 

(Zhou et al., 1998). The higher yield of uronic acids and other acidic moieties, including 

sulfate esters, pyruvates and acyl groups, gives an overall negative charge to the 

polymer, thereby imparting binding and adsorptive properties to the polymer (Decho, 

1990).  In order to understand the role exopolysaccharides play in marine systems, it is 

important to characterize EPS and thus clarify the composition of EPS in relation to their 

functional properties. Recently, many advanced analytical techniques have been used to 

characterize polysaccharides, such as GC/MS, FTIR, HPLC, NMR, etc. (Chauton et al., 

2003; Lim et al., 2005; Nordmark et al., 2005). Some of these techniques, e.g., NMR, 

require relatively large (e.g., 30mg or more) amounts of analytes. However, current 

isolation and analysis methods have difficulties with harvesting and purifying sufficient 

quantities of EPS from phytoplankton cultures. Ethanol precipitation, the method most 

often used for EPS isolation, (Schepetkin et al., 2005; Wang and Xia, 2005; Kim et al., 

2006; Lbarburu et al., 2007), is ineffective for many cultures due to the large quantities 

of ethanol required for large-scale isolation of EPS from aqueous media such as 

seawater. Currently, membrane technology is the preferred method to desalt and 

concentrate macromolecules from complex matrices. This technology can be found in 
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most modern food processing applications (e.g., Kamada et al., 2002; Wang et al., 2002; 

Li et al., 2005). Applications of cross-flow ultrafiltration techniques in marine systems 

for sampling natural colloids have greatly increased, and their recent progress has been 

reviewed (Carlson et al., 1985.; Benner et al., 1997; Dai et al., 1998; Guo et al., 2000; 

Guo and Santschi, 1997; Guo et al., 2007). These studies can provide the foundation for 

the utilization of cross-flow ultrafiltration to EPS sampling and purification. However, 

most of the EPS characterization literature is from EPS grown on biofilms, as with 

biofilms, it is easier to get sufficient material for chemical characterization. A 

comparison with the literature on EPS extraction and purification from aqueous culture 

media shows that the newer ultrafiltration procedure improved yield and purity.  

 The objective of this study is to develop a suitable protocol for large-scale EPS 

isolation from seawater medium by comparing three different techniques, 1) the classical 

ethanol precipitation method, 2) stirred-cell ultrafiltration, and 3) cross-flow 

ultrafiltration, with 2) and 3) followed by stirred-cell diafiltration. Amphora sp. was used 

as a model species in the study. Since fresh EPS biopolymers have molecular masses of 

tens to hundreds of kDa (e.g., Decho, 1990; Zhang et al., 2008), as opposed to more 

degraded material (e.g., Alvarado-Quiroz et al., 2006), membrane molecular weight cut-

offs of 10kDa or less are perfectly adequate for isolation and separation purposes. The 

retention characteristics of EPS, as well as their chemical characteristics, were studied to 

examine the validity of ultrafiltration technology based on the recovery of EPS extraction 

and their chemical signatures in anion exchange chromatography and size exclusion 

chromatography. As a result, cross-flow ultrafiltration followed by stirred-cell 
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diafiltration was proven to be an effective technique to isolate EPS from a large volume 

of seawater or phytoplankton culture. The large-scale isolation method will enable 

researchers to recover large amounts of EPS from cultures or water samples with 

minimal effort and cost. Furthermore, this new technique will be useful in 

comprehensive understanding of EPS in aquatic systems by allowing isolation of enough 

material for molecular-level analysis (e.g., NMR, GC- or LC MS) and examinations of 

their physical, chemical and biological properties. This will advance our understanding 

of the roles of EPS in the formation of marine snow, particle dynamics, trace metal 

scavenging and sedimentation processes. 

 

2.3. Materials and methods  

2.3.1. Culturing of Amphora sp.  

     Bacillariophyceae Amphora sp. (CCMP1389) was bought from CCMP (National 

Culture Collection of Marine Phytoplankton). It was originally collected from Flax Pond, 

near the Stony Brook Marine Lab, Long Island, New York. In this experiment, Amphora 

sp. was cultured in a 2 L flask with 1 L of autoclaved f/2-Si medium (CCMP medium 

recipe, salinity: 30 psu) at a temperature of 21° C. For each batch, 10 flasks were used to 

culture Amphora sp. in order to harvest 10 L of culture solution for experimental use.  

Dual lamp fluorescent lighting (Incubator 818, Precision) provided uniform illumination 

with one cycle per day (e.g. 12h/12h). The status of Amphora sp. was monitored by 

measuring Chlorophyll a concentrations (Yentsch 1963). EPS was collected when 

Amphora sp. was at the stationary phase. Stationary phase was reached on the ninth day 
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of culturing. In this study, we harvested Amphora sp. in the twelfth day allowing the 

culture more time at stationary phase. Additionally, to prepare for blank samples, another 

10 flasks filled with the same autoclaved medium was “cultured” for the same time.  

2.3.2. Extraction of EPS   

   Amphora sp. cultures and blank samples were centrifuged (2694g, 30 minutes) 

followed by pre-filtering through GF/B, GF/F and 0.45 µm polycarbonate membranes (in 

series). The filtrate was collected to allow for monitoring the progress of the EPS 

extraction methods.  

Cell lysis during centrifugation and filtration releases cytosolic contents, like proteins, 

lipids and nucleic acids, into the culture solution, which will compromise the purity of 

the original exopolymeric substances that were released. In this experiment, nucleic acid 

concentration was used as an indicator of cell lysis during centrifugation and filtration. 

Briefly, before the culture was collected for centrifugation, 1 mL of the original culture 

was filtered through 0.45 µm polycarbonate membranes, where cell lysis was considered 

to be negligible. Nucleic acid concentration was estimated by measuring the UV light 

absorbance at 270 and 290 nm (Karklinya et al., 1989). The concentrations in the culture 

subjected to centrifugation and filtration was then measured at the same time and under 

the same conditions for nucleic acid determination. The difference in nucleic acid 

concentration between the two cultures was then used to evaluate cell lysis.  

2.3.3. Ethanol precipitation 

    As the classical method to extract water-soluble polysaccharides, ethanol precipitation 

was used as a reference method. In our laboratory experiments, three volumes of a 
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mixture of 95% ethanol and 5% methanol were added to 1 volume (1 liter) of pre-filtered 

culturing solution, and the solutions was stirred homogenously. The mixture was kept 

overnight in the refrigerator. After that, the mixture was centrifuged at 2694g for 30 

minutes and the supernatant discarded. The precipitate that evolved was first dissolved 

with 100 mL of nanopure water and then the solution was centrifuged (2694g, 30 

minutes) again. The supernatant was kept, and the procedure repeated six times until all 

the precipitate was completely dissolved. 1 L of blank sample was extracted using the 

same procedure. 

2.3.4. General procedure for stirred-cell ultrafiltration 

    1 L of pre-filtered culture was ultrafiltered using an Amicon 8200 stirred-cell 

（Millipore）and 5kDa polyethersulfone membrane, at a working pressure of 45-50 psi. 

After ultrafiltration, 300 mL of nanopure water was needed to completely remove the 

salts. 25~30 mL of retentate remained and was stirred for 30 minutes. Another 25 mL of 

water was used to wash the membrane by stirring 1 hour at the end, which was then 

combined with the retentate. The final solution was then ready for further analysis. 1 L of 

blank culture was used for procedural blank estimation.  

2.3.5. Calibration of membrane 

    1.6 mg of 10 kDa fluorescent-tagged dextran (Sigma) in 1 L of nanopure water was 

used to check and calibrate the stirred-cell system by going through the general 

procedure described above. Dextran was quantified by establishing a calibration curve 

from 0, 16, 32, 48, 64 µg/mL on a spectrophotometer at 478 nm.  Mass balance between 

originally added dextran and retentate dextran was calculated to estimate the 
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effectiveness of the system. Additionally, dextran was used to test the Anion Exchange 

Chromatography system in order to assess possible changes in charge properties after 

stirred-cell ultrafiltration. 

2.3.6. Testing salt effects 

     As changes in ionic strength, pH, and seawater cations can modify the behavior and 

speciation of aquatic macromolecules, the recoveries of 1.6mg dextran in 1 L of distilled 

water and 1 L of permeate from stirred-cell ultrafiltration (< 5 kDa) were tested for 

possible salt effects. In addition, EPS harvested from ethanol precipitation were 

dissolved in 1 L of permeate from stirred-cell ultrafiltration to examine the recovery of 

EPS during the stirred-cell ultrafiltration process. In parallel, another EPS aliquot that 

was dissolved in nanopure water was prepared to go through the same procedure. Uronic 

acid concentrations in the initial feeding solution and in the final solution, respectively, 

were measured to estimate the effect of seawater chemistry on the recovery of EPS 

during stirred-cell ultrafiltration.   

2.3.7. Cross flow ultrafiltration system 

    A spiral wound 1 kDa SOC 1812 cartridge (Separation Engineering, Inc), and a Teflon 

diaphragm pump head (ColeParmer) equipped with Teflon fittings and tubings, were 

used to minimize the sorptive losses and any possible contamination of the apparatus 

(Guo and Santschi 1996; Wen et al.1996; Guo et al., 2000, 2001). After each run, the 

cartridge was subjected to a cleaning procedure with detergent (Micro-90), 0.05 M 

NaOH, and 0.05 M HCl, respectively. Each solution was recycled for at least for 20 

minutes. Between each solution, ~20 L of nanopure water was flushed through the 
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ultrafiltration system. After the full chemical cleaning, a final 20 L of nanopure water 

was flushed through the system. All the operations were carried out at 30 psi and at 50-

60% pump power efficiency. Additionally, the cartridge was stored in 2% NaN3 to 

prevent bacteria growth in-between uses.  

2.3.8. General procedure for cross- flow ultrafiltration 

     In order to meet the demand of greater mass production of EPS, cross-flow 

ultrafiltration was used to partly desalt and concentrate EPS from Amphora sp. from 

large volumes. A general procedure for obtaining purified EPS from 8 L of culture 

solution is summarized in a schematic diagram (Figure 2.1).  The procedure consists of 

a) Amphora sp. culturing, b) centrifugation, c) filtration, d) cross-flow ultrafiltration, e) 

stirred-cell diafiltration, and f) anion exchange chromatography steps. In detail, 

ultrafiltration of 8 L of pre-filtered culture was carried out until 200-300 mL of retentate 

remained. After that, the cartridge was rinsed with 200 mL of nanopure water, the pump 

turned off and the cartridge was soaked in water for 6 hours. After that, the cartridge was 

rinsed with another 200 mL of water, and this whole process was repeated twice, 

sometimes after waiting overnight when it was inevitable.  Subsequently, the retentate 

solution and four rinse solutions were combined. The resulting 1 L of solution was then 

further concentrated by stirred-cell diafiltration with a 5 kDa membrane at the same 

conditions described in the section of stirred-cell ultrafiltration to obtain 50 mL of 

concentrated EPS solution. After that, the EPS solution was further purified by 

fractionation using anion exchange chromatography (see section ‘Purification and 

fractionation of EPS’). A procedural blank was determined by using 8 L of blank culture 
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sample.  

2.3.9. Calibration of cross- flow ultrafiltration cartridge  

     Calibration was conducted by using 10 kDa fluorescent-tagged dextran. 12.8 mg of 10 

kDa fluorescent-tagged dextran was dissolved in 8 L of pre- ultrafiltered culture solution 

and subjected to the same general procedure for cross-flow ultrafiltration.  Dextran was 

quantified at 495 nm (the absorbance maximum of dextran shifted from 478 nm to 495 

nm when it was dissolved in seawater). Mass balance of dextran between the initial 

solution and the final solution was calculated to estimate the effectiveness of the system. 

In addition, anion exchange chromatography (AEC) was used to monitor change in 

dextran charge distributions after this procedural treatment. 

2.3.10. Effect of concentration factors (CF)  

     Since high CFs provide for better speciation and retention results but could increase 

coagulation of biomolecules in the retentate (Guo et al., 2007), the effects of different 

CFs were tested. 8 L of culture solution was concentrated to 1600 mL, 800 mL, 400 mL 

and 200 mL, respectively, by cross-flow ultrafiltration to achieve a CF of 5, 10, 20, 40. 

The yields of EPS at different CF were measured to determine the effects of 

concentration factor (CF) on the recovery of EPS during cross-flow ultrafiltration.   

2.3.11. Determination of concentrations of total carbohydrates, uronic acids and 

proteins  

     Total carbohydrates (including uronic acids) were estimated by using the anthrone 

method (Morris 1948; Rastogi 2005), which is considered simpler and more specific for 

carbohydrates compared with other methods. Uronic acids were determined by using 



23 
 

0.0125 mol/L sodium borate in concentrated sulfuric acid and 3-phenylphenol 

(Blumenkrantz and Asboe-Hansen 1973). Proteins were quantified using bicinchoninic 

acid (Smith et al. 1985; Stoscheck 1990).  

  

 

Fig. 2.1 Schematic diagram of the procedures for EPS isolation 
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2.3.12. Purification and fractionation of EPS - a new anion exchange procedure 

    A preparative liquid chromatography method was developed to purify and fractionate 

extracted EPS using a BioSuite Q13 um AXC (21.5x150mm) column from Waters. Two 

different eluents were used for the mobile phase: A: 20 mmol/L tris HCl (pH=8.1) and B: 

20 mmol/Ltris HCl with 1 mol/LNaCl, where 100% A is changed to 100% B in 70 

minutes. EPS from Amphora sp. was detected using a fluorescent detector (Waters 474) 

at excitation λ=285 nm, emission λ=580 nm (Ding et al., 2008). The injection volume in 

the experiment was designed to be 5 mL (approximately 2% of column volume) and the 

flow rate was 5 mL/min.  

2.3.13. Estimation of EPS molecular weight  

    Size exclusion chromatography was used to measure the molecular weight of EPS. 

The column used was a Tosoh TSK G-4000PWxl, which was eluted by 10 mmol/L 

phosphate buffer (pH=6.8 with 0.078 mol/L NaNO3) at 0.5 mL/min. 150 μL of sample 

was injected and detected by a refractive index detector (Waters 410). Polystyrene 

standards with molecular weights of 8 kDa, 35 kDa, 100 kDa, and 780 kDa were used for 

the calibration curve, whereby the logarithm of molecular weight was plotted vs. 

corresponding retention time.  

 

2.4. Results  

2.4.1. Cell lysis 

     Cell lysis can provide large artifacts for EPS collection and purification (Decho, 

1990). In order to test for possible artifacts, nucleic acid concentrations were monitored 
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during all phases of EPS isolation and purification. Results showed that nucleic acid 

concentrations did not vary after centrifugation and filtration of the cultures, 0.57±0.03 

mg/Lfor initial cultures before centrifugation and filtration and 0.54 ± 0.07 mg/L for 

cultures subjected to centrifugation and filtration. The minimal cytolysis could be due to 

the well- developed cell wall of Amphora sp., which helps to prevent occurrence of 

cytolysis.  

2.4.2. Ethanol precipitation of EPS  

     Even though the isolation of polysaccharides from organisms in most studies is based 

on ethanol precipitation, in our study, it was difficult to isolate EPS from a culture of 

Amphora sp. using this method due to the large amount of Ca-Mg-carbonate precipitate 

formed. Simply using HCl to dissolve the carbonates did not result in a visible EPS 

residue, as ethanol is less effective in acidic solutions to precipitate EPS. Furthermore, 

using 100 mL nanopure water to dissolve the small amounts of EPS that would co-

precipitate with the carbonates led not only to a large loss of EPS, but also to dilution 

rather than concentration.  

     Up to 1 g of white precipitate developed when 3 L of a mixture of ethanol and 

methanol was added to 1 L of pre-filtered culturing seawater solution of Amphora sp., 

with most of it as calcium and magnesium carbonates, which are not soluble in 70% 

ethanol. 100 mL of nanopure water was firstly used to dissolve the precipitate. Then the 

aqueous phase and the remaining precipitate were separated by centrifugation. This 

procedure was repeated until the precipitate was completely dissolved. As a result, seven 

100 mL of solutions were collected and total carbohydrates and uronic acids in the seven 
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solutions were determined. Their distributions are shown in Figure 2.2. There were no 

detectable carbohydrates and uronic acids in fractions from the blank sample. Total 

carbohydrates and uronic acids in solution 1 were not estimated because of an occurrence 

of browning after the addition of sulfuric acid. Moreover, there were no detectable 

carbohydrates or uronic acid in the retentate of solution 1 after it was subjected to stirred-

cell diafiltration. The even distribution of carbohydrates and uronic acids in the solutions 

2~7 shown in Figure 2.2 leads to the difficulty in extracting EPS with ethanol, since 700 

mL of nanopure water has to be used to dissolve EPS out of the precipitate when treating 

1 L of culture solution. In other words, EPS cannot be concentrated in this way, not to 

mention the huge consumption of ethanol in the mass production of EPS. The yield of 

EPS from Amphora sp. was 1.5±0.2 mg-glucose/L and 2.9±0.8 (n=3) mg-glucuronic 

acid/L, by summing the seven solutions. The yield of uronic acids was about twice as 

much as that of carbohydrates, which may have been caused by an underestimation of 

uronic acids in the total carbohydrates method using the anthrone reagent. This 

explanation is further verified by the fact that 60mg/L glucuronic acid was found to be 

equivalent to only 14 mg/L glucose-equivalents. 

2.4.3. Calibration of stirred-cell ultrafiltration   

Our results from using 10 kDa dextran in stirred-cell ultrafiltration systems showed 

undetectable amounts of dextran in the permeate. Thus, high recovery rates of 96.8±2.8 

% (n=3) were achieved in our experiment when calculating the mass balance of dextran 

in initial solutions and the corresponding retentates. Additionally, dextran in the initial 

solution and in the retentate demonstrated a similar signature on anion exchange 
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chromatography, which means that neither artifacts nor changes in charge occurred 

during stirred-cell ultrafiltration of the dextran standard. 
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Fig. 2.2 Distribution of total carbohydrates and uronic acids in six fractions from ethanol 

precipitation (n=3, i.e. 3 repeated ethanol precipitation experiments using cultures from 

three different batches) 

2.4.4. Salt effect on EPS isolation during stirred-cell ultrafiltration   

     The recovery of dextran and EPS (obtained from ethanol precipitate) in nanopure 

water and pre-ultrafiltered culture is shown in Figure 2.3. A recovery of approximately 

85.0% was obtained for EPS and dextran in the pre-ultrafiltered culture solution, while 

95.0% for the same materials dissolved in nanopure water.  Neither EPS nor dextran was 

found in the permeate. So, absorption onto the membrane might account for most loss of 

EPS. The consistently higher recoveries in nanopure water during stirred-cell 

ultrafiltration indicate that the aqueous chemistry of seawater could, to some degree, 
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cause adsorption losses of EPS to the ultrafiltration membrane. As a result, membrane 

washing is strongly recommended at the end of diafiltration in order to increase the 

recovery of EPS. However, as for the extraction of EPS, an 85% recovery rate is 

definitely acceptable and practical. The yield of EPS from Amphora sp. using stirred-cell 

ultrafiltration was 3.1±0.4 (n=4) mg-glucuronic acid L-1, comparable to the yield of 

ethanol precipitation. Based on the investigation of permeation and retention of EPS, 

stirred-cell ultrafiltration followed by diafiltration was adopted after cross-flow 

ultrafiltration of EPS, due to its simplicity and reproducibility.  
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Fig. 2.3 Recovery (n=3) via stirred cell ultrafiltration of dextran and a test EPS isolate 

dissolved  in seawater (SW) and nanopure water (NW) 

2.4.5. Calibration of cross-flow ultrafiltration of EPS  

     The ultrafiltration cartridge was calibrated by using 10 kDa dextran. Dextran recovery 

was up to 87.0±3.6% (n=3) at a concentration factor (CF) equal to 20. Additionally, 

dextran subjected to cross-flow ultrafiltration demonstrated the same anion exchange 
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chromatographic signature. Therefore, extraction of EPS using cross-flow ultrafiltration 

was considered practical.  

    EPS isolation recovery using cross-flow ultrafiltration was very low (i.e., 20~30%) 

without post-ultrafiltration soaking, regardless of concentration factor (CF: 10~40). 

However, after 3 extra soakings were introduced into the procedure at the end of 

ultrafiltration, the isolation recovery of EPS dramatically increased resulting in cross-

flow ultrafiltration followed by stirred-cell diafiltration becoming comparable to stirred-

cell ultrafiltration, with a yield of 2.8±0.2 (n=4) mg-glucuronic acid L-1. The distribution 

of exopolysaccharides in terms of uronic aicds in the retentate and the four washing 

solutions is shown in Figure 2.4. It shows that, at a CF of 40, only 15.9% of EPS 

remained in the retentate and 6.6% of EPS was rinsed off without soaking, while 77.5% 

EPS was washed out by soaking. Therefore, the loss of EPS on the membrane cannot be 

neglected but can be recovered by soaking.  

 Various concentration factors (5, 10, 20 and 40) were investigated to evaluate the 

effect of concentration factor, CF, on the isolation efficiency of EPS by comparing 

stirred-cell ultrafiltration. As it turned out, the value of the CF did not significantly 

impact the yield. The yields were 91.6±2.8% of those using the stirred cell technique, 

regardless of CF.  

2.4.6. Soaking interval  

     6-hour and 3-hour soaking times were applied to cross-flow ultrafiltration of EPS. 

The uronic acids distribution is shown in Figure 2.4. Even though the soaking interval 

was different, the distribution pattern of uronic acids was similar. A major amount was 
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washed out during the third rinse. It is obvious that the 3-hour soaking interval would 

have required more soakings, and would have resulted in longer laboratory processing 

times and increased distilled water use for rinsing, and thereby much more work for 

stirred-cell diafiltration that was subsequently used.  However, the overall yield of EPS 

for 3-hour soaking was 2.9 mg-glucuronic acid L-1, which was within 2.8±0.2 mg-

glucuronic acid L-1, a yield for 6-hour soaking. Because of lower water use and shorter 

processing times, a 6-hour soaking time was adopted. 
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Fig. 2.4 The distribution of EPS in terms of uronic acids in the retentate and washing 

solutions when different soaking intervals (3- hour and 6- hour) were applied to cross- 

flow ultrafiltration (CF=40, n=3).  Note: rinse 1 is pre-soaking rinse and rinses 2-6 are 

post-soaking rinse

2.4.7. Purification and fractionation of EPS from Amphora sp.  

Anion exchange chromatography was used to purify and fractionate extracted EPS. 

The separation mechanism of anion exchange chromatography is based on the ionic 
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interactions between negatively charged solutes in the mobile phase and a charged ion-

exchange group contained on the stationary phase. EPS of Amphora sp. harvested from 

the three isolation methods demonstrated similar chromatographic characteristics, as 

shown in Figure 2.5. In other words, the three isolation procedures appear to produce the 

same exopolysaccharides. Their retention times were 55 (fraction 1) and 66 minutes 

(fraction 2), respectively. Compared to ethanol precipitation, cross-flow ultrafiltration 

and stirred cell diafiltration not only were relatively artifact-free, but also effectively 

concentrated EPS from a large-volume culture.  

 In order to further validate the composition of the two fractions appearing in the anion 

exchange chromatography, total carbohydrates and uronic acids were individually 

determined in fractions, eluted from the anion exchange chromatographic column and 

collected every 2 minutes. The distributions of carbohydrate and uronic acids determined 

by their corresponding colorimetric methods were in good agreement with the anion 

exchange chromatogram of EPS isolates using fluorescence detection, which means that 

the two fractions separated by anion exchange column are both exopolysaccharides. The 

monosaccharides in the exopolysaccharide fraction 1 were analyzed to be glucuronic 

acid, fucose and galactose. As to fraction 2, glucuronic acid was the major component, 

followed by galactose and fucose (Zhang et al., 2008).  

The protein content in the three EPS extracted by the three procedures was also 

determined by BCA colorimetric method to be below the detection limit of 0.02 g L-1. 

Size exclusion chromatography was adopted to further validate the uniformity in 

molecular weight distribution, as well as to determine the molecular weight distribution 
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of the two different exopolysaccharide fractions. As shown in Figure 2.6, both fractions 

have a single molecular weight distribution at a retention time around 11.8 minutes, 

equivalent to a molecular weight of approximately 1000 kDa. 

 

2.5. Discussion 

    When cross-flow ultrafiltration was used for EPS separation, however, recoveries of 

EPS were very low (20%~30%), regardless of concentration factor, when membranes 

were not soaked. Because no EPS was found in the permeate, it appeared that EPS was 

lost by sorption onto the cartridge due to fouling by EPS and other natural organic 

compounds. Therefore, a three-step cartridge soaking procedure, followed by 

diafiltration, was adopted to recover EPS from the cartridge, a procedure that greatly 

increased the efficiency of EPS isolation, resulting in a yield 2.8 ± 0.2 mg-glucuronic 

acid/L, comparable to that of stirred-cell ultrafiltration. The length of the individual 

soaking interval did not impact the overall yield of EPS isolation. 3-hour soaking can 

remove most of the adsorbed EPS if repeated 5 times, while 6-hour soaking only 

required 3 repeated soakings. Therefore, the 6- hour soaking method is believed to be the 

optimal procedure as EPS had to be diluted to a lesser extent. Additionally, the value of 

the concentration factor was not crucial for EPS isolation yield, since EPS fouling on the 

membrane could be washed out by extra soakings. 
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Fig. 2.5 Anion exchange chromatograms of EPS from ethanol precipitate (a), stirred-cell 

diafiltration (b) and cross-flow ultrafiltration (c) (1. Blank, 2. EPS from Amphora sp.) 
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Fig. 2.6 Size exclusion chromatograms of the two exopolysaccharide fractions 

obtained from anion exchange chromatography of EPS from Amphora sp. 

 

The fact that the recovery rate of EPS during ultrafiltration can be greatly increased by 

soaking indicates good reversibility (on time scales of hours to days) of the interaction of 

EPS with the membrane (“fouling”) under the operating conditions. Membrane fouling 

during cross flow ultrafiltration has been increasingly realized as a problem (Yiantsios 

and Karabelas, 1998; Ye et al., 2005a, 2005b; Katsoufidou et al., 2007). The fouling 

mechanisms of EPS are not entirely clear, but it appears that cake development on the 

membrane, i.e., deposition of particles larger than the membrane pore size onto the 

membrane surface, can explain our results. Self-assembly of DOM induced by EPS and 

ionic strength promote aggregation of DOM during ultrafiltration and thus fouling of 

EPS on the membrane. Thus, EPS could be recovered by appropriate backwashing. 

  The anion exchange chromatography (AEC) procedure allows the detection of 
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potential artifacts, and serves the purpose of quality control tool. More importantly, it 

also allows the characterization of individual biopolymers rather than that of a mixture, 

which is common for some of the other methods. In this study, anion exchange 

chromatography was used to purify and fractionate crude EPS harvested from the three 

techniques. EPS from Sagitulla stellata have been reported by Ding et al. (2008) to have 

marked fluorescence properties at a given wavelength (e.g. excitation λ=285 nm, 

emission λ=580 nm), a property that was used to monitor self-assembly of DOM 

polymers and the formation of marine microgels.  Here, we further confirmed the 

application of this fluorescence characteristic of the EPS by measuring the concentration 

of total carbohydrates and uronic acids in chromatographic fractions collected every two 

minutes. The two fractions determined by fluorescence detection were uronic acid-

containing carbohydrates.   

  Additionally, the similar characteristics on anion exchange chromatography of EPSs 

isolated from the three techniques indicated that no detectable artifacts and little loss of 

exopolysaccharides were caused by cross-flow ultrafiltration followed by stirred-cell 

diafiltration, which allowed the application of cross-flow ultrafiltration for large-scale 

isolation of EPS. Two extracellular polysaccharides (fraction 1 and fraction 2) separated 

by anion exchange chromatography had similar molecular weights of 1000 kDa, but 

different monosaccharide composition. Fraction 1 was mainly composed of glucuronic 

acid, fucose, and galactose, while glucuronic acid was the major component of fraction 2, 

which had much less galactose and fucose. In other words, the second fraction held more 

acidic functional groups (-COOH) than the first fraction, which is consistent with the 



36 
 

chromatography since more negatively charged compounds would more strongly interact 

with the charged ion-exchange group contained on the stationary phase.  

 Based on the results of these experiments, the optimal method for the isolation of EPS 

from phytoplankton cultures or natural waters, based on time, cost, and yield, is cross 

flow ultrafiltration, followed by stirred-cell diafiltration with additional cartridge 

washing.  The new procedure thus allows one, with only 10 liters of media, to obtain 

sufficient amounts of EPS material (10-30 mg, preferably 50mg) for a full chemical 

characterization at the molecular level (i.e., NMR, GC-MS, HPLC, ATR-FTIR, etc).   

 

2.6. Conclusions 

Through controlled experiments, three techniques, i.e., 1) ethanol precipitation, 2) 

stirred-cell ultrafiltration, or 3) cross-flow ultrafiltration, were compared for their 

effectiveness to quantitatively isolate exopolymeric substances (EPS) from the marine 

diatom Amphora sp. Both ultrafiltration techniques were followed by stirred-cell 

diafiltration.  

 It was shown here that ethanol precipitation techniques, when applied to diatom 

cultures, are not only impractical, but also lead to loss of EPS, as addition of ethanol 

dilutes the medium too much. It was also shown that only through a combination of 

cross-flow ultrafiltration and stirred-cell ultrafiltration, followed by overnight soaking, 

EPS can be nearly quantitatively recovered. Finally, it was shown that through the 

application of anion exchange chromatography one can obtain individual EPS 

compounds for further chemical characterization. Ethanol precipitation was not effective 
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due to ethanol consuming and significant formation of co-precipitates (Ca and Mg 

carbonates), which diluted the EPS compounds of interest. The effect of the seawater 

medium on the retention of EPS during stirred-cell ultrafiltration resulted in the loss of 

EPS onto the membrane and a lower recovery, i.e., 85% using a seawater medium and 

95% using nanopure water. Backwashing was introduced to recover EPS from the 

membrane at the end of diafiltration, resulting in an improved recovery. Thus, this 

procedure was optimal for harvesting EPS from Amphora sp. in terms of recovery of EPS 

isolation. However, it would be impractical to ultrafilter 5 liters or more culture solution 

or natural water using only this small-volume stirred-cell ultrafiltration method. 

Therefore, cross-flow ultrafiltration was applied as an initial separation technique from 

large volumes of water.  
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CHAPTER III 

CHEMICAL COMPOSITION AND 234 Th (IV) BINDING OF 

EXTRACELLULAR POLYMERIC SUBSTANCES (EPS) PRODUCED BY THE 

MARINE DIATOM AMPHORA SP.* 

 

3.1. Overview 

    In order to chemically characterize strongly Th (IV)-binding exopolymeric substances 

(EPS) from a single organism, “particulate” (i.e., p, attached) and “dissolved” (i.e., d, 

nonattached) EPS from a lab culture of the marine diatom Amphora sp. were isolated by 

centrifugation, followed by alcohol precipitation or ultrafiltration. Both dissolved EPS 

and particulate EPS were mainly composed of carbohydrates, with only a small fraction 

of proteins. Individual fractions that were further separated by anion exchange 

chromatography (AEC) contained EPS with significantly different compositional 

characteristics and molecular weights. The particulate fraction was composed of two 

different glucans, p1 and p2, but with the same molecular weight of 25 kDa, while more 

than 90% of the dissolved fraction was composed of two different acidic polysaccharides, 

f1 and f2, with a similar molecular weight of 1000 kDa. While both f1 and f2 fractions 

contained the neutral monosaccharides fucose and galactose, as well as glucuronic acid, 

they were in a different mole ratio: f1 in a ratio of 1:1.1:1.6, and f2 as 1:0.8:2.8. In 

addition to glucuronic acid, both f1 and f2 fractions contained relatively high  

 
*Reprint with the permission from “Chemical composition and 234Th(IV) binding of 
extracellular polymeric substances (EPS) produced by the marine diatom Amphora sp.” 
by Saijin Zhang, Chen Xu, Peter H. Santschi, 2008. Marine Chemistry, 112, 81-92, 
Copyright [2008] by Elsevier. Doi: 10.1016/j.marchem.2008.05.009. 
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concentrations of sulfated polysaccharides, with a sulfate content of 9.7% in f1, and 

18.2% in f2. The difference between total acid polysaccharide concentrations, as 

determined by the Alcian blue method, and the actual concentrations of EPS can be 

explained by the relative amounts of sulfate and glucuronic acid. Dissolved EPS, and 

fractions f1 and f2 that were labeled with 234Th (IV), all showed peaks at isoelectric 

points (pHIEP) of about pH 3 during isoelectric focusing, indicating that Th (IV) binding 

by EPSwas dominated by the acidic polysaccharides in f1 and f2. The strong binding of 

234Th (IV) to these acidic polysaccharide-rich EPS compounds enables us to locate and 

closely look at the agents who are responsible for binding of 234Th (IV), which is relevant 

for a better understanding of the oceanographic applications of POC/234Th ratios to 

particle and organic carbon dynamics in marine systems. 

 

3.2. Introduction 

    Organic substances, such as exopolymeric substances (EPS), are released from 

phytoplankton cells during all phases of growth, with extracellular polysaccharides 

comprising up to 80–90% of the total extracellular release (Myklestad, 1974). EPS are 

well known for their roles in formation of transparent exopolymeric particles (TEP) 

(Leppard, 1995, 1997; Passow, 2002), marine gels (Verdugo et al., 2004), and biofilms 

(Decho, 2000), which are important in regulating sedimentation processes, 

biogeochemical cycling and particle dynamics in the oceans by bypassing the microbial 

loop. As micro- and nano-particles, TEP provide a microhabitat for bacteria by forming 

relatively stable microzones in aggregates and impacting all concentration-dependent 
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processes, like nutrient uptake and grazing rates. Many studies have found elevated 

bacterial productivity within aggregates compared to the surrounding seawater (Herndl, 

1988; Grossart and Simon, 1993, 1998). Observational evidence from Logan et al. (1995) 

confirmed that the formation of aggregates at the decline of diatom blooms is frequently 

controlled by the chemical composition of EPS.  The studies of Passow and Alldrege 

(1994) provide a detailed description of the aggregation dynamics during diatom blooms. 

Aggregation becomes the dominant process in particle dynamics when particle 

concentrations reach a critical concentration (Jackson, 1990). In addition, EPS also take 

part in the scavenging of stable and radioactive trace elements, such as Th (IV), due to 

their chelating and surface-active properties.  

     234Th (IV)) is a naturally occurring highly particle-reactive radionuclide produced 

from alpha decay of Uranium-238. It is used as a proxy in oceanographic investigations 

of particle dynamics and the determination of particulate organic matter fluxes, which are, 

at steady state, equal to “new production”, through the use of 234Th/POC ratios 

(Buesseler et al., 2006). 234Th/POC ratios might be controlled, in part, by the abundance 

of exopolymeric substances (EPS) because of their chelating and surface activity and the 

affinity of Th (IV) to particles. As summarized in Santschi et al. (2006), both 

experimental (Quigley et al., 2002) and field results (Guo et al., 2002; Santschi et al., 

2003; Passow et al., 2006) demonstrate that Th (IV) in the ocean is strongly associated 

with acidic polysaccharide (APS)-rich compounds. Different acidic functional groups, 

like carboxylate, phosphate and sulfate, have been implicated to contribute to the binding 

of Th (IV) to different EPS compounds (Alvarado-Quiroz et al., 2006). 
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In order to better understand the roles of EPS in particle dynamics of aquatic systems, 

it is important to characterize, at the molecular level, EPS that have been harvested and 

purified from experimental systems. The purpose of this study is therefore to characterize 

EPS from a common marine benthic diatom, Amphora sp., which as characterized in the 

literature to release large amounts of EPS. Part of the limitation of this research was to 

find a diatom that could be cultured to obtain sufficient amounts of EPS to carry out a 

full chemical characterization of its composition. After an initial screening of different 

species, Amphora sp. was selected to be suitable for such an investigation, in order to 

relate its composition to its binding properties to 234Th (IV). Amphora is a common 

genera found in coastal communities (Welker et al., 2002; Kasim and Mukai, 2006; 

Facca and Sfriso, 2007) and can be found in both benthic and pelagic environments. 

Benthic microalgal communities are important primary producers in wide variety of 

shallow coastal areas (Cadee and Hegeman, 1974; Colijn and De Jonge, 1984; Cahoon 

and Cooke, 1992; Barranguet, 1997; Nelson et al., 1999). Up to 40% of the 

photosynthetically fixed carbon is lost by pelagic diatoms as an extracellular release 

(Fogg, 1983; Smith and Underwood, 1998; Taylor and Paterson, 1998). Furthermore, 

they release EPS in proportion to their biomass. For example, a positive correlation 

between sediment colloidal carbohydrate concentrations (as a proxy of EPS) and benthic 

diatom biomass has been found in many studies. (Underwood and Paterson, 1993; 

Fabiano and Danovaro, 1994; Underwood et al., 1995; Welker et al., 2002; Underwood 

and Paterson, 2003). Even though the behavior of benthic diatoms do not represent that 

of pelagic diatoms, it is likely that the mechanism of binding of their EPS with 234Th can 
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be extrapolated to oceanic species as physico-chemical properties of EPS are considered 

to be the major factors in regulating their binding with 234Th (IV). Thus, we expect that 

this study will shed light on the binding of 234Th with EPS and its relationship to the 

molecular level composition of EPS, regardless of the exact source of EPS.  

 

3.3. Materials and methods 

3.3.1. Isolation of EPS from Amphora sp. 

    Bacillariophyceae Amphora sp. (CCMP1389) was bought from CCMP (National 

Culture Collection of Marine Phytoplankton). This diatom species was originally 

colleted from Flax Pond, near the Stony Brook Marine Lab, Long Island, New York. In 

our experiments, it was cultured in a f/2-Si medium (CCMP medium recipe) with a 

salinity of 30 ppt at a temperature of 21 °C (Incubator 818, Precision) with one light 

cycle per day (e.g. 12 h/12 h). The status of Amphora sp. was monitored by measuring 

Chlorophyll a (Yentsch, 1963). After 12 days of incubation when Amphora sp. reached 

the stationary phase, the culture solution was centrifuged at 2694 g for 30 min for 

subsequent experiments. The culture was then separated into two fractions: pellet (cell) 

and supernatant. EPS isolated from the pellet was called “particulate EPS” (attached 

EPS). The isolation procedure for processing the pellet, as described below, is based on 

Kushner et al. (1992) and Hung et al. (2005). 100 mL of nanopure water was first added 

to the pellet. The pellet then was extracted overnight by stirring, allowing for the 

equilibrium to be reached between the particle surface and the water. The residue was 

eliminated by centrifugation and the EPS released into the supernatant was precipitated 
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by adding 3 volumes of alcohol (95% ethanol and 5% of methanol). The solution was 

allowed to stand overnight in the refrigerator. The precipitate was collected by 

centrifugation, followed by re-dissolution in 100 mL of nanopure water. This ethanol 

precipitation was repeated twice. The final solution containing particulate EPS was used 

for further purification and characterization. 

    The procedure for isolation of dissolved EPS from the supernatant of the culture was 

based on a novel procedure, described in detail by Zhang and Santschi (2009). It 

included cross-flow ultrafiltration followed by stirred-cell diafiltration with additional 

cartridge washing. In short, 8 L of the supernatant was pre-filtered through GF/B, GF/F 

and 0.45 μm poly-carbonate membranes (in series) before feeding it to a crossflow 

ultrafiltration system that used a spiral wound 1 kDa SOC 1812 cartridge (Separation 

Engineering, Inc). The supernatant was ultrafiltered at a pressure of 30 psi and at a power 

efficiency of 50-60% until 200–300mL of retentate remained. Then, the cartridge was 

rinsed with 200 mL of nanopure water, the pump was turned off, and the cartridgewas 

soaked in nanopure water for 6 h. After soaking, the cartridge was rinsed with another 

200 mL of water, and the soaking procedure was repeated twice. Subsequently, the 

retentate solution and four rinse solutionswere combined. The resulting 1 L of solution 

was then further diafiltered by using an Amicon 8200 stirred-cell ultrafiltration system 

with a 5 kDa polyethersulfonemembrane at a working pressure of 45–50 psi. At the end, 

25~30 mL of retentate remained and was stirred for 30 min. After decanting the retentate, 

another 25mL of water was used to wash the membrane by stirring for 1 h. The wash 
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water was then combined with the retentate. The final solution containing dissolved EPS 

was used for further purification and characterization. 

3.3.2. Colorimetric determination of carbohydrate, uronic acid and protein 

concentrations 

    Carbohydrate concentrations were estimated by using the anthrone method (Morris, 

1948), with glucose as a standard. Uronic acids were determined by using the method of 

Blumenkrantz and Asboe-Hansen (1973), with glucuronic acid as a standard. The protein 

content in EPS was measured by using bicinchoninic acid (BCA), and was based on 

Smith et al., (1985) and Stoscheck (1990), with BSA (Bovine Serum Albumin) as a 

standard. 

3.3.3. Purification and fractionation of EPS 

    Extracted EPS obtained from previous step (2.1) was further purified and fractionated 

by using an anion exchange (AEC) — preparative liquid chromatography system, with a 

BioSuite Q13 um AXC (21.5×150 mm) column. The injection volume was 5 mL. The 

sample was eluted at a constant flow rate of 5 mL/min with a gradient program from 0 to 

1 M NaCl in 20 mM Tris–HCl buffer (pH= 8.1, Sigma-Aldrich) in 70 min. EPS from 

Amphora sp. was detected using a fluorescent detector at an excitation wavelength of 

λ=285 nm, and emission of λ=580 nm (Ding et al., 2008). 

3.3.4. Estimation of EPS molecular weight 

Size exclusion chromatography (SEC) was used to measure the molecular weight of 

EPS. The column used was a Tosoh TSK G-4000PWxl (300×7.8 mm). The mobile phase 

was 0.078 M NaNO3 in 10 mmol/L phosphate buffer (pH= 6.8) at a flow rate of 0.5 
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mL/min. 150 μL of sample was injected and detected by fluorescence detection 

(excitation λ=285 nm, emission λ=580 nm). Polystyrene standards with a molecular 

weight of 8 kDa, 35 kDa, 100 kDa, and 780 kDa were used for the calibration curve, 

whereby the logarithm of molecular weight was plotted against corresponding retention 

time. 

3.3.5. Determination of neutral sugars using GC-EI-MS 

     Gas chromatography-flame ionization detection (FID) was used for analyzing neutral 

sugars. However, mass spectra were used instead of FID detection, in order to increase 

the accuracy of determination. The procedure was based on Hung et al., (2001, 2005), 

with some slight modifications. 100 μL of purified EPS solution (0.1 mg/L) was added to 

a hydrolysis tube containing 2 mL of 0.1 mol/L hydrochloric acid (HCl), and was then 

hydrolyzed at 150 °C for 1 h. After hydrolysis, water and HCl in the sample were 

removed by a stream of nitrogen. Then, 0.05 mol/L NaOH and 20 nano moles of myo-

inositol (as an internal standard) were added to the dry sample. 10 mg of sodium 

borohydride (NaBH4) was used to reduce neutral sugars at 60 °C for 1 h. Acetic acid was 

added drop by drop to remove excess NaBH4 until there was no bubble produced. The 

reduced solution was dried by a stream of nitrogen. 1 mL of methanol was used to 

remove borohydrate produced in the previous process, after which the sample was dried 

using a nitrogen stream. This procedure was then repeated three times. The final residue 

was dried at 100 °C for 15 min. After that, 0.5 mL of pyridine and 0.5 mL of acetic 

anhydride were added to the residue and reacted at 100 °C for 1 h. After cooling, 1 mL of 

distilled water was added to the mixture and the mixture was shaken for a short while. 
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1mL of dichloromethane was then added to extract the mixture, and this extraction 

procedure was repeated once more. The two dichloromethane layers were combined and 

dried under a nitrogen stream. The final residue was then dissolved by 100 μL of 

dichloromethane, and 1 μL of the solution was injected into a GC-MS (Polaris Q GC/MS) 

at a carrier rate of 1.0 mL/min. The column used here was a DB 1701 (30 m×0.25 mm 

ID). The temperature program was set as follows: the initial temperature was set at 

120 °C for 1.0 min, and then the temperature was increased to 180 °C at a rate of 

10 °C/min and held for another 1.0 min. The column was heated to 190 °C at a rate of 

0.3 °C/min and held for 5min. In the final cleanup step, the column was heated to 260 °C 

at a rate of 20 °C/min for another 2 min. To obtain a mass spectrum, a full scan mode 

(50–650) was chosen, and the temperature of the ion source was set at 280 °C. Neutral 

monosaccharides in EPS were identified according to their corresponding retention times 

and mass spectra, which were determined using monosaccharide standards. Quantitative 

determination was carried out using their corresponding calibration curves. 

3.3.6. Determination of neutral sugars and uronic acids using High Performance Liquid 

Chromatography (HPLC) 

    Due to the time-consuming treatment for neutral sugars and uronic acids analysis 

using gas chromatography (Jones and Albersheim, 1972), an HPLC procedure has been 

developed to measure the composition of polysaccharides including neutral 

monosaccharides and uronic acids (Whitfield et al., 1991; Gremm, 1997). Purified EPS 

had to be first hydrolyzed  using  the same hydrolysis  procedure as  described  in Section 
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(2.5). A dried hydrolyzed residue was added by 25 μL of deoxy-ribose (400 μmol/L, as 

an internal standard) and 975 μL of distilled water. Two 100 μL of the resulting mixture 

were injected each for the determination of neutral monosaccharides and uronic acids, 

respectively, using different chromatographic elution conditions. A CarboPac PA10-4 

mm column (4×250 mm), an electrochemical detector with a gold working electrode, and 

an ISAAC reference electrode were employed. The eluent used for analyzing neutral 

monosaccharides was 3 mM NaOH (made from 50% W/W NaOH solution), while two 

mobile phases were used for the determination of uronic acids at a ratio 40:60 (A: 15 

mM NaOH, B: 100 mM NaOH with 250 mM NaAc). Both flow rates were set at 1.0 

mL/min. The detector setting was: E1=0 V, E2=0.65 V, E3=−0.65 V, t1=400 ms, t2=200 

ms, t3=200 ms, ts=100 ms.  

    For this work, we compared the results from GC-MS with those from HPLC in order 

to better apply HPLC for our future characterization of polysaccharides. Some 

parameters used to better judge an analytical method, like reproducibility, recovery, and 

detection limit, were measured to evaluate the optimal efficiency of the method. 

3.3.7. Determination of sulfate in EPS using ion chromatography 

A given amount of dissolved EPS was hydrolyzed in 1 mol/L of HCl for 6 h and dried 

under a nitrogen stream (Dodgson and Price, 1962). The residue was re-dissolved by 1 

mL of distilled water. After being filtered through a 0.22 μm syringe filter, 20 μL of the 

final solution was injected into ion chromatography and eluted, at a flow rate of 1.5 

mL/min, by a mixture of 1.8 mmol/L sodiumcarbonate and 1.7 mmol/L 

sodiumbicarbonate, and  then quantified by a conductivity detector from Dionex. An 
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IonPac AS4A-SC column (4×250mm), with an IonPac AG4A-SC guard column (4×50 

mm), was used in this study. 

 3.3.8. Total acid polysaccharide concentration determination using Alcian blue 

    Alcian blue is widely used as a stain to estimate the total concentration of acid 

polysaccharides (APS) and transparent exopolymeric particles (TEP) in particulate 

samples (Alldredge et al., 1993; Passow and Alldredge, 1995; Hung et al., 2003a, 2003b; 

Santschi et al., 2003). This method has recently been extended to the measurement of 

APS in filter-passing water samples (Thornton et al., 2007). Our knowledge about the 

chemical composition of EPS from Amphora sp. provides the opportunity to compare 

molecular-level compositional results with those obtained from the Alcian blue staining 

method of Thornton et al. (2007). Briefly, 1 mL of Alcian blue was added to 5 mL of 

sample with a given concentration of APS, after pH was adjusted to 2.5 using glacial 

acetic acid. The sample was then vigorously mixed and filtered through a syringe filter 

containing a surfactant free cellulose acetate (SFCA) membrane with a pore size of 0.2 

μm (Nalgene). The first 5mLwas discarded and the final 1 mL was used for absorbance 

measurement in order to minimize the impact of the filter. Both gum xanthan and λ-

carrageenan were used for calibration, respectively. Data are presented as gum xanthan 

equivalents or λ-carrageenan equivalents (mg X eq. /L or mg λ-carrageenan eq. /L). 

3.3.9. 234Th (IV) binding to EPS 

    Purified 234Th (IV), extracted from a 238U solution (Quigley et al., 2002; Alvarado-

Quiroz et al., 2006) was added to the EPS solution. The mixture was neutralized by 

NaOH and allowed to equilibrate for 30 min. After removing the unbound 234Th (IV) by 
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diafiltration using a 1 kDa membrane, EPS spiked by 234Th (IV) was subjected to 

isoelectric focusing (IEF) separation in order to determine the pHIEF of 234Th (IV) 

binding ligands. For a detailed procedure, the reader is referred to Alvarado-Quiroz et al. 

(2006). In brief, Th-labeled EPS was loaded onto an IPG strip (GE healthcare 

immobiline™ Drystrip, pH 3-10, 11 cm), in addition to a 140 μL of rehydration solution 

(mixture of urea, carrier ampholytes and detergent Triton X). The loaded strip was then 

allowed to re-swell overnight. Subsequently, the strip was then placed in an 

electrophoresis apparatus (Amersham Biosciences, Multiphor II Electrophoresis System) 

and ran for 17.5 h. After IEF, the pH gradient of the strip was re-calibrated every 1 cm. 

The strip was then cut into 11 pieces, and each piece of 1 cm in length was extracted by 

1% SDS overnight. After extraction, 234Th (IV) activity of each fraction was analyzed by 

liquid scintillation counting (Beckman Model 8100 Liquid Scintillation Counter). 

 

3.4. Results 

3.4.1. Determination of standards by HPLC 

3.4.1.1. Neutral sugars 

    Figure 3.1 shows HPLC chromatogram of seven neutral sugars. Their corresponding 

detection limit, reproducibility and recovery are listed in Table 3.1. In this study, 3 

mmol/L of NaOH was used as mobile phase, instead of 20 mmol/L of NaOH (Bhaskar et 

al., 2005; Grossart et al., 2006), in order to separate xylose and mannose.  
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 .

 

Fig. 3.1 HPLC chromatogram of seven neutral sugars. 1. L-fucose, 2. 2-deoxy-D-ribose 

(internal standard), 3. L-rhamnose, 4. D-arabinose, 5. D-galactose, 6. D-glucose, 7. D-

xylose, 8. D-mannose 

 

Table 3.1 Detection limit and recovery of neutral sugars 

      

Sugars 
  Detection 
limit (n mol) 

Reproducibility  
(RSD, %,Conc.=4 
μmol/l, n=6) 

Recovery  % 
(Conc.=30 μmol/l) 

Fucose 0.013 1.4 75.6 
Rhaminose 0.035 2.4 77.3 
Arabinose 0.064 1.9 73.9 
Galactose 0.044 3.2 79.3 
Glucose 0.053 3.3 82.1 
Xylose 0.064 2.8 73.9 

Mannose 0.194 4.9 70.7 
       

      Note: The relative standard deviation (RSD) is the standard deviation divided by the 
               mean. 
 

3.4.1.2. Uronic acids 

    Figure 3.2 shows HPLC chromatogram of two uronic acids. Their corresponding 

detection limit, reproducibility and recovery are also listed in Table 3.2. Only two 
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individual uronic acids, glucuronic acid and galacturonic acid, were analyzed in this 

study. Even though there is no mannuronic acid standard available on the market, our 

previous analyses did demonstrate the method has the ability to separate the three uronic 

acids. 

Table 3.2 Detection limit and recovery of uronic acids 

      

Uronic Acid 
Detection limit 

(n mol) 

Reproducibility 
(RSD, %, Conc.=5 

μmol/l, n=5) 

Recovery  % 
(Conc.=5 μmol/l)

Galacturonic 
acid 

0.086 12.9 87.2 

Glucuronic 
acid 

0.052 7.1 72.4 

 

 

 

Fig. 3.2 HPLC chromatogram of uronic acids. 1. D-galacturonic acid, 2. D-glucuronic 

acid (peaks before 4 min are neutral sugars) 

3.4.2. Characterization of EPS from Amphora sp. 

    The yields for dissolved EPS are 2.1 ± 0.3 mg-glucose equivalents/L and 2.8 ± 0.2 mg-

glucuronic acid equivalents/L. Amphora sp. also produces particulate EPS with a yield of 

0.5 ± 0.15 mg-glucose equivalents/L. Neither uronic acids nor sulfate are found in 
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particulate EPS. The chemical composition of different fractions in the EPS of Amphora 

sp. is shown in Table 3.3. Obviously, uronic acids are the main components in dissolved 

EPS. Sulfated polysaccharides are another important component in the dissolved EPS, 

with sulfate accounting to 11.5% of dry weight. However, in particulate EPS, 

carbohydrates are only a small portion of the total dry weight, which is mainly made up 

of SiO2. The relatively low carbon content in particulate EPS by elemental analysis 

confirmed that result. A significant difference in the C/N ratio between dissolved EPS 

and particulate EPS, with 32 for the former and 7 for the latter, could account for their 

different roles during the cell growth. 

    Additionally, proteins in both particulate EPS and dissolved EPS are below the 

detection limit (20 mg BSA equivalents/L), which means that proteins account for less 

than 2.1% in particulate EPS and less than 12.6% in dissolved EPS. The result that 

extracellular polymeric substances from Amphora sp. are dominated by carbohydrates 

followed by a very minor fraction of proteins is consistent with other studies on EPS 

from diatoms (Hoagland et al., 1993; Sdrigotti et al., 1994; Staats et al., 1999).
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Table 3.3 Chemical composition and elemental analysis of EPS from Amphora sp. 

 

EPS 
Carbohydrates 

% 
Uronic acids 

% 
Proteins* 

% 
Sulfate 

% 
Carbon 

% 
Nitrogen 

% 
Hydrogen 

% 
Dissolved 31.5±1.5 47.5±2.5 <12.6±2.1 11.5±0.2 37.7 1.37 6.27 

Particulate 4.0±1.4 0 <2.1±0.2 0 5.17 0.83 2.85 

                            

                                          *) Protein percentages were calculated according to the detection limit 20 mg BSA eq./L.
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Fig. 3.3 Anion exchange chromatogram of dissolved EPS from Amphora sp. using 

fluorescence detection (Fluorescence Detection: excitation λ=285 nm, emission λ=580 

nm. 1. Blank, 2. Dissolved EPS, the fraction at the retention time of 55 min is called 

f1and the one at the retention time of 66 min is called f2) (Zhang and Santschi, 2009) 

     

    Two fractions were distinguished by anion exchange chromatography from dissolved 

EPS of Amphora sp. and were called f1 and f2 (Figure 3.3, Zhang and Santschi, 2009). 

The molecular weight of the two fractions, f1 and f2, had a similar molecular weight of 

1000 kDa, but contained a different sulfate content, i.e., 9.7±0.5% for f1 and 18.2±0.9% 

for f2. Two polysaccharides (p1 and p2) were separated from particulate EPS by anion 

exchange chromatography (Figure 3.4), and qualitatively verified by the anthrone 

method of carbohydrate (Figure 3.5), had a similar molecular weight of 25 kDa (Figure 

3.6). The HPLC chromatograms of the four polysaccharidic fractions, analyzed by HPLC, 

are shown in Figures 3.7–3.10. The two polysaccharides from dissolved EPS of Amphora 

sp., f1 and f2, had a similar composition, primarily composed of fucose, galactose and 
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glucuronic acid. However, the mole ratio of the three components for f1 was 1:1.1:1.6, 

while it was 1:0.8:2.8 for the polysaccharide f2. The determination of neutral sugars from 

the polysaccharides f1 and f2 was further confirmed by the application of GC-EI-MS. 

The results of GC-EI-MS were shown in Figures 3.11–3.13 and the mole ratio of fucose 

to galactose was 1:1.2 for the polysaccharide f1 and 1:0.7 for the polysaccharide f2, 

perfectly matching the results from HPLC. 

 

 

Fig. 3.4 Anion exchange chromatogram of particulate EPS from Amphora sp. 

(Fluorescence detection: excitation λ=285 nm, emission λ=580 nm. The fraction at the 

retention time of 7.5 min is called p1 and the one at the retention time of 18.4 min is 

called p2) 
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Fractionation of particulate EPS 
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Fig. 3.5 Concentration of carbohydrate in each chromatographic fraction (time) of 

particulate EPS 

 

 

Fig. 3.6 Distribution of molecular weight of the two fractios, p1 and p2, of particulate 

EPS (peaks at 21~22 min were caused by non-ionic interactions) 
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Fig. 3.7 HPLC chromatograms of polysaccharide f1 
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Fig. 3.8 HPLC chromatograms of polysaccharide f2 

 

 

 

Fig. 3.9 HPLC chromatogram of polysaccharide p1 
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Fig. 3.10 HPLC chromatogram of polysaccharide p2 

 

 

 

Fig. 3.11 GC-MS chromatogram of neutral sugars 
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Fig. 3.12 GC-MS chromatogram of polysaccharide f1 

 

 

 

Fig. 3.13 GC-MS chromatogram of polysaccharide f2 
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3.4.3. Comparison of molecular-level composition with that of Alcian blue method 

The content of acid polysaccharides (APS) in EPS solutions from Amphora sp., 

measured by Alcian blue, is compared to the chemical composition, i.e., uronic acids and 

sulfate in Table 3.4. The APS concentration, expressed in gum xanthan units, i.e., as mg 

X eq. /L, is significantly higher than the actual EPS concentration. However, if one 

expresses the APS concentration in "λ-carrageenan equivalent" units, the total amounts 

are much closer. The factor of 3 from the ratio of slopes of the two standard compounds 

(data not shown), i.e., 2 mg/l of λ-carrageenanwas determined to yield 6 mg X eq. /L. For 

EPS f2, the agreement is within the error of the measurement, i.e., 60 vs. 55 mg/L, which 

can be explained by a relative high sulfate content of 18.2%, and a similar ratio of acidic 

groups (sum of sulfate and glucuronic acid) vs. neutral sugars in λ-carrageenan (3:2) and 

EPS f2 (4:2). However, for EPS f1, a lower sulfate content of 9.7% and a ratio of 2:2 

make the agreement a bit worse. For dissolved EPS, the agreement is worst, i.e., 584 vs. 

309 mg/L, which might be a consequence of other components in the EPS such as 

proteins and nucleic acids. The results demonstrate the importance of using the 

appropriate standard for the Alcian blue method (Hung et al., 2003b). 

3.4.4. 234Th (IV) binding of EPS from Amphora sp. 

In order to better understand the role of EPS and polysaccharide binding to Th (IV), 

the 234Th binding behavior of three EPS fractions, i.e., dissolved EPS (without 

purification by AEC), polysaccharide f1 and polysaccharide f2, was investigated by 

using isoelectric focusing (IEF) electrophoresis. This procedure separated them using 

their different isoelectric points, pHIEP. The results are shown in Figure 3.14, in terms of 
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percentage of 234Th in each fraction vs. corresponding pH. All three fractions show the 

highest Th activity at a pH of 2.9 ± 0.4. The similar binding characteristics of the three 

materials likely indicate that glucuronic acid (as well as sulfated polysaccharides), which 

were common in all three fractions, are responsible for Th (IV) binding to EPS. 

 

 

 
 

Fig. 3.14 234Th (IV) distribution on IEF showing that most 234Th is concentrated at a 

pHIEP of 3, which is the isoelectric point of uronic acids and sulfated polysaccharides (f1 

and f2 are the two fractions of the dissolved EPS)
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Table 3.4 Determination of acidic polysaccharides (APS) concentration of EPS 
 

EPS 
APS1 

(mg X eq. 
/L) 

APS2 
(mg λ- 

carrageenan eq./L) 

Sulfate 
(mg/L) 

Glucuronic 
acid (mg/L) 

Mole ratio of 
Sulfate/ 

Glucuronic 
acid 

Actual EPS 
concentration 

(mg/L) 

Dissolved EPS 926 309 67 293 0.46 584 

f1 645 215 29 148 0.39 297 

f2 164 55 11 40 0.55 60 
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3.5. Discussion 

    The amounts and composition of extracellular polysaccharides in solution are 

profoundly affected by nutrient status and vary with species. Myklestad (1995) reported 

that severe N and P-limitation favors the release of carbohydrates. In addition, increase in 

the N/P ratio of the medium increases the production of extracellular polysaccharides in 

laboratory cultures. However, in our study, Amphora sp. cultured in f/2-Si medium with 

rich nutrients also released significant amounts of exopolysaccharides, which were 

analyzed to contain acidic polysaccharides. Rhamnose, fucose and galactose were 

generally found to be prominent in diatom polysaccharides (Myklestad and Haug, 1976; 

Magaletti et al., 2004). Furthermore, many studies have reported sulfates, uronic acids 

and other neutral sugars, e.g. glucose and xylose/mannose in EPS from diatom, like S. 

costatum (Bhaskar et al., 2005), C. clostreium and N. salinarum (Staats et al., 1999; de 

Brouwer et al., 2006). However, the chemical composition of EPS from Amphora sp. had 

not been characterized previously. Our laboratory experiments not only showed that 

there was a major difference between particulate EPS and dissolved EPS in terms of 

yield, composition and chemical structure of carbohydrates, which are caused by their 

different sources, but also that, contrary to other diatoms, EPS from Amphora sp. is only 

composed of two neutral polysaccharides (fucose and galactose), and does not contain 

any other neutral sugar. The yield of dissolved EPS was four times higher than that of 

particulate EPS, based on the carbohydrate determinations. 47.5% uronic acids in freeze-

dried dissolved EPS are in a good agreement with 48. 8% calculated according to the 

mole ratio of the monosaccharide composition in f1 (fucose: galactose: glucuronic acid: 
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1:1.1:1.6), considering that the polysaccharide f1 was the major component of dissolved 

EPS. Therefore, we can conclude that the dissolved EPS from Amphora sp. is composed 

of more than 90% polysaccharides. Evidence from the elemental analysis of carbon and 

hydrogen also supports this conclusion, since 37.70% of C and 6.27% of H in dry 

dissolved EPS was close to their corresponding contents in neutral sugars (40% of C and 

6.7% of H) and uronic acids (37% of C and 5.2% of H). 31.5% of carbohydrates, as 

determined by the spectrophotometric anthrone method, however, seemed to 

underestimate the carbohydrate content in the dissolved EPS, which could be caused by 

differences in response factors between glucose, galactose, fucose and glucuronic acid. 

In fact, our experimental results showed galactose, fucose and, especially, glucuronic 

acid would be underestimated if one were to use glucose as a standard in the colorimetric 

anthrone method. Polysaccharide f2 was a minor component in the dissolved EPS from 

Amphora sp. and was composed of fucose, galactose and glucuronic acid in a mole ratio 

of 1:0.8:2.8. Even though the difference is significant, and might suggest some difference 

in the chemical structure, both f1 and f2 were large molecules with the same molecular 

weight of 1000 kDa.  

    The acidic exopolysaccharides of high molecular weight are considered 

multifunctional in many cases involving many important biological processes. Their 

molecular architecture appears to be genetically determined and related to environmental 

triggers and aquatic feedbacks. 

    Compared to dissolved EPS, particulate EPS mainly consist of neutral carbohydrates. 

Its two fractions, p1 and p2, are both glucans, which implies that the particulate EPS 
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originated from structural polymers of the cell wall (Storseth et al., 2004). Their 

molecular weights are similar, i.e., 25 kDa for both. Thus, further experiments should be 

carried out to confirm the hypothesis that their compositional difference lies in their 3D 

architecture and monosaccharide linkage of the two fractions.  

    Alcian blue staining, as a widely-used method to semi-quantitatively determine the 

TEP concentration, was evaluated in this study because our knowledge of the exact 

chemical composition of EPS in the solution could help to improve the Alcian blue 

staining method in future studies. Different acidic groups, like uronic acids and sulfates, 

contribute differently to the staining of Alcian blue (Hung et al., 2003b). Therefore, the 

type and ratio of acidic groups in the TEP as well as the choice of an appropriate 

standard or reference compound could greatly affect the accuracy of method. 

    Considering the significance of dissolved EPS in particle dynamics, our laboratory 

experiments that were carried out to examine 234Th binding behavior of EPS provide 

information on binding and structure at the molecular level. This is also the first time that 

234Th-binding dissolved EPS was compared to its corresponding purified individual 

components fractionated by AEC in order to investigate the specific role of 

exopolysaccharides in 234Th binding. The coincidence of the pHIEP distribution of 

dissolved EPS, f1 and f2 on IEF strips tracked by 234Th indicates that the two acidic 

exopolysaccharides dominated the 234Th binding of dissolved EPS. In addition, it also 

implies that the three compounds having an approximate isoelectric point at pH=3 must 

be negatively charged at neutral pH and thus would migrate to lower pH values. 

Laboratory and field studies have suggested that different functional groups, such as 
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carboxyl, phosphate, or sulfate, contribute to the aggregation of EPS (Santschi et al., 

2003; Alvarado-Quiroz et al., 2006; Passow et al., 2006). The analysis of the chemical 

structure of EPS from Amphora sp. revealed that, in this case, glucuronic acid and sulfate 

in the two acidic exopolysaccharides, were the main chelating biomolecules for 234Th 

(IV). Given that Amphora sp. is a representative species of benthic diatoms (Welker et al., 

2002; Facca and Sfriso, 2007) and the crucial roles benthic diatoms play in the organic 

carbon flux of the coastal oceans (Cadee and Hegeman, 1974; Fogg, 1983; Colijn and De 

Jonge, 1984; Cahoon and Cooke, 1992; Barranguet, 1997; Smith and Underwood, 1998; 

Taylor and Paterson, 1998; Nelson et al., 1999), our study therefore provides further 

molecular level insight into the roles of EPS as metal chelators and scavenging agents of 

thorium and organic carbon from the ocean. 

 

3.6. Conclusions 

    This study provides a molecular-level understanding on the interactions of 234Th (IV) 

with EPS of Amphora sp., which could greatly benefit the applications of 234Th (IV) in 

the study of particle dynamics. Based on the molecular composition of particulate EPS 

and dissolved EPS we found that they reflect the different sources of these biopolymers. 

Particulate EPS originates from compounds used in the formation of cell wall of 

Amphora sp. and contains two glucans, p1 and p2, with the same molecular weight of 25 

kDa. In comparison to the particulate EPS, dissolved EPS are multifunctional and 

facilitate the growth and survival of the organism. Over 90% of the dissolved EPS from 

Amphora sp. was composed of exopolysaccharides. The two exopolyssacharides from 
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dissolved EPS, f1 and f2, had the same molecular weight of 1000 kDa, and the same 

chemical composition. However, f1 had the main monosaccharide building blocks of 

fucose, galactose and glucuronic acid in a mole ratio of 1:1.1:1.6, while f2, it was 

1:0.8:2.8. The HPLC analysis of neutral monosaccharide composition was confirmed by 

GC-EI-MS, which gave the same results. Sulfate was another acidic group in the two 

polysaccharides, 9.7% in f1 and 18.2% in f2, together with glucuronic acidic to dominate 

the interaction of 234Th (IV) with dissolved EPS. These results thus provide molecular 

level insights not only into the binding of 234Th (IV) to EPS in the ocean, but also 

provides crucial information to the frequently observed relationships between 234Th (IV) 

binding to suspended matters in the ocean and their uronic acid, sulfated polysaccharide, 

or the TEP content determined by the Alcian blue method. 
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CHAPTER IV 

SUBSTRATA EFFECTS ON THE CHEMICAL CHARACTERIZATION OF EPS 

IN BIOFILM FORMED IN WHITE OAK BAYOU AND BUFFALO BAYOU 

(HOUSTON TX) 

 

4.1. Overview 

    Biofilms are common phenomena in the environment. They can grow on all types of 

surfaces, such as soils, medical equipment, implants, plastics, metals, rocks, etc. EPS in 

biofilms not only serve as a matrix for biofilm growth by holding cells together, but also 

serve as sorption sites for inorganic and organic solutes such as nutrients and trace 

elements. Biofilms were grown on four substrata (brick, glass, plastic and wood) at the 

two Houston bayous, White Oak Bayou and Buffalo Bayou, TX. After four weeks of 

growth, biofilms were collected and subject to EPS extraction by steaming and EDTA 

techniques. Significantly elevated concentrations of organic phosphorus and proteins as 

well as DNA were observed in EDTA extracted samples. Proteins were the most 

abundant components in EPS of all the collected biofilms, followed by carbohydrates, 

except for the EPS in biofilms from the glass substrata. In addition, analyses of 

carbohydrates and proteins, i.e., as monosaccharides and amino acids, respectively, 

indicate that the molecular chemical composition of biofilms that formed was in response 

to different environmental conditions on the different substrata. No correlation between 

hydrophobicity of substratum and development of biofilm was found in this study.  
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4.2. Introduction 

A biofilm is a community of microbial cells, including algae and heterotrophic 

microorganisms, embedded in a mucus layer composed of extracellular polymeric 

substances (EPS) (Decho, 2000). According to Hall-Stoodley et al. (2004), the formation 

of a biofilm on a surface involves three stages. It begins with the spontaneous deposition 

of a conditioning film of high molecular weight humic or glycoproteinaceous matter, 

after which, single bacterial cell can attach to a surface. The cell attachment is mainly 

dictated by weak, reversible electrostatic interactions between the bacterial cell and the 

surface (e.g., depending on Van der Waals’ forces, hydrogen bonding, and the relative 

hydrophobicity of both bacterial cells and the surface). The second stage involves 

biological and chemical responses from prokaryotic and eukaryotic organisms, such as 

the production of EPS. The final stage of biofilm formation is known as development, in 

which the biofilm is established and may mainly change in shape, size and chemical 

composition. 

    EPS are primarily composed of polysaccharides and proteins, and in some case, 

nucleic acids and lipids (Flemming and Wingender, 2001). EPS not only serve as a 

matrix for biofilm growth by holding cells together, but also serve as sorption sites for 

inorganic and organic solutes such as nutrients. The enrichment of inorganic and organic 

nutrients facilitates cell growth in biofilms. In addition, this matrix protects the cells 

within it and facilitates communication among them through biochemical signals. Some 

biofilms have been found to contain water channels that help distribute nutrients and 

signaling molecules (Karatan and Wetnick, 2009). Therefore, the colonization on solid 
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surfaces by microorganisms has been proposed to depend mostly on the production of 

extracellular substances, i.e., EPS (Czaczyk and Myszka, 2007).  

    Buffalo Bayou and White Oak Bayou are two of the main waterways flowing through 

Houston TX USA. They deliver up to 60 million gallons of freshwater daily to Galveston 

Bay (Rifai, 2006) and are both on the Clean Water Act Section 303(d) list for impaired 

environments due to chronically elevated bacteria levels as determined from total counts 

of culturable bacteria. Each of these bayous is a stream that also receives industrial and 

waste water effluents. In dry weather, wastewater treatment plants (WWTP) and 

industrial effluents supply 60 MGD (million gallons per day) (>95%) of the surface 

water flow (Rifai 2006).  In addition, both of the two streams are channelized to different 

extents (Buffalo Bayou has natural soil/sediment beds and banks and White Oak Bayou 

is concrete lined) and the lower segments of each bayou are tidally influenced. Both 

sampling sites are polluted equally by highly elevated nutrients, > 4 mg/L NO3-N, >5 

mg/L NH4-N, and >1.5 mg/L PO4-P (Brinkmeyer et. al.，2008). Dissolved organic 

carbon at the sampling site of White Oak Bayou (600 µM) is 30 % higher than that in 

Buffalo Bayou (Brinkmeyer et al., 2008). Buffalo Bayou has seven times higher 

concentration of total suspended solids (TSS) than White Oak Bayou. Many artificial 

wastes, such as glass, plastic, wood and concrete are found at both streams and thus 

could be potential substrata for biofilm formation.  

    Many ecotoxicological and environmental studies investigated the effects of substrata 

on community structure and function of biofilms. Danilov and Ekelund (2001) reported 

that the nature of the substratum could considerably affect patterns of colonization of 
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algae. Compared with pieces of PVC and pieces of wood, glass turned out to be the most 

favorable substrata for algae settlement. However, plastics were found to be most 

favorable artificial substratum for biofilm in Cattaneo and Amireault’s study (1992). In 

the study of Kropfl et al. (2006), natural biofilms were simultaneously grown on granite, 

polished granite, andesite, polycarbonate, and plexi-glass substrata. It was found that the 

polycarbonate substratum had the highest biofilm production and abundance of algae, 

while bacterial activity was similar among the different substrata.  

    However, very little is known about the relationship between physico-chemical 

properties of EPS and the nature of the substratum. Therefore, in this study, the 

molecular level composition of of EPS, i.e., the monosacchoride and amino acid 

composition was investigated to improve our understanding of the effect of of the 

potential substrata (glass, plastic, wood and concrete) on the formation of natural 

biofilms. 

 

4.3. Materials and methods  

 4.3.1. Growing of natural biofilm on different substrata 

     Natural biofilms were grown on different substrata for 4 weeks from July 2008 to 

August 2008 at White Oak Bayou (TCEQ station 16646 near N Freeway 45 and Katy 

Freeway 10 at N29o46’58”, W95o22’30”) and Buffalo Bayou (TCEQ station 11351 near 

Shepherd and Allen Pkwy/Kirby Dr. at N29o46’34”, W95o24’36”), Houston, TX, USA.  

Bricks (concrete, 7.5×15.5’’), glass pieces (window glass, 11×14’’), plastic pieces 

(acrylic, 8×12’’) and wood (birch plywood, 11×14’’) that were thoroughly cleaned 
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beforehand by water, were placed on the stream beds of selected sites to allow biofilm 

growth. Plastic and glass surfaces were attached to the top of concrete bricks with screws 

before being submerged onto stream beds. While the sampling was not replicated, the 

subsequent chemical analyses were carried out in replicates. 

4.3.2. Extraction of EPS from biofilms 

    Extraction methods have been reported to affect not only the yields of carbohydrates 

and proteins (Zhang et al., 1999), but also the characteristics of EPS, such as EPS 

extracted by chemical reagents (NaOH and EDTA) present significantly different 

fingerprints on high-pressure size exclusion chromatography (Comte et al., 2007). In 

order to have a comprehensive understanding of EPS in biofilms, two extraction methods 

were used to extract EPS of biofilms from substrata submerged in the two streams.  

    Steaming extraction: Biofilms were mechanically stripped off from substrata using 

disposable sterile spatula and then were suspended in 15 mL of water and heated at 80 °C 

for 10 minutes. After being centrifuged at 8000 g for 10 minutes, the supernatant was 

collected and filtered for analysis while the solution was still hot (Brown and Lester, 

1980). 

    EDTA extraction: mechanically stripped biofilms were suspended in a mixture of 7.5 

mL water and 7.5 mL of 2 % EDTA. The content was put in a refrigerator (4 °C) for 3 

hrs and stirred every 30 minutes. After that, it was centrifuged at 8000 g for 20 minutes. 

The supernatant was collected and filtered for analysis (Brown and Lester, 1980; Liu and 

Fang, 2002). 
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4.3.3. Determination of organic phosphate 

    Generally, organic phosphate content was measured by subtracting the dissolved 

inorganic phosphorus from the measured total phosphorus (Solorzano and Sharp, 1980, 

Murphy and Riley, 1962). For dissolved  phosphorus, a mixed reagent was prepared by 

combining 25 mL of ammonium molybdate solution (30 g/L), 62 mL of sulfuric acid 

(15% V/V), 25mL of ascorbic acid (55 g/L) and 12 mL of potassium antimonyl-tartrate 

(1.36 g/L). It was diluted by nanopure water (1:5) before use. 1.0 mL of each extraction 

solution and phosphate standards (0.25-5.0 ppm) were separately added to test tubes (10

×100 mm) containing 3.0 mL of diluted mixed reagent. The solution was swirled for 20 

min. A reagent blank was determined in the same manner. The solutions were then 

measured by spectrophotometry at λ=885 nm in 1 cm pathlength cells.  Total phosphorus 

was measured as follows: 5 mL of extraction solution was added to a glass vial (20×57 

mm) containing 0.1 mL of 0.17 M MgSO4. The solution was evaporated to dryness at 95 

°C. The vial was then covered by aluminum foil and transferred to a furnace and baked at 

450 °C for 2 h. After cooling, 1.5 mL of 0.75 M HCl was added and heated at 80 °C for 

10 min without a cover. Then 3.5 mL of nanopure water was added and the solution 

heated again for an additional 10 min. After cooling, the sample was transferred to a 10 

ml of centrifuge tube. The volume was then brought to 5 mL with nanopure water. The 

sample was then treated using the same procedure as that for reactive phosphorus.  

4.3.4. Colorimetric determination of carbohydrates, uronic acids, proteins and DNA  

    Carbohydrate concentrations were estimated by using the anthrone method (Morris, 

1948; Zhang and Santschi, 2009), with glucose as a standard. Uronic acids were 
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determined according to the method of Blumenkrantz and Asboe-Hansen (1973), with 

glucuronic acid as a standard.  

    The protein content in the steam extraction solutions was measured using a modified 

Lowry Protein Assay Kit (Pierce USA, 23240,) because of its high sensitivity. The 

procedure followed the protocol provided by the manufacturer. The protein content in the 

EDTA extraction solutions was measured using the bicinchoninic acid (BCA) (Smith et 

al., 1985, 1990) with Bovine Serum Albumin (BSA) as a standard, as EDTA would 

interfere with the measurement of protein in the Lowry method. 

     DNA concentration was determined by reacting DNA with diphenylamine (Burton 

1956, Holme and Peck, 1998). Briefly, a diphenylamine reagent was prepared by 

dissolving 1.5 g of diphenylamine into 100 ml of acetic acid, followed by the addition of 

1.5 ml of concentrated sulfuric acid. This reagent was stored in the dark. Acetaldehyde 

(0.5 ml of 1.6 %) was added to the reagent on the day of the experiment. 2 mL of the 

reagent was added to 1 mL of extraction solution. The absorbance was then measured 

after 18 hours, by spectrophotometry at the wavelength of 600 nm in a 1 cm cell. 

Deoxyribose was used as a standard. The concentration range was from 0.3 to13.4 

µg/mL. This method is specific for DNA. Carbohydrates, uronic acids, proteins, amino 

acids as well as nucleic acids do not interfere with the measurement when present at 

concentrations as high as 1 mg/mL. 

4.3.5. Determination of hydrolysable monosaccharides and amino acids 

    Neutral sugars and uronic acids were analyzed by GC/MS and HPLC, respectively. 

(Zhang et al., 2008). 
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Seventeen amino acids were determined by derivatization with o-phthaldialdehyde 

(OPT) with a modification from Lindroth and Mopper (1979) and Duan and Bianchi, 

(2007). In brief, 1 ml of 6 M HCl (containing 0.5% phenol) was added to a 10 ml of 

ampule containing 1 ml of extracted solution.  The ampule was sealed under an N2 

atmosphere and then hydrolyzed at 110 °C for 24 hrs. Then the hydrolysis solution was 

dried under N2 stream. The residue was dissolved in 1 ml of nanopure water. This 

resultant mixture was ready for amino acids analysis after being filtered through a 0.22 

µm syringe filter. 20 µL of the filtered mixture solution was mixed with 100 µL of OPT 

reagent at room temperature and reacted for 2 min, then 40 µL were injected onto Alltech 

Alltima C18 column (250× 4.6 mm). Eluent A, 0.05M sodium acetate with 5 % 

tetrahydrofuran (pH was adjusted to 5.5 with acetic acid), and eluent B, 80 % methanol 

were used as mobile phases. A gradient begin with 30 % of eluent B, ramped to 70 % of 

eluent B over 40 min, and finally to 100 % of eluent B at 60 min, kept for 15 min. Then 

eluent B was decreased back to 30 % for preparing for next injection. The equilibrium 

step at least took 15 min.  

The extraction and characterization of EPS were summarized in Figure 4.1. 

4.3.6. Experimental determination of model biopolymer removal to representative 

substrata 

In a separate experiment, representative model biopolymers, such as hemoglobin, 

pullulan (a polysaccharide), lipopolysaccharide, carrageenan IV and xanthan, were used 

to investigate the removal of these compounds to representative substrata by incubating 

them in glass or plastic containers for 28 hrs. 
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Fig. 4.1 Diagram for EPS extraction and characterization  
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4.4. Results  

    After four weeks of growth, biofilms on the four substrata at each site were visible, 

with the exception of the wood surface from White Oak Bayou. The biofilm 

development on that sample was limited and did not allow a full characterization of the 

biofilm because of insufficient amounts of EPS. 

4.4.1. Comparison of extraction methods, using EDTA and using steaming, for 

quantifying the chemical composition of biofilms at the two bayous  

EPS of biofilms on different substrata from the two sites were extracted with two 

methods, steam and EDTA.  The concentrations of organic phosphorus, proteins, uronic 

aicds and carbohydrates of EPS are presented in Table 4.1 (White Oak Bayou) and Table 

4.2 (Buffalo Bayou), respectively. The EDTA extraction consistently produced a much 

higher yield of all the measured components in EPS from all biofilms on different 

substrata in the two sites, especially for DNA, organic phosphorus, uronic acids and 

proteins. At White Oak Bayou site, among these three compounds, the efficiency for 

extracting DNA was 2-7 times higher. For uronic acids it was higher by a factor of 3-5, 

for organic phosphorus a factor of 1.6-5.6, for proteins a factor of 1.3-3.1. However, the 

yield of carbohydrates did not significantly increase when using EDTA. At Buffalo 

Bayou, the difference caused by the two extraction methods was more distinct, such as 

the concentration of DNA in the biofilm on the brick surface, which increased from 0.4 

to 13.5 µg/g, i.e., by a factor of 33. Generally, DNA increased by a factor of 18-33, 

phosphorus by 4-30, uronic acids by 6-18, proteins by 2-8, and carbohydrates by 1.3-5 

times. EDTA, as a strong chelating agent, sequesters metal ions, such as Ca2+. Despite 
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distinctly different yields of measured compounds for the two extraction methods, they 

consistently show that carbohydrates and proteins are the two primary components of 

EPS from biofilms, regardless of substratum or sampling site.  

4.4.2. Effect of substratum on formation of biofilm in terms of chemical composition of 

EPS 

    The composition of EPS varied with substratum and sampling site (Table 4.1 and 

Table 4.2). At White Oak Bayou, proteins were the most abundant compounds in EPS, 

followed by carbohydrates. EPS of biofilm grown on the glass surface had lowest 

concentration of uronic acids, proteins and carbohydrates. Whereas there waere slight 

differences in concentrations of measured compounds for the EPS of biofilms from the 

brick and plastic substrata. 

     As a contrast, at Buffalo Bayou, the highest concentration of uronic acids, proteins 

and carbohydrates were found in extracted EPS from the biofilm on the glass substratum. 

Moreover, the concentration of carbohydrates was higher than that of proteins. Plastics 

and wood surfaces had moderate concentrations of the measured compounds. Brick had 

the lowest amounts of biopolymers in these biofilms.  

4.4.3. Effect of substratum on monosaccharide composition of EPS extracted from 

biofilms 

     Considering cell disruption during EDTA extraction, only results from the steaming 

extractions of EPS will be discussed. Six sugars were analyzed and shown in Figures 4.2 

and 4.3.  In White Oak Bayou, EPS in biofilms from the glass and plastic substrata had a 

similar monosaccharide distribution. Galactose and glucose were the two main 
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monosaccharides, and the other four sugars were comparable. While glucose and 

mannose were the most abundant monosaccharides in EPS from biofilm on the brick 

surface. 

    The pattern at Buffalo Bayou, however, was completely different. Galactose was 

prominently present in the EPS from biofilms on the glass and plastics surfaces, 

especially on the glass surface, while it was absent in EPS from biofilms on the brick and 

wood substrata. In addition, in all EPS from the two bayous, uronic acids were present in 

the form of galacturonic acid. 

4.4.4. Effect of substratum on the hydrolysable amino acids of EPS extracted from 

biofilms 

Seventeen L- amino acids were determined in this study (presented in Figures 4.4 and 

4.5). At White Oak Bayou, 13 amino acids appeared in the EPS from the biofilm on the 

plastic substratum. L- leucine, L-threonie, L-glycine and L-serine were the main four 

amino acids, while L-Glutamic acid, L-asparagines, L-glutamine, L-methionine and L-

lysine were absent. L-lysine, L- Leucine, L-alanine and L-glycine were the main three 

amino acids in the EPS from the biofilm on the brick substratum. Only two amino acids 

were missing. They were L-histidine and L-glutamine. Biofilm grown on the glass had 

EPS mainly composed of L-glutamic acid, followed by L-glycine, L-alanine.  

At Buffalo Bayou, the EPS in the biofilm from the glass substratum distinguished 

itself with a dramatically different distribution of amino acids. L-glutamic acid was the 

most prominent amino acid in this EPS.  

 



 

 

81 

Table 4.1 Concentrations of DNA, organic phosphorus, uronic acids, proteins and carbohydrates of EPS from biofilms on 

three substrata at White Oak Bayou 

 

 

 

 

 

 

Substrata 
DNA 

µg deoxyribose eq./g
Organic PO4 

µg/g 
Uronic acids  

µg/g 
Proteins 

µg/g 
Carbohydrates 

µg/g 
Steam EDTA Steam EDTA Steam EDTA Steam EDTA Steam EDTA

Brick 32.6 63.1 196.5 312.5 77.2 263.9 1781.3 4809.9 1367.9 1433.6 

Glass 3.7 23.6 11.1 62.7 19.6 91.6 170.1 533.1 266.1 305.5 

Plastic 22.2 58.2 261.6 589.3 88.6 318.7 2300.6 2902.2 1633.2 1354.3 
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Table 4.2 Concentrations of DNA, organic phosphorus, uronic acids, proteins and carbohydrates of EPS from biofilms on four 

substrata at Buffalo Bayou 

    

Substrata 
DNA 

µg deoxyribose eq./g
Organic PO4 

µg/g 
Uronic acids  

µg/g 
Proteins 

µg/g 
Carbohydrates 

 µg/g 

Steam EDTA Steam EDTA Steam EDTA Steam EDTA Steam EDTA 

Brick 
0.4 13.5 3.0 45.6 4.8 73.8 82.2 313.7 31.7 100.3

Glass 
2.5 45.8 101.8 558.5 64.6 374.4 973.2 1883.8 1357.8 1720.0

Plastic 
1.8 48.1 27.3 119.3 18.4 291.3 344.8 1114.7 186.9 420.0

Wood 
1.3 43.2 6.8 207.1 12.4 217.6 154.6 1263.7 51.6 283.2
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Fig. 4.2 Monosaccharide distribution of biofilms from White Oak Bayou extracted by 

steam.  (Rha: rhamnose, Fuc: fucose, Ara: arabinose, Xyl: xylose, Man: mannose, Gal: 

galactose, Glu: glucose). Note: the relative standard deviations of monosaccharide 

analyses were <3% 
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Fig. 4.3 Monosaccharide distribution of biofilms from Buffalo Bayou extracted by 

steaming 

 

 

Fig. 4.4 Mole percentages of hydrolysable amino acids in biofilms from White Oak 

Bayou extracted by steam. (ASPA: aspatric acid; GLUA: glutamic acid; ASP: 

asparagine; HIS: histidine; SER: serine; GLU: glutamine; ARG: arginine; GLY: glycine; 

THR: threonine; ALA: alanine; TYR: tyrosine; MET: methionine; VAL: valine; PHE: 

phenylamine; ISL: isoleucine; LEU: leucine; LYS: lysine). Note: the relative standard 

deviation of amino acid concentrations were <5% 
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Fig.4.5 Mole percentages of hydrolysable amino acids in biofilms from  

Buffalo Bayou extracted by steaming 

4.4.5. Interaction of biopolymers with substrata, glass and plastic 

In a separate experiment, hemoglobin, pullulan, lipopolysaccharide, carrageenan IV, 

and xanthan were used as representative model compounds to investigate the interactions 

of the substrate with representative biopolymers with more defined relative 

hydrophobicities, e.g., hemoglobin is the most hydrophobic biopolymer, followed by 

neutral polysaccharides and acidic polysaccharides (Xu. et al. 2010), by incubating them 

in glass or plastic containers for 28 hrs.  In this study, interactions between these 

biopolymers and substrum were analyzed by monitoring the percentage change in the 

concentration of biopolymers over the corresponding periods, shown in Table 4.3. 

Generally, these model biopolymers were preferably retained on the glass surface after 

incubation for 28 hours, except for pullulan. These patterns differ from their relative 

hydrophobicity, although the plastic surface is usually considered to be more 

hydrophobic than glass. Complex carbohydrates, like lipopolysaccharide, carrageenan IV 
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also demonstrated significant interactions with glass and plastic substrata. Therefore, one 

could conclude from these experimental results that the interactions between 

biopolymers and substrate are not regulated by the relative hydrophobicity of substrate, 

but by the ionic properties of the biopolymers or biological processes (e.g., microbial 

consumption). 

 

4.5. Discussion 

Compounds extracted from biofilms, such as DNA, carbohydrates, organic phosphorus 

and proteins have two sources. They are either released from the polymer  matrix or 

through cell disruption. If the measured compounds are products of autolysis, and have 

been released from the EPS, a constant relationship should be achieved between 

carbohydrates and other compounds (Brown and Lester, 1980). However, for all biofilms 

in this tudy, the ratios of proteins vs. carbohydrates were elevated when using EDTA 

extraction, and so were the ratios of organic phosphorus and DNA relative to 

carbohydrate and so were the ratios of organic phosphorus and DNA relative to 

carbohydrates. This might suggest that some cell disruption had occurred during EDTA 

extraction, but could also be a consequence of EDTA being a strong chelator for metal 

ions such as Ca2+. The presence of Ca2+ facilitated the self-assembly of EPS (Chin et al., 

1998), and thereby EDTA complexation of Ca2+ resulted in enhanced extraction of EPS. 

The result of increasing yield of uronic acids using EDTA in the present study supports 

this theory, and is in a good agreement with previous studies, considering uronic acids as 

an important agent to interact with cations in EPS (Hung et al., 2003a).   
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Table 4.3 Percentage of change in the concentration of biopolymers when incubated 

 in glass and plastic containers 

 
     Inoculation time  

(h)
                         

3.5 7 11 21 28 

Hemoglobin 
% 

Glass -2.4±1.0 -4.4±0.9 - -6.1±0.8 -3.1±0.8 

Plastic -0.2±0.9 -1.2±2.9 - -2.6±10.9 -0.1±0.3 

Pullulan % 
Glass -3.8±6.4 - -1.4±2.2 2.4±1.4 - 

Plastic -0.4±4.5 - 1.2±1.4 2.8±7.8 - 

Lipopolysaccha
ride % 

Glass 4.6±9.1 -1.8±0 -7.4±1.3 - -15.5±4.1 

Plastic 0.0±2.6 -6.5±11.7 -11.1±6.5 - -9.8±4.1 

Carrageenan 
IV % 

Glass 1.6±6.1 4.3±3.8 -1.1±0 -7.0±9.1 -9.8±7.9 

Plastic 8.6±6.9 2.7±3.1 -1.1±9.2 -4.9±13.7 -5.3±4.8 

Xanthan % 
Glass 1.7±2.4 1.1±3.1 -8.3±2.4 -7.2±11.8 -24.5±5.7 

Plastic 3.3±0 1.1±0 -6.1±1.6 -13.3±0 -24.5±8.1 
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The development of biofilm on a solid surface is known to be a multi-stage process. 

Attachment of bacteria to a surface initiates a sequence of changes in phenotype, where 

large suites of genes are differentially regulated (An and Parsek, 2007).  Therefore, the 

cells of a microorganism growing in a biofilm are physiologically distinct from 

planktonic cells of the same organism. The synthesis of EPS by the attached 

microorganisms strengthens their binding to a surface. Observed changes in the chemical 

composition of EPS in biofilms from different substrata suggest that the nature of 

substratum takes part in regulating the synthesis of EPS during formation of the biofilm. 

One of the reasons to choose the four substrata (glass, plastic, wood and brick) is that 

they are common but artificial substrata occurring as waste material in these two bayous.  

Therefore they are potential surfaces for biofilm growth. Moreover, they represent 

different properties, for example, brick and wood have rougher surfaces than plastic and 

glass, while plastic and glass are more hydrophobic than brick and wood. The rougher 

surfaces could facilitate the attachment of bacteria and provide protection from water 

currents and predators. Glass was consistently found to be the most preferred surface for 

algae (Danilov and Ekelund, 2001 and references therein), possibly because glass is a 

good nutrient source of silicon for diatoms. Similarly, wood provides a source of organic 

matter for heterotrophic microorganisms. Furthermore, hydrophobic interactions have 

been reported to be important for the adhesion of biofilm to plastic surfaces (Elhariry, 

2008).  However, the distinctly different chemical compositional patterns in EPS on the 

four substrata in the two streams suggest that formation of biofilm is in response to many 

factors, which include the properties of the substratum, e.g., its relative hydrophobicity 
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(Silyn-Roberts and Lewis, 2003), charge density, bacterial cell properties (e.g., cell 

charge), environmental conditions (e.g., ionic strength, Li and Logan, 2004) and 

microbial consumption. At White Oak Bayou, EPS from the biofilm on the plastic 

substratum consisted of highest concentrations of polysaccharides, proteins, DNA, 

organic phosphorus and uronic acids than those on the brick and glass substrata. While at 

Buffalo Bayou, EPS from the biofilm on the glass substratum had highest concentrations 

of these biopolymers. In addition, the results from the investigation of the interactions 

between biopolymers and substrata, e.g., separate laboratory experiments using different 

model biopolymers as well as field data, cannot explain the interactions of these 

compounds with glass and plastic substrata at the two sites. Therefore, the formation of 

biofilms in the study sites might be more dependent on the microorganism community 

and environmental situations. However, glass was consistently a good substratum for 

algae, as EPS of biofilms formed on glass surfaces at the two bayous had a ratio of 

proteins/carbohydrates less than 1 by releasing polysaccharide-enriched EPS from algae, 

which might be due to the source of silicon in glass for diatoms.  

    Although carbohydrates are a class of compounds that degrade rapidly in aquatic 

systems, the distribution of monosaccharides has been found to be a potential candidate 

for monitoring the changes in microbial community (Dowling et al., 1986; Khandekar 

and Johns, 1990a). At White Oak Bayou, the high percentage of (arabinose+galctose) in 

the EPS of biofilm from the glass (45 %) and plastic (55 %) substrata, together with a 

mannose/xylose ratio of 1.6, strongly indicates a phytoplankton input (Cowie and 

Hedges, 1984; Khandekar and Johns, 1990b). In contrast, a relatively high percentage of 
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rhamnose and arabinose in the EPS of biofilm from the brick substratum suggests a 

relatively high abundance of bacteria in the biofilm. The relatively rough surface of 

concrete brick could have facilitated the attachment of bacteria and provided protections 

from grazers. In addition, a relatively low percentage of xylose, less than 10%, 

minimized any contribution from terrestrial plants on all three types of substrata. 

     At Buffalo Bayou, EPS in the biofilm from the glass substratum demonstrated a 

similar monosaccharide distribution as that at White Oak Bayou, having a high 

percentage of arabinose plus galactose, 57%, as well as a mannose/xylose ratio of 1.6. In 

addition, a low percentage of rhamnose, arabinose and xylose indicate a major source of 

EPS from algae. EPS in the biofilm from the plastic surface showed an even distribution 

of monosaccharides, and thus suggests that the EPS were contributed by both bacteria 

and algae. In contrast, EPS in the biofilm from the brick and wood substrata had a low 

percentage of arabinose plus galactose, 17%, which suggests that the source for the 

biofilm EPS could be from bacteria or vascular plants which are abundantly along the 

two bayous.  

     Amino acids are usually not potential indicators for sources of organic matter in 

environmental investigation due to their high turnover rates in aquatic systems. However, 

when combined with other compound classes such as sugars or where amino acid 

sources are very limited in number, amino acids have been used to elucidate the 

diagenesis and nature of organic matter in marine samples (Muller et al., 1986; Cowie 

and Hedges, 1992). In this study, EPS in biofilms had a high mole fraction (15-36 %) of 

hydroxyl acids (serine, threonine) and glycine (13-29 %), especially in the EPS of 



91 
 

 

biofilm from the plastic substrata from both sites. Those three amino acids were reported 

to be consistently enriched in diatom cell walls as compared to their contents of cell 

interiors (Muller et al., 1986; Bhosle and Wagh, 1997). The high content of these 

structural constituents in the extracted EPS indicates a deposit of highly degraded 

refractory detrital material occurred during biofilm development. In contrast, a relative 

low mole fraction of serine (4.1 %), threonine (5.5 %) and glycine (5.4 %) on the glass 

substratum at the Buffalo Bayou suggests an abundance of diatoms and/or bacteria cells 

compared to other substrata. Nevertheless, the composition of EPS in biofilms from 

White Oak Bayou demonstrates a consistent high mole fraction of those three amino 

acids, even from the glass substratum. This might be a consequence of the considerably 

lower concentration of total suspension solids (TSS) but relatively high abundance of 

phytoplankton in this study site. In addition, the predominance of aspartic acid and a high 

ratio of aspartic acid/glycine were previously reported as a sensitive indicator for the 

source of terrestrial plant materials (Muller et al., 1986; Bhosle and Wagh, 1997). The 

relatively low abundance of aspartic acid and low aspartic acid/glycine ratio thus 

indicates limited terrestrial plant materials in these biofilms. 

 

4.6. Conclusions 

    Many studies have shown that the extraction method used for biofilms will affect the 

resulting EPS composition. This study compared yields of DNA, uronic acids, organic 

phosphorus, proteins and carbohydrates using two methods, EDTA and steaming 

extraction. As it turned out, EDTA might have caused significant cell disruption as well 
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as the release of EPS by chelating Ca2+. In addition, in this study, chemical composition 

of EPS in biofilms was found to vary with substrata. Proteins were the most abundant 

components in EPS of all collected biofilms, followed by carbohydrates, except the EPS 

from the glass substrata. The analyses of the distribution of monosaccharides in EPS 

revealed potential contributors for EPS excretion in biofilms. At White Oak Bayou, the 

distribution of monosaccharides in biofilm EPS from the glass and plastic substrata were 

similar, with a high percentage of (arabinose+galctose) and with a mannose/xylose ratio 

of 1.6, which strongly indicates a phytoplankton contribution for the EPS. While for EPS 

in biofilm from the brick substratum, a relatively high percentage of rhamnose and 

arabinose suggests a relatively high abundance of bacteria in the biofilm. There was no 

visible or quantifiable biofilm on the wood surface at that site that could be 

characterized. In contrast, at Buffalo Bayou, the distribution of monosaccharides in 

biofilm EPS from the glass substratum was similar to that in White Oak Bayou. However, 

EPS in the biofilm from the plastic substratum showed different distribution patterns of 

monosaccharides, compared with White Oak Bayou. Bacteria and phytoplankton were 

the major contributors for the EPS. In contrast, the bacterial community was the major 

contributor to EPS in the biofilms from wood and brick substrata. No significant 

terrestrial sources were found in EPS of biofilms. Even though the hydrophobicity of the 

substrata was not significantly correlated with the formation of biofilms at the study 

sites, it is believed that multiple factors participate in regulating the formation of biofilm, 

such as substratum nature, hydrological conditions (e.g., TSS), as well as attachment 

properties of microorganisms. 
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CHAPTER V 

DETERMINATION OF 127I AND 129I SPECIATION IN ENVIRONMENTAL 

WATERS USING A NOVEL GAS CHROMATOGRAPHY-MASS 

SPECTROMETRY METHOD 

 

5.1. Overview  

     In aquatic environments, iodine mainly exists as iodide, iodate and organic iodine. 

The high mobility of iodine in aquatic systems has led to 129I contamination problems at 

sites where nuclear fuel has been reprocessed, such as the F-area of Savannah River Site, 

South Carolina, USA. In order to assess the distribution of 129I and stable 127I in 

environmental systems, a sensitive and rapid method was developed which enables 

determination of isotopic ratios of speciated iodine. Iodide concentrations were 

quantified using gas chromatography-mass spectrometry (GC-MS) after derivatization to 

4-iodo-N N,-dimethylaniline.  Iodate concentrations were quantified by measuring the 

difference of iodide concentrations in the solution before and after reduction by Na2S2O5. Total 

iodine, including inorganic and organic iodine, was determined after conversion to iodate 

by combustion at 900 °C. Organo-iodine was calculated as the difference between the 

total iodine and total inorganic iodine (iodide and iodate). The detection limits of iodide-

127 and iodate-127 were 0.34 nM and 1.11 nM, respectively, while the detection limits 

for both iodide-129 and iodate-129 was 0.08 nM (i.e., 2pCi 129I /L). This method was 

successfully applied to water samples from the contaminated Savannah River Site, South 

Carolina, USA and more pristine Galveston Bay, Texas USA.   
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5.2. Introduction 

Iodine is a biophilic and essential trace element that exists as one stable isotope, 127I 

and 25 radioactive isotopes. 129I is of particular concern due to its extremely long half-

life (16,000,000 yr) and because it is perceived to be highly mobile in the environment. 

The primary source of 129I in the aquatic environment is from accidental and purposeful 

releases associated with nuclear fuel reprocessing worldwide (Raisbeck and Yiou, 1999; 

Schnabel et al., 2001). For example, groundwater from F-area at the Department of 

Energy’s Savannah River Site (SRS) in South Carolina, USA is highly contaminated 

with 129I and other radionuclides (Riley and Zachara 1992). Approximately 7 billion 

liters of predominantly acidic aqueous waste from nuclear processing facilities were 

disposed in three un-lined basins from 1955 until 1988. The groundwater still remains 

acidic, with pH as low as 3.2 in the middle of the plume, increasing to background pH 

levels of 5 to 6 at the plume fringe. It was found that plutonium and other actinides are 

mostly bound to sediments beneath the basins and only very low concentrations occur in 

groundwater. Other more mobile radionuclides, such as 129I, have been detected in this 

groundwater, at concentrations that are exceeding the primary drinking water limit for 

this nuclide. The Savannah River flows along a portion of southwestern border of 

Savannah River Site (Figure 5.1). 
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 Fig. 5.1 Map of Savannah River Site. Sampling site for iodine species analysis was in 

well FPZ6A at F-area (Marked by the solid triangle) 

Different iodine species exhibit dramatically different mobility in aquatic and 

sedimentary environments, as inorganic and organic species may exhibit different 

hydrophilic and biophilic properties (Hu et al., 2005). The importance of organo-iodine 

species has recently been investigated in freshwater (Krupp and Aumann, 1999; Oktay et 

al., 2001; Schwehr and Santschi, 2003; Santschi and Schwehr, 2004; Schwehr et al., 

2005a) and marine surface waters (Wong and Cheng, 2001; Schwehr et al., 2005b), but 

little is known about the prevalence and role of organo-iodine in groundwater. 

Complexation with organic matter could significantly modify iodine transport and 

bioavailability, even though inorganic iodine has long been assumed to be the dominant 

and also most mobile species in groundwater (Schwehr and Santschi, 2003). Moreover, 
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field data have shown that the speciation of anthropogenic 129I in the environment can be 

different from that of stable iodine 127I with iodide/iodate ratios of 129I two times higher 

than that of 127I along the European coastal area (Hou et al., 2009).  

Several methods have been proposed to determine stable iodine species (iodide and 

iodate) in the literature. Ion chromatography (IC) and high performance liquid 

chromatography (HPLC) have been used for the direct determination of iodide (Ito 1999; 

Bichsel and Gunten 1999). However, high levels of chloride in seawater media affect the 

efficiency of ion separation, and can thus compromise analytical accuracy. Although the 

salt effect could be avoided by adding chloride to the mobile phase (Schwehr and 

Santschi, 2003), the limitation of the routine use of the technique is the inadequate 

sensitivity of detection and difficulty in maintaining the exchange capacity of the 

column. The voltammetric method, which was used for the determination of inorganic 

iodine in open ocean waters (Wong and Cheng, 1998), is also limited by its low 

sensitivity and fouling of the electrodes. Inductively coupled plasma mass spectrometry 

(ICP-MS) has been successfully applied to analyze iodine species in fresh water, but it is 

often impractical for seawater samples due to the build-up of salts (Izmer et al., 2003; 

Brown et al., 2007; Warnken et al., 2000). 

     The contemporary methods used to measure 129I were recently reviewed by Hou et al. 

(2009). Only neutron activation analysis (NAA) and accelerator mass spectrometry 

(AMS) provide the sensitivity required for low level environmental samples (129I/127I 

ratio of 10-6~10-10 with NAA and 129I/127I ratios down to 10-14 with AMS).  Before AMS 

measurements can be conducted, iodine needs to be separated and purified from a sample 
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and prepared as an AgI target. As AMS is a relative analytical method, the absolute 

concentration of 129I is calculated by measuring separately, apart from the 129I/127I ratio, 

the content of 127I in the samples. For samples with 129I/127I ratios higher than ~10-10, 

1000 fold higher amounts of 127I must be added to the sample prior to chemical 

separation, which may hinder chemical separation by overwhelming the exchange 

capacity of a resin. Alternatively, liquid scintillation and γ spectrometry can be applied to 

determine 129I after iodine is separated from other radionuclides. Both methods have very 

low detection limits, 20 mBq (equivalent to 0.03 nM) for γ spectrometry and 0.3 Bq 

(equivalent to 0.4 nM) for liquid scintillation counting. 

     In this study, 127 I and 129I were distinguished by the mass of 4-127iodo-N, N,-

dimethylaniline (247g/mol) and 4-129iodo-N, N,-dimethylaniline (249 g/mol). Iodide was 

quantified using gas chromatography/mass spectrometry, after derivatization to 4-iodo-

N, N,-dimethylaniline (Mishra et al., 2000).  Iodate was quantified by first reducing 

iodate to iodide, using Na2S2O5, then calculating the difference between pre-reduction 

and post-reduction iodide. Total iodine, including organo-iodine, was determined after 

being converted to iodate by combustion at 900 °C. Organo-iodide was then calculated as 

the difference between the total iodide and total inorganic iodide (i.e., iodide and iodate). 

We applied the new methodology to analyze iodine species including 129I and 127I in SRS 

groundwater, in order to understand the equilibration mechanism and kinetics of 127I with 

respect to anthropogenic 129I to provide a rationale for improved remediation strategies.  
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5.3. Materials and methods 

5.3.1. Equipment  

    GC-MS instrumentation consisted of an autosampler AS3000, Finnigan Trace GC and 

Polaris Q EI-MS from Thermo.  A TR-5MS capillary column (30m×0.25 mm id, 0.25 

µm) was used for separation. The injector temperature was set at 220 °C and injections 

(2 µL) were made in the splitless mode. For each sample run, the oven temperature was 

held at 90°C for 3 minutes and then increased to 220°C at a rate of 30 °C/min. The GC 

transfer line was set at 280 °C. The MS ion source temperature was set to 250°C.  All the 

mass spectra were collected in full scan mode. Thermo XcaliburTM software was used for 

data acquisition and processing. 

    A LS 6500 multi-purpose scintillation counter from Beckman CoulterTM was used to 

measure 125I radioactivity in samples. All samples were counted for 10 minutes.  

5.3.2. Reagents and standard solutions 

    Sodium 2-iodosobenzoate reagent was prepared by mixing 400 mg of free benzoic 

acid (Alfa Aesar, USA) with 3.8 mL of 0.2 M sodium hydroxide on a Touch Mixer 

(Model 231, Fisher Scientific) and diluted to 50 mL with nanopure water. The solution 

was filtered through a 0.45 µm polycarbonate membrane. This solution is stable for at 

least 4 months when stored at ambient temperature.  

    N, N-dimethylaniline solution was prepared by diluting 20 µL of N,N-dimethylaniline 

to 10 mL with methanol. Phosphate buffer (pH 6.5) was prepared by dissolving 10 g 

each of NaH2PO4 .H2O and Na2HPO4 .7H2O in 250 mL of nanopure water. Fresh 
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solutions of 0.01 M of Na2S2O5 were daily prepared by dissolving 0.019 g of sodium 

metabisulfite (Fisher Scientific) in 10 mL of nanopure water.  

 An internal standard stock solution was prepared by dissolving 25 mg of 2, 4, 6-

tribromoaniline in 50 mL of methanol.  To generate the working internal standard 

solution, 50 µL of the stock solution was added to 10 mL methanol. 

    To prepare an iodide stock solution (1000 mg/L), 65.4 mg of potassium iodide was 

dissolved in 50 mL of nanopure water.  Working solutions of 100 µg/L and 1 µg/L iodide 

were then prepared and used to generate 1-16 µg/L and 0.1-1µg/L calibration curves, 

respectively. An iodate stock solution (1000 mg I- eq /L) was prepared by dissolving 84 

mg of potassium iodate in 50 mL of nanopure water. Both the iodide and iodate stock 

solutions were stored in glass vials at 4oC in light-proof containers and are good for one 

week. Working solutions were freshly prepared daily from the stock solutions.  

5.3.3. Sampling  

Groundwater samples were collected from the SRS F-area plume in February 2010 at 

well FPZ6A (Figure 5.1), where 129I contamination had previously been measured at > 

100 pCi/L (SRS report, contract number: DE-AC09-08SR22470). Groundwater was 

filtered through 0.45 µm and 0.2 µm in parallel. Then 1.2 L of 0.45 µm-filtered permeate 

was divided into three aliquots of 400 mL for fractionation by ultrafiltration using 

cartridges with pore sizes of 100 k Da, 10 k Da and 1 kDa.  Each ultrafiltered fraction 

consisted of 40 mL retentate and 360 mL permeate. Surface seawater collected from 

Galveston Bay (Figure 5.2) was filtered through a 0.22 µm membrane immediately after 

sampling. Galveston Bay is a large estuary located along the upper coast of Texas USA. 
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It is connected to the Gulf of Mexico and is surrounded by sub-tropic marshes and 

prairies on the mainland. The water in the Bay is a complex mixture of sea water and 

fresh water. 

         

Fig. 5.2 Map of Galveston Bay, the sampling site was marked by the triangle 

5.3.4. Determination of iodide in aqueous samples  

An aliquot of 5 ml sample or iodide standard solution was mixed with 0.5 mL of 1% 

acetic acid and 1 ml of phosphate buffer in a culture tube (16×150mm). Internal standard 

(50 µL), N, N-dimethylaniline solution (50 µL), and 2-iodosobenzoate solution (0.4 mL) 

were then added to each tube and shaken on a Touch Mixer for 1 minute. Next, 

cyclohexane (0.5 mL) was added to the tubes and shaken on a Touch Mixer for 20 
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seconds. The top cyclohexane layer was removed and placed into an auto sampler vial 

for GC-MS analysis. 

5.3.5. Determination of iodate in aqueous samples  

    A 5 mL aliquot of sample or standard was mixed with 50 µL of 1M HCl and 100 µl of 

0.01 M of sodium meta-bisulfite in a culture tube (16×150mm). This solution was heated 

at 95°C for 30 minutes. Next, 1 mL of phosphate buffer was added and mixed. Internal 

standard (50 µL), N,N-dimethylaniline solution (50 µL), and 2-iodosobenzoate solution 

(1.0 mL) were added, and the solution was shaken on a Touch Mixer for 1 minute. The 

solutions were then extracted with cyclohexane for GC-MS analysis, as described in the 

previous section. Iodate concentrations were then calculated by difference using the 

iodide concentrations before and after Na2S2O5 treatment.   

5.3.6. Determination of iodine in aqueous samples 

    A 5 mL sample aliquot was mixed with 0.5 mL of 1% acetic acid and 1 mL of 

phosphate buffer. Then 50 µL of internal standard and 50 µL of N, N-dimethylaniline 

solution were added and mixed on a Touch Mixer for 1 minute. Cyclohexane extraction 

for GC-MS analysis was performed as described above. 

 5.3.7. Determination of iodide and iodate in aqueous samples with high concentrations 

of 129I    

     A Strata SAX SPE column (anion exchange column, Phenomenex) was used to purify 

samples before measurement by eliminating interferences from inorganic ions and 

charged organic compounds in samples. The Strata SAX SPE column was conditioned 

with 3 mL of acetone, followed by 3 mL of methanol and 3 mL of nanopore water. Next, 
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the Strata SAX SPE was equilibrated with 3 mL of 1 M NaOH and 3 mL of nanopore 

water. After column conditioning and equilibration, 5 mL of sample that had been 

filtered through a 0.45 µm polycarbonate membrane was loaded and the flow through 

solution was collected. The column was then eluted with 5 mL of 1M NaCl. The NaCl 

eluent and the initial sample flow through solution were combined and brought to a final 

volume of 10 mL using nanopure water. This solution was then split into two 4.8 mL 

sub-samples to separately measure iodide and iodate as described above. 

5.3.8. Determination of organo-iodine in aqueous samples   

    The organo-iodine concentration was determined by calculating the difference 

between total iodine and total inorganic iodine. Total iodine concentration was 

determined by combustion of aqueous samples. The procedure was based on Schnetger 

and Muramatsu (1996), but was modified for aqueous samples measurements. Aqueous 

samples (2.5 mL) were mixed with 20 mg of vanadium pentoxide (vanadium pentoxide 

acts as a catalyst for the rapid combustion of environmental samples) in a ceramic boat. 

The boat with the sample was placed into a quartz combustion tube and preheated for 8 

minutes at 200°C, after which the temperature of the furnace was increased to 900°C 

over 10 minutes and then held steady at that temperature for an additional 10 minutes. 

Oxygen was used as a carrier gas during the combustion at a flow rate of 200-250 

mL/min. A glass tube containing 1 mL of nanopure water was used as a receiver. The 

carrier was directed into the receiver by connecting glass tubing with the tapered end of 

quartz combustion. After combustion, the glass tubing and the tapered end of the 

combustion tube were rinsed twice with 0.75 mL and 0.5 mL of nanopure water, 
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respectively. The rinses were combined with the solution collected in the glass receiver 

tube (~6 mL final volume) and subjected to the iodate quantification as described above.      

The three separate methods necessary for the determination of iodide, iodate, and 

iodine after their derivatization to 4-iodo-N, N–dimethylaniline and a fourth method to 

determine organo-iodine after combustion are illustrated in Figure 5.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 Derivatization flowchart of iodine species to 4-iodo-N, N –dimethylaniline. The 

four iodine species were highlighted in the shaded circles. Each species was quantified 

by GC/MS after final derivatization to 4-iodo N, N- dimethylaniline 
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5.3.9. Chemistry of reactions  

    The determination of iodide is based on the oxidation of iodide with 2-iodosobenzoate 

to iodine and subsequent iodination of N, N-dimethylaniline (Figure 5.3). The pH 

optimum for these two reactions has been verified by Mishra et al. (2000) as 6.4. 

Moreover, the overall reaction is completed within 1 minute over a pH range from 5-7.  

A phosphate buffer was used to control the pH of the reactions. 

    The selectivity of 2-iodosobenzoate, as an oxidizing agent for I species, was validated 

by an examination of the published redox properties of this compound.  At 25°C the 

redox potential of 2-iodosobenzoate was reported as: 1.21 V at pH 1, 0.53 V at pH 4 and 

0.48 V at pH 7 (Shin et al 1996). Therefore, in neutral and weakly acidic solutions, 2-

iodosobenzoate oxidizes iodide to iodine without further oxidization to iodate (the redox 

potential of iodate is >0.8 V) (Hou et al., 2009 and references therein).  

 Aromatic amines and phenols are exceptional iodination reagents (Shin et al 1996; 

Mishra et al., 2000). Mishra et al. (2000) proposed that N, N-dimethylaniline could act as 

an iodine scavenger that forms just a single isomer of the derivative (at the para 

position), because substitution at the two ortho positions are impeded by the large 

dimethylamino group. 

 

5.4. Results 

5.4.1. Reduction of iodate to iodide  

    Iodate was prepared for quantification by a two-step chemical process: 1) reduction to 

iodide followed by 2) oxidation and derivitization of iodide as described in Figure 5.3. 
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Researchers have previously used ascorbic acid as a reducing agent to convert iodate to 

iodide (Mishra et al., 2000), however, in our hands the redox reaction was not successful, 

possibly because of the high sensitivity of ascorbic acid to light and air. Instead, we used 

sodium metabisulfite (Na2S2O5) as the reductant at pH 2 (Schwehr and Santschi, 2003; 

Hou et al., 2001).   

An experiment was conducted to determine the optimum concentration of Na2S2O5 to 

use as reductant for iodate at a working concentration of 78.7 nM. As shown in Figure 

5.4, addition of 0.2 mM Na2S2O5 provided sufficient reducing power to recover nearly all 

the iodate present. 

 

                 

 

Fig. 5.4 Effect of Na2S2O5 concentration on iodate reduction 
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5.4.2. Evaluation of iodosobenzoate dose for iodate measurement 

During the two-step chemical process that we used to enable iodate quantification 

(Figure 5.3), iodosobenzoate is used as an oxidizing reagent to convert iodide to iodine, 

however, it can also react with excessive Na2S2O5 from the iodate reduction step. 

Insufficient iodobenzoate will result in low recovery due to incomplete converstion of 

iodide to iodine. Therefore, to determine the optimum level of iodobenzoate, an assay, 

0.4, 0.6, 0.8 and 1 mL of iodosobenzoate solution, was tested in a dose experiment in 

which concentrations of Na2S2O5 and iodate were 0.2 mM and 78.7 nM, respectively. 

Even though three batches of experiments showed that 0.4 mL of iodosobenzoate 

resulted in an iodate recovery of 91.4±1.0%, 1 mL of iodosobenzoate (i.e., 4.3 mM) was 

eventually choosen for the assay because it consistently worked both for all ranges of 

standards and water samples (data not shown).   

5.4.3. Distinguishing 129I from 127I  

The chromatographic peak of iodinated N, N-dimethylaniline was identified by the 

retention time and verified by its mass spectrum at full scan (Figure 5.5). 129I was 

distinguished from 127I by the different mass of their iodinated product, 4-iodo-N, N,-

dimethylaniline, which are 249 and 247 g/mol, respectively. Therefore, to quantify 127I, 

the mass range was set to 247 (Figure 5.6 b) and to quantify 129I, the mass range was set 

to 249 (Figure 5.6 c).  The setting of single mass range works analogously to the single 

ion mode (SIM) of mass spectrometry. However, the post-run setting is more informative 

and flexible by providing a full scan chromatogram. 

 



107 
 

 

5.4.4. Calibration curves  

    For quantitative GC-MS analysis of iodinated N, N-dimethylaniline, 2, 4, 6,-

tribromoanline was used as the internal standard. The peak area of the internal standard 

was gained from the full scan chromatogram (Figure 5.6 a). Quantification of iodinated 

N, N-dimethylaniline (for 127I) was performed by integrating the appropriate peak in the 

chromatogram using a mass range 247 filter. The ratios of the respective areas for peaks 

representing 4-iodo-N, N-dimethylaniline and the internal standard, N, N-

dimethylaniline, 2, 4, 6,-tribromoanline, were plotted against the concentrations of 

iodide. Two calibration curves were obtained (Figure 5.7). One was for a high 

concentration of iodide, with a range of 1-16 µg/L (7.9-126 nM). The other one was for 

low concentrations of iodide, with a range of 100 -1000 ng/L (0.8-7.9 nM). Their 

correlation coefficients are 0.9983 and 0.9982, respectively.  

5.4.5. Detection limits  

    Due to the application of mass spectrometry, the sensitivity of detection was 

significantly increased. As a result, reagent blanks for the measurement of 127I species 

could not be overlooked. The reagent blank for iodide was 2.51±0.11 nM, and the 

detection limit of 127I was 0.34 nM. During the quantification of iodate, the inclusion of 

iodosobenzoate increased the reagent blank of 127I to 8.74 ± 0.32 nM and the detection 

limit to 1.11 nM. For the determination of 129I species, no detectable 129I was found in the 

reagents, which leads to a more sensitive detection limit of 0.08 nM (2 pCi 129I /L).   

 

 



108 
 

 

 

                                         

                                        

iodide-10ug #180 RT: 7.90 AV: 1 SB: 44 7.67-7.83 , 7.95-8.13 NL: 1.98E4
T: + c Full ms [ 50.00-400.00]

50 100 150 200 250 300 350 400
m/z

0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e
 A

b
un

da
nc

e

247.13

119.22

77.18

50.98
231.20123.37

203.24157.24 355.33256.22 376.95285.09 331.27

  

Fig. 5.5 A) Chromatogram of 16 µg/L iodide (5 ml sample) after derivatization to 4-

iodo-N, N-dimethylaniline (retention time 7.89 min), and 25 µg /L 2, 4, 6,- 

tribromoanline (retention time 9.08 min) used as internal standard. B) mass spectrum of  

4-iodo-N, N-dimethylaniline 
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Fig. 5.6 Strategy for distinguishing 129I from 127I. Arrows point to the peak with RT 7.91 

that represents 4-iodo-dimethylaniline. A) Full scan of GC chromatogram representing a 

sample containing 4-iodo-dimethylaniline and the internal standard, 2, 4, 6,- 

tribromoanline (RT 9.10), B) GC chromatogram filtered for mass range at 247 for 

identification of 4-127iodo-dimethylaniline, C) GC chromatogram filtered for mass range 

at 249 for identification of 4-129iodo-dimethylaniline 
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5.4.6. Quality control by standard addition to samples 

For general groundwater and seawater samples with a neutral pH of 7, iodide and 

iodate could be directly measured with the procedures for aqueous samples described 

above. Quality control was carried out by monitoring the recoveries of iodide or iodate 

standards added to the samples. The average recoveries of iodide and iodate were 99.8 ± 

0.9% and 102.6 ± 1.6%, respectively, for near neutral natural samples. However, direct 

measurement of iodide or iodate in SRS groundwater samples was difficult due to the 

acidic nature of the F-Area plume (pH 3.5-4). These low pH values altered the chemistry 

of the groundwater and interfered with the reduction of iodate and subsequent oxidation 

of iodide to iodine. Therefore, we applied a Strata SAX SPE column for cleanup of 

interfering compounds in these samples, with specific conditioning and equilibration 

steps. The average recoveries for the two batches of contaminated samples were 

90.5±1.3% for iodide and 95.1±0.2% for iodate, respectively.  

5.4.7. Validation of total iodine quantification with known amounts of iodide, iodate, 125I, 

and thyroxine 

    Iodide and iodate (2.5 ml of 78.7 nM) were added to samples and combusted to verify 

the recovery efficiency of our method. The recoveries were 81.0 ± 2.1% for iodide and 

85.4 ± 1.3% for iodate. In addition, 100 µL of an 125I standard (0.18 mCi/mL iodide) was 

diluted to 2.5 mL with nanopure water and combusted. The recovery calculated by the 

125I activity was 90.0%. Finally, thyroxine, as a proxy of organic iodine, was mixed with 

a NIST 2709 reference standard (1:200). A 20 mg sub-sample of the thyroxine mixture 

was combusted with 20 mg of V2O5. The recovery of thyroxin was 92.7±3.0%. 
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Fig. 5.7 Calibration curves for iodide quantification by derivatization to 4-iodo-N, N-

dimethylaniline. A) high iodide concentration range 1-16 µg/L (7.9-126 nM), B) low 

iodide concentration range 100 -1000 ng/L (0.8-7.9 nM) 
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5.4.8. Iodine speciation of samples  

    Iodine speciation in surface water from Galveston Bay was determined and compared 

with earlier determinations in the same estuary as Schwehr et al., (2005b) which used 

HPLC methods. The concentration of iodide was 67.6 ± 0.5 nM, 116.7 ± 1.0 nM for 

iodate and 28.5 ± 0.2 nM for organo-iodine. This result is comparable to that of Schwehr 

et al. (2005b), who determined 66-116 nM for iodide, 50-111 nM for iodate, and 12-158 

nM for organo-iodine for this estuary. Higher concentrations of IO3
- than I- are 

reasonable as there is ample oxygen in the surface waters. Both 129I and 129IO3 were 

measured as lower than 0.08 nM (i.e., 73 mBq 129I /L).  

Size-fractionated samples from SRS F-Area well FPZ 6A were analyzed and their 

iodine species are shown in Figure 5.8.  In all fractions, iodine mainly existed as iodide > 

iodate > organo-iodine. For 127I, iodide accounted for 45 ~ 57% of total iodine, with a 

concentration of 95.7 nM in the < 0.45 µm fraction. Iodate and organo-iodine contributed 

nearly evenly to the remaining iodine total, except the <100 kDa fraction where 

significantly elevated concentrations of organo-iodine was detected due to an 

experimental artifact. 129I species showed similar distributions in their respective 

fractions. The concentration of total 129I was 5.3 nM (133 pCi/L) in the < 0.45 µm 

fraction. The ratios of 129I /127I for iodide, iodate and organo-iodine were similar 

(0.02~0.03, in all fractions) which is dramatically elevated when compared to values (129I 

/127I ratios ~10-12) typically observed in pristine waters (Raisbeck and Yiou, 1999). 
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Fig. 5.8 Iodide speciation in samples from well FPZ6A at the Sanvannah River Site. A) 

127I species, B) 129I species 

 

5.5. Discussion 

    Currently there are no sensitive methods available for the direct determination of 

iodate, instead iodate is typically reduced to iodide and then measured by HPLC or IC or 

AMS. This approach can be problematic though, in that sample chemistry can greatly 

influence the percentage of iodate recovered as iodide. Indeed, the common iodate 

reductant, Na2S2O5, completely failed to yield detectable iodide when applied to 

groundwater samples collected from a contaminated plume in this study. Waste that was 

deposited in the F-Area seepage basin at SRS was strongly acidic and significantly 

changed the chemistry of the downgradient groundwater by leaching cations (e.g., Mn2+) 

and low molecular weight organic compounds (e.g., organic acids) from aquifer 

sediments  into the aqueous phase.  Therefore, pre-treatment of these acidic groundwater 

samples was required to enable effective iodate reduction by Na2S2O5. A strong anion 

exchange column with a sorbent functional group of +R3N-, Strata SAX (Phenomenex), 

A B 
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was used to pre-treat the samples after being equilibrated by 1 M NaOH. After 

equilibration with NaOH, the functional groups of the sorbent were replaced by OH-, 

which would remove Mn2+ as well as charged organic compounds (e.g. organic acids by 

either chemical reaction or anion exchange).  These results highlight that the inherent 

chemical diversity of environmental samples necessitates the validation of iodate 

reduction prior to iodide oxidation, derivitization, and detection. 

  The distribution of iodine species in natural waters depends on many environmental 

factors, including chemical composition, pH, Eh and primary and secondary 

productivity. Under normal conditions (pH 3-10, Eh < 0.8 V), iodine should theoretically 

exist in freshwaters as iodide (Hou et al., 2009 and references therein).  However, at the 

F-area of SRS, iodide only accounted for 48.8% of total iodine. The relatively high 

concentration of iodate (27.3%) and organo-iodine (23.9%) implies that chemical and 

biological factors, other than pH and Eh, are involved in regulating iodine speciation in 

the system. In addition, the even distribution of iodine species within each of the 

fractions examined suggests that organo-iodine is associated primarily with low 

molecular weight organic moieties. Tremendously elevated but relatively constant ratios 

of 129I /127I for iodide, iodate and organo-iodine (129I /127I ratios ~0.03) can be attributed 

to the spread of 129I from nuclear waste into the groundwater where it equilibrated with 

stable 127I. The similar magnitude of ratios of 129I /127I for the three iodine species implies 

that the conversion of iodine species of 129I must have been of recent origin, i.e., the 

conversion occurred within the decadal time frame after it was released to the 

surrounding groundwater. These consistent ratios of 129I /127I also support the application 
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of using 129I /127I ratios as an environmental tracer on time frames of decades (Raisbeck 

et al., 1995; Santschi and Schwehr, 2004). 

 

5.6. Conclusions 

    Here we present a novel method for the quantification of iodine species, which 

distinguishes itself by providing 10-50 fold higher sensitivity than HPLC or IC without 

compromising accuracy.  In addition, this method provides a much simpler and more 

convenient way to analyze 129I species when compared to currently available techniques 

such as AMS or neutron activation methods. As such, it is a valuable complementary 

method to AMS for the analysis of environmental samples that are highly contaminated 

with 129I, such as groundwater near nuclear reprocessing facilities. However, the 

detection limit of our method (0.08 nM or 2 pCi 129I /L) does not permit the 

determination of 129I in more pristine, natural samples. Finally, the primary innovation of 

this method is that it permits full speciation at ambient concentrations of 127I and 129I, 

thereby permitting greater mechanistic understanding of the terrestrial biogeochemical 

fate and transport of radioiodine. At the F-area of the Savannah River Sites, the ratio of 

129I /127I was found to be extremely high, up to 0.03, comparing with 10-6~10-10  in 

natural waters. Furthermore, the constant ratios of 129I /127I for each iodine species 

(iodide, iodate and organo-iodine) implied fully equilibrated behavior in the 

groundwater. In addition, apart from iodide, iodate and organo iodine contributed 27% 

and 24% to the total iodine inventory. In contrast, iodate was the primary iodine 
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component in the water from Galveston Bay due to the abundance of oxygen in the 

surface water.   
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CHAPTER VI 

CONCENTRATION DEPENDENT MOBILITY AND RETARDATION OF 

IODINE SPECIES IN SURFACE SEDIMENT FROM THE SAVANNAH RIVER 

SITE 

 

6.1. Overview 

    Iodine occurs in multiple oxidation states in aquatic systems in the form of organic and 

inorganic species. This feature leads to the complex biogeochemical cycling of iodine 

and 129I, which is a major by-product of nuclear fission. 129I is among the top three risk 

drivers for waste disposal at Savannah River Site (SRS) due to its perceived mobility in 

the environment, excessive inventory, toxicity, and long half-life (~16 million yrs). To 

better understand the environmental consequences of radioactive contamination from 

129I, we conducted column experiments to investigate the sorption, transport and 

potential interconversion of iodine species using surface soil from the SRS. This study is 

unique in that we compared the mobility in groundwaters that had ambient 

concentrations of iodine species (10-8 to 10-7 M) to the mobility in groundwaters with 

artificially elevated concentrations of iodine species (~ 0.1 mM), such as are typically 

used in most laboratory analyses. Results demonstrate that the mobility of iodine species 

greatly depends on the iodine concentration used, mostly due to covalent binding of 

iodine to organic carbon moieties of the surface soil. At ambient concentrations, iodide 

and iodate were significantly retarded, while at artificially high concentrations of 0.1 

mM, iodide traveled along with the water at a retardation factor of ~ 1, which might be 
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due to the limited sorptive capacity for anions of the surface soil. Appreciable loss of 

iodide during transport was observed and attributed to iodination of organic carbon, 

specifically aromatic C. At high input concentrations of iodate (78.7 µM), iodate was 

found to be completely reduced to iodide and subsequently followed the transport 

behavior of iodide.  

 

6.2. Introduction 

    Anthropogenic 129I is found in the environment mainly due to releases from fuel 

reprocessing facilities, with smaller amounts from atmospheric bomb testing (1945-

1970s) and natural production (Santschi and Schwehr 2004 and references therein).  Due 

to its long half-life (16,000,000 yrs), high inventory and high mobility, accidentally-

released 129I from fuel reprocessing facilities has migrated into groundwaters, and thus 

led to contamination problems. For example, the Savannah River Site (SRS) in South 

Carolina (Riley and Zachara 1992) is highly contaminated with 129I and other 

radionuclides.      

    For both stable 127I and 129I isotopes, iodide (I-), iodate (IO3
-), and organo-iodine are 

the dominant forms of iodine in aquatic environment.  While in seawater, iodate is the 

dominant specie due to the relatively high concentration of oxygen, iodide is often the 

main species in freshwater, as well as coastal and estuarine environments (Santschi and 

Schwehr, 2004; Hou et al. 2009 and references therein). As a biophilic element, iodine in 

mammals is mainly concentrated in the thyroid, in the form of triiodothyronine (T3) and 

thyroxine (T4). Other forms of iodine in body tissues are associated with proteins, 
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polyphenols and pigments. Seaweeds are known to contain water-soluble iodine, 

composed of iodide, organic iodine and minor amounts of iodate. The distribution of 

iodine species in soils and sediments depend on soil chemistry, such as pH, redox and 

organic carbon content. Generally, iodine in soils is found to be associated with organic 

matter, mainly with humic substances. There is a significant body of laboratory and 

environmental studies that indicate that iodine can react with natural organic matter 

(NOM) and become covalently bound (Steinberg et al., 2008a), i.e., to the aromatic 

carbon on phenolic moieties of NOM.  

    Iodate and iodide mobility in the subsurface environment has been studied by a 

number of researchers. Iodate was found to be retarded in the soils to a significantly 

greater degree than iodide. In batch experiments, iodide distribution coefficients (Kd, the 

ratio of the concentration of I- sorbed onto sediments to the I- concentration in the 

aqueous phase) are relatively low, <10 cm3 g-1, while Kd values for iodate are in the 

range of 1-1000 cm3 g-1, depending on sediment type and microbial biomass in the 

sediment (Fukui et al., 1996; Kaplan et al., 2000; Schwehr et al., 2009). This retardation 

of iodate on soils has been noted to be related to the presence of organic matter in soils. 

An investigation of the abiotic reaction of iodate with natural organic matter has 

demonstrated that under mild conditions, IO3
- could be reduced to iodide and partially 

converted to organo-iodine by covalently binding to NOM (Steinberg et al., 2008b).  In 

addition, interconversion of iodine species during transport in soils has been noted by 

laboratory and field experiments. In the field, oxidation of I- to molecular iodine (I2) and 

iodate (IO3
-) over transport distances of several meters was found in an oxic, Mn(IV)  
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zone of a sand and gravel aquifer after injection of high (mM) concentrations of iodide 

(Fox et al. 2010). Additionally, in an Fe-reducing, anoxic zone of the aquifer, injected 

IO3
- was rapidly and completely reduced to I- within 3 meters of transport (Fox et al. 

2010). Hu et al. (2005) also found significant conversion of IO3
- to I- in their laboratory 

sediment column experiments. 

Even though many studies have been carried out to investigate the mobility of iodine 

species in the natural environment, few studies were conducted at ambient concentrations 

of iodine species. For example, Hu et al. 2005 and Fox et al. 2010 (discussed above) 

applied artificially elevated concentrations of iodine species, i.e., 0.1-1 mM. However, 

experiments with SRS soils showed that the interactions of iodine species with soils were 

highly dependent on the iodide concentration added.  Iodide distribution coefficients 

between soil and aqueous phase, Kd, increased with decreasing iodide concentration in 

the aqueous phase (Schwehr et al., 2009). Nevertheless, batch experiments do not exactly 

reproduce the behavior in the field and might overestimate or underestimate the 

retardation in soils or rocks, especially for most subsurface conditions. Therefore, in this 

study, we designed soil column experiments to investigate the transport and potential 

interconversion of iodine species at ambient concentrations. 

 

6.3. Materials and methods 

6.3.1. Soil sample 

    A surface soil sample was collected with a 7.6 cm diameter auger from a riparian 129I 

contaminated zone located in the F-Area of the Savannah River Site, where 7 billion 
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liters of predominantly acidic aqueous waste from nuclear processing facilities were 

disposed in three un-lined basins from 1955 until 1988. As a radionuclide with high 

mobility, 129I has been found in groundwater, at concentrations that exceed the primary 

drinking water standard for this nuclide (i.e., 2 pCi/L). The soil sample was stored in a 

zip lock bag under ice and was transferred to a refrigerator at 4 °C in the lab. The soil 

was characterized as having high content of organic carbon, 108 mg-OC/g dry soil, and 

low organic nitrogen content of 5.4 mg-ON/g dry soil. 

6.3.2. Column experiment 

    Soil in a moist state was used in order to minimize the experimental artifacts 

introduced by drying soils, such as changes in the relative hydrophobicity of soils, as 

well as in the availability and reactive sites on organic matter, and changes in microbial 

activity that might have profound impact on the speciation and mobility of iodine 

(Amachi et al., 2005a, 2005b). Moist soil was sieved with a stainless steel sieve (nominal 

sieve opening: 425 µm; US standard no. 40) by rinsing it with two volumes of artificial 

freshwater (ionic strength: 1 mM, pH: 6.95, Smith et al., 2002).  The pH of the soil slurry 

was measured as 5.63 at room temperature. The soil-water slurry was concentrated by 

removing 80% supernatant after centrifugation at 2000 g for 30 minute. Then, the soil 

was resuspended into the remaining supernatant.  

 A Knotes glass column (15mm ID, 100mm length, 18mL volume) was packed with 

16 mL of the soil slurry. Then the column containing soil slurry was connected to a 

peristaltic pump and was equilibrated with the artificial fresh water for 14 days at a rate 

of 0.18 mL/h, equivalent to approximately 10 pore volumes. After equilibration, prior to 
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the loading of iodide or iodate, 20 mL of artificial freshwater spiked with tritium 

(activity 200 kBq/L) was injected onto the column as a conservative tracer to compare 

the transport behavior of water with that of iodine species under the same column 

conditions. After finishing the injection of 3H-spiked freshwater, the column was flushed 

with non-spiked freshwater until no radioactivity was found in the effluents. Effluents 

were collected by an automated fraction collector (Waters Fraction Collector) every 99 

minutes and 59 seconds, and the radioactivity of the fractions was measured on liquid 

scintillation counter (Beckman CoulterTM LS 6500).        

 Iodide solutions spiked by iodide-125 (50 kBq/L, carrier - free) were prepared in 

artificial freshwater at two concentration levels, 7.87 nM (ambient concentration) and 

78.7 µM. Iodate solutions were also prepared in artificial freshwater, but at 

concentrations of 78.7 nM and 78.7 µM.  The equilibrated columns were loaded with 

15~20 ml of iodide solutions or iodate solutions, followed by flushing with artificial 

water.  Effluents were collected by an automated fraction collector every 99 minutes and 

59 seconds in the first 7days, and manually collected every 12 hours for two month 

afterwards. The extended collection period allowed the possibility of detecting organo-

iodine if present. Fractions collected were subjected to 125I measurement by liquid 

scintillation and analyses of iodine species as described below.   

6.3.3. Determination of retardation factor 

    The retardation factor, Rf, is a bulk property that describes the overall migration of the 

chemical species with respect to the water, dependent on factors that strongly affect the 

chemistry of soil, e.g., temperature, pH, redox potential, salinity, organic content, and 
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concentrations of other chemical species. It is defined as the ratio of the solution velocity 

to the velocity of a specific chemical (Bouwer, 1991), as given below. 

                                               Rf = Vgw/Vsp   

where Vgw is the velocity of the water and Vsp is the velocity of the specific species. In 

addition, Bouwer (1991) also defined a relationship between retardation factor, Rf and 

distribution coefficient (Kd), as follows.   

                                               Rf = 1 + ψ Kd/n  

where ψ is the dry bulk density and n is the porosity.  

In column experiments, a breakthrough curve was obtained for each iodine species, 

and Rf was determined as the pore volume of the effluent in which the concentration of 

iodine species was 50% of the concentration of the loading solution. 

6.3.4. Analyses of iodine species in fractions 

Application of a recently developed method for iodide speciation determination 

(Zhang et al., in submission) enabled the investigation of iodide transport at ambient 

concentration. Briefly, the iodide concentrations were quantified using gas 

chromatography-mass spectrometry (GC-MS) after derivatization to 4-iodo-N N,-

dimethylaniline. Iodate concentrations were quantified by measuring the difference of 

iodide concentrations in the solution before and after reduction by Na2S2O5. Total iodine, 

including inorganic and organic iodine, was determined after conversion to iodate by the 

combustion at 900 °C and subsequent trapping. Organo-iodine was calculated as the 

difference between the total iodine and total inorganic iodine (iodide and iodate). 

 



124 
 

 

 6.4. Results 

6.4.1. Transport of iodide in surface soil of Savannah River Site 

     Figure 6.1 shows breakthrough curves for iodide at two concentration levels, 7.87 nM 

(ambient concentration) and 78.7 µM. For tritium or the low iodide concentration of 7.87 

nM, breakthrough curves are plotted according to the relative concentration of tritium or 

125I in the effluents comparing to those in the loading solutions. Two breakthrough 

curves are plotted for the loading of iodide at a high concentration of 78.7 µM. One was 

based on the relative concentration of 125I, the other is based on the relative concentration 

of iodide in the effluents. The agreement of the two breakthrough curves verified the 

reliability of the application of 125I in the column experiments. It was evident that the 

transport of iodide in the soil columns greatly depended on the concentration of iodide 

that was applied. Iodide was significantly retarded in the soil column at ambient 

concentration (7.87 nM), resulting in a retardation factor greater than 4.3 which equals to 

> 0.7 cm3/g in Kd value, assuming a porosity of 0.55 and a dry density of 2.5 g/cm3 

(Schwehr et al., 2009). However, the retardation factor for the transport of iodide was 

calculated as ~1.0 when the inflow concentration was 78.7 µM.  

 Variation of pH during the course of tritium and iodide transport (78.7 µM) was 

monitored and shown in Figure 6.2.  The tendency for increase in pH was similar for the 

two species, increasing from 6.92 (freshwater) to 7.3 (effluents), which might be caused 

by the consumption of HCO3
- when freshwater moved along the soil column. In addition, 

compared with tritium, a significant loss of 125I during the transport of iodide at a 
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concentration of 78.7 µM was observed, i.e., the mass recovery of 125I was 77.5%, while 

it was 90% for tritium.  

 

     
   

Fig. 6.1 Breakthrough curves of tritium and iodide in SRS surface soil column 

 

6.4.2. Transport of iodate in surface soil of Savannah River Site 

 Figure 6.3 is a series of breakthrough curves of tritium and iodate at two concentration 

levels, 78.7 nM (ambient concentration) and 78.7 µM. Interestingly, in the column 

experiment with an inflow concentration of iodate at 78.7 µM, iodate was completely 

reduced to iodide after travelling through the surface soil.  No iodate could be detected in 

the effluents.  After the relative concentration of iodide in the effluents compared to 

initial concentrations of iodate in the loading solution was plotted versus pore volumes, a 

retardation factor of 1.1 was obtained, which is similar to that in the iodide transport 

experiment at the same concentration. For the low concentration of iodate (78.7 nM), 
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iodate or interconversion of iodate to iodide have not been observed in the effluents at 

the given loading volume (2 pore volumes), but longer term samples (one month) are still 

being run. 

 

                      
 

Fig. 6.2 Variation of pH in the course of transport of tritium and iodide (78.7 µM) 
 

 
 

               
 

Fig. 6.3 Breakthrough curves of tritium and iodate in SRS surface soil column 
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6.5. Discussion 

6.5.1. Physicochemical properties affecting sorption and transport of iodide  

  In the column experiments, tritium exhibited ideal breakthrough with symmetrical 

behavior and negligible tailing. The extent of iodide sorption onto soils has been reported 

to be extremely limited (Kaplan et al., 2000; Hu et al., 2005). However, significant 

iodide sorption has been observed in SRS subsurface samples (Hu et al., 2005; Schwehr 

et al., 2009), which was found to possess positively charged surfaces and thus facilitated 

the ion interaction between iodide and the sorbent. While reversible interactions are 

important for iodide retardation, our results suggest that some irreversible processes, 

perhaps iodination of organic matter, have occurred during the transport of iodide due to 

the 22% loss of iodide. In order to verify the presence of organo-iodine that was formed 

during the course of travelling of iodide, the column was continued to be flushed by 

artificial freshwater for an extended period of 1 month and will be running for one more 

month. Schwehr et al., (2009) observed the formation of organo-iodine by inoculating 

sediments with groundwater with an ambient concentration of iodide. The kinetics of 

iodination of thyroxine and protein are well-established in the literature (Huber et al., 

1989; Pommier et al., 2005). In addition, bacterial enzymes, such as oxidases and 

peroxidases, were found to be involved in the halogenation of natural organic matter 

(Amachi et al., 2005a, 2005b). Even though the formation of organo-iodine has not been 

observed in the column effluents during the given transport time (i.e., one month), the 

fact that the surface soil was non-sterile and possessed a high content of organic carbon 

(108 mg/g dry soil) suggests interaction of iodide with organic matter, mediated by 
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bacterial enzymes. Moreover, in this study, retardation of iodide depends significantly on 

the concentration of iodide, i.e., iodide at ambient concentration was retarded to a greater 

degree in the surface soil column than at elevated concentration. The retardation of 

iodide implied interaction of iodide with the soil matrix, which might be through 

electrostatic adsorption to mineral surfaces in the soil, anion exchange with the positively 

charged soil surface, or irreversible covalent binding with organic matter. However, the 

fact that iodide apparently travelled along with the water when the iodide concentration 

was 78.7 µM suggests a limited sorption capacity of the soil, which must be between 

78.7 µM and 7.87 nM.   

  In order to estimate the potential role of natural organic matter on iodide 

transformation, an approximation calculation was carried out as below. Given that 10 g 

of soil with a 50% porosity was packed in the column, there was 540 mg organic carbon 

(OC) in the soil column and 151 mg aromatic C as aromatic carbon (22-35% OC in 

typical soils, Schwehr et al., 2009 and references therein). Considering that one aromatic 

ring possesses one reactive site for iodide binding, there would be 2 mmol equivalent 

reactive sites for iodide to bind. However, iodide loading was only about 1.2 µmol (15 

ml, 78.7 µM), and only 0.25 µmol of I (22% loss of iodide) was found in a potentially 

organic form. This is much lower than the estimated 2 mmol equivalent reactive sites. 

Therefore reactive sites in organic matter of soil must be limited but abundant enough to 

interact with iodide at ambient concentrations. 
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6.5.2. Sorption and transport of iodate in the SRS surface soil 

  Iodate was reported to commonly exhibit more retardation behavior than iodide 

(Sheppard and Thibault, 1992; Yoshida et al., 1998). The difference in I- and IO3
- 

sorptive behavior was presumably due to the harder base nature of iodate, as compared to 

I-, which would favor the hard-hard interactions with the mineral surfaces (Kaplan et al., 

2000).  However, in this study, iodate was completely reduced to iodide when flowing 

through the soil column, and thus, the subsequent transport behavior was controlled by 

the high mobility of iodide. The geochemical basis for the conversion of iodate to iodide 

will be discussed separately below. 

6.5.3. Conversion of iodate to iodide 

 The reduction of IO3
- to I- could be abiotic or biotic processes. Hu et al., (2005) 

compared reduction capacity for different minerals. Illite, montomorillonite and kaolinite 

were reported to show an appreciable capacity for IO3
- reduction. In addition, a recent 

study of Fox et al., (2010) indicated the complete reduction of IO3
- occurred in the soils 

which contained an abundance of reductants, such as iron (II). In this study, rapid and 

complete reduction to I- was also observed. The presence of iron and data about the 

mineralogy of the surface soil has yet to be reported. However, the high content of 

natural organic carbon might be an important substratum for IO3
- reduction, as iodate is 

still present in groundwater with much lower organic carbon concentration (Schwehr et 

al., 2009; Zhang et al., in submission). The mechanism was further investigated in 

Steinberg et al. (2008b) study, who postulated an intermediate, I2 or HIO that would be 

produced during the reaction of iodate with natural organic matter. The intermediate 
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species would then subsequently be incorporated into the organic matter or further 

reduced to I-. As discussed in the section above, limited reactive sites for the iodination 

of organic matter in the soil is present in adequate concentration for IO3
- reduction to 

dominate the IO3
- transport behavior and be mediated by organic matter. In addition, 

microbes might contribute to IO3
- reduction as well as the iodination of organic matter 

since the surface soil used in the experiments wasn’t air-dried and sterilized. Therefore, 

control experiments where microbes will be killed by gamma irradiation will be 

conducted to estimate the role of microbes in the transport of iodine species.   

 

6.6. Conclusions 

Using a newly developed analytical technique, ambient concentrations of iodine 

species were examined for their transport behavior in the surface soil from the Savannah 

River Site, in contrast to artificially high concentrations typically used for soil column 

experiments.  It was shown here that the mobility of iodine species greatly depends on 

the iodine concentration that was applied. At ambient concentrations, iodide and iodate 

were significantly retarded during the column experiment. Little or no retardation was 

observed in the case of high input concentrations of iodide (78.7 µM). This probably was 

caused by the limited sorptive capacity of the surface soil. In addition, iodination of 

natural organic matter during the transport of iodide, which might be facilitated by 

enzymes (e.g., oxidases and peroxidases) was likely responsible for the loss of iodide 

during transport. The mechanism of complete reduction of iodate to iodide has yet to be 
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explored. Most likely, it was related to high content of natural organic carbon in the 

surface soil.  

 

6.7. Future work 

In order to validate the role of natural organic matter in the transport of iodine species, 

a soil with a low content of natural organic matter from the Savannah River Site should 

be prepared to compare with the soil which was used in this study. In addition, if 

iodinated natural organic matter formed during transport of iodine species through the 

columns, these organo-iodine species would not be eluted from the soils, even when 

running for one-month. Thus, soils in the column should be subjected to extraction and 

iodinated natural organic matter should be separated and characterized by FTIR and 

NMR (if possible). 

The transport of iodine species should also be investigated by comparing fresh soils 

with corresponding sterile soils, in order to evaluate the role of bacteria in the iodination 

of natural organic matter. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

    A series of laboratory and field investigation were carried out to elucidate the 

importance of natural organic matter (NOM), i.e., trace element scavenging (e.g., 234Th) 

by exopolymeric substances (EPS), formation of biofilms, as well as interactions with 

129I. 

    In order to chemically characterize strongly Th (IV)-binding exopolymeric substances 

(EPS) from a single organism, cross flow ultrafiltration, along with some necessary 

improvements, followed by a three-step cartridge soaking and stirred-cell diafiltration 

was developed for isolating EPS from phytoplankton cultures, especial in seawater 

media. EPS isolated from a marine diatom, Amphora sp. was then subjected to semi-

quantitative (e.g., carbohydrate, proteins) and quantitative analysis (e.g., neutral sugars, 

acidic sugars, sulfate) after further purification and separation by anion exchange acid. 

More than 90% of the isolated EPS was found to be composed of two different acidic 

polysaccharides, f1 and f2. Unpurified EPS, fractions f1 and f2 showed peaks at 

isoelectric points (pHIEP) of about pH 3 during isoelectric focusing after labeling with 

234Th (IV), indicating that Th (IV) binding by EPS was dominated by the acidic 

polysaccharides in f1 and f2. The strong binding of 234Th (IV) to these acidic 

polysaccharide-rich EPS compounds enables us to locate and closely look at the agents 

who are responsible for binding of 234Th (IV), which is relevant for a better 

understanding of the oceanographic applications of POC/234Th ratios to particle and 

organic carbon dynamics in marine systems. 
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    EPS of biofilm not only serve as a matrix for biofilm growth by holding cells together, 

but also provide sorption sites for inorganic and organic solutes such as nutrients and 

trace elements. The enrichment of inorganic and organic nutrients facilitates cell growth 

in biofilms. In this study, biofilms were grown on four substrata, brick, glass, plastic and 

wood, at two heavily contaminated Houston, TX, bayous, White Oak Bayou and Buffalo 

Bayou. After four weeks of growth, biofilms were collected and extracted for analysis of 

EPS. Proteins were the most abundant components in EPS, followed by carbohydrates. 

However, the chemical compostion of carbohydrates or proteins, i.e., monosaccharides 

and amino acids, respectively, varied with environmental conditions and substrata 

applied, which suggests that the formation of biofilms on different substrate is regulated 

by specific properties of microorganism cells, environmental conditions and nature of 

substratum.  No correlation between relative hydrophobicity of substratum and 

development of biofilm was found in this study. 

     Unlike 234Th, the interaction of natural organic matter with 129I are of covalent nature, 

i.e., through electrophilic substitution of aromatic carbon, which probably is mediated by 

bacterial activities. In aquatic environments, iodine mainly exists as iodide, iodate and 

organic iodine. The high mobility of iodine in aquatic systems has led to 129I 

contamination problems at sites where nuclear fuel has been reprocessed, such as the 

Savannah River Site. In order to assess the distribution of 129I and stable 127I in 

environmental systems, a sensitive and rapid GC-MS method was developed. This 

method distinguishes itself by providing 10-50 fold higher sensitivity than HPLC or IC 

without compromising accuracy. In addition, this method provides a much simpler, more 
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convenient or cheaper way to analyze 129I species when compared to currently available 

techniques such as AMS or neutron activation methods. As such, it is a valuable and 

complementary method to AMS for the analysis of environmental samples that are 

highly contaminated with 129I, such as groundwater near nuclear reprocessing facilities. 

However, the detection limit of our method (0.08 nM or 2 pCi 129I /L) does not permit 

the determination of 129I in more pristine, natural samples. Finally, the primary 

innovation of this method is that it permits full speciation at ambient concentrations of 

127I and 129I, thereby permitting greater mechanistic understanding of the terrestrial 

biogeochemical fate and transport of radioiodine.  

    At the F-area of the Savannah River Sites, the ratio of 129I /127I was found to be 

extremely high, up to 0.03, compared to 10-6~10-10  in natural waters. Furthermore, the 

relative constant ratios of 129I /127I for each iodine species (iodide, iodate and organo-

iodine) implied fully equilibrated behavior in the groundwater. In addition, iodine 

species in the groundwater of the polluted F-area consisted of 48.8% of iodide, 27.3% 

iodate and 23.9% organo-iodine. In contrast, iodate was the primary iodine component in 

the water from Galveston Bay due to the presence of sufficient oxygen in the surface 

water. Each of these iodine species sorbs differently to sediment and therefore moves at 

different speeds through the environment. Results from column experiments using a 

surface soil from the F-area demonstrate that the mobility of iodine species greatly 

depends on the iodine concentration that is used. At ambient concentrations (7.87 nM-

78.7 nM), iodide and iodate were significantly retarded, while at artificially high 

concentrations of 0.1 mM, iodide traveled along with the water with a retardation factor 
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of ~ 1, which might be due to the limited sorptive capacity for anions of the surface soil. 

Microbial enzymes (e.g., haloperoxidases) could be responsible for the binding of iodide 

by iodination of natural organic carbon, especially the aromatic C, which caused the loss 

of 22% iodide during the course of column transport. At high input concentrations of 

iodate (78.7 µM), iodate was found to be completely reduced to iodide and subsequently 

followed the transport behavior of iodide. The marked reduction of iodate concentrations 

was probably caused by reactions with natural organic matter that was facilitated by 

microbial activities. Alternatively, it could have been caused by reactions with inorganic 

reductants (e.g., Fe2+) in sediments and pore water.   
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