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ABSTRACT 

 

Ligand Design for Novel Metal-Organic Polyhedra and Metal-Organic Frameworks for 

Alternative Energy Applications. (August 2010) 

Ryan John Kuppler, B.A., Miami University 

Chair of Advisory Committee: Dr. Hong-Cai Zhou 

 

The primary goal of this research concerns the synthesis of organic ligands in an effort 

to create metal-organic porous materials for the storage of gas molecules for alternative 

energy applications as well as other applications such as catalysis, molecular sensing, 

selective gas adsorption and separation. Initially, the focus of this work was on the 

synthesis of metal-organic polyhedra, yet the research has to date not progressed past the 

synthesis of ligands and the theoretical polyhedron that may form. Further efforts to 

obtain polyhedra from these ligands need to be explored. 

Concurrently, the search for a metal-organic framework that hopefully breaks the 

record for methane adsorption at low pressure and standard temperature was undertaken. 

A framework, PCN-80, was synthesized based off a newly synthesized extended 

bianthracene derivative, yet was unstable to the atmosphere. Hydrogen and methane 

adsorption capacities have been evaluated by molecular simulations; these adsorption 

isotherms indicated a gravimetric hydrogen uptake of 9.59 weight percent and a 

volumetric uptake of methane of 78.47 g/L.  
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Following the synthesis of PCN-80, a comparison study involving the effect of the 

stepwise growth of the number of aromatic rings in the ligand of a MOF was pursued; 

the number of aromatic rings in the ligand was varied from one to eight while still 

maintaining a linear, ditopic moiety. The synthesis of another bianthracene-based ligand 

was used to complete the series of ligands and PCN-81, a two-dimensional framework 

with no noticeable porosity as evident by the simulated hydrogen uptake of 0.68 weight 

percent, was synthesized. All of these MOFs were synthesized from zinc salts to reduce 

the number of variables. No clear relationship was established in terms of the number of 

aromatic rings present in the ligand and the hydrogen adsorption capacity. However, it 

was confirmed that the density and hydrogen uptake in weight percent are inversely 

proportional. Further work needs to be done to determine what advantages are offered by 

these novel frameworks containing extended bianthracene derivatives. For example, with 

the highly fluorescent nature of the ligands from which they are composed, both PCN-80 

and PCN-81 should be studied for the potential use in the application of fluorescent 

materials. 
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CHAPTER I 

I�TRODUCTIO� A�D RESEARCH OBJECTIVES 

 

1.1 Porous materials 

The continual search for materials to satisfy the growing needs of industry is one of the 

driving forces of scientific research. Among those of interest in today’s cost-conscious 

research are materials that may be synthesized cheaply, efficiently, and effectively. 

Porous materials, which may be utilized for a plethora of applications, are among these 

types of materials. Porous materials have been used for adsorption-based gas separation 

and storage, shape/size-selective catalysis, drug storage and delivery, and as templates in 

the preparation of low-dimensional materials.1 

Aside from possessing accessible pores, the size, shape, and volume of the pores are 

the most important factors in determining how well a material will perform its desired 

function. Table 1. shows the four IUPAC classifications based on the size of the pores 

for gas adsorption.2 Adsorption isotherms are used to determine which size classification 

a material falls into as certain pore sizes generate distinct isotherms. There are six major 

isotherm types, as shown in Figure 1.  

 

 

 

 
This thesis follows the style and format of Journal of the American Chemical Society. 



 

Table 1. Classification of pore sizes.
 

Ultramicroporous

 

Figure 1.  The six adsorption isotherm types.

 

Classification of pore sizes. 

Type of Pore Pore Range in Å 

Ultramicroporous < 5 

Microporous 5 – 20 

Mesoporous 20 - 500 

Macroporous > 500 

  

The six adsorption isotherm types.3 

2 
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A material displaying Type I behavior is classified as either ultramicroporous or 

microporous. The Type I behavior is a result of the potential fields from neighboring 

walls overlapping thus enhancing the interaction energy of the solid framework with a 

gas molecule; at low pressures, this enhancement distorts the isotherm in the direction of 

increased adsorption.4 Complete filling of the pores is therefore possible at relatively low 

pressures, and a plateau effect is seen when saturation has occurred. 

Type II isotherms are indicative of a nonporous solid with a monolayer adsorption. 

Type III and VI isotherms may indicate a nonporous solid yet can also indicate a 

macroporous solid. The type VI appears whenever multilayer adsorption occurs as can 

be seen by the stepwise adsorption curve. For nonporous solids, whether a type II or III 

isotherm appears is dependent upon attractive interaction strengths: stronger fluid-solid 

attractive interactions result in a type II isotherm while stronger fluid-fluid attractive 

interactions result in a type III isotherm.5 Type IV and V isotherms typically indicate a 

mesoporous solid although type V isotherms may also denote a microporous solid.4 

These isotherms display a unique hysteresis loop as a result of the amount adsorbed on 

the solid always being greater at any relative pressure along the desorption curve than 

the adsorption curve.4 For a mesoporous solid, whether type IV or V isotherm behavior 

is displayed is once again dependant on attractive interaction strengths. Stronger fluid-

solid attractive interactions result in a type IV isotherm while stronger fluid-fluid 

interactions lead to type V behavior.5 
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1.1.1 Carbon porous materials 

In the past the search for porous materials has existed virtually exclusively in either the 

carbon-based or inorganic realm of chemistry. Pyrolysis of carbon-rich materials leads to 

the formation of perhaps the most well-known carbon porous compound: activated 

carbon.6 Due to their high surface areas and porous nature, activated carbons have been 

used as adsorbents throughout time by a wide array of industries ranging from medicinal 

to military.7 While activated carbon has the benefit of possessing high surface areas and 

adsorption capacities, their graphene structures suffer from a lack of order. This 

inconsistency prevents activated carbons from being used as materials for applications in 

catalysis. In fact, the distribution of the pores in activated carbons may range as widely 

as 20 Å to several thousand Å.8 However, despite their lack of order, activated carbons 

have been a useful material for applications in gas adsorption and separation, solvent 

removal and recovery, and water purification for many years. 

 

1.1.2 Zeolites 

Lying in the inorganic realm of porous materials, zeolites possess the highly ordered 

structures that activated carbons lack. Possessing pore sizes most commonly in the range 

of 3 to 10 Å, zeolites are crystalline, hydrated aluminosilicates of alkali or alkaline earth 

metals formed from sharing the oxygen of the infinitely extending AlO4 and SiO4 

tetrahedral frameworks.8 Thus, zeolites may be represented by the crystallographic unit 

cell Mn+ x/n [(AlO2)x(SiO2)y]
x- 

·wH2O where M is the metal cation of valence n and w is 

the number of water molecules present in the framework.9 Elimination of the water 
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molecules result in the porous structures of interest. Despite this ordered porosity, 

zeolites are hindered in their lack of diversity, as their structures rarely deviate from Al 

and Si backbones.  

Although there are over 40 types of naturally occurring zeolites, synthetic zeolites 

offer the benefit of control and purity. However, synthesized zeolites often suffer from a 

lack of stability as a result of the strong interactions formed between the inorganic 

framework and the organic template used in the synthesis. Consequently, the cationic 

skeleton of the framework often collapses upon removal of the template as a result of the 

electrostatic host-guest interactions.10 However, the ordered structures of zeolites has 

enabled them to be used successfully as materials in ion exchange, separation, and 

catalysis for many years.11 

 

1.2 Metal-organic frameworks 

In an effort to combine both the high surface area and adsorption capacity of carbon-

based materials with the highly ordered network of inorganic materials, coordination 

polymers have dramatically exploded into the forefront of porous materials research. In 

the most elementary sense, robust and porous coordination polymers, most commonly 

referred to as metal-organic frameworks (MOFs), are composed of metal ions or clusters 

connected by polytopic organic linkers via strong coordination bonds. Coordination 

polymers may form in zero, one, two, and three dimensional infinite networks.5,12 A 

zero-dimensional network, otherwise known as a metal-organic ring, cage, or capsule, 

and in geometric terms as a metal-organic polyhedron (MOP), exists as a discrete 
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molecule, a one-dimensional network as a chain, a two-dimensional network is 

composed of layers, and a three-dimensional network consists of intersecting 

channels.5,13 Each of the multi-dimensional networks may possess windows, channels, or 

pores with dimensions ranging from 2 to 47 Å.14 It are these voids within the network 

that have attracted researchers to study the applications of these networks in the fields of 

gas storage,15-17 gas separation,18 size-, shape-, and enantio-selective catalysis,19,20 

luminescence,21 and drug storage and delivery.22 

In the past several decades MOFs have emerged as one of the most-researched topics 

in the field of coordination and materials chemistry (Figure 2). Indeed, the possibility of 

using MOFs as materials for virtually any application involving porous compounds 

makes them quite an attractive research topic. At this juncture it is necessary to indicate 

that although in the literature MOFs go by a variety of names (porous coordination 

networks, porous coordination polymers, metal-organic materials, etc.) all refer to 

similar if not the same types of compounds. The difference in nomenclature merely 

reflects the individual researchers and the type of framework. To alleviate confusion, all 

such materials in this thesis will heretofore be referred to as MOFs.  



 

Figure 2.      Number of papers on the topic “metal

1999 – May 2010. 

 
 
1.2.1 Choice of ligand 

In terms of the ligand contributing to the framework, the first consideration is usually 

the shape and size of the ligand. For example, ditopic ligands with bend

180° will have a propensity to form various molecular 

dimensional frameworks.13,23

directly affect the size of the void space created.

0

100

200

300

400

500

600

700

800

900

1000

1
9

9
9

2
0

0
0

N
u

m
b

e
r 

o
f 

P
u

b
li

ca
ti

o
n

s
ISI Web of Knowledge

SciFinder

Number of papers on the topic “metal-organic frameworks” published from 

In terms of the ligand contributing to the framework, the first consideration is usually 

the shape and size of the ligand. For example, ditopic ligands with bend-angles less than 

180° will have a propensity to form various molecular architectures instead o

13,23 Additionally, the length of the ligand will most often 

directly affect the size of the void space created. This is not always the case as too large 

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

Year

ISI Web of Knowledge

SciFinder

7 

 

organic frameworks” published from 

In terms of the ligand contributing to the framework, the first consideration is usually 

angles less than 

instead of three-

Additionally, the length of the ligand will most often 

This is not always the case as too large 

2
0

0
9

2
0

1
0



8 
 

of an opening will often result in interpenetration of the framework within itself.24,25 All 

of the ligands that will be discussed in this thesis are carboxylates. 

A common misconception exists within the nomenclature: the ambiguity of what the 

ligand is. What is isolated during the organic synthesis phase of MOF construction is 

actually the ligand precursor, which in this case is the carboxylic acid. The ligand is the 

deprotonated form that actually joins the metal nodes together; carboxylates that are 

formed in situ from deprotonation during the solvothermal reaction are the ligands of the 

MOF.  

 

1.2.2 Choice of metal 

It is helpful to discuss some features of the metal centers before discussing the effect 

they have on the framework. A concept known as the secondary building unit has been 

introduced to help define the geometry adopted around the metal entities of the MOF. A 

secondary building unit (SBU) is the unit of “polynuclear clusters constructed from two 

or more metal ions and multidentate carboxylate (or other coordination moieties) 

linkers.”5  The SBU is unique in the sense that it is more or less a conceptual idea; the 

unit is usually not a reagent in the synthetic scheme but is generated in situ. Several 

excellent reviews have been published on the topic.26-28 The important thing to 

remember is that the SBU is the initial bonding that occurs between the ligand and the 

metal ions. It is from the SBU that the ligands extend out in the ordered geometric array 

that forms the framework. 
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Traditionally, transition metal ions serve as the metal centers of the SBU due to their 

ability to adopt a large variety of coordination numbers resulting in a variety of 

geometries: linear, T- or Y-shaped, tetrahedral, square-planar, square-pyramidal, 

trigonal-bipyramidal, octahedral, trigonal-prismatic, and pentagonal-bipyramidal, as well 

as the distorted forms of each.5,10,29,30 The metal that is employed in the reaction will 

most often dictate what SBU will form as certain metals will traditionally adopt certain 

geometries such as the square planar configuration with platinum. First-row transition 

metals are most commonly employed as the metal ions of MOFs due to their availability, 

cost, fixed coordination geometry, and thorough understanding of chemical bonding.29 

Additionally, the functionality or properties of the MOF is often times directly related 

to the metal ion used. If one wishes to create a magnetic MOF then a paramagnetic metal 

ion should be incorporated.31 The nature of the metal has also been shown to have an 

effect on the adsorption properties of MOFs with respect to certain gases. The metal with 

the known catalytic function should be incorporated if the constructed MOF is to have 

the desired catalytic property. To optimize the intended application, the judicious choice 

of both ligand and metal is important. 

 

1.2.3 Synthetic conditions 

MOFs are typically synthesized by means of a solvothermal reaction where both the 

metal salt or cluster and organic ligand are combined and heated at relatively low 

temperatures (less than 300 °C) until crystal growth has completed. The solvent 

employed is most often polar and possesses a high boiling point such as water, dialkyl 
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formamides, dimethyl sulfoxide, and dimethylacetamide. Primary concerns when 

synthesizing MOFs include the judicious choice of solvent, the ratio of the ligand to 

metal, the pH of the solution, and the solubility of the organic ligand and metal salt 

employed in the reaction system. 

As most MOFs are insoluble once formed, the only suitable means for structural 

analysis is X-ray diffraction. Although research is currently underway to find a suitable 

means of solving MOF structure using only X-ray powder diffraction, to date the most 

reliable method is single-crystal diffraction. Therefore, the primary goal of MOF 

synthesis is to obtain good quality crystals suitable for single-crystal X-ray diffraction.29 

In an effort to obtain said crystal, much alteration is done varying the concentration of 

the reagents as well as the solvent and conditions of the reaction. For example, although 

solvothermal reactions are capable of producing excellent quality crystals, it is often 

necessary to attempt other setups such as the layering of solvents and setting up 

diffusion reactions to allow for the slow, gradual mixing of the reactants. However, 

solvothermal reactions remain the predominant means of synthesis. Teflon-lined 

stainless steel bombs, glass vials, and pyrex tubes sealed under vacuum are used as the 

reaction vessels depending on the amount of MOF being synthesized.  

The resultant framework is a function of not only the ligand and metal employed in the 

reaction, but also the conditions in terms of the solvent and acids or bases added. The 

solvent used should be judiciously chosen as its use is not only crucial for solubility 

purposes but also for stability as well as defining the characteristics of the framework, or 

sometimes even as a template. Typically, MOFs are synthesized from solvothermal 
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reactions at temperatures that range between 50 and 250 °C. Therefore, solvents with 

relatively high boiling points such as dialkyl formamides (DMF or DEF), dimethyl 

sulfoxide (DMSO), dimethyl acetamide (DMA), and water are commonly utilized. Often 

times the solvent is incorporated into the structure of the MOF. This may be compared to 

the use of a template when synthesizing a zeolite except for that the solvent itself acts as 

a template in MOF synthesis. Additionally, the solvent may often times be removed 

from the framework without resulting in a collapse of the framework structure. 

Occasionally the addition of small amounts of acid or base is necessary to promote 

good crystal growth. This is especially the case when carboxylate ligands are employed 

in the reaction. As previously mentioned, deprotonation is necessary for the oxygens to 

form bonds to the metal centers. In some instances a carefully chosen base needs to be 

added to promote the deprotonation; the base, such as amines, alcohols, or pyridine, 

needs to be cautiously chosen to avoid competition with the ligand for the open metal 

site. As shown in Equation 1, the deprotonation of the carboxylic acid is reversible. 

 

Equation 1 
RCOOH  ⇌  RCOO-  +  H+ 

 

If deprotonation occurs too rapidly, powdered reagents are likely to crash out of 

solution and single crystal formation does not proceed. By Le Chatelier's Principle, the 

addition of a small amount of acid (commonly in the form of fluoroboric acid) will shift 

the equilibrium towards the carboxylic acid, thus slowing down deprotonation and 

thereby providing the optimal conditions for crystal growth.  
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As shown above, the synthesis of high-quality crystalline MOFs is dependent upon a 

combination of several variables. Although experience often dictates which conditions 

provide the best crystals, trial-and-error methods as well high-throughput approaches are 

often necessary.32,33 Yet another means of MOF synthesis is that by microwave 

irradiation. The obvious benefit of microwaves is a much shorter crystallization time, yet 

they also permit the reaction to undergo a wide array of temperatures while allowing 

control of face morphology and particle size distribution.34-36 The distinct disadvantage 

is the size of the crystals produced as they are rarely large enough to obtain good 

structural data by means of X-ray single-crystal diffraction. Current methods to solve 

MOF structures by X-ray powder diffraction are underway. 

 

1.2.4 Structure of metal-organic frameworks  

When considering the structure of MOFs it is helpful to start with the SBU. While the 

organic ligand may also be considered a SBU, their structures rarely deviate during the 

MOF reaction. Therefore, the focus with respect to SBUs lies within the initial bonding 

between the metal ions and the bridging ligands. Figure 3 shows four common SBUs: 

Figure 3 a and b shows SBUs with a trigonal and a square planar arrangement of the 

metal atom arrangements, respectively. Figure 3 c features a tetrahedron of metal atoms 

surrounding a central oxo anion, and Figure 3 d represents a dimetal paddlewheel SBU. 

With all of the SBUs, the edges between the two metal ions are bridged by the 

coordination atoms of the ligand resulting in a controlled orientation of the linker. It 

should be mentioned that the preferential geometry of the SBU is dependent on not only 
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the configuration of the ligand and the type of metal employed in the reaction, but also 

the metal to ligand ratio, the solvent, the reaction conditions, and the source of 

counterions to balance the charge of the metal ions.37 

 

 

Figure 3.     Structural representation of four common SBUs; green atoms are metals, 

red atoms are oxygen, grey atoms are carbon. 

 

The generation of the SBU leads to the final arrangement of the linkers connecting the 

SBUs. The interstitial spaces created between the SBUs are the pores of the MOF. As 

nature abhors vacuum, guest molecules such as solvent will often times fill the void 

spaces formed within a MOF. Upon removal of these guests, a pore will be generated 
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which then enables the MOF to be used as a porous material. However, the larger the 

pore, the more likely is it that the framework will collapse. If the framework remains 

intact after guest evacuation then the MOF is said to possess permanent porosity, a 

highly attractive feature of MOFs.  

Generally speaking, to some extent the larger the pore, the more suitable the 

framework is for applications in the fields of host-guest chemistry such as catalysis and 

as molecular carriers. Smaller pores are the result of SBUs being fixed closer together. 

This decreases the distance from ligand to ligand thus enabling the framework to be 

utilized for gas storage and separation as the guest gasses will have a strong interaction 

with the walls of the pore. 

 

1.3 Metal-organic polyhedra 

Metal-organic polyhedra (MOPs) are molecular cages assembled from organic linkers 

and metal ions or clusters (SBUs). These cages possess a well-defined geometrical 

structure due to the rigidity of the SBU utilized in the reaction. SBUs in this case may be 

either a distinct paddlewheel such as Mo2(CO2)4 or the result of a reaction between a 

metal salt and a ligand in situ. Additionally, the porosity of the polyhedra are 

microporous in nature and has been proven to exist upon the removal of solvent 

molecules resulting in permanent porosity of the cage.38 MOPs, like MOFs, are formed 

from supramolecular self-assembly reactions under appropriate thermodynamic 

conditions.39 The inherent difference between a MOP and a MOF arises from the 
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discreet molecular cage of the MOP versus the infinitely extended framework of the 

MOF. 

The assembly of a MOP is in theory much more predictable than MOF construction, a 

reflection of the difference between the synthesis of a molecule versus that of a 

framework. An intricate part of predictable synthesis is the ease in determining the final 

structure whether it be from powder or single crystal diffraction.40 As a result of 

controlling the angle of the ditopic linker employed to connect the paddlewheel SBU, 

the resulting polyhedra formed from simple polygons should posses the predicted 

structure. A simple example is the combination of a ditopic ligand of 120° with 12 di-

molybdenum paddlewheel units to form both a cubooctahedron and an 

anticubooctahedron depending on the ligand used and the orientation of the ligands 

around the paddlewheel.41 By linking SBUs and ditopic linkers while varying the angles, 

multiple, predictable polyhedra may be formed to serve as building blocks for MOFs or 

for direct use in applications.40,42,43 

In light of their stability, the ability of MOPs to function as SBUs for the construction 

of MOFs has been examined with the idea that using a MOP as the SBU will enhance 

the rigidity and porosity of the MOF. The MOF would then be able to retain its structure 

in the absence of guest/solvent molecules, thus creating a framework with permanent 

porosity.44 A promising result occurred when Yaghi and coworkers were able to create a 

MOP of permenant porosity when they obtained crystals of MOP-1 constructed from 

Cu2(CO2)4 paddlewheel.44 
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On the other hand, in order to prevent the lack of porosity that results when the 

occasional interpenetration occurs in MOF synthesis, MOPs may be used in the 

construction of MOFs. The porosity present in the SBU guarantees that the resulting 

MOF will possess a certain degree of porosity as interpenetration cannot effect the 

porosity of the SBU due to size exclusion and steric hindrance.45 Furukawa et al. 

demonstrated that permanent porosity is able to exist alongside interpenetration in MOFs 

when MOPs are used as the SBUs.43 

 In addition to the robustness of MOPs, their solubility also makes them attractive 

SBUs for the construction of MOFs. Solvothermal synthetic procedures require that the 

species be soluble in the reaction solvent: when the organic ligands that are involved in 

MOP synthesis possess amine groups that are able to donate /accept a proton to / from 

the solvent, the resulting cage is soluble in common organic solvents such as DMF, 

DMSO, DMA, etc. 

To date, there exist numerous examples of MOFs constructed with MOPs as their 

SBUs.45-48 A common feature among these MOFs is that each framework possesses a 

high degree of stability. This can be attributed to the use of MOPs as the SBU as well as 

additional interactions such as π−π stacking and stable, non-reactive metal centers.45 

Additionally, ditopic ligands have been used to extend the MOP into the MOF.23 

The findings of the early groups studying MOPs revealed that in addition to improving 

the rigidity and stability of MOFs, the porosity of the MOP, itself, may be useful for 

such applications as gas adsorption, catalysis, and chemical sensing.41,47,49 For example, 

adsorption isotherms of MOP-23, synthesized by Yaghi and coworkers, demonstrated 
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that MOP-23 adsorbed up to 120 cm3/g of hydrogen gas and 50 cm3/g of carbon 

dioxide.43 In addition, they showed that post-synthetic modification of MOP surfaces is 

possible. Likewise, Hamilton et al. showed that noncovalent exterior decoration of MOP 

surfaces is possible.50 This opens the door for a wide range of modifications that may 

lead to new, intricate functions. For example, decorating the surface of a MOP with 

alternating hydrophilic and hydrophobic groups may create a novel SBU to be used for 

selective gas adsorption in resulting MOFs. Furthermore, the addition of a chiral group 

to the surface of a MOP may lead to the creation of a chiral MOP suitable for a wide 

array of chiral catalysis. 

 

1.4 Research objectives 

This thesis will provide both results and future directions of research conducted in the 

areas of metal-organic frameworks and metal-organic polyhedra synthesized in an 

attempt to create novel frameworks and cages suitable for a wide variety of applications, 

most notably hydrogen and methane adsorption. To avoid redundancy, each subsequent 

chapter will contain a relatively brief introduction of the strategies and properties of 

synthesized frameworks and molecules. Properties listed in this chapter should be 

considered applicable to the following chapters unless otherwise noted. 
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CHAPTER II 

�OVEL LIGA�D WITH 150° BE�D-A�GLE TO CO�STRUCT A LARGE 

METAL-ORGA�IC POLYHEDRO� 

 

2.1 Introduction 

The continual need to create interesting, useful materials is one of the primary drives 

of chemists. Inorganic chemists are no different in this aspect as much research has gone 

into the development of new materials for useful applications. Metal-organic polyhedra 

(MOPs), falling under the realm of porous materials, represent a small facet of this 

research. A blending of the fields of porous materials and coordination chemistry, MOPs 

represent an area of research in which although the geometry and bonding has been 

extensively studied, the applications for which these polyhedra might lend themselves is 

relatively unexplored. 

As previously explained, the relationship between ligand and cage size is usually 

proportional. In an effort to not only synthesize a geometrically novel cage, but also 

provide for the opportunity to explore the properties associated with a larger cage, a 

novel ligand precursor with a 150° bend-angle was designed to be synthesized. The 

anticipated polyhedra that would form as a result of the solvothermal reaction between 

1H-indole-2,5-dicarboxylic acid and Cu(NO3)2 would result in a cage that should be 

larger than the MOPs formed from ligands with bend-angles of 120° and 90°, the more 

commonly used ligands to form MOPs. The syntheses of MOPs that are not of the 

platonic or Archimedean type are unique and interesting to study.  
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Should the resulting cage contain either an open metal site or an accessible organic 

functional group, the opportunity to utilize the MOP for catalytic purposes is available. 

As a MOP is a discreet porous molecule, the same catalytic principles apply to it as to 

other porous materials. Indeed, the use of MOPs for enantioselective catalysis has 

already been accomplished.51  

 

2.2 Results and discussion 

The ligand precursor 1H-indole-2,5-dicarboxylic acid was synthesized according to a 

modified literature method as shown in the synthetic scheme in Figure 4.52 This 

molecule was obtained in pure form and was employed in several solvothermal reactions 

involving Cu(II), Zn(II), Co(II), and Mn(II) with solvents such as DMA, DEF, DMF, 

and DMSO. To date, no crystals suitable for single crystal X-ray diffraction have been 

obtained. 
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Figure 4.     Synthetic Scheme for Synthesis of 150° Bend-Angle Ligand. 

 

2.3 Future work 

First and foremost, crystals from the solvothermal reaction need to be obtained. X-ray 

diffraction studies should reveal the structure of the polyhedra, although it is also likely 

that an extended MOF will be synthesized due to the large bend-angle of the ligand. 

Should the anticipated polyhedron be formed, the first step must be to determine if the 

molecule possesses an opening in which guests may be inserted and removed.  

In an attempt to produce a polyhedron in which the NH group of the indole is located 

within the cage, the ligand precursor 1H-indole-2,6-dicarboxylic acid should be 

synthesized (Figure 5). Following a similar solvothermal synthesis as that which 

produced the previous MOP, a MOP with the NH facing toward the metal center of the 

MOP should be formed. Following this, a comparison should be made between the two 

in terms of whether or not the NH of the heterocycle facing inside or outside the cage 
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has an effect on the adsorption properties of the cage. Following this study, more insight 

will be gained in respect to the tailoring of the walls of the polyhedron to elucidate the 

intended application of the cage. 

 

N
H

COOH

HOOC  

Figure 5.      1H-indole-2,6-dicarboxylic acid with 150° bend-angle. 

 

The ability to easily modify and functionalize indoles as a result of the Fischer indole 

synthesis52 makes this ligand an ideal candidate to test the effectiveness of 

organocatalysts that are part of the MOP.53 Based on these results, the research can be 

extended one step further to determine the effectiveness of this polyhedron in terms of 

its ability to perform organocatalysis, for example the Knoevenagel condensation of 

carbon acids compounds with aldehydes to afford α,β-unsaturated compounds.54 

Secondary amines such as piperidine has been successfully proven to perform this 

catalytic reaction in high yields in a one-pot synthesis,55 the addition of a piperidine to 

either the 4 or 7 position of 2,5 indole dicarboxylic acid will position the catalyst inside 

and outside the cage, respectively (Figure 6). 1H NMR or HPLC could be used to 

quantitatively monitor the effectiveness of the organocatalysis and the effectiveness of 

the direction of the secondary amine could be determined. Of course, if the pore is 

blocked by the piperidine, then catalysis will not be able to take place. The outcome of 
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these reactions is going to be somewhat predetermined by the size and properties of the 

original polyhedron. Should the reaction proceed more efficiently with the amine facing 

away from the center of the cage, yet still show conversion while pointing inwards, it 

can be determined that the substrates do not benefit from being confined in the cage and 

either new substrates should be tested or a new cage created. 

 

Figure 6.  4-(piperidin-4-yl)-1H-indole-2,5-dicarboxylic acid will result in a cage with 

the secondary amine facing towards the center of the cage, thus the catalysis will be 

performed inside the cage; geometrically optimized structure calculated with Materials 

Studio 5.0. 
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2.4 Synthesis 

The following synthetic routes  are from a modified literature procedure.52 

Synthesis of ethyl pyruvate-4-carboxyphenylhydrazone: 

4.02 g of 4-hydrazinobenzoic acid was charged in a 250 mL round bottom flask and 

was dissolved in a mixture of 60 mL of glacial acetic acid and 30 mL of water. The 

mixture was dissolved with the aid of a stirbar and heat (approximately 60° C) to form a 

reddish-orange solution. The flask was cooled in an ice bath and 3.05 g of ethyl pyruvate 

in 10 mL of glacial acetic acid was slowly added. The temperature was monitored over 

the addition to ensure that the solution did not rise above 10° C to produce a murky, 

peach colored suspension. The suspension was stirred at room temperature for one hour. 

The precipitate was washed with water and dried under dynamic vacuum to yield pure 

pale-yellow product. 1H NMR (DMSO): δ 12.44 (br, 1H), δ 7.78 (d, J = 8.7Hz, 2H), δ 

7.30 (d, J = 8.7 Hz, 2H), δ 4.23 (q, J = 6.7 Hz, 2H), δ 2.10 (s, 3H), 1.28 (t, J = 6.8 Hz, 

3H). 

 

Synthesis of 2-carbethoxyindole-5-carboxylic acid: 

2.7 g of ethyl pyruvate-4-carboxyphenylhydrazone and 12.7 g of zinc chloride were 

ground in a crucible in a nitrogen glove box to form an intimate mixture. The mixture 

was transferred to a 100 mL round bottom Schlenk flask and cycled under nitrogen on a 

Schlenk line. A variac and sand-filled heating mantle were used to heat the contents of 

the flask above 180° C while still under nitrogen. The mixture began to darken near the 

base and soon formed a black solid. The septum was removed while the nitrogen was 
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still flowing on the line and the mixture was stirred with a glass rod. A gas was released 

when the mixture was stirred. When the mixture became uniformly dark, the flask was 

removed from the heating mantle. 35 mL of water and 1 mL of hydrochloric acid was 

added. A condenser was attached and the suspension was refluxed for ninety minutes. 

The solid was collected on a fritted filter and washed with ice-cold water. The dark, 

reddish brown solid was recrystallized in boiling glacial acetic acid followed by a wash 

with cold acetic acid. The product was then dissolved in dichloromethane and passed 

through celite. Pure 2-carbethoxyindole-5-carboxylic acid was collected as a dark, 

brownish-yellow solid. 1H NMR (DMSO): 12.48 (br, 1H), 12.20 (s, 1H), 8.42 (s, 1H), 

7.79 (d, J = 9.0 Hz, 1H), 7.51 (d, J = 9.0 Hz, 1H), 7.33 (s, 1H), 4.33 (q, J = 6.8 Hz, 2H), 

1.36 (t, J = 4.0 Hz, 3H). 

 

Synthesis of 2,5 indole dicarboxylic acid: 

0.75 g of 2-carbethoxyindole-5-carboxylic acid and 2.7 g of sodium hydroxide were 

dissolved in a 100 mL round bottom flask and refluxed in 30 mL of water for four hours. 

Activated carbon was added to remove inorganic impurities. The mixture was then 

filtered and the filtrate was treated with 12.1M hydrochloric acid until precipitate 

appeared. The precipitate was filtered and dried overnight in vacuo to produce pure 2,5 

indole dicarboxylic acid a dark yellowish-brown powder. 1H NMR (DMSO): δ 11.31 (s, 

OH), δ 7.72 (s, 1H), δ 7.20 (d, J = 8.7 Hz, 1H), δ 6.86 (d, J = 9.0 Hz, 1H), δ 6.51 (s, 1H). 
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CHAPTER III 

EXTE�DED CARBAZOLE-BASED LIGA�D I� EFFORTS TO SY�THESIZE 

EXTE�DABLE METAL-ORGA�IC POLYHEDRO� 

 

3.1 Introduction 

It has been recently demonstrated that the conversion from molecular polyhedra to 

metal-organic framework and back to molecular polyhedra is possible.23 In this manner, 

the polyhedron may be viewed as a direct building block for the framework. Serving as a 

pseudo-SBU in the sense that the polyhedron that appears in the final framework is 

synthesized prior to the reaction, a linker would join the polyhedral centers to create a 

framework. This supramolecular assembly approach has been proposed and a design 

elaborated,56 yet to date only one example of this technique has been carried out 

successfully.23 

One immediate prerequisite that must be satisfied is that the building blocks must be 

soluble in order for the next step in the synthesis to be carried out. With traditional MOF 

synthesis this is usually not a problem (provided something large such as dendritic 

linkers are not employed) as the metal salts and organic linkers are usually quite soluble 

in the chosen solvents. However, with this supramolecular building block approach, the 

polyhedra to serve as the nodes of the framework may not always be soluble, resulting in 

an inability for a further reaction to a MOF.57 Thus, a judicious choice of the organic 

ligand employed in the polyhedra reaction scheme is of primary concern.  



 

It has been demonstrated in the literature that a reaction between 9H

dicarboxylate (H2CDC)  and 

affords blue-green crystals of  [Cu

solvent  molecule) as shown in 

 

Figure 7.       90° bend-angle carbazole ligand joined with copper paddlew

molecular polyhedron.23 

 
The polyhedron formed in this 

paddlewheel nodes of the formula 

ligands. This polyhedron crystallized in an O

coordinated solvent molecules. These crystals are stable to oxygen and have been 

isolated. By utilizing a linear, ditopic ligand to connect the six vertices of the 

octahedron, the polyhedral cage was extended into a thre

solution of [Cu2(CDC)2(DMA)(EtOH)]

It has been demonstrated in the literature that a reaction between 9H-

CDC)  and  Cu(NO3)2·2.5 H2O in a 1:1 solution of  

green crystals of  [Cu2(CDC)2(DMA)(EtOH)]6 · xS  (S = noncoordinated 

shown in Figure 7. 

angle carbazole ligand joined with copper paddlewheel to form 

The polyhedron formed in this reaction is an octahedral cage with six axial copper

paddlewheel nodes of the formula Cu2(CO2)4 which are linked together by 12 CDC 

ligands. This polyhedron crystallized in an Oh symmetry when ignoring the axially 

coordinated solvent molecules. These crystals are stable to oxygen and have been 

isolated. By utilizing a linear, ditopic ligand to connect the six vertices of the 

octahedron, the polyhedral cage was extended into a three-dimensional framework: a 

(DMA)(EtOH)]6 · xS dissolved in diethylformamide was layered 
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-carbazole-3,6-

 DMA:ethanol 

S  (S = noncoordinated 

 

heel to form 

with six axial copper-

which are linked together by 12 CDC 

symmetry when ignoring the axially 

coordinated solvent molecules. These crystals are stable to oxygen and have been 

isolated. By utilizing a linear, ditopic ligand to connect the six vertices of the 

dimensional framework: a 

S dissolved in diethylformamide was layered 
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with a solution of excess 4,4’-bipyridine dissolved in ethanol to afford SEMOP-1 

(soluble and extendable metal-organic polyhedra).23 

 

3.2 Results and discussion 

The significance behind this work lies in the fact that a MOF was created using a step-

wise approach in which the ultimate framework was predicted before synthesis occurred. 

Often times, it is claimed that a MOF structure is designed to have the resultant outcome. 

Much disagreement exists in the field with respect to this alleged design.10,58 However, 

by first constructing a polyhedron of a well-studied geometry followed by employing a 

simple extending ligand to connect the vertices, a rational prediction may be made and 

the ultimate structure realized.  

In an effort to extend this work, a novel ligand-precursor with the same 90º bend-angle 

was synthesized: 4,4'-(9-ethyl-9H-carbazole-3,6-diyl)dibenzoic acid (H2CDB). H2CDB 

differs from H2CDC in two ways: H2CDB may be thought of as an extended version of 

H2CDC as two aromatic rings protruding from the 4 and 7 positions of the carbazole 

molecule maintain the 90º bend-angle, and the H atom extending from the N atom of the 

carbazole is replaced by an ethyl group (Figure 8). In H2CDC the N-H functional groups 

of the ligands are able to form hydrogen bonds with solvent molecules, thus improving 

the solubility of the resultant molecular polyhedron.23 The longer ligand-precursor, 

H2CDB, is much more insoluble than H2CDC. As a result, the resultant MOP would not 

be as readily soluble as SEMOP-1. To combat this, an ethyl group was chosen in lieu of 

the H atom at the 9 position of the carbazole.  



 

Figure 8.      a) 9H-carbazole

carbazole-3,6-diyl)dibenzoate 

 
It has been suggested that MOFs 

useful in the storage of small molecules, because

trapped inside the cages.59 

The ligand-precursor 4,4'

in pure form and several reaction schemes based off of the synthesis of SEMOP

been employed in an attempt to obtain a crystal polyhedron. Although reactions with Zn, 

carbazole-3,6-dicarboxylate (H2CDC) and b) 4,4'-(9-ethyl

diyl)dibenzoate (H2CDB) both possess a 90° bend-angle. 

It has been suggested that MOFs with cage-like polyhedral building units could be 

seful in the storage of small molecules, because adsorbed guests may remain 

 

4,4'-(9-ethyl-9H-carbazole-3,6-diyl)dibenzoic acid

in pure form and several reaction schemes based off of the synthesis of SEMOP

been employed in an attempt to obtain a crystal polyhedron. Although reactions with Zn, 
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ethyl-9H-

like polyhedral building units could be 

adsorbed guests may remain kinetically 

acid was obtained 

in pure form and several reaction schemes based off of the synthesis of SEMOP-1 have 

been employed in an attempt to obtain a crystal polyhedron. Although reactions with Zn, 



29 
 

Cu, Mn, and Co salts with a wide array of solvents such as DMF, DEF, DMSO, and 

DMA have been attempted, crystals have yet to be synthesized.  

 

3.3 Future work 

Once a high-quality crystal is obtained, the structure will be solved utilizing X-ray 

diffraction. Theoretically, the polyhedron will be another octahedron yet have a larger 

cavity than the 13.8 Å of SEMOP-1 as the extended ligand, which contains an extra 

benzene ring on each side of the carbazole, is longer than CDC. Each benzene, with an 

approximate atom to atom diameter of 2.8 Å, should extend the distance between metal 

centers, and thus the cavity. 

Assuming an isoreticular scenario,60,61 which is very likely upon polyhedron 

formation, the resulting cage should be a larger version of SEMOP-1. Should the axial 

positions of the paddlewheels remain uncoordinated (with respect to anything other than 

removable solvent), then it should follow that the extension of the polyhedron into a 

framework could easily be accomplished. The resultant MOF should have considerably 

larger pores than its predecessor. In this fashion, MOFs with not only permanent 

porosity but also large, accessible pores may be synthesized. 

Should the resulting MOF form an interpenetrated structure, which is not unlikely 

considering the length of the ligand involved in the MOP formation, interesting 

properties may ensue as useful porosity is often exhibited in interpenetrated 

structures.10,25,62,63 The reduced pore size may prove to be beneficial in the selective 

adsorption of gases having a small kinetic diameter.18 It is important to keep in mind that 
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a reduction in pore size as a result of interpenetration does not mean that the porosity 

does not exist; it has merely been decreased. Any MOF constructed from a MOP will 

have some degree of permanent porosity as long as the polyhedra used as the SBU 

possesses porosity. 

This unique way of ensuring porosity and preventing interpenetration provides for a 

much more predictable synthesis of MOFs which aides in not only the solving of the 

crystal structure, but also the construction of MOFs with an intended design for 

applications such as catalysis and gas adsorption. Most of the MOPs that are extended 

into MOFs in the literature are generated in situ. By synthesizing and isolating the MOP 

before extending it into a MOF, researchers can have more control over the structure of 

the framework. This will aid in the tailoring of MOFs for their intended applications.  

 

3.4 Synthesis 

3,6-dibromo-9-ethyl-9H-carbazole: 

9-ethyl-9H-carbazole (2.020 g, 10.359 mmol) was charged in a 250 mL round bottom 

flask. 100 mL of glacial acetic acid was added and the solution stirred to dissolve the 

reagent. Upon dissolving, the solution turned from clear to deep purple. Bromine (1.10 

mL, 21.60 mmol) was added dropwise over 20 minutes with the aid of a syringe pump 

resulting in a dark brown solution. The solution was poured into ice water to precipitate 

a white-yellow product. This was filtered and collected. The crude product was 

recrystallized in 100 mL ethanol to yield a pure white product. Yield: 62.92% (2.288g, 



31 
 

6.518 mmol) 1H NMR (CDCl3): 8.15 (d, J = 2.1 Hz, 2H), 7.57 (dd, J = 6.9 Hz, 1.8 Hz, 

2H), 7.29 (d, J = 8.7 Hz, 2H), 4.41 (q, J = 7.2 Hz, 2H), 1.38 (t, J = 7.2 Hz, 3H). 

 
 
4,4'-(9-ethyl-9H-carbazole-3,6-diyl)dimethylbenzoate:  

3,6-dibromo-9-ethyl-9H-carbazole (1.585 g, 4.516 mmol), cesium fluoride (2.359 g 

(16.074 mmol), tetrakis(triphenylphosphine)palladium(0) (0.315 g, 0.273 mmol), and  of 

4-(methoxycarbonyl)phenylboronic acid (1.547 g, 8.594 mmol), and a stirbar were 

charged in a 250 ml Schlenk flask. A vigreux condenser was attached, and the flask was 

filled with nitrogen gas and evacuated on a Schlenk line three times. 200 mL of DME 

was degassed DME was transferred via a canula to the reaction vessel and the solution 

was heated to 85 °C and stirred. After seven days, the reaction was quenched with the 

addition of excess water. The mixture was passed through a filter and the filtrant 

discarded. The remaining precipitate was then washed with acetone and filtered again. 

The filtrant was again discarded and the precipitate was washed thoroughly with THF 

and filtered once more. The filtrant was collected and concentrated down under vacuum 

to yield pure product. Yield: 40% (0.893 g, 1.928 mmol) 1H NMR (DMSO): δ 8.78 (s, 

2H), δ 8.07 (d, J = 6.9 Hz, 4H), δ 7.98 (d, J = 6.9 Hz, 4H), δ 7.91 (d, J = 8.7 Hz, 2H), δ 

7.75 (d, J = 8.7 Hz, 2H), δ 3.88 (s, 6H), δ 4.52 (q, J = 7.2 Hz, 2H) δ 1.35 (t, J = 3.3 Hz, 

3H). 
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4,4'-(9-ethyl-9H-carbazole-3,6-diyl)dimethylbenzoic acid: 

(175.3 mg, 0.3785 mmol) and sodium hydroxide (121 mg, 3.026 mmol) were 

dissolved in a 100 mL round bottom flask with 10 mL water, 10 mL methanol, and 20 

mL of tetrahydrofuran. A condenser was attached and the reaction was refluxed for one 

day. The flask was removed from the heat and the solution was passed through filter 

paper. The solution was then acidified with hydrochloric acid to yield as a pure white 

solid. Yield: 37.64% (62 mg, 0.1425 mmol) 1H NMR (DMSO): δ 12.84 (br OH) δ 8.70 

(s, 2H), δ 7.98 ( d, J = 8.7 Hz, 4H), δ 7.88 (d, J = 8.7 Hz, 4H) δ 7.83 (d, J = 9.0 Hz, 2H), 

δ 7.67 (d, J = 8.7 Hz, 2H),  δ 4.44 (q, J = 9.0 Hz, 2H) δ 1.29 (t, J = 6.9 Hz, 3H). 
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CHAPTER IV 

METAL-ORGA�IC FRAMEWORK FOR HIGH HYDROGE� A�D 

METHA�E UPTAKE 

 

4.1 Introduction 

Briefly mentioned in Chapter I was the potential application of MOFs being used as 

adsorbents for gases; perhaps the most important of the gases are hydrogen and methane 

as they have potential applications as alternative energy sources. This introduction will 

address the necessities for these gases to be utilized in what is perhaps the most well-

known alternative energy issue: alternative fuels for automobiles. 

 

4.1.1 Hydrogen storage 

 Hydrogen possesses nearly three times as much gravimetric heat of combustion as 

gasoline (120 MJ/kg for hydrogen versus 44.5 MJ/kg for gasoline) making it a very 

attractive alternative energy source.64 This means that the amount of hydrogen needed to 

power a traditional combustion engine 400 km (approximately 250 miles) is a mere 8 kg 

compared to 24 kg of gasoline.65 Moreover, the oxidation of hydrogen, the means in 

which energy is generated, produces water as its only by-product. However, despite 

hydrogen being an excellent candidate for carrying energy, it suffers from a lack of 

efficient, effective, and, most importantly, safe storage.16 These hurdles for hydrogen lie 

in the fact that it is very difficult to compress hydrogen for on-board storage in 

automobiles.  
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Although the gravimetric attributes of hydrogen are much more alluring than gasoline, 

volumetric comparisons reveal the short-comings. In its gaseous state, the 8 kg of 

hydrogen needed to power an automobile 400 km occupies a staggering 90 m3 of volume 

at standard pressure. Additionally, to store the gaseous hydrogen in a fuel tank at 

ambient temperature would require a staggering 700 atm of pressure to be applied to the 

compressed tank.66 Even when liquefied, hydrogen has a much smaller volumetric heat 

of combustion than gasoline: 8,960 MJ m-3 vs. 31,170 MJ m-3, respectively.65 Even 

neglecting the differences in volumetric combustion heats, the energy costs to liquefy the 

hydrogen and cool its’ cryogenic tank would consume roughly 22% of the recoverable 

energy.16,64 Therefore, the key to hydrogen storage lies in an effective way to store 

gaseous hydrogen. In order to guide the research of hydrogen storage materials, the DOE 

has set goals to be reached by 2010 and 2015 for viable hydrogen storage technologies. 

By 2010 the goal of 6 weight percent and 45 g/L for on board storage materials is to be 

reached. This is supposed to be increased to 9 weight percent and 81 g/L by 2015.16 All 

of these benchmarks are meant to be reached within the temperature range of -30 – 50 

°C.67 

Eliminating high pressure and cryogenic tanks for safety and practicality purposes 

results in two options for storing hydrogen for on-board use: chemisorption and 

physisorption. Chemisorption occurs when a dihydrogen molecule comes into contact 

with the surface of a sorbent and is split into individual hydrogen atoms. These atoms 

may have a very strong affinity for the surface which will result in the formation of a 

hydride. The nature of the short bonds of the hydride may lead to a high hydrogen 
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adsorption capacity. However, this increased capacity comes at the expense of kinetic 

and thermal problems as loading times are commonly complete in no fewer than several 

hours, and the temperature required to release the hydrogen is commonly higher than 

300 ºC.68 

In order to increase the capacity of the sorbent with respect to chemisorption, the 

hydrogen spillover approach has been investigated. In order for hydrogen spillover to 

occur in MOFs, the MOF must first be doped with a metal such as Pt. Upon the 

introduction of hydrogen to the MOF, the hydrogen molecules dissociate on the doped 

metal and is then “spilled over” onto the MOF.66 

Physisorption, the much more studied method of hydrogen storage in MOFs, occurs 

when the hydrogen interacts weakly with the sorbent (mostly through van der Waals 

forces) as opposed to forming chemical bonds as in chemisorption. Very low 

temperatures or very high pressures are needed to compensate for the lack of bond 

formed between the framework and the hydrogen molecule.69 However, as doping the 

MOF with a metal is not required for physisorption to occur, the majority MOFs studied 

for hydrogen storage adhere to this method of adsorption. 

Several methods have been developed to increase the hydrogen storage capacity such 

as increasing the surface area, reducing the pore size to approximately that of molecular 

hydrogen (approximately 2.8 Å), and increasing the number of aromatic rings within the 

ligand of the MOF. In theory, an increase in surface area allows for more hydrogen to 

come in contact with the MOF thereby increasing the overall storage capacity. However, 

studies have shown that there is no direct correlation between total hydrogen uptake and 
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surface area, as factors such as pore size, catenation (interpenetration) and ligand 

functionalization come into play.70,71 By decreasing the pore size of the MOF, the 

attractive potential fields of the opposite walls overlap which thereby increases the 

hydrogen - MOF binding energy.70-72 It has been suggested that a pore opening of 

approximately 6 Å will optimize the potential field interactions and overall van der 

Waals forces of the framework acting upon the hydrogen.73 Increasing the number of 

aromatic rings within the MOF’s ligand allows more than one hydrogen molecule to bind 

on each side.71,74 

 

4.1.2 Methane storage 

In addition to hydrogen, natural gas, which is composed of over 95% methane (with 

the remaining percentage composed of hydrocarbons, nitrogen, and carbon dioxide), is 

another contender for on-board vehicular storage. The overabundance and 

underutilization of natural gas makes it quite an attractive replacement for gasoline. The 

emission of carbon dioxide released is also less for natural gas than for gasoline (50 g 

CO2/MJ vs. 69.3 g CO2/MJ, respectively)75  Natural gas has a slightly larger gravimetric 

heat of combustion than gasoline (50.0 MJ/kg vs. 44.5 MJ/kg), yet, like hydrogen, the 

hurdle lies in its storage.64 In its liquid form, which requires cryogenic conditions to 

exist, natural gas possess only 72% of the volumetric energy density of gasoline.76 With 

any cryogenic storage vessel, the pressure build-up from the boil-off of the liquid 

requires that a release vent exist to prevent an explosion. Obvious safety concerns are 

present with the cryogenic storage tanks for liquid natural gas.76   
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The cryogenic requirement is lifted when natural gas is in the compressed gaseous 

state at 3000 psig, yet this provides only 26% of the volumetric energy density of 

gasoline. However, the expensive multi-stage compressors and high-pressure meters 

needed require a great deal of cost and energy to operate, and the compressed tanks are 

bulky and take up valuable on-board cargo space.76 Indeed, safety concerns arise 

whenever a substance is stored at a pressure as high as 3000 psig. 

Adsorbed natural gas, on the other hand, is able to be stored effectively at a much 

lower pressure of 500 psig.76 This lower pressure does not require the multi-stage 

compressors utilized with compressed natural gas systems meaning that the average 

automobile owner would be able to use a relatively inexpensive single-stage compressor 

to fill their tanks with natural gas at home. The maximum volumetric energy density 

achieved with adsorbed natural gas is approximately 20% that of gasoline.76 Although 

this means that an automobile powered by adsorbed natural gas could only travel one-

fifth as far as one powered by gasoline, the lower price and surplus of natural gas results 

in extracting more mileage per dollar spent. This, coupled with the lack of 

environmentally harmful emissions associated with gasoline, makes natural gas a very 

attractive fuel alternative. 

In order to use natural gas to power automobiles, the adsorbent on which the natural 

gas is adsorbed needs to be able to store natural gas to the point where the volumetric 

energy density approaches that of gasoline. When focusing on adsorbents, the adsorbate 

of which is most important is methane, as that is the primary component of natural gas. 

Although activated carbon materials have been promoted as one of the best adsorbents 
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for methane, MOFs can make up for the short comings exhibited in activated carbons. 

The consistency of the crystalline samples of MOFs that exists from sample to sample is 

lacking in activated carbons. Additionally, as previously discussed, the tailoring of the 

reagents involved in the MOF allows for better tunability and functionality than in 

activated carbon.77 For example, it is easier to synthesize a MOF that consistently has a 

pore diameter of approximately 8 Å, the optimal theoretical value (ignoring heat and 

mass transfer effects) at which each pore can accommodate two layers of methane, than 

an activated carbon where their pore sizes will vary from synthesis to synthesis.78 

Like hydrogen adsorption, methane adsorption in MOFs is a process generally 

governed by physisorption. In order to achieve the highest methane adsorption per mass 

or volume unit, the MOF should possess a largely accessible surface area, a high free 

pore volume, low framework density, and a strong interaction with the adsorbed 

methane molecules which can be measured by the isosteric heat of adsorption at low 

loadings.77,79 However, these properties often are inversely related to one another 

creating problems for MOF researchers. For example, an increase in the free volume of a 

pore will most certainly expand the opening of that pore thereby reducing the strength of 

the interaction with the methane and the pore wall.77  

However, unlike hydrogen, the 20 kJ/mol heat of adsorption for methane is already in 

the scope of practical usage.1 In an effort to guide the research, the Department of 

Energy (DOE) has set a storage goal of 180 v/v at ambient temperature and pressures not 

to exceed 35 bar by the end of 2010.80 In terms of energy density, this volumetric 

capacity is equivalent to the amount of methane compressed at 250 bar.81 Although 
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several carbon materials have surpassed this target, their limited packing density 

prohibits them from becoming viable materials for onboard methane storage.  

Additionally, it is very difficult to increase the surface areas of these materials as they 

appear to have nearly reached their maxima at approximately 3500 m2/g.81 In 2008, the 

Zhou lab exceeded this DOE goal with the microporous MOF PCN-14. With an absolute 

methane-adsorption capacity of 230 v/v at room temperature and 35 bar, this MOF 

exceeds the DOE goal by 28%.82 

Knowing where the methane is stored in PCN-14 enables researchers to design MOFs 

more suited for methane adsorption. Grand canonical Monte Carlo (GCMC) simulations 

performed on PCN-14 indicated that the primary adsorption site for methane was the 

open metal sites of the Cu2(CO2)4 paddlewheel.83 This is a result of the strong binding 

energy associated with the Coulombic attraction between the open metal site and the 

slightly polarized methane molecules.84 Although methane is a highly-symmetrical, 

nonpolar molecule, the unscreened interaction between the open metal ion and the 

methane molecule disturbs the charge distribution of the methane thereby breaking the 

Td symmetry resulting in multiple moments.84 It is this Coulomb attraction that is 

responsible for the extremely high initial isosteric heat of adsorption of 30.0 kJ/mol.84 

Although the primary adsorption site for methane is the open metal position of the 

dicopper paddlewheel, there exist other adsorption sites throughout the framework. A 

good deal of methane is located within the narrow, small cages created by the anthracene 

chains.83 Contributing to this attraction is the good geometrical matching of the 

tetrahedral methane and the deep potential pocket of the small cages which allows the 
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methane molecules to fit in perfectly.83 This results in an increase in the van der Waals 

forces which allows for a great deal of methane to be accommodated in the cage. As 

shown previously, methane molecules have preferential occupancy to smaller pores 

which can be attributed to the stronger confinement effects and dispersive and 

electrostatic interactions.85 The increase in van der Waals interactions, coupled with the 

Coulomb attraction of the open metal site, is what accounts for the strong adsorption 

sites and high uptake found in PCN-14. 

 

4.1.3 Molecular simulations 

Ideally, experimental isotherms and sorption experiments are performed to gain 

information on the properties of synthesized MOFs, such as surface area, pore volume, 

and gas adsorption capacity. However, when such experiments are unable to be 

performed, molecular simulations can give researchers a great deal of insight as to the 

potential applications for which a material might be useful. Of course, without real 

laboratory experimental data, simulations are only an indication of the possible 

properties of a MOF. 

All molecular simulations performed on the discussed MOFs were carried out using 

Metropolis GCMC simulations on Materials Studio 5.0 to simulate a rigid framework as 

opposed to a flexible one. Additionally, the simulations are calculated at a fixed volume, 

temperature, and chemical potential while varying the pressure from 0 – 101.33 kPa (1 

atm) for low pressure studies and 0 – 10000 kPa (100 bar). The GCMC simulation is 
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performed by randomly inserting, deleting, and rotating millions of sorbate molecules 

that are either accepted or rejected based on Boltzmann weighting.86 

Whenever a comparison is to be drawn between experimental and simulated 

adsorption data, the following needs to be understood: simulated isotherms in Materials 

Studio are reported in absolute adsorption (the total number of molecules present in a 

framework) whereas experimental data is commonly reported in excess amount adsorbed 

(the number of molecules adsorbed on the surface of a sorbent). These two amounts can 

be related to one another following Equation 2 where Nabs is the  absolute adsorption, 

Nex is the excess adsorption, p is the bulk density of the sorbate, and Vpore is the pore 

volume of the sorbent.16,86 

 

Equation 2. 

Nabs = Nex + pVpore 

 
 

With that in mind, the comparison between simulated and experimental isotherms have 

has been in good agreement in several reviews.86,87 However, there have been instances 

in which the simulated data has overestimated the quantity of adsorbent as a result of the 

discrepancy between the simulation treating the framework as a perfect, infinite crystal 

as opposed to the flawed crystals which often exist in experimental crystals. The 

preparation of samples regarding the evacuation of guest molecules, removal of guest 

molecules inside the pores, and partial framework collapse all have an impact on the 

amount of adsorbent adsorbed.86 
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The surface area and pore volume simulations performed also use a GCMC method 

where a probe sphere is randomly inserted around each atom in the framework to test for 

overlap.88 These results most closely agree with the BET method for experimentally 

calculating surface area using multilayer adsorption models.89 

 

4.1.4 Goals of research 

Armed with the knowledge of what makes a MOF a good candidate for hydrogen and 

methane adsorption, a MOF with an anticipated high hydrogen and methane adsorption 

capacity was designed. Based on the success of PCN-14, as well as both experimental 

and theoretical evidence, it stands to reason that increasing the number of aromatic rings 

in the ligand would result in an increase in both hydrogen and methane uptake. Both 

PCN-13 and PCN-14 contain an anthracene derivative as the ligand in the MOF with the 

difference between the two varying in the number of aromatic rings and the moiety of 

the carboxylates. 

 

4.2 Results and discussion 

 In an attempt to improve the results of PCN-14, the ligand precursor 4,4'-(9,9'-

bianthracene-10,10'-diyl)dibenzoic acid, a much larger ligand precursor than the ligand 

precursor used in PCN-14: 5,5′-(9,10-anthracenediyl)di-isophthalic acid, was 

synthesized as shown in Figure 9.  
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Figure 9.      Ligand precursors of PCN-14 and PCN-80 respectively. 
 

 

When allowed to react with Zn(NO3)2•6H2O in dimethylacetamide with a small 

amount of HBF4 for several days under solvothermal conditions, colorless block crystals 

of PCN-80 were formed. Single crystal X-ray diffraction was used to determine the 

atomic structure of the MOF (Table 2). The 3D framework interpenetrates itself three 

times resulting in a 25.59 x 25.68 x 25.87 Å framework. The result of the triple-

interpenetration structure is shown in Figure 10. When viewed from the other axes it 

would appear that PCN-80 does not possess any dimensional channels as shown in 
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Figure 11. However, as shown in Figure 12, there exist channels that are 9.33 Å wide 

and vary in height from 4.77 – 6.16 Å.  

 

 

Figure 10.   Extended structure of PCN-80 as viewed down the [1 0 0] direction. 
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Table 2.      Crystal data, data collection, and structure refinement for PCN-80. 

 
Identification code  PCN-80 

Empirical formula  C394H252N4O43Zn12 
Formula weight  6514.44 

Temperature  213(2) K 
Wavelength  0.71073 Å 

Crystal system  Triclinic 
Space group  P -1 

Unit cell dimensions a = 25.586(15) Å, a= 91.596(7)° 
b = 25.675(15) Å, b= 93.763(8)° 

c = 25.869(15) Å, g = 103.323(7)° 
Volume 16485(17) Å3 

Z 1 
Density (calculated) 0.656 Mg/m3 

Absorption coefficient 0.464 mm-1 
F(000) 3348 

Crystal size 0.70 x 0.60 x 0.50 mm3 
Theta range for data 

collection 1.87 to 25.91°. 

Index ranges 
-31<=h<=26, -31<=k<=31, -

22<=l<=31 
Reflections collected 101144 

Independent reflections 62088 [R(int) = 0.1217] 
Completeness to theta = 

25.91° 96.70% 
Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8012 and 0.7371 
Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 62088 / 718 / 985 
Goodness-of-fit on F2 1.034 

Final R indices [I>2sigma(I)] R1 = 0.1229, wR2 = 0.2490 
R indices (all data) R1 = 0.2670, wR2 = 0.2638 

Largest diff. peak and hole 0.598 and -0.911 e.Å-3 



 

Figure 11.   Extended crystal structure of 

[0 0 1] direction. 

 
 

Extended crystal structure of PCN-80 viewed down the a) [0 1 0

46 

 

1 0] and the b) 
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Figure 12.     Space-filling model of PCN-80 indicating the presence of channels large 

enough for both hydrogen and methane gas to pass through. 

 
PCN-80 crystallizes in the P-1 space group with a cell volume of approximately 1700 

Å3. PCN-80 is structurally unique as it possesses SBUs that display some rather 

uncharacteristic coordination geometries. Figure 13 shows the unit cell of PCN-80. 

Traditionally, each zinc atom in a Zn4O is tetrahedral in geometry, as shown in Figure 

14. Within this cell, there exist unique SBUs in which one of the Zn atoms possesses a 

nearly perfect octahedral coordination environment as shown in Figure 15. To the best of  
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Figure 13.   Unit cell of PCN-80 viewed down the [1 0 0] direction (non-coordinated 

solvent molecules removed for clarity. 
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Figure 14.    Traditional Zn4(O)(CO2)6 SBU compared to the Zn4O SBU of PCN-80. 
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Figure 15.   Unique SBU of PCN-80. All carbons and hydrogens removed for clarity; 

oxygen atoms numbered on Zn 2 and Zn 4 to display the traditional tetrahedral and 

unique octahedral geometries, respectively; selected bond lengths (Å) and angles (deg.) 

O(1)-Zn(1) 1.882(1), O(1)-Zn(2) 1.952(9), O(1)-Zn(3) 1.911(1), O(1)-Zn(4) 2.027(9), 

Zn(2)-O(2) 1.970(7), Zn(2)-O(3) 1.946(8), Zn(2)-O(4) 1.967(6), Zn(4)-O(5) 2.045(9), 

Zn(4)-O(6) 2.099(1), Zn(4)-O(7) 2.164(1), Zn(4)-O(8) 2.107(1) Zn(4)-O(9) 2.075(1), 

Zn(4)-O(1)-Zn(1) 109.66(2), Zn(1)-O(1)-Zn(2) 109.35(2), Zn(2)-O(1)-Zn(3) 107.68(2), 

Zn(3)-O(1)-Zn(4) 113.70(2), O(1)-Zn(2)-O(2) 110.93(2), O(2)-Zn(2)-O(3) 105.95(2), 

O(3)-Zn(2)-O(4) 99.71(2), O(4)-Zn(2)-O(1) 122.73(2), O(1)-Zn(4)-O(8) 95.43(2), O(8)-

Zn(4)-O(5) 89.69(2), O(5)-Zn(4)-O(6) 93.06(2), O(6)-Zn(4)-O(7) 88.00(2), O(7)-Zn(4)-

O(8) 89.06(2), O(9)-Zn(4)-O(6) 89.52(3), O(9)-Zn(4)-O(1) 178.39(2), O(8)-Zn(4)-O(6) 

173.53(2), O(5)-Zn(4)-O(7) 177.78(2). 
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the author’s knowledge, this is the first example of a Zn4O SBU that possesses an 

octahedral Zn atom. In this SBU, three Zn atoms adopt the Zn4O geometry while one of 

the Zn atoms adopts that of a Zn paddlewheel. 

The 4,4'-(9,9'-bianthracene-10,10'-diyl)dibenzoate ligand adopts a unique twist 

between the anthracene rings in the structure of PCN-80. The crystallized form of 9,9-

bianthraceneyl adopts an almost perfect twist of 90° between the two anthracene 

chains.90 In close accordance with this is the 86.16° twist between the anthracene chains 

in 4,4'-(9,9'-bianthracene-10,10'-diyl)dibenzoate of PCN-80. The similarities between 

the two linkers can be viewed in Figure 16. The length of the ligand, which is over 18.5 

Å from carboxylate carbon to carboxylate carbon through space (Figure 16), is 

extremely long for a linear, ditopic ligand. This is the primary cause of the three-fold 

interpenetration of PCN-80. However, the fact that the ligand was not significantly 

altered indicates that in the absence of a three-fold interpenetration, PCN-80 would most 

likely possess a rigid, robust framework. 

 

 

 
 
 

 
 



 

 

  
 
 
Figure 16.     9,9’-bianthraceneyl and 4,4'

angles between the anthracene rings (hydrogens removed for clarity) (

86.16°).  

 

Gas adsorption measurements were attempted, yet the crystal is not stable when 

exposed to the air. This decomposition can be attributed to the exposure to atmospheric 

water which results in an amorphous product. X

containing Zn4O SBUs verif

bianthraceneyl and 4,4'-(9,9'-bianthracene-10,10'-diyl)dibenzoate twist 

angles between the anthracene rings (hydrogens removed for clarity) (Θ1 = 90.88°, 

measurements were attempted, yet the crystal is not stable when 

exposed to the air. This decomposition can be attributed to the exposure to atmospheric 

water which results in an amorphous product. X-ray powder studies on crystals 

O SBUs verify this decomposition by the appearance of new peaks in 
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measurements were attempted, yet the crystal is not stable when 

exposed to the air. This decomposition can be attributed to the exposure to atmospheric 

ray powder studies on crystals 

y this decomposition by the appearance of new peaks in 
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powder patterns after atmospheric exposure ranging from 10 minutes to 24 hours.91 

Anaerobic preparation of crystal samples enables the stability required to perform such 

measurements, yet has not been carried out to date.  

In order to gain a better understanding of the potential properties of PCN-80, 

molecular simulations using Materials Studio 5.0 were conducted to determine surface 

area, pore volume, and adsorption capacities.. The molecular simulation revealed a 

surface area of 3801 m2/g with a crystal density of 0.656 g/cm3. The pore volume was 

calculated to be 0.74 cm3/g; this volume is rather high considering the three-fold 

interpenetration and bulkiness of the ligand. Figure 17 shows the simulated hydrogen 

adsorption isotherm from 0 to 101.33 kPa at 77 Kelvin. The type I behavior indicates a 

microporous framework while the maximum adsorption of 258.65 units of hydrogen per 

molecular unit of PCN-80 correlates to a gravimetric hydrogen adsorption of 7.43 weight 

percent; this correlates to a volumetric loading capacity of 61.47 g/L. Although these 

calculations were performed at 77 K, PCN-80 surpasses the gravimetric and volumetric 

storage targets for 2010, 6 weight percent and 45 g/L, respectively.  
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Figure 17.   Simulated H2 adsorption isotherm for PCN-80.  
 

 
 

The simulation performed in Materials Studio 5.0 also identified the location of the 

adsorbed gases. The high hydrogen adsorption capacity of PCN-80 is a direct result of 

the structure of PCN-80. As shown in Figure 18. Continued 

 b) on page 55, a good deal of the adsorbate is located around the Zn metal cluster, as 

is customary for MOF-based adsorbents. The hydrogen is also focused around the center 

of the bianthryl center of the ligand, which supports the claim that an increase in 

aromatic rings increases the adsorption of hydrogen. The fact that interpenetration in the 

frameworks PCN-6 and PCN-9 improved the hydrogen adsorption capacity may also 

explain the high adsorption capacity of PCN-80, as it is triply interpenetrated as opposed 
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to the doubly interpenetrated networks of PCN-6 and PCN-9.92,93 The relatively high 

heat of adsorption of 10.14 kJ / mol at 101.33 kPa  not only ranks among the highest of 

reported MOFs but also indicates the strong attraction between the hydrogen and the 

framework. 

 

a)  

Figure 18. a) Simulated H2 adsorbate location at 101.33 kPa and b) space-filling model 

of the hydrogen in the channel of PCN-80. 
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b)  

Figure 18. Continued 
 

 

As a result of the exceptionally high hydrogen uptake at low pressure, a high pressure 

adsorption isotherm was simulated on Materials Studio 5.0; the isotherm conditions were 

set at 77 K while the pressure was varied from 0 – 10000 kPa. As shown in Figure 19, 

the adsorption continues to gradually rise at pressures as high as 10000 kPa (100 bar), a 

pressure still deemed as safe for on-board hydrogen storage.67 Reaching a maximum 

storage of 9.20 weight percent (75 g/L) PCN-80 ranks among the highest in percent 
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weight hydrogen adsorbed and, to the author’s knowledge, possesses the highest 

volumetric storage capacity of all MOF materials at high pressure.  

 

 

Figure 19. Simulated high pressure hydrogen adsorption isotherm for PCN-80. 

 

Figure 20 shows the isosteric heats of adsorption for hydrogen as a function of weight 

percent of hydrogen adsorbed by PCN-80 at high pressure. The Qst initially decreases 

sharply and then slowly increases. This indicates that at higher pressures, the framework 

still has a strong attraction to the adsorbed hydrogen; this also shows that the hydrogen is 

not merely “trapped” yet is interacting with the framework. This is more than likely a 

combined effect of the high surface area, eight aromatic rings of the ligand, and the 

three-fold interpenetration, all elements which have been proposed to increase the 
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adsorption of hydrogen.1,16,25,67 These attributes associated with high pressure 

adsorption, as well as those at ambient pressure, makes PCN-80 quite an attractive 

candidate for hydrogen storage. 

 

 

Figure 20.  Isosteric heats of adsorption for hydrogen. 

 
 

Figure 21 displays the simulated isotherm for methane adsorption at 298 K from 0 to 

101.33 kPa resulted in a maximum adsorption of 45 units of methane per molecular unit 

of PCN-80. This corresponds to a maximum uptake of 9.59 weight percent. This 

methane adsorption corresponds to a volumetric uptake of 78.47 g/L, which is equivalent 

to 97.09 v/v at standard pressure and temperature. Although the weight percent of 

methane stored is on the higher range of MOFs, the v/v uptake is 44% of that of PCN-14 
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(220 v/v).1,82 However, PCN-14 adsorbed 220 v/v at 35 bar; PCN-80 was examined only 

at low pressures. 

 

 
Figure 21.   Simulated methane adsorption isotherm for PCN-80. 

 

 

The methane adsorption simulation revealed that PCN-80 possesses an isosteric heat of 

adsorption of 27.93 kJ/mol. This value is among the highest reported for MOFs and to 

the author’s knowledge, is exceeded only by PCN-14, the record holder for methane 

adsorption in a MOF. Additionally, this lends further validity to the notion that an 

increase in the number of aromatic rings of the ligand increases the affinity of the 

framework for methane.77,82,94  
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4.3 Future work 

The next immediate step that needs to occur is the air-sensitive workup of a crystal of 

PCN-80 to prevent contact with the atmosphere. This would prevent the decomposition 

of the crystals that is preventing the necessary experimental isotherm data. The PCN-80 

crystals can be worked up in a glovebox; the solvent exchange can take place with dry, 

anhydrous solvents and the crystals can be charged in a Schlenk flask and transferred to 

a vacuum line to remove solvent and guest molecules, thus completely isolating the 

crystals from any exposure to oxygen. 

Crystals obtained by the solvothermal reaction of BADBA2- with Cu(NO3)2•2.5H2O  

are highly desirable for two reasons: Cu frameworks are usually more stable, and Cu 

MOFs have been shown to possess a higher adsorption capacity for hydrogen.95 To 

prevent decomposition when exposed to the atmosphere, as well as to increase hydrogen 

adsorption capacity, efforts have been taken to form a framework with the BDBA2- 

ligand and Cu(NO3)2•2.5H2O. Thus far, crystals have yet to be obtained as reaction 

conditions have only resulted in powder precipitate. Further reaction conditions must be 

tested using a high-throughput method in order to obtain a suitable single crystal. Once 

obtained, the crystal should possess the Cu2(CO2)4 paddlewheel SBU. With this, the 

crystal is expected to be stable to atmospheric conditions and an experimental isotherm 

will be available to determine surface area, adsorption capacity, and the size of the pore 

opening, should the structure possess an accessible cage. More so, assuming axial 

coordination to the Cu atoms by solvent or guest molecules, removal of the guests 
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should result in a SBU with open metal sites on the axial positions of the Cu atoms, thus 

further enhancing the binding ability as previously explained. 

Perhaps the most anticipated result concerning the bianthryl systems involves the 

ligand precursor 4,4’-(9,9’-bianthracene-10,10’-diyl)di-isopthalate as it’s isopthalic 

moiety is a true isoreticular extension of the ligand used in PCN-14, (9,10-

anthracenediyl)di-isophthalate. This ligand precursor has been isolated and 

characterized, yet to date no crystals have resulted from the reaction with either Cu or Zn 

salts. The resultant MOF should form the paddlewheel SBU as the isophthalic moiety 

lends itself to form paddlewheel SBUs.82 By increasing the length of the ligand, it stands 

to reason that the surface area will also increase. As shown with PCN-80, the attractive 

forces between the hydrogen and the aromatic rings results in localization of the gas 

around the ligand even in light of an absence of cages and channels in the framework. 

The increase in surface area should result in an even higher adsorption of hydrogen. 

 

4.4 Synthesis 

Synthesis of 9,9’-bianthryl: 

9,10-Anthracenedione (5.00 g, 24.0 mmol) and a stirbar were charged in a 200 mL 

roundbottom flask. Mossy tin (20 g, 166.80 mmol) was cut up into small pieces and 

added to the flask. Glacial acetic acid (50 mL) was added and the solution was heated to 

reflux. When reflux was achieved, a delivery funnel was attached and 35 mL of 

hydrochloric acid was added dropwise to the solution over a period of two hours. Upon 

completion of the acid delivery, the heat was turned off and the reaction was stirred over 
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night. The next day, the precipitate was filtered off and recrystallized in hot toluene. The 

hot solution was filtered to remove chunks of tin and allowed to cool in the freezer. 

Greenish-yellow crystals appeared after two days and were isolated. Yield: 25.91% (2.20 

g, 6.21 mmol) 1H NMR (DMSO-d6): δ 8.87 (s, 2 H), δ 8.25(d, J = 8.4 Hz, 4 H), δ 7.49 (t, 

J = 7.2 Hz, 4 H), δ 7.18 (m, 4 H), δ 6.89 (d, J =8.7 Hz, 4 H). 

 

Synthesis of 10,10’-Dibromo-9,9’-bianthryl: 

9,9’-bianthryl (1.8 g, 5.08 mmol) was charged in a 500 mL round-bottom flask dissolved 

in 100 mL of dichloromethane with the aid of a stirbar and heat. The flask was stirred 

vigorously and cooled to 0 °C and a solution of bromine (0.6 mL, 11.79 mmol) in 100 

mL of dichloromethane was added dropwise over a period of two hours with the aid of 

an open delivery funnel. The reaction was allowed to warm to room temperature and 

stirred overnight. The following day, the solvent was removed via rotavap and 

approximately 150 mL of ethanol was added. The solution was brought to reflux and 

refluxed for one day to remove impurities. The precipitate was filtered and collected to 

yield pure yellow flakes of 10,10-dibromo-9,9’-bianthryl. Yield: 46.63% (1.21 g, 2.37 

mmol) 1H NMR (DMSO-d6): δ 8.62 (d, J = 9.0 Hz, 4 H), δ 7.69 (t, J = 8.1 Hz, 4 H) δ 

7.29 (t, J = 6.9 Hz, 4 H) δ 6.95 (d, J = 8.7 Hz, 4 H). 

 

Synthesis of 4,4’-(9,9’-bianthracene-10,10’-diyl)dimethylbenzoate: 

10,10’-Dibromo-9,9’-bianthryl (2.61 g, 5.12 mmol), 4-

methoxycarbonyl)phenylboronic acid (2.85 g, 15.83 mmol), sodium carbonate (1.63 g, 
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15.38 mmol), and tetrakis(triphenylphosphine)palladium(0) (0.42 g, 0.36 mmol), and a 

stir bar were charged in a 250 mL round bottom Schlenk flask fitted with a condenser. 

The flask was filled with nitrogen and evacuated three times. 50 mL of tetrahydrofuran, 

50 mL of toluene, and 17 mL of water were combined in a flask, degassed, and 

transferred to the reaction flask. The mixture was heated to reflux and the reaction was 

stirred for one day. The following day, the reaction was quenched with water and the 

crude product was extracted three times with diethyl ether. The organic layer was 

washed with water followed by brine. The crude product was separated by column 

chromatography from an ethyl acetate / hexane mixture ranging from 5 – 50%. The pure 

product was the last to elute and was collected as a bright yellow solid. Yield: 81.9% 

(2.61 g, 4.19 mmol) 1H NMR (DMSO-d6): δ 8.32 (d, J = 9.00 Hz, 4 H), δ 7.83 (d, J = 

7.35 Hz, 4 H), δ 7.67 (d, J = 9.00 Hz, 4 H), δ 7.45 (t, J = 7.80 Hz, 4 H), δ 7.29 (t, J = 

6.60 Hz, 4 H), δ 7.07 (d, J = 8.7 Hz, 4 H), δ 3.99 (s, 6 H). 

 

Synthesis of 4,4’-(9,9’-bianthracene-10,10'-diyl)dibenzoic acid: 

4,4'-(9,9'-bianthracene-10,10'-diyl)dimethylbenzoate (0.107 g, 0.172 mmol) and 

sodium hydroxide (0.17 g, 4.25 mmol) were dissolved in 10 mL of water and stirred 

overnight at 50 °C. The following day, the mixture was cooled, filtered to remove the 

inorganic solids, and acidified with hydrochloric acid. The hydrolysis produced a bright 

yellow solid which was filtered, dried in an oven, and determined pure.  
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Yield: 74.4% (0.076 g, 0.13 mmol) 1H NMR (DMSO-d6): δ 13.18 (s, OH), δ 8.29 (d, J = 

8.4 Hz, 4 H), δ 7.79 (d, J = 8.4 Hz, 4 H), δ 7.69 (d, J = 9 Hz, 4 H), δ 7.46 (t, J = 8.1 Hz, 4 

H), δ 7.29 (t, J = 8.7 Hz, 4 H), δ 7.09 (d, J = 8.7 Hz, 4 H). 

 

Synthesis of PCN-80: 

Employing a reaction ratio of 3 : 1 metal to ligand ratio: 7.00 mg of Zn(NO3)2·6H2O 

and 4.60 mg of H2BADBA were dissolved in 1.5 mL of DMA and 1 drop of 

tetrafluroboric acid in a small, 0.5 dram vial. The vessel was sonicated to ensure 

complete mixture and then placed in an oven at 85 °C for seven days. Clear, block 

crystals which decomposed (confirmed by visual cracking of crystals when viewed 

under a microscope) were isolated and characterized by single crystal X-ray diffraction. 
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CHAPTER V 

SY�THESIS OF TWO-DIME�SIO�AL FRAMEWORK A�D RELATIO�SHIP 

BETWEE� AROMATIC RI�GS A�D FRAMEWORK PROPERTIES 

 

5.1 Introduction and research objectives 

Following the synthesis of PCN-80, an interest was taken in what properties will result 

in a framework when the number of aromatic rings present in the ligand is increased. 

Starting with 1,4 benzenedicarboxylic acid, a comparison can be made as to the effects 

of systematically extending the ligand from a benzene to a naphthalene to an anthracene 

to a bianthryl and finally to an extended bianthryl ligand as shown in Figure 22. By 

utilizing a linear, ditopic ligand, the formation of a framework is guaranteed. Comparing 

the effects of extending the aromatic rings contained in the ligand with respect to surface 

area, pore opening and volume, and gas uptake will lend insight as to exactly how to 

optimize these ditopic ligands for the most desirable properties. To alleviate the effect of 

the metals on the properties of these selected MOFs as much as possible, all MOFs used 

in the following were synthesized with zinc salts. The SBU that is formed is a factor of 

synthetic conditions as well as kinetic and thermodynamic factors that are beyond the 

scope of control for this study.  
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Figure 22.   Stepwise growth of linear, ditopic ligands: a) BDC2- b) NDC2- c) ADC2- d) 

BADC2- e)  BADBA2-. 
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5.2 Results and discussion 

1,4-benzenedicarboxylicacid (H2BDC) was the ligand utilized by the Yaghi lab in the 

formation of the most infamous MOF to date. The diffusion of triethylamine into a 

solution of H2BDC and Zn(NO3)2 in a mixture of DMF and chlorobenzene with a small 

amount of H2O2 resulted in the formation of Zn4O(BDC)3·(DMF)8(C6H5Cl), otherwise 

known as MOF-5.60 In this structure, Zn4O inorganic clusters are connected to an 

octahedral array of BDC groups to form the Zn4(O)(CO2)6 SBU.96 The connection of the 

ligand and SBU creates square openings that form two distinct cages which are 

differentiated by the orientation of the aromatic rings. One cage has all of the faces of 

the aromatic rings facing towards the center of the pore whereas the other cage has the 

edges of the aromatic rings pointing towards the pore.97 The window openings for MOF-

5 are approximately 7.8 Å at temperatures below 298 K.  

The physical properties and adsorption data for MOF-5 has been met with scrutiny.16 

Originally, the authors estimated the Langmuir surface area to be 2900 m2/g.60 Later 

studies by the same researchers found the Langmuir surface area to be 4171 m2/g.98 

Deviations in the range of 1014 to 4400 m2/g exist in the literature.16,99,100 Likewise, the 

BET surface areas have been reported in the range from 572 to 3800 m2/g.99,100 The H2 

adsorption data at 77K and 1 atm is fairly agreeable with the highest reported value 

being 1.32 wt%.100 These discrepancies exist as a result of varying sample preparations 

as the Zn4O core is known to be high sensitive to atmospheric moisture and exposure 

may result in an unstable framework thereby yielding unreliable data.91 
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While retaining the linear, ditopic moiety, the Yaghi group used 1,4 

napthalenedicarboxylic acid (H2NDC) as an isoreticular ligand. The vapor diffusion of a 

solution of H2O2 and a chlorobenzene – triethylamine mixture into a solution of DMF 

and chlorobenzene containing Zn(NO3)2·6H2O and H2NDC yielded MOF-48.101 Having 

the molecular formula, Zn6(NDC)5(OH)2(DMF)2·4DMF, MOF-48 contains a hexameric 

building block SBU; ten NDC units bridge the Zn centers in a dimonodentate fashion.101 

This three-dimensional framework possesses one-dimensional channels with an opening 

of 6.2 Å in diameter.101 MOF-48 has the same general structure of MOF-5 with 

simulated calculations revealing a pore diameter of approximately 13.6 Å.61
 MOF-48 

has the same pore dimensions as MOF-5, yet the windows allowing access to the pores 

are diminished by the presence of the additional aromatic ring the naphthalene. When in 

the most optimal, sterically favored position with two of the naphthalenes on opposite 

sides of the window are directed towards the window. This creates a window opening of 

approximately 2.1 Å compared to 7.8 Å for MOF-5.97 No experimental BET surface 

area, pore volume, or gas adsorption measurements are reported in the literature, 

presumably due to the high degree of instability of the MOF.  
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To add one more aromatic ring while keeping the same linear, ditopic carboxylic acid 

scheme results in the ligand precursor 9,10-anthracenedicarboxylic acid (H2ADC). It had 

been predicted that H2ADC would form a three-dimensional MOF, the theoretical MOF-

993, with Zn4O cluster SBUs that would have exceptional methane storage capacity and 

a high heat of adsorption.77 The actual reaction between H2ADC and Zn(NO3)2·6H2O 

under solvothermal conditions produced light-brown crystals of PCN-13 with the 

formula Zn4O(H2O)3(C16H8O4)3·2DMF.102 As theorized by Snurr et al., this MOF 

contains the Zn4O metal cluster at its metal center. However, PCN-13 contains an 

unusually distorted SBU in which only one of the zinc atoms is four-coordinated while 

the other three are five-coordinated; more so, the three five-coordinated zinc atoms are 

aligned forming an overall trigonal pyramidal geometry as opposed to the traditional 

tetrahedral center normally associated with Zn4O(COO)6 SBUs.102 This distortion is 

brought on by the bulkiness of the ADC ligand which opens a previously inaccessible 

coordination site that an aqua ligand occupies, thus forming a distorted trigonal 

bipyramidal geometry around the basal zinc atoms.102 No interpenetration exists within 

the framework despite the bulkiness of the ligand. 
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As a result of the bulkiness of the ligand, as well as the additional aqua ligands on 

some the zinc atoms, the access to the pores is extremely limited; the opening to the 

pores is restricted to 3.5 × 3.5 Å.102 This opening is too small to allow for the adsorption 

of methane, with a kinetic diameter of 3.76 Å, as predicted, yet was proposed to be 

useful in the separation of gases. The BET surface area was calculated to be 150 m2/g 

with a pore volume of 0.10 cm3/g; hydrogen uptake measurements at 77 K was measured 

to be 0.6 wt%.102 

The stepwise growth from H2ADC to 9,9’bianthryl-10,10’dicarboxylicacid (H2BADC) 

is the next step in the growth of the linear, ditopic ligand series. H2BADC was 

synthesized from a modified procedure (vide infra). The reaction between H2BADC and 

Zn(NO3)2·6H2O under solvothermal conditions produced block crystals PCN-81 which 

were characterized by X-ray diffraction (Table 3). PCN-81, a two-dimensional MOF, 

crystallizes in the space group C 2/c. In contrast to its three-dimensional block crystals, 

PCN-81 is a layered, non-porous framework as shown in Figure 23 and Figure 24. PCN-

81 contains the zinc paddlewheel motif as its SBU with solvent molecules occupying the 

(Figure 25).  
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Table 3.    Crystal data, data collection, and structure refinement for PCN-81. 

 
 

Identification code  PCN-81 

Empirical formula  C68H50Cl0N2O10Zn2 
Formula weight  1185.84 

Temperature  110(2) K 
Wavelength  0.71073 Å 

Crystal system  Monoclinic 
Space group   C 2/c 

Unit cell dimensions a = 21.759(2) Å, a= 90° 
b = 21.479(2) Å, b= 91.4280(10)°  

c = 11.3450(11) Å, g = 90° 
Volume 5300.7(9) Å3 

Z 4 
Density (calculated) 1.486 Mg/m3 

Absorption coefficient 0.973 mm-1 
F(000) 2448 

Crystal size 0.20 x 0.18 x 0.18 mm3 
Theta range for data 

collection 1.87 to 28.33° 

Index ranges 
-28<=h<=28, -28<=k<=28, -

15<=l<=15 
Reflections collected 32471 

Independent reflections 6601 [R(int) = 0.1030] 
Completeness to theta = 

28.33° 99.60% 
Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8443 and 0.8291 
Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6601 / 5 / 373 
Goodness-of-fit on F2 1.049 

Final R indices [I>2sigma(I)] R1 = 0.0621, wR2 = 0.1452 
R indices (all data) R1 = 0.1091, wR2 = 0.1662 

Largest diff. peak and hole 1.791 and -1.547 e.Å-3 
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Figure 23.   Extended framework of PCN-81 viewed down the [0,0,1] axis. 
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Figure 24.   Views of PCN-81 from the a) [1,0,0} and b) [0,1,0] axes demonstrating the 

layered structure and lack of porosity. 
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Figure 25.    Zn paddlewheel of PCN-81 with solvent molecules coordinated in the axial 

positions. 

 

As with BADBA2-, the BADC2- ligand deviates from the ideal 90° twist angle present 

in bianthryl as shown in Figure 26. The formation of a two-dimensional layered 

framework is unexpected considering the twist angle of approximately 90° that is present 

in BADC2-. A two-dimensional framework is usually the result if paddlewheel SBUs are 

linked together with linear, planar, ditopic ligands.103 However, for ligands that posses a 

90° twist, a three-dimensional periodic network with the nbo topology is usually 

produced.104 However, one must always be careful when assigning reticular properties to 
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solvothermal MOF reactions, as there are a multitude of factors which can influence the 

final structure. 

 

Figure 26.    Structure of the ligand BADC2-; the twist angle between the anthracene 

rings is 92.55°. 

Molecular simulations were performed using Materials Studio 5.0. Figure 27 shows 

the simulated hydrogen adsorption isotherm which correlates to a maximum adsorption 

of 4.08 molecules of hydrogen per unit cell of PCN-81. The steep slope of the adsorption 

isotherm from 0 – 10 kPa is often present in frameworks with small pores. These small 

pores within the two-dimensional framework are responsible for the low hydrogen 

adsorption of 0.68 weight percent. However, the extremely high heat of adsorption of 

12.19 kJ/mol indicates that what hydrogen is adsorbed interacts very strongly to the 
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framework. Evidence for the strong heat of adsorption is displayed in the steep rise in 

the adsorption isotherm of Figure 27. However, the flattening out at low pressures is 

indicative of the general lack of porosity present in PCN-81. Figure 28 shows the 

location of the simulated hydrogen adsorption. 

 

 

Figure 27.    Simulated hydrogen adsorption isotherm for PCN-81 at 77 K. 
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a)  
 

b)  
 

Figure 28.     a) Simulated hydrogen adsorption in the unit cell of PCN-81; the red dots 

indicate the location of the adsorbed hydrogen and b) enlarged view of hydrogen 

adsorption above the anthracene rings (interwoven rings removed) with the scale of red 

to green of the hydrogen correlating to lower and higher bonding energies. 
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5.3 Comparison of frameworks 

Table 4 highlights the data of the comparison. No distinct relationship was determined 

between the number of aromatic rings and any of the selected properties. With regard to 

hydrogen adsorption, it should be mentioned that improvements in gravimetric hydrogen 

uptake are often offset by the accompanying increase in density of the MOF.105 

Therefore, it is important to view the two properties not as individual entities but as 

functions of one another. If the increase in crystal density is a result of increasing the 

bulkiness of the ligand in an attempt to reduce the pore size, then the total hydrogen 

uptake will most likely increase.16,106,107 However, in terms of adsorption by weight 

percent, this gain in adsorption will be offset by the overall increase in the molecular 

weight of the MOF. A balance between the two variables must be reached for an 

adsorbent to be utilized as a storage material for hydrogen.  

Figure 29 visually illustrates the relationship between density and hydrogen adsorption 

for the study of the five chosen MOFs. PCN-80 is clearly the most attractive candidate 

for hydrogen adsorption as the hydrogen adsorbed by weight percent is nearly four times 

as great as that of MOF-5 while the crystal densities are fairly comparable. The other 

three MOFs have both extremely high crystal densities with very low hydrogen 

adsorption.  
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Table 4.     Selected properties of stepwise increase in aromatic rings of MOFs’ 

ligands. Hydrogen adsorption measurements taken under conditions of 77 K and 1 atm. * 

indicates lack of experimental data and therefore value was calculated from GCMC 

using Materials Studio 5.0. All data for PCN-80 and PCN-81 was calculated from 

GCMC simulations. 

 

MOF Ligand 
Density 

(g/cm3) 

Surface 

Area 

(m2/g) 

Pore 

Volume 

(cm3/g) 

H2 

Uptakea 

(wt. %) 

Ref. 

MOF-5 BDC2- 0.59 2885 1.18 1.15 60,108 

MOF-48 NDC2- 2.12* 710* 0.048* 0.44* 61 

PCN-13 ADC2- 1.24* 150 0.10 0.6 102 

PCN-81 BADC2- 1.49 156 0.0035 0.68  

PCN-80 BADBA2- 0.66 3801  0.74  7.43  

 
 



 

Figure 29.  Comparison of framework densities with hydrogen adsorption at 77 K; a 

general trend exists in that the higher the crystal density, the lower the hydrogen uptake 

in weight percent. 
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5.4  Future work 

Along the c axis [0 0 1] the axial positions of the Zn paddlewheel are occupied by 

solvent molecules (Figure 25). The addition of a small, linear ditopic bridging ligand, 

such as 4,4’-bipyridine or pyrazine to name a few, to the solvothermal reaction may 

preferentially bind to the axial positions of the zinc atoms. If the binding atom is a 

nitrogen the chances of the bridging ligand binding to the metal instead of the solvent 

increases since the nitrogen atoms are more nucleophilic than oxygen atoms which will 

result in a better orbital overlap. The result of this would transform the 2D sheet of PCN-

81 into a 3-D framework (which may or may not possess useful porosity)5  by utilizing 

the bridging ligand to pillar the sheets. The choice of bridging ligand is crucial to the 

success of this potential extension. In order to ensure that the zinc paddlewheel unit is 

not altered, a neutral bridging ligand must be utilized. If an anionic ligand is employed in 

the reaction, the oxidation of the metal cluster will change to ensure charge balance. This 

could alter the SBU and the intended elongation along the [0 0 1] axis may not occur. 

With the eight aromatic rings present in BADBA2- studies involving luminescence 

should be pursued. MOFs have been explored for their potential applications as 

luminescent materials with specific focus on fluorescent sensors and light emitting 

devices (LEDs)109-112 Due to the chemical and thermal stability of MOFs, they have been 

suggested as superior replacements to organic molecules and polymers in regard to their 

luminescent properties.109 The effects leading to such fluorescent behaviors include  

metal-centered luminescence, metal-to-ligand charge transfer,  ligand-to-metal charge 

transfer,  ligand-to-ligand charge transfer,  ligand-centered  luminescence,  and metal-to-
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metal charge transfer, metal-based emission, antennae effects, and adsorbate-based 

emission due to guest incorporation.21 The study of MOFs being used for luminescent 

applications is in its infancy. 

PCN-81, and PCN-80 for that matter, should be studied extensively for their 

luminescent properties. As a result of the bianthracene-based ligands that compose these 

MOFs displaying luminescent properties when dissolved in organic solvents such as 

dichloromethane (Figure 31), the luminescence of these MOFs is likely to be ligand 

based. Additionally, the metal ions of these MOFs should have a negligible influence on 

the electronic structure of the ligands as well as the cumulative effect of the interaction 

of multiple ligands as a result of the filled d-orbital of the Zn(II) metal ions.21 More so, 

the increased conjugation of the ligands lowers the energy gap of the π – π* transition 

making the energy transfer to metal-based states much less desireable.21 The adsorbance 

of guest molecules into the pores of PCN-80 or PCN-81, after the modifications 

necessary on the MOFs to create viable pores, may result in immobilization of the guest 

within close proximity to the source of luminescence which could lead to some 

interesting modification of the luminescence or new behavior altogether.21 Much 

research needs to be done not only in the field of luminescent MOFs, but also in regards 

to the luminescent properties of PCN-80 and PCN-81.  
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Figure 31. Luminescence of H2BADBA when exposed to UV lamp; pure compound 

dissolved in dichloromethane. 

 

5.5 Synthesis 

Synthesis of 9,9’-bianthracene-10,10’-dicarboxylic acid: 

835 mg of 10,10’-dibromo-9,9'-bianthryl dissolved in 20 mL of dry diethyl ether and a 

stir bar were charged in a 50 mL Schlenk flask. The flask was filled with nitrogen and 

evacuated three times and then cooled to -78 °C with the aid of a dry ice – acetone bath. 

2.7 mL of butyl lithium was added via a syringe causing the solution to turn from yellow 

to brownish-orange. The reaction was stirred at 20 minutes at -78 °C and then allowed to 

warm to room temperature where it was stirred for an additional 20 minutes. Dry ice was 
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placed in a large flask and a septum was attached. A needle attached to a bubbler filled 

with sulfuric acid through Tygon tubing was inserted into the septum. Tygon tubing was 

attached to the other end of the bubbler where a canula delivered the dry carbon dioxide 

gas into the reaction mixture. After five minutes of addition, the nitrogen was turned off 

and a vent needle allowed the excess carbon dioxide to escape. After 75 minutes, 10 mL 

of water was slowly added. A violent reaction occurred upon the addition of the water, 

so slow delivery was extremely important. 10 mL of diethyl ether was then added and 

the aqueous phase was washed with diethyl ether twice and acidified with 1 M sulfuric 

acid to yield 480 mg (66 % yield) of pure 9,9’-bianthracene-10,10’-dicarboxylic acid. 1H 

NMR (DMSO-d6): δ 14.0 (broad, OH), δ 8.19 (d, J = 8.7 Hz, 4 H), δ 7.61 (t, J = 6.9 Hz, 

4 H), δ 7.27 (t, J = 8.7 Hz, 4 H), δ 6.92 (d, J = 8.7 Hz, 4 H). 13C NMR (DMSO-d6): δ 

170.80, 134.03, 131.80, 130.65, 127.51, 127.24, 127.09, 126.63, 126.04. 

 

Synthesis of PCN-81: 

5.20 mg of H2BADC and 7.00 mg of Zn(NO3)2·6H2O were dissolved in a 0.5 dram 

vial with the aid of 1.5 mL of DMA and 3 drops of tetrafluroboric acid. The vial was 

placed in a 85 °C oven for 3 days until clear, block-like crystals of PCN-81 had formed. 
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CHAPTER VI 

SUMMARY 

 

6.1 Attempted synthesis of new metal-organic polyhedra 

The first part of this thesis dealt with the creation of novel molecular polyhedra that 

not only should display unique properties but may, in the most idealistic sense, 

revolutionize the way MOFs are assembled by allowing for more control over the final 

framework topology (this revolution would be considered a small extension of the 

groundwork already laid by Li, Timmons, and Zhou’s work23). Indeed, this work is in its 

infancy stage and the majority of Chapters II and III discussed the future possibilities 

and directions which the research should head.  

Chapter II discussed the synthesis of a ligand precursor that would theoeretically 

synthesize a MOP that would neither fall into the Archimedean or Platonic types of 

MOPs. Although this precursor, 2,5 indole dicarboxylic acid, with a 150° bend-angle has 

been isolated and characterized, that is currently the extent of the progress of this 

project. Efforts have been made to synthesize such a crystal, yet to date no MOP crystals 

have been synthesized. Following the synthesis of the desired MOP, gas adsorption 

studies should be performed, as well as molecular inclusion experiments, to determine if 

the large cage is suitable for such applications. Following this, a new ligand precursor 

should be synthesized to form a cage in which the NH group of the indole points in 

towards the center of the cage. Subsequent experiments will determine whether or not 

the NH group has an effect of the selective adsorption of certain gases and molecules. 
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Going one step further would be to synthesize a MOP with a secondary amine and to test 

the polyhedron’s ability to perform catalytic chemistry, specifically the Knoevenagel 

condensation. 

Chapter III dealt with the attempted synthesis of a novel molecular polyhedron, which 

would then be extended into a framework based on the principles set forth by Li et al. 

The ligand precursor, 4,4'-(9-ethyl-9H-carbazole-3,6-diyl)dibenzoic acid, was 

synthesized and employed in several reaction schemes in an attempt to synthesize a 

MOP. Although no single crystals have been synthesized, efforts should continue to 

synthesize a crystal and elucidate its properties. As mentioned, the cage is expected to be 

bigger than that synthesized by Li et al.; should this be successfully synthesized and 

extended into a framework, the resulting MOF should possess openings in the MOP 

SBU greater than its predecessor. This MOF would be ideal for large molecule 

incorporation.  

 

6.2 Synthesis of MOFs based on extended anthracene backbone 

Chapters IV and V are somewhat related in the sense that the MOFs synthesized in 

both chapters stem from ligands containing a bianthracene backbone. PCN-80 is a triply-

interpenetrated MOF containing a distorted Zn4O SBU that, to the best of the author’s 

knowledge, is the first of its kind. Normal Zn4O SBUs, and even distorted ones, contain 

only zinc atoms that are only coordinated in a tetrahedral manner. One of the zinc atoms 

of the SBU in PCN-80 possesses an octahedral coordination environment. Efforts are 

underway to understand how and why this SBU was formed. 
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Due to the instability of PCN-80 in atmospheric conditions, gas adsorption 

experiments were unable to be performed. In lieu of these experiments, which are 

normally used to determine the surface area, pore volume, and gas uptake properties of a 

MOF, molecular simulations were carried out. These simulations revealed that PCN-80 

has a surface area of 3801 m2/g with a pore volume of 0.74 cm3/g. Simulated isotherms 

for both hydrogen and methane uptake were also executed. PCN-80 exceeds, at least in 

theory, the DOE 2010 goal of 6 weight percent and 45 g/L, with a hydrogen adsorption 

of 7.43 weight percent and 61.47 g/L. A high pressure hydrogen adsorption isotherm 

was also simulated; this indicated that the adsorption capacity at 10000 kPa is 9.20 

weight percent with a volumetric uptake of 75 g/L. Remarkably, this is greater than the 

density of hydrogen at 20.4 K. The strong isosteric heat of adsorption of 10.71 kJ/mol 

indicates a very strong interaction between the hydrogen and the framework. However, 

all of this data was derived from isotherms simulated at 77 K whereas the DOE targets 

are to be reached a minimum temperature of 243 K. Despite this shortcoming, PCN-80 

possesses the highest hydrogen adsorption capacity at low pressure.  

The ligand for PCN-80 was modeled after the anthracene-based ligand of PCN-14 in 

an attempt to exceed its methane adsorption capacity. The methane adsorption capacity 

was calculated to be 9.59 weight percent gravimetrically and 78.47 g/L (97.09 v/v). 

Although the maximum isosteric heat of adsorption 27.93 kJ/mol is among the highest 

reported for MOFs, the volumetric adsorption amounts to 44% of that of PCN-14 (220 

v/v).82 However, PCN-14’s record breaking adsorption was at 35 bar whereas the 

simulation stops at 1 bar. 
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Although the original attempt of this project was to exceed the methane storage 

capacity of PCN-14, the structure of PCN-80 enables it to adsorb an unprecedented 

amount of hydrogen at low pressure and cryogenic temperatures. Indeed, these 

adsorption isotherms and capacities are simulations. Immediate work should be done to 

prepare a stable PCN-80 or synthesize a MOF with a similar structure so that 

experimental measurements can be obtained. On a structural level, research should be 

done to determine the reasons for the formation of the unique SBU. Further research will 

dictate whether the steric hindrance of the lengthy, bulky ligand or the synthetic 

conditions result in the novel SBU. 

Chapter V attempted to elucidate a clear relationship between the hydrogen adsorption 

capacity of a framework and the number of aromatic rings used in the ligand. Five 

ligands were chosen, along with the resultant frameworks from their reaction with zinc 

metal salts. The numbers of aromatic rings used in the study were one, two, three, six, 

and eight. A linear, ditopic geometry was maintained throughout the experiment. MOF-

5, MOF-48, PCN-13, PCN-81, and PCN-80 were the MOFs that were compared. For the 

MOFs that were synthesized by other authors that didn’t have published data regarding 

surface area, pore volume, and hydrogen adsorption, simulations were performed using 

Materials Studio 5.0. The two dimensional PCN-81 was synthesized and simulations 

were performed to determine its properties. Adsorption isotherms indicated a maximum 

hydrogen uptake of 0.68 weight percent.  

While no clear relationship was established between the number of aromatic rings and 

the maximum adsorption capacity for the MOF, a pattern was confirmed regarding 
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density and hydrogen adsorption capacity: generally speaking the lower the density, the 

greater the hydrogen adsorption capacity. However, a variety of factors may have 

influenced these results. For example, not all of the MOFs contain identical SBUs: some 

possess the Zn4O SBU while others have the zinc paddlewheel. Likewise, PCN-80 was 

the only MOF with three-fold interpenetration and PCN-81 was the only two-

dimensional MOF. 

Future work should first and foremost focus on changing PCN-81 from a two-

dimensional to a three-dimensional MOF. A neutral, ditopic linker such as 4,4’-

bipyradine should be added to the reaction to form PCN-81 in hopes that the axially 

coordinated solvent of the zinc paddlewheel is displaced by the bipyridine to form an 

extended, three dimensional framework. This should increase the pore volume, and thus 

the adsorption capacity for hydrogen. 

 

6.3 Conclusion 

The research presented in this thesis primarily focuses on the two main aspects of 

MOP and MOF research: ligand design and characterization. The synthesis of novel 

ligands is essential to the advancement of the field as synthetic schemes with 

purchasable ligands have all but been exhausted. Chapters III, IV, and V contain the 

synthesis of, to the best of the author’s knowledge, novel ligands. Consequently, PCN-

80 and PCN-81 are the first examples of frameworks formed from a ligand with a 

bianthracene backbone. The unprecedented hydrogen adsorption of PCN-80 at low 

pressure is indeed exciting, yet this preliminary calculation needs to be verified with 
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hard, experimental data; this task should be pursued with a sense of urgency. 

Additionally, methane uptake experiments should be performed to see if PCN-80 is a 

suitable candidate for methane storage. The addition of a neutral, linear, ditopic linker to 

the reaction scheme between H2BADC and zinc nitrate should yield a three-dimensional 

MOF. Such a MOF might aid in the study of the effect of additional aromatic rings on 

hydrogen uptake. 

Most of the work presented in this thesis contains little more than preliminary results. 

The groundwork has been laid, and interested researchers should pick up where this 

research left off. Monumental breakthroughs in terms of large MOPs and hydrogen and 

methane storage in MOFs potentially lie in this thesis.   
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