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ABSTRACT 

 

Analysis and Control of Batch Order Picking Processes Considering 

Picker Blocking. (August 2010) 

Soondo Hong, B.S; M.S., Pohang University of Science and Technology 

                    Co-Chairs of Advisory Committee: Dr. Andrew A. Johnson  
Dr. Brett A. Peters 

                                              
 

Order picking operations play a critical role in the order fulfillment process of 

distribution centers (DCs). Picking a batch of orders is often favored when customers’ 

demands create a large number of small orders, since the traditional single-order picking 

process results in low utilization of order pickers and significant operational costs. 

Specifically, batch picking improves order picking performance by consolidating 

multiple orders in a ―batch‖ to reduce the number of trips and total travel distance 

required to retrieve the items. As more pickers are added to meet increased demand, 

order picking performance is likely to decline due to significant picker blocking. 

However, in batch picking, the process of assigning orders to particular batches allows 

additional flexibility to reduce picker blocking. 

This dissertation aims to identify, analyze, and control, or mitigate, picker 

blocking while batch picking in picker-to-part systems. We first develop a large-scale 

proximity-batching procedure that can enhance the solution quality of traditional 

batching models to near-optimality as measured by travel distance. Through simulation 

studies, picker blocking is quantified. The results illustrate: a) a complex relationship 
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between picker blocking and batch formation; and b) a significant productivity loss due 

to picker blocking.  

Based on our analysis, we develop additional analytical and simulation models to 

investigate the effects of picker blocking in batch picking and to identify the picking, 

batching, and sorting strategies that reduce congestion. A new batching model (called 

Indexed order Batching Model (IBM)) is proposed to consider both order proximity and 

picker blocking to optimize the total order picking time. We also apply the proposed 

approach to bucket brigade picking systems where hand-off delay as well as picker 

blocking must be considered.  

The research offers new insights about picker blocking in batch picking 

operations, develops batch picking models, and provides complete control procedures 

for large-scale, dynamic batch picking situations. The twin goals of added flexibility and 

reduced costs are highlighted throughout the analysis. 
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CHAPTER I 

INTRODUCTION 

 

Distribution centers (DC) are a fundamental part of the supply chain, which links 

manufacturers to customers. Within the supply chain, DCs consolidate and store 

products, fulfill stocked products as requests arrive, and provide various value-added 

functions in response to product requirements. DCs are also of economic importance; 

according to the annual ―State of Logistics Report‖ (Wilson, 2008), warehousing costs in 

the United States are approximately 8% of the total logistic cost, or 0.8% of total gross 

domestic product (GDP).  

Online retailers’ DCs are often termed ―order fulfillment facilities.‖ Their 

functions include distributing customer orders and sustaining the online retail business. 

Clearly, order picking operations represent significant cost and service drivers for these 

retailers. According to Tompkins et al. (2003), order picking typically comprises almost 

50% of the total operating costs of a typical DC. For example, in 2003, Amazon.com’s 

fulfillment expense was $477 million, which accounts for 48% of total operation 

expenses (Amazon.com, 2004). Amazon’s order picking operations contribute between 

10-15% of its fulfillment-related expenditure, including fulfillment and customer service 

centers (Lieu, 2005).  

Despite the recent enhancements in order picking technology, 75 to 80%  

of all DCs still rely on manual order picking (De Koster, 2004; Napolitano, 2008).                
____________ 

This dissertation follows the style of IIE Transactions. 
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Manual order picking is cost effective because the initial setup cost is relatively low. 

Moreover, human pickers are flexible relative to mechanical systems (Ruben and Jacobs, 

1999) and can more easily handle irregular shapes and sizes and employ diverse sets of 

picking vehicles as needed.  

Since customer demands in online retailers’ order fulfillment facilities are 

characterized by diverse, small-sized orders (De Koster, 2003), manual order picking 

faces a critical operational issue to ensure good performance. The problem involves 

determining the set of orders, i.e., the batch, to be picked by a worker, and the worker’s 

route through the facility to retrieve the items in the batch. The traditional single-order 

picking mode of operation can result in many costly trips, particularly if the orders are 

small. In contrast, a batch order picking strategy groups orders to reduce the number of 

trips required, and consequently, reduces operational costs. Additionally, the latter 

strategy provides some robustness to the variation and operational difficulties caused by 

small order sizes. Therefore, an efficient order batching algorithm can have a significant 

impact on costs in an order picking environment with small order sizes. 

In general, the number of items picked per unit of time is an important criterion 

for evaluating warehouse performance (De Koster and Balk, 2008). When a shorter 

fulfillment period is required, manual order picking systems tend to add more pickers to 

shorten the response time. However, using a batch picking strategy with multiple pickers 

introduces a new issue relevant to picker utilization, namely, that multiple pickers will 

create congestion and delays that ―waste‖ productive work time. This increase in 

nonproductive time is known as picker blocking. The impact of the number of pickers on 



3 

 

 

order picking throughput and picker utilization indicates that warehouse managers 

should focus on picker blocking when assigning a large number of pickers to a particular 

retrieval process. We note, however, that traditional batching algorithms do not consider 

picker blocking or its impact on order picking productivity.  

This dissertation is interested in order batching procedures in large-scale picking 

situations with k-pickers, where picker blocking can become a significant issue. We 

begin by considering a narrow-aisle picking environment, which is very attractive in 

terms of storage capability. However, since one-way passage in an aisle may be 

inevitable in this configuration (Gue et al., 2006), the order fulfillment time can lengthen 

and the operational cost can increase, because the one-way travel characteristic leads to 

longer trips and the narrow-aisle configuration produces heavy congestion Bartholdi and 

Eisenstein. 

Thus, we first examine the significance of picker blocking in the traditional 

proximity-based batching approach. This sub-study presents a new large-scale, near-

optimal distance-based batch order picking procedure with traversal routing methods. 

The operational policy identified by a gap error comparison is near-optimal based on a 

travel distance criterion, but also reduces picker blocking relative to other order batching 

methods. However, management is still required to reduce productivity loss due to 

blocking.  

Second, since the prior simulation study identifies picker blocking which is not 

fully modeled by the available literature, we focus on developing an analytical model 

that is suitable for batch picking and examining situations of varying levels of picker 
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activity.  

Because batch picking with k-pickers appears to produce a significant level of 

picker blocking when k increases to fulfill high demand levels, we propose a combined 

batching and sequencing model, referred to as the indexed batching model (IBM), to 

simultaneously control both the trip distance and the time blocked.  

We also analyze bucket brigade picking, a popular order picking situation, where 

picker blocking is still an issue but the routing issue is replaced with hand-off delay issue. 

We identify analytical throughput models, build an integrated control framework to 

reduce both picker blocking and hand-off delay, and derive control algorithms for each 

delay case.  

This dissertation is organized as follows. Chapter II describes general knowledge 

and background on order picking in distribution centers. Chapter III reviews the 

literature and identifies new opportunities. Chapter IV explores managing a large-size 

order batching situation more efficiently and describes the effects of picker blocking. 

Chapter V examines picker blocking in batch picking using analytical models and 

simulation study. A new batching model that considers both proximity and congestion is 

developed in Chapter VI. In Chapter VII, we discuss an application of the proposed 

approach to bucket brigade systems. Chapter VIII summarizes the contributions and 

highlights future research opportunities.  
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CHAPTER II 

BACKGROUND 

 

1. ORDER PICKING SYSTEMS 

Order picking operation involves retrieving customer orders from storage in an 

order picking system (OPS) in a DC. Commonly, a DC is composed of multiple OPSs 

classified by the relevant storage and retrieval mechanism. Specifically, in part-to-picker 

systems, an automated device transfers items requested to a stationary order picker 

(Figure 1(a)). In picker-to-part systems, pickers travel to item storage locations and 

collect the items (Figure 1 (b)). In the latter, pickers must traverse multiple aisles and 

areas to fulfill orders. The travel mode can include walking with a cart or riding on a 

retrieval vehicle. The skill and flexibility of the human pickers are critical, as pickers 

visit multiple locations on each tour and handle diverse items.  

 

              
 (a)                                                   (b) 

Figure 1. Examples of order picking systems: (a) part-to-picker system (Warehouse-
rx.com); (b) picker-to-part system (Amazon.com).  

 
Figure 2 shows a typical, and popular, picker-to-part picking system, i.e., a bin-

shelving picking system with a parallel-aisle configuration and two cross aisles located 
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in the front and back of the layout that connect the parallel aisles. A loading/unloading 

(L/U) station is located in the front of the leftmost aisle. Bin-shelving storage on each 

side of the aisles allows order pickers to easily retrieve items. One pick face includes 

multiple pick locations. To collect a batch, the picker starts from the L/U station, 

circumnavigates the aisles of pick area via the cross aisles, and returns to the L/U station; 

this operation forms a trip. 

 

 

Figure 2. A typical picker-to-part system: parallel-aisle OPS layout (Gademann et al., 
2001). 

 
A specified routing method (based on pickers’ experience or management-

determined) plays an important role in improving order picking performance, because it 

determines the travel distance, which is a fundamental throughput measure. Heuristics 

are often preferred because they produce more straightforward and natural routes for 

pickers than an optimal strategy (Petersen and Schmenner, 1999). The heuristics include 

the traversal method, the return method, the mid-point method, the largest gap method, 

and the combined method (Petersen, 1997). The traversal routing method in Figure 3 is 

most frequently cited in the literature because of its simplicity and popularity in industry. 

When this method is used in parallel-aisle OPS, any aisle containing at least one pick is 
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traversed entirely.  

 

 

Figure 3. Traversal route method (Petersen, 1997). 

 

2. ORDER PICKING POLICY  

From an operational view, organizing and batching orders for pickers to reduce 

travel and blocking time is as important as designing optimal routing strategies. Single-

order picking allocates one order to one picker. Alternatively, to increase efficiency, 

several orders can be consolidated in a batch. Figure 4 (a) illustrates batch picking by a 

single picker. Since one picker picks multiple orders in the same trip, the total retrieval 

time is reduced. When multiple orders are collected in a trip, their disassembly into 

orders is termed a sorting operation. There are two efficient strategies relevant to the 

sorting operation while batch picking. In the sort-while-pick strategy, pickers sort 

products while traveling between picking locations. A cart carries bins for orders. The 

picked items are identified as belonging to a particular order and deposited in the correct 

bins. The pick-then-sort strategy separates the two operations into a sorting operation 

executed by manual workers or by sortation equipment to separate the items into orders 

after completing a trip to retrieve the items in a batch. 

Picking a large-size batch (or order) may be assigned to multiple pickers and is 
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called zone picking (Figure 4 (b)). Order pickers travel only in their specialized zone. 

There are two protocols to assign a batch to each zone. In synchronized zone picking, 

each zone collects one batch simultaneously. Retrieval time for a batch can be shorter 

than a full retrieval time by a single picker, because several pickers process partitioned 

portions of a batch. In progressive zone picking, a batch is processed in individual zones 

sequentially. A batch is passed between zones, and items are collected in various zones 

to complete the orders in the batch. In general, a buffer of work-in-process batches is 

formed between two zones to insure pickers in downstream zones are not idle.  

Bucket brigade picking is similar to progressive zone picking, but employs a 

variable zone boundary policy where zone size is not predetermined and is resized 

automatically and dynamically (Figure 4 (c)). No buffer between pickers is necessary 

(see, for example, Bartholdi and Eisenstein (1996a)). A batch must pass all pick faces 

and collect items at related pick faces in sequence to be completed. Pickers are ordered 

from upstream to downstream in a row, and the order is maintained across the zones. A 

picker picks an item and places it in the tote assigned to the particular batch. The picker 

then moves to the next pick face to continue processing the batch if there is no picker at 

the next pick face. The upstream picker hands off the current batch when the upstream 

picker meets a downstream picker who has no assigned batch.  
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(a)                              (b)                            (c) 

 Figure 4. Order picking policies: (a) batch picking; (b) zone picking; and (c) bucket 

brigade picking. 

 

3. PICKER BLOCKING 

In a typical picker-to-part system, adding pickers is expected to enhance the 

system’s order picking throughput. However, the benefits to throughput are increasingly 

offset by picker blocking (Ruben and Jacobs, 1999). Picker blocking occurs when 

multiple pickers traverse a pick area while maintaining a no passing restriction, or two or 

more pickers attempt to occupy the same space or the same resource simultaneously. 

When a picker prevents another picker from passing, in-the-aisle blocking arises as 

depicted in Figure 5(a), and when pickers attempt to pick from the same storage location, 

pick-face blocking occurs as depicted in Figure 5 (b). In this dissertation, picker blocking 

refers to in-the-aisle blocking unless otherwise stated. 
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       (a)                                      (b)                                      (c) 

Figure 5. Types of picker blocking: (a) in-the-aisle picker blocking; (b) pick-face 
blocking (Parikh and Meller, 2009); and (c) hand-off delay. 

 
Bucket brigade picking also encounters picker blocking situations, because, as 

mentioned, this protocol sets a zone boundary between pickers in a variant manner. 

While an upstream picker moves in a forward direction, the next pick face may be 

occupied by a busy downstream picker (Figure 5(a)). Hence, the upstream picker cannot 

―hand off‖ the current batch to the downstream picker since the downstream picker is 

currently allocated to a retrieval task. The upstream picker also cannot pass over the 

downstream picker because the zone restriction disallows passing. Further, when the 

downstream picker is idle, he/she moves in a backward direction to take a hand-off from 

an upstream picker. If the upstream picker is picking when the downstream picker 

encounters the upstream picker, the downstream picker must wait for the completion, 

which is termed hand-off delay as shown in Figure 5(c).  
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CHAPTER III 

LITERATURE REVIEW 

 

1. BATCH PICKING WITH K-PICKERS 

Depending upon pickers’ organization, batch picking with k-pickers can be 

classified by  

1) (single-zone) batch picking 

2) (multiple-) zone batch picking  

3) bucket brigade batch picking. 

Batch picking is most commonly single-zone, multiple-picker batch picking. 

Since multiple pickers work in a zone, an interaction among k-pickers arises, which 

leads to picker blocking. In studying the relationship between picker blocking and 

batching algorithms, Ruben and Jacobs (1999) find that congestion impacts the selection 

of batching procedures and storage policies. Their simulation studies show that a 

turnover-based storage policy1 causes more congestion than family-based2 or random 

storage3 strategies. Gue et al. (2006) and Parikh and Meller (2009; 2010) investigate 

effects of picker blocking using analytical and simulation studies. The authors introduce 

analytical models related to picker blocking in specified-order picking environments, 

both picker blocking in narrow-aisle (Gue et al., 2006; Parikh and Meller, 2010) and 

pick-face blocking in wide-aisle (Parikh and Meller, 2009). Gue et al. (2006) explain 

                                                 
1 A turnover-based storage policy determines storage locations of products according to the demand 

popularity of products. Popular products are stored in locations to reduce the retrieval time. 
2 The demand affinity between products is used to determine storage locations of products. Thus, it 

can reduce the time to reach the next item in an order. 
3 A random strategy randomly determines storage locations of products. 
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that the batch picking strategy in narrow-aisle OPSs can experience less picker blocking 

when the pick density is either very low or high. Parikh and Meller (2010) find that even 

though the pick density is high, picker blocking can be significant when the variation of 

the pick density is high. Parikh and Meller (2009) do not consider batching, but 

distinguish the effects of congestion in the wide-aisle picking situation of a single-pick 

model versus a multiple-pick model. The single-pick model assumes that at most a 

single pick occurs at a pick face, which is often true in single-order picking, whereas the 

multiple-pick model considers repeated picks at a pick face, which is more likely in 

batch picking. Parikh and Meller (2009) suggest wide-aisle OPSs may experience 

significant blocking when multiple-picks are required at each pick face. They also find 

that the variation of pick density plays a vital role in the significance of pick-face 

blocking.  

From the standpoint of picker blocking, zone picking is a preferred alternative for 

heavy picker blocking environments. However, restricting pickers movement creates 

additional idleness from workload imbalances and increases work in process (WIP). 

There is some research on how to achieve equal balance among zones (Jane, 2000; Jane 

and Laih, 2005) by examining historical customer orders and the items assigned to 

storage zones. Le-Duc (2005) presents a procedure to find the optimal number of picking 

zones by using mixed integer programming. Jane and Laih (2005) propose an 

assignment algorithm in a synchronized zone picking system where all zone pickers 

fulfill the same order simultaneously. A similarity coefficient of any two items is 

presented for measuring the co-appearance of both items in the same order. To minimize 
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the idle time of the synchronized zone picking system, the items most frequently 

requested (i.e., with high similarity coefficient) are assigned to different zones.  

As Bartholdi and Eisenstein (1996a) indicate, the balanced workload model in 

zone picking exhibits three major problems in practice. First, available approaches tend 

to depend on historical data; even though workloads are balanced for historical data, 

current and future demand patterns experience imbalances. Second, non-demand based 

uncertainties exist, e.g., equipment breakdown, absenteeism, etc., leading to workload 

imbalances. Third, picker capability is not identical and varies with pickers’ learning.  

To solve these problems, an order picking system with bucket brigades is an 

alternative to zone picking (Bartholdi and Eisenstein, 1996a). The bucket brigade 

picking system is a promising strategy that can solve load balance issues, a significant 

concern within multiple pickers OPSs. The bucket brigade method provides a self-

balancing characteristic using minimal WIP (Bartholdi and Eisenstein, 1996a; Bartholdi 

and Eisenstein, 1996b). Yet, this strategy faces two operational delays: hand-off delay 

and picker blocking delay (Koo, 2009). The literature notes that it encounters less picker 

blocking when pickers are arranged in ascending capability order (Bartholdi and 

Eisenstein, 1996a; Bartholdi and Eisenstein, 1996b; Koo, 2009). However, the only 

available research on picker blocking in bucket brigade order picking has been 

conducted by Koo (2009), who proposes a model combining a zone picking policy and 

the bucket brigade order picking policy. Under his modified strategy, pickers’ 

downstream travel is allowed to a predefined point at which pickers leave their current 

tote and move upstream. Since a downstream range is limited, picker blocking lessens, 
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and the number of direct hand-offs also drops since WIP is allowed. However, this 

method can significantly increase WIP and may disrupt the load-balancing 

characteristics.  

2. ORDER BATCHING ALGORITHMS  

The first component of our research focuses on the proximity batching relevant 

to parallel-aisle picking systems, where nearby orders are grouped based on travel 

distance. The proximity batching algorithms for parallel-aisle picking systems can be 

categorized as 1) optimal approaches; 2) meta-heuristics; 3) seed heuristics; and 4) 

saving heuristics.  

An optimal approach is to solve the batching and routing problem exactly 

through a mixed integer programming model using branch-and-bound to minimize the 

maximum route length (Gademann and van de Velde, 2005; Gademann et al., 2001). 

Despite enhanced branch-and-price methods, exact methods based on branch-and-bound 

face a limitation in scalability of the number of orders and batches (we verify this with 

our computational experiments in Section IV).  

Hsu et al. (2005) propose a meta-heuristic approach, a genetic order batching 

algorithm, to minimize the total travel distance. The problem complexity of the genetic 

algorithm is strongly dependent on the number of batches, the number of orders, and the 

number of aisles. Similarly, it is not clear whether the proposed genetic algorithm can 

solve large-scale problems, because the algorithm appears to be inefficient over 

medium-size problems with low routing complexity.  

De Koster et al. (1999) conduct a comparison study of seed and saving 
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algorithms. Our independent analysis in Chapter IV confirms that only seed and saving 

algorithms are able to analyze large-sized problems. However, the solution quality of 

these methods is uncertain in medium- and large-size problems, because the exact value 

of the optimal solution cannot be identified and lower bound estimates are not available 

in the literature. 

3. RESEARCH ISSUES 

Reviewing the available methods we identify three critical issues:  

1) The impacts on picker blocking of batch picking in a narrow-aisle system are not 

fully understood. Within the proximity batching literature, Ruben and Jacobs 

(1999) discuss the limitation of the available batching methods on picker blocking 

control. Two studies (Gue et al., 2006; Parikh and Meller, 2010) observe the 

impacts by the size and the variation of pick density throughout analytical and 

simulation models. However, the relationship between batch picking situations 

(i.e., batching algorithms, sorting strategies, and storage policies) and the results of 

analytical studies has not been fully examined despite its significance upon 

warehouse design and operations. For example, the literature is silent on whether 

batch picking always produces heavy picker blocking. If it does not, what 

conditions should be satisfied for higher order picking throughput? 

2) Proximity-based batching algorithms can handle only distance-related 

performance. The literature on batching algorithms does not address the trade-off 

between travel distance and time blocked. Namely, to manage heavy picker 

blocking situations, a new order batching model and relevant solution procedure is 
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needed. The new batching algorithm requires quantifying picker blocking as well 

as travel distance.  

3) Bucket brigade picking systems also face significant congestion issues. Picker 

blocking and the hand-off models in bucket brigade picking systems are not well 

understood with respect to analytical models and direct control. Only a simulation-

based approach (Koo, 2009) has been used to quantify picker blocking, and a 

direct mitigation of picker blocking has yet to be addressed. Hand-off issues are 

frequently neglected in the available literature despite the possibility of 

productivity loss. Moreover, Koo’s hand-off model fails to deliver an exact model; 

thus, we introduce such a model in Chapter VII. We conclude that understanding 

picker blocking and hand-off delays is very restricted and partially incorrect, and 

we provide a mechanism to improve operations in a bucket brigade system by 

explicitly addressing both issues in determining the operational plans.  
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CHAPTER IV 

LARGE-SCALE ORDER BATCHING WITH TRAVERSAL 

ROUTING METHODS  

 

This chapter investigates the effects by picker blocking when an order picking 

situation employs traditional batching models to reduce the pickers’ total travel distance. 

In practice, some order picking systems retrieve 500~2000 orders per hour and include 

ten or more aisles. Available proximity batching methods are not suitable for the study 

proposed, because all large-scale approaches are implemented to obtain a heuristic 

solution, and those heuristic algorithms only demonstrate their improvement relative to a 

random batching strategy or prior batching algorithms. Thus, we employ a new, near-

optimal proximity-batching procedure, a solution validation procedure, and relevant 

picker blocking experiments. The quality of the solutions is demonstrated by comparing 

with a lower bound developed as a linear programming relaxation of the batching 

formulation described in this chapter. A simulation study indicates that the proposed 

heuristic is relatively robust to picker blocking.  

1. INTRODUCTION 

From a computational view, the route selection problem is typically easy, but 

difficulty arises mainly due to the combinatorial number of potential batches. The 

routing problem in rectangular parallel-aisle systems can be optimally solved with 

polynomial complexity (Ratliff and Rosenthal, 1983). Furthermore, pickers often prefer 

heuristic routing methods (De Koster et al., 1999; Gademann and van de Velde, 2005), 
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which can be computationally simpler than the optimal routing method. In contrast, the 

computational burden associated with the partitioning decision is a primary source of 

complexity for the batching problem. For example, when the number of orders is 100 

and the capacity of the order picker is 10 orders per trip, the number of possible 

combinations for batching the orders is 6.5*1085.  Hence, only heuristic batching 

algorithms can solve large-size problems in a timely manner. We note, too, that the 

complexity of the batching problem affects the assessment of solution quality. The 

performance of the various proposed methods for batching have not been demonstrated 

quantitatively in any practical size problem because lower bound estimates were not 

previously available. 

We, therefore, examine picking systems that process 500-2000 orders in a one-

hour time window.  This picking environment has one-way narrow aisles, and we 

assume pickers use traversal routes through the DC.4 We consider both sort-while-pick 

and pick-then-sort strategies, and both random and class-based storage policies. Ideally, 

we want to exploit the advantage of the traversal routing method in developing a 

computationally efficient procedure to solve large-size problems and determine a tight 

lower bound to evaluate performance. 

We approach the batching problem using a selection-based routing method, not 

the more common construction-based routing method, and derive a new batching 

procedure by first assigning orders to routes and then constructing batches within route 

                                                 
4 Throughout most of this dissertation we assume one-way narrow aisles since this is a typical 

setting for the batch picking problem where congestion is a concern; however, these methods can be 
extended to multi-directional travel with some increase in computational burden, as discussed in Section 
6.3. 
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sets.  Even though the routing mechanism occupies a small portion of the computational 

time, it influences solution approaches for order batching algorithms. The traditional 

order batching algorithms build a route for a given batch and calculate the route length. 

This route construction concept then guides the search procedure narrowing order-to-

batch assignments to identify batches with potentially shorter routes. Initially, we 

identify a set of potential routes and match orders to potential routes. As the routes and 

their lengths are predetermined, it is possible to match orders to routes without 

identifying batches. The direct assignment of orders to routes can improve the solution 

quality, reduce the computational time, and obtain a lower bound.  Accordingly, we 

build an efficient heuristic procedure to pack batches from orders within routes.  

This chapter makes three important contributions to the extant literature. First, a 

large-scale, near-optimal order batching procedure for parallel-aisle picking systems is 

demonstrated for the first time; the environments cover both narrow-aisle and wide-aisle 

systems and are extendible to other layouts using traversal routing methods. Second, it 

introduces a new order batching formulation and relevant relaxation models utilizing a 

bin-packing problem. The bin-packing problem can be solved more efficiently on large-

size problems compared to a batching problem even though both require complex 

analysis. Third, the proposed algorithm is compared with available heuristic algorithms 

in terms of both total travel distance and total travel time, since the shortest routing 

distance does not guarantee the shortest retrieval time in environments with picker 

blocking. A simulation study is used to evaluate the performance of the proposed 

algorithm considering picker blocking.  
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The remainder of the chapter is organized as follows. In Section 2, we review 

related studies regarding order batching algorithms in parallel-aisle picking systems.  

The details of the new formulation and the relaxed models are discussed in Sections 3 

and 4, respectively. Section 5 describes a heuristic batching procedure based on the 

relaxation model. Section 6 discusses the computational experiments and comparison 

results. We conclude with directions for future research and the model’s extension.  

2. RELATED LITERATURE 

The literature review in this chapter expands on the relevant portions from the 

general literature review presented in Chapter III. This chapter focuses on the proximity 

batching relevant to parallel-aisle picking systems, where nearby orders are grouped 

based on travel distance. The prior work in proximity batching algorithms for parallel-

aisle picking systems can be categorized into 1) seed heuristics; 2) saving heuristics; 3) 

meta-heuristics; and 4) optimal approaches.   

In conducting a comparison study of seed and saving algorithms, De Koster et al. 

(1999) conclude that the best seed algorithms combine three control factors: select the 

seed order as the order that must visit the largest number of aisles, choose the next order 

to minimize the number of additional aisles, and cumulatively update the seed 

information based on orders in the seed. Alternatively, the same paper develops the 

savings algorithm (which is a modified Clarke and Wright method (1964)) in which a 

savings list is updated until there are no remaining savings pairs. The authors find the 

savings algorithm is preferable to the seed algorithm. Our independent analysis also 

confirms that only seed and saving algorithms are able to analyze large-size problems. 
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However, the solution quality of these methods is uncertain in medium- to large-size 

problems, because the exact value of the optimal solution cannot be identified and lower 

bound estimates are not available in the literature. 

Hsu et al. (2005) propose a meta-heuristic approach, a genetic order batching 

algorithm, to minimize the total travel distance. The problem complexity of the genetic 

algorithm is strongly dependent on the number of batches, the number of orders, and the 

number of aisles. Their tests are conducted on ~300 orders to generate ~40 batches in a 

five-aisle warehouse; this size problem required ~2500 seconds to execute the heuristic. 

It is not clear whether the proposed genetic algorithm can solve large-scale problems, 

because the algorithm appears to be computationally inefficient over medium-size 

problems with low routing complexity. 

An optimal approach is to solve the batching and routing problem exactly 

through a mixed integer programming model (Gademann and van de Velde, 2005; 

Gademann et al., 2001). Gademann et al.  (2001) present a branch-and-bound solution 

for a wave picking environment, where a large number of orders are partitioned into 

multiple batches to minimize the maximum route length. Gademann and Van de Velde 

(2005) develop a branch-and-price formulation for the sort-while-pick order picking 

strategy. The authors present two important findings: 1) the number of aisles and the 

number of batches significantly impact the computational time; and 2) the average time 

to identify an optimal solution is very short compared to the time necessary to verify its 

optimality. Despite enhanced branch-and-price methods, Gademann and Van de Velde 

(2005) are only able to solve problems sizes of ~30 orders and ~8 batches. We infer and 
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confirm with our own experiments that exact methods based on branch-and-bound face a 

limitation in scalability of the number of orders and batches.  

Summarizing the available methods, we identify two critical issues. First, all 

approaches are implemented to obtain a solution with a partitioning first, routing second 

method. The route construction procedure is necessary and follows a partitioning 

decision because the route length varies according to pick locations in a batch. However, 

the partitioning problem is complex, requiring the construction of all combinations of 

orders to batch assignments. Second, within the batching literature there is no research 

on lower bound algorithms for a large-scale problem. Heuristic algorithms only 

demonstrate their improvement relative to random batching strategy or prior batching 

algorithms. Without a lower bound, one cannot quantify the performance of the 

heuristics in absolute terms.  

3. ROUTE-SELECTING ORDER BATCHING MODEL (RSB) 

3.1 Problem definition 

We consider an order picking environment similar to those described in Petersen 

II (2000) and Gong and De Koster (2008). The order profile assumes an average order 

size is two line items per order and 1080 orders arrive per hour. Figure 6 shows a ten-

aisle bin-shelving OPS with a narrow parallel-aisle configuration and two cross-aisles 

located in the front and back of the layout, which connect the parallel aisles. An L/U 

station is located in front of the leftmost aisle. There are forty pick faces per aisle in 

which order pickers retrieve items. The height of the shelves does not impact the travel 

length. To collect a batch, a picker starts from the L/U station, circumnavigates aisles of 
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pick locations via the cross-aisles, and returns to the L/U station. While retrieving items, 

pickers take a one-way traversal route and do not make U-turns within an aisle. In other 

words, if they enter an aisle, pickers pass completely through it. However, they need not 

traverse every aisle. Further, each aisle is traversed in a fixed direction to prevent pickers 

from being blocked in an aisle by pickers approaching from the opposite direction, i.e., 

one-way traversal routing (Gue et al., 2006) is used. One order picker can carry ten bins 

on a cart allowing him/her to simultaneously pick up to ten different orders. We assume 

a constant walking speed and pick time per item. In determining batches, blocking 

delays are ignored and total retrieval distance is minimized. The issue of blocking is 

revisited in more detail in Section 6.2.3. In addition, some parameters (e.g., sorting 

strategy, storage policy, capacity, and number of aisles) are varied to investigate 

robustness in the quality of solutions across differing environments. 

 

 

Figure 6. A ten-aisle order picking system 
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3.2 Formulation 

A new order batching model is formulated that takes advantage of the traversal 

routing method. When traversal routing methods are used, all possible routes can be 

constructed from the warehouse layout. Thus, given a batch, a best fit route can be 

selected as a matching problem, referred to as the route-selecting order batching model 

(RSB). 

The formulation is flexible and can handle both sort-while-pick and pick-then-

sort operational strategies. The capacity of the cart is represented by CAPA. Qo denotes 

the portion of CAPA that order o consumes.  In the case of sort-while-pick strategy, 

CAPA is measured in units of orders, thus Qo is 1. In the case of pick-then-sort strategy, 

CAPA is measured in units of items, thus Qo becomes the number of items in order o. 

OAoa is set to 1 if aisle a must be visited to gather the items in order o. Route 

information and length are initially constructed for all routes r in the route set R. Route 

information is expressed with the aisle visiting vector (RAra) and the route length is LTr. 

Given pickers’ one-way traversal routing, for pick areas of size |A| = 2, 4, 6, 8, 10, and 

12, where A is the number of aisles, the sizes of route set |R| are 1, 4, 12, 33, 88, and 232, 

respectively. Though the size of |R| increases exponentially, for reasonable-size 

problems, for example 10 aisles, there are only 88 potential routes. We define a set of 

batches, B, initially |B|=|O|, allowing each order a separate batch. If batch b in B is set to 

include an order, batch b is active. RSB is formulated to determine if batch b is active, 

which is indicated by BVb, if order o is assigned to batch b, which is indicated by Xob, 

and the route of batch b, which is indicated by Ybr.  
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Indices and parameters 

bB,
 

= the set of batches, and its index Bb

 
oO,
 

= the set of orders, and its index Oo

 

aA,
 

= the set of aisles, and its index  AAa ,,1
 

rR,
 

= the set of routes, and its index Rr

 
oQ
 

= the number of line items in order o 
 

oaOA  = 1 if order o passes through aisle a (=order o has at least one pick in aisle a) 
0 otherwise 

 rLT
 

= the length of route r 
 

raRA  = 1 if route r passes through aisle a  
0 otherwise 

 CAPA
 

= the capacity of a cart 
 

Decision variables 

obX  = 1 if order o is assigned to batch b 
0 otherwise 

 brY  = 1 if batch b takes route r 
0 otherwise 

bBV  = 1 if batch b is valid 
0 otherwise 

 Formulation 

(RSB) 
 Bb Rr

brrYLTMin           (4.1) 

 

s.t. 

  

,1
Bb

ob X  O, o   (4.2) 

 ,CAPA XQ
Oo

obo  
  

B, b   (4.3) 

 
bob BVX 

 
B, bO, o   (4.4) 
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  ,1
Rr

br Y

 
,BbBVbB b b ),1|{'    (4.5) 

 

  

,
Rr

brraoaob  YRAOAX  
,BbBVbB b

O oA a

b ),1|{'

,,




  

(4.6) 

  1,0obX

 
B, bO, o    

  1,0brY

 
R, rB, b    

 

The goal is to minimize the total travel distance (4.1). The basic function of the 

given algorithm is to partition orders into batches. An order cannot be separated into 

multiple batches and all orders should be assigned to batches (4.2); a batch should not 

exceed the capacity constraint of the cart (4.3). The maximum number of batches is 

limited to the number of orders. BVb is active if at least one order is assigned to batch b 

(4.4). A batch must have one route (4.5).  The aisle visiting incidence vector of route b 

should contain the aisle visiting incidence vector of orders in batch b (4.6).  

3.3 Validation  

To validate our model, we derive general requirements of the formulation as in 

Gademann and Van de Velde (2005).  

 Requirement 1 (No splitting of an order and all orders are fulfilled). Every 

order is included in exactly one batch.  

 Requirement 2 (Capacity).  The number of items in a batch is less than or equal 

to the maximum batch size. 

 Requirement 3 (Complete route).  A route starts at the L/U station and returns 

to the L/U station.  

 Requirement 4 (One-way directionality). Each aisle has its own moving 

direction.  
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Similar to Gademann and Van de Velde, we require 1, 2, 3, and 4. The 

requirements are modeled by (4.2) for requirement 1 and (4.3) for requirement 2.  

Requirements 3 and 4 are enforced while generating the candidate routes in set R.  

4. ROUTE-BIN PACKING PROBLEM (RPP) AND ITS LP RELAXATION (RPP-

LP) 

This section develops two relaxation models for the route-selecting order 

batching formulation (RSB) model, both of which can serve as lower bounds for the 

RSB model. The RSB model stated above simplifies the batching problem; however, it 

still contains partitioning constraints (4.2), which have been proven to be NP-complete 

(Gademann et al., 2001; Ruben and Jacobs, 1999). However, the partitioning stage can 

be postponed and a route-bin packing problem (RPP) is developed by assigning orders 

directly to routes. This allows a lower bound to be constructed, but additional 

reformulations using a linear programming relaxation are needed to solve large-size 

problems.  

4.1 Route-bin packing problem (RPP) 

RSB can be simplified by removing the batching variables to develop a new 

partitioning problem. When the partitioning stage is skipped, the batching problem is 

relaxed to obtain the number of routes required to retrieve orders. Then, within route 

types, batches can be identified similar to a generic bin-packing problem; this 

formulation is referred to as a route-bin packing problem (RPP). To further describe the 

details, we reuse two decision variables, obX

 
and

 
brY , introduced in the prior section.  
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Using the following two equations, 




Bb

b ro bo r YXx , 
Bb

brr Yy , we further define  xor 

indicating order o is assigned to route r r and ry is the count of batches taking route r.   

Based on these two new variables, we derive three new constraints (4.8), (4.9), 

and (4.10) using Gaussian elimination processes and Lagrangian relaxations.  A 

constraint in (4.2) specified by order o is matched to a constraint in (4.8) having the 

same order o. The inequalities (4.9) and (4.10) also are valid after aggregating the 

constraints related to route r. Basically, we aggregate constraints in (4.3) for batches b 

using route r. We can replace batching index b with route index r by aggregating the 

constraints having the same route r; thus, (4.9) has no batch index. We repeat the same 

process for (4.6) to obtain (4.10). Finally, we relax constraints (4.4) and (4.5), and RPP 

without batching variables results. The proof appears in Appendix A.1.    

 

Decision variables 

orx  = 1 if order o is assigned to route r 
0 otherwise 
 

ry  = the number of batches assigned to route r 

 (Basic RPP)    
Rr

rr yLTMin     

 
 (4.7) 

s.t. 

  

,1
Rr

or x  O, o   (4.8) 

 ,r
Oo

oro yCAPAxQ 
  

R, r   (4.9) 

 

  

,rraoaor yRAOAx   R, rA, aO, o    (4.10) 

  1,0orx

 
O, oR, r    
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  ,...2,1,0ry

 
R, r   

The objective is to minimize the sum of the length of assigned routes (4.7). All 

orders are assigned to exactly one route (4.8). The capacity of the assigned routes r 

should be greater than or equal to the total quantity of items to be picked (4.9). The aisle 

visiting incidence vector of route r should contain the aisle visiting incidence vector of 

each order o that has been assigned to route r (4.10).  

The number of constraints in the basic RPP formulation for constraint set (4.10) 

is |O||A||R|. This can be simplified as follows:   

1) For each r in R, we evaluate whether order o is covered by route r and, if so, 

include order o in set Or.   

2) Then for o in O\Or, xor is 0, because route r does not cover order o.  

Thus, constraint set (4.11) is constructed, which has no more than |O||R| 

constraints. Relaxing constraint (4.10) to (4.11) reduces the complexity of the 

formulation with only a minimal expansion of the solution space. 

 

(RPP)   
Rr

rr yLTMin      

 

  

s.t. 

  

(4.8), (4.9), and   

 ,0orx

 
R, r,OO o r  \  (4.11) 

 

Rather than (4.11), there is another way to reduce the number of constraints. We 

can penalize Qor = INFINITY instead of each constraint in (4.11). Then, xor is forced to 

be 0, because Qor is larger than CAPA. The resulting formulation has a smaller number 
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of constraints. However, using a general MIP solver, the computational performance of 

this strategy to reduce the number of constraints in (4.11) is poor. Thus, we use (4.11) 

for computational purposes. The RPP without constraints (4.11) is equivalent to a 

generalized bin-packing problem (Lewis and Parker, 1982). 

4.2 Linear programming relaxation on RPP (RPP-LP) 

We derive a lower bound algorithm by relaxing the integer restrictions within 

RPP. This LP relaxation of RPP provides a weak lower bound. To strengthen the lower 

bound, we add valid inequalities based on the original constraint (4.10). This is 

implemented by enforcing yr to be equal to maximal xor for route r as shown in (4.12).  

 

(RPP-LP)    
Rr

rr yLTMin      

 

  

s.t. 

  

(4.8),
 
(4.9), (4.11), and   

 ,ror yx 

 
R, r,O o r   (4.12) 

 
ry0

 
R, r   

 

Constraints (4.12) ensure that if any order o is assigned to route r, then there is at 

least one batch within route r. 

4.3 Relationship and optimality 

A simple lower bound can be constructed by assuming that each order uses an 

optimal route (LTo) and each cart is fully loaded during each trip. We define the travel 

distance under this construction to be the ideal batching (IB) bound represented by 
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Obj(IB).  

CAPALTLTCAPAIB

Oo

o

Oo

o //1)(Obj 


  

Obj(IB) is equal to or less than Obj(RPP-LP), because RPP-LP without 

constraints (4.11) and (4.12) is the formulation to find the travel distance under ideal 

batching.   

For Obj(RPP-LP), Obj(RPP), and Obj(RSB), the following inequalities hold as a 

definition of relaxation:  

Obj(IB) ≤ Obj(RPP-LP) ≤ Obj(RPP) ≤ Obj(RSB) 

The solution to RPP is optimal if Obj (RPP) = Obj (restored batches from RPP 

solution), because the upper bound is the same as the lower bound. The solution by RPP-

LP is also optimal if the solution by RPP-LP is integral and Obj (RPP-LP) is equal to 

Obj (restored batches from RPP-LP solution).  

5. A HEURISTIC ROUTE-PACKING BASED ORDER BATCHING 

PROCEDURE (RBP) 

This section describes a heuristic solution procedure to solve the batching 

problem based on the RPP formulation.  The RPP model is preferred, because batches 

can easily be constructed from the solution to RPP.  However, RPP is still 

computationally difficult, so two further computational improvements are considered: 1) 

a partial route set; and 2) a truncated branch-and-bound approach. The proposed 

heuristic procedure is composed of three steps:  

Step 1: identify and construct potential route sets.  

Step 2: assign orders to routes using RPP 
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Step 3: restore a feasible solution from the infeasible solution obtained from the 

relaxed model.   

These steps are described below. 

Step 1. : Identify and construct potential route sets 

We have already shown in section 3.2 that |R| increases exponentially as |A| 

increases. Consequently, variables and constraints in the RPP formulation, including the 

route index, increase exponentially. The set of routes is constructed in two steps: first, an 

elementary route set (Re) is selected to guarantee each order can be picked using one of 

the routes in the route set. This is done by completely enumerating all routes and 

sequencing them in ascending order by route length. For order o, we select a first fit 

from the set, and update Re U {r} ties are broken randomly. The elementary route set is 

only part of the reduced route set (Rr) used in RPP. Second, we consider combined route 

set (Rc), because these routes will be useful when the number of orders assigned to a 

route do not divide evenly into the batch size. 

To generate the combined route set, we employ the Clark and Wright II 

algorithm (CW II) (Clarke and Wright, 1964; De Koster et al., 1999). The modified CW 

II algorithm constructs routes with relatively short travel distances. As part of the CW II 

algorithm, a composite level, indicating the maximum number of routes covered by a 

combined route, must be specified. A detail of the route-set selection procedure follows.  
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Route-set selection procedure: 

 

 
The route construct step can be illustrated by the example shown in Figure 7. 

Assume that the number of aisles is six and six orders are given. In this aisle 

configuration, 12 different routes are available. From the orders to be picked, the 

elementary route set is constructed as {e1, e2, e3, e4}. For four elementary routes, CW II 

creates c1 when the composite level is four. Rr becomes {e1, e2, e3, e4}, because c1 is 

already a route in Re.  

 

1. Initialize O = all orders, Re ={}, Rc ={}. 
2. Construct Re  

For o = 1 to |O| 
     If Re does not include an optimal route for order o 
       R = optimal route of o 
     Re = Re U {r} 
 End if 
End for 

3. Construct Rc from Re using a route composition algorithm  
Set the composite limit C 
Do  

Calculate the savings sij for all possible route pairs i,j in Re u Rc 

Sort the savings in decreasing order. 
Do 

Select the pair with the non-selected highest savings. In the 
case of a tie, select a random pair. 

If the pair does not violate composite level C 
Combine both ―routes‖ to form a new element r in Rc  

While (remaining pair in the savings or any composite 
candidate) 

While (all r’s in Re have not been included in Rc) 
4. Rr = Re U Rc 
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Figure 7. An example of elementary route set and combined route set. 

 

Step 2. Assign orders to routes using RPP  

This step solves RPP using an IP solver with a time-truncated branch-and-bound 

method. Gademann and Van de Velde (2005) indicate that the branch-and-bound 

approach to solving the batching formulation converges to a near-optimal solution 

quickly and most of the computational time is spent validating the optimality of the 

solution. Because RPP considers a simpler set of potential routes the computational time 

will be faster, but we also truncate the search with a time-limitation. However, later we 

will construct a lower bound, thus we can estimate the impact on the solution quality 

caused by the time truncation. 

Step 3. Build batches from orders within routes 

Step three, BPr , constructs batches with routes using the order-to-route 

assignment information. After constructing the batches, residual orders must be merged 

into additional batches. The solution of the BPr sub-procedure depends on the sortation 

strategy.  

i) Sort-while-pick strategy 

In this case, since the size of a batch is based on number of orders, not items, BPr 
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can be solved using a greedy algorithm. By assigning orders to batches on a first-come-

first-serve basis, we can obtain an optimal solution. Figure 8 illustrates a procedure to 

cluster 10 orders into two 5-order batches, where yr is 2. Then, orders are grouped into 

two batches, b1 and b2.  

 

 

Figure 8. Batches b1 and b2 are constructed by grouping yr orders assigned to route r. 

 
Note that the routes from the combined route set can be used to handle residual 

orders from the elementary route sets. The remaining residual analysis is typically trivial 

under a sort-while-pick strategy. 

ii) Pick-then-sort order picking strategy 

Here, CAPA is defined in terms of items. Further, orders can have multiple items.  

Thus, assigning orders to batches using a greedy algorithm produces a poor solution. 

Instead, we solve IP formulation BRr shown below to allocate orders to batches more 

efficiently while maintaining CAPA. When there are remaining orders (i.e., not fully 

packed batches), we merge them into new batches. When there are residual batches of 

less than half of CAPA, the CW II algorithm is applied to merge these remaining batches.   

 

(BPr)   
 rBb

bzMin      

 

 (4.13) 
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s.t. 

  

,1
 rBb

ob x  O, o   (4.14) 

 ,b
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obo zCAPAxQ 
  

,B b r   (4.15) 

  1,0obx

 
O, o,B b r    

  .1,0bz  ,B b r   

 

6. IMPLEMENTATION AND COMPUTATIONAL RESULTS 

We first test the performance of the proposed heuristic on different problem sizes 

assuming a one-way traversal routing method. We then extend the experiments to the 

two-way traversal routing method.  

6.1 Implementation 

The following analysis using the MIP formulations developed above are 

implemented using the ILOG CPLEX Callable Library C API 11.0.4. The data-set 

generator and comparison algorithms are developed using the C language. To test the 

computational performance, the executable files are run on a Windows NT-based server 

system with the Windows Vista operating system (Xeon 2.66 Ghz CPU, 12 GB memory). 

While compiling the CPLEX source, the stand-alone dynamic-linked library (DLL) is 

used. Both the branch-and-cut option and the heuristic search option are disabled to 

evaluate the exact computational time. While solving RPP and BPr, we use the truncated 

branch-and-bound method with a time limit of 60 seconds. Instead of the optimal 

solutions, we evaluate solutions of the RBP by comparing with their LP lower bound 

generated with a full route set. Note that RPP-LP does not require the time limit and BPr 
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is only applicable for the pick-then-sort strategy. 

Each experiment is repeated for 20 random instances. The number of orders in an 

instance is fixed. The number of items in an order is determined by a simple density 

function where p(1) = 0.5/0.95, p(n)=( 1/2*(n-1)-1/2*n )/(0.95) when n = 2,…,10, and 

p(n) = 0 otherwise. This order size distribution generates a result similar to that of 

Frazelle’s (2002) small picking example. The average order-size is 2.02.  Item locations 

are determined by the within-aisle class-based storage policy where A:B:C ratio is 

0.7:0.2:0.1. Further, class A, B and C items are stored in aisles 1-2, 3-4, and 5-10, 

respectively. The time to travel the length of one pick-face is 1 time unit. The time to 

travel the length and the width of the aisle is 21 and 2 time units, respectively. The time 

to travel the length of the aisle includes the time from the center of cross aisles to the 

front end of a passage aisle, and the time aisles from a back end of an aisle to the center 

of cross, which are assumed to be half of a pick face. Thus, the time to travel the length 

of the aisle becomes 40/2+0.5+0.5= 21. The L/U station is located in front of the 

leftmost aisle. To combine routes in the route set reduction stage, the composite level is 

set to 3 routes. 

In discussing the performance of the algorithms, we use the following notation 

throughout the remainder of this section. 

FCFS: partition orders into batches based on a first-come first-serve policy 

Seed: the seed algorithm in De Koster et al. (1999): 1) select a seed having the 

largest number of aisles, 2) choose the order minimizing the number of 

additional aisles, and 3) update the seed as an order is added it. 

CW II: the Clarke and Wright algorithm (II) in De Koster et al. (1999). See 
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Appendix A.2 for more detail. 

RBP: the heuristic route-selection-based batching algorithm 

LB: the linear relaxation model of RPP (RPP-LP) 

IB: the ideal batching model 

Obj: the objective value of an algorithm 

ObjL: the objective value of RPP, L stands for a lower bound 

ObjU: the objective value of restored solution of RPP, U stands for an upper 

bound 

CPU: computational time in seconds 

LU gap: gap between an objective function value and the RPP-LP objective 

function value expressed as a percentage ( = (an objective function value 

– LB)/(LB) %) 

6.2 Experimental results  

6.2.1 Computational time and the total travel distance 

The performance of the proposed RBP method is compared to FCFS, seed, CWII, 

and the LB to understand the relative performance.  These problems are computationally 

difficult so the total travel distance, the run time and the percentage deviation from the 

lower bound are calculated and reported in Table 1. The RBP produced near-optimal 

solutions within about 2 minutes and outperformed the seed and the CW II algorithms. 

Moreover, RBP improvement over alternative methods was larger for scenarios in which 

the number of orders was smaller. 
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Table 1. Computational results over different algorithms 

 

 
Specifically, in the sort-while-picking strategy, the seed algorithm requires a run 

time of 0.2 seconds. However, the LU gap is between 15 and 30%. CW II has a shorter 

total travel distance, but took a longer computational time (which was also noted by De 

Koster et al. (1999)). As the problem size increased, its computational time increased 

exponentially. When the number of orders was 2160, it took on average 137.30 seconds. 

RBP demonstrated a considerable improvement in travel distance. The LU gap ranged 

from 1.07 to 2.26% when the computational time was limited to 60 seconds,  whereas 

the best approach identified in De Koster et al. (1999), CW II, showed a gap ranging 

from 9 to 14%.   

The LU gap of RBP was larger under the sort-while-pick strategy. The increase 

in the gap is because RBP produced some batches that were not filled to capacity 

because of fixed non-uniform order sizes. Note that this has been partially improved by 

forming additional batches by merging these remaining batches using the CW II 

algorithm. To investigate additional possibility and improve the solution quality, we 

conducted a neighborhood search considering different combinations of batches. We 

observed a small performance improvement, i.e., less than 0.2% of the total retrieval 

Sort # FCFS Seed CW II RBP LB IB

Strategy orders Obj LU gap Obj CPU LU gap Obj CPU LU gap ObjL ObjU CPU LU gap Obj CPU Obj

Sort- 360 5923.0 57.97% 3549.3 0.00 29.87% 2899.1 0.40 14.14% 2546.9 2546.9 11.47 2.26% 2489.3 0.77 2305.8

while- 720 11892.5 59.80% 6332.3 0.02 24.51% 5501.9 4.96 13.12% 4844.6 4844.6 40.33 1.33% 4780.3 1.83 4615.9

pick 1080 17915.3 60.48% 8970.1 0.05 21.06% 8033.3 16.20 11.86% 7177.2 7177.2 56.95 1.34% 7080.8 2.68 6938.6

1440 23961.0 60.82% 11573.1 0.09 18.88% 10505.0 39.09 10.63% 9504.9 9504.9 60.26 1.23% 9388.3 3.63 9256.0

1800 29989.7 60.95% 14122.7 0.14 17.08% 12942.6 75.68 9.52% 11849.0 11849.0 60.34 1.17% 11710.5 4.58 11587.2

2160 36033.8 61.06% 16605.7 0.21 15.50% 15412.0 137.30 8.96% 14183.3 14183.3 60.40 1.07% 14031.8 5.69 13916.0

Pick- 360 4645.5 55.74% 3147.4 0.01 34.67% 2476.9 0.46 16.98% 2128.7 2128.7 17.54 3.40% 2056.2 4.93 1897.4

then- 720 9342.6 57.37% 5539.1 0.02 28.09% 4659.0 4.79 14.51% 4107.7 4107.7 67.11 3.04% 3983.0 11.98 3814.4

sort 1080 14126.7 57.85% 7967.5 0.05 25.26% 6868.9 14.70 13.31% 6136.5 6160.5 75.30 3.34% 5955.0 12.87 5783.4

1440 18831.5 58.35% 10198.8 0.09 23.09% 8927.0 33.69 12.14% 8076.2 8145.3 96.46 3.70% 7843.7 18.14 7689.6

1800 23522.5 58.55% 12476.8 0.14 21.85% 10979.5 62.21 11.20% 10024.7 10100.9 105.02 3.47% 9750.3 22.80 9614.6

2160 28257.9 58.69% 14683.5 0.20 20.51% 13065.3 104.09 10.66% 12002.4 12108.5 140.54 3.60% 11672.5 27.71 11550.7
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distance. The details and experimental results are summarized in Appendix A.3. 

 While the computational time of RBP and CW II was almost equal under the 

sort-while-pick strategy, the run-time of RBP increased under the pick-then-sort strategy, 

because the batch packing stage was computationally intensive using the IP bin-packing 

algorithm. However, run-times were still smaller than 150 seconds for all cases. While 

the IP-based batch packing process may take slightly longer, this is not a significant 

computational burden. Note that in both RPP and BPr, the time limit for the branch-and-

bound procedure is 60 seconds, and the solution procedure requires multiple iterations of 

BPr. 

The seed and CWII algorithms depend on having a large number of orders to 

improve performance.  When the number of orders was 360 or 720, the algorithms 

experienced a large LU gap. Thus, the benefits of RBP are significant for large-size 

problems, but are even more prominent when the number of orders is small.  

6.2.2 The average travel length per order 

The average travel length per order is another metric that can evaluate the 

performance of various batching methods, assuming all orders construct similar numbers 

of batches. With this objective, a large-size batching problem is preferred since larger 

problems can produce more efficient batches, thus reducing trip distance. The previous 

methods developed for batching demonstrate a significant improvement in average travel 

length per order as shown in Figure 9. The improvement declined as the number of 

orders increased. When the number of orders increased from 1800 to 2160, there were 

minimal gains in throughput of the order picking system. In all cases, RBP dominated 
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other heuristics in solution quality with very small gaps to IB and LB.  

 

   
(a)                                                                  (b) 

Figure 9. The average travel length per order with the one-way traversal routing method: 
(a) sort-while-pick strategy; and (b) pick-then-sort strategy. 

 
6.2.3 Impacts on picker blocking in narrow-aisle configuration 

In narrow-aisle picking systems, the shorter travel length does not guarantee a 

shorter retrieval time due to picker blocking (Gue et al., 2006). Thus, we conduct a 

simulation study to quantify the effect on picker blocking on the various batching 

algorithms.  Two situations are considered: a light congestion situation and a heavy 

congestion situation.  A light congestion environment is defined as: the number of orders 

in a time window = 1080 orders, 4 time windows, pick:walk time ratio = 5:1, 5 pickers, 

setup time per batch = 120, and cart capacity = 10 orders or 20 items.  A heavy 

congestion environment is defined as: pick:walk time ratio = 10:1, 15 pickers, and cart 

capacity = 25 orders or 50 items. 

Figure 10 depicts the comparison of the total retrieval time. RBP was relatively 

robust to picker blocking situation, while seed and CW II produced very poor results 

under heavy congestion. These findings emphasize the importance of picker blocking 

and selecting a batching algorithm that not only reduces travel distance, but also does not 
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create excessive picker blocking.  

 

  
 (a)                                                                            (b) 

Figure 10. The total retrieval time comparison via a simulation study: (a) light 
congestion case; and (b) heavy congestion case. 

 
Other experimental results are summarized in Appendix A.4. RBP demonstrated 

consistent performance over other order picking profiles, including variations in both 

OPS sizes and storage policies. 

6.3 Application: wide-aisle picking systems 

The previous framework considered pick areas characterized by one-way narrow-

aisles. The proposed framework described in this study can be extended to operations 

with two-way wide-aisle pick areas.  The wide-aisle picking system is used in industry to 

reduce picker blocking or to accommodate storage/retrieval vehicles.  

6.3.1 Two-way traversal routing method 

Here, pickers have greater flexibility in route selection.  Consider constructing an 

extended route set R based on a two-way traversal routing method. The number of 

unique routes required grows quickly in the number of aisles.  For example, for |A| = 2, 4, 

6, 8, 10, 12, the corresponding number of routes is 1, 7, 31, 127, 511, 2047. The number 

of routes for any even value of A can be calculated using the following equation:  
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L(A)= |A|C2+|A|C4+|A|C6+..+|A|C|A|, where |A|=2,4,… and |A|Ca =     
 
 . 

6.3.2 Computational result 

In Table 2, the previous four methods for batching were used in a two-way 

traversal routing situation. Further, Figure 11 compares the average travel length per 

order in a ten-aisle picking system. The impact of optimally batching was more 

significant as the routing methods grew more complex. With the two-way traversal 

routing method, RBP continued to dominate CW II and the other methods and the 

improvement achieved by using RBP was larger for two-way traversal routing. The RBP 

route set included a smaller proportion of the total number of possible routes to attempt 

to balance performance with computation time. This is the primary source of the 

deterioration of the performance for both RBP and the lower bound estimates.  

 
Table 2. Computational results with the two-way traversal routing method in the ten-
aisle picking system   

 

 
 

Sort # FCFS Seed CW II RBP LB IB

Strategy orders Obj LU gap Obj CPU LU gap Obj CPU LU gap ObjL ObjU CPU LU gap Obj CPU Obj

Sort- 360 5385.1 57.42% 2938.6 0.01 21.97% 2833.4 0.43 19.08% 2359.6 2359.6 30.55 2.83% 2292.8 64.78 2063.2

while- 720 10808.0 59.43% 5287.2 0.03 17.06% 5219.4 4.17 15.98% 4476.7 4476.7 60.15 2.05% 4385.1 119.97 4128.7

pick 1080 16242.0 60.16% 7596.5 0.05 14.83% 7597.8 13.57 14.84% 6622.3 6622.3 60.28 2.30% 6470.2 185.28 6206.9

1440 21716.9 60.66% 9883.7 0.09 13.55% 9922.5 31.43 13.89% 8729.0 8729.0 60.41 2.12% 8544.3 258.77 8286.1

1800 27202.7 60.98% 12077.1 0.15 12.12% 12186.6 63.88 12.91% 10833.6 10833.6 60.61 2.03% 10613.7 422.94 10364.8

2160 32725.9 61.25% 14273.7 0.21 11.17% 14506.4 111.40 12.59% 12924.7 12924.7 60.81 1.89% 12679.8 429.91 12443.9

Pick- 360 4243.8 55.79% 2598.4 0.01 27.79% 2385.9 0.49 21.36% 1968.7 1968.7 50.71 4.69% 1876.4 1267.52 1666.5

then- 720 8488.7 57.60% 4622.1 0.03 22.14% 4407.6 4.91 18.35% 3802.5 3802.5 60.76 5.35% 3598.9 6833.24 3343.0

sort 1080 12836.7 58.38% 6681.9 0.05 20.05% 6445.7 17.53 17.12% 5654.0 5654.0 64.55 5.51% 5342.2 13546.39 5070.2

1440 17131.7 59.01% 8576.9 0.09 18.12% 8384.6 42.77 16.24% 7400.1 7416.8 79.92 5.31% 7022.8 19910.84 6752.1

1800 21426.1 59.42% 10527.9 0.14 17.41% 10282.5 85.27 15.44% 9255.8 9314.1 98.83 6.65% 8694.6 16521.80 8436.3

2160 25743.9 59.67% 12423.5 0.21 16.43% 12168.7 146.69 14.68% 11039.6 11073.2 127.08 6.24% 10382.3 24644.21 10137.0
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(a)                                                              (b) 

Figure 11. The average travel length per order with the two-way traversal routing 
method: (a) sort-while-pick strategy; and (b) pick-then-sort strategy. 

 

7. CONCLUSIONS 

This chapter introduced a route-selecting order batching formulation (RSB), its 

bound model (RPP-LP), and a heuristic solution procedure (RBP) to solve large-scale 

order batching problems. The special structure of RPP was exploited in developing the 

formulations and the solution. RBP produced near-optimal solutions in a narrow-aisle 

order picking system, where the number of aisles was ten and the number of orders was 

2180. The computational time required was about 70 seconds on average, with a 

maximum of 140 seconds. The solution quality was demonstrated by comparing with a 

tight lower bound developed from the proposed model.  

The procedure we have described is an important step toward efficient and 

effective DC design/operation, where both space utilization and operational throughput 

are major considerations. A narrow-aisle picking area in a DC is advantageous in terms 

of space utilization, but produces more picker blocking (Gue et al., 2006; Napolitano 

and Gross&Associates, 2003). Solutions by RBP not only shortened the total travel 

distance to near-optimal solutions, but were robust to picker blocking.  
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A variety of direct extensions of RBP are possible. We showed the RBP 

framework was extendible to wide-aisle picking systems with a two-way traversal route. 

Some order picking systems, such as a multiple cross-aisle system (Roodbergen and de 

Koster, 2001) and a 2-block warehouse (Le-Duc and de Koster, 2007), can also be 

modeled using the RBP batching procedure. In those systems, it is possible to enumerate 

available or preferred routes (R) and to define matching relationships between routes and 

orders (Or) for general situations. As long as the warehouse manager can construct a 

preferred route set (R), the proposed algorithm can solve the problem with only slight 

modifications.  

Extending this research to consider other routing methods and to explicitly 

account for picker blocking will be useful. First, the proposed procedure can be a key 

enabler when developing an efficient batching algorithm with different routing methods 

as discussed in Section 6.3. Second, picker blocking should be scrutinized and managed 

in order picking operations. Our experimental results indicate that using the RBP method 

for batching can have significant benefits in terms of reduced picker blocking. However, 

productivity loss by picker blocking still remains an issue. These observations provide 

motivation for the research described in the next chapters.  
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CHAPTER V 

ANALYSIS OF PICKER BLOCKING IN NARROW-AISLE 

BATCH PICKING 

 

This chapter identifies sources of picker blocking in batch picking in a narrow-

aisle situation and determines satisfactory operational situations, e.g., batching algorithm, 

sorting strategy, for reducing picker blocking. We present new multiple-pick analytical 

models to more accurately evaluate picker blocking in a closed-form expression of pick 

density and the number of pick faces. We compare the results developed from a 

conventional single-pick order picking models to our multiple-pick models to quantify 

and identify sources of picker blocking. Note a single pick model assumes there can be 

at most one picker per pick face, whereas a multiple-pick model allows multiple picks at 

a pick face. Finally, a simulation study over a variety of batching situations is presented. 

We highlight three findings for narrow-aisle batch picking processes:  1) variation in 

pick density across aisles affects picker blocking as much as the magnitude of pick 

density;  2) a near-optimal distance-based batching algorithm can reduce picker blocking 

when an appropriate sorting strategy is employed, because it reduces both the number of 

aisles visited and the variation in the number of picks per aisle; and 3) the sorting 

strategy (i.e., a pick-then-sort strategy or a sort-while-pick strategy) causes varying 

amounts of congestion, depending on possible routing options used.   

1. INTRODUCTION 

We consider a narrow-aisle picking environment, which is very attractive for its 
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storage capability. However, the narrow-aisle configuration can produce picker blocking, 

even though one-way traversal routing is used to mitigate congestion (Gue et al., 2006). 

Accordingly, the order fulfillment time can lengthen and operational costs increase. In 

practice, the effects of batch formation on picker blocking vary according to the batching 

algorithm, sorting strategy, and storage policy.  

A principle of batch picking is to have pickers gather items that are closely 

located within the storage space when feasible. Basically, a batch has a higher pick 

density compared to a single order, which leads to higher picker utilizations. Two studies 

(Gue et al., 2006; Skufca, 2005) consider a model under a single-pick assumption 

defined as a situation in which only a single product type is picked at a particular pick 

face. However, in batch picking, the probability of needing to pick more than one 

product type at a particular pick face increases. Thus, multiple-pick models that consider 

repeated picks at a particular pick face can be useful. Parikh and Meller’s (2010) recent 

analytical models of picker blocking considering multiple-picks in narrow-aisle 

configurations begin to develop an understanding of the impact of non-deterministic pick 

times as well as multiple-picks at a stop on order picking performance. 

However, to date, researchers do not fully understand the relationship between 

picker blocking and batch formation. Gue et al. (2006) and Parikh and Meller (2010) 

have identified two sources of picker blocking as the size and variation of pick density. 

However, the impact of batch formation on picker blocking has not been characterized. 

It is evident that practical picking situations (i.e., batching algorithm, sorting strategy, 

and storage policy) influence batch formation and thus can have differing effects on two 
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sources of picker blocking.  

In general, an analytical model characterizing picker blocking with a closed-form 

expression in terms of the number of pickers, k, is desirable. The k-picker model can 

help researchers analyze the impacts of increasing the number of pickers. The closed-

form expression can suggest diverse numerical analysis over different operations without 

the use of simulations. Available analytical studies (Gue et al., 2006; Parikh and Meller, 

2009; Parikh and Meller, 2010; Skufca, 2005) develop models of two extreme cases: 

pickers’ walk speed is infinite or slow. Neither model exists in practice, but they can 

bound actual situations and provide an excellent understanding of picker blocking. 

Parikh and Meller’s (2010) two-pickers multiple-pick analytical models for narrow-aisle 

configurations  raise two issues : 1) the analytical model for the slow walk speed case is 

developed based on four combinations of pick and walk tasks of two pickers; 

consideration of picking and walking states restricts the extension of the models as well 

as increases the computational complexity; and 2) a closed-form expression for the 

infinite walk speed case has not been developed; thus their experimental study does not 

provide analytical measures of picker blocking for varying pick density. In other words, 

similar to a simulation, the experimental study requires a computational calculation.  

Note that our study has been conducted independently from Parikh and Meller’s recent 

study, but both studies produce similar analytical models and address an identical 

opinion which is relevant for the impacts of multiple-picks on picker blocking. Although 

Parikh and Meller’s study was published first, we show the differences between two 

results. From the standpoint of the analytical models, the differences described above 
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have been identified. In terms of the research aim, however, we focus on both 

developing analytical models over multiple-pick situations, and also scrutinizing order 

batch picking situations which can give throughput benefits in a narrow-aisle 

configuration by satisfying the analytical results (Parikh and Meller cover only the 

impacts by multiple-picks on picker blocking). 

This chapter develops new analytical models of picker blocking considering 

multiple-picks in narrow-aisle configurations, which are simpler compared to Parikh and 

Meller (2010) and can facilitate the derivation of two closed-form equations for the 

probability of being blocked. Further relevant convergence characteristics are addressed 

from the two closed-form expressions. More importantly, we conduct simulation studies 

over different batch picking situations to relate characteristics of the picking 

environment and picker blocking to determine appropriate batching strategies for high 

order picking throughput. 

This chapter is organized as follows. Section 2 details the relevant order picking 

literature and identifies new research opportunities. Section 3 defines a circular blocking 

model. In Section 4, we derive new blocking models under the assumption of two-

pickers and multiple-picks per location. We apply the models to two extreme cases. 

Relevant insights about the differences between the multiple-pick models and a single-

pick model and the impacts of the size of variation in batch size are discussed. Section 5 

examines the relationship between analytical models and batching situations. Section 6 

summarizes the findings and offers suggestions for future research.  
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2. LITERATURE SURVEY 

Picker blocking analysis in parallel-aisle picking systems can be distinguished by 

the aisle width, which defines the physical form of the system. A narrow-aisle system is 

typically characterized by no-passing in an aisle. The picker blocking created by the no-

passing condition is termed in-the-aisle blocking. Skufca (2005) presents a k-picker 

congestion model of a circular no-passing system in the case of infinite walk speed. Gue 

et al. (2006) address two-picker congestion models of a parallel-aisle pick area 

approximated by a circular no-passing system considering infinite and unit walk speeds. 

In the unit walk speed, the unit walk time to pass a pick face is identical to the unit pick 

time. They also conduct additional simulations to investigate picker behavior under more 

practical walk speed assumptions. The authors focus on identifying the effects of ―pick 

density‖ on picker blocking under the single-pick assumption. Their results indicate that 

a batch picking strategy in narrow-aisle OPSs is advantageous when the pick density is 

either very low or very high. Parikh and Meller (2010) find that picker blocking can also 

be significant when the variation of the pick density is high. They develop two-picker 

congestion models under extreme walk speed assumptions and investigate other 

scenarios via a simulation study. A closed-form expression was only derived for the unit 

walk speed scenario. Their unit speed Markov chain model is relatively complex 

compared to our model. In addition, their analytical model over the infinite walk speed 

scenario experiences a gap compared to our result which is independently conducted and 

more clearly satisfies a common characteristic of picker blocking models. Both issues 

will be discussed in Section 4.  
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A wide-aisle system experiences a different type of picker blocking, referred to 

as pick face blocking. Parikh and Meller (2009) investigate analytical models under both 

the single-pick and multiple-pick assumption. The multiple-pick model, which allows a 

picker to repeatedly pick at a pick face, can reflect a more realistic situation. The authors 

indicate that the variation of pick density plays a vital role in increasing picker blocking 

and find that the wide-aisle picking systems can encounter significant pick face blocking 

when multiple picks occur at a pick face. Their comparison of the two models points to 

the equal importance of the variation of pick time as well as the variation in pick density.   

Several comparison studies to select a best-performing batching algorithm (De 

Koster et al., 1999; Ho and Tseng, 2006; Pan and Liu, 1995; Ruben and Jacobs, 1999) 

have been conducted during the last two decades. However, most studies (De Koster et 

al., 1999; Ho and Tseng, 2006; Pan and Liu, 1995) evaluate performance in terms of 

travel distance; only Ruben and Jacobs (1999) study the relationship between picker 

blocking and batching algorithms. The latter authors indicate that the level of congestion 

is affected by the selection of batching procedures and storage policies, although they 

don’t provide a clear rationale for the congestion. Through simulation studies, they find 

that a turnover-based storage policy, where popular products with large demand are 

stored based on shortest-possible travel retrieval, generates more congestion than family-

based, where higher-demand products are stored closer together, or random storage 

policies. Their blocking model approximates congestion by splitting an aisle in two and 

disallowing other pickers to access an occupied area. This type of unique control policy 

leads to different levels of congestion compared to recent studies (Gue et al., 2006; 
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Parikh and Meller, 2009; Skufca, 2005).  

Reviewing the available literature, we identify two critical issues with respect to 

the expression and analysis of picker blocking. First, the multiple-pick picker blocking 

models by Parikh and Meller (2010) are complex and inaccurate. To establish a Markov 

property, their analytical model for the slow walk speed case requires four sub states of 

the pick and walk tasks of two pickers; consideration of pick and walk states restricts the 

extension of the models as well as increases the computational complexity. In addition 

their model lacks a closed-form expression of infinite walk speed despite the fact that 

this type of expression can facilitate additional analysis of picker blocking.  

Second, no analytical studies have fully investigated the relationship with the 

batching algorithm even though, in practice, the batching algorithm may change both the 

pick density level and its variation. Ruben and Jacobs’s (1999) result fails to explain 

picker blocking in connection with batching algorithms, and there is no clear theoretical 

rationale for the congestion. Gue et al.’s  (2006) notion, i.e., less picker blocking when 

pick density is very low or very high, also requires additional investigation as Parikh and 

Meller (2010) finds a higher picker blocking situation. Furthermore, since both Gue et al. 

and Parikh and Meller do not conduct their studies on batch picking environments, their 

results do not explain practical situations. 

3. PROBLEM DEFINITION 

3.1 Batch picking in narrow-aisle picking systems 

In narrow-aisle picking systems, pickers circumnavigate one-way aisles to 

retrieve items from shelves and place them in a cart as shown in Figure 12. When an 
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aisle includes no items assigned to the picker, the aisle can be skipped to shorten the 

travel distance, but the unidirectional characteristic of the aisles must still be maintained. 

In practice, the order size is relatively small compared to the cart capacity; thus, orders 

may be batched to reduce total retrieval time by allowing pickers to collect multiple 

orders in the same trip. Orders cannot be split between multiple batches, and batch size 

is determined by the cart’s carrying capacity. 

 

 
Figure 12. A narrow-aisle system and a routing example (modified from Gademann and 

Van de Velde (2005)). 

 
In a narrow-aisle picking system, picker blocking can occur when multiple 

pickers traverse a pick area while maintaining a no-passing restriction. An upstream 

picker cannot pass a downstream picker as shown in Figure 13. 

 

 
Figure 13. Picker blocking (Parikh and Meller, 2009). 
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3.2 Throughput model 

Order picking systems are often characterized by the ratio of time spent to pick 

an item(s) to time spent at a stop. This ratio will be strictly less than one when picker 

blocking occurs. Gue et al. (2006) introduce a throughput model for an order picking 

system with k pickers in a single-pick situation. To reflect a multiple-pick situation, we 

generalize their model as Equation (5.1). When each picker is blocked b(k) fraction of 

the time, 0 ≤ b(k) ≤ 1, the throughput is 

    kb
ttp tE

p tE
kk

wp









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




 1

][

][


,
 

 (5.1) 

where E[pt] stands for the expected number of picks at a stop. The time to pick (tp) 

represents the average time the picker is stopped and includes the time spent picking 

items. The time to walk (tw) indicates the average time to walk past a pick face (location). 

In a single-pick model, E[pt] is equal to p (Gue et al., 2006), but a multiple-pick model 

is affected by the number of expected picks at a particular pick face as described in 

Parikh and Meller (2009).  

3.3 A circular order picking aisle model  

To simplify the analysis of the picker blocking phenomena in a narrow-aisle 

picking system, a parallel-aisle system is often modeled as a circular order picking aisle 

(Gue et al., 2006) as shown in Figure 14. In developing the blocking models, we assume 

the following: 1) the circular order picking aisle consists of n pick faces; 2) two pickers 

perform the order picking; 3) they take a one-way traversal route, meaning that they 

travel through that aisle in only one direction (or in the circular model this implies that 
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they move only in a clockwise direction); 4) pick time is constant regardless of the pick 

face characteristics, such as shelf height; 5) at a pick face, pickers pick with a probability 

p; q denotes 1-p, the probability of walking past a pick-face; 6) a picker can only be 

picking, walking, or standing idle due to blocking; 7) the pick time and the walk time 

between two pick faces are deterministic, termed as tp and tw, respectively.  

 

 
Figure 14. A circular order picking aisle (Gue et al., 2006). 

 
As a performance measurement, we obtain the percentage of time blocked, 

denoted as bm
pt:wt(k), where m stands for a multiple-pick situation and pt:wt represents 

the pick:walk time ratio. In the case of a single-pick situation (s), Skufca (2005) 

previously derived the analytical model for bs
1:0(k). Gue et al. (2006) studied single-pick 

models, i.e., bs
1:1(2) and bs

1:0(2), analytically, and generalized to other cases (e.g., 

b
s
1:0.5(2), bs

1:0.25(2),…, b
s
1:1(10)) using simulation models.  Parikh and Meller (2010) 

conducted another study for multiple-pick models (bm
1:1(2) and bm

1:0(2)), where the 

analytical model for bm
1:1(2) is presented in a closed-form expression using a discrete 

Markov chain with 4(n-1) states, and bm
1:0(2) is built on (n+1) state Markov chain, but 

does not have a closed-form expression. 
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3.4 Scope of study 

We wish to develop new analytical models for bm
1:1(2) and bm

1:0(2) 5 and to 

investigate the more general case bm
pt:wt(k) over varying pick density variation, e.g., 

different pick density functions, using a simulation study in a circular order picking aisle. 

For a more complete understanding of picker blocking and batch picking and their 

relationships to other aspects of warehouse operations, we conduct an extended 

simulation study considering batching algorithms, sorting strategies, and storage policies 

in a parallel-aisle picking system.  

4. ANALYSIS OF PICKER BLOCKING  

We first build analytical models for two order pickers who conduct a retrieval 

operation in a parallel-aisle picking system using the circular aisle characterization to 

develop a general understanding, and then conduct a simulation study to reinforce the 

significance in more practical situations. 

Our analytical study considers two extreme cases that do not exist in practice but 

provide bounds for realistic situations as well as help provide an excellent understanding 

of picker blocking: 1) walk speed is equal to unit pick time per pick face (pick:walk time 

= 1:1); and 2) walk speed is infinite (pick:walk time = 1:0).  Our analytical model 

utilizes a Markov property in determining distances between two pickers, which is 

consistent with prior work, see also (Gue et al., 2006; Parikh and Meller, 2009; Skufca, 

2005). 

                                                 
5 Our models replace and correct the Markov chains in Parikh and Meller (2010). First, we 

introduce a new Markov chain independent of picking or walking information in the infinite walk speed 
case. Second, we present an accurate Markov chain model to derive a closed-form expression of the unit 
walk speed case. 
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4.1 Pick:walk time = 1:1 

Let Dt denote the distance between picker 1 and picker 2 at time t. Given the 

pick:walk time ratio is 1:1, the distance can be expressed as  

(n + (picker 1 position) − (picker 2 position)) mod n   (5.2) 

and ranges from 1 to n-1. A Markov chain is introduced by defining state St = Dt, where 

St = 0 represents picker 1 blocking picker 2 and state St = n represents picker 2 blocking 

picker 1. In other words, there are two blocking states and n-1 distance-related states. All 

states can be summarized by the vector [blocked, 1, 2, … , n-1, blocked].  

These states allow us to distinguish four transition cases: 1) transition between 

unblocked states; 2) transition from an unblocked state to a blocked state; 3) transition 

from a blocked state to an unblocked state; and 4) transition between blocked states.  

1) Transition probabilities between unblocked states 

If both pickers pick (p*p) or walk (q*q), the current distance (Dt) does not 

change at t+1. However, when picker 1 picks while picker 2 walks (p*q), the distance 

decreases by 1. When picker 1 walks while picker 2 picks (q*p), the distance increases 

by 1.   

2) Transition probabilities from an unblocked state to a blocked state 

When the distance from picker 1 to picker 2 is 1, a blocked state can arise if 

picker 1 picks (with probability p) and picker 2 walks (with probability q). Vice versa, 

when the distance from picker 1 to picker 2 is n-1, the current state becomes a blocked 

state if picker 1 walks (with probability q) and picker 2 picks (with probability p).  
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3) Transition probabilities from a blocked state to an unblocked state 

If picker 1 is blocked by picker 2, picker 1 must wait for picker 2 to walk (with 

probability q) to exit a blocked state.  Vice versa, when picker 2 is blocked by picker 1, 

picker 2 must wait for picker 1 to walk (with probability q).   

4) Transition probabilities between blocked states 

When the current state is blocked, a pick can occur with probability p and the 

blocking status remains, i.e., a blocked state transitions to a blocked state with 

probability p.  

In sum, when multiple picks are allowed, the transition probabilities can be 

described in a transition diagram as illustrated in Figure 15.  

 

 

Figure 15. State space and transitions for the Markov chain model when picking time 
equals travel time. 

 
The Markov chain model in Figure 15 does not include substates of picking or 

walking as the Gue et al. (2006) and Parikh and Meller (2010) models. Thus the 

transition matrix is more condensed. The resulting transition matrix, which has 

dimensions (n+1) x (n+1), is: 
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Stationary distribution 

We obtain the following v, which satisfies vA = v. 







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1
,,
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,1
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v   

The stationary density using ||v|| is scaled to obtain a stationary probability. From 

v above, this implies: 
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The blocking probability of one picker at one blocked state is 
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Equation (5.3) is identical to the results by Parikh and Meller (2010), whose 

transition matrix has dimensions 16*(n-1) x (n-1). Figure 16 plots percentage of time 

blocked over different number of aisles (n). The 1:1 picker blocking model estimates a 

smaller productivity loss when the picking area includes more pick faces as shown:  
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Figure 16. The percentage of time that pickers are blocked over different number of pick 
faces when two pickers work with pick:walk time = 1:1. 

 
Productivity loss over pick density starts from 0, increases as pick density 

increases, and converges to 1/(n+1) as pick-density approaches 1. This result is 

summarized in the following theorem.  

 

Theorem 1. When two pickers travel at unit speed, the percentage of time 

blocked is at least 0 and at most 
1

1

n
 . 

Proof. (5.3) is a monotonic increasing function. Its limiting value is 0 when p 

goes to 0 and 1/(n+1) when p goes to 1 as follows: 0
12

lim
0


 pn

p

p
,  

1

1

12
lim

1 


 npn

p

p
. The result is 

1

1
% blocked time0




n
. End of proof. 

 

Figure 17 compares the relationship between a multiple-pick (m) model and a 

single-pick model (s) over two different numbers of pick faces (20 and 50 pick faces). 

Here, the x-axis is the average number of picks, not pick density. As Equation (5.1) 
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indicated, the throughput comparison over identical workloads (i.e., the number of picks) 

can express the impact of picker blocking. The multiple-pick results are monotonically 

increasing, while the single-pick results, developed by Gue et al. (2006), show a drop in 

picker blocking at high pick requirements.  

 

 

Figure 17. The comparison of single-pick and multiple-pick models when two pickers 
work with pick:walk time = 1:1. 

 
Note that the proposed discrete-time Markov chain of picker blocking for 

multiple-picks with a pick:walk time = 1:1 differs from Parikh and Meller (2010) in that 

the distance is not conditioned on the operation modes of the pickers (i.e., walking or 

picking). As we addressed above, when multiple-picks are allowed, a Markov property 

of distance holds regardless of the previous walking or picking status. The conditional 

multiple-pick model is summarized in Appendix B.1, which is similar to the Parikh and 

Meller (2010) model. Moreover, the approach described in this chapter is applicable in 

wide-aisle systems discussed in Parikh and Meller (2009) (see Appendix B.2). 

4.2 Pick:walk time = 1:0 

The infinite speed assumption allows for transitions to multiple states in our 
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Markov chain model. Thus, the probability that a picker moves distance x is 

approximated, and then a probability function for the distance y, characterizing the 

change in the distance between the two pickers, is estimated.  

Let random variables X1
t and X2

t represent the number of locations moved in time 

t by pickers 1 and 2, respectively. If a picker picks more than one pick at a pick face, the 

distribution of the location is defined over the infinite sample space with a random 

variable characterizing the number of locations between two pickers:  

  ,...2,1,0 for        xpqxf x .  (5.4) 

Yt = X1
t - X2

t denote the change in distance between the two pickers when passing 

is not allowed. As described in Appendix B.3, the probability density function of Yt (g(y)) 

becomes: 
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 y
q

pq
yg

y

-for           
1

 
 (5.5) 

Suppose the distance at the previous state is Dt−1 = r.  The actual change in 

distance is bounded by the physical blocking phenomenon and the amount of the change 

is limited by r. Like the previous 1:1 analysis, four transition cases are defined: 1) 

transition between unblocked states; 2) transition from an unblocked state to a blocked 

state; 3) transition from a blocked state to an unblocked state; and 4) transition between 

blocked states. 

1) Transition probabilities between unblocked states 

In this case, the distribution function (5.5) is used directly. Given r, the change is 

bounded between 1 and n-1 ruling out the possibility of the first picker catching up to the 
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second picker.  
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2) Transition probabilities from an unblocked state to a blocked state 

The next step is calculating the probability of events with blocking. To obtain 

this probability, we need to accumulate all cases above the limits (0 or n). We note that 

there will be blocking at state 0 if Yt ≤ −r. g(y) is symmetric and the probabilities for the 

bounding cases are calculated as:  
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3) Transition probabilities from a blocked state to an unblocked state 

The distribution function (5.5) is again used directly. Note that r is 0 or n when a 

picker is blocked. Since the blocked picker walks first, initially, the distance between 

two pickers also becomes 0 or n. 
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4) Transition probabilities between blocked states 

Similar to 3), r = 0 or n express the blocked states. Without loss of generality, the 

probabilities in 2) are applicable. Thus, expressions for both the lower bound and the 

upper bound are as follows: 
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The probabilities that we derive are similar to Parikh and Meller (2010) with one 

exception. While managing the transition from blocked (0) to blocked (n) or blocked (n) 

to blocked (0), the equation above uses )1( qqn   from the transition probability 4), 

which differs from )1(2 qqn  in Parikh and Meller. Since they do not offer any 

comment on both values, the reason cannot be identified. Instead, we use a 

computational comparison, which will be discussed later. 

The result forms the following transition matrix: 
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Stationary distribution 

To identify a stationary distribution, a v which satisfies vA = v is identified as: 

 1,,...,,1 ppv   

We can scale the stationary density using ||v|| = 2+(n-1)p. The blocking 

probability of a picker at one blocked state is: 
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 (5.6) 

Because of the differences in the expression for the transition probabilities from 

blocked (0) to blocked (n) or blocked (n) to blocked (0), the results given by the 1:0 

analytical model we propose have a 0.032 to 0.170% error gap compared to the results 

from Parikh and Meller’s (2010) model. According to Parikh and Meller (2009), when p 

= 1, both  21:1
mb  and  20:1

mb should converge to the same value regardless of walk speed. 

A high pick density leads to the same congestion situation, which is observed in single-

pick narrow-aisle models (Gue et al., 2006) and wide aisle models (Parikh and Meller, 

2010). When p=1, the equation in our 1:0 analytical model satisfies the general 

knowledge, but Parikh and Meller’s model experiences a gap of 0.0083% when the 

number of pick faces = 20.  

As the function is derived, the convergence characteristic of the 1:0 model can be 

investigated, and the following theorem is observed. 

 

Theorem 2. When two pickers travel at infinite speed, the percentage of time 

blocked is at most 50% and at least 
1

1

n
. 

Proof. (5.6) is a monotonic decreasing function. There are two limiting 

characteristics. As p goes to 0, the upper limiting value is 
  2

1

12

1
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. The 

lower limiting value is 1/(n+1) as follows: 
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The result is 
2

1
 % blocked  time

1

1


n
. End of proof. 

 

Figure 18 depicts the productivity loss over different numbers of pick faces. 

Picker blocking starts from picker utilization 50%, decreases as pick-density increases, 

and converges to 1/(n+1). As we observed in the 1:1 model, larger areas are less 

susceptible to picker blocking than smaller areas.  

 

 

Figure 18. The percentage of time that pickers are blocked over different number of pick 
faces when two pickers work with pick:walk time = 1:0. 

 
Figure 19 compares a multiple-pick (m) model and a single-pick model (s) over 

20 pick faces and 50 pick faces. The percentage of time blocked for both the multiple-

pick and single-pick models decreases monotonically as pick density increases. However, 

the multiple-pick results consistently experience a higher percentage of time blocked. 

Moreover, as Equation (5.6) indicated, the percentage of time blocked for the multiple-

pick model goes to 1/(n+1), not to 0.  



67 

 

 

 

Figure 19. The comparison of single-pick and multiple-pick models when two pickers 
work with pick:walk time =1:0. 

 

From theorems 1 and 2, a further important result can be derived.  

 

Theorem 3. As pick density goes to 1, the percentage of time blocked converges 

to 
1

1

n
when there are two pickers.  

Proof. This proof is a direct extension of the previous results. When the walk 

speed is equal to the pick time, we can use Equation (5.3) as follows: 

1
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p
. When pickers walk at infinite speed, Equation (5.6) experiences 

the same convergence: 
  1

1

12

1
lim

1 


 npnp
. End of proof. 

 

4.3 Simulation study  

The two analytical models are based upon three assumptions: 1) extreme 

pick:walk time ratio; 2) a Markov property in distance between pickers; and 3) the 
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circular approximation to a parallel aisle order picking area. Below, assumptions 1 and 2 

will be relaxed and investigated via a simulation study; assumption 3 will be maintained 

in Sections 4 and 5.  Appendix B.4 discusses the validation of our analytical models and 

simulations by cross comparison among our analytical models, our simulation models, 

and Parikh and Meller’s (2010) results. 

4.3.1 Fractional walk speed 

In practice, pickers are not extremely fast or slow. If the pick time is 1, most 

practical speeds for walking are on the range [0.05,1] (Gue et al., 2006). For example, 

our literature review found a fast speed would have a pick to walk ratio of 1:0.1 

(Petersen, 2000) and a slow speed would have a ratio of 1:0.2 (Yu and De Koster, 2009). 

We conduct a simulation study with pick:walk time = 1:0.025, 1:0.05, 1:0.1, 1:0.2, and 

1:0.5.  Figure 20 illustrates the simulations’ results of a two-picker model (labeled a) and 

a five-picker model (labeled b). Solid lines are the results with pick:walk time = 1:0, 

1:0.025, 1:0.05, 1:0.1, 1:0.2, 1:0.5, and 1:1 from top to bottom. The upper dotted line is 

an analytical result with pick:walk time = 1: 0. The lower dotted line is an analytical 

result with pick:walk time = 1:1.  

As pick density increases, the percentage of time blocked converges to 

approximately the value derived in Theorem 3. For example, when p = 0.95, in Figure 20 

(a) ranges [4.53, 5.00] of throughput loss by picker blocking in a 20-pick face circular 

picking system with two pickers. According to Theorem 3, the loss is 1/21 = 4.76 when 

two pickers are in the order picking system. Figure 20 (b), using five pickers, converges 

to [3.79, 3.86]. Our observation indicates that the multiple-pick characteristic of batch 
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picking increases picker blocking. In addition, picker blocking is an issue regardless of 

variation of pick density in a narrow-aisle order picking. This result supports the 

observations of Parikh and Meller (2010) in a narrow-aisle order picking and Parikh and 

Meller (2009) in a wide-aisle order picking. 

 

 
(a)                                                  (b) 

Figure 20. The percentage of time blocked over different pick:walk time ratios: (a) two 
pickers in 20 pick faces; and (b) five pickers in 100 pick faces. 

 
4.4.2 Non-Markov property in distance: Variation of the number of picks  

In multiple-pick and single-pick analytical models, the number of picks in a trip 

(from the first pick face to the last pick face) is determined to maintain a Markov 

property of the distance between two pickers. That restriction is relaxed and investigated 

via simulation. A simulation model developed with the same pick probability restrictions 

as the single-pick analytical model (Gue et al. (2006)) is used. Several models are 

considered: a simulation model generated with the restrictions in the multiple-pick 

analytical model (described above), a fixed-size model (the number of picks in a trip is 

constant), and a uniform-size model (the number of picks in a trip follows a discrete 

uniform distribution [mean/2, mean *3/2]).  
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Figure 21(a) depicts the relationship between the percentage of time blocked and 

―the number of picks‖ for different assumptions regarding the distribution of items and 

Figure 21 (b) illustrates the relationship between ―the number of picks‖ and the variation 

of ―the number of picks‖ for different assumptions regarding the distribution of items. A 

high variation in the number of picks per trip results in more severe picker blocking, and 

conversely, even if the number of picks in a trip is large, i.e., pick density is high and 

multiple-picks are allowed, if the variation in the number of picks is low there is less 

picker blocking (i.e., fixed-size instance). Our observation extends Parikh and Meller’s 

(2010) finding that variation of the number of picks in a trip is of similar importance as 

variation of pick time at a stop. In general, the order batching has additional flexibility to 

group orders into batches, thus, less variation of the number of picks in a unit distance 

can be constructed reducing picker blocking. 

 

     
(a)                                                    (b) 

Figure 21. Simulation results over different workload distributions (the number of 
pickers = 5, the number of pick faces = 100, and pick:walk time = 1:0.2) : (a) the 
percentage of time blocked; and (b) the standard deviation of the number of picks 
(workload). 
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5. COMPARISON STUDY IN PARALLEL-AISLE PICKING SYSTEMS 

Another difficulty encountered when analyzing picker blocking in real picking 

situations arises due to the multiple-aisles characteristic and impacts by routing. In this 

section we describe an extended simulation study in a parallel-aisle order picking system. 

In particular, in a parallel-aisle order picking system with multiple aisles, decreasing the 

travel distance is a primary concern of management. Thus, a batching algorithm to 

efficiently reduce the travel distance is developed. In addition, a sorting strategy and a 

storage policy often are changed to maximize the retrieval performance (Frazelle, 2002; 

Tompkins et al., 2003). The batching algorithm, sorting strategy, and storage policy can 

increase the expected number of picks at a stop, but they also impact picker blocking 

(b(k)). This section describes the effects of the batching algorithms, sorting strategies, 

and storage polices on picker blocking. 

5.1 Simulation design 

Various batching algorithms are available. Specifically, large-scale order 

batching situations will be considered, thus the comparison is limited to those that can 

handle large problems sizes. From the available literature, the following are considered:  

 Seed: the seed algorithm developed in De Koster et al. (1999): 1) select a 

seed having the largest number of aisles; 2) choose the order minimizing 

the number of additional aisles; and 3) update the seed as an order is added 

to it. 

 CW II: the Clarke and Wright algorithm (II) in De Koster et al. (1999). See 

Appendix B.5 for more detail. 

 RBP: the heuristic route-selection-based batching algorithm. See Chapter 

IV and Appendix B.6 for more detail. 
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Seed and Clarke and Wright (CW) II are identified as the best algorithms in de 

Koster et al.’s comparison study (1999). The route-selection batching procedure (RBP) 

is a near-optimal batching algorithm discussed in Chapter IV. 

A sorting strategy impacts the batching algorithms by affecting the units of 

measure determining the batch size. Basically, the pickers carry bins or boxes on the cart 

to store each order separately in a ―sort-while-pick‖ operation. Thus, the batch size is 

determined by the number of bins, i.e., the number of orders. Another strategy, ―pick-

then-sort‖, does not carry bins (but it does require a sorting operation after the 

completion of the picking operation). In this case, the picker does not need to carry bins 

and separate orders, rather he/she can mix orders on the cart and orders can be batched to 

maximize capacity.  

Products are typically stored in warehouses to minimize retrieval efforts. In 

general, a class-based storage policy stores the more frequently requested items closest 

to the loading station to reduce the trip distance in contrast to a random storage policy 

where items are stored in random locations in the warehouse. 

Consider a general order picking situation: the number of orders in a time 

window = 540 orders, eight time windows per shift, pick:walk time ratio = 5:1, setup 

time per batch = 0, average order size = two items (uniform [1,3]), five pickers, and cart 

capacity = 10 orders when sort-while-pick strategy and 20 items when pick-then-sort 

strategy. A two-aisle system and a ten-aisle system with identical total number of pick 

faces as 100 are considered to investigate the effects of pick density. While the two-aisle 

system is similar to a circular aisle model, the ten-aisle system captures the effects that 
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asiels can be skipped as long as the one-way travel within aisles is maintained. The 

number of simulation runs per instance (i.e., 20 runs per instance) following Ruben and 

Jacobs (1999). The percentage of time blocked and the standard deviation of the number 

of picks in an aisle (STD) are compared across scenarios.  

5.2 Experimental results 

Figure 22 shows the total travel distance and the total retrieval times for eight 

different situations, while Figure 23 depicts the productivity loss for each batching 

algorithm. The two-aisle instances of FCFS in Figure 23 (a) is very similar to Gue et al. 

(2006). The productivity loss is approximately 1~3%. In the two-aisle models, other 

batching algorithms have similar or slightly better picker utilization, because there is a 

very small reduction of the total travel distance by decreasing the number of trips.  

In the ten-aisle instances, the FCFS procedure in Figure 23 (a) shows a small 

percentage of time blocked, approximately 1.5~4.2%. However, with respect to overall 

performance, other batching algorithms achieve significantly larger reductions in the 

travel distance (Figure 22 (a)) and overall throughput improvement which is inversely 

related to the total retrieval time shown in Figure 22 (b). For batching algorithms other 

than FCFS, a productivity loss by picker blocking becomes an issue as noted by 

discussed in Section 4.3 and Parikh and Meller (2010).  
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(a) 

 
(b) 

Figure 22. Comparison over different batching algorithms of: (a) total travel distance; 
and (b) total retrieval time. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 23. The percentage of time blocked and standard deviation of the number of picks 
per aisle over different batching algorithms: (a) FCFS; (b) seed; (c) CW II; and (d) RBP.
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 The results of the experiments provide insights regarding batching algorithms, 

sorting strategies, and storage policies as follows: 

1) Solution quality of batching algorithm impacts picker blocking when an appropriate 

sorting strategy is employed. 

 The seed algorithm creates heavy congestion compared to FCFS, because the 

algorithm increases pick-density. CWII shows less picker blocking compared to the seed 

algorithm. However, the RBP solution exhibits less congestion due to reduced travel 

distance. Furthermore, the standard deviation of RBP is less than the standard deviation 

of the seed algorithm, and is less or a little more than the standard deviation of the CW II 

algorithm. Intuitively, an improved distance-based batching algorithm could encounter 

more congestion. However, RBP reduces congestion due to large reductions in the 

distance traveled, and relatively reasonable variation of picks per aisle as shown in 

Figure 23.  

2) Sorting strategy impacts picker blocking when combined with RBP.  

When the sorting operation is combined with an appropriate OPS size (i.e., the 

number of aisles) and as the solution quality of batching algorithms is close to optimality, 

e.g., RBP in most scenarios and CW II in a few particular cases, a distance-based 

batching model performs well in terms of picker blocking. In the two-aisle picking 

system with a single route, the pick-then-sort strategy experiences less picker blocking 

as shown in Figure 23 (d). Vice versa, in the ten-aisle pick system characterized by 

several routing lengths ((five cases of number of aisles visited: 2, 4, 6, 8, and 10), the 

sort-while-pick strategy is advantageous (see Figure 23 (d)).  
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In the two-aisle picking system, only single route is available under the traversal 

routing method. The pick-then-sort strategy determines the batch size by the number of 

picks. Then, the variation of picks across batches is 0 if batches are consolidated 

optimally. Accordingly, the variation of picks per aisle is 0, which is similar to a ―fixed-

size‖ case (see Section 4.4.2). Thus, RBP reduces picker blocking, whereas the sort-

while-pick strategy packs each batch with a constant number of orders. Thus, the number 

of picks across batches can vary within range of the batch size * the order size. The sort-

while-pick strategy results in greater picker blocking compared to the pick-then-sort 

strategy in the two-aisle picking situation.  

The ten-aisle picking system faces a different situation as the number of aisles 

visited across batches becomes diverse. When the sorting operation is separated from the 

order picking operation (pick-then-sort strategy), there is more variation of the number 

of picks per aisle across batches. Intuitively, a batch should contain the same number of 

items, but the number of aisles visited is not identical. Thus, the variation of the number 

of picks per aisle among batches varies widely, as do the route lengths.  

In the sort-while-pick strategy, less variation of picks per aisle can be achieved 

while obtaining a high quality solution. The sort-while-pick strategy constrains each 

batch to have the same number of orders, not number of items. A batch with a long route 

may include orders passing more aisles. To pass more aisles, each order may contain 

more items. Then, the batch with a long route may include more items because the batch 

size is determined by the number of orders, and vice versa. In conclusion, the expected 

number of picks of a batch will typically be proportional to the length of route, i.e., the 
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number of aisles visited, as batches are packed more optimally. Thus, compared to the 

pick-then-sort strategy, this characteristic can produce less variation of the number of 

picks per aisle, which reduces picker blocking.  

3) Similar to Ruben and Jacobs (1999), class-based storage policies increase picker 

blocking.  

When a class-based storage policy is applied, picker blocking increases as Ruben 

and Jacobs observed. Even though the RBS algorithm implements a sort-while-pick 

strategy (Figure 23 (d)), the productivity loss due to congestion is 7.5%. In other words, 

the class-based storage policy offsets the gain of the travel distance with the losses 

related to picker blocking as shown in Figure 22. The previous observation (impacts by 

near-optimality and sorting strategy) is still valid since each aisle stores items evenly 

under the class-based storage policy.  

6. CONCLUSION AND FURTHER STUDY  

This chapter provided a new understanding of picker blocking in a narrow-aisle 

batching picking situation and scrutinized the relationship between picker blocking and 

order batching using both analytical models and simulation studies. New analytical 

models of two specific conditions in two-picker order picking situations (a slow walk 

speed and an infinite walk speed) are developed. Specifically, two closed-form 

expressions were derived and the relevant convergence characteristics addressed. 

Diverse simulations were conducted varying several warehouse policies including the 

batching algorithm, the sorting strategy, and the storage policy. Most importantly, 

simulation results showed that a near-optimal distance-based batch algorithm (RBP) 
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creates very little picker blocking. Furthermore, the sorting strategy affects the variation 

of the number of picks in an aisle, thus making specific sorting strategies (sort-while-

pick) more effective in large facilities.  

These experimental results reveal that batch strategies faces different levels of 

picker blocking and identify the conditions under which blocking can be reduced. First, 

we verified the importance of pick density on picker blocking (Parikh and Meller, 2010). 

Second, the distance-based batching (RBP) algorithm lessened picker blocking, because 

of a very significant reduction in the travel distance and a relatively uniform pick density. 

Third, a sort-while-pick strategy induces less picker blocking when a RBP was used in a 

large facility.  
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CHAPTER VI 

BATCH PICKING IN NARROW-AISLE ORDER PICKING SYSTEMS WITH 

CONSIDERATION FOR PICKER BLOCKING 

 

Reducing the time spent picking orders benefits warehouse operations by 

decreasing the resources required and by improving response time. The two primary 

components of the time spent picking orders are traveling time and blocking time. This 

chapter proposes a batching and sequencing procedure called the indexed batching 

model (IBM) with the objective of minimizing an aggregation of travel distance and 

congestion delay. The IBM differs from the traditional batching formulation in that it 

assigns orders to indexed batches, where a batch index represents the batch’s release 

sequence. A mixed integer programming solution for exact control is developed and a 

simulated annealing procedure for a large-scale environment is demonstrated. Our 

results indicate that the integrated batching-and-sequencing approach achieves the 

throughput improvement not realized by the traditional approaches and allows for the 

development of batch picking strategies that are ideal for narrow-aisle order picking 

systems.  

1. INTRODUCTION 

DCs are constantly challenged to reduce the cost of their operations and to 

become more efficient. One common way to lower costs per unit shipped is to increase 

space utilization (Napolitano, 2009). According to the recent warehouse operations 

survey (Napolitano, 2008), the warehousing industry has three major cost sources: 
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inventory, investment, and order processing. For example, rising inventories often force 

warehouses to store more goods in less space (Gue et al., 2006; Napolitano, 2009). 

Narrow-aisle picking systems are one alternative to increase space utilization with 

minimal investment costs. However, the narrow-aisle characteristic can add to order 

picking costs due to longer travel and more congestion (Gue et al., 2006). Small order 

sizes exacerbate the problem, because they require more trips through the picking area. 

Implementing an efficient batch order picking strategy can help to reduce operational 

costs in a narrow-aisle order picking environment with small order sizes. 

However, the combination of narrow-aisle OPS and a batch picking strategy can 

suffer from significant operational performance loss and control difficulties related to 

picker blocking (Gue et al., 2006; Parikh and Meller, 2010). As more pickers travel in a 

picking area, well-designed control policies can reduce travel distances or improved 

design of the facility may elevate these congestion issues (Zhang et al., 2009). 

Traditionally, an OPS can be designed with wide aisles to create less blocking, or can be 

operated using zone picking, where each zone contains a single picker. However, both of 

these approaches are not viable in many cases due to additional space (or cost) 

requirements.  

Other approaches employ routing alternatives. Zhang et al. (2009) provide an 

alternative routing method where the path is dependent on the congestion amount. Gue 

et al. (2006) briefly introduce a routing strategy where a downstream (= blocking) picker 

exits an aisle and circulates back behind an upstream (blocked) picker using an empty 

aisle when there is significant congestion. However, the alternative paths or averted 
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routing approaches may lengthen a trip compared to the original route, and can be 

challenging to implement in practice.  

Control policies to trade off travel distances and time blocked have not been 

addressed in the academic literature.  Thus, the goals of this chapter are: 1) develop a 

control framework combining order batching and sequencing issues; 2) present a 

practical solution procedure to solve the integrated batching and sequencing problem; 

and 3) vary the order picking environments to investigate the performance of the 

proposed strategy. A new batching framework is developed including the sequencing 

problem. The proposed model is formulated as a mixed integer program (MIP). This 

formulation can only be solved optimally for small size problems. To overcome this 

limitation, we adapt a simulated annealing heuristic approach.  

The chapter is organized as follows. Section 2 briefly reviews related studies. In 

section 3, a concise batching framework to handle blocking is developed. The 

framework considers a picking area with one-way aisles and uses insights from flow-

shop scheduling problem to identify strategies to reduce picker blocking. Section 4 

develops an indexed batching framework to address in-the-aisle picker blocking. Section 

4 also addresses the sequencing of batches, how the multiple aisle impacts the 

framework, and how the proposed model can handle multiple trips. In Sections 5 and 6, 

we formulate a MIP and develop a simulated annealing heuristic solution approach, 

summarize the results, and discuss the importance of the findings.  

2. LITERATURE SURVEY 

When operational costs due to picker blocking are excessive, engineers prefer 
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alternative OPS configuration or order picking strategy to control blocking. Alternatives 

are available for a wide-aisle OPS (Parikh and Meller, 2009) or in the case of zone order 

picking (De Koster and Yu, 2008). However, for facilities in which space is a concern 

changing the layout and order picking operations to either of these alternatives may not 

be feasible.  Further, to make the best use of their limited space some warehouses have 

narrow-aisles.  However, if picker blocking is a concern in these settings the only 

solutions available in the literature are passing and rerouting strategies (Gue et al., 2006; 

Zhang et al., 2009). We review the previous studies of OPSs focusing on picker blocking.  

To structure our review of the related studies, each is classified based on their modeling 

methodology as: 1) analytical models of picker blocking; 2) routing methods with picker 

blocking; and 3) picker blocking while batching orders.  

Gue et al.(2006) and Parikh and Meller (2009) introduce analytical models to 

quantify narrow-aisle and wide-aisle picker blocking, respectively. They determine the 

relationship between throughput and pick density demonstrating the significance of 

picker blocking. The results indicate that batch picking strategies in narrow-aisle OPS 

are advantageous when the pick density is either very low or very high (Gue et al., 2006).   

The problem of controlling or reducing picker blocking while routing has rarely 

been studied. Ratliff and Rosenthal (1983) present a polynomial timed dynamic model to 

optimally solve the order picking problem when the objective is to minimize travel 

distance. Hall (1993) surveys heuristics routing for practical purposes, and concludes 

that S-shape and largest-gap strategies are reasonable strategies for minimizing travel 

distance. These studies attempt to minimize travel distance, but when an order picking 
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area has significant traffic, picker blocking may result in additional distance traveled or 

time penalty; a structured analysis of additional travel distance or time delays  is omitted 

in the literature. Gue et al.(2006) discuss practical methods to avoid picker blocking, 

such as allowing a trailing picker to pass while the leading picker unload collected items, 

or forcing a blocked picker to exit the current aisle and use an empty aisle to continue to 

traverse the pick area when significant blocking is expected.  

Moreover, some literature indicates that batch picking tends to face less picker 

blocking. Gue et al. (2006) introduce an industry case with less picker blocking when 

pick density is very high. Ruben and Jacobs (1999) show the relationship between the 

batching algorithm and the storage policy and indicate this can increase congestion, 

picker blocking, and delays. The recent literature on batching algorithms ignores picker 

blocking or considers a single-order picker (Chen and Wu, 2005; De Koster et al., 1999; 

Gademann and van de Velde, 2005; Gademann et al., 2001; Ho and Tseng, 2006; Hsu et 

al., 2005; Pan and Liu, 1995; Won and Olafsson, 2005). In Chapter V we discussed our 

finding that the near-optimal distance-based batching algorithm, RBP, experiences less 

picker blocking when a sort-while-picking strategy is applied. 

3. PROBLEM DEFINITION 

3.1 Narrow-aisle order picking system OPS and batch picking 

We consider narrow-aisle OPS where pickers circumnavigate one-way aisles to 

retrieve items from shelves and place them on a cart. When an order picker has no items 

to retrieve in a particular aisle, the aisle can be skipped to shorten the travel distance if 

the unidirectional characteristic of aisles can still be maintained. In particular, the order 
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size is relatively small compared to the cart capacity; thus, consolidating many order 

retrievals into one trip (―batch picking‖) is considered to improve order picking 

throughput. The size of a batch is constrained by the number of orders that will fit on the 

cart. In other words, a picker carry bins on a cart and places each order in its own bin 

regardless of the order size. This sortation strategy is referred to as ―sort-while-pick‖. 

Further, the number of items varies based on the order size, and orders cannot be split 

over multiple batches.  

3.2 Multiple pickers and in-the-aisle picker blocking 

In general, multiple pickers gather a set of orders prepared prior to the shift. 

Further, a picker who completes a trip through the picking area, to gather a particular 

batch, returns to the original starting position and begins picking a new batch without 

delay. When multiple pickers work in an OPS, they will encounter congestion while 

travelling and accessing pick faces. A narrow aisle layout has additional congestion 

created by the no passing policy (Gue et al., 2006). In a narrow-aisle OPS, two types of 

picker blocking occur.  

First, when two-way traversal of an aisle is possible, if a picker enters an aisle in 

which another picker is already present and moving towards the entering picker, 

deadlock arises. To avoid this, the approaching picker can be made to wait before 

entering. However, this forces the picker to stand idle. One-way traversal route is 

popular because this type of idleness or deadlock is avoided. 

 Second, congestion can occur even when pickers move in the same direction. If 

a trailing picker’s next pick-location is occupied by a former picker, the trailing picker is 
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blocked until the former picker leaves. Gue et al.(2006) call this ―in-the-aisle picker 

blocking‖. Whereas the deadlock in an aisle can be solved by the one-way traversal 

routing method, there is no simple rule to avoid the in-the-aisle blocking. When multiple 

aisles are visited, pickers can be re-sequenced at the end of aisles as Gue et al.(2006) 

point out; they observe less in-the-aisle blocking when another picker is allowed to pass 

in order to improve downstream blocking.  

3.3 Performance criteria considering picker blocking 

Two performance criteria can be considered for an OPS: total retrieval time and 

completion time. Total retrieval time maximizes pickers’ throughput by reducing their 

work hours. Completion time is important especially when the completion time of the 

last order is important because of order commitment times. Either could be used 

depending on the firm’s primary objective. In this chapter, the focus is to minimize total 

retrieval time. 

The criterion, minimization of the total retrieval time, can be expressed by the 

sum of the cart loading (LT) and unloading time (UT), pick time (PT), walk time (WT), 

and delay time (DT) of all batches. Hence, the following objective is minimized: 

 

A trip requires a constant LT and picked-item UT. PT is approximated as the 

number of picks in a batch times the unit pick time. We ignore the effect of search time, 

height of shelves, and multiple picks in a pick face (i.e., to pick an item, a picker uses the 

same amount of time regardless of shelf height and consecutive picks at a same pick 

face). WT is the total travel distance times the unit walk time. We assume the 

Min LT+UT+PT+WT+DT 
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acceleration/deceleration time is negligible. DT is the gap between the planned leaving 

time at a pick face or an aisle entrance and the actual leaving time. When a downstream 

picker blocks the next pick face of an upstream picker, the upstream picker cannot leave 

the current location until the next pick face is available.  

3.4 Batching models with in-the-aisle picker blocking 

As the objective function is increased by the delay time caused by in-the-aisle 

picker blocking, the formulation of an order batching control model must also reflect the 

constraints regarding picker blocking. The scheduling literature provides several 

alternatives to estimate the time blocked. In particular, the in-the-aisle blocking is 

similar to the permutation flow shop scheduling problem with limited intermediate 

storage in the scheduling context, which is known to be a strongly NP-hard 

(nondeterministic polynomial-time hard) problem and is translated into a traveling 

salesman problem (TSP) (Pinedo, 1995).  

The time lost by in-the-aisle picker blocking can be minimized for a given set of 

batches by optimal sequencing. To improve the benefits of batching, a batching 

sequencing problem is incorporated into the proposed model. Thus, the format of the 

new integrated problem combines the batch sequencing problem with the traditional 

batching problem, which we refer to as the batching and sequencing problem (BSP).  

4. INDEXED ORDER BATCHING MODEL (IBM) 

This section clarifies the BSP model and discusses sequencing issues, treatment 

of multiple aisles, and consideration of multiple trips for pickers.  
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4.1 Indexed batching (single aisle and infinite pickers) 

To develop the intuition and basis for later models, consider an OPS that has a 

single aisle and an infinite number of pickers. Fundamentally, the sequencing problem 

determines a release sequence to obtain minimal delay given by batches. Thus, if the 

delay is measured and integrated into the objective function of the batching problem, the 

batching and sequencing problems can be solved simultaneously. We define this 

formulation as the IBM.  

 
In the model, the one-way traversal routing constraints always hold since there is 

a single aisle. The IBM concept captures the sequencing decision in the in-the-aisle 

picker blocking constraints and the delay in the objective. The in-the-aisle blocking 

model developed in Gue et al. (2006) can be used here. Moreover, their model gives the 

same results as the permutation flow shops with finite intermediate storage in Pinedo 

(1995). Obviously, a permutation flow shop with identical machines and zero 

intermediate buffer storage is similar to an order picking situation in a narrow aisle. A 

job (batch) in the permutation flow shop with zero intermediate buffer storage stays at 

the current machine (pick face) if the next machine (pick face) is busy because of 

another job (batch). Pinedo calls the phenomenon blocking, which is the same as picker 

blocking in order picking.  

(Abstracted IBM with single aisle and infinite pickers) Min LUT+ WT+DT 

Subject to 

 Batching constraints 

 One-way traversal routing constraints 

 In-the-aisle picker blocking constraints 
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Gue et al.’s model can express the in-the-aisle blocking given a set of batches, a 

release sequence, and the pickers’ available start times. However, their model can only 

be applied directly for a single aisle with unlimited pickers. If these assumptions are 

relaxed, additional modeling is necessary to estimate picker blocking. These extensions 

are described below.  

4.2 Aisle-entrance sequencing (multiple aisles and infinite pickers) 

First, consider a multiple aisle setting. Thus, when seeking shorter travel 

distances, some batches skip some aisles (Figure 24) to avoid complete traversal of the 

facility. The routing alters the aisle entrance sequence, which can be enumerated in three 

different cases. First, at the first aisle, the release sequence is inherited from the indices 

of batches. Some batches may skip the first aisle, but it does not change the release 

sequence. The routing defines the subset of batches that traverse the first aisle. Second, 

we need to identify the batches entering the second aisle and update their entrance times. 

Some additional batches may skip the second aisle, but the entrance sequence at the 

second aisle remains the same as the initial index, because batches skipping the first aisle 

must also skip the second aisle because one-way traversal of aisles is enforced. After 

updating the aisle entrance time, picker blocking can be calculated. Third, for the third 

and higher aisles, the batches entering a particular aisle and their sequence must be 

identified, and the batches’ entrance time calculated. The aisle-entrance sequence at the 

first aisle no longer holds since reentry occurs from batches that skipped previously 

aisles. Unlike the update of the aisle entrance time, the aisle-entrance sequence leads to 

additional constraints and decision variables in the programming problem because the 
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sequence is allowed to change. 

 
Figure 24. An example of different aisle-entrance orders due to batches skipping aisles 

(Bi=batch i). 

 
Therefore, we need to re-index batches based on their arrival time at an aisle’s 

entrance. We define this process as the ―aisle-entrance sequencing problem.‖ 

Interestingly, some batches may arrive simultaneously. When this happens, their 

entrance sequence should be determined by a simple tie-breaking strategy, such as 

random selection.  

 

4.3 Completion-time ordering (multiple aisles and finite pickers) 

In practice, the number of batches is typically more than the number of pickers 

(NP). In this case, the starting time for the second trip of a picker should be updated 

(Abstracted IBM with multiple aisles and infinite pickers) Min LUT+ WT+DT 

Subject to 

 Batching constraints 

 One-way traversal routing constraints 

 In-the-aisle picker blocking constraints 

 Aisle-entrance sequencing constraints for 3,…,# aisles 
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based on his/her previous completion time (Figure 25). The starting time of batch i is 

obtained by the completion time of the batch completed NP batches before i (i-NP). To 

facilitate this method, the completion-time is sorted in ascending order. We call the 

related constraints the completion-time ordering constraints.  

 

 
Figure 25. Order picker’s retrieval trip starting time. 

 
Returning to the optimization problem characterizing the batching and 

sequencing problem, the model now requires an additional constraint, the completion-

time ordering constraints, due to the impact of multiple trips. Thus, the abstracted IBM 

becomes the following equation: 
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Herein, the updates of the aisle-entrance sequencing, the in-the-aisle picker 

blocking, and the completion-time ordering are included in ascending order of time, i.e., 

a first event is processed first. Below, we give two solutions: an MIP formulation and a 

next-event advance approach.  

5. AN EXACT MIXED-INTEGER PROGRAMMING (MIP) FORMULATION 

In this section, we formulate the IBM as a mixed-integer program. We focus on a 

general formulation in this section, while the executable MIP formulation is shown in 

Appendix C. 

5.1 Parameters and decision variables 

We consider the general multiple aisle OPS layout as shown in Figure 26. The 

OPS has an even number of aisles to allow pickers to traverse the entire picking area 

without requiring a u-turn or back-tracking. The pick faces are numbered 0 to Fa+1 at 

every aisle. Pick faces 0 and Fa+1 represent the entrance and the exit of an aisle, 

respectively. In odd aisles, the entrance is located at the front cross aisle, and for even 

aisles entry is from the rear cross aisle. It takes time AE to travel from the entrance to the 

first pick face or from the last pick face to an exit. The travel time between neighboring 

pick faces is PF. The walk time from 0 to Fa+1 is equal to PF*(|Fa|-1)+2*(AE+PF/2) = 

(Abstracted IBM with multiple aisles and finite pickers) Min LUT+ WT+DT 

Subject to 

 Batching constraints 

 One-way traversal routing constraints 

 In-the-aisle picker blocking constraints 

 Aisle-entrance sequencing constraints for 3,…,# aisles 

 Completion-time ordering constraints for all batches 
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AH when an aisle is passed through. The cross time between two parallel aisles is AW. 

The L/U station is located in the front of the leftmost aisle.  

 

 
Figure 26. An OPS layout. 

 
NP pickers work in the OPS, where NP is assumed to be smaller than the number 

of batches. The number of batches is not given, although the number of batches must be 

smaller than the number of orders. Two batch picking strategies—pick-then-sort and 

sort-while-pick—are considered; the choice of strategy impacts cart capacity. A picker 

who completes a trip is reassigned to the next available batch and all pickers are 

available initially.  

Several decision variables associated with the IBM procedure must be defined: 

basically, orders are assigned to batches and to a release sequence through batching 

variables; each order includes multiple items; and each item is stored in only one pick 

face. Xob is set to 1 when order o is assigned to batch b. The batch sequence at the third 

and later aisles is defined through variables ( a
ijY ). For all a = 3,…,|A|, a

ijY  is set to 1 

when batch j is released in the ith position of the sequence. The starting time for batches 
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picked on a picker’s second or later trip (STi) can be captured using ordering variables 

(Zij) of the completion-time (CTi). Similarly, Zij is set to 1 when batch j is completed in 

the ith position of the sequence. 

The routing is expressed by the aisle-visiting incident vector. Initially, the vector 

for order o at aisle a is given as OAVoa (this vector can be obtained from items in an 

order). OAVoa is set to 1 if any item in an order o is stored in aisle a. The route of a batch 

is determined by (BAba). If batch b has at least one pick in aisle a, BAba is set to 1. While 

evaluating picker blocking, a
iAV  expresses whether the ith released batch enters in aisle a. 

Additional details follow. 

 

Indices and parameters 

fF,  = the set of pick faces, its index,  FFf ,,1 , 0=L/U station or entrance 
 kaA ,,  = the set of aisles, and its indices   AAka ,,1,   
 aF  = the set of pick faces in aisle   aaa FAFFFa  ,,,1,   
 

jibB ,,,  = the set of for the batches, and its indices   ,,, bBjib  stands for the initial batch 
number 
 

oO,  = the set of orders, and its index Oo  
 

oaOAV  = 1 if order o passes through aisle a (order o has at least one pick in aisle a) 
0 otherwise 
 

ofOP  = the number of picks of order o and pick face f  
bST  = the starting time of  thb batch 

 
PTPF,  = the walk time to pass one pick face, the pick time to pick an item 

 
NP  = the number of pickers 

 
AEAWAH ,,

 
= the time to pass through an aisle, the width between two aisles, aisle enter/exit 

time 
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UTLT,
 

= the loading time, the unloading time 
  = the time required for the transition between two batches in a pick face 

a
fL ,1  = the leaving time at the previous history 

 

Decision variables 

obX  = 1 if order o is assigned to batch b (i.e. b is the release sequence at aisle 1) 
0 otherwise 
 

a
ijY  = 1 if batch j enters aisle a at the ith order,  ||, . ..,3 Aa  

0 otherwise 
 

ijZ  = 1 if batch j returns to the unloading station at the ith order 
0 otherwise 
 

bBV  = 1 if batch b is valid 
0 otherwise 
 

baBA  = 1 if batch b has at least one pick in aisle a 
0 otherwise 
 

a
iAV

 
= 1 if the ith batch has at least one pick in aisle a 

0 otherwise 
 

NBV
 

= the number of valid batches 

 baBAC  = the completion time of batch b up to aisle a 

 bNBA  = the number of pairs of aisles visited to retrieve batch b 

 bRBA
 = the right most aisle visited while retrieving batch b 

 bfBP
 = the picking  time of the ith batch at pick face

 
a

if
a

if CPP ,
 

= the pick time of the ith batch at pick face f in aisle a, and its cumulative 
pick time 
 a

if
a
if CDD ,

 
= the time delayed of the ith batch at pick face f in aisle a, and its cumulative 

time delayed
 

a
ifL

 = the leaving time of the ith batch at pick face f in aisle a
 

a
ifCW

 = the cumulative walk time of the ith batch to pick face f in aisle a
 

iCT
 = the completion time of the batch which has finished at the ith order

 
baba INTINT 2,1

 = non-negative integer variables 
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5.2 Objective cost 

The goal is to minimize loading/unloading time (LUT) + total walk time (WT) + 

total time delayed (DT) (6.1). LUT is proportional to the number of valid batches times 

the unit loading/unloading time. The travel time of a batch is the sum of the vertical 

travel times (= 2*NBAb*AH) and the horizontal travel times (= 2*RBAb*AW). WT is the 

sums of the travel times of all batches. DT is obtained by summing the cumulative delay 

at each aisle of all batches. 

Min      
   

  
  Aa N BVb

a

Fi
N BVb

bb  CDAWRBAAHNBANBVUTLT a

,,1,,1

22


 (6.1)  

5.3 Indexed batching constraints 

The basic function of the given algorithm is to partition orders into batches. The 

actual decision includes the number-of-batches variable (NBV), batching variables (Xob), 

and batch validity (BVb). An order cannot be separated (6.2), and a batch should not 

exceed the capacity (6.3). When partitioning the orders, NBV should be determined 

simultaneously. The maximum number of batches is equal to the number of orders. We 

define a binary variable (BVb) to represent the validity of a batch. BVb is obtained from 

an OR operation among inclusion flags of orders in batch b (6.4). To avoid alternative 

identical solutions regarding batching, we set one additional comparison constraint such 

that lower-numbered batches are assigned first (6.5). Constraints (6.6) calculate the 

number of valid batches. From the batching information (Xob), the pick time vector of 

batches is obtained (6.7). 

 

  

,1
Bb

ob X  O, o   (6.2) 
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  ,CAPA X
Oo

ob 
  

B, b   (6.3) 

  o b
Oo

b XBV



 
B, b  (6.4) 

  1 bb BVBV

 
 

 ,BB b \  (6.5) 

  



Bb

bBVNBV   (6.6) 

  ,



Oo

bfobbf OPXPTBP

 

 

  F, f,NBV b  ,,1  (6.7) 

This set of constraints defines part of an integer programming problem and limits 

solutions to feasible batching and sequencing decisions. 

5.4 One-way traversal routing constraints 

The routing decision includes the routing incident variables (BAba), the number 

of aisles visited (NAVb), and the rightmost aisle visited (RBAb). Initially, OAVoa is set to 

1 if aisle a is visited to retrieve order o and 0 otherwise. If aisle a of any order in batch b 

is set to 1, aisle a should be set to 1 for batch b (BAba). In other words, BAba should be 

equal to or greater than the logical OR operation of OAVoa (the aisle-incident vector) of 

orders in batch b (6.8). The formulation includes additional constraints to enforce 

unidirectional travel in aisles through constraints (6.9) and (6.10) for even-numbered 

aisles, respectively. The return to the front cross-aisle is guaranteed when the total 

number of visited aisles in a batch is even (6.11). RBAb is used to calculate the travel 

distance and becomes the rightmost downstream aisle (6.12). 

   oboa
Oo

ba XOAVBA 


 
,AaB, b   (6.8) 

  
 

1 if           112
,..,1

 


ba

ak

bkba BABAINT  

 

  B bAa  ,1,..,3,1   (6.9) 

 
 

1 if              22
,..,1

 


ba

ak

bkba BABAINT  

 

  B bAa  ,,..,4,2   (6.10) 
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 ,2 



Aa

bab BANBA  B, b   (6.11) 

   ,ba
Aa

b BAaMAXRBA 


 B, b   (6.12) 

    
5.5 In-the-aisle picker blocking constraints 

In-the-aisle picker blocking constraints evaluate the blocking delay by the 

information composed of batches, the start-time of pickers (STi), the aisle-completion 

time of batch b (BACba), and the trip-completion time of ith batch (CTi). The calculation 

requires the introduction of several intermediate variables: a
ifCP , a

ifCW , and a
ifCD  stand 

for the cumulative pick time, the cumulative walk time, and the cumulative delay time 

before leaving pick face f in aisle a of batch b. 

a
ifCW   is the cumulative walk time when the picker picking batch i reaches pick 

face f in aisle a. The starting time is obtained from STi, CTi and BACba. Constraints (Eq. 

5-13) update a
ifCW  at aisle entrances and pick faces. At the loading station (aisle-

entrance 1), a
ifCW  is determined using the pickers’ available time (STi) when the release 

sequence is smaller than the number of pickers, otherwise, using the completion time of 

the previous trip (CTi). The starting time of batch NP+1 is the completion time of the 

first completed batch because the picker responsible for the first completed batch will be 

assigned to pick the NP+1st batch. At other aisle-entrances, a
ifCW  is updated by the 

previous aisle completion time (BACba) plus aisle crossing time (AW). Otherwise, a
ifCW  

is determined from the previous a
ifCW 1  when ith batch uses aisle a, i.e., a

iAV  = 1.  
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






























  

otherwise

1  and 0 if

1  and 0, , if

1  and 0, , if

1,

1

a
fi

a
i

Bj

j,a
a

ij

NPi

 i

a
if

CWAVWT

afAWBACY

afNPiCTLT

afNPiSTLT

CW

 

 

  A,aF f

,NBV i

a 



,0       

,,1

  
(6.13) 

The delay time is expressed as the gap between the planned leaving time and the 

actual leaving time from a pick face or aisle entrance. An intermediate variable, leaving 

time ( a
ifL ), is introduced to simplify the calculation. This intermediate variable helps to 

establish the delay time as a function of the picker’s leaving time and the pick face 

available time. Cases 1 through 3 below concern batch i passing through aisle a. In case 

4, batch i skips aisle a.  

Case-1) When pick face f is not the last pick face in an aisle. Figure 27 

illustrates a timeline of a picker blocking situation in a pick face that is not the final pick 

face.  A picker retrieving batch i leaves pick face f of aisle a at time a
ifL  = a

ifCP  + a
ifCW +

a
ifCD . Herein, a

iCW 0  stands for the arrival time at the aisle entrance. When the picker 

departs pick face f, pick face f is accessible by another picker after transition time (γ). 

When pick face f is already occupied, the picker must wait until pick face f is released. 

We describe blocking time as the gap between the pick face ready time ( a
fiL ,1 + γ) and 

the planned-arrival time of the trailing picker ( a
ifCP + a

ifCW + a
ifCD 1 +PF). At pick face f, a 

trailing picker can depart pick face f at a
ifCP + a

ifCW + a
ifCD 1 . If the next pick face f+1 is 

available without any picker blocking, the picker can arrive at a
ifCP + a

ifCW + a
ifCD 1 +PF, 

where PF is the walk time between two neighboring pick faces. However, if the next 
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pick face f+1 is not available ( a
fiL 1,1  + γ > a

ifCP + a
ifCW + a

ifCD 1 +PF), the picker should 

stay at the current pick face ( a
ifD = a

fiL 1,1  + γ -( a
ifCP + a

ifCW + a
ifCD 1 +PF) ), where a

fiL 1,1 

is the departure time at the next pick face f+1 of the previous batch i-1. The leaving time, 

a
ifL , is updated to a

ifCP + a
ifCW + a

ifCD 1 + a
ifD  = a

ifCP + a
ifCW + a

ifCD , recursively.  

 

 

Figure 27. Delay time for batch b at pick face f when a picker is blocked. 

 

Case-2) When pick face f is an aisle entrance. When multiple order pickers 

arrive together at an aisle entrance, or a picker intentionally waits at the aisle entrance 

(to improve downstream blocking), a waiting delay occurs. This delay is allowed at pick 

face 0a. Since there is no picking time and no previous delay, if a delay occurs then a
iD 0  

becomes a
iL 1,1 + γ -( a

iCW 0 +AE). 

Case-3) When pick face f is the last pick face, |F
a
|. At the last pick face of an 

aisle, the calculation is unnecessary, because the picker exits an aisle. Thus, we do not 

consider picker blocking.  

Case-4) When aisle a is skipped. While retrieving a batch, the picker passes 

through some aisles and skips others. When a batch skips an aisle, the batch does not 
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need to be used in calculating delay times in the skipped aisle. We update the leaving 

time of the batch skipping an aisle ( a
ifL ) using the leaving time of the previous batch 

( a
fiL ,1 ). To detect if an aisle is being skipped, we use the routing information a

iAV , 

which is a binary variable denoting the usage of aisle a by batch b. The detail is 

discussed in Section 5.6.  

Constraints (6.14) update the cumulative pick time. Constraints (6.15) calculate 

the cumulative delay time. Constraints (6.16) and (6.17) calculate the time delayed ( a
ifD ) 

and the leaving time ( a
ifL ) at pick face f with aisle-incidence vector ( a

iAV ). Constraints 

(6.16) implement the delay calculation discussed in the four cases above. Constraints 

(6.17) update the leaving time. At an aisle entrance (f = 0), a
ifL  is determined by a

ifCW + 

a
ifCD  since there is no pick operation. At a pick face (f>0), a

ifL  is assigned with a
ifCP  + 

a
ifCW + a

ifCD  if batch i passes through aisle a. When batch i skips aisle a, a
ifL  is assigned 

to be equal to a
fiL ,1 . 

 ,1,
a
fi

a
if

a
if CPPCP 

 
 

A,aF f

,NBV i

a 



,    

,,1
   

(6.14) 

         , 001,
a
i

a
i

a
fi

a
if

a
if DCDCDDCD  

 
 

  A,aF f

,NBV i

a 



,0    

,,1
  

(6.15) 
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







otherwise0

},0{\    

 and 1 if

0,

0 if0,

1,

1,1

1,1

aa

a
i

a
fi

a
if

a
if

a
fi

a
if

a
i

a
if

FFf

AV

PFCD

CWCPL
Max

fAECWLMax

D




 

 

  A,aF f

,NBV i

a 



,0   

,,1
  

(6.16) 
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

 otherwise,1

, 0  and 1 if

0  if
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fi

faiififif

ifif

a
if

L

fAVCDCWCP

f CDCW
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 

  A,aF f

,NBV i

a 



,0   

,,1
  

(6.17) 

 

5.6 Aisle-entrance sequencing constraints 

We establish the release sequence at aisle a in {3,…,|A|} as a
ijY . The index i 

defines a sequence and batch j is released as the ith batch in a sequence when a
ijY  = 1. 

Thus, only one batch can be assigned to each sequence position (6.18). Batch j is 

assigned to only one sequence position (6.19). Constraints (6.23) establish that the first 

completed batch at the previous aisle enters the current aisle first. 

As the release sequence is determined, the related variables are assigned. The 

pick time vector of batch i at pick face f in aisle a is updated with batch j’s pick time 

(6.20). Additionally, the release sequence in each aisle updates the route information of 

i
th batch ( a

iAV ) (6.21) and the batch completion time in aisle (BAC) using a
ijY  (batch j is 

released at ith time in aisle a) (6.22). 

 
 1

..,1


 NBVj

a
ijY

 

 

 

 ,Aa

,NBV i

,,3               

,,1









 
(6.18) 

 
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
 NBVi

a
ijY

 

 

 ,Aa

,NBV i

,,3               

,,1






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  A,a,NBV i  ,,1   (6.22) 

   
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(6.23) 

5.7 Completion-time ordering constraints 

The completion time of the ith batch (CTi) is updated based on the completion 

time ordering variables of batches (Zij) and the completion time of the batch at the last 

aisle. Zij captures the completed batches such that batch j is the ith batch completed 

(6.24), (6.25). CTi shows the completion time of the ith completed batch (the time when 

it returns to the unloading station) (6.26), where completion time = exit time at the last 

effective aisle + the return time to the L/U station + unloading time. Constraint (6.27) 

assures order completion times and the sequences are consistent. 

 
 1

..,1


 NBVj

ijZ

 

(a completion sequence must include one batch) 

 ,NBV i ..,1  (6.24) 
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(a batch should be assigned to one completion 

sequence)  

 ,NBV j ..,1  (6.25) 
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 ,NBV i ..,1   (6.26) 

1 ii  CTCT

 
 

 ,NBV i 1..,1   (6.27) 

The final executable MIP formulation is summarized in Appendix C.  

5.8 Validation 

From the traditional batching and scheduling models, the requirements necessary 

to define valid batches and sequences that are sufficiently flexible are defined through 

the following set of assumptions. Requirements 1 through 4 maintain the integrity of the 
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order, enforce the capacity of the cart, ensure that routes begin and end at the L/U station, 

and allow one-way travel only within aisles. While travelling in an aisle, two pickers 

cannot occupy a pick face at the same time and a picker cannot pass another picker in an 

aisle (outlined in requirements 5 and 6). When pickers move between aisles, they enter 

the next aisle they plan to traverse in a first-come, first-served (FCFS) priority ordering:   

 Requirement 1 (No split of an order and all order fulfillments). Every order is 

included in exactly one batch.  

 Requirement 2 (Capacity). The number of items in a batch is less than or equal 

to the maximum batch size. 

 Requirement 3 (Complete route). A route must start at and return to the L/U 

station.  

 Requirement 4 (One-way directionality). Each aisle has its own moving 

direction.  

 Requirement 5 (A single picker at a pick face). Only one picker can occupy a 

pick face.  

 Requirement 6 (No-passing in an aisle). Self-explanatory.  

 Requirement 7 (FCFS at aisle entrance and LU station). The first picker to 

arrive starts first at every aisle and LU station.  

Requirement 1 is enforced by (6.2) and requirement 2 is enforced by (6.3). 

Requirements 3 and 4 can be guaranteed when the constraints in (6.9), (6.10), and (6.11) 

are satisfied. (6.16) restricts a picker from entering a pick location occupied by the 

former picker; therefore, requirement 5 is enforced. Moreover, the delay time must be 
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greater than or equal to 0. Thus, a trailing picker cannot pass the former picker 

(Requirement 6). (6.13) enforces the FCFS sequencing at the LU station and at the 

beginning of each aisle (Requirement 7). 

6. A SIMULATED ANNEALING (SA) ALGORITHM 

Scalability is a major problem in order picking. The model above combines two 

NP-hard problems: the order batching problem and the sequencing problem. To handle 

large-scale instances, a simulated annealing heuristic procedure is used.  

6.1 Simulated annealing procedure 

Simulated annealing is widely used in sequencing problems and order batching 

problems. We employ an algorithm described in Pinedo (1995), which is illustrated in 

Figure 28. For a batching situation, an indexed batching solution is given as BS1 and its 

total retrieval time as Obj(BS1). The major characteristic is to accept a worse solution 

(BS) while progressively searching for a better candidate solution of solution BSi with 

probability P(BSi,BS) = e^( (Obj(BSi)-Obj(BS)/ βi ), where βi is referred to as the cooling 

parameter or temperature. To update the cooling parameter (βi), we use a simple function 

a
i where 0<a<1, a ∈ R (see Pinedo (1995) in detail). Thus, the probability to accept an 

incorrect solution gradually decreases as iteration i cumulatively updates the cooling 

parameter (βi) using a, i.e., βi= a*βi-1 where i>1 and 0<a<1. To generate an initial 

solution (BS1), a large-scale order batching algorithm, RBP see Chapter V, is used which 

produces a near-optimal solution when the objective is to minimize the total retrieval 

distance. Imax is the maximum number of iterations. T is the updated temperature. Section 

7.2.2 discusses how to develop a neighboring solution.  
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Figure 28. A simulated annealing algorithm. 

 

6.2 Picker blocking estimation (Obj(B)) 

Obj(B) quantifies the blocking time using the mechanism discussed in the 

previous section. Figure 29 describes the main procedure. In-the-aisle picker blocking 

follows the mechanism shown in Figure 27. We assume that there are NP pickers. p is 

index of pickers. Statusp represents the current status of picker p, which includes a batch 

index when picker p has an assigned batch, IDLE when the picker is ready for picking or 

has no assigned batch, and OFF-DUTY when the last trip has been completed.  

Step1.  Set i = 1 and T = a. 

Initialization 

Obtain an initial feasible solution, BS1 

Set Imax  

Set the best solution BS* = BS1 

Step 2.  Generate a new batch solution BS from BSi, i.e. BS is the neighboring solution of BSi. 

If Obj(BS*)<Obj(BS)<Obj(BSi), set BSi+1 = BS; 

Else If Obj(BS)<Obj(BS*), set  BS*= BSi+1 = BS; 

Else if Obj(BS)> Obj(BSi), set BSn+1 = BS with a probability of e(( Obj(BSi)-Obj(BS) )/T); 

Otherwise, BSi+1 = BSi 

Step 3.  Increase i = i+ 1. 

Update the temperature T = T * a. 

If i = Imax, then STOP; otherwise, go to Step 2. 
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Figure 29. A picker blocking computation procedure. 

 

7. IMPLEMENTATION AND COMPUTATIONAL RESULTS 

This section summarizes the computational implementation and discusses 

insights from the results. The experiments analyze the impacts on walk time and delay 

time by the proposed integrated batch creation and sequencing framework compared to 

other order batching and release approaches. Different order picking strategies and 

Step1.  Set  LUTp, WTp, DTp, PTp = 0.0, and  Statusp = IDLE  for all  pickers ( p= 1,…,NP) 

 b= 1  

Step 2.  Select picker p of not OFF-DUTY and smallest LUTp+WTp+DTp+PTp.  If tie, randomly choose 

if no picker p, go to Step3        

 Switch (Statusp) 

 Case picker p has an assigned batch 

        If not the last visiting aisle   // aisle-entrance ordering 

In-the-aisle picker blocking on the assigned aisle 

Update WTp, DTp, PTp   // picks, walks, delay at the aisle 

Statusp = Next aisle 

      Else the last visiting aisle   // completion-time ordering 

In-the-aisle picker blocking on the assigned aisle 

Update LUTp,WTp, DTp, PTp  // picks, walks, delay at the aisle 

     // walks to the L/U station, unloading 

Statusp = IDLE 

Case picker p has no assigned batch 

      If b≤ |B| 

Assign the next batch   // aisle-entrance ordering 

Update LUTp,WTp   // loading, walks to the first visiting aisle 

Statuspk = Batch b 

B = b+1 

      else 

Statusp = OFF-DUTY 

Step 3.  Finish. Return sum of LUTp,WTp, DTp, and PTp 
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pick:walk time ratios are considered to explore the robustness of the proposed 

framework. Sensitivity tests are conducted over various order picking environments to 

observe the trends in throughput improvement and the computational performance of the 

proposed framework.  

The MIP formulation is implemented using ILOG CPLEX Callable Library C 

API 11.0.4. The simulated annealing algorithm is programmed using C language as are 

the data-set generator and the simulation module. The executable files run on Windows 

Vista (Xeon 2.66 Ghz CPU, 24 GB memory, 32 bit implementation). For the MIP 

algorithm, we disable both the branch-and-cut option and the heuristic search option to 

evaluate the exact computational time. To validate the batching results, a discrete-event 

simulation method (Law and Kelton, 2000) is used, where the simulation clock is 

advanced in the ―next-event time advance‖ approach. Three throughput performance 

measurements are reported: the average walk time plus delay time per order (WT+DT), 

the average retrieval time per order (RT), and the completion time (CT). The objective is 

the minimization of RT.  

7.1 Exact approach 

We implement the MIP solution described in Appendix C.1 directly and obtain 

the exact solution. The exact approach can manage only small problem sizes, which do 

not account for real-world problems. However, this approach allows us to test the 

impacts of the combined batching and sequencing problem and its computational 

improvement when an indexed batching model has been employed.  

The profiles in Table 3 are used to generate data. For every parameter setting, we 
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run 20 instances. The item locations are generated according to the class-based storage 

policy with A:B:C ratio of 70:20:10 for first aisle: second aisle: remaining aisles, 

respectively. The term ―interval‖ represents the inter-departure time between two pickers. 

Below, we also test the ―pick-then-sort‖ method where CAPA determines a batch size.  

Then, (6.3) is replaced with CAPA XOS

Oo

obo 


, where OSo represents the order size. 

 
Table 3. Default order picking and OPS profiles 

 

We consider three different batching and release scenarios. B-then-R generates 

batches to minimize the total travel distance and releases batches randomly. B-then-S 

generates batches to minimize the total travel distance and sequences the batches to 

minimize the total delay time. BSP and IBM consider the release sequence while 

partitioning orders into batches. BSP does not use the indexed batching method, but 

rather combines the batching problem and the sequencing problem in a single model.   

Table 4 illustrates the computational results. The table includes columns LT 

(loading and unload time), WT (walk time), DT (time blocked), PT (pick time), RT 

(retrieval time), CT (completion time), CPU (average run time in seconds), CPUmax 

(longest run time), and CPUmin (shortest run time). We note three important 

observations. First, the combined batching and sequencing approach dominates the other 

approaches. The BSP and IBM approaches show, on average, 13.2% retrieval time 

reduction compared to the B-then-R approach, whereas the B-then-S approach improves 

Order picking operation profile OPS profile Order profile Picker profile 
Strategy Capacity Pick time L/U #aisle #pick faces Width #orders Order size Interval #pickers Speed 

Sort-while-pick 4 orders 5 10 4 10 2 16 2 1 4 1 

Pick-then-sort 10 items 5 10 4 10 2 16 2 1 4 1  
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the throughput on average about 8.0% with the same storage strategy. However, the CT 

lengthens (inevitable, since we use a small problem size). This issue will be revisited in 

the next section with a large problem size. Second, IBM dominates the BSP method 

when comparing the computational time. Third, despite the small problem size and an 

optimal IBM approach, we do not find a no-blocking result in an optimal model. 

 
Table 4. Experimental results of the exact approach 

 
 

7.2 Simulated annealing approach for large-size applications  

7.2.1 A mail order company example  

A mail order company warehouse operation is analyzed as an example of a large-

scale order picking profile as described in Petersen (2000). The order picking 

environment, e.g., the number of aisles, the pick:walk time ratio, the number of pickers, 

the number of orders, etc., also derives from Petersen (2000); however, Petersen does 

not vary the pick to walk time ratios. To determine the ratios, Gue et al. (2006)’s 

recommendation of  a ratio of 20:1 or smaller is used. Most academic studies have used 

5:1~10:1 (Gong and De Koster, 2008; Gue et al., 2006; Petersen, 2000). Thus, values on 

the range 2:1~20:1 were used in experimentation. Reported below are the two most 

commonly used ratios of 5:1 and 10:1. For every parameter setting, we test 20 instances. 

Strategies Scenarios LT WT DT PT RT CT CPU CPUmin CPUmax

Sort- B-then-R 20.0 33.9 16.1 37.9 107.9 130.1 0.29 0.23 0.47

while- B-then-S 20.0 33.9 8.0 37.9 99.8 109.4 0.27 0.22 0.34

pick BSP 20.0 34.1 1.6 37.9 93.6 122.2 1883.23 128.53 8507.01

IBM 20.0 34.1 1.6 37.9 93.6 121.2 142.04 35.72 632.30

Pick- B-then-R 20.0 35.1 16.6 44.3 115.9 141.6 0.26 0.19 0.41

then- B-then-S 20.0 35.1 6.8 44.3 106.1 111.8 15.26 68.00 119.20

sort BSP 20.0 35.1 1.2 44.3 100.5 125.1 512.36 63.10 2679.03

IBM 20.0 35.1 1.2 44.3 100.5 125.8 63.38 13.82 180.72
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The picking environment is summarized in Table 5. 

 
Table 5. Configuration of an OPS (modified from Petersen example (Petersen, 2000))  

Profiles Values 
Pick:walk time ratio  
Number of aisles  
Walk time  
Number of pick faces / aisle  
Pick time  
Number of pickers  
Cycle length  
Number of orders (per 
cycle)  
Loading / Unloading time  
Order size  
 
SKU  
P/D location  
ABC class rule 
 
Capacity  
Order picking strategy 

2:1, 5:1, 10:1 , 20:1 
10, 20, 30 
PF = 1 seconds/pick face, AE = 0.5 second, AW = 2 seconds 
20 pick faces 
2, 5, 10, 20 seconds  
8, 16, 24 (starting interval = 1.0 seconds) 
1 hour  
360, 720, 1080, 1440  
 
Each 60 seconds 
2.02 ( p(1) = 0.5/0.95, p(n)=( 1/2*(n-1)-1/2*n )/(0.95) when n=2,…,10, 

and p(n) = 0 otherwise.), Unif(1,3), Uniform(3,9), Uniform(5,15) 
1  
Center of the leftmost aisle  
Demand portion and aisle size 70%:20%:10% = 2:2:6, 50:30:20, 
Random  
10 orders, 30 items 
Sort-while-pick, pick-then-sort 

 
In discussing the performance of the algorithms, we use the following notation 

throughout the remainder of this section. 

WT+DT: the average total walk time (WT) plus total time blocked (DT) per order 

RT: the average retrieval time per order  

CT: the completion time of the last completed batch 

LB: the linear relaxation model of RBP 

IBMsa: the indexed batching procedure with simulation annealing, where this study 

uses a = 0.8 after a preliminary experiment 

Obj: the objective value of an algorithm 

Red : reduction ratio by an algorithm compared to the RBP + random release 

method expressed as a percentage ( = (an objective function value of the RBP 

+ random release method – the objective function value of an algorithm)/( an 

objective function value of the RBP + random release method ) %) 

LU gap: gap between an objective function value and the LB objective function 
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value expressed as a percentage ( = (an objective function value – the LB 

objective function value)/(the LB objective function value) %) 

CPU: the run-time in seconds 

7.2.2 Neighborhood search 

The method for defining a neighborhood in a simulated annealing procedure is 

critical to effective implementation (Pinedo, 1995). Four methods that can be used to 

define the neighborhood in which to search were investigated. In the first method, NB1, 

a general two-exchange method is employed where a pair of orders is exchanged. We 

randomly pick two batches (b1, b2) and two orders (o1, o2) from each batch. The new 

neighborhood becomes b1 with o2 and b2 with o1. Next, we develop three more 

neighborhood methods. The method NB2 switches b1 with b2, changing the sequence of 

batches to be picked. The orders in each batch do not change. NB3 and NB4 set an 

acceptance condition on NB1. In NB3, b2 is selected among batches having the same 

route. In NB4, the new neighborhood must keep the current travel distance.  

NB1. batches and orders change 

NB2. batches change sequence 

NB3. batches and orders change if two batches have the same route 

NB4. batches and orders change if new batches have at most the same distance 

Alternative neighborhood definitions are compared in Table 6 relative to 

different pick:walk time ratios. NB1 and NB4 are dominant. Specifically, when the 

congestion is light, NB4 is slightly better than NB1. Since the initial solution guarantees 

a near-optimal travel distance for the picker, the approach to search a neighbor in order 

to reduce the blocking time is effective. In contrast, when heavy congestion exists, NB1 

identifies better solutions. NB1 searches a much larger solution space than NB4, because 
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NB1 considers both the distance reduction and the delay reduction.  

 
Table 6. Comparison of neighborhood rules in simulated annealing approach 

Rules 5:1 10:1 
WT+DT CPU WT+DT CPU 

NB1 7.79 70.46 8.86 84.42 

NB2 8.43 323.87 11.17 482.78 

NB3 7.87 54.55 9.74 53.14 

NB4 7.62 73.67 9.21 77.68 

 

7.2.3 Comparison to available algorithms 

Table 7 and Figure 30 compare the IBMsa method to other available batching 

methods. The FCFS method groups orders into batches sequentially, and releases the 

batches as they arrive. The seed algorithm is one of the most common batching methods. 

The best seed algorithm in De Koster et al. (1999) is reported below. The CW II 

approach, a variation of the Clarke and Wright algorithm (1964) appearing in De Koster 

et al. (1999), is also considered. The table includes the performance of RBP. The LP 

relaxation described in Chapter IV is used to obtain a lower bound (LB). Seed, CW II, 

and RBP minimize only the travel distance and do not handle the release sequence. Thus, 

the grouped batches are released in a FCFS manner.  

Table 7 and Figure 30 (a) show how IBM dominates the other methods based on 

the WT+DT criteria. The run time is less than 2 minutes.  Specifically, the proposed 

IBM achieves a 2.5 to 18% reduction in the total retrieval time compared to the near-

optimal distance-only approach, RBP, as depicted in Figure 30 (b).  
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Table 7. Comparison of WT+DT per order  
 2:1  5:1 10:1 20:1 
 WT+DT CPU WT+DT CPU WT+DT CPU WT+DT CPU 
FCFS 
+ Random release 

17.69  20.25  25.39  36.84  

Seed algorithm  
+ Random release 

11.14 0.03 15.65 0.03 24.00 0.03 42.04 0.03 

CW (II)  
+ Random release 

8.69 136.93 11.44 135.70 16.92 135.77 28.90 133.78 

RBP  
+ Random release 

7.65 46.80 9.91 49.03 14.50 48.53 24.51 48.74 

IBMsa 
 7.04 67.34 7.79 81.92 8.86 90.76 10.78 101.32 

 
 

  
(a)                                                                   (b)  

Figure 30. Algorithm comparison with different throughput measurements: (a) WT+DT 
per order; and (b) Walk time+delay time % in the total retrieval time. 

 
7.2.4 Comparison across the number of orders 

Table 8 summarizes the results across the number of orders over two batching 

strategies. Compared to the best distance-based algorithm (RBP), IBMsa experiences 

approximately 5 % to 14.0% reduction of the total retrieval time. The solution from 

optimizing the retrieval time also results in 4% to 12% reduction of the completion time 

(CT). When the pick:walk time ratio is small, the percentage reduction in retrieval time 

decreases and the percentage gap to the lower bound is small. Both the sort-while-pick 

strategy and the pick-then-sort strategy show a stable improvement of the total retrieval 

time. When the problem size is small, IBMsa performs better, because the search space is 

relatively smaller. 
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Table 8. Variation of the number of orders over two batching strategies 

 
 

7.2.5 Other order picking profiles 

Note that order picking environments can be more diverse. Table 9 summarizes 

the results of additional experiments varying the number of aisles, storage policy, 

number of pickers, and order size. The sort-while-pick strategy is evaluated for the 

pick:walk time ratio of 5:1. 

Storage policy 

The storage profile in Table 9 exhibits an interesting result. When the pick:walk 

time ratio = 10:1, the random storage policy performs best under no sequencing control. 

After applying the IBM, the class-based approaches perform better based on the total 

retrieval time criteria. This finding stresses a critical issue concerning the 

interdependence of the storage policy and the order-size pattern and number of pickers.  

If the class-based approach is used, the benefits of applying IBM are significant.   

The number of pickers 

More pickers cause more blocking. The proposed procedure shows an 

Pick: Stategy # RBP+Random release LB IBMsa   -best

walk orders RT CT

ratio WT WT+DT RT CT RT WT+DT Obj Red% LU gap % Obj Red% LU gap % Rule CPU

5:1 Sort 360 7.08 11.37 33.33 944.28 28.88 8.47 30.42 8.7% 5.3% 870.25 7.8% 32.4% NB1 30.30

while 720 6.72 9.91 31.89 1608.88 28.62 7.79 29.77 6.7% 4.0% 1504.50 6.5% 16.1% NB1 69.00

pick 1080 6.63 9.34 31.39 2305.15 28.61 7.40 29.45 6.2% 2.9% 2170.03 5.9% 11.9% NB4 138.57

1440 6.59 9.24 31.29 3008.38 28.57 7.33 29.38 6.1% 2.9% 2827.03 6.0% 9.6% NB4 159.86

Pick 360 5.92 11.34 29.41 929.15 23.63 8.36 26.44 10.1% 11.9% 875.33 5.8% 62.3% NB1 111.21

then 720 5.69 9.49 27.56 1493.90 23.50 7.25 25.32 8.1% 7.7% 1397.05 6.5% 31.2% NB1 148.65

sort 1080 5.70 8.62 26.78 2088.13 23.61 6.97 25.13 6.2% 6.4% 1957.08 6.3% 22.2% NB1 225.22

1440 5.61 8.25 26.42 2636.83 23.53 6.87 25.04 5.2% 6.4% 2521.55 4.4% 18.6% NB4 298.70

10:1 Sort 360 7.08 16.83 48.74 1371.15 38.84 9.49 41.40 15.1% 6.6% 1220.65 11.0% 38.5% NB1 37.12

while 720 6.72 14.50 46.47 2351.93 38.60 8.86 40.82 12.1% 5.7% 2098.08 10.8% 20.3% NB1 82.05

pick 1080 6.63 13.62 45.72 3362.13 38.66 8.89 40.99 10.3% 6.0% 3027.43 10.0% 15.7% NB1 154.65

1440 6.59 13.51 45.60 4390.95 38.61 9.02 41.11 9.8% 6.5% 3973.35 9.5% 14.1% NB1 180.00

Pick 360 5.92 17.28 45.31 1369.80 33.59 10.25 38.27 15.5% 14.0% 1237.70 9.6% 62.2% NB1 107.51

then 720 5.69 13.86 41.91 2269.18 33.48 8.86 36.91 11.9% 10.2% 1995.40 12.1% 31.8% NB1 148.53

sort 1080 5.70 12.42 40.62 3085.15 33.66 8.53 36.73 9.6% 9.1% 2828.80 8.3% 24.1% NB4 217.20

1440 5.61 11.80 40.01 3958.68 33.58 8.29 36.50 8.8% 8.7% 3631.93 8.3% 19.9% NB4 298.96
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improvement beyond the other methods investigated. RT reduction and CT reduction are 

9.7% and 8.8%, respectively when the pick:walk time ratio = 5:1. With a higher 

pick:walk time ratio, more blocking occurs and the IBM algorithm shows greater 

benefits on a percentage basis.  

The number of aisles in OPS 

In larger OPS, pickers ―spread out‖ in a picking area and there is less picker 

blocking. Thus, the benefit from IBM diminishes. ―-‖ means that a lower bound solution 

could not be obtained because the problem size is too large. 

Order size 

 We test three different order sizes. The IBM algorithm shows a robust benefit 

over all values. 

 
Table 9. The experimental results over diverse order picking environments 

 
 

7.2.6 Side effects in a large-scale application 

The control of picker blocking minimizes both the RT per order and the 

Pick: RBP + Random release LB IBMsa - Sort-while-picking policy - best

walk Profiles Values RT CT

ratio WT WT+DT RT CT RT WT+DT Obj Red % LU gap% Obj Red % LU gap% Rule CPU

5:1 Default 6.72 9.91 31.89 1608.88 28.62 7.79 29.77 0.07 0.04 1504.50 0.06 0.16 NB1 69.00

Storage 5:3:2 7.69 9.64 31.62 1603.38 29.54 8.35 30.33 0.04 0.03 1532.53 0.04 0.15 NB4 153.76

random 9.24 10.40 32.38 1624.33 31.04 9.68 31.66 0.02 0.02 1595.20 0.02 0.14 NB4 203.89

#pickers 8 6.72 8.16 30.14 2832.10 28.62 6.93 28.91 0.04 0.01 2723.70 0.04 0.06 NB4 28.91

24 6.72 11.87 33.85 1221.53 28.62 8.59 30.57 0.10 0.07 1114.35 0.09 0.28 NB1 87.37

#aisles 20 10.14 11.77 33.77 1712.80 - 10.78 32.78 - - 1664.03 - - NB4 444.29

30 14.07 15.19 37.23 1850.35 - 14.41 36.46 - - 1805.65 - - NB4 654.93

order U(1,3) 6.98 9.34 31.32 1590.30 28.87 7.56 29.53 0.06 0.02 1498.95 0.06 0.15 NB4 83.45

size U(3,9) 11.13 17.30 59.25 2942.38 52.98 12.88 54.83 0.07 0.03 2757.43 0.06 0.15 NB4 478.31

U(5,15) 13.41 22.60 84.64 4194.13 75.34 16.22 78.26 0.08 0.04 3885.93 0.07 0.14 NB4 812.01

10:1 Default 0 6.72 14.50 46.47 2351.93 38.84 8.86 40.82 0.12 0.05 2098.08 0.11 1.38 NB1 82.05

Storage 5:3:2 7.69 12.42 44.38 2269.83 39.52 9.26 41.23 0.07 0.04 2110.55 0.07 0.18 NB4 168.26

random 9.24 12.09 44.05 2258.65 41.02 10.46 42.42 0.04 0.03 2166.98 0.04 0.17 NB4 213.22

#pickers 8 6.72 10.35 42.31 3983.85 38.84 7.24 39.20 0.07 0.01 3703.53 0.07 0.06 NB4 64.74

24 6.72 19.10 51.07 1850.28 38.84 10.61 42.57 0.17 0.10 1546.25 0.16 0.32 NB1 108.56

#aisles 20 10.14 14.28 46.26 2367.10 - 11.79 43.77 - - 2249.88 - - NB4 465.15

30 14.07 17.08 49.11 2454.68 - 15.21 47.24 - - 2360.50 - - NB4 677.16

order U(1,3) 6.98 12.90 44.86 2289.23 38.85 8.29 40.25 0.10 0.04 2042.75 0.11 0.16 NB4 120.33

size U(3,9) 11.13 24.82 96.72 4792.23 82.93 14.82 86.72 0.10 0.05 4360.45 0.09 0.17 NB4 1104.61

U(5,15) 13.41 32.92 144.99 7165.48 125.37 19.26 131.34 0.09 0.05 6513.75 0.09 0.15 NB4 1772.90
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completion time. Table 10 includes additional analysis regarding the average and the 

standard deviation of inter-arrival times between pickers. We collect the inter-arrival 

time between pickers at the LU station and the 2nd aisle. With the proposed procedure, 

the inter-arrival time becomes smaller and less variable. The smaller variance may 

indicate that the pickers are more evenly spaced using the IBM method.  

 
Table 10. Comparison of inter-completion time (the number of orders=2160, 
Imax=20000) 

 
 

8. CONCLUSION AND FURTHER STUDIES 

This chapter presented: 1) the framework to optimize the order picking operation 

in a circumnavigational order picking system, where both travel distance and time 

blocked should be assessed; 2) the indexed order batching model (IBM) combining the 

order batching problem and the batch sequencing problem; and 3) a simulated annealing 

heuristic procedure to allow analysis of realistic problem sizes. The narrow-aisle 

structure was exploited in developing the framework, the algorithm, and the procedure. 

Experimental results showed that consideration for blocking in an integrated batching 

and sequencing approach can have substantial benefits on performance criteria such as 

total retrieval time or completion time.  

This chapter has taken an initial step towards controlling congestion in a DC 

5:1 10:1

Sequence LU station 2nd aisle LU station 2nd aisle

#pickers method RT CT Avg Std Avg Std RT CT Avg Std Avg Std

8 pickers RBP+Rand 29.76 8165.88 36.87 33.71 47.43 47.54 41.86 11494.53 52.07 49.07 66.67 71.61

IBMsa 28.69 7868.70 35.49 28.82 45.63 43.37 38.94 10696.53 48.39 40.63 61.83 64.65

16pickers RBP+Rand 31.09 4376.40 19.24 19.09 24.36 28.43 45.26 6386.68 28.32 29.35 35.56 44.64

IBMsa 29.18 4108.70 18.02 16.90 22.72 26.59 40.59 5688.20 25.09 23.42 31.17 32.20

24pickers RBP+Rand 32.55 3148.18 13.53 14.60 16.87 21.08 48.80 4729.53 20.61 23.10 25.46 33.32

IBMsa 29.95 2883.88 12.32 11.99 15.26 17.33 41.94 4010.88 17.22 16.79 21.21 23.01
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facility. Specifically, we focused on the narrow-aisle order picking system, which is an 

attractive OPS layout due to its cost merit from the standpoint of the DC design. The 

proposed order picking operation procedure requires a reevaluation of some previous 

research findings. For example, Ruben and Jacobs (1999) recognize the possibility of 

productivity loss due to congestion under a class-based storage policy, which tends to 

increase pick-density to shorten the travel distance. However, our experimental results 

over the variation of the storage policy showed that if appropriate batching and 

sequencing procedures, such as IBM, are implemented the congestion in a class-based 

policy can be mitigated. IBM can also play a vital role in minimizing or preventing 

picker utilization from dropping as the number of pickers increases. According to Gue et 

al. (2006), the picker utilization drops as more pickers are staffed in an order picking 

system. Thus, it is clear that under IBM some order picking system design rules relevant 

to picker blocking should be reconsidered.  

We suggest that our research be expanded to consider dynamic controls and to 

explicitly account for other idle factors. First, to handle real-world problems, more 

dynamic situations should be considered, for example, picking environments that 

encounter cart breakdowns, search failures, and order changes. IBM requires new 

planning when any of these difficulties are present. Second, while this study only 

considers picker blocking, some order picking strategies encounter different idle factors, 

such as hand-off delay in bucket brigade systems (Koo, 2009), which is a topic we will 

address in the next chapter. 
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CHAPTER VII 

ANALYSIS AND CONTROL OF PICKER BLOCKING IN A BUCKET 

BRIGADE ORDER PICKING SYSTEM 

 

Bucket brigades is an operation mode for order picking systems, which is 

characterized by its self-balancing nature and high pick rates (Bartholdi and Eisenstein, 

1996a). However, due to variability and uncertainty of the pick locations within a 

particular order or batch, picker blocking can cause productivity losses. Furthermore, the 

hand-off operation, which involves transiting partially-picked orders or batches from 

upstream pickers to downstream pickers, can result in delays for the downstream pickers. 

This chapter examines the significance of picker blocking and hand-off delay in bucket 

brigade order picking and identifies the relevant analytical models, highlighting the 

issues of blocking and hand-off delay through simulation studies. Our analytical results 

identify several conditions for high order picking throughput, such as batch picking, 

stable picking performance, and intermediate hand-off. A complete control procedure for 

dynamic order picking is provided that mitigates both picker blocking and hand-off 

delay. The proposed framework experiences 7 to 12% improvement of utilization across 

diverse order picking situations when five pickers pick on average 20 items per tote. 

1. INTRODUCTION  

1.1 Bucket brigade order picking 

A bucket brigade operational policy is attractive because the workload balancing 
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characteristic that allows dynamic reassignment of zones increases productivity with 

minimal managerial or planning requirements.  In the warehousing industry, the order 

picking operation consists of retrieving customer orders from storage. To increase 

throughput, multiple orders are often grouped in a batch for more efficient picking 

operations.6  The method by which batches are assigned to pickers can have a significant 

impact on picking performance. The bucket brigade concept used in general assembly-

line operations can be applied to order picking to achieve valued properties, such as the 

self-balancing characteristic and minimum work-in-process (WIP) (Bartholdi and 

Eisenstein, 1996a; Bartholdi and Eisenstein, 1996b). In practice, a bucket brigade order 

picking strategy is often used with flow-rack shelving (Figure 31) in high throughput 

warehouse environments. In this study, the combination of flow-rack shelving and the 

bucket brigade strategy discussed in Bartholdi and Eisenstein (1996a) is referred to as a 

bucket brigade order picking system (OPS).  

 

             

Figure 31. A flow-rack OPS (Bartholdi and Eisenstein, 1996a). 

 
The bucket brigade OPS is characterized by limited WIP, high picking 

                                                 
6 We discuss order pickers gathering batches.  However, if batching is not used this would imply 

one order per batch.   



121 

 

 

throughput, high space utilization, and the self-balancing property (Bartholdi and 

Eisenstein, 1996a). However, as pick requirements are random over pick locations, 

pickers often encounter blocking when the downstream picker is busy. In addition, 

pickers may stand idle when the hand-off process is not synchronized.   

In a bucket brigade OPS, multiple pickers help to pick a single batch. Pickers are 

sequenced from upstream to downstream, and the sequence is maintained throughout. 

Each batch is picked to a tote, and the tote is passed from one picker to the next 

traversing the aisle. Pickers collect items at related pick faces in sequence. A picker 

picks an item and places it in the tote assigned to a particular batch. The picker then 

moves to the next pick face to continue processing the batch if there is no picker at the 

next pick face. The upstream picker hands off the current tote upon meeting a 

downstream picker who has no assigned tote. The picker most upstream (the first picker) 

retrieves a new batch and tote from a loading station and begins picking at the first pick 

face. The last picker releases the completed batch to the unloading station. A work area 

for a picker is not predetermined and is dynamically resized through the pick-and-pass 

process. Thus, this strategy eliminates the need for work zone load balancing, which can 

be complicated and difficult (Bartholdi and Eisenstein, 1996a).  

1.2 Performance under picker blocking and hand-off delay 

A bucket brigade OPS does not allow pickers to pass due to the higher space 

utilization (Bartholdi and Eisenstein, 1996a). Not allowing pickers to pass one another 

can cause a delay in two ways. First, an upstream picker attempts to move forward to the 

next pick face that is occupied by a busy downstream picker as shown in Figure 32 (a). 
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In this situation the upstream picker cannot hand-off the current batch to the downstream 

picker because the downstream picker is currently executing a retrieval task. The 

upstream picker also cannot pass over the downstream picker, because passing is not 

allowed (picker blocking). Second, delay can occur when the downstream picker moves 

upstream to take a hand-off from an upstream picker. If the upstream picker is picking 

when the downstream picker encounters the upstream picker, the downstream picker 

must wait until the upstream picker completes the pick. This is termed hand-off delay as 

shown in Figure 32 (b).  

 

 
(a)                                         (b) 

Figure 32. Delay situations in bucket brigade order picking: (a) picker blocking; and (b) 
hand-off delay. 

 
Performance regarding picker blocking and hand-off delay in bucket brigade 

OPS is not well understood. In order to achieve the highest throughput, an individual 

order picker’s region of operation within the aisle should stabilize so that the picker can 

become familiar with the set of items and their location within the region (Lim and Yang, 

2009). In diverse bucket brigade situations researchers (Armbruster and Gel, 2006; 

Bartholdi and Eisenstein, 1996b; Bartholdi and Eisenstein, 2005; Bartholdi et al., 2001) 

have identified operation rules or conditions that lead to stability. However, picker 

blocking and hand-off delay can impact picker utilization (Bartholdi and Eisenstein, 
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1996b) and this issue has received little attention in the literature to date. Only Koo 

(2009) investigates the productivity loss due to picker blocking and hand-off delays in a 

bucket brigade OPS using simulation under the assumption picker capability is identical. 

The throughput loss is 26.1% of the total working time, with 15.6% loss due to picker 

blocking and 10.5% loss due to hand-off delay. To our knowledge, there is no analytical 

model on picker blocking and hand-off delay in bucket brigade OPS which can help 

engineers develop more effective operational strategies.  

1.3 Our scope and goals 

Order picking throughput is often measured by the ratio of time spent to pick to 

time spent at a stop. Gue et al. (2006) introduced the throughput model for a narrow-

aisle order picking system with k pickers. We generalize Gue et al.’s result for a bucket 

brigade OPS as described in Equation (7.1). When pickers are blocked with a fraction of 

the time, b(k), where 0 ≤ b(k) ≤ 1, and a hand-off takes E[HO], where 0 ≤ E[HO] ≤  

maximal pick time at a  pick face, the throughput is: 

 
 

  kb
HOEnkttptE

ptE
kk

wp















 1

][/1][

][
  

 (7.1) 

where E[pt] stands for the expected number of picks at a stop and n is the number of 

pick faces in bucket brigade OPS. The time to pick (tp) represents the average time the 

picker is stopped and includes the time spent picking items. The time to walk (tw) 

indicates the average time to walk past a pick face (location).  

We assume that pickers perform identically, which is persuasive due to 

simplicity of order picking, the relatively easy learning curve in order picking, and the 
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use of technology. In our model, walk speed is not instantaneous for both forward and 

backward directions. Items in orders are randomly located in n pick faces and the 

number of pickers (k) is relatively small compared to n. The time to load and unload 

orders at the beginning and end of the aisle is negligible. Importantly, passing is not 

allowed in this high density bucket brigade operation. 

We develop analytical models for picker blocking and hand-off delays in a 

bucket brigade OPS, where no correlation between two delays is assumed. We conduct a 

simulation study to clarify the source of delays in diverse situations. The analytical and 

simulation models allow for the size of delays to be quantified; however, a primary 

purpose of our examination is to assist operational decision-making. A control model 

and relevant algorithms are proposed to reduce the delays.  

The chapter is organized as follows. Section 2 reviews the relevant order picking 

literature and identifies new opportunities. In Section 3, we introduce analytical models 

and control methods for picker blocking. Section 4 focuses on an analytical model of 

hand-off delay and details the proposed control policy for reducing hand-off delay. 

Section 5 describes a simulation study analyzing picker blocking and hand-off delay and 

summarizes the experimental results. Section 6 concludes this chapter.  

2. LITERATURE REVIEW  

Bucket brigade models are typically characterized by work content model 

(uniform or exponential), walk speed assumptions (finite or infinite speed in forward and 

backward walks), and pickers’ velocity or capability (identical or non-identical).  Bucket 

brigade was originally proposed for the manufacturing setting, thus descriptions of this 
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work have been adapted for an order picking setting. 

2.1 Picker blocking and hand-off delay in bucket brigades  

Bartholdi and Eisenstein (1996b) introduce the bucket brigade management 

method for manufacturing settings. Their three assumptions are: pickers travel with 

instantaneous walk speed (including backward walk speed), a picker’s capability is 

distinct and not identical, and workloads are uniformly and randomly distributed. Their 

model considers non-identical capability and utilizes the capability difference to reduce 

blocking. The highest throughput is obtained when pickers are sequenced with the 

slowest picker in the location most upstream and the fastest picker in the location most 

downstream. Picker blocking can be minimized when there are large capability 

differences among pickers. The authors also suggest that hand-off delay can be reduced 

through practice. 

Bartholdi and Eisenstein (1996a) present the bucket brigade for order picking and 

describe the productivity improvements through a physical implementation. In particular, 

the authors emphasize that bucket brigades can achieve both high space utilization and 

high picker utilization. However, since higher space utilization makes passing difficult, 

they recommend the bucket brigade for high-volume, limited space picking operations 

over the more traditional zone picking strategy. Further, the authors suggest another way 

to reduce picker blocking is cooperation between neighboring pickers, where a blocked 

picker aids a blocking picker with the help of pick-to-light technology. A blocked picker 

picks items of a blocking picker, which are identified by pick-to-light.  

 Bartholdi et al. (2001) develop a general performance model where the work 
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load is not uniform over the pick area. They show that bucket brigades is still 

advantageous and self-balancing despite the fact that pick locations are exponentially 

distributed. Their assumption states that when walk speed is instantaneous, pickers move 

rapidly. Thus, hand-offs of all pickers occur simultanesously and sychronously, and 

hand-off delays drop.   

Bartholdi and Eisenstein (2005) analyze an assembly-line where the walk speed 

is not infinite and the return trip of a picker after handing off his/her workload requires 

significant time. Under these assumptions hand-off delay affects productivity. They find 

a considerable loss of productivity by walk-back time and hand-off delay; nonetheless, 

their practical application demonstrates a stable performance. Specifically, they assume 

constant hand-off time to identify the operational stability, but do not evaluate the 

productivity loss due to the hand-off operation. They do not observe the impacts of 

picker blocking.  

Koo (2009) shows that picker blocking and hand-off delay reduce the 

productivity of the bucket brigade OPS when pickers have the same capability. The 

author assumes that work load is random, pick time is not deterministic, and walk time is 

infinite.  He constrains each picker’s picking area by defining a downstream boundary 

which he shows improves their productivity. Further, upstream pickers are allowed to 

leave totes at the boundary location if a downstream picker is not available to take over 

the tote. Under this set of assumptions Koo derives a closed form calculation for hand-

off delay as (k-1)*E[pick time]/2.  
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2.2 Issues 

Reviewing the available studies, we identify four critical issues:  

1) The impacts of picker blocking on a bucket brigade OPS when pickers have 

similar picking abilities are not quantified or well understood for realistic 

assumptions regarding pick and walk times.  Koo (2009) reports the 

productivity loss, but only considers a simulation study with an exponential 

pick time and infinite walk time. These two assumptions are not typical of 

realistic order picking operations.   

2) Available picker blocking mitigation methods are not appropriate for the 

general configuration described in this dissertation and do not maintain the 

standard bucket brigade protocol.  Cooperation between pickers (Bartholdi and 

Eisenstein, 1996a) is not clearly explained by the authors. Its realization would 

―break‖ a bucket brigade protocol because a blocked picker cannot assist a 

blocking picker under the standard bucket brigade protocol. The passing 

method proposed by Bartholdi and Eisenstein (2005) in the manufacturing 

setting also is not appropriate in the current order picking configuration 

because passing requires additional space for both pickers and totes. Moreover, 

it is not obvious that passing would improve performance in order picking 

because pickers may waste time passing over another picker. Koo (2009)’s 

approach violates the basic principle of bucket brigade by assigning WIPs at 

boundaries. In addition, stacking at boundaries increases WIPs and requires 

additional space. 

3) The impacts of hand-off delay on a bucket brigade order picking system have 

not been properly investigated. The hand-off model by Koo (2009) is incorrect 

when a variation of pick time is not zero (see Section 5 below). Moreover, his 

study assumes instantaneous walk times. The impact of walk time on hand-off 

delay has not been discussed in the literature. 

4) Suggested methods to reduce hand-off delay lack operational details for 

implementation or are not practical for real settings. Bartholdi and Eisenstein 
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(1996a) suggest a smooth hand-off operation; however, there is no description 

of the operational implementation. In addition, simultaneous and sychronous 

hand-off (Bartholdi et al., 2001) does not apply when both pick time and walk 

time are finite. 

3. ANALYSIS AND CONTROL OF PICKER BLOCKING 

In this section, we develop analytical models of picker blocking and methods to 

mitigate picker blocking for bucket brigade OPS. Recognizing that both standard 

multiple-aisle rectangular order picking systems and bucket brigade order picking 

systems can be characterized using the circular-aisle OPS abstraction, we apply the 

blocking control model developed in Chapter V to a bucket brigade OPS under the 

assumption of no passing. Finally, we utilize the control model to demonstrate the 

reduction that can be achieved. 

3.1 Picker blocking in a circular order picking aisle with two pickers  

Gue et al. (2006) investigate the effects of picker blocking under a no-passing 

policy, considering only single-pick situations.  The circular order picking aisle 

abstraction is used in developing both analytical models and a simulation study. Table 

11, column 1, shows the closed-form expression for percentage of time blocked for two 

pick to walk time ratios developed in Gue et al. (2006). Column 2 presents our results in 

Chapter V. The analysis is undertaken for a two-picker OPS. Both approaches consider 

two extreme cases: 1) walk speed is equal to unit pick time per pick face (pick time:walk 

time = 1:1), and 2) walk speed is infinite (pick time:walk time = 1:0). The results in 

Table 11 are developed for a rectangular multiple aisle warehouse with cross aisles at the 

front and back of the picking area. Pickers take a one-way traversal route and passing is 
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not allowed. At a pick face, a batch includes an item with a probability p. Further, q 

denotes 1-p, the probability of no item at a pick face. The models of Gue et al. (2006) 

and Chapter V are distinguished by the number of picks per pick location, single vs. 

multiple. The multiple-pick model can repeat a pick at the same pick face with 

probability p.  

 
Table 11. The percentage of time blocked when two pickers work (p=pick density, n=the 
number of pick faces) 

Pick:walk 
time 

Single-pick 
 (Gue et al., 2006) 

Multiple-picks 
 (see Chapter V) 

1:0 
   pnp

p

112

1



  
 pn 12

1


 

1:1 

   22
11 ppn

pq


 

12  pn

p
 

 
Gue et al. (2006) explain that the batch picking strategy can experience less 

picker blocking when the pick density is either very low or very high. Chapter V and 

Parikh and Meller (2010) show that the variation in pick density can be as important as 

the level of pick density in determining the amount of blocking in a circular-aisle OPS. 

One important observation in Chapter V is that batch picking can reduce picker blocking.  

3.2 Picker blocking in bucket brigade order picking 

Bucket brigade order picking has a special release mechanism of a new batch and 

the mechanism impacts the picker blocking model. Thus, first, the release mechanism of 

a new batch is explained. Second, picker blocking will be discussed.  Note that in this 

study we show the equivalence of the picker blocking models of the bucket brigade 

order picking and the circular-aisle abstraction under specific situations, instead of a 



130 

 

 

direct development of the picker blocking model of bucket brigade order picking. 

Figure 33 describes a series of hand-offs after completion of a batch. k pickers 

are sequenced from the loading station to the unloading station in a decreasing sequence 

of k,k-1,…, 2,1. When a batch (denote this batch ith batch) is finished by the picker most 

downstream (picker 1), a new batch must enter the system. Picker 1 becomes idle and 

moves backward to take over the batch of picker 2 who is moving forward with the i+1st 

batch. Obviously, the hand-off occurs when they meet. Picker 2 changes direction 

(backward towards the loading station) to take a new batch from a picker further 

upstream (i.e., picker 3), when he/she meets an upstream picker he/she takes over i+2nd 

batch, and then turns and continues picking in a forward direction. Finally, the picker 

most upstream (picker k) arrives at the loading station to take over i+k
th batch, and 

his/her arrival time at the loading station becomes the starting time of a new batch (i.e., 

i+k
th batch). The difference between the completion time of the ith batch and the starting 

time of the i+k
th batch, which is a batch paired to the ith released batch, equals the sum of 

backward walks and the hand-off delay occurring after completion of the ith batch.  
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Figure 33. A description of chain reaction after completion of batch i to release a new 
batch i+k. 

 
Assume that there is no hand-off delay and backward walk speed (empty travel 

walking speed) is instantaneous similar to Bartholdi and Eisenstein (1996a). In addition, 

k pickers have identical pick performance and walk speed as we assumed in Section 1. 

Interestingly, with infinite backward walk speed and no hand-off delays, the circular-

aisle abstraction of the traversal routing rectangular picking system can be used to 

characterize a bucket brigade OPS in terms of picker blocking. Further, the same picker 

blocking model can be used for both analyses.   

 The equivalence can be easily shown by replacing ―pickers‖ with ―batches‖. By 

definition, picker blocking occurs while pickers repeat picking, walking, and blocking, 

and the picking locations and durations are determined by batches. Thus, without loss of 

generality, the picker blocking mechanism can be derived from the batches. In bucket 

brigade order picking, picker blocking occurs when an upstream batch has no item to be 

picked, but a downstream batch has some picks at the next pick face and holds the next 
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pick face. Then, the upstream batch may stay at the current pick face, which causes a 

delay and becomes a picker blocking situation. A more rigorous proof follows.  

 

Theorem 4. When the backward walk time is instantaneous and the hand-off 

time is zero, the picker blocking model of bucket brigade order picking is equivalent to 

the picker blocking model of the circular-aisle abstraction. 

Proof.  

When the batch most downstream is completed, it disappears from the system, 

other batches in the system are handed off to the next pickers, and a new batch is 

released. The completion, backward walks, and hand-offs occur instantaneously and 

result in the release of a new batch. This proof shows that: order picking mechanisms of 

two models (bucket brigade order picking and circular-aisle abstraction) are equivalent 

until a batch is completed; the completion of a batch does not impact any locations and 

times of current batches; and the release of a new batch has the same locations, time, and 

batch. 

1) Before completion of the batch most downstream 

Without loss of generality, before completion of a batch, two models follow the 

same procedure. For example, consider batches i, i+1, i+2, and i+3 as depicted in Figure 

34. Figure 34 (a) is a circular-aisle abstraction, and Figure 34 (b) is a bucket brigade 

order picking situation. The moving directions and batches are identical. Thus, until 

batch i (bi) is completed, the two systems face the same situations of picker blocking.  
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(a)                                                   (b) 

Figure 34. A normal situation example. In both models, four pickers process four batches. 
Two pickers (picker 3 and 4) may have a chance of blocking depending on items in 
batches i+2 and i+3 (the number of pick faces = 8, the number of pickers = 4): (a) a 
circular-aisle abstraction; and (b) a bucket brigade OPS. 

 
2) Completion of the batch most downstream and occurrence of hand-off 

Since batch i has been completed, the chain reaction discussed in Figure 33 arises. 

Due to the infinite backward walk speed and the zero hand-off delay, all batches will be 

handed off at the same time. Batch i+k enters the system (i.e., the first pick face) and its 

release time is identical to the completion time of batch i. The picker assignments of 

batches i+1, i+2, …, i+k-1 are changed from 2,3,..,k to 1,…,k-1. Picker k captures batch 

i+k. During this shift, there is no blocking. Then, recursively, case 1) repeats. In the 

circular-aisle abstraction, the release location of a new batch is the first pick face and the 

release time of a new batch is the completion time of kth before. Thus, the two systems 

release a new batch into the same location at the same time when the backward walk 

speed is infinite and the hand-off delay is negligible (see (a)                                                   

(b) 

Figure 35).   
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(a)                                                   (b) 

Figure 35. A completion and release example. Both models release batch i+4 at the same 
time and it starts from pick face 1 (the number of pick faces = 8, the number of pickers = 
4): (a) a circular-aisle abstraction; and (b) a bucket brigade OPS.  

 
From Proofs 1 and 2, two systems are identical in steady state. Initialization and 

finalization stages are beyond the scope of the analysis of the steady state. However, 

technically, two models can start with the same procedure if they start together from the 

loading station. The finalization stage also can be the same if they do not allow any 

hand-off after the last batch enters the system. End of proof. 

 

Having identified the equivalence of the picker blocking model in these two 

settings, we are now able to develop the following insights:  

1) Batch picking faces less picker blocking when the batch size is determined by 

the number of items, not the number of orders. The batch size can be 

determined by quantity of items the tote can hold when using a pick-then-sort 

strategy, or number of orders (or the number of totes in a batch) in a sort-

while-pick strategy. When a batch includes a fixed number of items, pick 

density is constant over batches. Thus, the variation of pick density decreases. 

2) With a finite backward walk time, picker blocking may become less than the 

infinite backward walk time case. The release of the i+k
th batch requires a 
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duration after the completion of the ith batch due to the backward walk times. 

The distance between i+k
th and i+k-1st lengthens compared to the infinite 

backward walk time case. Thus, picker blocking decreases. 

3) When walk speed is not infinite and is not unit walk speed, hand-off delay 

becomes more significant and picker blocking decreases. As hand-off delay 

increases, the starting time of a new batch is delayed. Typically, picker 

blocking decreases as hand-off delay increases.  

3.3 Indexed order batching model for control  

Since the picker blocking mechanism of a circular-aisle OPS has been identified, 

and the equivalence of the bucket brigade OPS shown, the multiple-aisle IBM for picker 

blocking control described in Chapter VI can be employed.  

We generalize the model by relaxing two assumptions: the IBM for bucket 

brigade order picking differs from the parallel-aisle IBM: 1) the starting time of the i+k
th 

batch is determined by the cumulative sum of hand-off delay and backward walk time 

upon completion of the ith batch; and 2) the IBM for bucket brigade order picking has no 

routing problem. Based on these two differences, the abstracted IBM becomes the 

following equation: 

 

The indexed batching constraints associate the batching problem with the release 

sequence. In-the-aisle picker blocking constraints are required to calculate overall picker 

blocking. The IBM for bucket brigade OPS can update the release-time of batch i+k 

using the following logic:  

(Abstracted IBM with finite pickers) Min Walk time + Time delayed 
Subject to 
 Indexed batching constraints 
 In-the-aisle picker blocking constraints 
 Release-time updating constraints 
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where k is the number of pickers and i is the index of a batch. For E[HO] (the expected 

time delayed per hand-off occurrence), we introduce a weight factor α. Because an 

expected hand-off delay can vary depending on hand-off control (discussed below in 

Section 5), the weight factor α is necessary. Moreover, usually the loading time is 0 in a 

bucket brigade protocol. Thus, to obtain the starting time of the i+k
th batch, we use the 

following equation: 

 

For a detailed IBM formulation, see Appendix D.2.   

The starting time of batch i+k at the loading station 

= the completion time of the ith completed batch at the unloading station 

+ unit backward time*n 

+ α (k-1)E[HO] 

The starting time of batch i+k at loading station 

= the completion time of the i th completed batch at unloading station 

+ the expected backward travel time by picker 1 for batch i+1 

+ the expected hand-off delay by picker 1 for batch i+1 

+ the expected backward travel time by picker 2 for batch i+2 

+ the expected hand-off delay by picker 2 for batch i+2 

… 

+ the expected backward travel time by picker k for batch i+k 

+ the expected loading time by picker k for batch i+k 

= the completion time of the ith completed batch at the unloading station 

+ the expected backward travel time by picker 1,..,k linked by batch i’s completion 

+ the expected hand-off delay by picker 1,..,k-1 

+ the expected loading time by picker k for batch i+k 

= the completion time of the ith completed batch at the unloading station 

+ unit backward time*n 

+ (k-1)E[HO] 

+ the expected loading time by picker k for batch i+k 
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4. ANALYSIS AND CONTROL OF HAND-OFF DELAY 

In this section, we conduct an analytical study to quantify if hand-offs are a 

significant source of delay and thus a concern of management. We develop a renewal 

process model for the hand-off operation between two pickers when pick time is random 

and walk time is instantaneous. We also propose a method to control hand-off delay.   

4.1 Renewal process model for hand-off operation 

We assume that walk speed is infinite and the number of picks is large enough 

for analytical purposes. As in the previous blocking models, the first assumption (infinite 

walk speed) is common in the bucket brigade literature. Section 5 below provides further 

generalizations for cases with finite walk speed and fewer picks via a simulation study. 

Consider that an upstream picker and a downstream picker are identical in terms 

of pick time and walk time. The upstream picker makes stops 1, 2,… for picks whenever 

a pick face contains at least one item to be picked. Note that each stop can process one or 

more picks and can come from different batches. X1, X2, X3,… denotes the time spent for 

the upstream picker to pick all items in a pick face at a stop. In other words, X1, X2, X3,… 

becomes an inter-arrival time between stops. The mean of the inter-arrival time of stops 

[X1, X2, X3,…] is E[X] and identical to average pick time per stop. The sequence, A1, 

A2,…, represents the times at which the upstream picker completes the retrieval 

operation at 1st stop, the retrieval operation at 2nd stop, …. .  The downstream picker’s 

returning time is the sum of the walking time, picking time, blocking time (if blocked), 

and walk back for a particular batch. When the pick load is large enough, the returning 

time of a downstream picker is close to random arrival. Here, the sequence, S1, S2, S3,... 
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is the arrival time of the downstream picker to take over a tote from the upstream picker. 

The waiting time of a downstream picker is Y1, Y2, Y3,... for each arrival. The waiting 

time for jth hand-off (Yj ) becomes Ai-Sj where Ai stands for the completion time of pick(s) 

at ith stop of the upstream picker.  

The example in Figure 36 illustrates a hand-off delay of picker 1 when picker 2 

processes the second item of batch 2 (B2
2, where the superscript indicates the batch 

number and the subscript stands for items in a batch). Picker 1 has completed the last 

two picks of batch 1 (B1
5 and B1

6) and unloaded the collected batch, he/she is idle at the 

next pick face of picker 2. The idle time duration is Y1 (=A2-S1) when picker 1 arrives at 

time S1 and picker 2 finishes the second item of batch 2 (B2
2) at time A2.  

 

 
Figure 36. An example of hand-off and its appropriate renewal process. 

 

From the situation we described above, the expected time delayed per hand-off 

occurrence and the expected time delayed per batch can be derived.  
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Theorem 5. The expected waiting time (E[Y(t)]) is E[X2]/2E[X] and the hand-off 

delay per batch is (k-1)* E[X2]/2E[X]. 

Proof. 

 We derive the renewal processes based on the definition in Ross (1996). By 

definition, E[X2]<∞, because X is the average pick time at a stop and X is finite as long 

as the pick is completed.  

The expected waiting time (E[Y(t)]) can be expressed as: 
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(7.3) 

(See Appendix D.3 in detail.) 

k-1 pickers are associated with hand-offs for a batch. Thus, the expected hand-off 

time per batch is (k-1)* E[X2]/2E[X]. End of proof. 

 

4.2 Intermediate hand-off rule and pick-first priority 

The previous section estimated the expected wait time due to hand-off delay. 

Equation (7.3) indicates that multiple-picks can increase the hand-off delay as the 
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variation increases. Note that we assume that the pick time at a stop is dependent on the 

number of items, which is a multiple-pick situation at a pick face. Usually, the multiple-

pick situation concerns multiple products. In practice, while retrieving multiple items 

from a pick face, an upstream picker may be able to yield remaining item(s) to a 

downstream picker after completion of an item, not all of the items. This yielding seems 

to be more practical and can prevent the stop-based model from overestimating the hand-

off delay. 

This study terms the yielding the intermediate hand-off rule. This practical rule 

and procedure can also reduce hand-off delay and simplify our other hand-off proofs. 

When an upstream picker sees a downstream picker while processing multiple items, 

he/she can yield the remaining picks to the downstream picker if he/she completes at 

least one pick. This method can prevent unnecessarily long hand-off delays when 

multiple-picks at a pick face are allowed. Then, under the intermediate hand-off rule, the 

mean of the inter-arrival time of picks E[X] becomes the average pick time since a hand-

off can occur at the completion of every pick, not stop. 

However, when the downstream picker becomes idle simultaneously as the 

upstream picker starts the first pick, the upstream picker completes the first pick and 

yields the batch after the completion. This exception to the intermediate hand-off rule is 

called pick-first priority. 

4.3 Control of hand-off delay: No-handshake hand-off policy 

Initially, a hand-off policy to reduce delay is identified, and then an optimal 

control value is presented.  The hand-off delay stems from poor synchronization between 



141 

 

 

two pickers. Typically in a bucket brigade system two pickers meet and the upstream 

picker hands the tote to the downstream picker. Pickers coming into direct contact is 

termed a handshake hand-off. Our new policy relaxes this restriction, which is termed a 

no-handshake hand-off policy. As depicted in Figure 37, an upstream picker decides to: 

1) move forward to the next pick and retrieve the next pick; or 2) move backward, 

leaving a batch at the location of the next pick. In the latter case, the downstream picker 

will process the next pick upon taking over the batch. 

 

 
Figure 37. No-handshake hand-off policy.  

 
Next, conditions which determine the upstream pickers’ behavior are defined. 

Walk speed is infinite and the pickers are identical. It is assumed that pickers can 

accurately estimate expected hand-off delay. The assumption will be revisited when 

discussing a practical application in Section 5. Consider a hand-off between two pickers. 

Define τ as a threshold period of time. If the expected hand-off delay is longer than τ, the 

upstream picker does not perform the next pick. In Figure 38 (a), Y2 is longer than τ, and 

the upstream picker does not start the second pick, but leaves the current batch and 

moves backward. The new hand-off time, zero, in Figure 38 (b) replaces Y2 in Figure 38 

(a). The remaining timeline of the no-handshake hand-off bucket brigade differs from 

the timeline of the regular bucket brigade because the upstream picker does not process a 

pick relevant to A3 and instead the downstream picker retrieves the pick. Thus, the 
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remaining timeline uses A'3,A'4, A'5, S'2 and Y'2. Note that at S2, the downstream picker 

does not wait, but picks an item. The second hand-off occurs at S'2. 

 

 
(a) 

 
(b) 

Figure 38. Comparing two bucket brigade methods: (a) regular bucket brigade; and (b) 
no-handshake hand-off bucket brigade. 

 
Now we can derive an optimal policy. The waiting time by the downstream 

picker is conditioned on the expected wait time. The waiting time under the new policy 

is:  
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Thus, we can use the key renewal theorem:  
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(See Appendix D.4 in detail.) 

From Equation (7.5), we derive the following theorem.  

 

Theorem 6. With a no-handshake hand-off policy, the minimum expected hand-

off delay is zero. 

Proof. 

Equation (7.5) is always greater than and equal to 0 over τ. When τ = 0, this value 

is always zero as shown below in Equation (7.6).  

     

    02

0

2  






 xdFxdFx

 

(7.6) 

End of proof. 

 

5. SIMULATION AND EXPERIMENTAL RESULTS  

In Sections 3 and 4, analytical and control models were presented to quantify and 

reduce picker blocking and hand-off delay. This section will verify the models using 

simulations. In addition, the simulations are extended into practical situations since 

several assumptions are inevitable in models: no hand-off delay in the picker blocking 

model, and a large number of picks and infinite walk speeds in the hand-off models. 

More importantly, the performance improvement will be evaluated in practical settings. 
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5.1 Simulation study on picker blocking 

Figure 39 illustrates performance loss by picker blocking in 20-pick face bucket 

brigade systems and circular picking systems with two pickers whose speed is from 0 to 

infinite walk speed. Solid lines are the simulations’ results when pick:walk time = 1:0, 

1:0.025, 1:0.05, 1:0.1, 1:0.25, 1:0.5, and 1:1 from top to bottom. The upper dotted line is 

an analytical result with pick:walk time = 1: 0. The lower dotted line is a lower bound 

with pick:walk time = 1:1. Deterministic pick time and walk speed hold. 

When pick:walk time = 1:1, the delay in the bucket brigade picking is almost 

identical to the pattern of the circular-aisle picking. When pick:walk time = 1:0, the 

bucket brigade order picking faces less blocking than the analytical model and the 

circular-aisle model. Our analysis indicates that the 1:0 model can include one hand-off 

situation at the first pick face. By chance, as an upstream picker arrives at the first pick 

face with a pick, he/she can face a downstream picker. According to the pick-first 

priority, the upstream picker picks and the downstream picker waits. Our observation 

indicates that when walk speed is not infinite or is unit walk speed, hand-off delay 

becomes more of a concern. As hand-off delay arises, the starting time of a new batch is 

delayed. Thus, picker blocking decreases.  
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(a)                                                    (b) 

Figure 39. The percentage of time blocked (two-picker, 20 pick faces) with multiple-
picks with infinite backward walk with allowance of intermediate hand-off: (a) bucket 
brigade system; and (b) circular-aisle system. 

 

5.2 Simulation study on hand-off delay 

A simulation study distinguishes when more and less hand-offs occur. The 

benefits of the hand-off control strategy are demonstrated.   

5.2.1 Impacts on hand-off delay by practical situations 

In practice, pickers are neither infinitely fast nor do they process an infinite 

number of picks. For a more realistic situation, we analyze the hand-off model using a 

discrete-event simulation under the intermediate hand-off rule and pick-first priority. 

More specifically, the walk time is classified by forward walk (i.e., loaded walk) and 

backward walk (i.e., empty walk) according to the moving direction or the carrying 

status of a tote. We consider five situations: 1) 100 pick faces and two pickers with 500 

picks and infinite walk speed (notated 2NW-500); 2) 100 pick faces and five pickers 

with 50 picks and infinite walk speed (5NW-50); 3) 100 pick faces and five pickers with 

20 picks and infinite walk speed (5NW-20); 4) 100 pick faces and five pickers with 20 

picks and forward walk time = 0.1 time per pick face (5FW-20); and 5) 100 pick faces 

and five pickers with 20 picks, forward walk time = 0.1 time per pick face, and 
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backward walk time = 0.05  time per pick face (5BW-20). Additionally, we consider 

three pick time distributions: Uni = uniform [min,max] = [0.5, 1.5], Tri = triangular [min, 

mode, max] = [0.5, 1.0, 1.5], and Exp = exponential [mean] = [1.0], where the time unit 

represents a time spent to retrieve an item. There are 20 simulation runs with 2000 

orders per run; the number of simulation runs is obtained from: 1) the comparison 

between our analytical models and simulation results; and 2) the experiment size 

proposed by the simulation environments in Ruben and Jacobs (1999).  

The comparison results are summarized in Table 12. We are interested in the gap 

between analytical results and simulation values over order picking situations. 2NW-500 

shows a very small gap compared to the analytical result. As the number of picks 

decreases and the number of pickers increases (5NW-50, 5NW-20) the hand-off delay 

decreases compared to the analytical value. Forward walk time and backward move also 

impact the delay (5FW-20, 5BW-20); less hand-off delay is observed. When walking 

takes positive time, pickers can confront each other while walking, not picking 

frequently. In this case, a hand-off operation can be conducted without delay. Thus, the 

average hand-off delay time is reduced.  

 
Table 12. Average hand-off delay per occurrence over different order picking situations 
Distribution Uni Tri Exp 
 Time 

delayed 
Gap Time 

delayed 
Gap Time 

delayed 
Gap 

Analytical value 0.5466 - 0.5208 - 1.0000 - 
2NW-500 0.5419 0.87% 0.5207 0.02% 1.0010 -0.10% 
5NW-50 0.5233 4.27% 0.5101 2.06% 0.8663 13.37% 
5NW-20 0.4730 13.46% 0.4628 11.14% 0.7046 29.54% 
5FW-20 0.3333 39.02% 0.4039 22.46% 0.6253 37.47% 
5BW-20 0.3286 39.87% 0.3223 38.13% 0.5225 47.75% 
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5.2.2 No-handshake hand-off policy  

A simulation study is conducted to investigate the proposed control methods 

including the intermediate hand-off rule. The impact of picker blocking is minimized by 

fixing the batch size and only allowing single picks at a given pick face. Several picking 

environments are investigated by varying the pick time and the walk time distributions, 

the number of pick faces, and workloads.  

As depicted in Figure 40, τ = 0 achieves a minimum hand-off delay. While 

Figure 40 (a) shows almost zero hand-off delay, Figure 40 (b) shows a relatively 

significant hand-off delay in spite of τ = 0. The expected hand-off delay of 5NW-50, 

5NW-20, 5FW-20, and 5BW-20 situations in Figure 40 (b) increases as the variance and 

range of the pick time distribution increase. In particular, as the number of picks 

decreases (5NW-50, 5NW-20 situations in Figure 40 (b)), the values of time delayed 

increases when τ = 0. Situations relevant to the pick-first priority for the exponential 

pick time cases occur more frequently because the number of picks is too small. When 

an upstream picker takes a long time to pick an item, a downstream picker reaches the 

hand-off location from the upstream picker before the upstream picker has completed the 

first pick. As walking speed impacts the downstream picker’s performance (5FW-20 and 

5FW-20 situations in Figure 40 (b)), the time to reach an upstream picker increases; thus 

the time delayed decreases when τ = 0. In summary, while a significant portion of the 

hand-off delay can be reduced through the no-handshake hand-off rule, the portion of 

pick-first priority is exceptional, particularly for the exponential pick time cases in 

Figure 40 (b). When the variation of pick time is very high and the number of picks is 
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small, the no-handshake hand-off rule functions poorly. The stable retrieval performance 

plays an important role in employing the no-handshake hand-off rule appropriately. 

 

    
(a)                                                           (b) 

Figure 40. Impacts on hand-off delay of policy parameter over different picking 
environments: (a) triangular pick time; and (b) exponential pick time. 

 

5.3 Integrated control of picker blocking and hand-off delay 

This section summarizes the computational implementation and discusses 

insights from the analysis. IBM and no-handshake hand-off policy are implemented at 

different operational levels. IBM is proposed to determine the content of batches and the 

sequence of batches, while the no-handshake hand-off policy is an instruction given to 

the picker. Instead of integrating the two control strategies, a hierarchical structure is 

proposed. The details are as follows: 

 Use IBM to reduce picker blocking  

 Teach pickers the no-handshake hand-off policy to reduce hand-off delay  

5.3.1 Experimental design 

A modified order picking profile based on Koo (2009) is used to evaluate the 

proposed procedure. We consider 100 pick faces and five pickers. A picker performs 
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with pick:(forward) walk:backward walk ratio = 1.0:0.1:0.05. We employ a triangular 

distribution for pick time. Deterministic forward and backward walk times are assumed. 

We compare two control cases: FCFS = sequence orders into batches on a first-come-

first-serve basis and release batches immediately after construction; and Cont = IBM + 

no-handshake hand-off operation.  

We investigate four different scenarios listed in Table 13. First, a standard 

scenario uses the walk speed and picking capability configurations defined above. 

Second, a capability scenario differentiates picking capabilities across pickers. The unit 

time per pick for the five pickers in the simulation is differentiated into 1.5, 1.25, 1.0, 

0.75, 0.5, where an average picker performs one pick per unit time. Third, the fast-walk 

scenario looks at the variations in the walk speed of pickers which frequently appear in 

the bucket brigade order picking literature (Bartholdi and Eisenstein, 1996b; Koo, 2009), 

where the authors assume pickers’ travel with instantaneous walk speed. A fast-walk 

situation increases walk speed into pick:walk:back = 1:0.05:0.025; this value is a fast 

case in Gue et al. (2006). Fourth, in one small-OPS scenario, the walk speed is fast and 

the OPS is small in size. The OPS has 50 pick faces.  

We evaluate single order picking and batch order picking. We consider five 

scenarios with varying average order sizes of 4, 6, 10, 20, and 50 items for the single 

order picking strategy, and two items per order in the batch picking strategy. The order 

size of each order is randomly selected based on a uniform distribution [min,max] = 

[mean/2, mean*3/2]. Pick time is drawn from a triangular distribution of [min, mode, 

max] = [0.5,1.0,1.5]. Note that according to our survey, a practical work load per picker 



150 

 

 

is 2~4 picks per batch (Koo, 2009) and four orders per batch (Bartholdi and Eisenstein, 

1996a). Since an order size can vary, but is relatively small in a bucket brigade order 

picking, batch picking considers 20 items as a regular batch size (i.e., four picks per 

picker or two orders per picker) and 50 items for a heavy demand situation (i.e., 10 picks 

per picker or five orders per picker). 

As a performance measure, we compare utilization (%), time blocked (%), and 

hand-off delay (%). Utilization is the percentage of time spent picking to overall 

operations. Time blocked represents a productivity loss. Hand-off delay includes the 

ratio of hand-off waiting time to the overall time. In addition, the column labeled Diff in 

the result tables (Table 14 and Table 15) shows the comparison between FCFS and Cont. 

Run time illustrates the computation time per cycle, where a cycle has k batches for k 

pickers.   

The simulation is implemented using C language and the IBM formulations using 

ILOG CPLEX Callable Library C API 11.0.4. The executable files run on Windows 

Server 2008 (Xeon 2.66 Ghz CPU, 12 GB memory, 32 bit implementation). We disable 

both the branch-and-cut option and the heuristic search option to evaluate the exact 

computational time. One instance includes 2000 orders and 20 runs consistent with 

Ruben and Jacobs (1999). The picking environment is summarized in Table 13. 
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Table 13. Summary of experimental environments 

Configuration Values 
Scenarios Standard, Capability, Fast-walk, Small-OPS 
Mean of order sizes 2, 4, 6, 10, 20, and 50  
# items per order Uniform distribution [min,max] = [mean/2, mean*3/2] 
Pick time Triangular distribution [min, mode, max] = [0.5, 1.0, 1.5] 
Forward walk time 0.1 or 0.05 
Backward walk time 0.05 or 0.025 
E[HO] 0.5208 
α 0.016 
Performance measure utilization (%), time blocked (%), and hand-off delay (%) 
Runs per instance 20 runs with 2000 orders 
The number of batches 
per one IBM  

5 orders or batches per an IBM cycle. 
 

 
5.3.2 Single order picking 

Using FCFS, utilization is 19.95% to 67.16% (Table 14 (Standard)). The 

proposed approach (Cont) improves the utilization to 20.70~73.82%. In particular, when 

order sizes are medium or large, picker blocking is of increased concern and picker 

blocking control in the Cont approach is very effective. Compared to the batch picking, 

the single order picking produces more picker blocking since a higher variation of pick 

density is inevitable. IBM successfully manages the picker blocking. The reduction of 

picker blocking amounts to 58.20% compared to FCFS when the order size is 20 items 

per order. When the work load is higher and more pickers are used, blocking is more 

serious and the proposed methods exhibit robust and better performance over FCFS. 

Consistently, most hand-off delays are removed by the proposed control method. The 

runtimes for the IBM algorithm are 0.095~0.417 seconds per a cycle to determine the 

release sequence of five pickers. The FCFS in the capability scenario produces less 

picker blocking compared to the standard scenario. Thus, the Cont experiences small 

improvements. Fast-walk and small-OPS situations consistently show improvement in 
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terms of increased utilization.  

 
Table 14. Experimental results on single order picking   

  

 
5.3.3 Batch order picking 

Table 15 summarizes the results of varying the batch size in bucket brigade OPS. 

A 4.29~7.04% improvement of utilization in the standard picking situation is observed. 

As identified in Section 4, batch picking can reduce the variation of pick density and 

lead to less picker blocking. Thus, the results for batch picking are not as dramatic as 

observed in the single order picking scenario. Specifically, in the standard situation, the 

percentage of time blocked is 1.58~1.68%, whereas the FCFS situation is 2.60~2.89%.  

Hand-off control consistently shows improvement; the percentage difference between 

FCFS and Cont is 80.70~86.64%.  The calculations related to the IBM average 0.387 

seconds when the batch size is 20 and 1.254 seconds when the batch size is 50.   

Scenarios Order Utilization (%) Time blocked (%) Hand-off delay (%) Run time

Size FCFS Cont Diff (%) FCFS Cont Diff (%) FCFS Cont Diff (%) (seconds)

Standard 4 19.95 20.70 3.75 2.66 1.46 45.09 2.26 0.34 85.15 0.095

6 26.67 28.05 5.17 3.85 1.91 50.41 2.68 0.41 84.67 0.125

10 36.51 38.95 6.67 5.61 2.56 54.38 3.01 0.48 83.92 0.164

20 50.82 55.21 8.64 8.09 3.38 58.20 2.92 0.53 81.97 0.229

50 67.16 73.82 9.92 10.56 3.90 63.05 2.14 0.47 78.09 0.417

Capability 4 19.83 19.97 0.72 1.42 0.82 42.15 2.96 0.23 92.32 0.077

6 26.33 27.06 2.75 1.98 1.03 47.94 3.49 0.26 92.42 0.106

10 36.01 37.67 4.61 2.70 1.38 48.97 3.93 0.34 91.23 0.152

20 50.84 53.90 6.02 3.55 1.74 50.99 3.90 0.46 88.30 0.215

50 69.41 73.29 5.60 4.16 1.84 55.64 2.91 0.49 83.01 0.394

Fast-walk 4 30.58 32.85 7.41 6.81 4.73 30.61 5.13 1.30 74.69 0.148

6 38.42 41.77 8.72 8.27 5.42 34.46 5.35 1.24 76.73 0.187

10 48.49 53.33 9.97 10.01 6.17 38.41 5.12 1.12 78.06 0.230

20 61.32 67.94 10.78 11.48 6.18 46.16 4.18 0.89 78.79 0.277

50 73.92 82.07 11.03 12.44 5.26 57.74 2.55 0.61 76.23 0.463

Small-OPS 4 40.34 44.62 10.62 12.79 11.02 13.81 9.06 3.54 60.97 0.092

6 47.99 53.52 11.51 13.46 11.19 16.85 8.63 2.94 65.90 0.109

10 57.16 64.05 12.06 13.99 10.49 25.01 7.47 2.30 69.17 0.124

20 67.98 76.10 11.94 13.79 8.61 37.54 5.53 1.57 71.64 0.166

50 77.64 86.58 11.51 13.46 6.23 53.68 3.08 0.91 70.36 0.282
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Interestingly, the proposed approach shows some improvement under capability 

instances, where the unit time per pick for the five pickers is not identical and pickers are 

optimally sequenced to maximize the picker performance. We note that the capability 

instance with batch picking is one of the best-performance order picking situations. Cont 

can still give a benefit. Capability instances slightly increase blocking delays, but 

achieve large reductions in hand-off delay, and thus lead to overall improvement in 

performance.  

The fast-walk and small-OPS order picking scenario indicate higher utilization 

improvement by the proposed algorithm (3.87~9.45%). Computationally, fast-walk 

scenarios experience on average 0.524~1.048 seconds per five batches and small-OPS 

scenarios on average 0.338~0.737 seconds. 

 
Table 15. Experimental results varying batch size  

 

 

5.4 A distance-based heuristic approach for τ 

Use of τ as a threshold is not practical in most circumstances since pickers 

probably cannot accurately estimate expected hand-off. However, this finding is easily 

transferrable to a distance-based heuristic approach. The difficulty of forecasting arises 

Scenarios Batch Utilization (%) Time blocked (%) Hand-off delay (%) Run time

Size FCFS Cont Diff (%) FCFS Cont Diff (%) FCFS Cont Diff (%) (seconds)

Standard 20 52.34 56.02 7.04 2.60 1.68 35.34 3.37 0.45 86.64 0.387

50 72.56 75.67 4.29 2.89 1.58 45.28 2.37 0.46 80.70 1.254

Capability 20 51.10 54.29 6.25 1.05 1.06 -1.16 4.10 0.38 90.81 0.236

50 71.66 74.18 3.52 0.78 0.79 -1.68 3.06 0.42 86.37 0.530

Fast-walk 20 64.91 70.39 8.45 4.25 2.81 33.96 5.01 0.71 85.88 0.524

50 81.31 84.64 4.10 3.38 2.29 32.20 2.90 0.64 78.01 1.048

Small-OPS 20 73.03 79.94 9.45 5.94 4.19 29.46 6.51 1.40 78.43 0.338

50 86.34 89.68 3.87 3.81 2.86 24.93 3.25 0.94 70.95 0.737
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because of the hand-off time of a downstream picker. We consider the situation that an 

upstream picker notices the downstream picker who completes a hand-off, and thus 

approaches in a backward direction. In this case, the upstream picker can decide to 

continue picking the current batch based on the expected arrival time of the immediately 

adjacent downstream picker. If the downstream picker is moving backward and the 

expected arrival time is less than the expected pick completion time, the upstream picker 

returns without picking.  The expected arrival time can be measured by the distance from 

the downstream picker. A benefit of the distance-based heuristic approach is its ease of 

implementation, but the approach is also applicable when walk time is not so fast and 

stable. 

The result shows a gap compared to the previous Cont results as depicted in 

Table 16, where α= 0.156 is determined by a simulation study. The heuristic approach 

uses the distance = 20, which is derived from the average pick time divided by the 

backward walk time = 1.0/0.05. The heuristic approach (Hcont) experiences 5.66% 

improvement of utilization in a standard batch picking situation when the use of τ 

produces 7.04% improvement. The gap amounts to 0.72~0.85% of utilization because of 

increased hand-off delay. However, the results still outperform the FCFS with 3.12~5.66% 

improvement of utilization.  

 
Table 16. Comparison of Cont and heuristic approach (Hcont) 

 

 

Insta- Batch Utilization (%) Time blocked (%) Hand-off delay (%) Run time

nce Size Cont Hcont Gap Cont Hcont Gap Cont Hcont Gap (seconds)

Sta- 20 56.02 55.30 -0.72 1.68 1.81 -0.12 0.45 1.42 -0.97 0.740

ndard 50 75.67 74.82 -0.85 1.58 1.71 -0.13 0.46 1.22 -0.76 1.427
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6. CONCLUSIONS  

This chapter has made three important contributions to the analysis and 

understanding of bucket brigade OPS. First, analytical models of picker blocking and 

hand-off delay in bucket brigade OPS are developed. Second, based on analytical studies 

and additional simulation studies, the conditions are identified under which more 

efficient operations can be achieved. Third, control methodologies are developed to 

maximize order picking throughput.  

Analytical models were developed to quantify the delays related to blocking and 

hand-offs by extending the analogy of a circular-aisle OPS to the bucket brigade OPS. 

The analytical results found: 1) batch picking can reduce picker blocking because of less 

variation of an average work load per batch; and 2) decreased variability in pick time 

reduces hand-off delay. Bartholdi and Eisenstein (1996b) emphasized the importance of 

a smooth hand-off operation, but did not clearly define the smooth operation and its 

rationale. Intermediate hand-off is one method which can reduce delays related to the 

hand-off operation. Moreover, the reduction stems from less variance of the expected 

pick time of an upstream picker.  

 Directly controlling picker blocking and hand-off delay also maximizes 

throughput. We found that IBM could mitigate picker blocking. Further, the analogy to a 

circular-aisle OPS facilitated the development of models to batch orders and assign 

batches to pickers to reduce blocking delays in bucket brigade systems. To reduce hand-

off delay, the synchronization requirement in upstream-to-downstream hand-off was 

relaxed and strategies to coordinate the physical system were proposed. Both ideal 
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method and practical application were developed. 

Based on our findings we suggest that future research should focus upon: 1) 

practical application; 2) generalization of the proposed approach for bucket brigades 

used in manufacturing operations; and 3) an integrated throughput model. The proposed 

methods such as intermedidate hand-off, no-handshake hand-off, and IBM may be 

difficult to implement in practice. In the case of the no-handshake hand-off, additional 

studies on realistic implementation approaches (e.g., a distance-based heuristic approach) 

could be undertaken. Since only order picking systems are considered, the next step is to 

identify possible applications in other manufacturing and service areas, for example, 

general manufacturing systems such as the assembly line described in Bartholdi and 

Eisenstein (2005). A more comprehensive solution that integrates the models could 

potentially contribute to a clearer understanding of bucket brigade operation.   
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CHAPTER VIII 

CONTRIBUTIONS AND CONCLUSION  

 

Order picking operations play a critical role in the order fulfilment process of 

warehouses and DCs. Picking a batch of orders is favored when customers’ demands 

create a large number of small orders. Thus, constructing an appropriate order batching 

algorithm involves reducing the total retrieval workforce, and differs from a general 

batching in that scalability in the number of orders, simplicity in routing, and congestion 

must be addressed. This dissertation established four tasks: 

 First, a large-scale and near-optimal order batching algorithm to minimize the 

travel distance is developed. The outcomes of this research highlighted critical 

observations of near-optimal, large-scale order batching: less congestion than 

expectation, but still significant under some situations.  

 Second, since the available literature cannot explain the observations, an analysis 

and simulation study to identify the complex relationship between sources of 

picker blocking and the relevant situations of a real-world firm is undertaken.   

 Third, a new order batching model and its large-scale solution to manage both 

distance and congestion simultaneously is developed.  

 Fourth, we examined the significance of congestion and hand-off delays in 

bucket brigade order picking, followed by providing a structured control 

procedure for dynamic order picking which mitigates both picker blocking and 

hand-off delay directly. 

 
This dissertation makes three major contributions. First, the proposed analytical 

studies give a clear understanding of picker blocking and hand-off delay in batch order 

picking. Second, it introduces for the first time in the literature exact batch picking 
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frameworks to handle picker blocking. Third, efficient solution methodologies are 

provided for two large-scale, practical order picking situations.  

In particular, three new batching models are demonstrated:  

1) A near-optimal, large-scale proximity-batching algorithm for traversal routing 

methods is developed. We express it as route-selecting batching formulation (RSB). To 

obtain an efficient and effective lower bound model for the batching problem, a route-

bin packing problem (RPP) is derived from RSB.  

2) A new order batching procedure with picker blocking in a narrow-aisle 

picking system is presented (IBM).  

3) A new order batching procedure with picker blocking and hand-off delay is 

addressed for a bucket-brigade picking system. 
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 APPENDIX A  

SUPPLEMENTARY FORMULATION, PROOF, ALGORITHM, 

AND RESULTS DISCUSSED IN CHAPTER IV  

 

A.1 FORMULATION OF BASIC RPP FROM RSB  

The basic RPP can be derived from RSB. In particular, each constraint in the 

basic RPP is derived from a constraint of RSB, or becomes a constraint aggregating 

relevant constraints in RSB.  

1) Objective function 
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3) Constraints (4.9) 

From (4.3),  
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4) Constraints (4.10) 
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A.2 CLARKE AND WRIGHT II ALGORITHM (CLARKE AND WRIGHT, 1964; 

DE KOSTER ET AL., 1999)   

Step 1. Obtain the distance savings sij for all possible order pairs i,j when two 

orders are grouped, given the capacity of the pick device. 

Step 2. Sort the savings in decreasing order. 

Step 3. Select the pair with the highest savings. In the case of a tie, select a 

random pair. 

Step 4. Combine both ―orders‖ to form a new cluster, if allowed by the pickers’ 

capacity. If not, choose the next combination on the list and repeat step 4. 

Step 5. If not all order combinations have been included in a route, proceed with 

Step 1. In the calculation, all clusters are considered as orders.  Otherwise, 

finish. 
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A.3 SIMULATED ANNEALING PROCEDURE FOR RBP 

This section presents a simulated annealing algorithm for order batching to 

obtain an improved solution from RBP and summarizes the experimental results.  

Simulated annealing procedure 

Simulated annealing is widely used in sequencing problems and order batching 

problems. We employ an algorithm described in Pinedo (1995). For a batching situation, 

a batching solution is given as BS1 and its total retrieval time as Obj(BS1). The major 

characteristic is to accept a worse solution (BS) while progressively searching for a 

better candidate solution of solution BSi with probability P(BSi,BS) = e^( (Obj(BSi)-

Obj(BS)/ βi ), where βi is referred to as the cooling parameter or temperature. To update 

the cooling parameter (βi), we use a simple function ai where 0<a<1, a ∈ R (see Pinedo 

(1995) in detail). Thus, the probability to admit an solution with a worse objective value 

is gradually decreases as iteration i cumulatively updates the cooling parameter (βi) 

using a, i.e., βi= a*βi-1 where i>1 and 0<a<1. To generate an initial solution (BS1), RBP 

is used, which produces a solution that nearly minimizes the total retrieval distance. Imax 

is the maximum number of iterations. T is the updated temperature.  
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The method for defining a neighborhood in a simulated annealing procedure is 

critical to effective implementation (Pinedo, 1995). A general two-exchange method is 

employed where a pair of orders is exchanged. This method appears in Gademann and 

Van de Velde (2005).  

Experimental results 

Table A1 summarizes the experimental results over two capacity scenarios. The 

pick-then-sort strategy has been assumed, which produced a relative large LU gap. Two 

different capacity constraints are tested. We use Imax=10000 and the a=0.8.The 

SA+RBP columns include experimental results by the simulated annealing procedure. 

The Impv (%) column stands for the percentage of the objective value gap between RBP 

and SA+RBP divided by the objective value by RBP.  

Our experimental results exhibit a very small improvement of the travel distance. 

Such small improvements stem from the solution quality by RBP and the limitation in 

Step1.  Set i = 1 and T = a. 

Initialization 

Obtain an initial feasible solution, BS1 

Set Imax  

Set the best solution BS* = BS1 

Step 2.  Generate a new batch solution BS from BSi, i.e. BS is the neighboring solution of BSi. 

If Obj(BS*)<Obj(BS)<Obj(BSi), set BSi+1 = BS; 

Else If Obj(BS)<Obj(BS*), set  BS*= BSi+1 = BS; 

Else if Obj(BS)> Obj(BSi), set BSn+1 = BS with a probability of e(( Obj(BSi)-Obj(BS) )/T); 

Otherwise, BSi+1 = BSi 

Step 3.  Increase i = i+ 1. 

Update the temperature T = T * a. 

If i = Imax, then STOP; otherwise, go to Step 2. 
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the neighborhood search approach. The solutions by RBP are very close to optimal 

relative to an objective function that minimizes travel distance. Thus, there are only 

minimal gains to be achieved in terms of travel distance.  

 
Table A1 The experimental results over SA + RBP  

Capa # RBP     SA + RBP     
 orders ObjU CPU LU gap ObjU CPU LU gap Impv (%) 

20 360 3076.1 32.40 2.81% 3076.1 32.55 2.81% 0.00% 
 720 6043.7 68.29 2.88% 6037.0 69.36 2.77% 0.11% 
 1080 9073.8 103.32 2.95% 9060.5 104.03 2.81% 0.15% 

  1440 12038.7 215.64 3.30% 12024.1 216.30 3.18% 0.12% 

30 360 2132.3 19.29 3.57% 2132.3 20.10 3.57% 0.00% 
 720 4116.0 64.21 3.23% 4116.0 65.29 3.23% 0.00% 
 1080 6141.1 76.32 3.03% 6140.3 77.83 3.02% 0.01% 
  1440 8095.1 122.26 3.11% 8092.8 123.96 3.08% 0.03% 

 
 

A.4 COMPUTATIONAL PERFORMANCE OVER OTHER ORDER PICKING 

PROFILES  

The number of aisles 

Table A2 compares the CW II and RBP. The cardinality of the route set was 

strongly dependent on the number of aisles. RPP-LP can only solve ~14-aisle or smaller 

instances. Thus, Table A2 does not include LB results and LU gaps. Instead, we use the 

following comparison: 

RBP/CW: the ratio of ObjU to the objective function value of CW II. This 

measure is used where a lower bound is impossible.  

 

RBP still dominated CW II in RBP/CW, but RBP required a long computational 

time as the number of aisles increased.  
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Table A2 The experimental results with the variation of the number of aisles  

 # # CW II   RBP         

orders aisles Obj CPU ObjL ObjU CPU # routes RBP/CW 

1080 10 8033.3 15.6 7175.0 7175.0 56.7 40.4 0.89 

  20 12492.8 17.0 10647.5 10647.5 121.0 147.2 0.85 

  30 16614.3 17.2 14379.6 14379.6 242.9 254.4 0.87 

  40 20517.8 18.7 18418.0 18418.0 366.8 342.4 0.90 

2160 10 15412.0 141.5 14186.6 14186.6 60.5 47.8 0.92 

  20 23365.4 129.5 20287.7 20287.7 123.1 214.1 0.87 

  30 31102.9 147.8 26587.4 26587.4 253.5 393.4 0.85 

  40 37971.8 142.0 33637.3 33637.3 394.3 552.9 0.89 

 
The route reduction step is not effective in the 40-aisle instance. As the number 

of routes increased, we modulated the truncation time limit to produce good solutions; 

specifically, 120 seconds, 180 seconds, and 240 seconds were allowed for 20-aisle, 30-

aisle, 40-aisle instances.  However, despite this increase in the truncation time limit, 

RBP’s performance suffered loss in the objective values. Figure A1 illustrates the 

variations of the average travel length over different algorithms with respect to the 

number of aisles. The performance gap between CW II and RBP did not widen as shown 

in Figure A1 when the number of aisles was 40.   

 

   
(a)                                                                               (b) 

Figure A1 The average travel length per order over the variation of the number of aisles: 
(a) the number of orders = 1080, and (b) the number of orders = 2160. 
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Storage policy 

Table A3 and Figure A2 include the test results with different storage policies. 

Picking systems can operate under different storage pattern or storage policies As orders 

were scattered more evenly, all algorithms had longer travel distance. In particular, the 

computational time of RBP lengthened. The storage policy has an impact on the route set 

of RBP. More uniformly-stored items produce more elementary routes. Thus, the 

elementary route set becomes larger, and the number of combined routes also increases. 

A larger route set results in longer computational time.  

 
Table A3 The experimental results with the variation of storage policies 

 # # CW II   RBP         
Orders aisles Obj CPU ObjL ObjU CPU # routes RBP/CW 

ABC 10 18000.4 140.8 16181.4 16181.4 60.7 63.7 0.90 
=0.5:0.3:0.2 20 28926.6 130.9 24043.8 24043.8 128.4 340.5 0.83 
  30 38950.5 134.7 33104.8 33104.8 278.7 581.6 0.85 
  40 47811.1 151.0 42441.0 42441.0 568.7 747.8 0.89 

Random 10 22125.6 121.3 19310.4 19310.4 60.9 83.0 0.87 
Storage 20 37872.4 126.9 34535.9 34535.9 150.0 554.5 0.91 
  30 51343.2 138.2 46266.7 46266.7 347.9 796.4 0.90 
  40 63794.8 155.1 57098.8 57098.8 699.6 901.9 0.90 

 

         
(a)                                                                                 (b) 

Figure A2 The average travel length per order over the variation of the storage policy (# 
orders = 1080): (a) ABC ratio = 0.5:0.3:0.2; and (b) random storage policy. 
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APPENDIX B 

SUPPLEMENTARY EXAMPLES, PROOF, VALIDATION, ALGORITHM, AND 

RESULTS DISCUSSED IN CHAPTER V 

  

B.1 PICKER BLOCKING MODEL OF PICK:WALK TIME = 1:1 IN A 

NARROW-AISLE USING PICK AND WALK TASKS 

Let Dt denote the distance between picker 1 and picker 2 at time t. Given the 

pick:walk time ratio as 1:1, the distance d can be expressed as  

(n+(picker 1 position)−(picker 2 position)) mod n    

and ranges from 1 to n-1. To establish a Markov property, we can condition on the either 

pick or walk state of a previous distance and connect to the either pick or walk state of a 

posterior distance. Since there are two pickers and they can conduct either pick or walk, 

four sub states are available: dpp, dwp, dpw, dww depending on the actions of pickers 1 and 

2 and distance d, where p stands for a picking, w for a walking. In particular, two states, 

1wp and n-1pw are augmented into ―blocked‖ because one picker attempts to walk toward 

one occupied pick face. Then all states can be described as the states [1pp, 1pw, blocked, 

1ww, 2pp, 2pw, 2wp, 2ww, . . . , (n − 1)pp, blocked, (n − 1)wp, (n − 1)ww]. When multiple-picks 

are allowed, their transition probability forms a new relationship. Figure A3 illustrates 

the transitions.  
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Figure A3. State space and transitions for the Markov chain model when the picking 
time equals travel time. 

 
The resulting transition matrix is: 
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Similar to Gue et al. (2006), we obtain the following v which satisfies vA=v. 
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We can scale the stationary density using ||v||.   
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The blocking probability of picker 2 is 
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B.2 PICKER BLOCKING WHEN PICK:WALK TIME = 1:1 IN A WIDE-AISLE  

A Markov property is applied in pick:walk time = 1:1 for a wide-aisle situation.  

When multiple picks are allowed, their transition probability forms a transition diagram 

as illustrated in Figure A4.  

 

 
Figure A4. State space and transitions for the Markov chain model when picking time 

equals travel time in a wide-aisle situation with multiple-pick allowance. 
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The resulting transition matrix which has (n+1) x (n+1) is: 
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Stationary distribution 

We obtain the following v which satisfies vA = v: 
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We can scale the stationary density using ||v|| to obtain a stationary probability. 

From v above, we have: 
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B.3 PROOF OF PROBABILITY WITHOUT PASSING  
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B.4 COMPARISON OF ANALYTICAL AND SIMULATION MODELS 

Table A4 summarizes the results to validate the new analytical models and our 

simulation models. The 1:1 analytical model is already identical to the model by Parikh 

and Meller (2010). The results by the 1:0 analytical models also experienced 

0.032~0.170%  error gap compared to the results of Parikh and Meller (2010). The gap 

between the performances of the simulation model and the analytical model is 0.01~0.33% 

in terms of the percentage of the difference of the percentage of time blocked (i.e., Diff % 

= (the percentage of time blocked by the analytical model – the percentage of time 

blocked by the simulation model)/(the percentage of the time blocked by the analytical 

model) * 100) except one instance. When picker blocking occurs rarely, for example 

when p = 0.05 in pick:walk time = 1:1, the simulation model gives a relatively higher 

difference. For other cases, the difference percentage is smaller than 0.33%.  These 

results show that the analytical model can well estimate a multiple-pick blocking 

situation.  
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Table A4. Comparison of analytical and simulation results of the percentage of time 
blocked in a circular aisle (20 pick faces) 

 

 

B.5 CLARKE AND WRIGHT II ALGORITHM (CLARKE AND WRIGHT, 1964; 

DE KOSTER ET AL., 1999)   

Step 1. Obtain the distance savings sij for all possible order pairs i,j when two orders 

are grouped, given the capacity of the pick device. 

Step 2. Sort the savings in decreasing order. 

Step 3. Select the pair with the highest savings. In the case of a tie, select a random 

pair. 

Step 4. Combine both orders to form a new cluster, if allowed by the pickers’ 

capacity. If not, choose the next combination on the list and repeat Step 4. 

Step 5. If all order combinations have not been included in a route, proceed with Step 

1. In the calculation, all clusters are considered as orders.  Otherwise, finish. 

B.6 A HEURISTIC ROUTE-PACKING BASED ORDER BATCHING 

PROCEDURE (RBP) 

RBP takes advantage of the traversal routing method. When traversal routing 

Probability Pick:walk time =1:1 Pick:walk time =1:0

p Analytical Simulation Diff % Analytical Simulation Diff %

0.05 0.2618 0.2580 1.43 33.8983 33.8823 0.05

0.1 0.5208 0.5225 -0.33 25.6410 25.6283 0.05

0.2 1.0309 1.0313 -0.03 17.2414 17.2454 -0.02

0.3 1.5306 1.5256 0.33 12.9870 12.9916 -0.04

0.4 2.0202 2.0186 0.08 10.4167 10.4181 -0.01

0.5 2.5000 2.5005 -0.02 8.6957 8.6871 0.10

0.6 2.9703 2.9655 0.16 7.4627 7.4567 0.08

0.7 3.4314 3.4243 0.21 6.5359 6.5327 0.05

0.8 3.8835 3.8749 0.22 5.8140 5.8007 0.23

0.9 4.3269 4.3154 0.27 5.2356 5.2224 0.25

0.95 4.5455 4.5491 -0.08 4.9875 4.9917 -0.08
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methods are used, all possible routes can be constructed from the warehouse layout. 

Thus, given a batch, a best fit route can be selected as a bin-packing problem (called the 

route-selecting order batching model (RSB)). 

RBP is composed of three steps:  

Step 1. Identifies potential route sets. 

Step 2. Solves the RPP model heuristically. The RSB model stated above simplifies 

the batching problem, but still contains partitioning constraints. A route-bin 

packing problem (RPP) is developed by assigning orders to routes directly, 

which can skip the partitioning stage.  However, RPP is still computationally 

difficult, and thus we consider two further computational improvements: a 

partial route set and a truncated branch-and-bound approach. 

Step 3. Restores a feasible solution from the infeasible solution by the relaxed model. 
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APPENDIX C 

EXECUTABLE MIP FORMULATION FOR INDEXED BATCH 

MODEL 

 

Decision variables 
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= the time delay of the ith  batch at pick face f in aisle a, its cumulative 

time delay, and its intermediate variable 
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= the leaving time of the ith batch at pick face f in aisle a 
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APPENDIX D 

 SUPPLEMENTARY FORMULATIONS AND PROOFS DISCUSSED IN 

CHAPTER VII 

 

D.1 PACKING PROBLEM 

The goal is to minimize the number of batches (A2). Yb is 0 if batch b is selected 

and 0 otherwise. (A3) forces one order to be assigned once. (A4) is used to meet a 

capacity constraint if necessary.  

 

Min 
Bb

bY  (A2) 

s.t.   

 1
Bb

obX

 

 

O, o  (A3) 

 b
Oo

obo YCAPAXOS  
  

B, b  (A4) 

 

D.2 INDEXED BATCHING MODEL (IBM) FOR BUCKET BRIGADE ORDER 

PICKING 

Parameters and decision variables 

An OPS has a linear aisle with |F| pick faces. The pick faces are numbered 1 to F. 

L/U stations are numbered 0 and F+1, respectively. The forward travel time between 

neighboring pick faces is WT. The backward travel time between neighboring pick faces 

is BW. The walk time from 0 to F+1 is equal to WT*(|F|+1) = AH. The L/U stations are 
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located in the front and rear of the aisle.  

NP pickers work in the OPS, and the OPS is forced to assign all pickers. The 

number of batches is not given, although the number of batches must be smaller than the 

number of orders. Generally, the number of batches is greater than the number of pickers. 

Two batching picking policies — pick-then-sort policy and sort-while-pick policy — are 

considered; the policy impacts cart capacity. When a batch is completed, a new batch 

enters the system. Its entrance time is updated based on the backward walk time and the 

expected hand-off delay. All pickers are available initially.  

Diverse decision variables are associated with the indexed order batching 

problem. Fundamentally, orders are assigned to batches and their release orders through 

index variables (Xoi). The starting time of batches in a picker’s second or more trips (CWi) 

is updated. The overall procedure includes more variables.  

 

Indices and parameters 

fF ,  = the set of pick faces, its index f ∈ F  
oO,  = the set of orders, and its index o∈O 
iB,  = the set of batches, and its index i∈ B 

ofOP  = the number of picks of order o at pick face f 

oOS  = the number of picks in order o 

iST  = the starting time of ith batch 

CAPA = the capacity of a cart (batch size)  

PT  = the pick time to pick an item 

WT  = the forward walk time between two pick faces 

BW  = the backward walk time between two pick faces 
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 HOE  = the expected hand-off delay per occurrence  

NP  = the number of pickers 

  = the weight on hand-off delay 
  = the time required for the transition between two batches in a pick face 

 

Decision variables 

oiX  = 1 if order o enters the ith order; 0 otherwise 

ifif CPP ,
 

= the pick time of the ith batch at pick face f, and its cumulative pick time 

ifif CDD ,
 

= the time delayed of the ith batch at pick face f, and its cumulative time 
delayed 

ifCW
 

= the cumulative walk time of the ith batch to pick face f 

iCT
 = the completion time of the order which has finished at the ith batch 

 

The goal is to minimize total walk time + total time delayed (A5). Walk time is 

the sums of the travel times of all batches. The travel time of the ith batch is the sum of 

the forward travel times (= AH*WT), the backward travel times (= AH*BW) if i >PK, 

and the hand-off time if i >PK. DT is obtained by summing the cumulative delay at the 

last pick face of all batches. 

 

Min     
 






NBVb
Fi

 CDPKBHOENPBWAHBWTAH

,,1

][1



  (A5) 

   
s.t. 

 1
Bi

oiX

 

 

O, o  (A6) 

 CAPAXOS
Oo

oio  
  

B, i  (A7) 



186 

 

 

, 
Oo

ofoiif OPXPTP

 

 

F, fB, i    (A8) 

 


























 

0

0 , if
][1                 

0 , if

1,

,,,

fWTCW

fNPi
HOENPFBW

CDCWCP

fNPiST

CW

fi

FNPiFNPiFNPi

 i

if
  

 ,F fB, i 0    (A9) 

 ,1,  fiifif CPPCP

 

, F fB, i     (A10) 

         , 001, iifiifif DCDCDDCD  

 
 0  F fB, i   (A11) 

 







































otherwise0

},0{\ 
0,            

0 if0,

1,11,11,1

1,11,1

FFf
WTCDCWCP

CDCWCP
Max

fCWCDCWMax

D a

ififif

fififi

ififi

if





 

 0 ,  F fB i   (A12) 

An order cannot be separated (A6) and a batch should keep the capacity 

constraint (A7). (A7) is set for the item-based capacity. When there is order-based 

capacity, constant 1 replaces OSo. As the release sequence is determined, the related 

variables are assigned. The pick time vector of batch i at pick face f is updated with 

batch j’s pick time (A8). Constraints (A9) update CWif at the loading station and pick 

faces. At the loading station, CWif is determined using the pickers’ available time (STi) 

or the completion time of the NP
th previous trip (CPi-NP,|F| + CWi-NP,|F| + CDi-NP,|F|) + the 

returning time to the entrance. The starting time of batch NP+1 can be derived from the 

completion time of the first completed batch, because the first responsible picker for the 

first batch will be assigned to pick the NP+1 batch. Backward travel time and the 

expected hand-off delay are added. Constraints (A10) and (A11) calculate the 

cumulative pick time and delay time. Constraint (A12) calculates the time delayed (Dif) 

using the leaving time at pick face f. At an f = 0, the leaving time of batch i is determined 
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by CWif + CDif since there is no pick operation. At a pick face (f>0), the leaving time is 

assigned with CPif + CWif + CDif.  

D.3 HAND-OFF MODEL 
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D.4 HAND-OFF DELAY WITH NO-HANDSHAKE MODE 
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