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ABSTRACT

Generic Properties of Actions of Fn. (August 2010)

James Mitchell Hitchcock, B.S., Texas Lutheran University;

M.S., Stephen F. Austin State University

Chair of Advisory Committee: Dr. David Kerr

We investigate the genericity of measure-preserving actions of the free group Fn,

on possibly countably infinitely many generators, acting on a standard probability

space. Specifically, we endow the space of all measure-preserving actions of Fn acting

on a standard probability space with the weak topology and explore what properties

may be verified on a comeager set in this topology. In this setting we show an analog

of the classical Rokhlin Lemma. From this result we conclude that every action of Fn

may be approximated by actions which factor through a finite group. Using this finite

approximation we show the actions of Fn, which are rigid and hence fail to be mixing,

are generic. Combined with a recent result of Kerr and Li, we obtain that a generic

action of Fn is weak mixing but not mixing. We also show a generic action of Fn has

Σ-entropy at most zero. With some additional work, we show the finite approximation

result may be used to that show for any action of Fn, the crossed product embeds

into the tracial ultraproduct of the hyperfinite II1 factor. We conclude by showing

the finite approximation result may be transferred to a subspace of the space of all

topological actions of Fn on the Cantor set. Within this class, we show the set of

actions with Σ-entropy at most zero is generic.
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1. INTRODUCTION

Classically a dynamical system can be characterized as a group action of the real

numbers or integers on a standard probability space. In this context, the concept of

a generic dynamical system may be traced back to the early twentieth century. Of

these early results, those of Halmos [14] and Rokhlin [30] are probably the most well

known. In particular, these results implied the existence of a weak mixing but not

mixing dynamical system long before any explicit examples were known.

Throughout the twentieth century many of the fundamental concepts of classical

dynamical systems were extended to more general groups such as amenable groups

[25,26] and locally compact groups [2]. During this time, interest also arose in actions

of the aforementioned groups on compact Hausdorff spaces. Recently there has been

renewed interest what properties a generic dynamical system has in these settings.

In the measure-preserving setting Kerr and Pichot [20] showed that for a second

countable locally compact group the set of weak mixing actions is generic if and only if

the group lacks Kazhdan’s property (T). Informally a group is said to have Kazhdan’s

property (T) if every representation that has nonzero almost invariant vectors admits

a nonzero invariant vector. For amenable groups, it is well known that the set of

actions which have zero entropy is generic. In the topological setting, most of the

known results are for integers actions on the Cantor set, see [1], [13], and [16] for

example.

The content of this work focuses on actions of the free group Fn on n generators

for some n ∈ N∪{∞} acting on a nonatomic standard probability space and, to some

extent, the Cantor set. In Section 2 we give a brief introduction to both measure-

This dissertation follows the style of Ergodic Theory and Dynamical Systems.
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preserving and topological dynamical systems as well as establish much of the notation

we will use throughout. We also make precise what it means for a property to be

generic. In particular, given a group G and measure space or topological space X we

topologize the space of all actions of G on X in such a way that it becomes a Polish

space. We then define a property to be generic if it can be realized on a set containing

a dense Gδ set with respect to this topology. We also introduce the Rokhlin lemma

for integer actions of a standard probability space and comment on its significance.

Section 3 is devoted to establishing a result akin to the Rokhlin lemma for actions

of Fn on a nonatomic standard probability space (X,µ). We begin this section by

showing the topology defined on the space of all measure-preserving actions of Fn

on X may be simplified. We then define what it means for an action to pointwise

permute some finite measurable partition of X. In Proposition 3.2.2 we show this

condition implies factoring through a finite group. The culmination of this work

is Theorem 3.3.2 which states any action of Fn can be approximated by one which

pointwise permutes some partition.

Sections 4, 5, and 6 are applications of Theorem 3.3.2 and Theorem 3.3.3. In

Section 4 we establish that a generic action of Fn fails to be mixing. Since Fn is known

to lack Kazhdan’s property (T), the previously mentioned result of Kerr and Pichot

implies a generic action of Fn is weak mixing but not mixing. Section 5 introduces

the notion of Σ-entropy for sofic groups as defined by Bowen [5]. We verify that Fn

is residually finite and thus sofic by giving a rather simple dynamical proof using

Bernoulli shifts and Theorem 3.3.3. We then show the set of actions of Fn whose

Σ-entropy is at most zero is generic.

In Section 6 we address a case of Connes’ embedding problem. It follows from

a result of Brown, Dykema, and Jung [7] on almagamated free products that for any

action of Fn on a nonatomic probability space (X,µ) the crossed product L∞(X,µ)⋊
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Fn can be embedded into Rω, the tracial ultrapower of the hyperfinite II1-factor.

Using the results of Section 3 we modify the argument given by Wassermann [35]

showing that the group von Neumann algebra of F2 embeds into Rω to construct an

embedding of L∞(X,µ) ⋊ Fn into Rω.

In Section 7 we extend many of the concepts and results of Section 3 to actions of

Fn on the Cantor set K. The end result is Theorem 7.2.3 which is a topological analog

of Theorem 3.3.2. Unlike the measure-preservng case, we note that Theorem 7.2.3

cannot be expected to hold for all actions of Fn on K. Instead, we give a complete

description of those actions for which it does hold. Recently Kerr and Li [19] have

extended Bowen’s definition of Σ-entropy to actions of sofic groups on compact metric

spaces. We show for the set of actions for which Theorem 7.2.3 holds that the set of

actions which have entropy at most zero is generic. We conclude the work in Section

8 with possible directions for future study.
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2. PRELIMINARIES

In this section we hope to give an adequate introduction to dynamical systems for

the reader to follow the theory and results that follow. Unfortunately, the general

theory is both vast and quickly developing and we must sacrifice in depth discussions

for brevity. For more detailed discussions of ergodic theory and dynamical systems

the reader is refered to [4], [12], or [27]. We will also assume a basic knowledge of

topology and topological groups such as in [6], and measure theory such as in [11].

Finally, we assume some basic knowledge of von Neumann algebras.

2.1. Introduction to Dynamical Systems

Generally speaking, a dynamical system is a triple (G,X, α) consisting of a group G,

a space X, and a group action α of G on X. The study of dynamical systems can then

be characterized as the study of the asymptotic behavior of systems. To concretely

analyze this asymptotic behavior of a dynamical system (G,X, α) we must make some

assumptions on G, X, and α. Classically, G was assumed to be either R or Z. In

the 1980’s many fundamental notions of dynamical systems were extended to actions

of amenable groups and locally compact groups, see [25, 26] and [2, 12] respectively.

In practice the groups we will encounter will be countable groups endowed with

the discrete topology. Thus unless otherwise specified, G will be assumed to be a

countable discrete group throughout this dissertation.

The assumptions on X and consequently α will be either measure-theoretic or

topological in nature. We say (G,X, α) is a topological dynamical system or topological

G-system if X is a compact Hausdorff space and α is a group action of G on X such

that αs : X → X is a homeomorphism for each s ∈ G. If X is metrizable we say the

system (G,X, α) is metrizable. Unless otherwise specified, we will assume all topolog-
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ical systems are metrizable. If G = Z the system (Z, X, α) is determined by T = α1.

Thus we denote topological Z-systems by (X, T ) where T is a homeomorphism from

X onto itself.

Before defining the measure-theoretic case we must make a brief digression into

measure theory. A topological space X is said to be a Polish space if it is homeomor-

phic to complete metric space which is second countable and generates the topology

on X. A measurable space (X,X ) is said to be a standard Borel space if X is a Polish

space and X is the Borel σ-algebra generated by the open subsets of X. A measure

space (X,X , µ) is said to be a standard probability space if (X,X ) is a standard

Borel space and µ is a probability measure. When there is no risk of confusion, we

will omit the σ-algebra X from (X,X , µ) and write (X,µ).

Suppose α is a group action of G on a standard probability space (X,µ). We say

α is measure-preserving if µ(αsA) = µ(A) for all A ∈ X and s ∈ G. Such an action

is called a measure-preserving dynamical system or measure-preserving G-system and

we denote it by (G,X, µ, α). As with the topological case, when G = Z the system is

determined by T = α1. Consequently, we denote integer actions by (X,µ, T ) where

T is a measure-preserving automorphism of X.

The preceding assumptions on α and X give rise to two distinct yet overlapping

classes of dynamical systems. In many cases information can be gained by viewing

a system as both a topological and measure-preserving dynamical system. Other

interesting questions arise from the relationship between topological and measure-

preserving systems. It should be noted that other meaningful restrictions can be

placed on the triple (G,X, α). For example, we could require X to be a differential

manifold and αs to be a diffeomorphism for each s ∈ G. However, measure-preserving

and topological dynamical systems will be of primary interest and we will restrict our

attention to them.
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The following examples are standard in any introductory text. We give a brief

overview for future reference.

Example 2.1.1 (Rotations on the unit circle). Let T ⊂ C be the unit circle with

Lebesgue measure λ. Given w ∈ T define Tw : T → T by Twz = wz. Then (T, λ, Tw)

is a measue preserving Z-system. If T ⊂ C is regarded as compact Hausdorff space

then (T, Tw) is a topological Z-system. The systems (T, λ, Tw) and (T, Tw) are most

interesting when w is not a root of unity.

Example 2.1.2 (Bernoulli shifts). Let (X,X , µ) be a standard probability space and

G a locally compact group. Let XG =
∏

s∈GX and µG be the product measure on

the product Borel structure X G. Then (XG,X G, µG) is again a standard probability

space. Viewing elements of XG as functions x : G → X we may define αs(x)(t) =

x(s−1t). Then (XG, µG, α) is measure-preserving dynamical system. If we assume X

is compact Hausdorff space then the product topology on XG is again compact and

Hausdorff. It can then be verified that (XG, α) is a topological dynamical system.

We refer to the dynamical systems (G,XG, µG, α) and (G,XG, α) as Bernoulli shifts.

Example 2.1.3 (Odometers). Let {rn}∞n=1 be a sequence of integer such that rn ≥ 2

for all n ∈ N. Define X =
∏∞

n=1{0, 1, . . . , rn − 1}. Then X is a Cantor set. Define

an operation on X by addition mod rn on the nth coordinate with carryover to the

(n+ 1)th coordinate. Let 1 = (1, 0, 0, . . .) ∈ X. Define O : X → X by O(x) = x + 1.

Then O is a homeomorphism of X, known as an odometer or adding machine. When

rn = 2 for all n ∈ N we call O the dyadic odometer.

The original intent of this dissertation was to study generic properties of measure-

preserving actions of certain groups. Consequentially, the majority of the content of

this dissertation is devoted to measure-preserving dynamical systems. It became evi-

dent that some of the more interesting results could be transferred to the topological
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setting. In Section 7 we will extend the appropriate results to certain topological

actions. To further understand measure-preserving actions, we again digress briefly

into measure theory.

Let (X,X , µ) be a measure space. It is routine to check that A ∼ B if and

only if µ(A△B) = 0 defines an equivalence relation on X . Given A ∈ X let Ã be

the equivalence class of A under this relation and set X̃ = {Ã : A ∈ X }. Given

Ã, B̃ ∈ X̃ it is easily verified that Ã ∪ B̃ = Ã ∪ B, Ã ∩ B̃ = Ã ∩B, and Ãc = Ãc

are well defined operations showing X̃ is an algebra. In fact, countable unions are

also well defined, whence X̃ is a σ-algebra. Given Ã ∈ X̃ define µ̃(Ã) = µ(A) for

some A ∈ Ã. Routine calculations show µ̃ is a well defined measure. We call the pair

(X̃ , µ̃) the measure algebra of (X,X , µ).

Suppose (X,X , µ) and (Y,Y , ν) are measure spaces. A bijection φ : X → Y is

said to be a point isomorphism if µ ◦ φ−1 = ν. We say X and Y are isomorphic mod

0 if there exist null sets Nµ and Nν of X and Y respectively and a point isomorphism

φ : X/Nµ → Y/Nν. We say the measure algebras X̃ and Ỹ are isomorphic if there

exists a bijective map ψ : X̃ → Ỹ satisfying:

• Φ(Ãc) = Φ(Ã)c

• Φ(Ã ∪ B̃) = Φ(Ã) ∪ Φ(B̃)

• µ̃(Ã) = ν̃(Φ(Ã)).

If X and Y are isomorphic mod 0, it is clear that the respective measure algebras

(X̃, µ̃) and (Ỹ , ν̃) are isomorphic. When (X,X , µ) and (Y,Y , ν) are nonatomic

probability spaces, the converse holds, see Section 6 of Chapter 15 in [31].

Let (G,X, µ, α) be a measure-preserving dynamical system. Then α induces an

action α̃ of G on the measure algebra X̃ given by α̃s(Ã) = αs(A) for some A ∈ Ã.

Similarly, it can be shown every action of the measure algebra X̃ induces an action of
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X when (X,µ) is a nonatomic standard probability space. In particular, this obser-

vation allows us to ignore null sets in many instances. Thus we adopt the convention

that the underlying standard probability space of (G,X, µ, α) is nonatomic.

2.2. Conjugacy of Dynamical Systems

As in many branches of mathematics, determining when two objects are essentially

the same is important in the study of dynamical systems. Specifically, we ask when

two dynamical systems are conjugate. In the topological case we say the systems

(G,X, α) and (G, Y, β) are conjugate if there exists a homeomorphism φ : X → Y

such that φ ◦ α = β ◦ φ. We say the measure-preserving systems (G,X, µ, α) and

(G, Y, µ, β) are conjugate if there exists a measure algebra isomorphism φ : X̃ → Ỹ

such that φ ◦ α̃ = β̃ ◦ φ.

In the case of measure-preserving systems we may also speak of systems being

isomorphic and spectrally equivalent. We say the systems (G,X, µ, α) and (G, Y, ν, β)

are isomorphic if there exists nullsets Nµ and Nν of X and Y respectively and a point

isomorphism φ : X/Nµ → Y/Nν such that φ ◦ α = β ◦ φ. It is clear if α and β are

isomorphic, then they are conjugate. Under our assumptions that (X,µ) and (Y, ν)

are nonatomic standard probability spaces the converse also holds.

A (unitary) representation of a topological group G is a pair (π,H) consist-

ing of a Hilbert space H and a homomorphism, π, from G into the group of uni-

tary operators on H which is weakly continuous. Any measure-preserving dynam-

ical system, (G,X, µ, α), induces a representation πα of G on L2(X,µ) given by

πα(s)f = f ◦α−1
g . We call πα the Koopman representation. We then say two systems

(G,X, µ, α) and (G, Y, ν, β) are spectrally equivalent if there exists a unitary map

U : L2(X,µ) → L2(Y, ν) such that U ◦ πα = πβ ◦ U .
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We conclude this subsection with a few remarks on the relationship among con-

jugacy, isomorphism, and spectral equivalence. Under the assumption that (X,µ) is

a nonatomic standard probability space, conjugacy and isomorphism are equivalent.

For technical reasons, the convention is to disregard the latter. It is also clear that

conjugacy implies spectral equivalence. In general, the converse need not hold. A

discussion of when spectral equivalence implies conjugacy can be found in [15].

2.3. Asymptotic Properties of Dynamical Systems

As previously mentioned, the study of dynamical systems concerns the asymptotic

behavior of a given system. In particular, we ask how a system behaves as we approach

infinity in the group G. When G = Z approaching infinity is unambiguous. However,

if G is a locally compact we must make explicit what it means to approach infinity.

Informally we say a property occurs at infinity if it can be verified off compact subsets.

For example, we say a function φ : G→ C vanishes at infinity if for each ǫ > 0 there

exists a compact subset K ⊂ G such that |φ(s)| < ǫ for all s 6∈ K.

We now introduce what it means for both a measure-preserving and topological

system to be ergodic, weak mixing and mixing. We refrain from introducing entropy

at this time, but will address it in some detail in Sections 5 and 7. We first present the

more familiar definitions for measure-preserving Z-systems and then the definitions

for measure-preserving actions of locally compact groups and topological actions. We

say a Z-system (X,µ, T ) is:

• ergodic if whenever A ∈ X satisfies TA = A then either µ(A) = 0 or µ(Ac) = 0,

• mixing if limn→∞ |µ(T kA ∩B) − µ(A)µ(B)| = 0,

• weak mixing if limn→∞
1
n

∑n−1
k=0 |µ(T kA ∩ B) − µ(A)µ(B)| = 0.

Suppose (G,X, µ, α) is a G-system where G is a locally compact group. For each
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f, g ∈ L2(X,µ) we associate a function, called a matrix coefficient, from G into C

defined by s 7→ 〈πα(s)f, g〉. We now define ergodicity, mixing and weak mixing for

(G,X, µ, α) as follows. We say (G,X, µ, α) is:

• ergodic if the only πα invariant functions in L2(X,µ) are the constant functions,

• mixing if for all f, g ∈ L2(X,µ) ⊖ C1 the matrix coefficient s 7→ 〈πα(s)f, g〉

vanishes at infinity,

• weak mixing if for all f, g ∈ L2(X,µ)⊖C1 the matrix coefficient s 7→ 〈πα(s)f, g〉

vanishes at infinity for some sequence of group elements.

Let (G,X, α) be a topological dynamical system. We say (G,X, α) is transitive

if for all nonempty open sets U, V ⊂ X there exists s ∈ G such that αsU ∩ V 6= ∅.

Given another topological dynamical system (G, Y, β) we define the product system

(G,X × Y, α× β) in the natural sense, i.e. (α × β)s(x, y) = (αsx, βsy). We then say

(G,X, α) is:

• ergodic if every proper closed α-invariant subset of X is nowhere dense,

• mixing if for all nonempty open sets U, V ⊂ X × X there is a compact set

F ⊂ G such that (α× α)sU ∩ V 6= ∅ for all s ∈ G \ F ,

• weak mixing if the product system (G,X ×X,α× α) is transitive.

2.4. The Space of Actions and Generic Properties

It is clear from the definitions that a mixing Z-action must also be weakly mixing. It is

then natural to ask if there is an Z-action which is weakly mixing but not mixing. One

approach is to attempt to construct such an action directly. Although such examples

been exhibited by Katok, Chaccon, and others, they tend to be complicated. An

indirect approach is to show a “typical” Z-action is weak mixing but not mixing.

This is the approach taken by Halmos [14] and Rohklin [30] in the late 1940’s.
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The general idea behind the work of Halmos (resp. Rohklin) is to topologize the

space of all Z-actions and then show the set of actions which are weak mixing (resp.

not mixing) is large in an appropriate sense. By assuring these sets are large enough,

their intersection must be nonempty, whence actions which are weak mixing but not

mixing must exist. To make this approach more precise we first introduce the relevant

topologies on the spaces of measure-preserving and topological actions.

We denote by Act(G,X, µ) the space of measure-preserving actions of G on

X. Denote by Aut(X,µ) the space of measure-preserving automorphisms of X, in

which two automorphisms are identified if they agree almost everywhere. Given α ∈

Act(G,X, µ) the map s 7→ αs is a homomorphism from G into Aut(X,µ). Similarly,

given a homomorphism φ : G→ Aut(X,µ) we may define an action α ∈ Aut(G,X, µ)

by αsx = φ(s)x for almost all x ∈ X. In particular, we may identify Act(G,X, µ)

with a subset of Aut(X,µ)G.

We define the weak topology on Aut(X,µ) by Tγ → T if and only if µ(TγA△TA) →

0 for all A ∈ X and the uniform topology on Aut(X,µ) by Tγ → T if and only if

supA∈X µ(TγA△TA) → 0. We then define the weak (resp. uniform) topology on

Act(G,X, µ) as the product topology on Aut(X,µ)G where Aut(X,µ) is endowed

with the weak (resp. uniform) topology. We denote the weak and uniform topologies

by (Act(G,X, µ), w) and (Act(G,X, µ), u) respectively. Unless otherwise specified,

we will assume Act(G,X, µ) is endowed with the weak topology.

When G is a countable discrete group (Act(G,X, µ), w) is a Polish space, see [17]

for a description of a compatible metric. A basic open set for (Act(G,X, µ), w) has

the form

U(α, F,K, ǫ) =
⋂

s∈F

⋂

A∈K

{β ∈ Act(G,X, µ) : µ(αsA△βsA) < ǫ}

where ǫ > 0, F and K are finite subsets of G and X respectively. Alternatively,
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we can define a base for the weak topology with respect to the associated Koopman

representations. In particular, a basic open set can be described by

V (α, F,Ω, ǫ) =
⋂

s∈F

⋂

ξ∈Ω

{β ∈ Act(G,X, µ) : ‖(πα(s) − πβ(s))ξ‖ < ǫ}

where ǫ > 0, F ⊂ G and Ω ⊂ L2(X,µ) are finite sets. Since the strong and weak

operator topologies agree for unitary operators, we could have described a basic open

set with respect to the weak operator topology as well.

For topological systems, we define the weak topology in a similar manner. Denote

by Act(G,X) the set of all topological actions of G on X and by Homeo(X) the space

of all homeomorphisms of X onto itself. Then Act(G,X) may be identified with

Homeo(X)G. As in the measure-preserving case, we define a topology on Homeo(X)

and let Act(G,X) have the corresponding product topology. We let Homeo(X) be

endowed with the topology of uniform convergence. A basic open set of Act(G,X)

then has the form

W (α, F,Ω, ǫ) =
⋂

s∈F

⋂

f∈Ω

{β ∈ Act(G,X) : ‖f ◦ αs − f ◦ βs‖ < ǫ}

where ǫ > 0, F ⊂ G and Ω ⊂ C(X) are finite sets. When X is a metric space with

metric d we may define a compatible metric dw on Homeo(X) by

dw(S, T ) = sup
x∈X

d(Sx, Tx) + sup
x∈X

d(S−1x, T−1x).

We can then describe a basic open set of Act(G,X) by

W ′(α, F, ǫ) =
⋂

s∈F

{β ∈ Act(G,X) : dw(αs, βs) < ǫ}

where ǫ > 0 and F ⊂ G is finite. It is then clear that Act(G,X) is a Polish space

when endowed with the weak topology.
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We now make precise what it means for a set to be “large”. Let X be any

topological space. We say a subset of X is a Gδ if it is a countable intersection of

open subsets of X. A subset is said to be residual or comeager if it contains a dense

Gδ subset. A given property is said to be generic if it can be verified on a residual

subset. In [14] it is shown weak mixing is generic for Z-actions and in [30] it is shown

failure to be mixing is generic for Z-actions.

Since Act(G,X, µ) and Act(G,X) are Polish spaces when endowed with their

respective weak topologies, the Baire category theorem holds. In particular, if O is a

countable collection of dense open sets then the Baire category theorem assures
⋂

O

is nonempty and dense. Thus to show a property is generic it suffices to show the

set of actions with the prescribed property contains a countable intersection of dense

open sets. It also follows from the Baire category theorem that the intersection of

two dense Gδ subsets is again a dense Gδ, whence the claim that dense Gδ subsets

are “large” is justified. When combibed with the results of Halmos and Rokhlin, the

preceding observations show that a generic Z-action is weak mixing but not mixing.

2.5. The Rokhlin Lemma

The Baire category theorem gives a simple criteria for establishing the genericity

of a prescribed property provided the existence of dense open sets. In the case of

classical measure-preserving dynamics density is often established by means of the

Rokhlin Lemma. Given a system (X,µ, T ) which is aperiodic, i.e. µ({x : T nx =

x for some n ∈ N}) = 0, the Rokhlin lemma asserts for every ǫ > 0 and every

n ∈ N there exists a measurable set B such that T iB, i = 0, 1, 2, . . . , n − 1 are

pairwise disjoint and µ(
⋃n−1
i=0 T

i) > 1 − ǫ. At first glance the Rokhlin lemma may

seem simple. However, it is one of the most useful results in the study of measure-
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preserving dynamics. In fact, it follows immediately that the periodic Z-actions are

dense. The Rokhlin lemma is also key in showing the genericity of weak mixing

Z-systems [14] and nonmixing Z-systems [30].

Since its introduction, the Rohklin lemma has been extended in various direc-

tions. In [25] and [26] Ornstein and Weiss introduced and proved a version of the

Rokhlin lemma for actions of amenable groups. In the topological setting, both

Putnum [29] and Bezuglyi, Dooley, and Medynets [3] have given conditions for the

existence of a Rokhlin Lemma for homeomorphisms of the Cantor set. Versions of

the Rokhlin property have appeared in various other fields of mathematics. One area

of note is operator algebras. In [8] Connes introduced a version for von Neumann

algebras. In the context of C∗-algebras, versions have appeared in [21] and [28] among

other places. One of the goals of this dissertation will be to establish a Rokhlin type

result for actions of the free groups.
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3. A ROKHLIN TYPE LEMMA FOR ACTIONS OF THE FREE GROUP

3.1. Introduction to Actions of the Free Groups

Let S and S−1 be sets such that S∩S−1 = ∅ and |S| = |S−1|. Choose a bijection from

S onto S−1 and denote the image of s by s−1. We define a word on S to be a finite

sequence of elements in S ∪ S−1. If s and s−1 are adjacent in a word for some s ∈ S

we may simplify the word by omitting them from the sequence. We then say a word

is reduced if s and s−1 are not adjacent for any s ∈ S. We will adopt the standard

convention of denoting a sequence {si}ni=1 in S ∪ S−1 by s1s2 . . . sn. We denote by e

the empty word, i.e. the empty sequence.

Let FS be the set of all reduced words on S. We define a binary operation on FS

by concatenation followed by simplification if necessary. Then FS becomes a group

with with the empty word e being the identity. We call FS the free group generated

by S. If S and T are two sets then FS and FT are isomorphic if and only if |S| = |T |.

When S is finite we write Fn where n is the cardinality of S and drop any reference to

S. Similarly, we write F∞ when S is countable. Throughout, Fn will denote the free

group on n generators for some n ∈ N ∪ {∞}. If we need to reference the generating

set of Fn we will denote it by S.

Suppose for each s ∈ S, fs : X → X is a measure-preserving automorphism of

X. Let t ∈ Fn. Then we may represent t uniquely as a reduced word sǫ11 s
ǫ2
2 · · · sǫnn for

some s1, s2, . . . , sn ∈ S and ǫ1, ǫ2, . . . , ǫn ∈ {−1, 1}. Define αt = f ǫ1s1 ◦ f ǫ2s2 ◦ · · · ◦ f ǫnsn
.

Since αt is a compostion of measurable automorphisms and their inverses for each

t ∈ Fn, we have that α is measure-preserving. That α is a well defined group action

is routine to check. In particular, we have verified that α ∈ Act(Fn, X, µ).

In Section 2, we gave the description of two bases for the weak topology on

Act(G,X, µ) when G is a countable discrete group. The first consisted of sets of the
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form

U(α, F,K, ǫ) =
⋂

s∈F

⋂

A∈K

{β ∈ Act(G,X, µ) : µ(αsA△βsA) < ǫ}

where ǫ > 0, F is a finite subset of G and K is a finite collection of Borel subsets of

X and the second of sets of the form

V (α, F,Ω, ǫ) =
⋂

s∈F

⋂

ξ∈Ω

{β ∈ Act(G,X, µ) : ‖(πα(s) − πβ(s))ξ‖ < ǫ}

where ǫ > 0 and F ⊂ G and Ω ⊂ L2(X,µ) are finite. For Fn the following lemmas

show that in either case the finite set F can be taken to be a finite subset of generators.

Lemma 3.1.1. Let α ∈ Act(Fn, X, µ). Given a basic open set V (α, F,Ω, ǫ) in

Act(Fn, X, µ) there exist finite subsets S ′ ⊂ S and Ω′ ⊂ L2(X,µ) and a δ > 0 such

that V (α, S ′,Ω′, δ) ⊂ V (α, F,Ω, ǫ).

Proof. Let ǫ > 0, Ω be a finite subset of L2(X,µ) and F be a finite subset of G.

Since F is finite, there exists a finite subset S ′ of S such that F is contained in the

subgroup generated by S ′. For each t ∈ F let mt be the number of elements of S ′

and their inverses needed to express t as a reduced word. Set N = maxt∈F{mt} and

δ = ǫ
N

. Let

Ω′ = {πα(sǫ11 sǫ22 . . . sǫnn )ξ : ξ ∈ Ω, si ∈ S ′, ǫi ∈ {−1, 1}, and n ≤ N}.

Let β ∈ V (α, S ′,Ω′, δ), ξ ∈ Ω and t ∈ F . Then there exists n ≤ N , s1, s2, . . . , sn ∈ S ′,

and {ǫ1, ǫ2, . . . , ǫn} ∈ {−1, 1}n such that t = sǫ11 s
ǫ2
2 . . . s

ǫn
n . Thus

‖(πβ(t) − πα(t))ξ‖

= ‖(πβ(s1)
ǫ1πβ(s2)

ǫ2 . . . πβ(sn)
ǫn − πα(s1)

ǫ1πα(s2)
ǫ2 . . . πα(sn)

ǫn)ξ‖

= ‖
n∑

k=1

(πβ(s1)
ǫ1 . . . πβ(sk−1)

ǫk−1)(πβ(sk)
ǫk − πα(sk)

ǫk)(πα(sk+1)
ǫk+1 . . . πα(sn)

ǫn)ξ‖
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≤
n∑

k=1

‖πβ(sǫ11 . . . s
ǫk−1

k−1 )(πβ(sk)
ǫk − πα(sk)

ǫk)πα(s
ǫk+1

k+1 . . . s
ǫn
n )ξ‖

=
n∑

k=1

‖(πβ(sk)ǫk − πα(sk)
ǫk)πα(s

ǫk+1

k+1 . . . s
ǫn
n )ξ‖.

Clearly if ǫk = 1 then ‖(πβ(sk)ǫk − πα(sk)
ǫk)πα(s

ǫk+1

k+1 . . . s
ǫn
n )ξ‖ < ǫ

N
. If ǫk = −1 then

‖(πα(sk)ǫk − πβ(sk)
ǫk)πα(s

ǫk+1

k+1 . . . s
ǫn
n )ξ‖

= ‖(πβ(sk)−1πβ(sk)πα(sk)
−1 − πβ(sk)

−1πα(sk)πα(sk)
−1)πα(s

ǫk+1

k+1 . . . s
ǫn
n )ξ‖

= ‖πβ(sk)−1(πβ(sk) − πα(sk))πα(sk)
−1πα(s

ǫk+1

k+1 . . . s
ǫn
n )ξ‖

= ‖(πβ(sk) − πα(sk))πα(s
−1
k s

ǫk+1

k+1 . . . s
ǫn
n )ξ‖

<
ǫ

N
.

Therefore,

‖(πβ(t) − πα(t))ξ‖ <
n∑

k=1

ǫ

N
=

n

N
ǫ ≤ ǫ

whence β ∈ V (α, F,Ω, ǫ).

Lemma 3.1.2. Let α ∈ Act(Fn, X, µ). Given a basic open set U(α, F,K, ǫ) in

Act(Fn, X, µ) there exists a finite subset S ′ ⊂ S, a finite collection K ′ of Borel subsets

of X, and δ > 0 such that U(α, S ′, K ′, δ) ⊂ U(α, F,K, ǫ).

Proof. Let α ∈ Act(Fn, X, µ) and U(α, F,K, ǫ) be a basic open set in Act(Fn, X, µ).

Define Ω = {χC}C∈K where χC is the characteristic function of C for each C ∈ K.

Then Ω is a finite subset of L2(X,µ). Thus by Lemma 3.1.1 we may find finite subsets

Ω′ ⊂ L2(X,µ) and S ′ ⊂ S and δ > 0 such that

V (α, S ′,Ω′, δ) ⊂ V (α, F,Ω, ǫ) = U(α, F,K, ǫ).

In general elements of Ω′ will not be projections. However, for each f ∈ Ω′ there exists

a step function f ′ =
∑nf

i=1 af,iχAf,i
such that ‖f − f ′‖2 <

δ
3
. Set K ′ = {Af,i : f ∈
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Ω′, 1 ≤ i ≤ nf}, N = max{nf : f ∈ Ω}, and a = max{|af,i| : f ∈ Ω, 1 ≤ i ≤ nf}.

Suppose β ∈ U(α, S ′, K ′, δ′) where 0 < δ′ < δ
3Na

. Then for f ∈ Ω′ and s ∈ S ′ we have

that

‖αsf − βsf‖2 ≤ α‖αsf − αsf
′‖2 + ‖αsf ′ − βsf

′‖2 + ‖βsf ′ − βsf‖2

<
δ

3
+ ‖αs(

nf∑

i=1

af,iχAf,i
) − βs(

nf∑

i=1

af,iχAf,i
)‖2 +

δ

3

≤ 2
δ

3
+

nf∑

i=1

|af,i|‖αs(χAf,i
) − βs(χAf,i

)‖2

≤ 2
δ

3
+

nf∑

i=1

aµ(αsAf,i△βsAf,i)

< 2
δ

3
+

nf∑

i=1

a
δ

3Na

≤ 2
δ

3
+
nfδ

3N

≤ 2
δ

3
+
δ

3

= δ.

Thus β ∈ V (α, S ′,Ω′, δ) ⊂ U(α, F,K, ǫ) as desired.

Lemmas 3.1.1 and 3.1.2 show that sets of the form V (α, S ′,Ω, ǫ) and U(α, S ′, K, ǫ)

where S ′ is a finite subset of S form bases for the weak topology on Act(Fn, X, µ).

If n < ∞ then it is clear that S ′ may be taken to be all of S. When combined with

the discussion preceding the lemmas we see that small perturbations of an action on

generators of Fn gives a small perturbation of the action itself.

In Section 2 we stated that the Rokhlin lemma implies periodic approximation for

Z-actions. We will now use the preceding observation to prove a slight amplification of

this result. Specifically we will apply the Rokhlin lemma to finitely many generators

and then perturb the action on each of these generators to be periodic. Although the
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resulting action is not very useful for many purposes, it does provide a starting point

for constructing the analogue of the Rokhlin lemma given at the end of this section.

Proposition 3.1.3. Let α ∈ Act(Fn, X, µ). Then for each finite set S ′ ⊂ S and basic

open set U(α, F,K, ǫ) in Act(Fn, X, µ) there exists a natural number M such that for

each for each m > M there exist α̂ ∈ U(α, F,K, ǫ) and Borel subsets {Bs}s∈S′ such

that for each s ∈ S ′, α̂ms is the identity and {α̂isBs}m−1
i=0 partitions X. Moreover, M

can be chosen to depend only on ǫ.

Proof. By Lemma 3.1.2 it suffices to assume F ⊂ S. Let s ∈ S ′ be fixed but arbitrary.

Since the aperiodic automorphisms of Aut(X,µ) are dense with respect to the weak

topology, there exists βs ∈ Aut(X,µ) such that βs is aperiodic and µ(βsC△αsC) < ǫ
2

for each C ∈ K. Let M be a natural number such that 1
M
< ǫ

8
.

Suppose m > M . Then by the Rohklin lemma there exists a Borel subset Bs of

X such that the collection {βisBs}m−1
i=0 is pairwise disjoint and Es = X \ ⋃m−1

i=0 βisBs

has measure less than ǫ
8
. Since X is nonatomic there exists pairwise disjoint subsets

{Ei
s}m−1
i=0 of Es such that µ(Ei

s) = µ(Es)
m

for each i ∈ {0, 1, . . . , m − 1} and Es =

⋃m−1
i=0 Ei

s. For each i ∈ {0, 1, . . . , m − 2} choose an isomorphism φis : Ei
s → Ei+1

s .

Define φm−1
s : Em−1

s → E0
s by φm−1

s = (φm−2
s )−1 ◦ (φm−3

s )−1 ◦ . . . ◦ (φs)
−1. Define

α̂s : X ∈ X by

α̂sx =





βsx if x ∈ ⋃m−2
i=1 βisBs

φisx if x ∈ Ei for some i = 0, 1, . . . , m− 1

β
−(m−2)
s ◦ β−(m−3)

s ◦ . . . ◦ β−1
s x if x ∈ βm−1

s Bs

if s ∈ S ′ and α̂sx = αsx if s ∈ S \ S ′. Then α̂s ∈ Act(Fn, X, µ) and α̂ms x = x for all

s ∈ S ′ and x ∈ X.

Let s ∈ F and C ∈ K. If s 6∈ S ′ then α̂sx = αsx a.e. and thus µ(αsC△α̂sC) =
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0 < ǫ. Suppose s ∈ S ′. If x ∈ C ∩ ⋃m−2
i=0 βisBs then α̂sx = βsx, hence βsC△α̂sC ⊂

(βs(β
m−1
s Bs)△α̂s(βm−1

s Bs)) ∪ (βsEs△α̂sEs.) Therefore

µ(βsC△α̂sC) ≤ µ(βs(β
n−1
s Bs)△α̂s(βn−1

s Bs)) + µ(βsEs△α̂sEs)

≤ 2µ(Bs) + 2µ(E)

< 2
ǫ

8
+ 2

ǫ

8

=
ǫ

2
.

It now follows that

µ(αsC△α̂sC) = µ((αsC△βsC)△(βsC△α̂sC))

≤ µ(αsC△βsC) + µ(βsC△α̂sC)

<
ǫ

2
+
ǫ

2

= ǫ.

Therefore α̂ ∈ U(α, F,K, ǫ).

3.2. Permutations of Partitions

Let α ∈ Act(G,X, µ) and P be a collection of pairwise disjoint Borel subsets of X.

Then α is said to permute P if for each P ∈ P and s ∈ G we have αsP ∈ P.

That is for each P ∈ P and s ∈ G there exists P ′ ∈ P such that αsP = P ′, i.e.

µ(αsP△P ′) = 0. If in addition P satisfies αsP = P if and only if αsx = x a.e.

then α is said to pointwise permute P. Although this property seems innocent on

the surface, it has some surprising consequences. In Theorem 3.3.2 we will show

every action of Fn can be approximated by an action which pointwise permutes some

partition. As with the Rokhlin lemma, the density of these actions allows for the
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genericity of certain properties to be established. We devote the remainder of this

subsection to further understanding these actions.

Let α ∈ Act(G,X, µ) and P be a collection of pairwise disjoint Borel Subsets

of X. Suppose P
′ is a subset of P and H is a subgroup of G. We say P

′ is

(α,H)-transitive if given any P, P ′ ∈ P ′ there exists h ∈ H such that αhP = P ′.

If αhP ∈ P ′ for all h ∈ H and P ∈ P ′ we say P ′ is (α,H)-invariant. If H = G

we simply say P ′ is α-transitive or α-transitive respectively. The following lemma is

elementary but often useful in results that follow.

Lemma 3.2.1. Let α ∈ Act(G,X, µ). Suppose α permutes some finite partition P.

Then there exists disjoint subsets P1,P2, . . . ,Pn of P such that Pi is α-invariant

and α-transitive for each i = 1, 2, . . . , n and P =
⋃n
i=1 Pi.

Proof. Fix P1 ∈ P and define P1 = {αgP1 : g ∈ G}. If P1 6= P choose P2 ∈

P \ P1 and define P2 = {αgP2 : g ∈ G}. Inductively define Pi by choosing

Pi ∈ P \ (P1 ∪ P2 ∪ . . . ∪ Pi−1). and setting Pi = {αgPi : g ∈ G}. Since P is

finite, this process must end at some finite stage, call it n. Clearly Pi is α-invariant

and α-transitive for each i = 1, 2, . . . , n and P =
⋃n
i=1 Pi.

An action α ∈ Act(G,X, µ) is said to factor through a finite group if there exists a

group homomorphism φ from G onto a finite group F and an action β ∈ Act(F,X, µ)

such that αs = βφ(s) a.e. for all s ∈ G. If α pointwise permutes some partition P we

now show that α factors through a subgroup of the finite permutation group S(P).

Proposition 3.2.2. Let α ∈ Aut(G,X, µ). If there exists a finite partition P of X

such that α pointwise permutes P then α factors through a finite group.

Proof. Suppose P is a finite partition of X which is pointwise permuted by α. Given

s ∈ G define σs ∈ PP by σs(P ) = αsP. Set F = {σs : s ∈ G}. Suppose σs(P ) =
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σs(P
′). Then αsP = αsP

′ from which it follows that P ′ = αs−1sP = αeP = P . Since

P is finite, σs is a permutation of P. If σs, σt ∈ F then σsσ
−1
t (P ) = αsα

−1
t (P ) =

αst−1(P ) = σst−1(P ) for all P ∈ P. Thus F is a finite subgroup of the permutation

group S(P).

Define φ : G → F by φ(s) = σs. Choose s1, s2, . . . , sn such that si 6= sj if i 6= j

and F = {σs1, σs2 , . . . , σsn}. Define an action β of F on X by setting βσsi
x = αsi

x for

each i ∈ {1, 2, . . . , n}. Let s ∈ G. Then φ(s) = σs = σsi
for some i ∈ {1, 2, . . . , n}.

Since σs = σsi
, αsP = αsi

P for all P ∈ P whence αs = αsi
on each P ∈ P.

Therefore αs = βφ(s) for all s ∈ G.

Proposition 3.2.2 shows that if (G,X, µ, α) pointwise permutes some partition

then the action is essentially an action of a finite group. One would expect that its

Koopman representation would be finite dimensional as well. We show this is indeed

the case in Proposition 3.2.3.

Proposition 3.2.3. Let α ∈ Aut(G,X, µ). Suppose P is a uniform partition of X

pointwise permuted by α. Then there exists Hilbert spaces H,K with dimH <∞ and

a representation ρ of G on H satisfying πα ∼= ρ⊗ idK,

Proof. By Lemma 3.2.1 there exists disjoint subsets P1,P2, . . . ,Pn of P such that

Pi is α-invariant and α-transitive for each i = 1, 2, . . . , n and P =
⋃n
i=1 Pi. For each

i ∈ {1, 2, . . . , n} enumerate Pi by {Pi,1, Pi,2, . . . , Pi,ki
} and for each j ∈ {1, 2, . . . , ki}

choose si,j ∈ G such that αsi,j
Pi,j = Pi,1 . Fix P ′ ∈ {P1,1, P2,1, . . . , Pn,1}. Since P

is uniform there exists a measure-preserving isomorphism φi : Pi,1 → P ′ for each

i = 1, 2, . . . , k. Define U : L2(X,µ) → ℓ2(P) ⊗ L2(P ′, µ) by

Uf =

n∑

i=1

ki∑

j=1

δPi,j
⊗ f|Pi,j

◦ αs−1
i,j

◦ φ−1
i
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where

δPi,j
(P ) =





1 if P = Pi,j

0 otherwise

.

The linearity of U is routine to check. To see U is norm preserving observe that for

each f ∈ L2(X,µ) we have

‖Uf‖2 = ‖
n∑

i=1

ki∑

j=1

δPi,j
⊗ f|Pi,j

◦ αs−1
i,j

◦ φ−1
i ‖2

=
n∑

i=1

ki∑

j=1

‖δPi,j
⊗ f|Pi,j

◦ αs−1
i,j

◦ φ−1
i ‖2

=
n∑

i=1

ki∑

j=1

‖δPi,j
‖2
ℓ2(P)‖f|Pi,j

◦ αs−1
i,j

◦ φ−1
i ‖2

P ′

=

n∑

i=1

ki∑

j=1

‖f|Pi,j
◦ αs−1

i,j
◦ φ−1

i ‖2
P ′.

Since φi and αs−1
i,j

are measure-preserving for each i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , ki}

we have

‖f|Pi,j
◦ αs−1

i,j
◦ φ−1

i ‖2
P ′ = ‖f|Pi,j

◦ αs−1
i,j
‖2
Pi

= ‖f|Pi,j
‖2
Pi,j
.

As the collection of Pi,j’s partition X, it follows

‖Uf‖2 =

n∑

i=1

ki∑

j=1

‖f|Pi,j
◦ αs−1

i,j
◦ φ−1

i ‖2
P ′ =

n∑

i=1

ki∑

j=1

‖f|Pi,j
‖2
Pi,j

= ‖f‖2
X

as desired.

Since ℓ2(P) is finite dimensional the Hilbert space tensor product ℓ2(P) ⊗

L2(X,µ) coincides with the algebraic tensor product. Thus suppose
∑n

i=1

∑ki

j=1 δPi,j
⊗

fi,j ∈ ℓ2(P) ⊗ L2(P ′, µ). Define fx = fi,j ◦ φi ◦ αsi,j
x if x ∈ Pi,j. Then

Uf =

n∑

i=1

ki∑

j=1

δPi,j
⊗ f|Pi,j

◦ αs−1
i,j

◦ φ−1
i
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=
n∑

i=1

ki∑

j=1

δPi,j
⊗ fi,j ◦ φi ◦ αsi,j

◦ αs−1
i,j

◦ φ−1
i

=
n∑

i=1

ki∑

j=1

δPi,j
⊗ fi,j .

Thus U is a unitary map from L2(X,µ) onto ℓ2(P) ⊗ L2(P ′, µ).

Let s ∈ G and
∑n

i=1

∑ki

j=1 δPi,j
⊗ fi,j ∈ ℓ2(P)⊗L2(P ′, µ). Let f be defined as in

the preceding paragraph. Given Pi,j ∈ P,

αsPi,j = αsαsi,j
−1Pi,1 = αss−1

i,j
Pi,1 ∈ Pi.

Thus for each i ∈ {1, 2, . . . , n} there exists σi ∈ S({1, 2, . . . , ki}) such that αsPi,j =

Pi,σi(j) for all j ∈ {1, 2, . . . , ki}. Note

αsij
αs−1Pi,σi(j) = αsij

Pi,j = Pi,1 = αsi,σi(j)
Pi,σi(j)

giving αsij
α−1
s = αsi,σi(j)

on Pi,σi(j). Thus if x ∈ Pi,σi(j) we have α−1
s x ∈ Pi,j, whence

f ◦ α−1
s x = fi,j ◦ φi ◦ αsij

α−1
s x = fi,j ◦ φi ◦ αsi,σi(j)

x.

Then

Uπα(s)U
−1(

∑

Pi,j∈P

δPi,j
⊗ fi,j) = Uπα(s)f

= U(f ◦ α−1
s )

=

n∑

i=1

ki∑

j=1

δPi,σi(j)
⊗ fi,j ◦ φi ◦ αsi,σi(j)

◦ α−1
si,σi(j)

◦ φ−1
i

. =

n∑

i=1

ki∑

j=1

δPi,σi(j)
⊗ fi,j

=
n∑

i=1

ki∑

j=1

δαgPi,j
⊗ fi,j
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Therefore πα ∼= ρ ⊗ idL2(P ′,µ) where ρ acts on the finite dimensional Hilbert space

ℓ2(P) by ρ(g)δP = δαgP .

If the assumption that P is uniform is relaxed from Lemma 3.2.3 we may still

construct the subsets P1,P2, . . . ,Pn of P as in the proof. Since P is not uniform

µ(Pi,1) and µ(Pj,1) need not be equal if i 6= j. Thus there need not exist measure-

preserving isomorphisms identifying Pi,1 and Pj,1 with a fixed P ′ ∈ P as in the

uniform case. However the map

f 7→
n∑

i=1

ki∑

j=1

δPi,j
⊗ f|Pi,j

◦ αs−1
i,j

defines a unitary map U from L2(X,µ) onto
⊕n

i=1 ℓ
2(Pi) ⊗ L2(Pi,1, µ) such that

UπαU
−1 = ⊕n

i=1ρi⊗idL2(Pi,1,µ) where ρi(g)δP = δgP for all P ∈ Pi and i ∈ {1, 2, . . . , n}.

3.3. Finite Approximations of Measure-Preserving Actions of Fn

We now present the main technical result of this dissertation. Specifically, we show

given an action α of Fn and a finitely generated subgroup H of Fn, we may approxi-

mate α by an action which pointwise permutes some partition when restricted to H .

It follows from Proposition 3.1.3 that for a given finite subset S ′ ⊂ S any basic open

set contains an action α such that αs pointwise permutes some partition Ps for each

s ∈ S ′. If n = 1 we have the classical result that the periodic actions are dense. If

n > 1 then the result is not as clear. For example, if s, t ∈ S ′ are distinct then αst

need not permute Pr for any r ∈ S ′. We will now show Proposition 3.1.3 can be

extended to give the desired approximation. The bulk of this argument is contained

in the following lemma.

Lemma 3.3.1. Let α ∈ Act(Fn, X, µ). Suppose there exists finite subsets R, T ⊂ S

and finite uniform partitions P and Q of X such that R∩ T = ∅ and α restricted to
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the subgroups generated by R and T pointwise permutes P and Q respectively. Then

for any open neighborhood U(α, F,K, ǫ) and δ > 0, there exist an uniform partition

R and an α′ ∈ U(α, F,K, ǫ) such that α′ restricted to the subgroup generated by R∪T

pointwise permutes R and the measure of each atom of R is less than δ. Moreover, α′

and R can be chosen to so that there exists an atom of R such that α′
t is the identity

for all t in the subgroup generated by R ∪ T .

Proof. By Lemma 3.1.2 it suffices to find α′ ∈ U(α, F,K, ǫ) where F is a finite subset

of S and K is a finite collection of measurable sets. Let HR and HT be the subgroups

of Fn generated by R and T respectively. By Lemma 3.2.1 there exist disjoint subsets

P1,P2, . . . ,Pnp of P such that P =
⋃np

h=1 Ph and for each h ∈ Ip = {1, 2 . . . , np},

Ph is (α,HR)-invariant and (α,HR)-transitive. Similarly, there exists disjoint subsets

Q1,Q2, . . . ,Qmq of Q such that Q =
⋃mq

i=1 Qi and for each i ∈ Iq = {1, 2 . . . , mq},

Qi is (α,HT )-invariant and (α,HT )-transitive. For each h ∈ Ip enumerate Ph as

{Ph,1, Ph,2, . . . , Ph,nph
} and for each k ∈ Iph

= {1, 2, . . . , nph
} choose rh,k ∈ HR such

that αrh,k
Ph,1 = Ph,k. Similarly enumerate Qi as {Qi,1, Qi,2, . . . , Qi,mqi

} for each i ∈ Iq

and choose ti,j ∈ HT such that αti,jQi,1 = Qi,j for each j ∈ Iqi = {1, 2, . . . , mqi} .

We think of Ph and Qi as being towers with bases Ph,1 and Qi,1. The action, α,

then allows for movement between the levels within a tower. We begin by making a

series of refinements of Ph’s and Qi’s. The general idea of each of these refinements

is the same. We first use the action to collapse the levels of each tower to form a

partition of the base. We then further refine the base if needed and use α to copy

this refinement to each level of the tower creating a partition of X.

For each i ∈ Iq we create two partitions of Qi,1. The first we form by collecting

together the points which visit the same sequence of elements of P as we move up

the levels of Qi. The second we form by collecting together the points which visit
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the same sequence of sets in the given finite collection of Borel sets K. We then take

the join of these partitions and copy it up to each level of Qi to create a refinement

of Q. We make this process precise in the following.

Define Λ = {(h, k) : h ∈ Ip, k ∈ Iph
}. Given λ = (h, k) ∈ Λ define Pλ and rλ as

Ph,k and rh,k respectively. For i ∈ Iq set Σi = ΛIqi and σ ∈ Σi define

Aiσ = {x ∈ Qi,1 : αti,jx ∈ Pσ(j) for each j ∈ Iqi}.

Let i ∈ Iq. Clearly Aiσ ⊂ Qi,1 for each σ ∈ Σi. Let x ∈ Qi,1. Since P is a partition

of X, for each j ∈ Iqi there exists λj ∈ Λ such that αti,jx ∈ Pλj
, whence x ∈ Aiσ

where σ ∈ Σi is defined by j 7→ λj . Assume x ∈ Aiσ ∩ Aiσ′ and σ 6= σ′. Let j ∈ Iqi be

such that σ(j) 6= σ′(j). Then αti,jx ∈ Pσ(j) ∩ Pσ′(j) = ∅. Thus σ = σ′ and it follows

{Aiσ}σ∈Σi partitions Qi,1 for each i ∈ Ip.

Enumerate the given finite collection of Borel sets K by {C1, C2, . . . , Cm} and

set Im = {1, 2, . . . , m}. Let i ∈ Iq and set Γi = P(Im)Ipi . Given γ ∈ Γi define

Aiγ = {x ∈ Qi,1 : αti,jx ∈ (
⋂

l∈γ(j)

Cl) ∩ (
⋂

l∈Im\γ(j)

Cc
l ) for all j ∈ Iqi}.

Fix i ∈ Iq. Clearly Aiγ ⊂ Qi,1 for all γ ∈ Γi. Let x ∈ Qi,1 and j ∈ Iqi. Define

γj ∈ P(Im) by l ∈ γj if and only if αti,jx ∈ Cl. Then by construction αti,j ∈ Cl for all

l ∈ γj and αti,j 6∈ Cl for all l ∈ Im \ γj. In particular x ∈ Aiγ where γ ∈ Γi is defined

by j 7→ γj. Assume x ∈ Aiγ ∩ Aiγ′ and γ 6= γ′. Let j ∈ Iqi be such that γ(j) 6= γ′(j).

Then at least one of the sets γ′(j) \ γ(j) and γ(j) \ γ′(j) is nonempty. Without loss

of generality suppose there exists l′ ∈ γ(j) \ γ′(j). Then

αti,kx ∈


(

⋂

l∈γ(k)

Cl) ∩ (
⋂

l∈Im\γ(k)

Cc
l )


 ∩


(

⋂

l∈γ′(k)

Cl) ∩ (
⋂

l∈Im\γ′(k)

Cc
l )


 ⊂ Cl′ ∩Cc

l′ = ∅.

Therefore γ = γ′ and {Aiγ}γ∈Γi partitions Qi,1 for each i ∈ Iq.
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Given i ∈ Iq j ∈ Iqi, σ ∈ Σi and γ ∈ Γi define Aiσ,γ,j = αti,j (A
i
σ ∩ Aiγ). Let

x ∈ X. Then there exists i ∈ Iq and j ∈ Iqi such that x ∈ Qi,j. Set y = α−1
ti,jx ∈ Qi,1.

Since both {Aiσ}σ∈Σi and {Aiγ}γ∈Γi partition Qi,1 there exists σ ∈ Σi and γ ∈ Γi such

that y ∈ Aiσ ∩ Aiγ. Thus x = αti,jα
−1
ti,jx = αti,jy ∈ αti,j (A

i
σ ∩ Aiγ) = Aiσ,γ,j. Suppose

x ∈ Aiσ,γ,j ∩ Ai
′

θ′,γ′,j′. If i 6= i′ then (Aiσ ∩ Aiγ) ∩ (Ai
′

σ′ ∩ Ai
′

γ′) ⊂ Pi,1 ∩ Pi′,1 = ∅ whence

i = i′. If j 6= j′ then αti,j (A
i
σ∩Aiγ)∩αti,j′ (Aiσ′ ∩Aiγ′) ⊂ αti,jPi,1∩αti,j′Pi,1 = ∅ and thus

j = j′. It then follows α−1
ti,jx ∈ (Aiσ ∩ Aiγ) ∩ (Aiσ′ ∩ Aiγ′) which is empty unless σ = σ′

and γ = γ′. Therefore A = {Aiσ,γ,j : i ∈ Iq, j ∈ Iqi, σ ∈ Σ, γ ∈ Γ} is a partition of X.

We have now created a refinement A of Q on which the action restricted to

HT is well behaved, but the action restricted to HR need not be well behaved. We

now create a common refinement of P and A in a similar manner as above. This

refinement will then be well behaved when the actions is restricted to either HR or

HT . Let h ∈ Ip. Set Θh = A
Iph . Given θ ∈ Θh define

Aθ = {x ∈ Ph,1 : αrh,k
x ∈ θ(k) for all k ∈ Iph

}.

Let h ∈ Ip be fixed and set Θ′
h = {θ ∈ Θh : µ(Aθ) > 0}. Suppose x ∈ Ph,1. Then for

each k ∈ Iph
there exists θh ∈ A such that αrh,k

x ∈ θk. Thus x ∈ Aθ where θ ∈ Θ′
h is

defined by θ(k) = θk. If x ∈ Aθ ∩ Aθ′ then αrh,k
x ∈ θ(k) ∩ θ′(k) for each k ∈ Iph

. As

θ(k)∩ θ′(k) 6= ∅ if and only if θ(k) = θ′(k), it follows that θ = θ′. Thus {Aθ}θ∈Θ′
h

is a

partition of Ph for each h ∈ Ip.

Define Θ′ =
⋃n
i=1 Θ′

i. Let i ∈ Iq, σ ∈ Σi, γ ∈ Γi, and j ∈ Iqi. Define Θi
σ,γ,j =

{θ ∈ Θ′ : αrσ(j)
Aθ ⊂ Aiσ,γ,j}. Recall, σ(j) = (h, k) for some h ∈ Ip and k ∈ Iph

. Given

θ ∈ Θi
σ,γ,j it follows Aθ ⊂ α−1

rσ(j)
Aiσ,γ,j ⊂ α−1

rσ(j)
Pσ(j) = α−1

rh,k
Ph,k = Ph,1 whence Θi

σ,γ,j ⊂

Θ′
h. Suppose x ∈ Aiσ,γ,j . Then α−1

rσ(j)
x ∈ Ph,1 and hence contained in Aθ for some

θ ∈ Θ′
h. Then x = αrσ(j)

(α−1
rσ(j)

x) = αrh,k
(α−1

rσ(j)
x) ∈ θ(k) ∩ Aiσ,γ,j 6= ∅. In particular it

follows that Aiσ,γ,j = θ(k). If y ∈ Aθ then αgσ(j)
y ∈ θ(k) = Aσ,γ,j . It now follows that
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αrσ(j)
Aθ ⊂ Aiσ,γ,j for all θ ∈ Θi

σ,γ,j and consequently Aiσ,γ,j =
⋃
θ∈Θi

σ,γ,j
αrσ(j)

Aθ.

We could now copy the partition of Ph,1 to the levels of Ph for each h ∈ Ip to

create a partition of X. In general, the resulting partition will not be uniform. To

create a uniform partition we approximate each element in Θ′ by a subset of rational

measure. Its then clear that the sum of the measures of the removed sets must also

be rational. We may then subdivide
⋃
h∈Ip

Ph,1 into sets of equal measure. This will

now give a uniform refinement of both P and Q. We now show if we make these

subdivisions small enough we may perturb α to one which when restricted to the

subgroup generated by R ∪ T will pointwise permute the resulting partition.

For each θ ∈ Θ′ we may find ǫθ <
ǫ

2|A ||Θ′|
and A′

θ ⊂ Aθ such that µ(A′
θ) = aθ

bθ
∈ Q

and µ(A′
θ\Aθ) < ǫθ. Let M ′ be the least common multiple of the collection of integers

{bθ}θ∈Θ′. Choose M ∈ N such that 1
M
< δ and M ′ · |Ph| divides M for each h ∈ Ip.

Define mθ = µ(A′
θ) ·M and Iθ = {1, 2, . . . , mθ}. Since X is nonatomic, there exist

pairwise disjoint subsets {Aθ,l}l∈Iθ of A′
θ such that µ(Aθ,l) = 1

M
and A′

θ =
⋃
l∈Iθ

Aθ,l.

Let h ∈ Ip and set Eh = Ph,1 \
(⋃

θ∈Θ′
h
A′
θ

)
=
(⋃

θ∈Θ′
h
Aθ

)
\
(⋃

θ∈Θ′
h
A′
θ

)
=

⋃
θ∈Θ′

h
(Aθ \ Aθ) . Then

µ(Eh) = µ(Ph,1) −
∑

θ∈Θ′
h

µ(A′
θ) =

1

|Ph|
−
∑

θ∈Θ′
h

aθ
bθ

=
Mph

M
−
∑

θ∈Θ′
h

a′θ
M

where a′θ ∈ N satisfies
a′θ
M

= aθ

bθ
for each θ ∈ Θ′

h and Mph
∈ N satisfies

Mph

M
= 1

|Ph|
.

Since µ(Aθ \ A′
θ) = ǫθ > 0 for each θ ∈ Θ′

h, µ(Eh) =
∑

θ∈Θ′
h
µ(Aθ \ A′

θ) > 0 and

thus Mh = Mph
−∑θ∈Θ′

h
a′θ ∈ N. Let IMh

= {1, 2, . . . ,Mh} then there exist disjoint

subsets {Eh,l}l∈IMh
of Eh satisfying µ(Eh,l) = 1

M
for l ∈ IMh

and E =
⋃
l∈IMh

Eh,l.

Define Bh = {Aθ,l : θ ∈ Θ′
h, l ∈ Iθ} and Eh = {Eh,l : l ∈ IMh

} for each h ∈ Ip.

Set

R = {αrh,k
B : h ∈ Ip, k ∈ Iph

, B ∈ Bh} ∪ {αrh,k
E : h ∈ Ip, k ∈ Iph

, E ∈ Eh}.
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Since Ph,1 = (
⋃

Bh)∪ (
⋃

Eh) and Pi =
⋃
j∈Ipi

αri,jPi,j we see that R is indeed a par-

tition of X. We now perturb α to pointwise permute this partition. For convenience

we pick a reference set A0 ∈
⋃
h∈Ip

Bh. Given a set B ∈ ⋃h∈Ip
(Bh∪Eh) fix a measure

preserving isomorphism φB : A0 → B.

Let i ∈ Iq, σ ∈ Σi and γ ∈ Γi. Suppose Aσ ∩ Aγ 6= ∅. Since α is measure-

preserving Aiσ,γ,j 6= ∅ for all j ∈ Iqi. Define niσ,γ = minj∈Iqi
{∑θ∈Θi

σ,γ,j
|Iθ|}. Fix

Bi
σ,γ,1 ⊂ {Aθ,l : θ ∈ Θi

σ,γ,1, l ∈ Iθ} such that |Bi
σ,γ,1| = niσ,γ . Choose an injec-

tion φiσ,γ,1 : B
i
σ,γ,1 → {Aθ,l : θ ∈ Θi

σ,γ,2, l ∈ Iθ} and set B
i
σ,γ,2 = φiσ,γ,1(Bσ,γ,1).

For j = 2, 3, . . . , mqi − 1, inductively define Bi
σ,γ,j , and φiσ,γ,j such that Bi

σ,γ,j =

φiσ,γ,j−1(B
i
σ,γ,j−1), and φiσ,γ,j is an injection from Bi

σ,γ,j into {Aθ,l : θ ∈ Θi
σ,γ,j+1, l ∈

Iθ}. Set Bσ,γ,mqi
= φσ,γ,mqi

−1(Bσ,γ,mqi
−1) and φiσ,γ,mqi

= (φiσ,γ,1)
−1 ◦ (φiσ,γ,2)

−1 ◦ . . . ◦

(φiσ,γ,mqi
−1)

−1. Then φiσ,γ,mqi
is an injection from B

i
σ,γ,mqi

onto B
i
σ,γ,0. For convenience

define Bi
σ,γ,j =

⋃
B∈Bσ,γ,j

αrσ(j)
B and Ei

σ,γ,j = Aiσ,γ,j \Bi
σ,γ,j .

In this manner we have paired off a large proportion of the elements of R ac-

cording to the action of α restricted to HT . On the remaining elements we will show

that the action can be redefined to be the identity. By construction the restriction of

α to HS already pointwise permutes R. However, in the applications it is useful to

know there is an atom fixed by all elements of the subgroup generated by R∪ T . We

show this can be done as well.

Set α′
s = αs for all s ∈ S \ (R ∪ T ). For r ∈ R define

α′
rx =





αrx if x ∈ Bi
σ,γ,j for some i ∈ Iq, σ ∈ Σi, γ ∈ Γi, j ∈ Iqi

x otherwise.

For t ∈ T we define α′
t as follows. Let x ∈ X. If x ∈ Ei

σ,γ,j for some i ∈ Iq, σ ∈

Σi, γ ∈ Γi, j ∈ Iqi we set α′
tx = x. Suppose x ∈ Bi

σ,γ,j for some i ∈ Iq, σ ∈ Σi, γ ∈

Γi, j ∈ Iqi. Since x ∈ Qi,j it follows that αtx ∈ Qi,j′ for some j′ ∈ Iqi. Then there
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exists a unique Aθ,l ∈ Bi
σ,γ,j such that x ∈ αrσ(j)

Aθ,l. Moreover, Aθ,l is identified with

a unique Aσ′,l′ ∈ Bi
σ,γ,j′. We now define α′

tx = αrσ(j′)
◦ φAθ′,l′

◦ φ−1
Aθ,l

◦ α−1
rσ(j)

x. Since

Bi
σ,γ,j ⊂ Aiσ,γ,j and the latter sets partition X, αs is a well defined automorphism of

X for each s ∈ R ∪ T . In particular, α′ defines an action of Fn on X. We now show

α′ ∈ U(α, F,K, ǫ).

Let s ∈ F and C ∈ K. Suppose C∩Aiσ,γ,j 6= ∅ for some i ∈ Iq, σ ∈ Σi, γ ∈ Γi, and

j ∈ Iqi. Then C ∩ αti,jAγ = C ∩ (
⋂
l∈γ(j)Cl) ∩ (

⋂
l∈I\γ(j) C

c
l ) 6= ∅ whence C = Cl′ for

some l′ ∈ γ(j). Thus Aσ,γ,j ⊂ C and hence C = ∪AC where AC = {A ∈ A : A ⊂ C}.

For A ∈ A we have A = Aiσγ,j for some i ∈ Iq, σ ∈ Σi, γ ∈ Γi, and j ∈ Iqi. Define

ΘA = Θi
σ,γ,j , BA = Bi

σ,γ,j , BA = Bi
σ,γ,j , and EA = Ei

σ,γ,j . Set C ′ =
⋃
A∈AC

BA and

EC = C \ C ′.

If s ∈ S \ (R ∪ T ) then αs = α′
s and there is nothing to check. Suppose s ∈ R.

Then

µ(αsC△α′
sC) = µ((αsC

′ ∪ αsEC)△(α′
sC

′ ∪ α′
sEC))

= µ((αsC
′ ∪ αsEC)△(αsC

′ ∪EC))

= µ(αsEC△EC)

≤ µ(αsEC) + µ(EC)

= 2µ(EC)

= 2
∑

A∈AC

∑

θ∈ΘA

ǫθ

< 2|AC||ΘA|
ǫ

2|A ||Θ′|

< ǫ.

It remains to check the case when s ∈ T . Let i ∈ Iq, σ ∈ Σi, γ ∈ Γi, and j ∈ Iqi.

Choose j′ ∈ Iqi such that niσ,γ =
∑

θ∈Θi
σ,γ,j′

|Iθ|. Then Bi
σ,γ,j′ =

⋃
θ∈Θi

σ,γ,j′

⋃
k∈Iθ

Aθ,k =
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⋃
θ∈Θi

σ,γ,j′
A′
θ whence

µ(Ei
σ,γ,j′) = µ(Aiσ,γ,j′ \ (

⋃

θ∈Θi
σ,γ,j′

A′
θ))

= µ(
⋃

θ∈Θi
σ,γ,j′

(Aθ \ A′
θ))

=
∑

θ∈Θi
σ,γ,j′

µ(Aθ \ A′
θ)

=
∑

θ∈Θi
σ,γ,j′

ǫθ

<
∑

θ∈Θσ,γ,j′

ǫ

2|A ||Θ′|

=
|Θi

σ,γ,j′|ǫ
2|A ||Θ′|

≤ ǫ

2|A | .

Since α is measure-preserving, it follows µ(Bi
σ,γ,j) = µ(Bi

σ,γ,j′) and µ(Ei
σ,γ,j) <

ǫ
2|A |

for all j ∈ Iqi. Then

αsC△α′
sC = αsC△(α′

sC
′ ∪ α′

sEC) = αsC△(
⋃

A∈AC

α′
sBA ∪EC).

By construction α′
sBA ⊂ αsA for eachA ∈ A from which it follows that

⋃
A∈AC

α′
sBA ⊂

⋃
A∈AC

αsA = αs(∪AC) = αsC. Therefore αsC△α′
sC ⊂ (αsC \⋃A∈AC

α′
sBA) ∪ EC .

We now have

µ(αsC△α′
sC) ≤ µ((αsC \

⋃

A∈AC

α′
sBA) ∪ EC)

≤ µ(αsC \
⋃

A∈AC

α′
sBA) + µ(EC)

= µ(αsC) − µ(
⋃

A∈AC

α′
sBA) + µ(EC)
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= µ(C) − µ(
⋃

A∈AC

BA) + µ(EC)

= µ(C \
⋃

A∈AC

BA) + µ(EC)

= µ(EC) + µ(EC)

= 2
∑

A∈AC

µ(EA)

< 2
∑

A∈AC

ǫ

2|A |

= 2
|AC|ǫ
2|A |

< ǫ.

Therefore α′ ∈ U(α, F,K, ǫ) as desired.

Let A ∈ R and s ∈ R ∪ T and ǫ ∈ {−1, 1}. Suppose A = αrh,k
E for some

h ∈ Ip, k ∈ Iph
and E ∈ Eh. Then α′

sǫx = x for all x ∈ A, i.e. α′
sǫA = A. Moreover,

α′
sǫ may be expressed as αrh,k

◦ φE ◦ φ−1
E ◦ α−1

rh,k
. Suppose A = αrh,k

B for some

h ∈ Ip, k ∈ Iph
and B ∈ Bh. First consider the case when s ∈ R. Then α′

sǫA =

αsǫA = αsǫαrh,k
B ⊂ αsǫPh,k = Ph,k′ for some k′ ∈ Iph

, whence αsǫPh,k = Ph,k′. Then,

α′
sǫx = αrh,k′

◦φB ◦φ−1
B ◦α−1

rh,k
x for all x ∈ A and α′

sǫA = αrh,k′
B ∈ R. Suppose s ∈ T .

We have constructed α′ such that α′
sǫ = αrh′,k′

◦ φB′ ◦ φ−1
B ◦ α−1

rh,k
for some h, h′ ∈ Ip

k ∈ Iph
, k′ ∈ Iph′ , B ∈ Bh, and B′ ∈ Bh′ and α′

sǫA = αrh′,k′
B′ ∈ R. Moreover, it is

clear that if α′
sǫA = A then α′

sǫ is the identity on A.

Since α′
s pointwise permutes R for each s ∈ R∪ T , we have that α′ restricted to

the subgroup generated by R∪T also pointwise permutes R. Moreover, µ(A) = 1
M
< δ

for each A ∈ R and if B ∈ Eh we have α′
sx = x for all s ∈ R ∪ T and consequently

for all s′ in the subgroup generated by R ∪ T .

Theorem 3.3.2. Let α ∈ Act(Fn, X, µ) and S ′ ⊂ S be finite. Then given any open
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neighborhood U(α, F,K, ǫ) and δ > 0 there exists α′ ∈ U(α, F,K, ǫ) and a uniform

partition P of X such that α′ restricted to the subgroup generated by S ′ pointwise

permutes P and µ(P ) < δ for all P ∈ P. Moreover, α′ and P can be chosen so

that there exists P ∈ P satisfying αsP = P for all s in the subgroup generated by S ′.

Proof. Let U(α, F,K, ǫ) be a fixed open neighborhood. Enumerate S ′ by {s1, s2, . . . , sn}.

For each i = 1, 2, . . . , n let Si = {s1, s2, . . . , si} and Hi be the subgroup generated

by Si. By Lemma 3.1.3 we may assume there exists a natural number N and Borel

subsets B1, B2, . . . , Bn of X such that αNsi
x = x and Pi = {αjsi

Bi}nj=1 partitions X

for each i = 1, 2, . . . , n.

Set α0 = α. Applying Lemma 3.3.1 to P1 and P2 we obtain an action α1 ∈

U(α0, F,K, ǫ
n
) and partition R1 such that α1 restricted to H2 pointwise permutes R1,

and α1
s = αs for s ∈ S ′ \ S2. Inductively applying Lemma 3.3.1 to Ri and Pi+2

for i = 1, 2, . . . , n − 2 we obtain an action αi ∈ U(αi−1, F,K, ǫ
n
) and partition Ri

such that αi restricted to Hi+2 pointwise permutes Ri and αis = αs for s ∈ S \ Si+2.

Moreover, we may choose αn−2 and Rn−2 so that µ(R) < δ for all R ∈ Rn−2 and for

some R ∈ Rn−2 we have αn−2
s x = x for all x ∈ R and s ∈ Hn.

Set α′ = αn−2 and P = Rn−2. Then α′ and P have the desired properties. We

need only check that α′ ∈ U(α, F,K, ǫ). Let s ∈ F and C ∈ K. Then

µ(αsC△α′
sC) = µ(αsC△αn−2

s C)

≤ µ(αsC△αn−3
s C) + µ(αn−3

s C△αn−2
s C)

...

≤ µ(αsC△α1
sC) + µ(α2

sC△α3
sC) + · · ·+ µ(αn−3

s C△αn−2
s C)

< (n− 1)
ǫ

n

< ǫ.
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Using Proposition 3.2.2 we may translate Theorem 3.3.2 to a statement about

factoring through finite groups. In particular we have the following Theorem

Theorem 3.3.3. Let α ∈ Act(Fn, X, µ) and S ′ ⊂ S be finite. Then given any open

neighborhood U(α, F,K, ǫ) there exists α′ ∈ U(α, F,K, ǫ) such that α′ restricted to the

subgroup generated by S ′ factors through a finite group.

Theorem 3.3.2 should be compared with Proposition 2.3 of Luboztky and Shalom

[22]. In the proof of this proposition the authors approximate a given action of Fn by a

permutation action using Hall’s marriage theorem. Although not explicitly stated, it

follows easily that the set of actions which pointwise permute some uniform partition

is dense. The noticeable difference from Theorem 3.3.2 is we can not assume there

exists an atom on which the action acts as the identity for all group elements. We

will see in Section 6 that the existence of such an atom allows for some control over

what group the approximating action factors through (see Lemma 6.2.1).

A more subtle difference between Theorem 3.3.2 and the result of Luboztky and

Shalom is the method of proof. Despite being technically complicated our proof of

Theorem 3.3.2 is constructive and elementary in nature. In Section 7 we show with a

few obvious changes much of the proof can be applied directly to certain topological

actions of Fn on the Cantor set to obtain an analogous result. In comparison, the

argument of Luboztky and Shalom is highly specialized and can not be transferred

to the topological setting.
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4. RIGIDITY AND THE LACK OF MIXING

It is well known that a generic Z-action is weak mixing but not mixing. In this section

we will apply Theorem 3.3.3 to show this holds for actions of the free group as well.

It follows from [20] that the weak mixing actions of Fn are generic. Thus we only

need to show the mixing actions fail to be generic.

We say a unitary representation π of a countable group G on a Hilbert space

H is rigid if there exists a sequence {gn} ⊂ G converging to infinity such that π(gn)

converges to the identity operator in the strong (equivalently weak) operator topology.

We say an action (G,X, µ, α) is rigid if its associated representation πα is rigid. If

G is a countable group the definition of rigidity expressed in the following formally

weaker way.

Proposition 4.0.1. Let π be a representation of a countable discrete group G on a

separable Hilbert space H. If there exists a sequence {gn} ⊂ G converging to infinity

such that {π(gn)} converges in the strong operator topology then π is rigid.

Proof. Let {gn} ⊂ G be a sequence converging to infinity and {ξn} ⊂ H be countable

and dense. Suppose π(gn) → U in the strong operator topology. Let ǫ > 0. For each n

it is clear there exists n′ > n such that n′ > i′ if i < n and ‖π(gn′)ξn−Uξn‖ < ǫ/4. In

addition n′ can be chosen such that g−1
n′ gn 6∈ {g−1

i′ gi}i<n. If not, g−1
n′ gn ∈ {g−1

i′ gi}i<n for

all n′ then by the pigeonhole principle there exists s ∈ {g−1
i′ gi}i<n such that g−1

n′ gn =

s for infinitely many n′. Thus gn′ = gns for infinitely many n′ contradicting the

assumption that {gn} converges to infinity. Given ξ ∈ H there exists a subsequence

{ξnk
} converging to ξ. Choose K such that ‖ξnk

−ξ‖ < ǫ/4 and ‖π(gnk
)ξ−Uξ‖ < ǫ/4

for all k > K. Then

‖π(g−1
n′

k
gnk

)ξ − ξ‖ = ‖π(gnk
)ξ − π(gn′

k
)ξ‖
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≤ ‖π(gnk
)ξ − Uξ‖ + ‖Uξ − π(gn′

k
)ξ‖

≤ ‖π(gnk
)ξ − Uξ‖ + ‖Uξ − Uξn′

k
‖ + ‖Uξn′

k
− π(gn′

k
)ξ‖

≤ ‖π(gnk
)ξ − Uξ‖ + ‖ξ − ξn′

k
‖ + ‖Uξn′

k
− π(gn′

k
)ξn′

k
‖ + ‖π(gn′

k
)(ξn′

k
− ξ)‖

<
ǫ

4
+
ǫ

4
+
ǫ

4
+
ǫ

4
= ǫ

for all k > K. It remains to check that {g−1
n′

k
gnk

} converges to infinity. However this

follows from the fact that g−1
n′ gn 6∈ {g−1

i′ gi}i<n. Therefore π is rigid.

Let H be a finite-dimensional Hilbert space and G a countable discrete group.

Then H is separable and U (H) is compact. Let {gn} ⊂ G be a sequence converging

to infinity. Then {π(gn)} has a strong operator topology convergent subsequence

since U (H) is compact. An application of Proposition 4.0.1 shows the following:

Corollary 4.0.2. If (G,H) is a finite-dimensional representation of a countable dis-

crete group G then π is rigid.

It is clear from the definition that a rigid action fails to be mixing. In particular,

to show mixing fails generically it suffices to show the rigid actions are generic. We

show now that the rigid actions are in fact a Gδ.

Proposition 4.0.3. Let G be a countable discrete group and H a separable Hilbert

space. Then set of rigid actions of G is a Gδ subset of Act(G,X, µ).

Proof. Let {gn}∞n=1 be an enumeration of G and {ξn}∞n=1 a dense subset of L2(X,µ).

For each positive integer n define

An =

{
α ∈ Act(G,X, µ) : ∃ m > n such that ‖πa(gm)ξi − ξi‖ <

1

n
, i = 1 . . . n

}

=
⋃

m>n

n⋂

i=1

{
α ∈ Act(G,X, µ) : ‖πα(gm)ξi − ξi‖ <

1

n

}
.
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Note An is open and contains the trivial representation for each n. Let A =
⋂∞
n=1An.

Suppose α ∈ Act(G,X, µ) is rigid. Let {si} ⊂ G be a sequence converging to infinity

such that ‖πα(si)ξ − ξ‖ → 0 for all ξ ∈ H. Let n be a fixed but arbitrary positive

integer. Then there exists I > n in N such that ‖πα(si)ξ − ξ‖ < 1
n

for all ξ ∈ H and

all i > I. By the pigeonhole principle there exists i > I such that si = gm for some

m > n. Therefore there exists m > n such that‖πα(gm)ξj − ξj‖ < 1
n

for all i = 1 . . . n

or equivalently π ∈ An. Thus α ∈ A. Now suppose α ∈ A. Then for each positive

integer n there exists sn 6∈ {gi}ni=1 such that for ‖πα(sn)ξi−ξi‖ < 1
n

for all j = 1, . . . n.

Let F be a finite subset of G. Then F ⊂ {gi}mi=1 for some m. Therefore sn 6∈ F for

all n > m. That is {sn} converges to infinity. Let ξ ∈ H and ǫ > 0. There exists n0

such that ‖ξ − ξn0‖ < ǫ
3
. Choose N > n0 such that 1

N
< ǫ

3
. Then for all n > N

‖πα(sn)ξ − ξ‖ ≤ ‖πα(sn)ξ − πα(sn)ξn0‖ + ‖πα(sn)ξn0 − ξn0‖ + ‖ξn0 − ξ‖

< 2‖ξ − ξn0‖ +
1

N

< ǫ.

Thus α is rigid and it follows that the set of rigid actions of Act(G,X, µ) is a Gδ.

We conclude by showing for the free group that rigidity is generic on any finitely

generated subgroup of Fn. As noted earlier, this is sufficient to show mixing fails

generically on any subgroup of Fn and ultimately that a generic action of Fn on X

is weak mixing but not mixing. To show the genericity of rigid actions we construct

the desired sequence directly using Theorem 3.3.3. However, we could also deduce

the result from Theorem 3.3.2, Proposition 3.2.3, and Corollary 4.0.2.

Proposition 4.0.4. Let α ∈ Act(Fn, G, µ). For every finite subset S ′ ⊂ S ǫ > 0 and

finite collection K of Borel sets, there exists β ∈ U(α, S ′, K, ǫ) such that β is rigid.

Proof. Let HS′ be the subgroup generated by S ′. By Theorem 3.3.3 there exists
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β ∈ U(α, S ′, K, ǫ) and a finite group F such that β restricted to HS′ factors through

F . In particular, there exists φ mapping HS′ onto F and an action β ′ ∈ Act(F,X, µ)

such that βs = β ′
φ(s) for all s ∈ HS′. Let H ⊂ HS′ be countable. By the pigeonhole

principle there exists a sequence {tn} ⊂ H such that φ(tn) = e for all n ∈ N and

{tn}∞n=1 converges to infinity. Let f ∈ L2(X,µ). Then for all x ∈ X and n ∈ N we

have

f(βs−1
n
x) = f(β ′

φ(s−1
n )
x) = f(β ′

ex) = f(x).

Consequently, ‖πβ(tn)f − f‖ = 0 for all f ∈ L2(X,µ) and n ∈ N. Thus β is rigid as

desired.

For completeness we state the following:

Theorem 4.0.5. A generic action of Fn is weakly mixing but not mixing.
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5. MEASURE-THEORETIC ENTROPY OF ACTIONS OF SOFIC GROUPS

Thus far we have encountered three invariants: ergodicity, mixing and weak mixing.

We now introduce a fourth, namely entropy. Entropy was first introduced to measure-

preserving dynamics by Kolmogorov and Sinai in the late 1950s. It was through their

work that the long standing question of whether any two measure-preserving Bernoulli

shifts were conjugate was shown to be false. In the late 1960’s Ornstein [24] showed

entropy is in fact a complete invariant for Bernoulli shifts, i.e. two Bernoulli shifts are

conjugate if and only if they have the same entropy. Entropy has since been extended

to topological systems as well as actions of more general groups, such as amenable

groups. Recently measure-theoretic entropy has been extended to countable sofic

groups by Bowen [5]. Kerr and Li [19] have since extended the notion of entropy

in [5] to include topological systems.

Generally speaking, entropy is a measure of the average uncertainty of where

the action moves the points of the space. Equivalently one may think of entropy as

measure of randomness of the dynamical system. Thus if a system has zero entropy

we think of the system as being highly deterministic. It is surprising that in many

cases zero entropy is generic, e.g. actions of the integers or amenable groups in the

measure-preserving case and actions of the integers on a Cantor in the topological

case. Our goal for this section is to show the actions with entropy equal to zero or

negative infinity in the sense of [5] is generic. To help better understand the notion

of entropy, we begin by defining it for classical dynamical systems.

5.1. Measure-Theoretic Entropy of Classical Dynamical Systems

Let (X,µ) be a standard probability space. Let PX be the collection of all partitions

of X into finitely many measurable sets. Given P ∈ PX we call an element P ∈ P
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an atom of P. Given another partition R ∈ PX we say that R refines P if for all

R ∈ R we have R ⊂ P for some P ∈ P. We define the join P ∨ R of P and R by

P ∨R = {P ∩R : P ∈ P, R ∈ R}. Note that P ∨R is again a partition of X and

is the smallest partition refining both R and P.

Given a partition P ∈ PX and a measure-preserving automorphism of X define

Hµ(P) = −
∑

P∈P

µ(P ) log(µ(P )),

hµ(T,P) = lim
n→∞

1

n
Hµ(P ∨ T−1

P ∨ · · · ∨ T−(n−1)
P),

hµ(T ) = sup
P∈PX

hµ(T,P).

In the definition of Hµ(P) we adopt the convention that µ(P ) log(µ(P )) = 0 when

µ(P ) = 0. The existence of the limit in the second line is standard in any introductory

book on entropy, see [27] for example. We call Hµ(P) the entropy of the partition

P, hµ(T,P) the entropy of T with respect to P, and hµ(T ) the entropy of T . Given

x ∈ X we can think of Hµ(P) as measuring the uncertainty of which atom of P

contains X, hµ(T,P) as the average uncertainty of which atom of P that T will

move x to next given its history, and hµ(T ) as a measure of the average uncertainty

of where T moves points of X.

Computing hµ(T ) is generally difficult since it involves a supremum over all

finite partitions. Fortunately, Kolmogorov showed that hµ(T ) = hµ(T,P) when P

is a generating partition. More precisely, we say a partition P is generating if the

smallest T -invariant σ-algebra containing P is equal to X modulo null sets. We

will discuss generating partition in more detail shortly. Presently we use this fact to

compute entropy for rotations on the circle and Bernoulli shifts.

Example 5.1.1. Let (T, λ, Tw) be rotation on the unit circle T by w. If w is a root

of unity then there exists m ∈ N such that Tmw x = x a.e. Let P be a partition of T
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into r < ∞ atoms. Then for any n > 0 the partition P ∨ T−1P ∨ · · · ∨ T−(n−1)P

has at most rm atoms. Thus

hµ(T,P) = lim
n→∞

1

n
hµ(P ∨ T−1

P ∨ · · · ∨ T−(n−1)
P) ≤ lim

n→∞

1

n
(m log(r)) = 0.

Suppose w is not a root of unity. Define T+ = {eiθ : θ ∈ [0, π)} and T− = {eiθ : θ ∈

[π, 2π)}. Then the partition P = {T+,T−} is generating for Tw. Moreover, for any

n > 0 we have P ∨ T−1P ∨ · · · ∨ T−(n−1)P has at most 2n atoms. Thus

hµ(T,P) = lim
n→∞

1

n
hµ(P ∨ T−1

P ∨ · · · ∨ T−(n−1)
P) ≤ lim

n→∞

1

n
(log(2n)) = 0.

Thus hµ(Tw) = 0 for all w ∈ T.

Example 5.1.2. Let T be the Bernoulli shift on (XZ, µZ) where X = {x1, x2, . . . , xk}

and µ({xj}) = pj for each j = 1, 2, . . . , k where
∑k

j=1 pj = 1. For each j = 1, 2, . . . , k

define Pj = {(yi) ∈ XZ : y0 = xj}. Then the partition P = {P1, P2, . . . , Pk} is

generating for T . Then P ∨ T−1P ∨ · · · ∨ T−(n−1)P = {(yj) ∈ XZ : y0 = x′0, y1 =

x′1, . . . , yn−1 = x′n−1} for some (x′0, x
′
1, . . . , x

′
n−1) ∈ Xn. Thus

hµ(P ∨ T−1
P ∨ · · · ∨ T−(n−1)

P) = −
∑

i1,i2,...,in

pi1pi2 · · · pin log(pi1pi2 · · · pin)

= −n
k∑

j=1

pj log(pj).

We now have

hµ(T ) = hµ(T,P) = lim
n→

1

n

(
−n

k∑

j=1

pj log(pj)

)
= −

k∑

j=1

pj log(pj).

In the preceding example suppose Y = {y1, y2}. Set p = p1 then p2 = 1 − p. If

T is the Bernoulli shift on Y we have

hµ(T ) = −p log(p) − (1 − p) log(1 − p).
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It is then clear, that we may construct Bernoulli shift such that hµ(T ) = h for any

given h ∈ (0, log(2)]. Furthermore, by varying the cardinality of Y and the measures

of the elements of Y , we may construct a Bernoulli shift with entropy equal to d for

any d ∈ (0,∞).

5.2. Generating Partitions

We briefly introduced generating partitions in the preceding subsection. We now

extend this definition in the natural sense to actions of countable discrete groups. We

then give a more analytic description of generating partitions that will be useful in

the applications that follow. In particular, we show for a fixed partition P of (X,µ)

the set of actions in Act(G,X, µ) for which P is generating is a Gδ. In the case of

the free group Fn we show this set is dense as well. Thus for a fixed partition P of

(X,µ) the set of actions (Fn, X, µ, α) for which P is generating is generic.

Let α ∈ Act(G,X, µ) and P be a finite partition of X into measurable sets. Let

σ(P) be the smallest α-invariant σ-algebra containing the atoms of P. As with the

integer case, we say P is generating for α if σ(P) = X modulo null sets, i.e. for all

A ∈ X there exists A′ ∈ σ(P) such that µ(A△A′) = 0. Given a finite subset F ⊂ G

define PF
α =

∨
s∈F αsP. When the action is clear we simply write PF . It is straight

forward to check that PF may be identified with a subset of functions from F into

P.

We now give a more analytic description of generating partitions. This descrip-

tion will be useful in showing the set of actions for which a fixed partition is generating

is a Gδ.

Lemma 5.2.1. Let (X,B, µ) be a standard probability space and G a countable dis-

crete group. Let P be a partition of X and α ∈ Act(G,X, µ). Then P is generating
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for α if and only if for all A ∈ B and ǫ > 0 there exist finite subsets F ⊂ G and

A ⊂ PF such that µ(A△(
⋃A)) < ǫ.

Proof. Suppose P is generating for α. Let C be the collection of all A ∈ σ(P)

such that for all ǫ > 0 there exists finite subsets F ⊂ G and A ⊂ P
F satisfying

µ(A△(
⋃A)) < ǫ. Let A ∈ C , s ∈ G, and ǫ > 0. Then there exist finite subsets F of

G and A ⊂ PF such that µ(A△(
⋃A)) < ǫ. Let F ′ = sF then

P
F ′

=
∨

t∈F ′

αtP =
∨

t∈F

αsαtP = αs
∨

t∈F

αtP = αsP
F

whence αsA ⊂ PF ′
. Thus

µ((αsA)△(
⋃

αsA)) = µ((αsA)△(αs
⋃

A))

= µ(αs(A△(
⋃

A)))

= µ(A△(
⋃

A))

< ǫ.

Therefore C is α-invariant. Since P
F is finite, B = P

F \A is finite as well. Moreover,

(
⋃A)c =

⋃B, whence µ(Ac△(
⋃B)) = µ(Ac△(

⋃A)c) = µ(A△(
⋃A)) < ǫ.

It remains to check that C is closed under countable unions. Suppose {An}∞n=1

be a countable collection of subsets of C . Without loss of generality we may assume

{An}∞n=1 is pairwise disjoint. Since X is a probability space, there exists N ∈ N such

that
∑∞

n=N+1 µ(An) <
ǫ
3
. For each n = 1, 2, . . . , N there exists finite subsets Fn ⊂ G

and An ⊂ PFn such that µ(An△(
⋃An)) <

ǫ
3N

. Let F =
⋃N
n=1 Fn. Since Fn ⊂ F

the partition PF refines PFn . In particular for each A ∈ An there exists BA ⊂ PF

such that A =
⋃BA. Define A =

⋃N
n=1

⋃
A∈An

BA. Then

⋃
A =

N⋃

n=1

⋃

A∈An

BAn =

N⋃

n=1

⋃
An
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whence

µ

((
N⋃

n=1

An

)
△
(⋃

A
))

= µ

((
N⋃

n=1

An

)
△
(

N⋃

n=1

⋃
An

))

≤
N∑

n=1

µ
(
An△

(⋃
An

))

<

N∑

n=1

ǫ

3N

=
ǫ

3
.

Let AN =
⋃N
n=1, A∞ =

⋃∞
n=N+1 and A =

⋃A. Then

µ

((
∞⋃

n=1

An

)
△
(⋃

A
))

= µ((AN ∪ A∞)△A)

≤ µ((AN ∪A∞) \ A) + µ(A \ (AN ∪A∞))

= µ((AN ∩ Ac) ∪ (A∞ ∩ Ac)) + µ(A ∩ Ac ∩Bc)

≤ µ(AN ∩Ac) + µ(A∞ ∩Ac) + µ(A ∩ AcN)

≤ µ(AN \ A) + µ(A∞) + µ(A \ AN )

<
ǫ

3
+
ǫ

3
+
ǫ

3

= ǫ.

Thus C is a α-invariant σ-algebra. As it is clear that C contains the the atoms of P

we must have σ(P) ⊂ C .

Conversely, suppose for any A ∈ X , and ǫ > 0 there exists a finite subset F of

G and A1, A2, . . . , Am ∈ PF such that µ(A△(
⋃m
i=1Ai)) < ǫ. For each n > 1 choose

Fn ⊂ G and Bn ⊂ PF
n such that µ(A△Bn) <

1
2n+1 where Bn =

⋃
Bn. Then for each

k ≥ 1,

µ

(
A△

∞⋃

n=k

Bn

)
= µ

(
∞⋃

n=k

(A△Bn)

)
≤

∞∑

n=k

µ(A△Bn) ≤
∞∑

n=k

1

2n+1
=

1

2k
.
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Then A′ =
⋂∞
k=1

⋃∞
n=k Bn ∈ σ(P) satisfies

µ(A△A′) = µ(A△(

∞⋂

k=1

∞⋃

n=k

Bn))

= µ(

∞⋂

k=1

µ(A△(

∞⋃

n=k

Bn))

= lim
k→∞

µ(A△(
∞⋃

n=k

Bn))

≤ lim
k→∞

1

2k

= 0.

Therefore P is generating for α.

Given a fixed finite partition P of X define by Gen(P, G,X, µ) the set all

α ∈ Act(G,X, µ) such that P is generating for α. Given A ∈ X and ǫ > 0 define

U(A, ǫ) ⊂ Act(G,X, µ) by

U(A, ǫ) = {α : µ(A△(
⋃

A)) < ǫ for some finite subsets F ⊂ G and A ⊂ P
F
α }.

If U(A, ǫ) is empty, then it is open. Suppose U(A, ǫ) is nonempty. Let α ∈ U(A, ǫ).

Then there exists a finite subsets F ⊂ G, and A ⊂ PF
α , and δ > 0 such that

µ(A△(
⋃A)) + δ < ǫ. Let β ∈ U(α, F,P, δ

|F ||A|
). For each A′ ∈ A let φA′ : F → P

be such that A′ =
⋂
g∈F αgφA′(g). Define BA′ =

⋂
g∈F βgφA′(g). Then

µ(A′△BA′) = µ(
⋂

g∈F

αgφA′(g)△
⋂

g∈F

βgφA′(g))

≤
∑

g∈F

µ(αgφA′(g)△βgφA′(g))

<
∑

g∈F

δ

|F ||A|

=
δ

|A| .
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Let B = {BA′ : A′ ∈ A} ⊂ PF
β . Then

µ(A△(
⋃

B)) ≤ µ(A△(
⋃

A)) + µ((
⋃

A)△(
⋃

B))

= µ(A△(
⋃

A)) + µ((
⋃

A′∈A

A′)△(
⋃

A′∈A

BA′))

≤ µ(A△(
⋃

A)) +
∑

A′∈A

µ(A′△BA′)

< µ(A△(
⋃

A)) +
∑

A′∈A

δ

|A|

= µ(A△(
⋃

A)) + δ

< ǫ.

Thus U(α, F,P, δ
|F ||A|

) ⊂ U(A, ǫ), i.e. U(A, ǫ) is open.

Let {An}∞n=1 ⊂ X be such that the sequence of equvalence classes {Ãn}∞n=1 is

dense in the measure algebra X̃ ofX. Clearly Gen(P, G,X, µ) ⊂ ⋂∞
n=1

⋂∞
m=1 U(An,

1
m

).

Suppose α ∈ ⋂∞
n=1

⋂∞
m=1 U(An,

1
m

). Let A ∈ X and ǫ > 0. Choose m,n ∈ N such

that µ(A△An) < ǫ
2

and 1
m
< ǫ

2
. Since α ∈ U(An,

1
m

) there exist finite subsets F ⊂ G

and A ⊂ PF such that µ(An△(
⋃A)) < 1

m
< ǫ

2
. Then

µ(A△(
⋃

A)) ≤ µ(A△An) + µ(An△(
⋃

A)) <
ǫ

2
+
ǫ

2
= ǫ

whence it follows from Lemma 5.2.1 that α ∈ Gen(P, G,X, u). Thus we have proved

the following

Proposition 5.2.2. Let G be a countable group and (X,µ) a standard probability

space. Let P be a fixed finite partition of X. Then Gen(P, G,X, µ) is a Gδ set.

In general, given a partition P there is no guarantee that Gen(P, G,X, µ) is

nonempty. However, ifG is assumed to be Fn we will show that Gen(P, G,X, µ) is not

only nonempty, but is in fact a dense for all finite partitions P of X. Unfortunately
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the proof relies on perturbing the action on a generator to what is known as a prime

transformation and does not translate well to other groups.

Let (X,X , µ) and (X ′,X ′, µ′) be standard probability spaces, G a countable

discrete group and α ∈ Act(G,X, µ). We say α′ ∈ Act(G,X ′, µ′) is a factor of

α if there exists measurable sets X0 ⊂ X and X ′
0 ⊂ X ′ of full measure satisfying

αgX0 ⊂ X and α′
gX

′
0 ⊂ X ′ for all g ∈ G and a measurable onto map φ : X → X ′

satisfying φ ◦αg = α′
g ◦φ for all g ∈ G and µφ−1 = µ′. If α has no proper factors, α is

said to be prime. It can be shown that the factors of α correspond to the α-invariant

sub-σ-algebras of X (see [34] p61 for the case when G = Z). Suppose α is prime and

P is any finite partition of X. Then σ(P) is an α-invariant sub-σ-algebra of X and

hence must be equal to X modulo null sets. That is, if α is prime then every finite

partition of X is generating.

For the case of single operators, several examples of prime transformations are

known, see [23], [10] or [32] for example. In each of these examples, the prime

transformation is ergodic and hence has dense conjugacy class. We can now show

Gen(P,Fn, X, µ) is nonempty and dense for all finite partitions P of X.

Proposition 5.2.3. For each finite measurable partion P of a standard probability

space (X,µ), Gen(P,Fn, X, µ) is generic.

Proof. Let P be a finite measurable partition of (X,µ). From Proposition 5.2.2 we

know Gen(P,Fn, X, µ) is a Gδ set. Thus is remains to check Gen(P,Fn, X, µ) is

nonempty and dense. Let α ∈ Act(Fn, X, µ), ǫ > 0, and A ⊂ X and S ′ ⊂ S be finite

subsets. Let s ∈ S ′ be fixed but arbitrary. By density of the prime transformations

for Z-systems there exists a prime transformation T such µ(TA△αsA) < ǫ for all
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A ∈ A. Define an action of Fn on X by

α′
tx =





Tx if t = s

αtx otherwise

for each t ∈ S ′. It is clear that α′ ∈ U(α, S ′,A, ǫ) whence it remains to check that

P is generating for α′. Recall σ(P) is the smallest α′ invariant σ-algebra containing

the atoms of P. Thus σ(P) is also α′
s invariant and thus equal to X modulo null

sets. That is, α′ ∈ Gen(P,Fn, X, µ) completing the proof.

5.3. Measure-Theoretic Entropy of Actions of Sofic Groups

Suppose G is a countable group and m ≥ 1. Denote by Sym(m) the full symmetric

group on {1, 2, . . . , m}. Given a map σ from G into Sym(m) and a finite subset

F ⊂ G we define Vσ(F ) to be the set of all v ∈ {1, 2, . . . , m} such that for all s, t ∈ F

we have σ(s)σ(t)v = σ(st)v and σ(s)v 6= σ(t)v if s 6= t. If |Vσ(F )| ≥ (1 − ǫ)m we say

σ is an (F, ǫ)-approximation to G. A sequence {σi}∞i=1 of maps σi : G → Sym(mi) is

called a sofic approximation to G if each σi is an (Fi, ǫi)-approximation to G for some

sequence {Fi}∞i=1 of finite subsets of G and sequence {ǫi}∞i=1 of positive real numbers

satisfying Fi ⊂ Fi+1 for all i ∈ N,
⋃
i∈N

Fi = G and ǫi → 0 as i → ∞. We say G is a

sofic group if there exists a sofic approximation to G.

We wish to verify that Fn is in fact a sofic group. Unfortunately, a direct proof

is not obvious. Instead we introduce the class of residually finite groups and show

every residually finite group is sofic. We say a group G is residually finite if one of

the following equivalent conditions hold:

• for all s ∈ G there exists a finite group and a homomorphism φ : G → K such

that φ(s) 6= e,
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• there exists a chain G = H1 ⊃ H2 ⊃ H3 ⊃ · · · of normal subsets of G such that
⋂
i∈N

Hi = {e} and |G/Hi| <∞ for each i ∈ N.

It is known fhat every residually finite group and amenable group is sofic [36]. Cur-

rently, it is unknown if all countable groups are sofic or not.

It is well known that Fn is residually finite and thus sofic. The standard proof

makes use of the fact that subgroups of residually finite group are residually finite and

that Fn embeds into F2 which embeds into SL2(Z), the latter of which is residually

finite. We use the results of Section 3 to give a dynamical proof that Fn is residually

finite.

Proposition 5.3.1. Let G be a countable discrete group. Suppose the set of α ∈

Act(G,X, µ) which factor through a finite group are weakly dense in Act(G,X, µ) for

some standard probability space (X,µ). Then G is residually finite.

Proof. Let α be the Bernoulli shift on (XG, µG) for some standard probability space

(X,µ). Let s ∈ G have infinite order. Let A ⊂ X be such that measure 0 < µ(A) < 1.

Then there exists a positive integer m such that µ(αsmA△A) > ǫ for some ǫ > 0.

By assumption, there exists α′ ∈ U(α, {A}, {s, s2, . . . , sm}, ǫ) such that α′ factors

through some finite group F , i.e. there exists φ : G → F and β ∈ Act(G,XG, µG)

such that α′
s = βφ(s) for all s ∈ G. Suppose φ(s) = e. Then φ(sj) = e for all j ∈ N.

In partitcular, we have

µ(αsmA△A) = µ(αsmA△βeA) = µ(αsmA△βφ(sm)A) = µ(αsmA△α′
smA) < ǫ,

a contradiction. Thus φ(s) 6= e completing the proof.

We now have the following corollary:

Corollary 5.3.2. Fn is residually finite and thus sofic.
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Let G be a countable discrete group, (X,µ) a standard probability space and

α ∈ Act(G,X, µ). Suppose P = {P1, P2, . . .} is an ordered partition of X. Let

σ : G → Sym(m) be a map, ν be the uniform probability measure on {1, 2, . . . , m}

and R = {R1, R2, . . .} be a partition of {1, 2, . . . , m}. Let F be a finite subset of G.

Given a function φ : F → N, let P α
φ =

⋂
g∈F αgPφ(g) and Rσ

φ =
⋂
g∈F σ(g)Rφ(g) and

define

dαF,σ(P,R) =
∑

φ:F→N

|µ(P α
φ ) − ν(Rσ

φ)|.

If P is finite, then for ǫ > 0, let APσ(α,P : F, ǫ) be the set of all ordered partitions

R of {1, 2, . . . , m} with the same number of atoms as P satisfying dαF,σ(P,R) < ǫ.

The set APσ(α,P : F, ǫ) is called the set of approximating partitions.

Suppose G is a sofic group with sofic approximation Σ = {σi : G→ Sym(mi)}∞i=1,

and α ∈ Act(G,X, µ). Given a finite partition P of X we define the mean Σ-entropy

of P, denoted hΣ,µ(α,P), as follows. For every ǫ > 0 and finite subset F ⊂ G define

hΣ,µ(α,P : F, ǫ) = lim sup
i→∞

1

mi
log |APσi

(α,P : F, ǫ)|.

If AP(σi,P : F, ǫ) is empty then we interpret log(0) = −∞. We then define

hΣ,µ(α,P : F ) = inf
ǫ>0

hΣ,µ(α,P : F, ǫ)

and

hΣ,µ(α,P) = inf
F⊂G

hΣ,µ(α,P : F )

where the latter infimum is taken over all nonempty finite subsets F ⊂ G. Since ǫ > δ

implies APσ(α,P : F, ǫ) ⊃ APσ(α,P : F, δ), the infimum defining hΣ,µ(α,P : F )

may be replaced by the limit as ǫ decreases to zero. Similarly if F ⊂ F ′ it follows
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APσ(α,P : F, ǫ) ⊃ APσ(α,P : F ′, ǫ) whence

hΣ,µ(α,P) = lim
n→∞

hΣ,µ(α,P : Fn)

where {Fn}∞n=1 in an increasing sequence of finite subsets of G which exhausts G. If

APσ(α,P : F, ǫ) is empty for all sufficiently large i we define hΣ,µ(α,P) = −∞.

When there exists a generating partition P satisfying Hµ(P) < ∞ we define

the Σ-entropy, denoted hΣ,µ(α), by

hΣ,µ(α) = hΣ,µ(α,P).

It is shown in [5] that if P and R are generating partitions having finite entropy

then hΣ,µ(α,P) = hΣ,µ(α,R). Thus the Σ-entropy of α is well defined if there exists

a generating partition with finite entropy. If no such partition exists, hΣ,µ(α) is

undefined.

Although hΣ,µ(α) may not be defined for an action, the value hΣ,µ(α,P) is

defined for any finite ordered partition. Thus for a fixed ordered partition P and

δ > 0 we may consider the the set

HΣ,δ(P, G,X, µ) = {α ∈ Act(G,X, µ) : hΣ,µ(α,P) < δ}.

It is shown in [5], that for a Bernoulli shift α, we have hΣ,µ(α,P) = Hµ(P), whence

Hδ(P, G,X, µ) is nonempty for each δ > 0. Suppose α ∈ Hδ(P, G,X, µ). Choose

a finite subset F ⊂ G and ǫ > 0 such that hΣ,µ(α,P : F, ǫ
2
) < δ. Suppose β ∈

U(α, F,P, ǫ′) where 0 < ǫ′ < ǫ
2|F ||P||F | . If APσi

(β,P : F, ǫ) = ∅ for all sufficiently

large i then hΣ,µ(β,P) = −∞ whence β ∈ HΣ,δ(P, G,X, µ). Given φ : F → N we

have

µ(P α
φ△P β

φ ) = µ(
⋂

s∈F

αsPφ(s)△
⋂

s∈F

βsPφ(s))
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≤ µ(
⋃

s∈F

αsPφ(s)△αsPφ(s))

≤
∑

s∈F

µ(αsPφ(s)△αsPφ(s))

< |F |ǫ′.

Thus for R ∈ APσi
(β,P : F, ǫ) we have that

dαF,σi
(P,R) =

∑

φ:F→N

|µ(P α
φ ) − ν(Rσi

φ )|

≤
∑

φ:F→N

|µ(P β
φ ) − ν(Rσi

φ )| +
∑

φ:F→N

|µ(P α
φ ) − µ(P β

φ )|

≤ dβF,σi
(P,R) +

∑

φ:F→N

µ(P α
φ△P β

φ )

<
ǫ

2
+ |P||F ||F |ǫ′

< ǫ.

Thus we have APσi
(β,P : F, ǫ

2
) ⊂ APσi

(α,P : F, ǫ) for each i ∈ N, whence

hΣ,µ(β,P : F,
ǫ

2
) < hΣ,µ(α,P : F, ǫ) < δ.

Since hΣ,µ(β,P : F, ǫ) is nonincreasing if either ǫ decreases or F increases we have

hΣ,µ(α,P) < δ. In particular, HΣ,δ(P, G,X, µ) is nonempty and open for each δ > 0.

Define HΣ,0(P, G,X, µ) = {α ∈ Act(G,X, µ) : hΣ,µ(α,P) ∈ {0,−∞}}. Then for any

sequence {δi}∞i=1 decreasing to 0 we have HΣ,0(P, G,X, µ) =
⋂∞
i=1HΣ,δi(P, G,X, µ),

i.e. HΣ,0(P, G,X, µ) is a Gδ.

Suppose α ∈ Act(G,X, µ) factors through a finite group F . Let φ : G → F

and β ∈ Act(F,X, µ) be such that αs = βφ(s) for all s ∈ G. Then by pigeonhole

principle there exist s, t ∈ G such that s 6= t and φ(s) = φ(t). Alternatively, there

exists a nontrivial s ∈ G such that αs = αe. If s has infinite order, we claim this
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latter condition is sufficient to show hΣ,µ(α,P) ∈ {0,−∞}.

Lemma 5.3.3. Let G be a sofic group with sofic approximation Σ, P = {P1, P2, . . . , Pd}

be an ordered partition of X and α ∈ Act(G,X, µ). Suppose there exists s ∈ G of

infinite order such that αs = αe. Then hΣ,µ(α,P) ≤ 0.

Proof. Suppose hΣ,µ(α,P) ≥ 0. Let F = {s, e} and 0 < ǫ < 1
2
. Fix n ∈ N such that

1
n

log(d) < ǫ. Let I ∈ N be such that {e, s−1, s−2, . . . , s−n} ⊂ Fi for all i ≥ I. Let

i ≥ I be fixed but arbitrary. Let R be the set of all ordered partitions of {1, 2, . . . , mi}

having d atoms. Define ψ : R → ({0, 1, 2, . . . , d} ∪ {⋆}){1,2,...,mi} by

ψ(R)(v) =





⋆ if v ∈ {1, 2, . . . . , mi} \ Vσi
(Fi),

j if σi(s)
−1v ∈ Rj and v 6∈ Rj ,

0 otherwise.

Let f ∈ ψ(R) and suppose |⋃d
j=1 f

−1({j})| > miǫ. Then for R ∈ φ−1({f}) it follows

that

dF (P,R) =
∑

φ∈{1,2,...,d}F

|µ(αePψ(e) ∩ αsPψ(s)) − ν(σi(e)Rψ(e) ∩ σi(s)Rψ(s))|

=
∑

1≤j,k≤d

|µ(Pj ∩ Pk) − ν(Rj ∩ σi(s)Rk)|

≥
∑

1≤j 6=k≤d

ν(Rj ∩ σi(s)Rk)

= ν

(
⋃

1≤j 6=k≤d

Rj ∩ σi(s)Rk

)

≥ ν

(
d⋃

j=1

f−1({j})
)

>
1

mi

ǫmi

= ǫ.
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Thus R 6∈ APσi
(P, α, F, ǫ). In particular, APσi

(P, α, F, ǫ) ⊂ ⋃
f∈F ψ

−1(f) where

F = {f ∈ ψ(R) : |⋃d
j=1 f

−1({j})| ≤ miǫ}.

Let f ∈ F and define

V⋆(f) = {v : f(v) = ⋆},

V ′(f) = {v ∈ Vσi
(Fi) : f(σi(s)

−jv) = 0 for all j ∈ N},

V ′′(f) = Vσi
(Fi) \ V ′(f).

Suppose v ∈ V ′′(f). Then there exists a positive integer j such that f(σ(s)−jv) 6= 0.

Let jv be the smallest such positive integer. For each j = 1, 2, . . . , d define R′′
j =

{v ∈ V ′′(f) : f(σ(s)−jvv) = j}. Suppose R ∈ ψ−1(f). Clearly R′′
j ⊂ Rj ∩ V ′′(f).

Suppose v ∈ Rj ∩ V ′′(f). Then v ∈ Rj and f(σ(s)−jvv) 6= 0. If f(σ(s)−jvv) 6= j

then v 6∈ Rj . Thus Rj ∩ V ′′(f) = R′′
j for all R ∈ ψ−1(f). Suppose v ∈ V ′(f). Since

{e, s−1, s−2, . . . , s−n} ⊂ Fi, v is contained in a subcycle of length greater than n.

Since σi(s)
−jv = 0 for all j ∈ N this cycle must be entrirely contained in one of the d

atoms of R. As there are at most mi

n
subcycles of σi(s) we have at most d

mi
n ways of

partitioning V ′(f). Note that V⋆(f) = {1, 2, . . . , mi}\Vσi
(Fi), whence |V⋆(f)| < miǫi.

Thus allowing for all possibilities on V⋆(f) we have at most dǫimi possible ways of

partitioning V⋆(f). Thus we have

|ψ−1(f)| < dǫimid
mi
n = dmi(ǫi+

1
n

)

for each f ∈ F .

To bound |F| note that

|F| = |{f ∈ ψ(R) : |
d⋃

j=1

f−1({j})| ≤ miǫ}|

=

miǫ∑

l=i

|{f ∈ ψ(R) : |
d⋃

j=1

f−1({j})| = l}|
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=

miǫ∑

l=i

(
mi

l

)
dl

≤ dmiǫ

miǫ∑

l=i

(
mi

l

)

≤ dmiǫ(miǫ)

(
mi

miǫ

)

Where the last inequality holds since miǫ <
mi

2
. We now have that

log |APσi
(P, α, F, ǫ)| ≤ log(miǫ) +mi(ǫ+ ǫi +

1

n
) log(d) + log

(
mi

miǫ

)

Applying Stirling’s formula we have for large mi that

log

(
mi

miǫ

)
≈ log

(
mi

e

)mi
√

2πmi

(
miǫ
e

)miǫ√2πmiǫ
(

(1−ǫ)mi

e

)(1−ǫ)mi √
2π(1 − ǫ)mi

= log

(√
1

2πǫ(1 − ǫ)mi

(
1 − ǫ

ǫ

)miǫ 1

1 − ǫ

)

= −1

2
log(2πǫ(1 − ǫ)mi) +miǫ log

(
1 − ǫ

ǫ

)
+ log

1

1 − ǫ
.

It then follows that

hΣ,µ(α,P : F, ǫ) = lim sup
i→∞

1

mi

log |AP(σi,P : F, ǫ)| ≤ ǫ+ ǫ log(d) + ǫ log

(
1 − ǫ

ǫ

)

whence

0 ≤ hΣ,µ(α,P, F ) = lim
ǫ→0

hΣ,µ(α,P : F, ǫ) ≤ lim
ǫ→0

[
ǫ+ ǫ log(d) + ǫ log

(
1 − ǫ

ǫ

)]
= 0.

It then follows directly that hΣ,µ(α,P) = 0, as desired.

Unfortunately if α factors through a finite group F , then it is not generating for

any finite partition P of X. Indeed, it follows there exists ǫ > 0 such that for any

finite subset F ⊂ G any nonempty element of P
F has measure greater than ǫ. But

then for sets of sufficiently small measure Lemma 5.2.1 fails. Thus Lemma 5.3.3 only
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shows that for a fixed finite ordered partition the set of actions

{α ∈ Act(G,X, µ) : hΣ,µ(α,P) ∈ {0,−∞}}

is generic. In general, this is not sufficient to conclude the set of actions with Σ-

entropy either equal to 0 or negative infinity is generic. However, we do have

hΣ,0(G,X, µ) ⊃ Gen(P, G,X, µ) ∩HΣ,0(P, G,X, µ)

for any finite partition P. Thus we have the following theorem:

Theorem 5.3.4. Let G be a sofic group with sofic approximation Σ. Suppose the

set of actions in Act(G,X, µ) which factor through a finite group are dense and

Gen(P, G,X, µ) is a dense Gδ for some finite partition P of X. Then HΣ,0(G,X, µ)

is generic.

Corollary 5.3.5. HΣ,0(Fn, X, µ) is generic.

Proof. This follows from Theorems 3.3.3 and 5.3.4 and Proposition 5.2.3.
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6. A CASE OF CONNES’ EMBEDDING PROBLEM

6.1. von Neumann Algebras and the Crossed Product

Let H be a Hilbert space and M be a subspace of B(H). Define the commutant,

M′, of M by M′ = {B ∈ B(H) : AB = BA for all A ∈ M}. If M satisfies one of

the following equivalent conditions

1. M is closed in the weak topology,

2. M is closed in the strong topology,

3. M = M′′ = (M′)′

it is said to be von Neumann algebra (acting on H). We say a von Neumann algebra

is a factor if M∩M′ = C1. For the remainder of this subsection we fix a von Neuman

algebra M acting on some Hilbert Space H.

A group action α of a countable discrete group G on M is said to be an action

by automorphisms on M if for each s ∈ G we have αs is a ∗-automorphishms of M.

We say α is free if for all g 6= e we have yx = xαg(y) for all y ∈ M implies x = 0. If

the algebra of fixed points MG is equal to C1 then α is said to be ergodic. Given an

action α of G on M we devote the remainder of this subsection to constructing a von

Neumann algebra M ⋊α G acting on the Hilbert space H⊗ ℓ2(G) called the crossed

product.

For any locally compact group G, there exists a unique Haar measure µ on the

Borel Subsets of G. Denote by Cc(G) the vector space of complex valued functions on

G having compact support. We then define L2(G, µ) as the completion Cc(G) with

respect to the inner product 〈f, g〉 =
∫
fgdµ. If G is a countable discrete group, as

is our case, then µ is the counting measure and L2(G, µ) = ℓ2(G).
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When defining the crossed product it is be convenient to view elements of H ⊗

ℓ2(G) as functions from G into H. To do so, let Cc(G,H) be the vector space of all

functions from G into H with compact support. Define an inner product on Cc(G,H)

by 〈f, g〉 =
∫
〈f(s), g(s)〉Hdµ where 〈·, ·〉H is the inner product on H. Let L2(G,H)

be the completion of Cc(G,H) with respect to 〈·, ·〉. Given ξ ∈ H and f ∈ Cc(G),

U(ξ ⊗ f)(s) = f(s)ξ extends to a unitary operator from H ⊗ ℓ2(G) onto L2(G,H).

In particular, we may view ξ ⊗ f ∈ H⊗ ℓ2(G) as a function from G into H given by

ξ ⊗ f(s) = f(s)ξ.

Define maps πα : M → B(L2(G,H)) and u : G→ B(L2(G,H)) by

(πα(x)f)(s) = αs−1(x)f(s) and (u(s)f)(t) = f(s−1t).

Then πα is a faithful normal *-representation of M in L2(G,H) and u is a unitary

representation of G in L2(G,H). Moreover, for each x ∈ M and t ∈ G, πα and u

satisfy

u(t)πα(x)u(t)
∗ = πα(αt(x)).

For notational purposes we generally write us for u(s) and x for πα(x).

We define the crossed product, M⋊αG, of M by α as the von Neumann algebra

generated by {πα(x), u(s) : x ∈ M, s ∈ G}. The finite sums
∑

s∈F xsus for some

F ⊂ G form ∗-subalgebra of M ⋊α G where adjoints and multiplication are defined

as follows (
∑

s∈F

xsus

)∗

=
∑

s∈F

αs(xs−1)us

and (
∑

s∈F1

xsus

)(
∑

t∈F2

ytut

)
=

∑

s∈F1,t∈F2

xsαt(xt)ust.

When α is free and ergodic M ⋊α G is a factor. There always exists a normal,

faithful conditional expectation EM from M⋊αG to M. Furthermore, if there exists
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a trace τ on M there exists a trace τα on M ⋊α G defined by

τα

(
∑

s∈G

xsus

)
= τ(xe)

where e is the identity of G. We conclude this subsection with an example.

Example 6.1.1. Let (X,µ) be a standard probability space and α be a measure

preserving action of a countable group G on X. For each f ∈ L∞(X,µ) define Mf

on L2(X,µ) by Mfg = fg. It is routine to verify the set {Mf : f ∈ L∞(X,µ)} is a

self adjoint, unital, weakly closed, subalgebra of B(L2(X,µ)) and hence a (commu-

tative) von Neumann algebra. Furthermore, α induces an action by automorphisms

α̂ on L∞(X,µ) given by α̂g(f)x = f(αg−1x). We may then construct the the crossed

product L∞(X,µ) ⋊αG acting on L2(X,µ)⊗ ℓ2(G). When α is free and ergodic, α̂ is

also free and ergodic and it follows L∞(X,µ) ⋊α G is a factor.

6.2. Connes’ Embedding Problem

It is a well known fact that every von Neumann algebra decomposes as a direct

integral of factors. Furthermore, each factor may be classified as being either type I,

type II, or type III. We say a factor is type I factor if it contains a minimal nonzero

projection, type II if it contains nonzero finite projections but no minimal projections,

and type III if it contains no nonzero finite projections.

Type I factors are isomorphic to B(K) for some Hilbert space K whence we may

further subdivide them as type In where n is the dimension of K. The type III can

be further classified into subtypes IIIλ for λ ∈ [0, 1], however this is beyond the scope

of this dissertation and we refer the reader to [33] for further details. Type II factors

are subdivided as type II1 if the identity operator is finite and type II∞ otherwise.

Of the type II factors we will be primarily interested in the hyperfinite II1 factor.
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This factor is unique and can be described in several ways. A common description is

it is the unique II1 factor which is approximately finite dimensional, i.e. there exists

an increasing sequence of finite dimensional *-subalgebras whose union is σ-weakly

dense. Unless otherwise specified, R will be used to denote the hyperfinite II1 factor.

Let I be an infinite set. A subset ω of P(I) is said to be an ultrafilter if ∅ 6∈ ω,

ω is closed under finite intersections and for all A ⊂ I either A ∈ ω or I \ A ∈ ω. If

ω satisfies
⋂
A∈ω A 6= ∅ then it is clear there exists a unique element i ∈ I such that

ω = {A ⊂ I : i ∈ A}. Such an ultrafilter is called principal. If ω is not principal then

it is said to be free.

Suppose ω is an unltrafilter on N and X is a topological space. A sequence

{xn} ⊂ X is said to converge along the ultrafilter ω to x ∈ X if for every neighborhood

V of x, {n ∈ N : xn ∈ V } ∈ ω. The point x is said to be an ω-limit of {xn} and

denote it by x = limn→ω xn. If X is Hausdorff, then the limit along an ultrafilter is

unique. Also if {xn} is contained in some compact set, then the limit along ω exists.

In particular every bounded sequence in Rn has a unique limit along the ultrafilter ω.

It can be shown that there exists a unique tracial state τ on R. Furthermore,

this trace gives rise to a norm on R given by ‖a‖2 = τ(a∗a)
1
2 for all a ∈ R. Con-

sider ℓ∞(R) = {(ak) ∈ RN : supk∈N
‖a‖2 < ∞} endowed with the norm ‖(ak)‖ =

supk∈N
‖ak‖2. Set Iω = {(ak) ∈ ℓ∞(R) : limk→ω ‖ak‖2 = 0}. Routine calculations

show Iω is an ideal of ℓ∞(R). We show it is in fact a closed ideal. Suppose (ak) is

in the closure of Iω. Let ǫ > 0 then there is (bk) ∈ Iω such that ‖a − b‖ < ǫ
2
. Then

‖bk‖2 ≤ ‖ak − bk‖2 + ‖bk‖ < ǫ
2

+ ‖bk‖2. Thus the set {k : ‖bk‖2 <
ǫ
2
} is contained

in {k : ‖ak‖2 < ǫ}. Since (bk) ∈ Iω the former set is in ω the latter set must be as

well. In particular limk→ω ‖ak‖2 = 0 as desired. We call the quotient ℓ∞(R)/Iω the

tracial ultrapower of R and denote it Rω. It is again a II1 factor with natural trace

τω defined by τω((ak) + Iω) = limk→ω τ(ak). When working with Rω we will follow
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convention and omit the Iω when there is no ambiguity.

In Section V of [9], Alain Connes asked whether every separable II1 factor F can

be embedded into Rω for any free ultrafilter, i.e. does there exists a trace preserving

∗-homomorphism from F into Rω. It follows from a general result of Brown, Dykema,

and Jung on free products that the crossed product L∞(X,µ) ⋊α Fn embeds into Rω

for any α ∈ Act(Fn, X, µ), see Corollary 4.5 in [7]. We will use the results of Section

3 to give an explicit combinatorial proof that the crossed product embeds into Rω.

In [35], Wassermann showed that the group von Neumann algebra of F2 embeds

into Rω. Wassermann’s proof relies on the fact that F2 is residually finite. In partic-

ular, let H1 ⊃ H2 ⊃ · · · be a decreasing sequence of normal subgroups of F2 having

trivial intersection and satisfying |F2/Hi| = ni < ∞. Then for each i and g ∈ F2

composing the left regular representation with the canonical quotient map gives a

representation of g in the matrix algebra Mni
. Since Mni

embeds into R for each i

this gives rise to an embedding of the group von Neuman algebra into Rω. Further-

more, the condition that the Hi’s have trivial intersection implies this embedding is

trace preserving.

Given α ∈ Act(Fn, X, µ) one could then use the separability of the weak topology

on Act(Fn, X, µ) and Theorem 3.3.3 to construct a sequence {α(i)}∞i=1 ⊂ Act(Fn, X, µ)

such that α(i) factors through a finite group Gi and α(i) → α. For each i let φi be a

homomorphism from Fn onto Gi and β(i) ∈ Act(Gi, X, µ) be such that α
(i)
s = β

(i)
φi(s)

for all s ∈ Fn. Since β(i) is an action of a finite group we have

L∞(X,µ) ⋊α(i) Fn ∼= L∞(X,µ) ⋊β(i) Gi →֒ L∞(X,µ) ⊗M|Gi| →֒ R ⊗M|Gi|
∼= R.

We can then proceed as in Wassermann’s proof to construct a map from L∞(X,µ)⋊α

Fn into Rω. We will see this map will not be trace preserving unless
⋂∞
i=1 ker(φi) is

trivial. It remains to check that this latter condition can be arranged. It follows from
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Theorem 3.3.2 that we may approximate α by an action β which pointwise permutes

some partition P. Furthermore, we can choose β and P so that β fixes some atom

P of P. We now show in the following lemma that β may be redefined on P to give

the desired property.

Lemma 6.2.1. Let H be a normal subgroup of Fn such that Fn/H is finite. Then

for any basic open W (α, F,K, ǫ) there exists α′ ∈ W (α, F,K, ǫ) factoring through a

finite group G such that if φ : Fn → G is the implementing homomorphism we have

ker(φ) ⊂ H.

Proof. Let α ∈ Act(Fn, X, µ). Given a basic open set W (α, F,K, ǫ) Theorem 3.3.2

assures the existence of α′ ∈ W (α, F,K, ǫ) which pointwise permutes some partition

P. Furthermore, we may assume µ(P ) < ǫ
2

for all P ∈ P and that there exists

P ′ ∈ P such that αsP
′ = P ′ for all s ∈ F . Without loss of generality we may also

assume F ⊂ S. We also have by Proposition 3.2.2 that α′ factors through some finite

group G. That is there exists φ : Fn → G and β ′ ∈ Act(G,X, µ) such that αs = βφ(s)

for all s ∈ Fn.

Since |Fn/H| <∞ we may identify P ′ with Y ×Fn/H where (Y, ν) is a nonatomic

probability space such that ν(Y ) = µ(P ′)
|Fn/H|

We then have a natural action γ of Fn on

Y ×Fn/H defined by γs(y, tH) = (y, (st)H). Let ψ : P ′ → Fn/H be the isomorphism

identifying P ′ and Y × Fn/H . Define α̂ ∈ Act(Fn, X, µ) as follows. For each s ∈ S

and x ∈ X define

α̂sx =





αsx if x 6∈ P ′

ψ−1γsψ(x) if x ∈ P ′

.

We claim α̂ ∈ W (α, F,K, ǫ). Suppose s ∈ F and C ∈ K. If C ∩ P ′ = ∅ then

αsC = α̂sC and there is nothing to check. Suppose P ′ ∩ C 6= ∅. Then

µ(αsC△α̂sC) = µ(αs(P
′ ∩ C)△α̂s(P ′ ∩ C))
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≤ µ(αs(P
′ ∩ C)) + µ(α̂s(P

′ ∩ C))

≤ µ(αsP
′) + µ(α̂sP )

= 2µ(αsP
′)

< ǫ

as desired.

Define an action of G× Fn/H on X as follows. Given (s, tH) ∈ G× Fn/H and

x ∈ X set

β̂sx =





βsx if x 6∈ P ′

ψ−1γsψ(x) if x ∈ P ′

.

Define a map Φ : Fn → G × Fn/H by Φ(s) = (φ(s), sH). Then it is clear that

α̂s = β̂Φ(s) for all s ∈ Fn. That is α̂ factors through the finite group G′ = Φ(Fn) ∼=

Fn/ ker(Φ). Furthermore, note that ker(Φ) ⊂ H .

Let α ∈ Act(Fn, X, µ). Since Fn is residually finite there exists normal subgroups

Fn = H1 ⊃ H2 ⊃ · · · such that |Fn/Hi| <∞ for each i = 1, 2, . . . and
⋂∞
i=1Hi = {e}.

We may then apply Lemma 6.2.1 to construct a sequence {α(i)}∞i=1 ⊂ Act(Fn, X, µ)

converging to α such that α(i) fractors through the finite group Gi and the implement-

ing homomorphism φi : Fn → Gi satisfies ker(φ) ⊂ Hi for each i ∈ N. In particular,

we have
⋂∞
i=1 ker(φi) ⊂

⋂∞
i=1Hi = {e}. Thus we have shown the following corollary:

Corollary 6.2.2. Let α ∈ Act(Fn, X, µ). Then there exists a sequence of actions

{αi}∞i=1 ⊂ Act(Fn, X, µ) converging to α such that each αi factors through a fi-

nite group Gi and the implementing homomorphisms {φi : Fn → Gi}∞i=1 satisfy

⋂∞
i=1 ker(φi) = {e}.

We now modify the argument in [35] to show L∞(X,µ) ⋊α Fn embeds into Rω

for all α ∈ Act(Fn, X, µ).
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Theorem 6.2.3. Let α ∈ Act(Fn, X, µ). Then L∞(X,µ)⋊αFn embeds into the tracial

ultraproduct of the hyperfinite II1 factor for any free ultrapower ω.

Proof. Let α ∈ Act(Fn, X, µ). For convenience we identify X with the unit circle

T ⊂ C with Lebesgue measure λ. Furthermore we assume Rω is in its standard

representation on the Hilbert space H with cyclic and separating vector ξ. By Corol-

lary 6.2.2 there exists α(i) → α such that each α(i) factors through a finite group

and the kernels of the implementing homomorphisms {φi}∞i=1 have trivial intersec-

tion. Denote by Φ the canonical quotient map from ℓ∞(R) onto ℓ∞(R)/Iw where

Iω = {(ak) ∈ ℓ∞(R) : limk→ω τ(a
∗
kak) = 0}. Given

∑
s∈F fsus ∈ L∞(T, λ) ⋊α Fn, for

each i ∈ N we define a map into L∞(T, λ) ⋊α(i) Fn by

∑

s∈F

fsus 7→
∑

s∈F

fsuφi(s).

We have already seen that L∞(T, λ) ⋊α(i) Fn embeds into R. Its then routine to

check
∑

s∈F

fsus 7→ (
∑

s∈F

fsuφi(s))

gives a map from L∞(T, λ) ⋊α Fn into ℓ∞(R). Denote by
∑

s∈F fsus the image of

(
∑

s∈F fsuφi(s)) under Φ. Then
∑

s∈F fsus 7→
∑

s∈F fsus gives a map from L∞(T, λ)⋊α

Fn into Rω. We claim this map is trace preserving. Indeed, there exists i0 ∈ N such

that F ∩ ker(φi) = {e} for all i > i0. Thus

τω(
∑

s∈F

fsus) = lim
i→ω

τα(i)(
∑

s∈F

fsuφi(s))

= lim
i→ω

(
∑

s∈F∩ker(φi)

τ(fs))

= τ(fe)

= τα(
∑

s∈F

fsus).
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Denote by B the von Neuman subalgebra of Rω generated by

{
∑

s∈F

fsus :
∑

s∈F

fsus ∈ L∞(T, λ) ⋊α Fn}

and by K the closure of in H of

{
∑

s∈F

fsusξ :
∑

s∈F

fsus ∈ L∞(T, λ) ⋊α Fn}.

Note that elements of the form zlus form an orthonormal basis for L∞(T, λ)⋊αFn.

It is clear that such elements span L∞(T, λ). To see they are orthonormal note that,

τ((znus)
∗(zmut)) = τ(us−1z−lzmut) = τ(zm−luts−1) = τ(EL∞(X,µ)[z

m−luts−1 ]).

If ts−1 6= e then τ((zlus)
∗(zmut)) = 0. If ts−1 = e then τ((zlus)

∗(zmut)) = τ(zm−l)

which equals 1 if m = l and 0 otherwise. That is {zlus : l ∈ Z, s ∈ Fn} forms an

orthonormal basis for L∞(T, λ) ⋊α Fn. Furthermore, note that

〈zlusξ, zmutξ〉 = τω((z
luφi(s))

∗(zmuφi(t)))

= lim
k→ω

τ((zluφi(s))
∗zmuφi(t))

= lim
k→ω

τ(zm−luφi(ts−1))

= lim
k→ω

τ(EL∞(X,µ)[z
m−luφi(ts−1)]).

Since
⋂∞
i=1 ker(φi) = {e} we have

〈zlusξ, zmutξ〉 =





0 if s 6= t

limk→ω τ(z
m−l) if s = t
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from which it follows

〈zlusξ, zmutξ〉 =





1 if s = t, , l = m

0 otherwise

.

Thus we have {zlusξ} is orthonormal in K. It then follows that

∑

s∈F

fsus 7→
∑

s∈F

fsusξ

defines a unitary map U : L∞(T, λ) ⋊α Fn → K.

Let P be the orthonormal projection of H onto K and let BP be the image of

B under P . We claim that
∑

s∈F fsus 7→
∑

s∈F fsusP is an isomorphism. Indeeed, if
∑

s∈F fsusP = 0 then

‖
∑

s∈F

fsusξ‖ = ‖
∑

s∈F

fsusPξ‖ = 0

from which is follows
∑

s∈F fsus = 0 since ξ is separating. Then for
∑

s∈F fsus we

have

U−1(
∑

s∈F

fsus)U(
∑

t∈F ′

ftut) = U−1(
∑

s∈F

fsus)(
∑

t∈F ′

ftutξ)

= U−1(
∑

s∈F

fsuφi(s))(
∑

t∈F ′

ftuφi(t))ξ

= U−1(
∑

s∈F, t∈F ′

fsαt(ft)uφi(st))ξ

= (
∑

s∈F, t∈F ′

fsαt(ft)uφi(st))

= (
∑

s∈F

fsus)(
∑

t∈F ′

ftut).

Thus we have
∑

s∈F fsus 7→ U−1
∑

s∈F fsusU defines an isomorphism from L∞(T, λ)⋊α

Fn onto BP . In particular L∞(T, λ) ⋊α Fn ∼= BP ∼= B ⊂ Rω.
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7. TOPOLOGICAL ACTIONS ON THE CANTOR SET

7.1. Introduction to Actions on the Cantor Set

In this section we let K denote the Cantor set and d be a fixed metric on K. In-

tuitively the paradoxical nature of the Cantor set, e.g. an uncountable, totally dis-

connected, zero-dimensional, compact metric space, seems to suggest it would be an

unnatural space to consider. However, actions on the Cantor set arise naturally in

topological dynamics, e.g. Bernoulli shifts, odometers, and the action of Fn on its

Gromov boundary. Furthermore, K exhibits several properties analogous to those

of nonatomic standard probability spaces. For example, K is unique up to homeo-

morphism, any nonempty clopen subset of K is homeomorphic to K, and there exist

clopen partitions of K.

In the classical setting, much is known about actions of Z on K. For example,

the set of zero entropy actions is generic [13] and the Rokhlin lemma exists for certain

classes of actions, see [3] and [29]. Kechris and Rosendal [18] showed that there exists

an action of Z on K whose conjugacy class is generic. A description of such an

action has since been given by Akin, Glasner and Weiss [1]. As this example is well

understood, questions about genericity in Act(Z, K) are in some sense boring. In

particular, we only have to check if this example has the prescribed property.

Recently focus has been placed on studying the genericity of properties in certain

subspaces of Act(Z, K). For example, Hochman [16] consider the subspaces of transi-

tive actions and totally transitive actions, i.e. transitive for each power. In the latter

case, he showed the genericity of actions differs quite drastically from the measure-

preserving case. For example, a generic totally transitive action is both mixing and

weak mixing.
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7.2. Finite Approximations of Actions on the Cantor Set

Our goal for this susection will be to prove a topological analog of Theorem 3.3.2

for actions of Fn on the Cantor set. The clopen partitions of K provide a natural

analog of measurable partitions in the measure-preserving case. Consequently, we

say an action α of Fn on K pointwise permutes a clopen partition P if αsP ∈ P

for all P ∈ P and s ∈ Fn and αsP = αtP if and only if αsx = αtx for all x ∈ P .

If α pointwise permutes a clopen partition P we may construct a subgroup of the

permutation group S(P) through which α factors as in Proposition 3.2.2.

Given a clopen partition P of K define C(P) = span{χP : P ∈ P}. Then for

each P ∈ P the characteristic function χP is continuous since P is clopen, whence

C(P) ⊂ C(K). In fact, C(P) is a dense subset of C(K). This latter observation al-

lows for a simpler description of the weak topology on Homeo(K) and thus Act(G,K).

Denote by Clo(K) the set of all clopen subets of K. Then sets of the form

W (g, C) = {f ∈ Homeo(K) : fC = gC for all C ∈ C}

where C is a finite subset of Clo(K) form a basis for the weak topology on Homeo(K).

Consequently, a basis for the weak topology on Act(G,K) is given by

W (α, F, C) =
⋂

s∈F

⋂

C∈C

{β ∈ Act(G,K) : αsC = βsC}

where F ⊂ G and C ⊂ Clo(K) are finite subsets.

As in the measure-preserving case, for Fn we claim F may be taken to be a subset

of the generating set S. Let S ′ ⊂ S and N ∈ N be defined as in Lemma 3.1.1. That

is F is contained in the subgroup generated by S ′ and every element of F can be

represented as reduced word of length at most N in this subgroup. Define

C′ = {αsǫ1
1 s

ǫ2
2 ...s

ǫN
N
C : C ∈ C, si ∈ S ′, ǫi ∈ {−1, 0, 1} for all i = 1, 2, . . .N}.
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Then C′ is a finite collection of clopen sets of K. Let β ∈ W (α, S ′, C′) and t ∈ F .

Then there exist n ≤ N , s1, s2, . . . , sn ∈ S ′, and {ǫ1, ǫ2, . . . , ǫn} ∈ {−1, 1}n such that

t = sǫ11 s
ǫ2
2 . . . s

ǫn
n . Thus

βtC = βsǫ1
1
βsǫ2

2
. . . βsǫn

n
C

= βsǫ1
1
βsǫ2

2
. . . (αsǫn

n
C)

...

= βsǫ1
1

(αsǫ2
2
. . . αsǫn

n
C)

= αsǫ1
1
αsǫ2

2
. . . αsǫn

n
C

= αtC.

In particular, we have shown sets of the form W (α, S ′, C′) where S ′ ⊂ S and C ⊂

Clo(K) are finite form a basis for the weak topology on Act(Fn, K).

As in the measure-preserving case, we have shown a perturbation of the action

on a generator results in a perturbation of the action itself. For measure-preserving

actions the Rokhlin lemma then allowed for an arbitrary action to be perturbed to

one which when restricted to a generator pointwise permutes some partition. In the

topological setting such a perturbation is problematic since the generic homeomor-

phism of K given in [1] fails to pointwise permute any finite clopen partition of K.

Thus it is unlikely that Theorem 3.3.2 will hold for all actions in Act(Fn, K). To

compensate, we will fix a subspace of Act(Fn, K) and work in the closure of that

space.

Denote by PP(Fn, K) the set of actions in Act(Fn, K) which pointwise permutes

some finite clopen partition. Let α ∈ PP(Fn, K) and P be a clopen partition point-

wise permuted by α. It is clear that Lemma 3.2.1 holds in the topological case. That

is, there exists a partition {P1,P2, . . . ,Pn} of P such that each atom is α-invariant
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and α-transitive. For each i = 1, 2, . . . , n enumerate Pi as {Pi,1, Pi,2, . . . , Pi,ni
} and

choose si,j such that αsi,j
Pi,1 = Pi,j. For each i = 1, 2, . . . , n fix a nonatomic Borel

measure νi on Pi,1. It is clear that

µ(A) =
n∑

i=1

ni∑

j=1

1

niνi(Pi,1)
νi(αs−1

i,j
(A ∩ Pi,j))

defines a nonatomic probability measure of full support on K.

We claim µ is α-invariant. Let s ∈ Fn. For each Pi,j there exists j′ ∈ {1, 2, . . . , ni}

such that αsPi,j = Pi,j′. Thus for any Borel set A ⊂ K we have αs(A ∩ Pi,j) =

αsi,j′s
−1
i,j
A ∩ Pi,j′. In particular αsA =

⋃n
i=1

⋃ni

j=1 αsi,j′s
−1
i,j
A ∩ Pi,j′. We now have that

µ(αsA) =

n∑

i=1

ni∑

j=1

1

niνi(Pi,1)
νi(αs−1

i,j′
(αsi,j′s

−1
i,j
A ∩ Pi,j′))

=

n∑

i=1

ni∑

j=1

1

niνi(Pi,1)
νi((αs−1

i,j
A) ∩ Pi,1)

=
n∑

i=1

ni∑

j=1

1

niνi(Pi,1)
νi(αs−1

i,j
(A ∩ Pi,j))

= µ(A)

as desired. If we denote by Actinv(Fn, K), of actions of Fn on K which admit an

invariant nonatomic probability measure of full support on K we have then shown

the following:

Proposition 7.2.1. PP(Fn, K) ⊂ Actinv(Fn, K).

In fact, we may make a stronger statement about elements of PP(Fn, K). A

topological dynamical systems is said to be minimal is there exists no proper closed

invariant subsets. If a dynamical system can be decomposed into minimal subsystems

we say the system is a union of minimal systems. Define UM(Fn, K) to be the set

of β ∈ Actinv(Fn, K) such that βs is a union of minimal systems for each generator s.
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We now show the following:

Proposition 7.2.2. PP(Fn, K) ⊂ UM(Fn, K).

Proof. Let α ∈ PP(Fn, K) and P be finite clopen partition of K which is pointwise

permuted by α. Since each P ∈ P is nonempty and clopen we may identify P with

{0, 1}N. Let νP be the product measure on {0, 1}N scaled such that νP (P ) = 1
|P|

. We

may then define a nonatomic probability measure ν of full support on K as above.

That is, for a Borel set C ⊂ K we define

ν(C) =
∑

P∈P

νP (C ∩ P )

Fix a basic open neighborhood W (α, F, C) of α. Let s ∈ S. Since α pointwise

permutes P it follows that αs also pointwise permutes P. Thus there exists disjoint

subcollections P1,P2, . . . ,Pk of P such P =
⋃k
i=1 Pi and each Pi is αs-transitive.

Furthermore, each Pi may be written as {αslPi}ni−1
l=0 for some Pi ∈ Pi. For each

i = 1, 2, . . . , k partition Pi into clopen sets Pi,1, Pi,2, . . . , Pi,mi
by collecting together

the points which visit the same sequence of clopen sets in C as they move up the

levels of Pi.

Since the cylinder sets generate the topology on {0, 1}N, for each i = 1, 2, . . . , k

there exists a positive integer di such that the cylinder sets {0, 1}di ×{0, 1}N\{1,2,...,di}

refine {Pi,1, Pi,2, . . . , Pi,mi
}. It is clear that there exist measure preserving homeo-

morphisms from each of these cylinder sets onto {0, 1}N. Twisting the action on

each of these cylinder sets by the dyadic odometer gives rise to a homeomorphism

α′
s ∈W (αs, C) which preserves ν. Since the dyadic odometer is minimal we have then

shown α′
s may be decomposed into subsystems which are minimal. Furthermore, since

each α′
s preserves ν we have defined an action α′ ∈ W (α, F, C)∩UM(Fn.K). That is,

PP(Fn, K) ⊂ UM(Fn, K) as desired.
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In [29] Putnam showed the existence of a Rokhlin lemma for minimal Z-systems

on the Cantor set. In particular, given α ∈ UM(Fn, K) for each s ∈ S we may

apply Putnam’s result to each minimal subsystem of αs to create a finite collection of

towers. As in the Rokhlin lemma, the action must be perturbed to obtain an action

which pointwise permutes these towers. We give a sketch of Putnum’s argument and

indicate how we may perturb the action to get the desired result.

Let (K, T ) be a minimal system. Given a nonempty clopen set C ⊂ K define

λ : C → Z by λ(x) = inf{n ∈ Z : T nx ∈ C}. The minimality of T ensures λ is

well defined. The function λ can also be shown to be continuous, whence its image

must be finite. It is then clear that there exist finitely many disjoint clopen subsets

C1, C2, . . . , Ck of C and positive integers n1, n2, . . . , nk such that
⋃k
i=1Ci = C and

T niCi ∈ C for all i = 1, 2, . . . , k. The minimality of T implies P = {T iCj : 1 ≤ i ≤

k, 1 ≤ j ≤ ni} is a partition of K.

In general, P will not be pointwise permuted by T since T niCi need not equal

Ci for each i = 1, 2, . . . , k. However, given any basic neighborhood W (T, C) we may

choose C to be contained in some element of C. Then is is clear that T may be

perturbed so that it does pointwise permute P. Specifically, for each i = 1, 2, . . . , k

we define T nix = x for all x ∈ Ci. Moreover, if T preserves some measure supported

on K then the perturbation will as well.

We now state the topological analog of Theorem 3.3.2 as follows:

Theorem 7.2.3. Let α ∈ UM(Fn, K) and C ⊂ Clo(K) be a finite set. Then for

any δ > 0 and finite subset F ⊂ Fn there exist a finite clopen partition P and an

α′ ∈W (α, F, C) such that α′ pointwise permutes P and Diam(P ) < δ for all P ∈ P.

Moreover, α′ factors through a finite group.

As in the measure-preserving case, Theorem 7.2.3 is proved by inductively re-



74

fining the partitions which are pointwise permuted by each s ∈ S ′ to obtain a single

partition which is pointwise permuted by all s ∈ S ′ and thus the subgroup gener-

ated S ′. In other words, the proof relies on showing a topological analog of Lemma

3.3.1. Fortunately, much of the proof of Lemma 3.3.1 can be applied directly to the

topological setting.

The notable exception is the way in which we make the final refinement of the

partition. In the measure-preserving case we could rationalize each element and

then divide into small subsets of equal measure. Provided we controlled the error

appropriately we could create a perturbation by matching up a large proportion of

these sets according to the given action and redefining the action to be the identity

on the remaining sets.

In the topological case it clear that such an approach will not result in a topo-

logical perturbation. In particular, we must be more precise as to how we make this

subdivision if we are to obtain a perturbation. In fact, we show for a finite clopen

partition of K there exists arbitrarily large integers n such that each atom may be

subdivided into sets of measure approximately 1
n
. Surprisingly, the proof that such

subdivisions can be made follows from the Birkhoff recurrence theorem.

Suppose (X, T ) is any topological Z-action. A point x ∈ X is said be recurrent

if for each ǫ > 0 the set {n ∈ Z : d(x, T nx) < ǫ} is infinite. Alternatively, we can

define recurrence as the existence of a sequence {ni}∞i=1 ⊂ N converging to infinity

such that T nix converges to x. The Birkhoff recurrence theorem assures the existence

of at least one recurrent point for any topological system (X, T ).

In particular, the rotation on the n-torus Tn ∼= [0, 1)n given by T (x1, x2, . . . , xn) =

(x1 + λ1, x2 + λ2, . . . , xn + λn) for some (λ1, λ2, . . . , λn) ∈ (0, 1)n has a recurrent

point y = (y1, y2, . . . , yn). Let {ni}∞i=1 ⊂ N be a sequence converging to infin-

ity such that T niy → y. Define S to be the rotation given by S(x1, x2, . . . , xn) =
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(x1 − y1, x2 − y2, . . . , xn− yn). It is clear that S and T commute. Thus by continuity

we have

T ni(0, 0, . . . , 0) = T niS(y) = S(T niy) → S(y) = (0, 0, . . . , 0).

That is, (0, 0, . . . , 0) is recurrent for T . Thus given ǫ greater than zero we can find

arbitrarily large n and some positive integers m1, m2, . . . , mn such that |nλi−mi| < ǫ

for each i = 1, 2, . . . , n. We summarize this result in the following lemma:

Lemma 7.2.4. Let λ1, λ2, . . . , λn ∈ (0, 1) and ǫ, δ > 0. Then there exists positive

integers n,m1, m2, . . . , mn such that 1
n
< δ and |nλi−mi| < ǫ for each i = 1, 2, . . . , n.

We now use Lemma 7.2.4 to prove the topological analog of Lemma 3.3.1. Note

that Lemma 7.2.4 could be applied in a similar manner as below to create the subdi-

visions subdivisions in Lemma 3.3.1. The choice not to was made to keep the proof

as elementary as possible. The majority of the proof is unchanged from the measure-

preserving case. Consequently, we explicitly prove the only the parts that differ and

refer the reader to Lemma 3.3.1 for the remainder.

Lemma 7.2.5. Let α ∈ Actinv(Fn, K). Further suppose there exist finite subsets

R, T ⊂ S and finite clopen partitions P and Q of X such that R ∩ T = ∅ and

α restricted to the subgroups generated by R and T pointwise permutes P and Q

respectively. Then for any δ > 0 and finite subsets F ⊂ Fn and C ⊂ Clo(K) there

exist a finite clopen partition R and an α′ ∈W (α, F, C) such that α′ restricted to the

subgroup generated by R∪T pointwise permutes R and each atom of R has diameter

less than δ.

Proof. First note that it suffices to assume F ⊂ S. Let HR and HT be the sub-

groups of Fn generated by R and T respectively. As in the measure-preserving case,

there exist partitions {P1,P2, . . . ,Pnp} of P and {Q1,Q2, . . . ,Qnq} of Q such that
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each Ph is (α,HR)-invariant and (α,HR)-transitive and each Qi is (α,HT )-invariant

and (α,HT )-transitive. Enumerate each Ph and Qi as {Ph,1, Ph,2, . . . , Ph,nph
} and

{Qi,1, Qi,2, . . . , Qi,nqi
} respectively. Let Ip, Iph

, Iq, and Iqi be defined as in Lemma

3.3.1. For each h ∈ Ip and k ∈ Iph
choose choose rh,k ∈ HR such that αrh,k

Ph,1 = Ph,k.

Similarly, for each i ∈ Iq and j ∈ Iqi choose ti,j ∈ HT such that αti,jQi,1 = Qi,j.

We now refine Q as in Lemma 3.3.1. That is, enumerate C by {C1, C2, . . . , Cm}

and define Im = {1, 2, . . . , m} and Λ = {(h, k) : h ∈ Ip, k ∈ Iph
}. For each i ∈ Iq we

set Σi = ΛIqi and Γi = P(Im)Iqi . We now define

Aiσ = {x ∈ Qi,1 : αti,jx ∈ Pσ(j) for each j ∈ Iqi},

Aiγ = {x ∈ Qi,1 : αti,jx ∈ (∩l∈γ(j)Cl) ∩ (∩l∈Im\γ(j)C
c
l ) for all j ∈ Iqi},

Aiσ,γ,j = αti,j (A
i
σ ∩ Aiγ).

It then follows that A = {Aiσ,γ,j : i ∈ Iq, j ∈ Iqi, σ ∈ Σ, γ ∈ Γ} is a clopen

partition of K. For h ∈ Ip set Θh = A Iph . Given θ ∈ Θh define

Aθ = {x ∈ Ph,1 : αrh,k
x ∈ θ(k) for all k ∈ Iph

}.

Let h ∈ Ip be fixed and set Θ′
h = {θ ∈ Θh : Aθ 6= ∅}. It then follows that {Aθ}θ∈Θ′

h

is a clopen partition of Ph for each h ∈ Ip. Define Θ′ =
⋃n
i=1 Θ′

i. For i ∈ Iq,

σ ∈ Σi, γ ∈ Γi, and j ∈ Iqi define Θi
σ,γ,j = {θ ∈ Θ′ : αrσ(j)

Aθ ⊂ Aiσ,γ,j}. As in the

measure-preserving case we Aiσ,γ,j =
⋃
θ∈Θi

σ,γ,j
αrσ(j)

Aθ.

Let ǫ < 1
2|Θ′|

. Note that if θ ∈ Θ′ then Aθ is a nonempty clopen set and thus

has positive measure. Thus by Lemma 7.2.4 there exist a positive integer n > 1
δ

and positive integers {mθ}θ∈Θ′ such that |nµ(Aθ) − mθ| < ǫ. Thus for each θ ∈ Θ′

we may find a measurable partition {Aθ,l}mθ

l=1 of Aθ such that µ(Aθ,l) = 1
n

for i =

1, 2, . . . , mθ − 1 and |µ(Aθ,mθ
) − 1

n
| < ǫ

n
.
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Let i ∈ Iq, σ ∈ Σi and γ ∈ Γi be such that Aσ ∩ Aγ 6= ∅. For each j ∈ Iqi define

niσ,γ,j =
∑

θ∈Θi
σ,γ,j

mθ. Let j ∈ Iqi. Then

µ(Aiσ,γ,j) = µ(
⋃

θ∈Θi
σ,γ,j

mθ⋃

l=1

αrσ(j)
Aθ,l)

=
∑

θ∈Θi
σ,γ,j

mθ−1∑

l=1

1

n
+

∑

θ∈Θi
σ,γ,j

µ(Aθ,mθ
)

= (niσ,γ,j − |Θi
σ,γ,j|)

1

n
+

∑

θ∈Θi
σ,γ,j

µ(Aθ,mθ
).

Since |µ(Aθ,mθ
) − 1

n
| < ǫ

n
for each θ ∈ Θ′ we have

|Θi
σ,γ,j|(

1

n
− ǫ

n
) ≤

∑

θ∈Θi
σ,γ,j

µ(Aθ,mθ
) ≤ |Θi

σ,γ,j|(
1

n
+
ǫ

n
).

In particular, we have

|µ(Aiσ,γ,j) −
niσ,γ,j
n

| ≤ |Θi
σ,γ,j |

ǫ

n
< |Θi

σ,γ,j|
1

n

1

2|Θ′| <
1

2n

for all j ∈ Iqi. Suppose j, j′ ∈ Iq1. Since µ is α-invariant we have µ(Aiσ,γ,j) = µ(Aiσ,γ,j′).

It then follows that −1 < niσ,γ,j − niσ,γ,j′ < 1 whence niσ,γ,j = niσ,γ,j′ for all j, j′ ∈ Iqi.

For each θ ∈ Θ′ we choose an arbitrary clopen partition of Aθ consisting of mθ

nonempty atoms. Denote this clopen partition by {A′
θ,l}mθ

l=1. Let Iθ = {1, 2, . . . , mθ}.

Given j ∈ Iqi define Bi
σ,γ,j = {A′

θ,l : θ ∈ Θi
σ,γ,j, l ∈ Iθ}. Since niσ,γ,j = niσ,γ,j′

for all j, j′ ∈ Iqi we may choose a bijection φiσ,γ,j from Bi
σ,γ,j onto Bi

σ,γ,j+1 for all

j ∈ Iqi \ {mqi}. We then define a bijection φiσ,γ,mqi
from Bi

σ,γ,mqi
onto Bi

σ,γ,1 by

φiσ,γ,mqi
= (φiσ,γ,1)

−1 ◦ (φiσ,γ,2)
−1 ◦ . . . ◦ (φiσ,γ,mqi

−1)
−1.

We now define an action α ∈ Act(Fn, K) in a similar manner as in Lemma 3.3.1.

Let Bh = {A′
θ,l : θ ∈ Θ′

h, l ∈ Iθ} for each h ∈ Ip and set B =
⋃
h∈Ip

Bh. Fix a

reference set A0 ∈ B and choose a homeomorphism φB : A0 → B for each B ∈ B.
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Set α′
s = αs for all s ∈ S \ T. Let t ∈ T and x ∈ X. Then x ∈ Bi

σ,γ,j for some i ∈

Iq, σ ∈ Σi, γ ∈ Γi, j ∈ Iqi. Since x ∈ Qi,j it follows αtx ∈ Qi,j′ for some j′ ∈ Iqi. Thus

there exists a unique A′
θ,l ∈ Bi

σ,γ,j such that x ∈ αrσ(j)
A′
θ,l. Moreover, A′

θ,l is identified

with a unique A′
θ′,l′ ∈ Bi

σ,γ,j′. We now define α′
tx = αrσ(j′)

◦ φA′
θ′,l′

◦ φ−1
A′

θ,l
◦ α−1

rσ(j)
x. It is

easily verified that α′ is an action for Fn on K. We claim α′ ∈W (α, F, C).

Suppose s ∈ F and C ∈ C. If s ∈ S \ T then αs = α′
s and there is nothing to

check. Thus we need only consider the case that s ∈ T . As in the measure-preserving

case we have C =
⋃

AC where AC = {A ∈ A : A ⊂ C}. Thus,

α′
sC = α′

s(
⋃

AC) =
⋃

A∈AC

α′
sA =

⋃

A∈AC

αsA = αs(
⋃

AC) = αsC.

Therefore α′ ∈W (α, F, C) as desired.

It can then be verified as in Lemma 3.3.1 that

R = {αrh,k
A′
θ,l : h ∈ Ip, k ∈ Iph

, θ ∈ Θ′
h, l ∈ Iθ}

is a clopen partition of K which is pointwise permuted by α′.

Since we replaced the measurable partition in Lemma 7.2.5 with an arbitrary

clopen partition with the same number of atoms, the invariant measure for the per-

turbed action will in general be quite different from the original measure. However,

we may use the regularity of the original measure to choose the clopen partitions such

that the perturbed measure only differs by a small amount on each Borel set of K.

That such partitions exist can be seen from the following lemma.

Lemma 7.2.6. Let µ be a nonatomic finite measure of full support on K and δ > 0 be

sufficiently small. Given λ1, λ2, . . . , λn > 0 such that
∑n

i=1 λi = µ(X), there exists a

clopen partition P = {P1, P2, . . . , Pn} such that |µ(Pi)−λi| < δ for all i = 1, 2, . . . , n:

Proof. Since µ is nonatomic we choose R1 ⊂ K such that µ(P1) = λ1. Since µ is
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regular, there exist an open set O1 containing R1 and a compact set K1 contained

in R1 such that µ(O1) − µ(R1) <
δ
n

and µ(R1) − µ(K1) <
δ
n
. For each x ∈ K1

choose a clopen set Cx such that x ∈ Cx ⊂ O1. Then by compactness there exists

x1, x2, . . . , xm ∈ K1 such that K1 ⊂ ⋃m
i=1Cxi

⊂ O1. Let P1 =
⋃m
i=1Cxi

. Then P1 is

clopen and

λ1 −
δ

n
< µ(K1) < µ(P1) < µ(O1) < λ1 +

δ

n
.

That is |µ(P1) − λ1| < δ
n
. Then K \ P1 is clopen and we may repeat the preceding

argument to find P2 ⊂ K \ P1 such that |µ(P2) − λ2| < δ
n
. Continuing to repeat this

process we obtain pairwise disjoint clopen sets P1, P2, . . . , Pn−1 such that |µ(Pi)−λi| <
δ
n

for each i = 1, 2, . . . , n− 1. Set Pn = K \ (
⋃n
i=1 Pi). Then Pn is clopen and

|µ(Pn) − λn| = |µ(K) − µ(

n−1⋃

i=1

Pi) − λn|

= |
n∑

i=1

λi −
n−1∑

i=1

µ(Pi) − λn|

= |
n−1∑

i=1

µ(Pi) − λi|

=

n−1∑

i=1

|µ(Pi) − λi|

< (n− 1)
δ

n

< δ.

Thus P = {P1, P2, . . . , Pn} is a clopen partition with the desired property.

Theorem 7.2.3 can now be proved by inductively Lemma 7.2.5. Furthermore, we

have shown the following:

Theorem 7.2.7. UM(Fn, K) = PP(Fn, K).

In particular, Theorem 7.2.3 holds for α ∈ Act(Fn, K) if and only if α ∈
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UM(Fn, K). We conclude this subsection with a few remarks on UM(Fn, K). If

n = 1 then UM(F1, K) contains all minimal homeomorphisms of K since any such

homeomorphism admits an invariant measure of full support. If n ≥ 2 then the action

of Fn of its Gromov boundary is a minimal action on K for which there is no invariant

measure. Thus UM(Fn, K) does not contain all actions which are minimal on each

generator. Finally, we note the Bernoulli shifts are contained in UM(Fn, K).

7.3. Topological Entropy of Actions of the Cantor Set

In Section 5 we introduced the notion of entropy for measure-preserving actions of the

integers and sofic groups. In this section, we define analogous notions for topological

actions of these groups. It should be noted that for classical systems there are multiple

approaches to defining entropy. When the underlying compact space is metrizable

these methods are equivalent. The definition we give below is most suited to the

computations of entropy that follow.

Suppose (X, T ) is a topological Z-system, where (X, d) is a compact metric space.

Let ǫ > 0 and n be a positive integer and A ⊂ X. We say A is an (n, ǫ)-spanning

set for X if for all x ∈ X there exists y ∈ A such that d(T ix, T iy) < ǫ for all

i = 1, 2, . . . , n − 1. We say A is an (n, ǫ)-separated set if for all distinct x, y ∈ E,

there exists i ∈ {1, 2, . . . , n− 1} such that d(T ix, T iy) > ǫ. Denote by span(n, ǫ) the

smallest cardinality of an (n, ǫ)-spanning set and by sep(n, ǫ) the maximal cardinality

of all (n, ǫ)-separated sets. We then define the topological entropy, denoted htop(T )

by

htop(T ) = lim
ǫ→0

(
lim sup
n→∞

1

n
log span(n, ǫ)

)
= lim

ǫ→0

(
lim sup
n→∞

1

n
log sep(n, ǫ)

)
.

In Section 5 we computed the measure-theoretic entropy of rotations of the circle
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and Bernoulli shifts. For comparative purposes, we compute the topological entropy

of these systems as well.

Example 7.3.1. Consider the rotation of the circle (T, Tw). Given x, y ∈ T define

d(x, y) to be the length of the shortest arc between x and y. Then d is a metric on

T. Given ǫ > 0 there exists a finite set Θ ⊂ [0, 2π) such that the sets T =
⋃N
θ∈Θ{eiθ

′
:

θ ∈ (θ − ǫ
2
, θ + ǫ

2
)}. It is then clear that {eiθ : θ ∈ Θ} is (1, ǫ)-spanning. Moreover,

since Tw is isometric we have {eiθ : θ ∈ Θ} is (n, ǫ)-spanning for each positive integer

n. Thus span(n, ǫ) ≤ |Θ| <∞. Thus

htop(Tw) = lim
ǫ→0

(
lim sup
n→∞

1

n
log sep(n, ǫ)

)
≤ lim

ǫ→0

(
lim sup
n→∞

1

n
log |Θ|

)
= 0.

Example 7.3.2. Let T be the Bernoulli shift on XZ where X = {0, 1, 2, . . . , k −

1} is endowed with the discrete topology and XZ the product topology. Define

d((xj), (yj)) = 2−l if l = min{|j| : xj 6= yj} < ∞ and d((xj), (yj) = 0 otherwise.

Then d is a metric on XZ and generates the topology. Let 0 < ǫ < 1 and n be a pos-

itive integer. Define Xn = {(xj) : xj = 0 for all j ≥ n}. Then Xn is (n, ǫ)-separated.

Since |Xn| = kn we have sep(n, ǫ) ≥ kn and thus

htop(T ) = lim
ǫ→0

(
lim sup
n→∞

1

n
log sep(n, ǫ)

)
≥ lim

ǫ→0

(
lim sup
n→∞

1

n
log kn

)
= log k.

Choose l such that 2−l < ǫ. Then Xn+l is an (n, ǫ)-spanning set since for a given

element of X there is an element of Xn+l which agrees on the first n + l coodinates.

htop(T ) = lim
ǫ→0

(
lim sup
n→∞

1

n
log span(n, ǫ)

)
≤ lim

ǫ→0

(
lim sup
n→∞

1

n
log kn+l

)
= log k.

Thus htop(T ) = log k.

We have seen for the Bernoulli shift T on {0, 1, . . . , k − 1}Z that hµ(T ) can take

any value in (0, log k] depending on the measure assigned to X. In particular, we have
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hµ(T ) ≤ htop(T ). In general, a stronger statement actually holds. For a topological

action (X, T ) let M(X) be the set of all T invariant probability measures on X. We

then have

htop(T ) = sup
µ∈M(X)

hµ(T ).

This relationship is known as the variational principle.

We now turn our attention to entropy of actions of sofic groups. The definition

we give here is due to Kerr and Li [19]. Unless otherwise specified, G will be a sofic

group with fixed sofic approximation Σ = {σi : G→ Sym(mi)}∞i=1. Let α ∈ Act(G,X)

and P be a finite partition of unity in C(X). Suppose σ is a map from G into the

symmetric group Sym(d) for some positive integer d, F ⊂ G is finite, and δ > 0.

Define Homσ(α,P, F, δ) to be the set of all unital homomorphisms ψ : C(X) → Cd

such that

max
p∈P,s∈F

‖ψ ◦ αs(p) − σ(s) ◦ ψ(p)‖2 < δ.

Given ǫ ≥ 0 denote by Nǫ(Homσ(α,P, F, δ), ρ) the maximal cardinality of an ǫ-

separated set with respect to the pseudometric

ρ(φ, ψ) = max
p∈P

‖φ(p) − ψ(p)‖2.

We then define

hǫΣ(α,P, F, δ) = lim sup
i→∞

1

mi
Nǫ(Homσi

(α,P, F, δ), ρ),

hǫΣ(α,P, F ) = inf
δ>0

hǫΣ(α,P, F, δ),

hǫΣ(α,P) = inf
F⊂G

hǫΣ(α,P, F ),

hΣ(α,P) = inf
ǫ>0

hǫΣ(α,P).

As in the measure-preserving case, the infimum in the second to last line is over all
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nonempty finite subsets of G and hΣ(P) = −∞ if Hom(P, F, δ, σi) is empty for all

sufficiently large i. When P and R are finite generating partitions of unity we have

hΣ(α,P) = hΣ(α,R). We define the Σ-entropy of α, denoted hΣ(α,G), to be the

common value hΣ(α,P) over all generating partitions of unity of C(X).

It is shown in [19] that variational principle is valid for topological entropy of

sofic groups. The consequence of this is that if the Σ-entropy of an action is greater

than or equal to zero, then the set of invariant probability measures is nonempty.

Thus, our assumption of an invariant measure of full support in Theorem 7.2.3 is

natural in this setting. We now turn our attention to showing set of actions with

entropy equal to zero or negative infinity is a Gδ set.

Given κ > 0 denote by HΣ,κ(G,X) the set {α ∈ Act(G,X) : hΣ(α,G) < κ}. Let

β be the Bernoulli shift on {1, 2, . . . , k}G. It is shown in [19] that hΣ(β,G) = log k

as expected. In particular, HΣ,κ(G,X) is nonempty for each κ > 0. Let P be a

finite generating partition of unity of C(X). Suppose α ∈ HΣ,κ(G,X). Then we

may find a finite set F ⊂ G and ǫ, δ > 0 such that hǫΣ(α,P, F, δ) < κ. Suppose

β ∈ W (α, F,P, δ
2
). Let I ∈ N be such that 1

mi
Nǫ(Homσi

(α,P, F, δ), ρ) < κ if i ≥ I.

If φ ∈ Homσi
(β,P, F, δ

2
) for i ≥ I then for p ∈ P and s ∈ F we have

‖ψ ◦ αs(p) − σi(s) ◦ ψ(p)‖2 ≤ ‖ψ ◦ αs(p) − ψ ◦ βs(p)‖2 + ‖ψ ◦ βs(p) − σi(s) ◦ ψ(p)‖2

≤ ‖ψ‖‖αs(p) − βs(p)‖2 + ‖ψ ◦ αs(p) − σi(s) ◦ ψ(p)‖2

< ‖ψ‖δ
2

+
δ

2

< δ.

In particular, for each i ≥ I we have Homσi
(β,P, F, δ

2
) ⊂ Homσi

(α,P, F, δ) and con-

sequently Nǫ(Homσi
(β,P, F, δ

2
), ρ) ≤ Nǫ(Homσi

(α,P, F, δ), ρ). It now follows directly
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that hΣ(β,G) < κ, whence HΣ,κ(G,X) is open. Define

HΣ,0(G,X) = {α ∈ Act(G,X) : hΣ(α,G) ∈ {0,−∞}}.

It clear that HΣ,0(G,X) = ∩∞
i=1HΣ,κi

(G,X) where {κi}∞i=1 is a sequence of real num-

bers decreasing to zero. In particular, HΣ,0(G,X) is a Gδ.

For actions of the Cantor set we now prove a topological analog of Lemma 5.3.3.

Lemma 7.3.3. Let α ∈ Act(G,K). Suppose there exists s ∈ G of infinite order such

that αs = αe. Then hΣ(α,G) ∈ {0,−∞}.

Proof. Consider K as a subset of the unit interval [0, 1]. Let f be the identity function

on [0, 1] restricted to K. Define P = {f, 1 − f}. Then P is a a partition of unity

which generates C(K). In particular we have hΣ(α,G) = hΣ(α,P). Let ǫ > 0. Then

we may take a clopen partition P = {P1, P2, . . . , Pn} of K such that Diam(f(Pi)) < ǫ

for each i = 1, 2, . . . , n and for all i 6= j we have d(f(Bi), f(Bj)) > η for some η > 0.

Let F = {s, e} and δ > 0 be such that
√
δ < η. Given i ∈ Z and φ ∈

Homσi
(α,P, F, δ) define a parition Cφ of {1, 2, . . . , mi} into sets Cφ,1, Cφ,2, . . . , Cφ,n

such that a ∈ Cφ,k if and only if φ(f)(a) ∈ f(Pk). Since αs = αe we have,

‖σi(s) ◦ φ(f) − φ(f)‖2 = ‖σi(s) ◦ φ(f) − αe ◦ φ(f)‖2

= ‖σi(s) ◦ φ(f) − αs ◦ φ(f)‖2

< δ.

Thus for a large proportion of a ∈ {1, 2, . . . , mi} it follows that

‖σi(s) ◦ φ(f)(a) − φ(f)(a)‖ <
√
δ < κ.

Moreover this porportion tends to 1 as δ → 0. In particular we have for all k =

1, 2, . . . , n we have ν(σi(s)Ck△Ck) < δ′ for some δ′ → 0 as δ → 0.
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Suppose φ, ψ ∈ Homσi
(α,P, F, δ) are distinct. If the associated partition Cφ

and Cψ are equal then we have ‖φ(f) − ψ(f)‖∞ < ǫ. Since φ and ψ are unital

we have ‖φ(1 − f) − ψ(1 − f)‖∞ = ‖φ(1) − φ(f) − ψ(1) − ψ(f)‖∞ = ‖φ(f) −

ψ(f)‖∞ < ǫ. Thus ρ(φ, ψ) < ǫ. In particular the cardinality of an ǫ-separated set

in Homσi
(α,P, F, δ) is bounded by the number of distinct partition of {1, 2, . . . , mi}

such that ν(σi(s)Ck△Ck) < δ′. In the proof of Lemma 5.3.3 we showed the number

of such partitions is bounded by emiδ′′ where δ′′ → 0 as δ′ → 0. In particular we have

have that

hǫΣ(α,P, F, δ) = lim sup
i→∞

1

mi
Nǫ(Homσi

(α,P, F, δ), ρ) ≤ lim sup
i→∞

1

mi
log emiδ′′ = δ′′

and thus

hǫΣ(α,P, F ) = inf
δ>0

hǫΣ(α,P, F, δ) ≤ 0.

In particular, we now have hΣ(α,G) ∈ {0,∞} as desired.

It now follows that:

Theorem 7.3.4. HΣ,0(Fn, K) is generic in UM(Fn, K).
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8. CONCLUSION

In the classical setting the Rokhlin lemma is an important tool for many applications.

It seems probable that the results of Section 3 should have applications beyond those

presented in Sections 4, 5, and 6. In recent years several results on generic properties

of homeomorphisms of the Cantor set have appeared in the literature. However,

to the best of our knowledge, the results in Section 7 are the first for topological

actions of more general groups on the Cantor set. Upon further investigation, the

developments in Section 7 should allow for the establishment of other genericity results

in UM(Fn, K).
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