

ANALYSIS AND CONTROL OF BATCH ORDER PICKING PROCESSES

CONSIDERING PICKER BLOCKING

A Dissertation

by

SOONDO HONG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2010

Major Subject: Industrial Engineering

Analysis and Control of Batch Order Picking Processes

Considering Picker Blocking

Copyright 2010 Soondo Hong

ANALYSIS AND CONTROL OF BATCH ORDER PICKING PROCESSES

CONSIDERING PICKER BLOCKING

A Dissertation

by

SOONDO HONG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Co-Chairs of Committee, Andrew A. Johnson
 Brett A. Peters

Committee Members, Sergiy Butenko
 Vivek Sarin

Head of Department, Brett A. Peters

August 2010

Major Subject: Industrial Engineering

iii

ABSTRACT

Analysis and Control of Batch Order Picking Processes Considering

Picker Blocking. (August 2010)

Soondo Hong, B.S; M.S., Pohang University of Science and Technology

 Co-Chairs of Advisory Committee: Dr. Andrew A. Johnson
Dr. Brett A. Peters

Order picking operations play a critical role in the order fulfillment process of

distribution centers (DCs). Picking a batch of orders is often favored when customers’

demands create a large number of small orders, since the traditional single-order picking

process results in low utilization of order pickers and significant operational costs.

Specifically, batch picking improves order picking performance by consolidating

multiple orders in a ―batch‖ to reduce the number of trips and total travel distance

required to retrieve the items. As more pickers are added to meet increased demand,

order picking performance is likely to decline due to significant picker blocking.

However, in batch picking, the process of assigning orders to particular batches allows

additional flexibility to reduce picker blocking.

This dissertation aims to identify, analyze, and control, or mitigate, picker

blocking while batch picking in picker-to-part systems. We first develop a large-scale

proximity-batching procedure that can enhance the solution quality of traditional

batching models to near-optimality as measured by travel distance. Through simulation

studies, picker blocking is quantified. The results illustrate: a) a complex relationship

iv

between picker blocking and batch formation; and b) a significant productivity loss due

to picker blocking.

Based on our analysis, we develop additional analytical and simulation models to

investigate the effects of picker blocking in batch picking and to identify the picking,

batching, and sorting strategies that reduce congestion. A new batching model (called

Indexed order Batching Model (IBM)) is proposed to consider both order proximity and

picker blocking to optimize the total order picking time. We also apply the proposed

approach to bucket brigade picking systems where hand-off delay as well as picker

blocking must be considered.

The research offers new insights about picker blocking in batch picking

operations, develops batch picking models, and provides complete control procedures

for large-scale, dynamic batch picking situations. The twin goals of added flexibility and

reduced costs are highlighted throughout the analysis.

v

ACKNOWLEDGEMENTS

I thank my dissertation advisors, Dr. Andrew L. Johnson and Dr. Brett A. Peters,

who taught me to think critically and frame the key questions. Their support encouraged

me to investigate new ideas and methods. I value their creativity and deep passion for

engineering research and their leadership in advanced education.

I am grateful to Dr. Sergiy Butenko and Dr. Vivek Sarin for their advice and

suggestions during the writing of this dissertation. I also thank Dr. Banerjee for our

constructive discussions which led me to expand my research areas.

 I am fortunate to have many wonderful colleagues, including Chiwoo Park,

Youngmyoung Ko, Hyunsoo Lee, Eunshin Byon, Chaehwa Lee, and Heungjo An. I also

thank Sunghyok Woo, Byungsoo Na, Wonju Lee, Moonsu Lee, Jungjin Cho, Seongdae

Kim, Jeehyuk Park, Daeheon Choi, and Kyungnam Ha who have been good friends.

Finally, my special gratitude goes to my father, mother, brothers, mother-in-law,

father-in-law, and brother-in-law for understanding and supporting my love of research,

and I thank my wife, Misook Ha, and my son, Euipyo (Eric), for their steadfast

encouragement and love.

vi

TABLE OF CONTENTS

 Page

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. v

TABLE OF CONTENTS .. vi

LIST OF FIGURES ... ix

LIST OF TABLES .. xii

CHAPTER

 I INTRODUCTION .. 1

 II BACKGROUND .. 5

 1. Order picking systems .. 5
 2. Order picking policy ... 7
 3. Picker blocking ... 9

 III LITERATURE REVIEW ... 11

 1. Batch picking with k-pickers .. 11
 2. Order batching algorithms .. 14
 3. Research issues ... 15

IV LARGE-SCALE ORDER BATCHING WITH TRAVERSAL
ROUTING METHODS .. 17

 1. Introduction .. 17
 2. Related literature .. 20
 3. Route-selecting order batching model (RSB) 22
 4. Route-bin packing problem (RPP) and its LP relaxation (RPP-

LP) ... 27
 5. A heuristic route-packing based order batching procedure

(RBP) ... 31
 6. Implementation and computational results 36
 7. Conclusions .. 44

vii

CHAPTER Page

V ANALYSIS OF PICKER BLOCKING IN NARROW-AISLE
BATCH PICKING ... 46

 1. Introduction .. 46
 2. Literature survey .. 50
 3. Problem definition .. 52
 4. Analysis of picker blocking .. 56
 5. Comparison study in parallel-aisle picking systems 71
 6. Conclusion and further study ... 78

VI BATCH PICKING IN NARROW-AISLE ORDER PICKING

SYSTEMS WITH CONSIDERATION FOR PICKER BLOCKING . 80

 1. Introduction .. 80
 2. Literature survey .. 82
 3. Problem definition .. 84
 4. Indexed order batching model (IBM) ... 87
 5. An exact mixed-integer programming (MIP) formulation 92
 6. A simulated annealing (SA) algorithm 105
 7. Implementation and computational results 107
 8. Conclusion and further studies ... 117

VII ANALYSIS AND CONTROL OF PICKER BLOCKING IN A

BUCKET BRIGADE ORDER PICKING SYSTEM 119

 1. Introduction .. 119
 2. Literature review .. 124
 3. Analysis and control of picker blocking 128
 4. Analysis and control of hand-off delay 137
 5. Simulation and experimental results .. 143
 6. Conclusions .. 155

VIII CONTRIBUTIONS AND CONCLUSION ... 157

REFERENCES .. 159

APPENDIX A. SUPPLEMENTARY FORMULATION, PROOF, ALGORITHM,
AND RESULTS DISCUSSED IN CHAPTER IV 163

APPENDIX B. SUPPLEMENTARY EXAMPLES, PROOF, VALIDATION,
ALGORITHM, AND RESULTS DISCUSSED IN CHAPTER V . 172

viii

 Page

APPENDIX C. EXECUTABLE MIP FORMULATION FOR INDEXED BATCH
MODEL ... 179

APPENDIX D. SUPPLEMENTARY FORMULATIONS AND PROOFS
DISCUSSED IN CHAPTER VII ... 183

VITA ... 189

ix

LIST OF FIGURES

 Page

Figure 1. Examples of order picking systems: (a) part-to-picker system (Warehouse-
rx.com); (b) picker-to-part system (Amazon.com). .. 5

Figure 2. A typical picker-to-part system: parallel-aisle OPS layout (Gademann et

al., 2001). .. 6

Figure 3. Traversal route method (Petersen, 1997). ... 7

Figure 4. Order picking policies: (a) batch picking; (b) zone picking; and (c) bucket
brigade picking. .. 9

Figure 5. Types of picker blocking: (a) in-the-aisle picker blocking; (b) pick-face
blocking (Parikh and Meller, 2009); and (c) hand-off delay. 10

Figure 6. A ten-aisle order picking system ... 23

Figure 7. An example of elementary route set and combined route set. 34

Figure 8. Batches b1 and b2 are constructed by grouping yr orders assigned to route r.
 .. 35

Figure 9. The average travel length per order with the one-way traversal routing
method: (a) sort-while-pick strategy; and (b) pick-then-sort strategy. 41

Figure 10. The total retrieval time comparison via a simulation study: (a) light
congestion case; and (b) heavy congestion case. .. 42

Figure 11. The average travel length per order with the two-way traversal routing
method: (a) sort-while-pick strategy; and (b) pick-then-sort strategy. 44

Figure 12. A narrow-aisle system and a routing example (modified from Gademann
and Van de Velde (2005)). ... 53

Figure 13. Picker blocking (Parikh and Meller, 2009). .. 53

Figure 14. A circular order picking aisle (Gue et al., 2006). .. 55

Figure 15. State space and transitions for the Markov chain model when picking
time equals travel time. ... 58

x

 Page

Figure 16. The percentage of time that pickers are blocked over different number of
pick faces when two pickers work with pick:walk time = 1:1........................ 60

Figure 17. The comparison of single-pick and multiple-pick models when two
pickers work with pick:walk time = 1:1. .. 61

Figure 18. The percentage of time that pickers are blocked over different number of
pick faces when two pickers work with pick:walk time = 1:0........................ 66

Figure 19. The comparison of single-pick and multiple-pick models when two
pickers work with pick:walk time =1:0. ... 67

Figure 20. The percentage of time blocked over different pick:walk time ratios: (a)
two pickers in 20 pick faces; and (b) five pickers in 100 pick faces. 69

Figure 21. Simulation results over different workload distributions (the number of
pickers = 5, the number of pick faces = 100, and pick:walk time = 1:0.2) :
(a) the percentage of time blocked; and (b) the standard deviation of the
number of picks (workload). ... 70

Figure 22. Comparison over different batching algorithms of: (a) total travel
distance; and (b) total retrieval time. .. 74

Figure 23. The percentage of time blocked and standard deviation of the number of
picks per aisle over different batching algorithms: (a) FCFS; (b) seed; (c)
CW II; and (d) RBP. .. 75

Figure 24. An example of different aisle-entrance orders due to batches skipping
aisles (Bi=batch i). ... 90

Figure 25. Order picker’s retrieval trip starting time. .. 91

Figure 26. An OPS layout. ... 93

Figure 27. Delay time for batch b at pick face f when a picker is blocked. 100

Figure 28. A simulated annealing algorithm. ... 106

Figure 29. A picker blocking computation procedure. ... 107

Figure 30. Algorithm comparison with different throughput measurements: (a)
WT+DT per order; and (b) Walk time+delay time % in the total retrieval
time. .. 114

xi

 Page

Figure 31. A flow-rack OPS (Bartholdi and Eisenstein, 1996a). 120

Figure 32. Delay situations in bucket brigade order picking: (a) picker blocking; and
(b) hand-off delay. ... 122

Figure 33. A description of chain reaction after completion of batch i to release a
new batch i+k. ... 131

Figure 34. A normal situation example. In both models, four pickers process four
batches. Two pickers (picker 3 and 4) may have a chance of blocking
depending on items in batches i+2 and i+3 (the number of pick faces = 8,
the number of pickers = 4): (a) a circular-aisle abstraction; and (b) a
bucket brigade OPS. ... 133

Figure 35. A completion and release example. Both models release batch i+4 at the
same time and it starts from pick face 1 (the number of pick faces = 8,
the number of pickers = 4): (a) a circular-aisle abstraction; and (b) a
bucket brigade OPS. ... 134

Figure 36. An example of hand-off and its appropriate renewal process. 138

Figure 37. No-handshake hand-off policy. ... 141

Figure 38. Comparing two bucket brigade methods: (a) regular bucket brigade; and
(b) no-handshake hand-off bucket brigade. .. 142

Figure 39. The percentage of time blocked (two-picker, 20 pick faces) with
multiple-picks with infinite backward walk with allowance of
intermediate hand-off: (a) bucket brigade system; and (b) circular-aisle
system. .. 145

Figure 40. Impacts on hand-off delay of policy parameter over different picking
environments: (a) triangular pick time; and (b) exponential pick time. 148

xii

LIST OF TABLES

Page

Table 1. Computational results over different algorithms .. 39

Table 2. Computational results with the two-way traversal routing method in the
ten-aisle picking system .. 43

Table 3. Default order picking and OPS profiles ... 109

Table 4. Experimental results of the exact approach .. 110

Table 5. Configuration of an OPS (modified from Petersen example (Petersen,
2000)) .. 111

Table 6. Comparison of neighborhood rules in simulated annealing approach 113

Table 7. Comparison of WT+DT per order .. 114

Table 8. Variation of the number of orders over two batching strategies 115

Table 9. The experimental results over diverse order picking environments 116

Table 10. Comparison of inter-completion time (the number of orders=2160,
Imax=20000) ... 117

Table 11. The percentage of time blocked when two pickers work (p=pick density,
n=the number of pick faces) ... 129

Table 12. Average hand-off delay per occurrence over different order picking
situations ... 146

Table 13. Summary of experimental environments .. 151

Table 14. Experimental results on single order picking ... 152

Table 15. Experimental results varying batch size ... 153

Table 16. Comparison of Cont and heuristic approach (Hcont) 154

1

CHAPTER I

INTRODUCTION

Distribution centers (DC) are a fundamental part of the supply chain, which links

manufacturers to customers. Within the supply chain, DCs consolidate and store

products, fulfill stocked products as requests arrive, and provide various value-added

functions in response to product requirements. DCs are also of economic importance;

according to the annual ―State of Logistics Report‖ (Wilson, 2008), warehousing costs in

the United States are approximately 8% of the total logistic cost, or 0.8% of total gross

domestic product (GDP).

Online retailers’ DCs are often termed ―order fulfillment facilities.‖ Their

functions include distributing customer orders and sustaining the online retail business.

Clearly, order picking operations represent significant cost and service drivers for these

retailers. According to Tompkins et al. (2003), order picking typically comprises almost

50% of the total operating costs of a typical DC. For example, in 2003, Amazon.com’s

fulfillment expense was $477 million, which accounts for 48% of total operation

expenses (Amazon.com, 2004). Amazon’s order picking operations contribute between

10-15% of its fulfillment-related expenditure, including fulfillment and customer service

centers (Lieu, 2005).

Despite the recent enhancements in order picking technology, 75 to 80%

of all DCs still rely on manual order picking (De Koster, 2004; Napolitano, 2008).

This dissertation follows the style of IIE Transactions.

2

Manual order picking is cost effective because the initial setup cost is relatively low.

Moreover, human pickers are flexible relative to mechanical systems (Ruben and Jacobs,

1999) and can more easily handle irregular shapes and sizes and employ diverse sets of

picking vehicles as needed.

Since customer demands in online retailers’ order fulfillment facilities are

characterized by diverse, small-sized orders (De Koster, 2003), manual order picking

faces a critical operational issue to ensure good performance. The problem involves

determining the set of orders, i.e., the batch, to be picked by a worker, and the worker’s

route through the facility to retrieve the items in the batch. The traditional single-order

picking mode of operation can result in many costly trips, particularly if the orders are

small. In contrast, a batch order picking strategy groups orders to reduce the number of

trips required, and consequently, reduces operational costs. Additionally, the latter

strategy provides some robustness to the variation and operational difficulties caused by

small order sizes. Therefore, an efficient order batching algorithm can have a significant

impact on costs in an order picking environment with small order sizes.

In general, the number of items picked per unit of time is an important criterion

for evaluating warehouse performance (De Koster and Balk, 2008). When a shorter

fulfillment period is required, manual order picking systems tend to add more pickers to

shorten the response time. However, using a batch picking strategy with multiple pickers

introduces a new issue relevant to picker utilization, namely, that multiple pickers will

create congestion and delays that ―waste‖ productive work time. This increase in

nonproductive time is known as picker blocking. The impact of the number of pickers on

3

order picking throughput and picker utilization indicates that warehouse managers

should focus on picker blocking when assigning a large number of pickers to a particular

retrieval process. We note, however, that traditional batching algorithms do not consider

picker blocking or its impact on order picking productivity.

This dissertation is interested in order batching procedures in large-scale picking

situations with k-pickers, where picker blocking can become a significant issue. We

begin by considering a narrow-aisle picking environment, which is very attractive in

terms of storage capability. However, since one-way passage in an aisle may be

inevitable in this configuration (Gue et al., 2006), the order fulfillment time can lengthen

and the operational cost can increase, because the one-way travel characteristic leads to

longer trips and the narrow-aisle configuration produces heavy congestion Bartholdi and

Eisenstein.

Thus, we first examine the significance of picker blocking in the traditional

proximity-based batching approach. This sub-study presents a new large-scale, near-

optimal distance-based batch order picking procedure with traversal routing methods.

The operational policy identified by a gap error comparison is near-optimal based on a

travel distance criterion, but also reduces picker blocking relative to other order batching

methods. However, management is still required to reduce productivity loss due to

blocking.

Second, since the prior simulation study identifies picker blocking which is not

fully modeled by the available literature, we focus on developing an analytical model

that is suitable for batch picking and examining situations of varying levels of picker

4

activity.

Because batch picking with k-pickers appears to produce a significant level of

picker blocking when k increases to fulfill high demand levels, we propose a combined

batching and sequencing model, referred to as the indexed batching model (IBM), to

simultaneously control both the trip distance and the time blocked.

We also analyze bucket brigade picking, a popular order picking situation, where

picker blocking is still an issue but the routing issue is replaced with hand-off delay issue.

We identify analytical throughput models, build an integrated control framework to

reduce both picker blocking and hand-off delay, and derive control algorithms for each

delay case.

This dissertation is organized as follows. Chapter II describes general knowledge

and background on order picking in distribution centers. Chapter III reviews the

literature and identifies new opportunities. Chapter IV explores managing a large-size

order batching situation more efficiently and describes the effects of picker blocking.

Chapter V examines picker blocking in batch picking using analytical models and

simulation study. A new batching model that considers both proximity and congestion is

developed in Chapter VI. In Chapter VII, we discuss an application of the proposed

approach to bucket brigade systems. Chapter VIII summarizes the contributions and

highlights future research opportunities.

5

CHAPTER II

BACKGROUND

1. ORDER PICKING SYSTEMS

Order picking operation involves retrieving customer orders from storage in an

order picking system (OPS) in a DC. Commonly, a DC is composed of multiple OPSs

classified by the relevant storage and retrieval mechanism. Specifically, in part-to-picker

systems, an automated device transfers items requested to a stationary order picker

(Figure 1(a)). In picker-to-part systems, pickers travel to item storage locations and

collect the items (Figure 1 (b)). In the latter, pickers must traverse multiple aisles and

areas to fulfill orders. The travel mode can include walking with a cart or riding on a

retrieval vehicle. The skill and flexibility of the human pickers are critical, as pickers

visit multiple locations on each tour and handle diverse items.

 (a) (b)

Figure 1. Examples of order picking systems: (a) part-to-picker system (Warehouse-
rx.com); (b) picker-to-part system (Amazon.com).

Figure 2 shows a typical, and popular, picker-to-part picking system, i.e., a bin-

shelving picking system with a parallel-aisle configuration and two cross aisles located

6

in the front and back of the layout that connect the parallel aisles. A loading/unloading

(L/U) station is located in the front of the leftmost aisle. Bin-shelving storage on each

side of the aisles allows order pickers to easily retrieve items. One pick face includes

multiple pick locations. To collect a batch, the picker starts from the L/U station,

circumnavigates the aisles of pick area via the cross aisles, and returns to the L/U station;

this operation forms a trip.

Figure 2. A typical picker-to-part system: parallel-aisle OPS layout (Gademann et al.,
2001).

A specified routing method (based on pickers’ experience or management-

determined) plays an important role in improving order picking performance, because it

determines the travel distance, which is a fundamental throughput measure. Heuristics

are often preferred because they produce more straightforward and natural routes for

pickers than an optimal strategy (Petersen and Schmenner, 1999). The heuristics include

the traversal method, the return method, the mid-point method, the largest gap method,

and the combined method (Petersen, 1997). The traversal routing method in Figure 3 is

most frequently cited in the literature because of its simplicity and popularity in industry.

When this method is used in parallel-aisle OPS, any aisle containing at least one pick is

7

traversed entirely.

Figure 3. Traversal route method (Petersen, 1997).

2. ORDER PICKING POLICY

From an operational view, organizing and batching orders for pickers to reduce

travel and blocking time is as important as designing optimal routing strategies. Single-

order picking allocates one order to one picker. Alternatively, to increase efficiency,

several orders can be consolidated in a batch. Figure 4 (a) illustrates batch picking by a

single picker. Since one picker picks multiple orders in the same trip, the total retrieval

time is reduced. When multiple orders are collected in a trip, their disassembly into

orders is termed a sorting operation. There are two efficient strategies relevant to the

sorting operation while batch picking. In the sort-while-pick strategy, pickers sort

products while traveling between picking locations. A cart carries bins for orders. The

picked items are identified as belonging to a particular order and deposited in the correct

bins. The pick-then-sort strategy separates the two operations into a sorting operation

executed by manual workers or by sortation equipment to separate the items into orders

after completing a trip to retrieve the items in a batch.

Picking a large-size batch (or order) may be assigned to multiple pickers and is

8

called zone picking (Figure 4 (b)). Order pickers travel only in their specialized zone.

There are two protocols to assign a batch to each zone. In synchronized zone picking,

each zone collects one batch simultaneously. Retrieval time for a batch can be shorter

than a full retrieval time by a single picker, because several pickers process partitioned

portions of a batch. In progressive zone picking, a batch is processed in individual zones

sequentially. A batch is passed between zones, and items are collected in various zones

to complete the orders in the batch. In general, a buffer of work-in-process batches is

formed between two zones to insure pickers in downstream zones are not idle.

Bucket brigade picking is similar to progressive zone picking, but employs a

variable zone boundary policy where zone size is not predetermined and is resized

automatically and dynamically (Figure 4 (c)). No buffer between pickers is necessary

(see, for example, Bartholdi and Eisenstein (1996a)). A batch must pass all pick faces

and collect items at related pick faces in sequence to be completed. Pickers are ordered

from upstream to downstream in a row, and the order is maintained across the zones. A

picker picks an item and places it in the tote assigned to the particular batch. The picker

then moves to the next pick face to continue processing the batch if there is no picker at

the next pick face. The upstream picker hands off the current batch when the upstream

picker meets a downstream picker who has no assigned batch.

9

(a) (b) (c)

 Figure 4. Order picking policies: (a) batch picking; (b) zone picking; and (c) bucket

brigade picking.

3. PICKER BLOCKING

In a typical picker-to-part system, adding pickers is expected to enhance the

system’s order picking throughput. However, the benefits to throughput are increasingly

offset by picker blocking (Ruben and Jacobs, 1999). Picker blocking occurs when

multiple pickers traverse a pick area while maintaining a no passing restriction, or two or

more pickers attempt to occupy the same space or the same resource simultaneously.

When a picker prevents another picker from passing, in-the-aisle blocking arises as

depicted in Figure 5(a), and when pickers attempt to pick from the same storage location,

pick-face blocking occurs as depicted in Figure 5 (b). In this dissertation, picker blocking

refers to in-the-aisle blocking unless otherwise stated.

10

 (a) (b) (c)

Figure 5. Types of picker blocking: (a) in-the-aisle picker blocking; (b) pick-face
blocking (Parikh and Meller, 2009); and (c) hand-off delay.

Bucket brigade picking also encounters picker blocking situations, because, as

mentioned, this protocol sets a zone boundary between pickers in a variant manner.

While an upstream picker moves in a forward direction, the next pick face may be

occupied by a busy downstream picker (Figure 5(a)). Hence, the upstream picker cannot

―hand off‖ the current batch to the downstream picker since the downstream picker is

currently allocated to a retrieval task. The upstream picker also cannot pass over the

downstream picker because the zone restriction disallows passing. Further, when the

downstream picker is idle, he/she moves in a backward direction to take a hand-off from

an upstream picker. If the upstream picker is picking when the downstream picker

encounters the upstream picker, the downstream picker must wait for the completion,

which is termed hand-off delay as shown in Figure 5(c).

11

CHAPTER III

LITERATURE REVIEW

1. BATCH PICKING WITH K-PICKERS

Depending upon pickers’ organization, batch picking with k-pickers can be

classified by

1) (single-zone) batch picking

2) (multiple-) zone batch picking

3) bucket brigade batch picking.

Batch picking is most commonly single-zone, multiple-picker batch picking.

Since multiple pickers work in a zone, an interaction among k-pickers arises, which

leads to picker blocking. In studying the relationship between picker blocking and

batching algorithms, Ruben and Jacobs (1999) find that congestion impacts the selection

of batching procedures and storage policies. Their simulation studies show that a

turnover-based storage policy1 causes more congestion than family-based2 or random

storage3 strategies. Gue et al. (2006) and Parikh and Meller (2009; 2010) investigate

effects of picker blocking using analytical and simulation studies. The authors introduce

analytical models related to picker blocking in specified-order picking environments,

both picker blocking in narrow-aisle (Gue et al., 2006; Parikh and Meller, 2010) and

pick-face blocking in wide-aisle (Parikh and Meller, 2009). Gue et al. (2006) explain

1 A turnover-based storage policy determines storage locations of products according to the demand

popularity of products. Popular products are stored in locations to reduce the retrieval time.
2 The demand affinity between products is used to determine storage locations of products. Thus, it

can reduce the time to reach the next item in an order.
3 A random strategy randomly determines storage locations of products.

12

that the batch picking strategy in narrow-aisle OPSs can experience less picker blocking

when the pick density is either very low or high. Parikh and Meller (2010) find that even

though the pick density is high, picker blocking can be significant when the variation of

the pick density is high. Parikh and Meller (2009) do not consider batching, but

distinguish the effects of congestion in the wide-aisle picking situation of a single-pick

model versus a multiple-pick model. The single-pick model assumes that at most a

single pick occurs at a pick face, which is often true in single-order picking, whereas the

multiple-pick model considers repeated picks at a pick face, which is more likely in

batch picking. Parikh and Meller (2009) suggest wide-aisle OPSs may experience

significant blocking when multiple-picks are required at each pick face. They also find

that the variation of pick density plays a vital role in the significance of pick-face

blocking.

From the standpoint of picker blocking, zone picking is a preferred alternative for

heavy picker blocking environments. However, restricting pickers movement creates

additional idleness from workload imbalances and increases work in process (WIP).

There is some research on how to achieve equal balance among zones (Jane, 2000; Jane

and Laih, 2005) by examining historical customer orders and the items assigned to

storage zones. Le-Duc (2005) presents a procedure to find the optimal number of picking

zones by using mixed integer programming. Jane and Laih (2005) propose an

assignment algorithm in a synchronized zone picking system where all zone pickers

fulfill the same order simultaneously. A similarity coefficient of any two items is

presented for measuring the co-appearance of both items in the same order. To minimize

13

the idle time of the synchronized zone picking system, the items most frequently

requested (i.e., with high similarity coefficient) are assigned to different zones.

As Bartholdi and Eisenstein (1996a) indicate, the balanced workload model in

zone picking exhibits three major problems in practice. First, available approaches tend

to depend on historical data; even though workloads are balanced for historical data,

current and future demand patterns experience imbalances. Second, non-demand based

uncertainties exist, e.g., equipment breakdown, absenteeism, etc., leading to workload

imbalances. Third, picker capability is not identical and varies with pickers’ learning.

To solve these problems, an order picking system with bucket brigades is an

alternative to zone picking (Bartholdi and Eisenstein, 1996a). The bucket brigade

picking system is a promising strategy that can solve load balance issues, a significant

concern within multiple pickers OPSs. The bucket brigade method provides a self-

balancing characteristic using minimal WIP (Bartholdi and Eisenstein, 1996a; Bartholdi

and Eisenstein, 1996b). Yet, this strategy faces two operational delays: hand-off delay

and picker blocking delay (Koo, 2009). The literature notes that it encounters less picker

blocking when pickers are arranged in ascending capability order (Bartholdi and

Eisenstein, 1996a; Bartholdi and Eisenstein, 1996b; Koo, 2009). However, the only

available research on picker blocking in bucket brigade order picking has been

conducted by Koo (2009), who proposes a model combining a zone picking policy and

the bucket brigade order picking policy. Under his modified strategy, pickers’

downstream travel is allowed to a predefined point at which pickers leave their current

tote and move upstream. Since a downstream range is limited, picker blocking lessens,

14

and the number of direct hand-offs also drops since WIP is allowed. However, this

method can significantly increase WIP and may disrupt the load-balancing

characteristics.

2. ORDER BATCHING ALGORITHMS

The first component of our research focuses on the proximity batching relevant

to parallel-aisle picking systems, where nearby orders are grouped based on travel

distance. The proximity batching algorithms for parallel-aisle picking systems can be

categorized as 1) optimal approaches; 2) meta-heuristics; 3) seed heuristics; and 4)

saving heuristics.

An optimal approach is to solve the batching and routing problem exactly

through a mixed integer programming model using branch-and-bound to minimize the

maximum route length (Gademann and van de Velde, 2005; Gademann et al., 2001).

Despite enhanced branch-and-price methods, exact methods based on branch-and-bound

face a limitation in scalability of the number of orders and batches (we verify this with

our computational experiments in Section IV).

Hsu et al. (2005) propose a meta-heuristic approach, a genetic order batching

algorithm, to minimize the total travel distance. The problem complexity of the genetic

algorithm is strongly dependent on the number of batches, the number of orders, and the

number of aisles. Similarly, it is not clear whether the proposed genetic algorithm can

solve large-scale problems, because the algorithm appears to be inefficient over

medium-size problems with low routing complexity.

De Koster et al. (1999) conduct a comparison study of seed and saving

15

algorithms. Our independent analysis in Chapter IV confirms that only seed and saving

algorithms are able to analyze large-sized problems. However, the solution quality of

these methods is uncertain in medium- and large-size problems, because the exact value

of the optimal solution cannot be identified and lower bound estimates are not available

in the literature.

3. RESEARCH ISSUES

Reviewing the available methods we identify three critical issues:

1) The impacts on picker blocking of batch picking in a narrow-aisle system are not

fully understood. Within the proximity batching literature, Ruben and Jacobs

(1999) discuss the limitation of the available batching methods on picker blocking

control. Two studies (Gue et al., 2006; Parikh and Meller, 2010) observe the

impacts by the size and the variation of pick density throughout analytical and

simulation models. However, the relationship between batch picking situations

(i.e., batching algorithms, sorting strategies, and storage policies) and the results of

analytical studies has not been fully examined despite its significance upon

warehouse design and operations. For example, the literature is silent on whether

batch picking always produces heavy picker blocking. If it does not, what

conditions should be satisfied for higher order picking throughput?

2) Proximity-based batching algorithms can handle only distance-related

performance. The literature on batching algorithms does not address the trade-off

between travel distance and time blocked. Namely, to manage heavy picker

blocking situations, a new order batching model and relevant solution procedure is

16

needed. The new batching algorithm requires quantifying picker blocking as well

as travel distance.

3) Bucket brigade picking systems also face significant congestion issues. Picker

blocking and the hand-off models in bucket brigade picking systems are not well

understood with respect to analytical models and direct control. Only a simulation-

based approach (Koo, 2009) has been used to quantify picker blocking, and a

direct mitigation of picker blocking has yet to be addressed. Hand-off issues are

frequently neglected in the available literature despite the possibility of

productivity loss. Moreover, Koo’s hand-off model fails to deliver an exact model;

thus, we introduce such a model in Chapter VII. We conclude that understanding

picker blocking and hand-off delays is very restricted and partially incorrect, and

we provide a mechanism to improve operations in a bucket brigade system by

explicitly addressing both issues in determining the operational plans.

17

CHAPTER IV

LARGE-SCALE ORDER BATCHING WITH TRAVERSAL

ROUTING METHODS

This chapter investigates the effects by picker blocking when an order picking

situation employs traditional batching models to reduce the pickers’ total travel distance.

In practice, some order picking systems retrieve 500~2000 orders per hour and include

ten or more aisles. Available proximity batching methods are not suitable for the study

proposed, because all large-scale approaches are implemented to obtain a heuristic

solution, and those heuristic algorithms only demonstrate their improvement relative to a

random batching strategy or prior batching algorithms. Thus, we employ a new, near-

optimal proximity-batching procedure, a solution validation procedure, and relevant

picker blocking experiments. The quality of the solutions is demonstrated by comparing

with a lower bound developed as a linear programming relaxation of the batching

formulation described in this chapter. A simulation study indicates that the proposed

heuristic is relatively robust to picker blocking.

1. INTRODUCTION

From a computational view, the route selection problem is typically easy, but

difficulty arises mainly due to the combinatorial number of potential batches. The

routing problem in rectangular parallel-aisle systems can be optimally solved with

polynomial complexity (Ratliff and Rosenthal, 1983). Furthermore, pickers often prefer

heuristic routing methods (De Koster et al., 1999; Gademann and van de Velde, 2005),

18

which can be computationally simpler than the optimal routing method. In contrast, the

computational burden associated with the partitioning decision is a primary source of

complexity for the batching problem. For example, when the number of orders is 100

and the capacity of the order picker is 10 orders per trip, the number of possible

combinations for batching the orders is 6.5*1085. Hence, only heuristic batching

algorithms can solve large-size problems in a timely manner. We note, too, that the

complexity of the batching problem affects the assessment of solution quality. The

performance of the various proposed methods for batching have not been demonstrated

quantitatively in any practical size problem because lower bound estimates were not

previously available.

We, therefore, examine picking systems that process 500-2000 orders in a one-

hour time window. This picking environment has one-way narrow aisles, and we

assume pickers use traversal routes through the DC.4 We consider both sort-while-pick

and pick-then-sort strategies, and both random and class-based storage policies. Ideally,

we want to exploit the advantage of the traversal routing method in developing a

computationally efficient procedure to solve large-size problems and determine a tight

lower bound to evaluate performance.

We approach the batching problem using a selection-based routing method, not

the more common construction-based routing method, and derive a new batching

procedure by first assigning orders to routes and then constructing batches within route

4 Throughout most of this dissertation we assume one-way narrow aisles since this is a typical

setting for the batch picking problem where congestion is a concern; however, these methods can be
extended to multi-directional travel with some increase in computational burden, as discussed in Section
6.3.

19

sets. Even though the routing mechanism occupies a small portion of the computational

time, it influences solution approaches for order batching algorithms. The traditional

order batching algorithms build a route for a given batch and calculate the route length.

This route construction concept then guides the search procedure narrowing order-to-

batch assignments to identify batches with potentially shorter routes. Initially, we

identify a set of potential routes and match orders to potential routes. As the routes and

their lengths are predetermined, it is possible to match orders to routes without

identifying batches. The direct assignment of orders to routes can improve the solution

quality, reduce the computational time, and obtain a lower bound. Accordingly, we

build an efficient heuristic procedure to pack batches from orders within routes.

This chapter makes three important contributions to the extant literature. First, a

large-scale, near-optimal order batching procedure for parallel-aisle picking systems is

demonstrated for the first time; the environments cover both narrow-aisle and wide-aisle

systems and are extendible to other layouts using traversal routing methods. Second, it

introduces a new order batching formulation and relevant relaxation models utilizing a

bin-packing problem. The bin-packing problem can be solved more efficiently on large-

size problems compared to a batching problem even though both require complex

analysis. Third, the proposed algorithm is compared with available heuristic algorithms

in terms of both total travel distance and total travel time, since the shortest routing

distance does not guarantee the shortest retrieval time in environments with picker

blocking. A simulation study is used to evaluate the performance of the proposed

algorithm considering picker blocking.

20

The remainder of the chapter is organized as follows. In Section 2, we review

related studies regarding order batching algorithms in parallel-aisle picking systems.

The details of the new formulation and the relaxed models are discussed in Sections 3

and 4, respectively. Section 5 describes a heuristic batching procedure based on the

relaxation model. Section 6 discusses the computational experiments and comparison

results. We conclude with directions for future research and the model’s extension.

2. RELATED LITERATURE

The literature review in this chapter expands on the relevant portions from the

general literature review presented in Chapter III. This chapter focuses on the proximity

batching relevant to parallel-aisle picking systems, where nearby orders are grouped

based on travel distance. The prior work in proximity batching algorithms for parallel-

aisle picking systems can be categorized into 1) seed heuristics; 2) saving heuristics; 3)

meta-heuristics; and 4) optimal approaches.

In conducting a comparison study of seed and saving algorithms, De Koster et al.

(1999) conclude that the best seed algorithms combine three control factors: select the

seed order as the order that must visit the largest number of aisles, choose the next order

to minimize the number of additional aisles, and cumulatively update the seed

information based on orders in the seed. Alternatively, the same paper develops the

savings algorithm (which is a modified Clarke and Wright method (1964)) in which a

savings list is updated until there are no remaining savings pairs. The authors find the

savings algorithm is preferable to the seed algorithm. Our independent analysis also

confirms that only seed and saving algorithms are able to analyze large-size problems.

21

However, the solution quality of these methods is uncertain in medium- to large-size

problems, because the exact value of the optimal solution cannot be identified and lower

bound estimates are not available in the literature.

Hsu et al. (2005) propose a meta-heuristic approach, a genetic order batching

algorithm, to minimize the total travel distance. The problem complexity of the genetic

algorithm is strongly dependent on the number of batches, the number of orders, and the

number of aisles. Their tests are conducted on ~300 orders to generate ~40 batches in a

five-aisle warehouse; this size problem required ~2500 seconds to execute the heuristic.

It is not clear whether the proposed genetic algorithm can solve large-scale problems,

because the algorithm appears to be computationally inefficient over medium-size

problems with low routing complexity.

An optimal approach is to solve the batching and routing problem exactly

through a mixed integer programming model (Gademann and van de Velde, 2005;

Gademann et al., 2001). Gademann et al. (2001) present a branch-and-bound solution

for a wave picking environment, where a large number of orders are partitioned into

multiple batches to minimize the maximum route length. Gademann and Van de Velde

(2005) develop a branch-and-price formulation for the sort-while-pick order picking

strategy. The authors present two important findings: 1) the number of aisles and the

number of batches significantly impact the computational time; and 2) the average time

to identify an optimal solution is very short compared to the time necessary to verify its

optimality. Despite enhanced branch-and-price methods, Gademann and Van de Velde

(2005) are only able to solve problems sizes of ~30 orders and ~8 batches. We infer and

22

confirm with our own experiments that exact methods based on branch-and-bound face a

limitation in scalability of the number of orders and batches.

Summarizing the available methods, we identify two critical issues. First, all

approaches are implemented to obtain a solution with a partitioning first, routing second

method. The route construction procedure is necessary and follows a partitioning

decision because the route length varies according to pick locations in a batch. However,

the partitioning problem is complex, requiring the construction of all combinations of

orders to batch assignments. Second, within the batching literature there is no research

on lower bound algorithms for a large-scale problem. Heuristic algorithms only

demonstrate their improvement relative to random batching strategy or prior batching

algorithms. Without a lower bound, one cannot quantify the performance of the

heuristics in absolute terms.

3. ROUTE-SELECTING ORDER BATCHING MODEL (RSB)

3.1 Problem definition

We consider an order picking environment similar to those described in Petersen

II (2000) and Gong and De Koster (2008). The order profile assumes an average order

size is two line items per order and 1080 orders arrive per hour. Figure 6 shows a ten-

aisle bin-shelving OPS with a narrow parallel-aisle configuration and two cross-aisles

located in the front and back of the layout, which connect the parallel aisles. An L/U

station is located in front of the leftmost aisle. There are forty pick faces per aisle in

which order pickers retrieve items. The height of the shelves does not impact the travel

length. To collect a batch, a picker starts from the L/U station, circumnavigates aisles of

23

pick locations via the cross-aisles, and returns to the L/U station. While retrieving items,

pickers take a one-way traversal route and do not make U-turns within an aisle. In other

words, if they enter an aisle, pickers pass completely through it. However, they need not

traverse every aisle. Further, each aisle is traversed in a fixed direction to prevent pickers

from being blocked in an aisle by pickers approaching from the opposite direction, i.e.,

one-way traversal routing (Gue et al., 2006) is used. One order picker can carry ten bins

on a cart allowing him/her to simultaneously pick up to ten different orders. We assume

a constant walking speed and pick time per item. In determining batches, blocking

delays are ignored and total retrieval distance is minimized. The issue of blocking is

revisited in more detail in Section 6.2.3. In addition, some parameters (e.g., sorting

strategy, storage policy, capacity, and number of aisles) are varied to investigate

robustness in the quality of solutions across differing environments.

Figure 6. A ten-aisle order picking system

24

3.2 Formulation

A new order batching model is formulated that takes advantage of the traversal

routing method. When traversal routing methods are used, all possible routes can be

constructed from the warehouse layout. Thus, given a batch, a best fit route can be

selected as a matching problem, referred to as the route-selecting order batching model

(RSB).

The formulation is flexible and can handle both sort-while-pick and pick-then-

sort operational strategies. The capacity of the cart is represented by CAPA. Qo denotes

the portion of CAPA that order o consumes. In the case of sort-while-pick strategy,

CAPA is measured in units of orders, thus Qo is 1. In the case of pick-then-sort strategy,

CAPA is measured in units of items, thus Qo becomes the number of items in order o.

OAoa is set to 1 if aisle a must be visited to gather the items in order o. Route

information and length are initially constructed for all routes r in the route set R. Route

information is expressed with the aisle visiting vector (RAra) and the route length is LTr.

Given pickers’ one-way traversal routing, for pick areas of size |A| = 2, 4, 6, 8, 10, and

12, where A is the number of aisles, the sizes of route set |R| are 1, 4, 12, 33, 88, and 232,

respectively. Though the size of |R| increases exponentially, for reasonable-size

problems, for example 10 aisles, there are only 88 potential routes. We define a set of

batches, B, initially |B|=|O|, allowing each order a separate batch. If batch b in B is set to

include an order, batch b is active. RSB is formulated to determine if batch b is active,

which is indicated by BVb, if order o is assigned to batch b, which is indicated by Xob,

and the route of batch b, which is indicated by Ybr.

25

Indices and parameters

bB,

= the set of batches, and its index Bb

oO,

= the set of orders, and its index Oo

aA,

= the set of aisles, and its index  AAa ,,1

rR,

= the set of routes, and its index Rr

oQ

= the number of line items in order o

oaOA = 1 if order o passes through aisle a (=order o has at least one pick in aisle a)
0 otherwise

 rLT

= the length of route r

raRA = 1 if route r passes through aisle a
0 otherwise

 CAPA

= the capacity of a cart

Decision variables

obX = 1 if order o is assigned to batch b
0 otherwise

 brY = 1 if batch b takes route r
0 otherwise

bBV = 1 if batch b is valid
0 otherwise

 Formulation

(RSB) 
 Bb Rr

brrYLTMin (4.1)

s.t.

,1
Bb

ob X O, o (4.2)

 ,CAPA XQ
Oo

obo  


B, b (4.3)

bob BVX 

B, bO, o  (4.4)

26

 ,1
Rr

br Y

,BbBVbB b b),1|{'  (4.5)

,
Rr

brraoaob YRAOAX
,BbBVbB b

O oA a

b),1|{'

,,





(4.6)

  1,0obX

B, bO, o 

  1,0brY

R, rB, b 

The goal is to minimize the total travel distance (4.1). The basic function of the

given algorithm is to partition orders into batches. An order cannot be separated into

multiple batches and all orders should be assigned to batches (4.2); a batch should not

exceed the capacity constraint of the cart (4.3). The maximum number of batches is

limited to the number of orders. BVb is active if at least one order is assigned to batch b

(4.4). A batch must have one route (4.5). The aisle visiting incidence vector of route b

should contain the aisle visiting incidence vector of orders in batch b (4.6).

3.3 Validation

To validate our model, we derive general requirements of the formulation as in

Gademann and Van de Velde (2005).

 Requirement 1 (No splitting of an order and all orders are fulfilled). Every

order is included in exactly one batch.

 Requirement 2 (Capacity). The number of items in a batch is less than or equal

to the maximum batch size.

 Requirement 3 (Complete route). A route starts at the L/U station and returns

to the L/U station.

 Requirement 4 (One-way directionality). Each aisle has its own moving

direction.

27

Similar to Gademann and Van de Velde, we require 1, 2, 3, and 4. The

requirements are modeled by (4.2) for requirement 1 and (4.3) for requirement 2.

Requirements 3 and 4 are enforced while generating the candidate routes in set R.

4. ROUTE-BIN PACKING PROBLEM (RPP) AND ITS LP RELAXATION (RPP-

LP)

This section develops two relaxation models for the route-selecting order

batching formulation (RSB) model, both of which can serve as lower bounds for the

RSB model. The RSB model stated above simplifies the batching problem; however, it

still contains partitioning constraints (4.2), which have been proven to be NP-complete

(Gademann et al., 2001; Ruben and Jacobs, 1999). However, the partitioning stage can

be postponed and a route-bin packing problem (RPP) is developed by assigning orders

directly to routes. This allows a lower bound to be constructed, but additional

reformulations using a linear programming relaxation are needed to solve large-size

problems.

4.1 Route-bin packing problem (RPP)

RSB can be simplified by removing the batching variables to develop a new

partitioning problem. When the partitioning stage is skipped, the batching problem is

relaxed to obtain the number of routes required to retrieve orders. Then, within route

types, batches can be identified similar to a generic bin-packing problem; this

formulation is referred to as a route-bin packing problem (RPP). To further describe the

details, we reuse two decision variables, obX

and

brY , introduced in the prior section.

28

Using the following two equations, 




Bb

b ro bo r YXx , 
Bb

brr Yy , we further define xor

indicating order o is assigned to route r r and ry is the count of batches taking route r.

Based on these two new variables, we derive three new constraints (4.8), (4.9),

and (4.10) using Gaussian elimination processes and Lagrangian relaxations. A

constraint in (4.2) specified by order o is matched to a constraint in (4.8) having the

same order o. The inequalities (4.9) and (4.10) also are valid after aggregating the

constraints related to route r. Basically, we aggregate constraints in (4.3) for batches b

using route r. We can replace batching index b with route index r by aggregating the

constraints having the same route r; thus, (4.9) has no batch index. We repeat the same

process for (4.6) to obtain (4.10). Finally, we relax constraints (4.4) and (4.5), and RPP

without batching variables results. The proof appears in Appendix A.1.

Decision variables

orx = 1 if order o is assigned to route r
0 otherwise

ry = the number of batches assigned to route r

 (Basic RPP)  
Rr

rr yLTMin

 (4.7)

s.t.

,1
Rr

or x O, o (4.8)

 ,r
Oo

oro yCAPAxQ 


R, r (4.9)

,rraoaor yRAOAx  R, rA, aO, o  (4.10)

  1,0orx

O, oR, r 

29

  ,...2,1,0ry

R, r

The objective is to minimize the sum of the length of assigned routes (4.7). All

orders are assigned to exactly one route (4.8). The capacity of the assigned routes r

should be greater than or equal to the total quantity of items to be picked (4.9). The aisle

visiting incidence vector of route r should contain the aisle visiting incidence vector of

each order o that has been assigned to route r (4.10).

The number of constraints in the basic RPP formulation for constraint set (4.10)

is |O||A||R|. This can be simplified as follows:

1) For each r in R, we evaluate whether order o is covered by route r and, if so,

include order o in set Or.

2) Then for o in O\Or, xor is 0, because route r does not cover order o.

Thus, constraint set (4.11) is constructed, which has no more than |O||R|

constraints. Relaxing constraint (4.10) to (4.11) reduces the complexity of the

formulation with only a minimal expansion of the solution space.

(RPP)  
Rr

rr yLTMin

s.t.

(4.8), (4.9), and

 ,0orx

R, r,OO o r  \ (4.11)

Rather than (4.11), there is another way to reduce the number of constraints. We

can penalize Qor = INFINITY instead of each constraint in (4.11). Then, xor is forced to

be 0, because Qor is larger than CAPA. The resulting formulation has a smaller number

30

of constraints. However, using a general MIP solver, the computational performance of

this strategy to reduce the number of constraints in (4.11) is poor. Thus, we use (4.11)

for computational purposes. The RPP without constraints (4.11) is equivalent to a

generalized bin-packing problem (Lewis and Parker, 1982).

4.2 Linear programming relaxation on RPP (RPP-LP)

We derive a lower bound algorithm by relaxing the integer restrictions within

RPP. This LP relaxation of RPP provides a weak lower bound. To strengthen the lower

bound, we add valid inequalities based on the original constraint (4.10). This is

implemented by enforcing yr to be equal to maximal xor for route r as shown in (4.12).

(RPP-LP)  
Rr

rr yLTMin

s.t.

(4.8),

(4.9), (4.11), and

 ,ror yx 

R, r,O o r  (4.12)

ry0

R, r

Constraints (4.12) ensure that if any order o is assigned to route r, then there is at

least one batch within route r.

4.3 Relationship and optimality

A simple lower bound can be constructed by assuming that each order uses an

optimal route (LTo) and each cart is fully loaded during each trip. We define the travel

distance under this construction to be the ideal batching (IB) bound represented by

31

Obj(IB).

CAPALTLTCAPAIB

Oo

o

Oo

o //1)(Obj 




Obj(IB) is equal to or less than Obj(RPP-LP), because RPP-LP without

constraints (4.11) and (4.12) is the formulation to find the travel distance under ideal

batching.

For Obj(RPP-LP), Obj(RPP), and Obj(RSB), the following inequalities hold as a

definition of relaxation:

Obj(IB) ≤ Obj(RPP-LP) ≤ Obj(RPP) ≤ Obj(RSB)

The solution to RPP is optimal if Obj (RPP) = Obj (restored batches from RPP

solution), because the upper bound is the same as the lower bound. The solution by RPP-

LP is also optimal if the solution by RPP-LP is integral and Obj (RPP-LP) is equal to

Obj (restored batches from RPP-LP solution).

5. A HEURISTIC ROUTE-PACKING BASED ORDER BATCHING

PROCEDURE (RBP)

This section describes a heuristic solution procedure to solve the batching

problem based on the RPP formulation. The RPP model is preferred, because batches

can easily be constructed from the solution to RPP. However, RPP is still

computationally difficult, so two further computational improvements are considered: 1)

a partial route set; and 2) a truncated branch-and-bound approach. The proposed

heuristic procedure is composed of three steps:

Step 1: identify and construct potential route sets.

Step 2: assign orders to routes using RPP

32

Step 3: restore a feasible solution from the infeasible solution obtained from the

relaxed model.

These steps are described below.

Step 1. : Identify and construct potential route sets

We have already shown in section 3.2 that |R| increases exponentially as |A|

increases. Consequently, variables and constraints in the RPP formulation, including the

route index, increase exponentially. The set of routes is constructed in two steps: first, an

elementary route set (Re) is selected to guarantee each order can be picked using one of

the routes in the route set. This is done by completely enumerating all routes and

sequencing them in ascending order by route length. For order o, we select a first fit

from the set, and update Re U {r} ties are broken randomly. The elementary route set is

only part of the reduced route set (Rr) used in RPP. Second, we consider combined route

set (Rc), because these routes will be useful when the number of orders assigned to a

route do not divide evenly into the batch size.

To generate the combined route set, we employ the Clark and Wright II

algorithm (CW II) (Clarke and Wright, 1964; De Koster et al., 1999). The modified CW

II algorithm constructs routes with relatively short travel distances. As part of the CW II

algorithm, a composite level, indicating the maximum number of routes covered by a

combined route, must be specified. A detail of the route-set selection procedure follows.

33

Route-set selection procedure:

The route construct step can be illustrated by the example shown in Figure 7.

Assume that the number of aisles is six and six orders are given. In this aisle

configuration, 12 different routes are available. From the orders to be picked, the

elementary route set is constructed as {e1, e2, e3, e4}. For four elementary routes, CW II

creates c1 when the composite level is four. Rr becomes {e1, e2, e3, e4}, because c1 is

already a route in Re.

1. Initialize O = all orders, Re ={}, Rc ={}.
2. Construct Re

For o = 1 to |O|
 If Re does not include an optimal route for order o
 R = optimal route of o
 Re = Re U {r}
 End if
End for

3. Construct Rc from Re using a route composition algorithm
Set the composite limit C
Do

Calculate the savings sij for all possible route pairs i,j in Re u Rc

Sort the savings in decreasing order.
Do

Select the pair with the non-selected highest savings. In the
case of a tie, select a random pair.

If the pair does not violate composite level C
Combine both ―routes‖ to form a new element r in Rc

While (remaining pair in the savings or any composite
candidate)

While (all r’s in Re have not been included in Rc)
4. Rr = Re U Rc

34

Figure 7. An example of elementary route set and combined route set.

Step 2. Assign orders to routes using RPP

This step solves RPP using an IP solver with a time-truncated branch-and-bound

method. Gademann and Van de Velde (2005) indicate that the branch-and-bound

approach to solving the batching formulation converges to a near-optimal solution

quickly and most of the computational time is spent validating the optimality of the

solution. Because RPP considers a simpler set of potential routes the computational time

will be faster, but we also truncate the search with a time-limitation. However, later we

will construct a lower bound, thus we can estimate the impact on the solution quality

caused by the time truncation.

Step 3. Build batches from orders within routes

Step three, BPr , constructs batches with routes using the order-to-route

assignment information. After constructing the batches, residual orders must be merged

into additional batches. The solution of the BPr sub-procedure depends on the sortation

strategy.

i) Sort-while-pick strategy

In this case, since the size of a batch is based on number of orders, not items, BPr

35

can be solved using a greedy algorithm. By assigning orders to batches on a first-come-

first-serve basis, we can obtain an optimal solution. Figure 8 illustrates a procedure to

cluster 10 orders into two 5-order batches, where yr is 2. Then, orders are grouped into

two batches, b1 and b2.

Figure 8. Batches b1 and b2 are constructed by grouping yr orders assigned to route r.

Note that the routes from the combined route set can be used to handle residual

orders from the elementary route sets. The remaining residual analysis is typically trivial

under a sort-while-pick strategy.

ii) Pick-then-sort order picking strategy

Here, CAPA is defined in terms of items. Further, orders can have multiple items.

Thus, assigning orders to batches using a greedy algorithm produces a poor solution.

Instead, we solve IP formulation BRr shown below to allocate orders to batches more

efficiently while maintaining CAPA. When there are remaining orders (i.e., not fully

packed batches), we merge them into new batches. When there are residual batches of

less than half of CAPA, the CW II algorithm is applied to merge these remaining batches.

(BPr) 
 rBb

bzMin

 (4.13)

36

s.t.

,1
 rBb

ob x O, o (4.14)

 ,b
Oo

obo zCAPAxQ 


,B b r (4.15)

  1,0obx

O, o,B b r 

  .1,0bz ,B b r

6. IMPLEMENTATION AND COMPUTATIONAL RESULTS

We first test the performance of the proposed heuristic on different problem sizes

assuming a one-way traversal routing method. We then extend the experiments to the

two-way traversal routing method.

6.1 Implementation

The following analysis using the MIP formulations developed above are

implemented using the ILOG CPLEX Callable Library C API 11.0.4. The data-set

generator and comparison algorithms are developed using the C language. To test the

computational performance, the executable files are run on a Windows NT-based server

system with the Windows Vista operating system (Xeon 2.66 Ghz CPU, 12 GB memory).

While compiling the CPLEX source, the stand-alone dynamic-linked library (DLL) is

used. Both the branch-and-cut option and the heuristic search option are disabled to

evaluate the exact computational time. While solving RPP and BPr, we use the truncated

branch-and-bound method with a time limit of 60 seconds. Instead of the optimal

solutions, we evaluate solutions of the RBP by comparing with their LP lower bound

generated with a full route set. Note that RPP-LP does not require the time limit and BPr

37

is only applicable for the pick-then-sort strategy.

Each experiment is repeated for 20 random instances. The number of orders in an

instance is fixed. The number of items in an order is determined by a simple density

function where p(1) = 0.5/0.95, p(n)=(1/2*(n-1)-1/2*n)/(0.95) when n = 2,…,10, and

p(n) = 0 otherwise. This order size distribution generates a result similar to that of

Frazelle’s (2002) small picking example. The average order-size is 2.02. Item locations

are determined by the within-aisle class-based storage policy where A:B:C ratio is

0.7:0.2:0.1. Further, class A, B and C items are stored in aisles 1-2, 3-4, and 5-10,

respectively. The time to travel the length of one pick-face is 1 time unit. The time to

travel the length and the width of the aisle is 21 and 2 time units, respectively. The time

to travel the length of the aisle includes the time from the center of cross aisles to the

front end of a passage aisle, and the time aisles from a back end of an aisle to the center

of cross, which are assumed to be half of a pick face. Thus, the time to travel the length

of the aisle becomes 40/2+0.5+0.5= 21. The L/U station is located in front of the

leftmost aisle. To combine routes in the route set reduction stage, the composite level is

set to 3 routes.

In discussing the performance of the algorithms, we use the following notation

throughout the remainder of this section.

FCFS: partition orders into batches based on a first-come first-serve policy

Seed: the seed algorithm in De Koster et al. (1999): 1) select a seed having the

largest number of aisles, 2) choose the order minimizing the number of

additional aisles, and 3) update the seed as an order is added it.

CW II: the Clarke and Wright algorithm (II) in De Koster et al. (1999). See

38

Appendix A.2 for more detail.

RBP: the heuristic route-selection-based batching algorithm

LB: the linear relaxation model of RPP (RPP-LP)

IB: the ideal batching model

Obj: the objective value of an algorithm

ObjL: the objective value of RPP, L stands for a lower bound

ObjU: the objective value of restored solution of RPP, U stands for an upper

bound

CPU: computational time in seconds

LU gap: gap between an objective function value and the RPP-LP objective

function value expressed as a percentage (= (an objective function value

– LB)/(LB) %)

6.2 Experimental results

6.2.1 Computational time and the total travel distance

The performance of the proposed RBP method is compared to FCFS, seed, CWII,

and the LB to understand the relative performance. These problems are computationally

difficult so the total travel distance, the run time and the percentage deviation from the

lower bound are calculated and reported in Table 1. The RBP produced near-optimal

solutions within about 2 minutes and outperformed the seed and the CW II algorithms.

Moreover, RBP improvement over alternative methods was larger for scenarios in which

the number of orders was smaller.

39

Table 1. Computational results over different algorithms

Specifically, in the sort-while-picking strategy, the seed algorithm requires a run

time of 0.2 seconds. However, the LU gap is between 15 and 30%. CW II has a shorter

total travel distance, but took a longer computational time (which was also noted by De

Koster et al. (1999)). As the problem size increased, its computational time increased

exponentially. When the number of orders was 2160, it took on average 137.30 seconds.

RBP demonstrated a considerable improvement in travel distance. The LU gap ranged

from 1.07 to 2.26% when the computational time was limited to 60 seconds, whereas

the best approach identified in De Koster et al. (1999), CW II, showed a gap ranging

from 9 to 14%.

The LU gap of RBP was larger under the sort-while-pick strategy. The increase

in the gap is because RBP produced some batches that were not filled to capacity

because of fixed non-uniform order sizes. Note that this has been partially improved by

forming additional batches by merging these remaining batches using the CW II

algorithm. To investigate additional possibility and improve the solution quality, we

conducted a neighborhood search considering different combinations of batches. We

observed a small performance improvement, i.e., less than 0.2% of the total retrieval

Sort # FCFS Seed CW II RBP LB IB

Strategy orders Obj LU gap Obj CPU LU gap Obj CPU LU gap ObjL ObjU CPU LU gap Obj CPU Obj

Sort- 360 5923.0 57.97% 3549.3 0.00 29.87% 2899.1 0.40 14.14% 2546.9 2546.9 11.47 2.26% 2489.3 0.77 2305.8

while- 720 11892.5 59.80% 6332.3 0.02 24.51% 5501.9 4.96 13.12% 4844.6 4844.6 40.33 1.33% 4780.3 1.83 4615.9

pick 1080 17915.3 60.48% 8970.1 0.05 21.06% 8033.3 16.20 11.86% 7177.2 7177.2 56.95 1.34% 7080.8 2.68 6938.6

1440 23961.0 60.82% 11573.1 0.09 18.88% 10505.0 39.09 10.63% 9504.9 9504.9 60.26 1.23% 9388.3 3.63 9256.0

1800 29989.7 60.95% 14122.7 0.14 17.08% 12942.6 75.68 9.52% 11849.0 11849.0 60.34 1.17% 11710.5 4.58 11587.2

2160 36033.8 61.06% 16605.7 0.21 15.50% 15412.0 137.30 8.96% 14183.3 14183.3 60.40 1.07% 14031.8 5.69 13916.0

Pick- 360 4645.5 55.74% 3147.4 0.01 34.67% 2476.9 0.46 16.98% 2128.7 2128.7 17.54 3.40% 2056.2 4.93 1897.4

then- 720 9342.6 57.37% 5539.1 0.02 28.09% 4659.0 4.79 14.51% 4107.7 4107.7 67.11 3.04% 3983.0 11.98 3814.4

sort 1080 14126.7 57.85% 7967.5 0.05 25.26% 6868.9 14.70 13.31% 6136.5 6160.5 75.30 3.34% 5955.0 12.87 5783.4

1440 18831.5 58.35% 10198.8 0.09 23.09% 8927.0 33.69 12.14% 8076.2 8145.3 96.46 3.70% 7843.7 18.14 7689.6

1800 23522.5 58.55% 12476.8 0.14 21.85% 10979.5 62.21 11.20% 10024.7 10100.9 105.02 3.47% 9750.3 22.80 9614.6

2160 28257.9 58.69% 14683.5 0.20 20.51% 13065.3 104.09 10.66% 12002.4 12108.5 140.54 3.60% 11672.5 27.71 11550.7

40

distance. The details and experimental results are summarized in Appendix A.3.

 While the computational time of RBP and CW II was almost equal under the

sort-while-pick strategy, the run-time of RBP increased under the pick-then-sort strategy,

because the batch packing stage was computationally intensive using the IP bin-packing

algorithm. However, run-times were still smaller than 150 seconds for all cases. While

the IP-based batch packing process may take slightly longer, this is not a significant

computational burden. Note that in both RPP and BPr, the time limit for the branch-and-

bound procedure is 60 seconds, and the solution procedure requires multiple iterations of

BPr.

The seed and CWII algorithms depend on having a large number of orders to

improve performance. When the number of orders was 360 or 720, the algorithms

experienced a large LU gap. Thus, the benefits of RBP are significant for large-size

problems, but are even more prominent when the number of orders is small.

6.2.2 The average travel length per order

The average travel length per order is another metric that can evaluate the

performance of various batching methods, assuming all orders construct similar numbers

of batches. With this objective, a large-size batching problem is preferred since larger

problems can produce more efficient batches, thus reducing trip distance. The previous

methods developed for batching demonstrate a significant improvement in average travel

length per order as shown in Figure 9. The improvement declined as the number of

orders increased. When the number of orders increased from 1800 to 2160, there were

minimal gains in throughput of the order picking system. In all cases, RBP dominated

41

other heuristics in solution quality with very small gaps to IB and LB.

(a) (b)

Figure 9. The average travel length per order with the one-way traversal routing method:
(a) sort-while-pick strategy; and (b) pick-then-sort strategy.

6.2.3 Impacts on picker blocking in narrow-aisle configuration

In narrow-aisle picking systems, the shorter travel length does not guarantee a

shorter retrieval time due to picker blocking (Gue et al., 2006). Thus, we conduct a

simulation study to quantify the effect on picker blocking on the various batching

algorithms. Two situations are considered: a light congestion situation and a heavy

congestion situation. A light congestion environment is defined as: the number of orders

in a time window = 1080 orders, 4 time windows, pick:walk time ratio = 5:1, 5 pickers,

setup time per batch = 120, and cart capacity = 10 orders or 20 items. A heavy

congestion environment is defined as: pick:walk time ratio = 10:1, 15 pickers, and cart

capacity = 25 orders or 50 items.

Figure 10 depicts the comparison of the total retrieval time. RBP was relatively

robust to picker blocking situation, while seed and CW II produced very poor results

under heavy congestion. These findings emphasize the importance of picker blocking

and selecting a batching algorithm that not only reduces travel distance, but also does not

42

create excessive picker blocking.

 (a) (b)

Figure 10. The total retrieval time comparison via a simulation study: (a) light
congestion case; and (b) heavy congestion case.

Other experimental results are summarized in Appendix A.4. RBP demonstrated

consistent performance over other order picking profiles, including variations in both

OPS sizes and storage policies.

6.3 Application: wide-aisle picking systems

The previous framework considered pick areas characterized by one-way narrow-

aisles. The proposed framework described in this study can be extended to operations

with two-way wide-aisle pick areas. The wide-aisle picking system is used in industry to

reduce picker blocking or to accommodate storage/retrieval vehicles.

6.3.1 Two-way traversal routing method

Here, pickers have greater flexibility in route selection. Consider constructing an

extended route set R based on a two-way traversal routing method. The number of

unique routes required grows quickly in the number of aisles. For example, for |A| = 2, 4,

6, 8, 10, 12, the corresponding number of routes is 1, 7, 31, 127, 511, 2047. The number

of routes for any even value of A can be calculated using the following equation:

43

L(A)= |A|C2+|A|C4+|A|C6+..+|A|C|A|, where |A|=2,4,… and |A|Ca =

 .

6.3.2 Computational result

In Table 2, the previous four methods for batching were used in a two-way

traversal routing situation. Further, Figure 11 compares the average travel length per

order in a ten-aisle picking system. The impact of optimally batching was more

significant as the routing methods grew more complex. With the two-way traversal

routing method, RBP continued to dominate CW II and the other methods and the

improvement achieved by using RBP was larger for two-way traversal routing. The RBP

route set included a smaller proportion of the total number of possible routes to attempt

to balance performance with computation time. This is the primary source of the

deterioration of the performance for both RBP and the lower bound estimates.

Table 2. Computational results with the two-way traversal routing method in the ten-
aisle picking system

Sort # FCFS Seed CW II RBP LB IB

Strategy orders Obj LU gap Obj CPU LU gap Obj CPU LU gap ObjL ObjU CPU LU gap Obj CPU Obj

Sort- 360 5385.1 57.42% 2938.6 0.01 21.97% 2833.4 0.43 19.08% 2359.6 2359.6 30.55 2.83% 2292.8 64.78 2063.2

while- 720 10808.0 59.43% 5287.2 0.03 17.06% 5219.4 4.17 15.98% 4476.7 4476.7 60.15 2.05% 4385.1 119.97 4128.7

pick 1080 16242.0 60.16% 7596.5 0.05 14.83% 7597.8 13.57 14.84% 6622.3 6622.3 60.28 2.30% 6470.2 185.28 6206.9

1440 21716.9 60.66% 9883.7 0.09 13.55% 9922.5 31.43 13.89% 8729.0 8729.0 60.41 2.12% 8544.3 258.77 8286.1

1800 27202.7 60.98% 12077.1 0.15 12.12% 12186.6 63.88 12.91% 10833.6 10833.6 60.61 2.03% 10613.7 422.94 10364.8

2160 32725.9 61.25% 14273.7 0.21 11.17% 14506.4 111.40 12.59% 12924.7 12924.7 60.81 1.89% 12679.8 429.91 12443.9

Pick- 360 4243.8 55.79% 2598.4 0.01 27.79% 2385.9 0.49 21.36% 1968.7 1968.7 50.71 4.69% 1876.4 1267.52 1666.5

then- 720 8488.7 57.60% 4622.1 0.03 22.14% 4407.6 4.91 18.35% 3802.5 3802.5 60.76 5.35% 3598.9 6833.24 3343.0

sort 1080 12836.7 58.38% 6681.9 0.05 20.05% 6445.7 17.53 17.12% 5654.0 5654.0 64.55 5.51% 5342.2 13546.39 5070.2

1440 17131.7 59.01% 8576.9 0.09 18.12% 8384.6 42.77 16.24% 7400.1 7416.8 79.92 5.31% 7022.8 19910.84 6752.1

1800 21426.1 59.42% 10527.9 0.14 17.41% 10282.5 85.27 15.44% 9255.8 9314.1 98.83 6.65% 8694.6 16521.80 8436.3

2160 25743.9 59.67% 12423.5 0.21 16.43% 12168.7 146.69 14.68% 11039.6 11073.2 127.08 6.24% 10382.3 24644.21 10137.0

44

(a) (b)

Figure 11. The average travel length per order with the two-way traversal routing
method: (a) sort-while-pick strategy; and (b) pick-then-sort strategy.

7. CONCLUSIONS

This chapter introduced a route-selecting order batching formulation (RSB), its

bound model (RPP-LP), and a heuristic solution procedure (RBP) to solve large-scale

order batching problems. The special structure of RPP was exploited in developing the

formulations and the solution. RBP produced near-optimal solutions in a narrow-aisle

order picking system, where the number of aisles was ten and the number of orders was

2180. The computational time required was about 70 seconds on average, with a

maximum of 140 seconds. The solution quality was demonstrated by comparing with a

tight lower bound developed from the proposed model.

The procedure we have described is an important step toward efficient and

effective DC design/operation, where both space utilization and operational throughput

are major considerations. A narrow-aisle picking area in a DC is advantageous in terms

of space utilization, but produces more picker blocking (Gue et al., 2006; Napolitano

and Gross&Associates, 2003). Solutions by RBP not only shortened the total travel

distance to near-optimal solutions, but were robust to picker blocking.

45

A variety of direct extensions of RBP are possible. We showed the RBP

framework was extendible to wide-aisle picking systems with a two-way traversal route.

Some order picking systems, such as a multiple cross-aisle system (Roodbergen and de

Koster, 2001) and a 2-block warehouse (Le-Duc and de Koster, 2007), can also be

modeled using the RBP batching procedure. In those systems, it is possible to enumerate

available or preferred routes (R) and to define matching relationships between routes and

orders (Or) for general situations. As long as the warehouse manager can construct a

preferred route set (R), the proposed algorithm can solve the problem with only slight

modifications.

Extending this research to consider other routing methods and to explicitly

account for picker blocking will be useful. First, the proposed procedure can be a key

enabler when developing an efficient batching algorithm with different routing methods

as discussed in Section 6.3. Second, picker blocking should be scrutinized and managed

in order picking operations. Our experimental results indicate that using the RBP method

for batching can have significant benefits in terms of reduced picker blocking. However,

productivity loss by picker blocking still remains an issue. These observations provide

motivation for the research described in the next chapters.

46

CHAPTER V

ANALYSIS OF PICKER BLOCKING IN NARROW-AISLE

BATCH PICKING

This chapter identifies sources of picker blocking in batch picking in a narrow-

aisle situation and determines satisfactory operational situations, e.g., batching algorithm,

sorting strategy, for reducing picker blocking. We present new multiple-pick analytical

models to more accurately evaluate picker blocking in a closed-form expression of pick

density and the number of pick faces. We compare the results developed from a

conventional single-pick order picking models to our multiple-pick models to quantify

and identify sources of picker blocking. Note a single pick model assumes there can be

at most one picker per pick face, whereas a multiple-pick model allows multiple picks at

a pick face. Finally, a simulation study over a variety of batching situations is presented.

We highlight three findings for narrow-aisle batch picking processes: 1) variation in

pick density across aisles affects picker blocking as much as the magnitude of pick

density; 2) a near-optimal distance-based batching algorithm can reduce picker blocking

when an appropriate sorting strategy is employed, because it reduces both the number of

aisles visited and the variation in the number of picks per aisle; and 3) the sorting

strategy (i.e., a pick-then-sort strategy or a sort-while-pick strategy) causes varying

amounts of congestion, depending on possible routing options used.

1. INTRODUCTION

We consider a narrow-aisle picking environment, which is very attractive for its

47

storage capability. However, the narrow-aisle configuration can produce picker blocking,

even though one-way traversal routing is used to mitigate congestion (Gue et al., 2006).

Accordingly, the order fulfillment time can lengthen and operational costs increase. In

practice, the effects of batch formation on picker blocking vary according to the batching

algorithm, sorting strategy, and storage policy.

A principle of batch picking is to have pickers gather items that are closely

located within the storage space when feasible. Basically, a batch has a higher pick

density compared to a single order, which leads to higher picker utilizations. Two studies

(Gue et al., 2006; Skufca, 2005) consider a model under a single-pick assumption

defined as a situation in which only a single product type is picked at a particular pick

face. However, in batch picking, the probability of needing to pick more than one

product type at a particular pick face increases. Thus, multiple-pick models that consider

repeated picks at a particular pick face can be useful. Parikh and Meller’s (2010) recent

analytical models of picker blocking considering multiple-picks in narrow-aisle

configurations begin to develop an understanding of the impact of non-deterministic pick

times as well as multiple-picks at a stop on order picking performance.

However, to date, researchers do not fully understand the relationship between

picker blocking and batch formation. Gue et al. (2006) and Parikh and Meller (2010)

have identified two sources of picker blocking as the size and variation of pick density.

However, the impact of batch formation on picker blocking has not been characterized.

It is evident that practical picking situations (i.e., batching algorithm, sorting strategy,

and storage policy) influence batch formation and thus can have differing effects on two

48

sources of picker blocking.

In general, an analytical model characterizing picker blocking with a closed-form

expression in terms of the number of pickers, k, is desirable. The k-picker model can

help researchers analyze the impacts of increasing the number of pickers. The closed-

form expression can suggest diverse numerical analysis over different operations without

the use of simulations. Available analytical studies (Gue et al., 2006; Parikh and Meller,

2009; Parikh and Meller, 2010; Skufca, 2005) develop models of two extreme cases:

pickers’ walk speed is infinite or slow. Neither model exists in practice, but they can

bound actual situations and provide an excellent understanding of picker blocking.

Parikh and Meller’s (2010) two-pickers multiple-pick analytical models for narrow-aisle

configurations raise two issues : 1) the analytical model for the slow walk speed case is

developed based on four combinations of pick and walk tasks of two pickers;

consideration of picking and walking states restricts the extension of the models as well

as increases the computational complexity; and 2) a closed-form expression for the

infinite walk speed case has not been developed; thus their experimental study does not

provide analytical measures of picker blocking for varying pick density. In other words,

similar to a simulation, the experimental study requires a computational calculation.

Note that our study has been conducted independently from Parikh and Meller’s recent

study, but both studies produce similar analytical models and address an identical

opinion which is relevant for the impacts of multiple-picks on picker blocking. Although

Parikh and Meller’s study was published first, we show the differences between two

results. From the standpoint of the analytical models, the differences described above

49

have been identified. In terms of the research aim, however, we focus on both

developing analytical models over multiple-pick situations, and also scrutinizing order

batch picking situations which can give throughput benefits in a narrow-aisle

configuration by satisfying the analytical results (Parikh and Meller cover only the

impacts by multiple-picks on picker blocking).

This chapter develops new analytical models of picker blocking considering

multiple-picks in narrow-aisle configurations, which are simpler compared to Parikh and

Meller (2010) and can facilitate the derivation of two closed-form equations for the

probability of being blocked. Further relevant convergence characteristics are addressed

from the two closed-form expressions. More importantly, we conduct simulation studies

over different batch picking situations to relate characteristics of the picking

environment and picker blocking to determine appropriate batching strategies for high

order picking throughput.

This chapter is organized as follows. Section 2 details the relevant order picking

literature and identifies new research opportunities. Section 3 defines a circular blocking

model. In Section 4, we derive new blocking models under the assumption of two-

pickers and multiple-picks per location. We apply the models to two extreme cases.

Relevant insights about the differences between the multiple-pick models and a single-

pick model and the impacts of the size of variation in batch size are discussed. Section 5

examines the relationship between analytical models and batching situations. Section 6

summarizes the findings and offers suggestions for future research.

50

2. LITERATURE SURVEY

Picker blocking analysis in parallel-aisle picking systems can be distinguished by

the aisle width, which defines the physical form of the system. A narrow-aisle system is

typically characterized by no-passing in an aisle. The picker blocking created by the no-

passing condition is termed in-the-aisle blocking. Skufca (2005) presents a k-picker

congestion model of a circular no-passing system in the case of infinite walk speed. Gue

et al. (2006) address two-picker congestion models of a parallel-aisle pick area

approximated by a circular no-passing system considering infinite and unit walk speeds.

In the unit walk speed, the unit walk time to pass a pick face is identical to the unit pick

time. They also conduct additional simulations to investigate picker behavior under more

practical walk speed assumptions. The authors focus on identifying the effects of ―pick

density‖ on picker blocking under the single-pick assumption. Their results indicate that

a batch picking strategy in narrow-aisle OPSs is advantageous when the pick density is

either very low or very high. Parikh and Meller (2010) find that picker blocking can also

be significant when the variation of the pick density is high. They develop two-picker

congestion models under extreme walk speed assumptions and investigate other

scenarios via a simulation study. A closed-form expression was only derived for the unit

walk speed scenario. Their unit speed Markov chain model is relatively complex

compared to our model. In addition, their analytical model over the infinite walk speed

scenario experiences a gap compared to our result which is independently conducted and

more clearly satisfies a common characteristic of picker blocking models. Both issues

will be discussed in Section 4.

51

A wide-aisle system experiences a different type of picker blocking, referred to

as pick face blocking. Parikh and Meller (2009) investigate analytical models under both

the single-pick and multiple-pick assumption. The multiple-pick model, which allows a

picker to repeatedly pick at a pick face, can reflect a more realistic situation. The authors

indicate that the variation of pick density plays a vital role in increasing picker blocking

and find that the wide-aisle picking systems can encounter significant pick face blocking

when multiple picks occur at a pick face. Their comparison of the two models points to

the equal importance of the variation of pick time as well as the variation in pick density.

Several comparison studies to select a best-performing batching algorithm (De

Koster et al., 1999; Ho and Tseng, 2006; Pan and Liu, 1995; Ruben and Jacobs, 1999)

have been conducted during the last two decades. However, most studies (De Koster et

al., 1999; Ho and Tseng, 2006; Pan and Liu, 1995) evaluate performance in terms of

travel distance; only Ruben and Jacobs (1999) study the relationship between picker

blocking and batching algorithms. The latter authors indicate that the level of congestion

is affected by the selection of batching procedures and storage policies, although they

don’t provide a clear rationale for the congestion. Through simulation studies, they find

that a turnover-based storage policy, where popular products with large demand are

stored based on shortest-possible travel retrieval, generates more congestion than family-

based, where higher-demand products are stored closer together, or random storage

policies. Their blocking model approximates congestion by splitting an aisle in two and

disallowing other pickers to access an occupied area. This type of unique control policy

leads to different levels of congestion compared to recent studies (Gue et al., 2006;

52

Parikh and Meller, 2009; Skufca, 2005).

Reviewing the available literature, we identify two critical issues with respect to

the expression and analysis of picker blocking. First, the multiple-pick picker blocking

models by Parikh and Meller (2010) are complex and inaccurate. To establish a Markov

property, their analytical model for the slow walk speed case requires four sub states of

the pick and walk tasks of two pickers; consideration of pick and walk states restricts the

extension of the models as well as increases the computational complexity. In addition

their model lacks a closed-form expression of infinite walk speed despite the fact that

this type of expression can facilitate additional analysis of picker blocking.

Second, no analytical studies have fully investigated the relationship with the

batching algorithm even though, in practice, the batching algorithm may change both the

pick density level and its variation. Ruben and Jacobs’s (1999) result fails to explain

picker blocking in connection with batching algorithms, and there is no clear theoretical

rationale for the congestion. Gue et al.’s (2006) notion, i.e., less picker blocking when

pick density is very low or very high, also requires additional investigation as Parikh and

Meller (2010) finds a higher picker blocking situation. Furthermore, since both Gue et al.

and Parikh and Meller do not conduct their studies on batch picking environments, their

results do not explain practical situations.

3. PROBLEM DEFINITION

3.1 Batch picking in narrow-aisle picking systems

In narrow-aisle picking systems, pickers circumnavigate one-way aisles to

retrieve items from shelves and place them in a cart as shown in Figure 12. When an

53

aisle includes no items assigned to the picker, the aisle can be skipped to shorten the

travel distance, but the unidirectional characteristic of the aisles must still be maintained.

In practice, the order size is relatively small compared to the cart capacity; thus, orders

may be batched to reduce total retrieval time by allowing pickers to collect multiple

orders in the same trip. Orders cannot be split between multiple batches, and batch size

is determined by the cart’s carrying capacity.

Figure 12. A narrow-aisle system and a routing example (modified from Gademann and

Van de Velde (2005)).

In a narrow-aisle picking system, picker blocking can occur when multiple

pickers traverse a pick area while maintaining a no-passing restriction. An upstream

picker cannot pass a downstream picker as shown in Figure 13.

Figure 13. Picker blocking (Parikh and Meller, 2009).

54

3.2 Throughput model

Order picking systems are often characterized by the ratio of time spent to pick

an item(s) to time spent at a stop. This ratio will be strictly less than one when picker

blocking occurs. Gue et al. (2006) introduce a throughput model for an order picking

system with k pickers in a single-pick situation. To reflect a multiple-pick situation, we

generalize their model as Equation (5.1). When each picker is blocked b(k) fraction of

the time, 0 ≤ b(k) ≤ 1, the throughput is

    kb
ttp tE

p tE
kk

wp















 1

][

][


,

 (5.1)

where E[pt] stands for the expected number of picks at a stop. The time to pick (tp)

represents the average time the picker is stopped and includes the time spent picking

items. The time to walk (tw) indicates the average time to walk past a pick face (location).

In a single-pick model, E[pt] is equal to p (Gue et al., 2006), but a multiple-pick model

is affected by the number of expected picks at a particular pick face as described in

Parikh and Meller (2009).

3.3 A circular order picking aisle model

To simplify the analysis of the picker blocking phenomena in a narrow-aisle

picking system, a parallel-aisle system is often modeled as a circular order picking aisle

(Gue et al., 2006) as shown in Figure 14. In developing the blocking models, we assume

the following: 1) the circular order picking aisle consists of n pick faces; 2) two pickers

perform the order picking; 3) they take a one-way traversal route, meaning that they

travel through that aisle in only one direction (or in the circular model this implies that

55

they move only in a clockwise direction); 4) pick time is constant regardless of the pick

face characteristics, such as shelf height; 5) at a pick face, pickers pick with a probability

p; q denotes 1-p, the probability of walking past a pick-face; 6) a picker can only be

picking, walking, or standing idle due to blocking; 7) the pick time and the walk time

between two pick faces are deterministic, termed as tp and tw, respectively.

Figure 14. A circular order picking aisle (Gue et al., 2006).

As a performance measurement, we obtain the percentage of time blocked,

denoted as bm
pt:wt(k), where m stands for a multiple-pick situation and pt:wt represents

the pick:walk time ratio. In the case of a single-pick situation (s), Skufca (2005)

previously derived the analytical model for bs
1:0(k). Gue et al. (2006) studied single-pick

models, i.e., bs
1:1(2) and bs

1:0(2), analytically, and generalized to other cases (e.g.,

b
s
1:0.5(2), bs

1:0.25(2),…, b
s
1:1(10)) using simulation models. Parikh and Meller (2010)

conducted another study for multiple-pick models (bm
1:1(2) and bm

1:0(2)), where the

analytical model for bm
1:1(2) is presented in a closed-form expression using a discrete

Markov chain with 4(n-1) states, and bm
1:0(2) is built on (n+1) state Markov chain, but

does not have a closed-form expression.

56

3.4 Scope of study

We wish to develop new analytical models for bm
1:1(2) and bm

1:0(2) 5 and to

investigate the more general case bm
pt:wt(k) over varying pick density variation, e.g.,

different pick density functions, using a simulation study in a circular order picking aisle.

For a more complete understanding of picker blocking and batch picking and their

relationships to other aspects of warehouse operations, we conduct an extended

simulation study considering batching algorithms, sorting strategies, and storage policies

in a parallel-aisle picking system.

4. ANALYSIS OF PICKER BLOCKING

We first build analytical models for two order pickers who conduct a retrieval

operation in a parallel-aisle picking system using the circular aisle characterization to

develop a general understanding, and then conduct a simulation study to reinforce the

significance in more practical situations.

Our analytical study considers two extreme cases that do not exist in practice but

provide bounds for realistic situations as well as help provide an excellent understanding

of picker blocking: 1) walk speed is equal to unit pick time per pick face (pick:walk time

= 1:1); and 2) walk speed is infinite (pick:walk time = 1:0). Our analytical model

utilizes a Markov property in determining distances between two pickers, which is

consistent with prior work, see also (Gue et al., 2006; Parikh and Meller, 2009; Skufca,

2005).

5 Our models replace and correct the Markov chains in Parikh and Meller (2010). First, we

introduce a new Markov chain independent of picking or walking information in the infinite walk speed
case. Second, we present an accurate Markov chain model to derive a closed-form expression of the unit
walk speed case.

57

4.1 Pick:walk time = 1:1

Let Dt denote the distance between picker 1 and picker 2 at time t. Given the

pick:walk time ratio is 1:1, the distance can be expressed as

(n + (picker 1 position) − (picker 2 position)) mod n (5.2)

and ranges from 1 to n-1. A Markov chain is introduced by defining state St = Dt, where

St = 0 represents picker 1 blocking picker 2 and state St = n represents picker 2 blocking

picker 1. In other words, there are two blocking states and n-1 distance-related states. All

states can be summarized by the vector [blocked, 1, 2, … , n-1, blocked].

These states allow us to distinguish four transition cases: 1) transition between

unblocked states; 2) transition from an unblocked state to a blocked state; 3) transition

from a blocked state to an unblocked state; and 4) transition between blocked states.

1) Transition probabilities between unblocked states

If both pickers pick (p*p) or walk (q*q), the current distance (Dt) does not

change at t+1. However, when picker 1 picks while picker 2 walks (p*q), the distance

decreases by 1. When picker 1 walks while picker 2 picks (q*p), the distance increases

by 1.

2) Transition probabilities from an unblocked state to a blocked state

When the distance from picker 1 to picker 2 is 1, a blocked state can arise if

picker 1 picks (with probability p) and picker 2 walks (with probability q). Vice versa,

when the distance from picker 1 to picker 2 is n-1, the current state becomes a blocked

state if picker 1 walks (with probability q) and picker 2 picks (with probability p).

58

3) Transition probabilities from a blocked state to an unblocked state

If picker 1 is blocked by picker 2, picker 1 must wait for picker 2 to walk (with

probability q) to exit a blocked state. Vice versa, when picker 2 is blocked by picker 1,

picker 2 must wait for picker 1 to walk (with probability q).

4) Transition probabilities between blocked states

When the current state is blocked, a pick can occur with probability p and the

blocking status remains, i.e., a blocked state transitions to a blocked state with

probability p.

In sum, when multiple picks are allowed, the transition probabilities can be

described in a transition diagram as illustrated in Figure 15.

Figure 15. State space and transitions for the Markov chain model when picking time
equals travel time.

The Markov chain model in Figure 15 does not include substates of picking or

walking as the Gue et al. (2006) and Parikh and Meller (2010) models. Thus the

transition matrix is more condensed. The resulting transition matrix, which has

dimensions (n+1) x (n+1), is:

59







































pq

pqqppq

pqqp

qppq

pqqppq

qp

A

0000

000

000

000

000

0000

22

22

22

22















Stationary distribution

We obtain the following v, which satisfies vA = v.









 1,

1
,,

1
,1

pp
v 

The stationary density using ||v|| is scaled to obtain a stationary probability. From

v above, this implies:

 
p

n

p
nv

1
2

1
112




The blocking probability of one picker at one blocked state is

 
121

2

1
2 *1

1:1








np

p

p

nv

v
b m (5.3)

Equation (5.3) is identical to the results by Parikh and Meller (2010), whose

transition matrix has dimensions 16*(n-1) x (n-1). Figure 16 plots percentage of time

blocked over different number of aisles (n). The 1:1 picker blocking model estimates a

smaller productivity loss when the picking area includes more pick faces as shown:

60

Figure 16. The percentage of time that pickers are blocked over different number of pick
faces when two pickers work with pick:walk time = 1:1.

Productivity loss over pick density starts from 0, increases as pick density

increases, and converges to 1/(n+1) as pick-density approaches 1. This result is

summarized in the following theorem.

Theorem 1. When two pickers travel at unit speed, the percentage of time

blocked is at least 0 and at most
1

1

n
 .

Proof. (5.3) is a monotonic increasing function. Its limiting value is 0 when p

goes to 0 and 1/(n+1) when p goes to 1 as follows: 0
12

lim
0


 pn

p

p
,

1

1

12
lim

1 


 npn

p

p
. The result is

1

1
% blocked time0




n
. End of proof.

Figure 17 compares the relationship between a multiple-pick (m) model and a

single-pick model (s) over two different numbers of pick faces (20 and 50 pick faces).

Here, the x-axis is the average number of picks, not pick density. As Equation (5.1)

61

indicated, the throughput comparison over identical workloads (i.e., the number of picks)

can express the impact of picker blocking. The multiple-pick results are monotonically

increasing, while the single-pick results, developed by Gue et al. (2006), show a drop in

picker blocking at high pick requirements.

Figure 17. The comparison of single-pick and multiple-pick models when two pickers
work with pick:walk time = 1:1.

Note that the proposed discrete-time Markov chain of picker blocking for

multiple-picks with a pick:walk time = 1:1 differs from Parikh and Meller (2010) in that

the distance is not conditioned on the operation modes of the pickers (i.e., walking or

picking). As we addressed above, when multiple-picks are allowed, a Markov property

of distance holds regardless of the previous walking or picking status. The conditional

multiple-pick model is summarized in Appendix B.1, which is similar to the Parikh and

Meller (2010) model. Moreover, the approach described in this chapter is applicable in

wide-aisle systems discussed in Parikh and Meller (2009) (see Appendix B.2).

4.2 Pick:walk time = 1:0

The infinite speed assumption allows for transitions to multiple states in our

62

Markov chain model. Thus, the probability that a picker moves distance x is

approximated, and then a probability function for the distance y, characterizing the

change in the distance between the two pickers, is estimated.

Let random variables X1
t and X2

t represent the number of locations moved in time

t by pickers 1 and 2, respectively. If a picker picks more than one pick at a pick face, the

distribution of the location is defined over the infinite sample space with a random

variable characterizing the number of locations between two pickers:

  ,...2,1,0 for  xpqxf x . (5.4)

Yt = X1
t - X2

t denote the change in distance between the two pickers when passing

is not allowed. As described in Appendix B.3, the probability density function of Yt (g(y))

becomes:

  


 y
q

pq
yg

y

-for
1

 (5.5)

Suppose the distance at the previous state is Dt−1 = r. The actual change in

distance is bounded by the physical blocking phenomenon and the amount of the change

is limited by r. Like the previous 1:1 analysis, four transition cases are defined: 1)

transition between unblocked states; 2) transition from an unblocked state to a blocked

state; 3) transition from a blocked state to an unblocked state; and 4) transition between

blocked states.

1) Transition probabilities between unblocked states

In this case, the distribution function (5.5) is used directly. Given r, the change is

bounded between 1 and n-1 ruling out the possibility of the first picker catching up to the

63

second picker.

  1,...,1,1-1for
1




 nrrnyr
q

pq
yYP

y

t

2) Transition probabilities from an unblocked state to a blocked state

The next step is calculating the probability of events with blocking. To obtain

this probability, we need to accumulate all cases above the limits (0 or n). We note that

there will be blocking at state 0 if Yt ≤ −r. g(y) is symmetric and the probabilities for the

bounding cases are calculated as:

  11for ,

1

1

1

1

1









 





nr
q

q

q
q

q

p

q

pq
rYP

r
r

ry

y

t

  11for ,
1

 





nr
q

q
rnYP

rn

t

3) Transition probabilities from a blocked state to an unblocked state

The distribution function (5.5) is again used directly. Note that r is 0 or n when a

picker is blocked. Since the blocked picker walks first, initially, the distance between

two pickers also becomes 0 or n.

  nrrnyr
q

pq
yYP

y

t or 0,1-1for
1






4) Transition probabilities between blocked states

Similar to 3), r = 0 or n express the blocked states. Without loss of generality, the

probabilities in 2) are applicable. Thus, expressions for both the lower bound and the

upper bound are as follows:

  or 0for ,

1
 nr

q

q
rYP

r

t 




64

  or 0for ,

1
 nr

q

q
rnYP

rn

t 





The probabilities that we derive are similar to Parikh and Meller (2010) with one

exception. While managing the transition from blocked (0) to blocked (n) or blocked (n)

to blocked (0), the equation above uses)1(qqn  from the transition probability 4),

which differs from)1(2 qqn  in Parikh and Meller. Since they do not offer any

comment on both values, the reason cannot be identified. Instead, we use a

computational comparison, which will be discussed later.

The result forms the following transition matrix:







































































qq

pq

q

pq

q

pq

q

pq

q

q

q

q

q

p

q

pqpqpq

q

q

q

q

q

pqpq

q

q

q

q

q

pq

q

pq

q

q

q

q

q

pq

q

pq

q

pq

q

p

q

q

q

q

q

pq

q

pq

q

pq

q

pq

q

A

nnn

nnn

nn

nn

nnn

nnn

1

1

11111

111111

1111

1111

111111

111111

1

221

321

232

232

123

122



















Stationary distribution

To identify a stationary distribution, a v which satisfies vA = v is identified as:

 1,,...,,1 ppv 

We can scale the stationary density using ||v|| = 2+(n-1)p. The blocking

probability of a picker at one blocked state is:

65

 
 pn

bm

12

1
20:1




 (5.6)

Because of the differences in the expression for the transition probabilities from

blocked (0) to blocked (n) or blocked (n) to blocked (0), the results given by the 1:0

analytical model we propose have a 0.032 to 0.170% error gap compared to the results

from Parikh and Meller’s (2010) model. According to Parikh and Meller (2009), when p

= 1, both  21:1
mb and  20:1

mb should converge to the same value regardless of walk speed.

A high pick density leads to the same congestion situation, which is observed in single-

pick narrow-aisle models (Gue et al., 2006) and wide aisle models (Parikh and Meller,

2010). When p=1, the equation in our 1:0 analytical model satisfies the general

knowledge, but Parikh and Meller’s model experiences a gap of 0.0083% when the

number of pick faces = 20.

As the function is derived, the convergence characteristic of the 1:0 model can be

investigated, and the following theorem is observed.

Theorem 2. When two pickers travel at infinite speed, the percentage of time

blocked is at most 50% and at least
1

1

n
.

Proof. (5.6) is a monotonic decreasing function. There are two limiting

characteristics. As p goes to 0, the upper limiting value is
  2

1

12

1
lim

0


 pnp
. The

lower limiting value is 1/(n+1) as follows:
  1

1

12

1
lim

1 


 npnp
.

66

The result is
2

1
 % blocked time

1

1


n
. End of proof.

Figure 18 depicts the productivity loss over different numbers of pick faces.

Picker blocking starts from picker utilization 50%, decreases as pick-density increases,

and converges to 1/(n+1). As we observed in the 1:1 model, larger areas are less

susceptible to picker blocking than smaller areas.

Figure 18. The percentage of time that pickers are blocked over different number of pick
faces when two pickers work with pick:walk time = 1:0.

Figure 19 compares a multiple-pick (m) model and a single-pick model (s) over

20 pick faces and 50 pick faces. The percentage of time blocked for both the multiple-

pick and single-pick models decreases monotonically as pick density increases. However,

the multiple-pick results consistently experience a higher percentage of time blocked.

Moreover, as Equation (5.6) indicated, the percentage of time blocked for the multiple-

pick model goes to 1/(n+1), not to 0.

67

Figure 19. The comparison of single-pick and multiple-pick models when two pickers
work with pick:walk time =1:0.

From theorems 1 and 2, a further important result can be derived.

Theorem 3. As pick density goes to 1, the percentage of time blocked converges

to
1

1

n
when there are two pickers.

Proof. This proof is a direct extension of the previous results. When the walk

speed is equal to the pick time, we can use Equation (5.3) as follows:

1

1

12
lim

1 


 npn

p

p
. When pickers walk at infinite speed, Equation (5.6) experiences

the same convergence:
  1

1

12

1
lim

1 


 npnp
. End of proof.

4.3 Simulation study

The two analytical models are based upon three assumptions: 1) extreme

pick:walk time ratio; 2) a Markov property in distance between pickers; and 3) the

68

circular approximation to a parallel aisle order picking area. Below, assumptions 1 and 2

will be relaxed and investigated via a simulation study; assumption 3 will be maintained

in Sections 4 and 5. Appendix B.4 discusses the validation of our analytical models and

simulations by cross comparison among our analytical models, our simulation models,

and Parikh and Meller’s (2010) results.

4.3.1 Fractional walk speed

In practice, pickers are not extremely fast or slow. If the pick time is 1, most

practical speeds for walking are on the range [0.05,1] (Gue et al., 2006). For example,

our literature review found a fast speed would have a pick to walk ratio of 1:0.1

(Petersen, 2000) and a slow speed would have a ratio of 1:0.2 (Yu and De Koster, 2009).

We conduct a simulation study with pick:walk time = 1:0.025, 1:0.05, 1:0.1, 1:0.2, and

1:0.5. Figure 20 illustrates the simulations’ results of a two-picker model (labeled a) and

a five-picker model (labeled b). Solid lines are the results with pick:walk time = 1:0,

1:0.025, 1:0.05, 1:0.1, 1:0.2, 1:0.5, and 1:1 from top to bottom. The upper dotted line is

an analytical result with pick:walk time = 1: 0. The lower dotted line is an analytical

result with pick:walk time = 1:1.

As pick density increases, the percentage of time blocked converges to

approximately the value derived in Theorem 3. For example, when p = 0.95, in Figure 20

(a) ranges [4.53, 5.00] of throughput loss by picker blocking in a 20-pick face circular

picking system with two pickers. According to Theorem 3, the loss is 1/21 = 4.76 when

two pickers are in the order picking system. Figure 20 (b), using five pickers, converges

to [3.79, 3.86]. Our observation indicates that the multiple-pick characteristic of batch

69

picking increases picker blocking. In addition, picker blocking is an issue regardless of

variation of pick density in a narrow-aisle order picking. This result supports the

observations of Parikh and Meller (2010) in a narrow-aisle order picking and Parikh and

Meller (2009) in a wide-aisle order picking.

(a) (b)

Figure 20. The percentage of time blocked over different pick:walk time ratios: (a) two
pickers in 20 pick faces; and (b) five pickers in 100 pick faces.

4.4.2 Non-Markov property in distance: Variation of the number of picks

In multiple-pick and single-pick analytical models, the number of picks in a trip

(from the first pick face to the last pick face) is determined to maintain a Markov

property of the distance between two pickers. That restriction is relaxed and investigated

via simulation. A simulation model developed with the same pick probability restrictions

as the single-pick analytical model (Gue et al. (2006)) is used. Several models are

considered: a simulation model generated with the restrictions in the multiple-pick

analytical model (described above), a fixed-size model (the number of picks in a trip is

constant), and a uniform-size model (the number of picks in a trip follows a discrete

uniform distribution [mean/2, mean *3/2]).

70

Figure 21(a) depicts the relationship between the percentage of time blocked and

―the number of picks‖ for different assumptions regarding the distribution of items and

Figure 21 (b) illustrates the relationship between ―the number of picks‖ and the variation

of ―the number of picks‖ for different assumptions regarding the distribution of items. A

high variation in the number of picks per trip results in more severe picker blocking, and

conversely, even if the number of picks in a trip is large, i.e., pick density is high and

multiple-picks are allowed, if the variation in the number of picks is low there is less

picker blocking (i.e., fixed-size instance). Our observation extends Parikh and Meller’s

(2010) finding that variation of the number of picks in a trip is of similar importance as

variation of pick time at a stop. In general, the order batching has additional flexibility to

group orders into batches, thus, less variation of the number of picks in a unit distance

can be constructed reducing picker blocking.

(a) (b)

Figure 21. Simulation results over different workload distributions (the number of
pickers = 5, the number of pick faces = 100, and pick:walk time = 1:0.2) : (a) the
percentage of time blocked; and (b) the standard deviation of the number of picks
(workload).

71

5. COMPARISON STUDY IN PARALLEL-AISLE PICKING SYSTEMS

Another difficulty encountered when analyzing picker blocking in real picking

situations arises due to the multiple-aisles characteristic and impacts by routing. In this

section we describe an extended simulation study in a parallel-aisle order picking system.

In particular, in a parallel-aisle order picking system with multiple aisles, decreasing the

travel distance is a primary concern of management. Thus, a batching algorithm to

efficiently reduce the travel distance is developed. In addition, a sorting strategy and a

storage policy often are changed to maximize the retrieval performance (Frazelle, 2002;

Tompkins et al., 2003). The batching algorithm, sorting strategy, and storage policy can

increase the expected number of picks at a stop, but they also impact picker blocking

(b(k)). This section describes the effects of the batching algorithms, sorting strategies,

and storage polices on picker blocking.

5.1 Simulation design

Various batching algorithms are available. Specifically, large-scale order

batching situations will be considered, thus the comparison is limited to those that can

handle large problems sizes. From the available literature, the following are considered:

 Seed: the seed algorithm developed in De Koster et al. (1999): 1) select a

seed having the largest number of aisles; 2) choose the order minimizing

the number of additional aisles; and 3) update the seed as an order is added

to it.

 CW II: the Clarke and Wright algorithm (II) in De Koster et al. (1999). See

Appendix B.5 for more detail.

 RBP: the heuristic route-selection-based batching algorithm. See Chapter

IV and Appendix B.6 for more detail.

72

Seed and Clarke and Wright (CW) II are identified as the best algorithms in de

Koster et al.’s comparison study (1999). The route-selection batching procedure (RBP)

is a near-optimal batching algorithm discussed in Chapter IV.

A sorting strategy impacts the batching algorithms by affecting the units of

measure determining the batch size. Basically, the pickers carry bins or boxes on the cart

to store each order separately in a ―sort-while-pick‖ operation. Thus, the batch size is

determined by the number of bins, i.e., the number of orders. Another strategy, ―pick-

then-sort‖, does not carry bins (but it does require a sorting operation after the

completion of the picking operation). In this case, the picker does not need to carry bins

and separate orders, rather he/she can mix orders on the cart and orders can be batched to

maximize capacity.

Products are typically stored in warehouses to minimize retrieval efforts. In

general, a class-based storage policy stores the more frequently requested items closest

to the loading station to reduce the trip distance in contrast to a random storage policy

where items are stored in random locations in the warehouse.

Consider a general order picking situation: the number of orders in a time

window = 540 orders, eight time windows per shift, pick:walk time ratio = 5:1, setup

time per batch = 0, average order size = two items (uniform [1,3]), five pickers, and cart

capacity = 10 orders when sort-while-pick strategy and 20 items when pick-then-sort

strategy. A two-aisle system and a ten-aisle system with identical total number of pick

faces as 100 are considered to investigate the effects of pick density. While the two-aisle

system is similar to a circular aisle model, the ten-aisle system captures the effects that

73

asiels can be skipped as long as the one-way travel within aisles is maintained. The

number of simulation runs per instance (i.e., 20 runs per instance) following Ruben and

Jacobs (1999). The percentage of time blocked and the standard deviation of the number

of picks in an aisle (STD) are compared across scenarios.

5.2 Experimental results

Figure 22 shows the total travel distance and the total retrieval times for eight

different situations, while Figure 23 depicts the productivity loss for each batching

algorithm. The two-aisle instances of FCFS in Figure 23 (a) is very similar to Gue et al.

(2006). The productivity loss is approximately 1~3%. In the two-aisle models, other

batching algorithms have similar or slightly better picker utilization, because there is a

very small reduction of the total travel distance by decreasing the number of trips.

In the ten-aisle instances, the FCFS procedure in Figure 23 (a) shows a small

percentage of time blocked, approximately 1.5~4.2%. However, with respect to overall

performance, other batching algorithms achieve significantly larger reductions in the

travel distance (Figure 22 (a)) and overall throughput improvement which is inversely

related to the total retrieval time shown in Figure 22 (b). For batching algorithms other

than FCFS, a productivity loss by picker blocking becomes an issue as noted by

discussed in Section 4.3 and Parikh and Meller (2010).

74

(a)

(b)

Figure 22. Comparison over different batching algorithms of: (a) total travel distance;
and (b) total retrieval time.

75

(a)

(b)

(c)

(d)

Figure 23. The percentage of time blocked and standard deviation of the number of picks
per aisle over different batching algorithms: (a) FCFS; (b) seed; (c) CW II; and (d) RBP.

76

 The results of the experiments provide insights regarding batching algorithms,

sorting strategies, and storage policies as follows:

1) Solution quality of batching algorithm impacts picker blocking when an appropriate

sorting strategy is employed.

 The seed algorithm creates heavy congestion compared to FCFS, because the

algorithm increases pick-density. CWII shows less picker blocking compared to the seed

algorithm. However, the RBP solution exhibits less congestion due to reduced travel

distance. Furthermore, the standard deviation of RBP is less than the standard deviation

of the seed algorithm, and is less or a little more than the standard deviation of the CW II

algorithm. Intuitively, an improved distance-based batching algorithm could encounter

more congestion. However, RBP reduces congestion due to large reductions in the

distance traveled, and relatively reasonable variation of picks per aisle as shown in

Figure 23.

2) Sorting strategy impacts picker blocking when combined with RBP.

When the sorting operation is combined with an appropriate OPS size (i.e., the

number of aisles) and as the solution quality of batching algorithms is close to optimality,

e.g., RBP in most scenarios and CW II in a few particular cases, a distance-based

batching model performs well in terms of picker blocking. In the two-aisle picking

system with a single route, the pick-then-sort strategy experiences less picker blocking

as shown in Figure 23 (d). Vice versa, in the ten-aisle pick system characterized by

several routing lengths ((five cases of number of aisles visited: 2, 4, 6, 8, and 10), the

sort-while-pick strategy is advantageous (see Figure 23 (d)).

77

In the two-aisle picking system, only single route is available under the traversal

routing method. The pick-then-sort strategy determines the batch size by the number of

picks. Then, the variation of picks across batches is 0 if batches are consolidated

optimally. Accordingly, the variation of picks per aisle is 0, which is similar to a ―fixed-

size‖ case (see Section 4.4.2). Thus, RBP reduces picker blocking, whereas the sort-

while-pick strategy packs each batch with a constant number of orders. Thus, the number

of picks across batches can vary within range of the batch size * the order size. The sort-

while-pick strategy results in greater picker blocking compared to the pick-then-sort

strategy in the two-aisle picking situation.

The ten-aisle picking system faces a different situation as the number of aisles

visited across batches becomes diverse. When the sorting operation is separated from the

order picking operation (pick-then-sort strategy), there is more variation of the number

of picks per aisle across batches. Intuitively, a batch should contain the same number of

items, but the number of aisles visited is not identical. Thus, the variation of the number

of picks per aisle among batches varies widely, as do the route lengths.

In the sort-while-pick strategy, less variation of picks per aisle can be achieved

while obtaining a high quality solution. The sort-while-pick strategy constrains each

batch to have the same number of orders, not number of items. A batch with a long route

may include orders passing more aisles. To pass more aisles, each order may contain

more items. Then, the batch with a long route may include more items because the batch

size is determined by the number of orders, and vice versa. In conclusion, the expected

number of picks of a batch will typically be proportional to the length of route, i.e., the

78

number of aisles visited, as batches are packed more optimally. Thus, compared to the

pick-then-sort strategy, this characteristic can produce less variation of the number of

picks per aisle, which reduces picker blocking.

3) Similar to Ruben and Jacobs (1999), class-based storage policies increase picker

blocking.

When a class-based storage policy is applied, picker blocking increases as Ruben

and Jacobs observed. Even though the RBS algorithm implements a sort-while-pick

strategy (Figure 23 (d)), the productivity loss due to congestion is 7.5%. In other words,

the class-based storage policy offsets the gain of the travel distance with the losses

related to picker blocking as shown in Figure 22. The previous observation (impacts by

near-optimality and sorting strategy) is still valid since each aisle stores items evenly

under the class-based storage policy.

6. CONCLUSION AND FURTHER STUDY

This chapter provided a new understanding of picker blocking in a narrow-aisle

batching picking situation and scrutinized the relationship between picker blocking and

order batching using both analytical models and simulation studies. New analytical

models of two specific conditions in two-picker order picking situations (a slow walk

speed and an infinite walk speed) are developed. Specifically, two closed-form

expressions were derived and the relevant convergence characteristics addressed.

Diverse simulations were conducted varying several warehouse policies including the

batching algorithm, the sorting strategy, and the storage policy. Most importantly,

simulation results showed that a near-optimal distance-based batch algorithm (RBP)

79

creates very little picker blocking. Furthermore, the sorting strategy affects the variation

of the number of picks in an aisle, thus making specific sorting strategies (sort-while-

pick) more effective in large facilities.

These experimental results reveal that batch strategies faces different levels of

picker blocking and identify the conditions under which blocking can be reduced. First,

we verified the importance of pick density on picker blocking (Parikh and Meller, 2010).

Second, the distance-based batching (RBP) algorithm lessened picker blocking, because

of a very significant reduction in the travel distance and a relatively uniform pick density.

Third, a sort-while-pick strategy induces less picker blocking when a RBP was used in a

large facility.

80

CHAPTER VI

BATCH PICKING IN NARROW-AISLE ORDER PICKING SYSTEMS WITH

CONSIDERATION FOR PICKER BLOCKING

Reducing the time spent picking orders benefits warehouse operations by

decreasing the resources required and by improving response time. The two primary

components of the time spent picking orders are traveling time and blocking time. This

chapter proposes a batching and sequencing procedure called the indexed batching

model (IBM) with the objective of minimizing an aggregation of travel distance and

congestion delay. The IBM differs from the traditional batching formulation in that it

assigns orders to indexed batches, where a batch index represents the batch’s release

sequence. A mixed integer programming solution for exact control is developed and a

simulated annealing procedure for a large-scale environment is demonstrated. Our

results indicate that the integrated batching-and-sequencing approach achieves the

throughput improvement not realized by the traditional approaches and allows for the

development of batch picking strategies that are ideal for narrow-aisle order picking

systems.

1. INTRODUCTION

DCs are constantly challenged to reduce the cost of their operations and to

become more efficient. One common way to lower costs per unit shipped is to increase

space utilization (Napolitano, 2009). According to the recent warehouse operations

survey (Napolitano, 2008), the warehousing industry has three major cost sources:

81

inventory, investment, and order processing. For example, rising inventories often force

warehouses to store more goods in less space (Gue et al., 2006; Napolitano, 2009).

Narrow-aisle picking systems are one alternative to increase space utilization with

minimal investment costs. However, the narrow-aisle characteristic can add to order

picking costs due to longer travel and more congestion (Gue et al., 2006). Small order

sizes exacerbate the problem, because they require more trips through the picking area.

Implementing an efficient batch order picking strategy can help to reduce operational

costs in a narrow-aisle order picking environment with small order sizes.

However, the combination of narrow-aisle OPS and a batch picking strategy can

suffer from significant operational performance loss and control difficulties related to

picker blocking (Gue et al., 2006; Parikh and Meller, 2010). As more pickers travel in a

picking area, well-designed control policies can reduce travel distances or improved

design of the facility may elevate these congestion issues (Zhang et al., 2009).

Traditionally, an OPS can be designed with wide aisles to create less blocking, or can be

operated using zone picking, where each zone contains a single picker. However, both of

these approaches are not viable in many cases due to additional space (or cost)

requirements.

Other approaches employ routing alternatives. Zhang et al. (2009) provide an

alternative routing method where the path is dependent on the congestion amount. Gue

et al. (2006) briefly introduce a routing strategy where a downstream (= blocking) picker

exits an aisle and circulates back behind an upstream (blocked) picker using an empty

aisle when there is significant congestion. However, the alternative paths or averted

82

routing approaches may lengthen a trip compared to the original route, and can be

challenging to implement in practice.

Control policies to trade off travel distances and time blocked have not been

addressed in the academic literature. Thus, the goals of this chapter are: 1) develop a

control framework combining order batching and sequencing issues; 2) present a

practical solution procedure to solve the integrated batching and sequencing problem;

and 3) vary the order picking environments to investigate the performance of the

proposed strategy. A new batching framework is developed including the sequencing

problem. The proposed model is formulated as a mixed integer program (MIP). This

formulation can only be solved optimally for small size problems. To overcome this

limitation, we adapt a simulated annealing heuristic approach.

The chapter is organized as follows. Section 2 briefly reviews related studies. In

section 3, a concise batching framework to handle blocking is developed. The

framework considers a picking area with one-way aisles and uses insights from flow-

shop scheduling problem to identify strategies to reduce picker blocking. Section 4

develops an indexed batching framework to address in-the-aisle picker blocking. Section

4 also addresses the sequencing of batches, how the multiple aisle impacts the

framework, and how the proposed model can handle multiple trips. In Sections 5 and 6,

we formulate a MIP and develop a simulated annealing heuristic solution approach,

summarize the results, and discuss the importance of the findings.

2. LITERATURE SURVEY

When operational costs due to picker blocking are excessive, engineers prefer

83

alternative OPS configuration or order picking strategy to control blocking. Alternatives

are available for a wide-aisle OPS (Parikh and Meller, 2009) or in the case of zone order

picking (De Koster and Yu, 2008). However, for facilities in which space is a concern

changing the layout and order picking operations to either of these alternatives may not

be feasible. Further, to make the best use of their limited space some warehouses have

narrow-aisles. However, if picker blocking is a concern in these settings the only

solutions available in the literature are passing and rerouting strategies (Gue et al., 2006;

Zhang et al., 2009). We review the previous studies of OPSs focusing on picker blocking.

To structure our review of the related studies, each is classified based on their modeling

methodology as: 1) analytical models of picker blocking; 2) routing methods with picker

blocking; and 3) picker blocking while batching orders.

Gue et al.(2006) and Parikh and Meller (2009) introduce analytical models to

quantify narrow-aisle and wide-aisle picker blocking, respectively. They determine the

relationship between throughput and pick density demonstrating the significance of

picker blocking. The results indicate that batch picking strategies in narrow-aisle OPS

are advantageous when the pick density is either very low or very high (Gue et al., 2006).

The problem of controlling or reducing picker blocking while routing has rarely

been studied. Ratliff and Rosenthal (1983) present a polynomial timed dynamic model to

optimally solve the order picking problem when the objective is to minimize travel

distance. Hall (1993) surveys heuristics routing for practical purposes, and concludes

that S-shape and largest-gap strategies are reasonable strategies for minimizing travel

distance. These studies attempt to minimize travel distance, but when an order picking

84

area has significant traffic, picker blocking may result in additional distance traveled or

time penalty; a structured analysis of additional travel distance or time delays is omitted

in the literature. Gue et al.(2006) discuss practical methods to avoid picker blocking,

such as allowing a trailing picker to pass while the leading picker unload collected items,

or forcing a blocked picker to exit the current aisle and use an empty aisle to continue to

traverse the pick area when significant blocking is expected.

Moreover, some literature indicates that batch picking tends to face less picker

blocking. Gue et al. (2006) introduce an industry case with less picker blocking when

pick density is very high. Ruben and Jacobs (1999) show the relationship between the

batching algorithm and the storage policy and indicate this can increase congestion,

picker blocking, and delays. The recent literature on batching algorithms ignores picker

blocking or considers a single-order picker (Chen and Wu, 2005; De Koster et al., 1999;

Gademann and van de Velde, 2005; Gademann et al., 2001; Ho and Tseng, 2006; Hsu et

al., 2005; Pan and Liu, 1995; Won and Olafsson, 2005). In Chapter V we discussed our

finding that the near-optimal distance-based batching algorithm, RBP, experiences less

picker blocking when a sort-while-picking strategy is applied.

3. PROBLEM DEFINITION

3.1 Narrow-aisle order picking system OPS and batch picking

We consider narrow-aisle OPS where pickers circumnavigate one-way aisles to

retrieve items from shelves and place them on a cart. When an order picker has no items

to retrieve in a particular aisle, the aisle can be skipped to shorten the travel distance if

the unidirectional characteristic of aisles can still be maintained. In particular, the order

85

size is relatively small compared to the cart capacity; thus, consolidating many order

retrievals into one trip (―batch picking‖) is considered to improve order picking

throughput. The size of a batch is constrained by the number of orders that will fit on the

cart. In other words, a picker carry bins on a cart and places each order in its own bin

regardless of the order size. This sortation strategy is referred to as ―sort-while-pick‖.

Further, the number of items varies based on the order size, and orders cannot be split

over multiple batches.

3.2 Multiple pickers and in-the-aisle picker blocking

In general, multiple pickers gather a set of orders prepared prior to the shift.

Further, a picker who completes a trip through the picking area, to gather a particular

batch, returns to the original starting position and begins picking a new batch without

delay. When multiple pickers work in an OPS, they will encounter congestion while

travelling and accessing pick faces. A narrow aisle layout has additional congestion

created by the no passing policy (Gue et al., 2006). In a narrow-aisle OPS, two types of

picker blocking occur.

First, when two-way traversal of an aisle is possible, if a picker enters an aisle in

which another picker is already present and moving towards the entering picker,

deadlock arises. To avoid this, the approaching picker can be made to wait before

entering. However, this forces the picker to stand idle. One-way traversal route is

popular because this type of idleness or deadlock is avoided.

 Second, congestion can occur even when pickers move in the same direction. If

a trailing picker’s next pick-location is occupied by a former picker, the trailing picker is

86

blocked until the former picker leaves. Gue et al.(2006) call this ―in-the-aisle picker

blocking‖. Whereas the deadlock in an aisle can be solved by the one-way traversal

routing method, there is no simple rule to avoid the in-the-aisle blocking. When multiple

aisles are visited, pickers can be re-sequenced at the end of aisles as Gue et al.(2006)

point out; they observe less in-the-aisle blocking when another picker is allowed to pass

in order to improve downstream blocking.

3.3 Performance criteria considering picker blocking

Two performance criteria can be considered for an OPS: total retrieval time and

completion time. Total retrieval time maximizes pickers’ throughput by reducing their

work hours. Completion time is important especially when the completion time of the

last order is important because of order commitment times. Either could be used

depending on the firm’s primary objective. In this chapter, the focus is to minimize total

retrieval time.

The criterion, minimization of the total retrieval time, can be expressed by the

sum of the cart loading (LT) and unloading time (UT), pick time (PT), walk time (WT),

and delay time (DT) of all batches. Hence, the following objective is minimized:

A trip requires a constant LT and picked-item UT. PT is approximated as the

number of picks in a batch times the unit pick time. We ignore the effect of search time,

height of shelves, and multiple picks in a pick face (i.e., to pick an item, a picker uses the

same amount of time regardless of shelf height and consecutive picks at a same pick

face). WT is the total travel distance times the unit walk time. We assume the

Min LT+UT+PT+WT+DT

87

acceleration/deceleration time is negligible. DT is the gap between the planned leaving

time at a pick face or an aisle entrance and the actual leaving time. When a downstream

picker blocks the next pick face of an upstream picker, the upstream picker cannot leave

the current location until the next pick face is available.

3.4 Batching models with in-the-aisle picker blocking

As the objective function is increased by the delay time caused by in-the-aisle

picker blocking, the formulation of an order batching control model must also reflect the

constraints regarding picker blocking. The scheduling literature provides several

alternatives to estimate the time blocked. In particular, the in-the-aisle blocking is

similar to the permutation flow shop scheduling problem with limited intermediate

storage in the scheduling context, which is known to be a strongly NP-hard

(nondeterministic polynomial-time hard) problem and is translated into a traveling

salesman problem (TSP) (Pinedo, 1995).

The time lost by in-the-aisle picker blocking can be minimized for a given set of

batches by optimal sequencing. To improve the benefits of batching, a batching

sequencing problem is incorporated into the proposed model. Thus, the format of the

new integrated problem combines the batch sequencing problem with the traditional

batching problem, which we refer to as the batching and sequencing problem (BSP).

4. INDEXED ORDER BATCHING MODEL (IBM)

This section clarifies the BSP model and discusses sequencing issues, treatment

of multiple aisles, and consideration of multiple trips for pickers.

88

4.1 Indexed batching (single aisle and infinite pickers)

To develop the intuition and basis for later models, consider an OPS that has a

single aisle and an infinite number of pickers. Fundamentally, the sequencing problem

determines a release sequence to obtain minimal delay given by batches. Thus, if the

delay is measured and integrated into the objective function of the batching problem, the

batching and sequencing problems can be solved simultaneously. We define this

formulation as the IBM.

In the model, the one-way traversal routing constraints always hold since there is

a single aisle. The IBM concept captures the sequencing decision in the in-the-aisle

picker blocking constraints and the delay in the objective. The in-the-aisle blocking

model developed in Gue et al. (2006) can be used here. Moreover, their model gives the

same results as the permutation flow shops with finite intermediate storage in Pinedo

(1995). Obviously, a permutation flow shop with identical machines and zero

intermediate buffer storage is similar to an order picking situation in a narrow aisle. A

job (batch) in the permutation flow shop with zero intermediate buffer storage stays at

the current machine (pick face) if the next machine (pick face) is busy because of

another job (batch). Pinedo calls the phenomenon blocking, which is the same as picker

blocking in order picking.

(Abstracted IBM with single aisle and infinite pickers) Min LUT+ WT+DT

Subject to

 Batching constraints

 One-way traversal routing constraints

 In-the-aisle picker blocking constraints

89

Gue et al.’s model can express the in-the-aisle blocking given a set of batches, a

release sequence, and the pickers’ available start times. However, their model can only

be applied directly for a single aisle with unlimited pickers. If these assumptions are

relaxed, additional modeling is necessary to estimate picker blocking. These extensions

are described below.

4.2 Aisle-entrance sequencing (multiple aisles and infinite pickers)

First, consider a multiple aisle setting. Thus, when seeking shorter travel

distances, some batches skip some aisles (Figure 24) to avoid complete traversal of the

facility. The routing alters the aisle entrance sequence, which can be enumerated in three

different cases. First, at the first aisle, the release sequence is inherited from the indices

of batches. Some batches may skip the first aisle, but it does not change the release

sequence. The routing defines the subset of batches that traverse the first aisle. Second,

we need to identify the batches entering the second aisle and update their entrance times.

Some additional batches may skip the second aisle, but the entrance sequence at the

second aisle remains the same as the initial index, because batches skipping the first aisle

must also skip the second aisle because one-way traversal of aisles is enforced. After

updating the aisle entrance time, picker blocking can be calculated. Third, for the third

and higher aisles, the batches entering a particular aisle and their sequence must be

identified, and the batches’ entrance time calculated. The aisle-entrance sequence at the

first aisle no longer holds since reentry occurs from batches that skipped previously

aisles. Unlike the update of the aisle entrance time, the aisle-entrance sequence leads to

additional constraints and decision variables in the programming problem because the

90

sequence is allowed to change.

Figure 24. An example of different aisle-entrance orders due to batches skipping aisles

(Bi=batch i).

Therefore, we need to re-index batches based on their arrival time at an aisle’s

entrance. We define this process as the ―aisle-entrance sequencing problem.‖

Interestingly, some batches may arrive simultaneously. When this happens, their

entrance sequence should be determined by a simple tie-breaking strategy, such as

random selection.

4.3 Completion-time ordering (multiple aisles and finite pickers)

In practice, the number of batches is typically more than the number of pickers

(NP). In this case, the starting time for the second trip of a picker should be updated

(Abstracted IBM with multiple aisles and infinite pickers) Min LUT+ WT+DT

Subject to

 Batching constraints

 One-way traversal routing constraints

 In-the-aisle picker blocking constraints

 Aisle-entrance sequencing constraints for 3,…,# aisles

91

based on his/her previous completion time (Figure 25). The starting time of batch i is

obtained by the completion time of the batch completed NP batches before i (i-NP). To

facilitate this method, the completion-time is sorted in ascending order. We call the

related constraints the completion-time ordering constraints.

Figure 25. Order picker’s retrieval trip starting time.

Returning to the optimization problem characterizing the batching and

sequencing problem, the model now requires an additional constraint, the completion-

time ordering constraints, due to the impact of multiple trips. Thus, the abstracted IBM

becomes the following equation:

92

Herein, the updates of the aisle-entrance sequencing, the in-the-aisle picker

blocking, and the completion-time ordering are included in ascending order of time, i.e.,

a first event is processed first. Below, we give two solutions: an MIP formulation and a

next-event advance approach.

5. AN EXACT MIXED-INTEGER PROGRAMMING (MIP) FORMULATION

In this section, we formulate the IBM as a mixed-integer program. We focus on a

general formulation in this section, while the executable MIP formulation is shown in

Appendix C.

5.1 Parameters and decision variables

We consider the general multiple aisle OPS layout as shown in Figure 26. The

OPS has an even number of aisles to allow pickers to traverse the entire picking area

without requiring a u-turn or back-tracking. The pick faces are numbered 0 to Fa+1 at

every aisle. Pick faces 0 and Fa+1 represent the entrance and the exit of an aisle,

respectively. In odd aisles, the entrance is located at the front cross aisle, and for even

aisles entry is from the rear cross aisle. It takes time AE to travel from the entrance to the

first pick face or from the last pick face to an exit. The travel time between neighboring

pick faces is PF. The walk time from 0 to Fa+1 is equal to PF*(|Fa|-1)+2*(AE+PF/2) =

(Abstracted IBM with multiple aisles and finite pickers) Min LUT+ WT+DT

Subject to

 Batching constraints

 One-way traversal routing constraints

 In-the-aisle picker blocking constraints

 Aisle-entrance sequencing constraints for 3,…,# aisles

 Completion-time ordering constraints for all batches

93

AH when an aisle is passed through. The cross time between two parallel aisles is AW.

The L/U station is located in the front of the leftmost aisle.

Figure 26. An OPS layout.

NP pickers work in the OPS, where NP is assumed to be smaller than the number

of batches. The number of batches is not given, although the number of batches must be

smaller than the number of orders. Two batch picking strategies—pick-then-sort and

sort-while-pick—are considered; the choice of strategy impacts cart capacity. A picker

who completes a trip is reassigned to the next available batch and all pickers are

available initially.

Several decision variables associated with the IBM procedure must be defined:

basically, orders are assigned to batches and to a release sequence through batching

variables; each order includes multiple items; and each item is stored in only one pick

face. Xob is set to 1 when order o is assigned to batch b. The batch sequence at the third

and later aisles is defined through variables (a
ijY). For all a = 3,…,|A|, a

ijY is set to 1

when batch j is released in the ith position of the sequence. The starting time for batches

94

picked on a picker’s second or later trip (STi) can be captured using ordering variables

(Zij) of the completion-time (CTi). Similarly, Zij is set to 1 when batch j is completed in

the ith position of the sequence.

The routing is expressed by the aisle-visiting incident vector. Initially, the vector

for order o at aisle a is given as OAVoa (this vector can be obtained from items in an

order). OAVoa is set to 1 if any item in an order o is stored in aisle a. The route of a batch

is determined by (BAba). If batch b has at least one pick in aisle a, BAba is set to 1. While

evaluating picker blocking, a
iAV expresses whether the ith released batch enters in aisle a.

Additional details follow.

Indices and parameters

fF, = the set of pick faces, its index,  FFf ,,1 , 0=L/U station or entrance
 kaA ,, = the set of aisles, and its indices  AAka ,,1, 
 aF = the set of pick faces in aisle   aaa FAFFFa  ,,,1, 

jibB ,,, = the set of for the batches, and its indices ,,, bBjib  stands for the initial batch
number

oO, = the set of orders, and its index Oo

oaOAV = 1 if order o passes through aisle a (order o has at least one pick in aisle a)
0 otherwise

ofOP = the number of picks of order o and pick face f
bST = the starting time of thb batch

PTPF, = the walk time to pass one pick face, the pick time to pick an item

NP = the number of pickers

AEAWAH ,,

= the time to pass through an aisle, the width between two aisles, aisle enter/exit

time

95

UTLT,

= the loading time, the unloading time
 = the time required for the transition between two batches in a pick face

a
fL ,1 = the leaving time at the previous history

Decision variables

obX = 1 if order o is assigned to batch b (i.e. b is the release sequence at aisle 1)
0 otherwise

a
ijY = 1 if batch j enters aisle a at the ith order,  ||, . ..,3 Aa

0 otherwise

ijZ = 1 if batch j returns to the unloading station at the ith order
0 otherwise

bBV = 1 if batch b is valid
0 otherwise

baBA = 1 if batch b has at least one pick in aisle a
0 otherwise

a
iAV

= 1 if the ith batch has at least one pick in aisle a

0 otherwise

NBV

= the number of valid batches

 baBAC = the completion time of batch b up to aisle a

 bNBA = the number of pairs of aisles visited to retrieve batch b

 bRBA
 = the right most aisle visited while retrieving batch b

 bfBP
 = the picking time of the ith batch at pick face

a

if
a

if CPP ,

= the pick time of the ith batch at pick face f in aisle a, and its cumulative
pick time
 a

if
a
if CDD ,

= the time delayed of the ith batch at pick face f in aisle a, and its cumulative

time delayed

a
ifL

 = the leaving time of the ith batch at pick face f in aisle a

a
ifCW

 = the cumulative walk time of the ith batch to pick face f in aisle a

iCT
 = the completion time of the batch which has finished at the ith order

baba INTINT 2,1

 = non-negative integer variables

96

5.2 Objective cost

The goal is to minimize loading/unloading time (LUT) + total walk time (WT) +

total time delayed (DT) (6.1). LUT is proportional to the number of valid batches times

the unit loading/unloading time. The travel time of a batch is the sum of the vertical

travel times (= 2*NBAb*AH) and the horizontal travel times (= 2*RBAb*AW). WT is the

sums of the travel times of all batches. DT is obtained by summing the cumulative delay

at each aisle of all batches.

Min    
   

  
  Aa N BVb

a

Fi
N BVb

bb CDAWRBAAHNBANBVUTLT a

,,1,,1

22


 (6.1)

5.3 Indexed batching constraints

The basic function of the given algorithm is to partition orders into batches. The

actual decision includes the number-of-batches variable (NBV), batching variables (Xob),

and batch validity (BVb). An order cannot be separated (6.2), and a batch should not

exceed the capacity (6.3). When partitioning the orders, NBV should be determined

simultaneously. The maximum number of batches is equal to the number of orders. We

define a binary variable (BVb) to represent the validity of a batch. BVb is obtained from

an OR operation among inclusion flags of orders in batch b (6.4). To avoid alternative

identical solutions regarding batching, we set one additional comparison constraint such

that lower-numbered batches are assigned first (6.5). Constraints (6.6) calculate the

number of valid batches. From the batching information (Xob), the pick time vector of

batches is obtained (6.7).

,1
Bb

ob X O, o (6.2)

97

 ,CAPA X
Oo

ob 


B, b (6.3)

 o b
Oo

b XBV



B, b (6.4)

 1 bb BVBV

 ,BB b \ (6.5)

 



Bb

bBVNBV (6.6)

 ,



Oo

bfobbf OPXPTBP

  F, f,NBV b  ,,1 (6.7)

This set of constraints defines part of an integer programming problem and limits

solutions to feasible batching and sequencing decisions.

5.4 One-way traversal routing constraints

The routing decision includes the routing incident variables (BAba), the number

of aisles visited (NAVb), and the rightmost aisle visited (RBAb). Initially, OAVoa is set to

1 if aisle a is visited to retrieve order o and 0 otherwise. If aisle a of any order in batch b

is set to 1, aisle a should be set to 1 for batch b (BAba). In other words, BAba should be

equal to or greater than the logical OR operation of OAVoa (the aisle-incident vector) of

orders in batch b (6.8). The formulation includes additional constraints to enforce

unidirectional travel in aisles through constraints (6.9) and (6.10) for even-numbered

aisles, respectively. The return to the front cross-aisle is guaranteed when the total

number of visited aisles in a batch is even (6.11). RBAb is used to calculate the travel

distance and becomes the rightmost downstream aisle (6.12).

  oboa
Oo

ba XOAVBA 


,AaB, b  (6.8)

 

1 if 112
,..,1

 


ba

ak

bkba BABAINT

  B bAa  ,1,..,3,1 (6.9)

 

1 if 22
,..,1

 


ba

ak

bkba BABAINT

  B bAa  ,,..,4,2 (6.10)

98

 ,2 



Aa

bab BANBA B, b (6.11)

  ,ba
Aa

b BAaMAXRBA 


 B, b (6.12)

5.5 In-the-aisle picker blocking constraints

In-the-aisle picker blocking constraints evaluate the blocking delay by the

information composed of batches, the start-time of pickers (STi), the aisle-completion

time of batch b (BACba), and the trip-completion time of ith batch (CTi). The calculation

requires the introduction of several intermediate variables: a
ifCP , a

ifCW , and a
ifCD stand

for the cumulative pick time, the cumulative walk time, and the cumulative delay time

before leaving pick face f in aisle a of batch b.

a
ifCW is the cumulative walk time when the picker picking batch i reaches pick

face f in aisle a. The starting time is obtained from STi, CTi and BACba. Constraints (Eq.

5-13) update a
ifCW at aisle entrances and pick faces. At the loading station (aisle-

entrance 1), a
ifCW is determined using the pickers’ available time (STi) when the release

sequence is smaller than the number of pickers, otherwise, using the completion time of

the previous trip (CTi). The starting time of batch NP+1 is the completion time of the

first completed batch because the picker responsible for the first completed batch will be

assigned to pick the NP+1st batch. At other aisle-entrances, a
ifCW is updated by the

previous aisle completion time (BACba) plus aisle crossing time (AW). Otherwise, a
ifCW

is determined from the previous a
ifCW 1 when ith batch uses aisle a, i.e., a

iAV = 1.

99


































otherwise

1 and 0 if

1 and 0, , if

1 and 0, , if

1,

1

a
fi

a
i

Bj

j,a
a

ij

NPi

 i

a
if

CWAVWT

afAWBACY

afNPiCTLT

afNPiSTLT

CW

 

  A,aF f

,NBV i

a 



,0

,,1

(6.13)

The delay time is expressed as the gap between the planned leaving time and the

actual leaving time from a pick face or aisle entrance. An intermediate variable, leaving

time (a
ifL), is introduced to simplify the calculation. This intermediate variable helps to

establish the delay time as a function of the picker’s leaving time and the pick face

available time. Cases 1 through 3 below concern batch i passing through aisle a. In case

4, batch i skips aisle a.

Case-1) When pick face f is not the last pick face in an aisle. Figure 27

illustrates a timeline of a picker blocking situation in a pick face that is not the final pick

face. A picker retrieving batch i leaves pick face f of aisle a at time a
ifL = a

ifCP + a
ifCW +

a
ifCD . Herein, a

iCW 0 stands for the arrival time at the aisle entrance. When the picker

departs pick face f, pick face f is accessible by another picker after transition time (γ).

When pick face f is already occupied, the picker must wait until pick face f is released.

We describe blocking time as the gap between the pick face ready time (a
fiL ,1 + γ) and

the planned-arrival time of the trailing picker (a
ifCP + a

ifCW + a
ifCD 1 +PF). At pick face f, a

trailing picker can depart pick face f at a
ifCP + a

ifCW + a
ifCD 1 . If the next pick face f+1 is

available without any picker blocking, the picker can arrive at a
ifCP + a

ifCW + a
ifCD 1 +PF,

where PF is the walk time between two neighboring pick faces. However, if the next

100

pick face f+1 is not available (a
fiL 1,1  + γ > a

ifCP + a
ifCW + a

ifCD 1 +PF), the picker should

stay at the current pick face (a
ifD = a

fiL 1,1  + γ -(a
ifCP + a

ifCW + a
ifCD 1 +PF)), where a

fiL 1,1 

is the departure time at the next pick face f+1 of the previous batch i-1. The leaving time,

a
ifL , is updated to a

ifCP + a
ifCW + a

ifCD 1 + a
ifD = a

ifCP + a
ifCW + a

ifCD , recursively.

Figure 27. Delay time for batch b at pick face f when a picker is blocked.

Case-2) When pick face f is an aisle entrance. When multiple order pickers

arrive together at an aisle entrance, or a picker intentionally waits at the aisle entrance

(to improve downstream blocking), a waiting delay occurs. This delay is allowed at pick

face 0a. Since there is no picking time and no previous delay, if a delay occurs then a
iD 0

becomes a
iL 1,1 + γ -(a

iCW 0 +AE).

Case-3) When pick face f is the last pick face, |F
a
|. At the last pick face of an

aisle, the calculation is unnecessary, because the picker exits an aisle. Thus, we do not

consider picker blocking.

Case-4) When aisle a is skipped. While retrieving a batch, the picker passes

through some aisles and skips others. When a batch skips an aisle, the batch does not

101

need to be used in calculating delay times in the skipped aisle. We update the leaving

time of the batch skipping an aisle (a
ifL) using the leaving time of the previous batch

(a
fiL ,1). To detect if an aisle is being skipped, we use the routing information a

iAV ,

which is a binary variable denoting the usage of aisle a by batch b. The detail is

discussed in Section 5.6.

Constraints (6.14) update the cumulative pick time. Constraints (6.15) calculate

the cumulative delay time. Constraints (6.16) and (6.17) calculate the time delayed (a
ifD)

and the leaving time (a
ifL) at pick face f with aisle-incidence vector (a

iAV). Constraints

(6.16) implement the delay calculation discussed in the four cases above. Constraints

(6.17) update the leaving time. At an aisle entrance (f = 0), a
ifL is determined by a

ifCW +

a
ifCD since there is no pick operation. At a pick face (f>0), a

ifL is assigned with a
ifCP +

a
ifCW + a

ifCD if batch i passes through aisle a. When batch i skips aisle a, a
ifL is assigned

to be equal to a
fiL ,1 .

 ,1,
a
fi

a
if

a
if CPPCP 

 

A,aF f

,NBV i

a 



,

,,1

(6.14)

  , 001,
a
i

a
i

a
fi

a
if

a
if DCDCDDCD  

 

  A,aF f

,NBV i

a 



,0

,,1

(6.15)

 














































otherwise0

},0{\

 and 1 if

0,

0 if0,

1,

1,1

1,1

aa

a
i

a
fi

a
if

a
if

a
fi

a
if

a
i

a
if

FFf

AV

PFCD

CWCPL
Max

fAECWLMax

D




 

  A,aF f

,NBV i

a 



,0

,,1

(6.16)

102

 














 otherwise,1

, 0 and 1 if

0 if

a
fi

faiififif

ifif

a
if

L

fAVCDCWCP

f CDCW

L

 

  A,aF f

,NBV i

a 



,0

,,1

(6.17)

5.6 Aisle-entrance sequencing constraints

We establish the release sequence at aisle a in {3,…,|A|} as a
ijY . The index i

defines a sequence and batch j is released as the ith batch in a sequence when a
ijY = 1.

Thus, only one batch can be assigned to each sequence position (6.18). Batch j is

assigned to only one sequence position (6.19). Constraints (6.23) establish that the first

completed batch at the previous aisle enters the current aisle first.

As the release sequence is determined, the related variables are assigned. The

pick time vector of batch i at pick face f in aisle a is updated with batch j’s pick time

(6.20). Additionally, the release sequence in each aisle updates the route information of

i
th batch (a

iAV) (6.21) and the batch completion time in aisle (BAC) using a
ijY (batch j is

released at ith time in aisle a) (6.22).

 
 1

..,1


 NBVj

a
ijY

 

 ,Aa

,NBV i

,,3

,,1









(6.18)

 
 1

..,1


 NBVi

a
ijY

 

 ,Aa

,NBV i

,,3

,,1









(6.19)

 

 
 








 








2,1 if

2,1 if

..,1
,

aBPY

aBP

P

NBVj
fFaj

a
ij

if
a

if
a

 

A,aF f

,NBV i

a 



,

,,1

(6.20)

 

 
 








 






2,1 if

2,1 if

..,1

aBAY

aBA
AV

NBVj
ja

a
ij

ia
a

i

  A,a,NBV i  ,,1 (6.21)

103

 































1 and 1 if

1 and 0 if

1 and 1 if

1 and 0 if

..,1

1

1

aBA

aBA

aBA

aBA

AELY

AWBAC

AE L

CW

BAC

b a

b a

b a

b a

NBVi

a

Fi

a
ib

b ,a -

a

Fb

b

b a

a

a

  A,a,NBV i  ,,1 (6.22)

   
j

aj
a

ji
j

aj
a

ij BACYBACY 1,,11,

 

 ,Aa

,NBV i

,,3

,,1









(6.23)

5.7 Completion-time ordering constraints

The completion time of the ith batch (CTi) is updated based on the completion

time ordering variables of batches (Zij) and the completion time of the batch at the last

aisle. Zij captures the completed batches such that batch j is the ith batch completed

(6.24), (6.25). CTi shows the completion time of the ith completed batch (the time when

it returns to the unloading station) (6.26), where completion time = exit time at the last

effective aisle + the return time to the L/U station + unloading time. Constraint (6.27)

assures order completion times and the sequences are consistent.

 
 1

..,1


 NBVj

ijZ

(a completion sequence must include one batch)

 ,NBV i ..,1 (6.24)

 
 1

..,1


 NBVi

ijZ

(a batch should be assigned to one completion

sequence)

 ,NBV j ..,1 (6.25)

 
 

UTZAWRBABACCT
NBVj

ijjRBAji j
 

 ..,1
,

 ,NBV i ..,1 (6.26)

1 ii CTCT

 ,NBV i 1..,1  (6.27)

The final executable MIP formulation is summarized in Appendix C.

5.8 Validation

From the traditional batching and scheduling models, the requirements necessary

to define valid batches and sequences that are sufficiently flexible are defined through

the following set of assumptions. Requirements 1 through 4 maintain the integrity of the

104

order, enforce the capacity of the cart, ensure that routes begin and end at the L/U station,

and allow one-way travel only within aisles. While travelling in an aisle, two pickers

cannot occupy a pick face at the same time and a picker cannot pass another picker in an

aisle (outlined in requirements 5 and 6). When pickers move between aisles, they enter

the next aisle they plan to traverse in a first-come, first-served (FCFS) priority ordering:

 Requirement 1 (No split of an order and all order fulfillments). Every order is

included in exactly one batch.

 Requirement 2 (Capacity). The number of items in a batch is less than or equal

to the maximum batch size.

 Requirement 3 (Complete route). A route must start at and return to the L/U

station.

 Requirement 4 (One-way directionality). Each aisle has its own moving

direction.

 Requirement 5 (A single picker at a pick face). Only one picker can occupy a

pick face.

 Requirement 6 (No-passing in an aisle). Self-explanatory.

 Requirement 7 (FCFS at aisle entrance and LU station). The first picker to

arrive starts first at every aisle and LU station.

Requirement 1 is enforced by (6.2) and requirement 2 is enforced by (6.3).

Requirements 3 and 4 can be guaranteed when the constraints in (6.9), (6.10), and (6.11)

are satisfied. (6.16) restricts a picker from entering a pick location occupied by the

former picker; therefore, requirement 5 is enforced. Moreover, the delay time must be

105

greater than or equal to 0. Thus, a trailing picker cannot pass the former picker

(Requirement 6). (6.13) enforces the FCFS sequencing at the LU station and at the

beginning of each aisle (Requirement 7).

6. A SIMULATED ANNEALING (SA) ALGORITHM

Scalability is a major problem in order picking. The model above combines two

NP-hard problems: the order batching problem and the sequencing problem. To handle

large-scale instances, a simulated annealing heuristic procedure is used.

6.1 Simulated annealing procedure

Simulated annealing is widely used in sequencing problems and order batching

problems. We employ an algorithm described in Pinedo (1995), which is illustrated in

Figure 28. For a batching situation, an indexed batching solution is given as BS1 and its

total retrieval time as Obj(BS1). The major characteristic is to accept a worse solution

(BS) while progressively searching for a better candidate solution of solution BSi with

probability P(BSi,BS) = e^((Obj(BSi)-Obj(BS)/ βi), where βi is referred to as the cooling

parameter or temperature. To update the cooling parameter (βi), we use a simple function

a
i where 0<a<1, a ∈ R (see Pinedo (1995) in detail). Thus, the probability to accept an

incorrect solution gradually decreases as iteration i cumulatively updates the cooling

parameter (βi) using a, i.e., βi= a*βi-1 where i>1 and 0<a<1. To generate an initial

solution (BS1), a large-scale order batching algorithm, RBP see Chapter V, is used which

produces a near-optimal solution when the objective is to minimize the total retrieval

distance. Imax is the maximum number of iterations. T is the updated temperature. Section

7.2.2 discusses how to develop a neighboring solution.

106

Figure 28. A simulated annealing algorithm.

6.2 Picker blocking estimation (Obj(B))

Obj(B) quantifies the blocking time using the mechanism discussed in the

previous section. Figure 29 describes the main procedure. In-the-aisle picker blocking

follows the mechanism shown in Figure 27. We assume that there are NP pickers. p is

index of pickers. Statusp represents the current status of picker p, which includes a batch

index when picker p has an assigned batch, IDLE when the picker is ready for picking or

has no assigned batch, and OFF-DUTY when the last trip has been completed.

Step1. Set i = 1 and T = a.

Initialization

Obtain an initial feasible solution, BS1

Set Imax

Set the best solution BS* = BS1

Step 2. Generate a new batch solution BS from BSi, i.e. BS is the neighboring solution of BSi.

If Obj(BS*)<Obj(BS)<Obj(BSi), set BSi+1 = BS;

Else If Obj(BS)<Obj(BS*), set BS*= BSi+1 = BS;

Else if Obj(BS)> Obj(BSi), set BSn+1 = BS with a probability of e((Obj(BSi)-Obj(BS))/T);

Otherwise, BSi+1 = BSi

Step 3. Increase i = i+ 1.

Update the temperature T = T * a.

If i = Imax, then STOP; otherwise, go to Step 2.

107

Figure 29. A picker blocking computation procedure.

7. IMPLEMENTATION AND COMPUTATIONAL RESULTS

This section summarizes the computational implementation and discusses

insights from the results. The experiments analyze the impacts on walk time and delay

time by the proposed integrated batch creation and sequencing framework compared to

other order batching and release approaches. Different order picking strategies and

Step1. Set LUTp, WTp, DTp, PTp = 0.0, and Statusp = IDLE for all pickers (p= 1,…,NP)

 b= 1

Step 2. Select picker p of not OFF-DUTY and smallest LUTp+WTp+DTp+PTp. If tie, randomly choose

if no picker p, go to Step3

 Switch (Statusp)

 Case picker p has an assigned batch

 If not the last visiting aisle // aisle-entrance ordering

In-the-aisle picker blocking on the assigned aisle

Update WTp, DTp, PTp // picks, walks, delay at the aisle

Statusp = Next aisle

 Else the last visiting aisle // completion-time ordering

In-the-aisle picker blocking on the assigned aisle

Update LUTp,WTp, DTp, PTp // picks, walks, delay at the aisle

 // walks to the L/U station, unloading

Statusp = IDLE

Case picker p has no assigned batch

 If b≤ |B|

Assign the next batch // aisle-entrance ordering

Update LUTp,WTp // loading, walks to the first visiting aisle

Statuspk = Batch b

B = b+1

 else

Statusp = OFF-DUTY

Step 3. Finish. Return sum of LUTp,WTp, DTp, and PTp

108

pick:walk time ratios are considered to explore the robustness of the proposed

framework. Sensitivity tests are conducted over various order picking environments to

observe the trends in throughput improvement and the computational performance of the

proposed framework.

The MIP formulation is implemented using ILOG CPLEX Callable Library C

API 11.0.4. The simulated annealing algorithm is programmed using C language as are

the data-set generator and the simulation module. The executable files run on Windows

Vista (Xeon 2.66 Ghz CPU, 24 GB memory, 32 bit implementation). For the MIP

algorithm, we disable both the branch-and-cut option and the heuristic search option to

evaluate the exact computational time. To validate the batching results, a discrete-event

simulation method (Law and Kelton, 2000) is used, where the simulation clock is

advanced in the ―next-event time advance‖ approach. Three throughput performance

measurements are reported: the average walk time plus delay time per order (WT+DT),

the average retrieval time per order (RT), and the completion time (CT). The objective is

the minimization of RT.

7.1 Exact approach

We implement the MIP solution described in Appendix C.1 directly and obtain

the exact solution. The exact approach can manage only small problem sizes, which do

not account for real-world problems. However, this approach allows us to test the

impacts of the combined batching and sequencing problem and its computational

improvement when an indexed batching model has been employed.

The profiles in Table 3 are used to generate data. For every parameter setting, we

109

run 20 instances. The item locations are generated according to the class-based storage

policy with A:B:C ratio of 70:20:10 for first aisle: second aisle: remaining aisles,

respectively. The term ―interval‖ represents the inter-departure time between two pickers.

Below, we also test the ―pick-then-sort‖ method where CAPA determines a batch size.

Then, (6.3) is replaced with CAPA XOS

Oo

obo 


, where OSo represents the order size.

Table 3. Default order picking and OPS profiles

We consider three different batching and release scenarios. B-then-R generates

batches to minimize the total travel distance and releases batches randomly. B-then-S

generates batches to minimize the total travel distance and sequences the batches to

minimize the total delay time. BSP and IBM consider the release sequence while

partitioning orders into batches. BSP does not use the indexed batching method, but

rather combines the batching problem and the sequencing problem in a single model.

Table 4 illustrates the computational results. The table includes columns LT

(loading and unload time), WT (walk time), DT (time blocked), PT (pick time), RT

(retrieval time), CT (completion time), CPU (average run time in seconds), CPUmax

(longest run time), and CPUmin (shortest run time). We note three important

observations. First, the combined batching and sequencing approach dominates the other

approaches. The BSP and IBM approaches show, on average, 13.2% retrieval time

reduction compared to the B-then-R approach, whereas the B-then-S approach improves

Order picking operation profile OPS profile Order profile Picker profile
Strategy Capacity Pick time L/U #aisle #pick faces Width #orders Order size Interval #pickers Speed

Sort-while-pick 4 orders 5 10 4 10 2 16 2 1 4 1

Pick-then-sort 10 items 5 10 4 10 2 16 2 1 4 1

110

the throughput on average about 8.0% with the same storage strategy. However, the CT

lengthens (inevitable, since we use a small problem size). This issue will be revisited in

the next section with a large problem size. Second, IBM dominates the BSP method

when comparing the computational time. Third, despite the small problem size and an

optimal IBM approach, we do not find a no-blocking result in an optimal model.

Table 4. Experimental results of the exact approach

7.2 Simulated annealing approach for large-size applications

7.2.1 A mail order company example

A mail order company warehouse operation is analyzed as an example of a large-

scale order picking profile as described in Petersen (2000). The order picking

environment, e.g., the number of aisles, the pick:walk time ratio, the number of pickers,

the number of orders, etc., also derives from Petersen (2000); however, Petersen does

not vary the pick to walk time ratios. To determine the ratios, Gue et al. (2006)’s

recommendation of a ratio of 20:1 or smaller is used. Most academic studies have used

5:1~10:1 (Gong and De Koster, 2008; Gue et al., 2006; Petersen, 2000). Thus, values on

the range 2:1~20:1 were used in experimentation. Reported below are the two most

commonly used ratios of 5:1 and 10:1. For every parameter setting, we test 20 instances.

Strategies Scenarios LT WT DT PT RT CT CPU CPUmin CPUmax

Sort- B-then-R 20.0 33.9 16.1 37.9 107.9 130.1 0.29 0.23 0.47

while- B-then-S 20.0 33.9 8.0 37.9 99.8 109.4 0.27 0.22 0.34

pick BSP 20.0 34.1 1.6 37.9 93.6 122.2 1883.23 128.53 8507.01

IBM 20.0 34.1 1.6 37.9 93.6 121.2 142.04 35.72 632.30

Pick- B-then-R 20.0 35.1 16.6 44.3 115.9 141.6 0.26 0.19 0.41

then- B-then-S 20.0 35.1 6.8 44.3 106.1 111.8 15.26 68.00 119.20

sort BSP 20.0 35.1 1.2 44.3 100.5 125.1 512.36 63.10 2679.03

IBM 20.0 35.1 1.2 44.3 100.5 125.8 63.38 13.82 180.72

111

The picking environment is summarized in Table 5.

Table 5. Configuration of an OPS (modified from Petersen example (Petersen, 2000))

Profiles Values
Pick:walk time ratio
Number of aisles
Walk time
Number of pick faces / aisle
Pick time
Number of pickers
Cycle length
Number of orders (per
cycle)
Loading / Unloading time
Order size

SKU
P/D location
ABC class rule

Capacity
Order picking strategy

2:1, 5:1, 10:1 , 20:1
10, 20, 30
PF = 1 seconds/pick face, AE = 0.5 second, AW = 2 seconds
20 pick faces
2, 5, 10, 20 seconds
8, 16, 24 (starting interval = 1.0 seconds)
1 hour
360, 720, 1080, 1440

Each 60 seconds
2.02 (p(1) = 0.5/0.95, p(n)=(1/2*(n-1)-1/2*n)/(0.95) when n=2,…,10,

and p(n) = 0 otherwise.), Unif(1,3), Uniform(3,9), Uniform(5,15)
1
Center of the leftmost aisle
Demand portion and aisle size 70%:20%:10% = 2:2:6, 50:30:20,
Random
10 orders, 30 items
Sort-while-pick, pick-then-sort

In discussing the performance of the algorithms, we use the following notation

throughout the remainder of this section.

WT+DT: the average total walk time (WT) plus total time blocked (DT) per order

RT: the average retrieval time per order

CT: the completion time of the last completed batch

LB: the linear relaxation model of RBP

IBMsa: the indexed batching procedure with simulation annealing, where this study

uses a = 0.8 after a preliminary experiment

Obj: the objective value of an algorithm

Red : reduction ratio by an algorithm compared to the RBP + random release

method expressed as a percentage (= (an objective function value of the RBP

+ random release method – the objective function value of an algorithm)/(an

objective function value of the RBP + random release method) %)

LU gap: gap between an objective function value and the LB objective function

112

value expressed as a percentage (= (an objective function value – the LB

objective function value)/(the LB objective function value) %)

CPU: the run-time in seconds

7.2.2 Neighborhood search

The method for defining a neighborhood in a simulated annealing procedure is

critical to effective implementation (Pinedo, 1995). Four methods that can be used to

define the neighborhood in which to search were investigated. In the first method, NB1,

a general two-exchange method is employed where a pair of orders is exchanged. We

randomly pick two batches (b1, b2) and two orders (o1, o2) from each batch. The new

neighborhood becomes b1 with o2 and b2 with o1. Next, we develop three more

neighborhood methods. The method NB2 switches b1 with b2, changing the sequence of

batches to be picked. The orders in each batch do not change. NB3 and NB4 set an

acceptance condition on NB1. In NB3, b2 is selected among batches having the same

route. In NB4, the new neighborhood must keep the current travel distance.

NB1. batches and orders change

NB2. batches change sequence

NB3. batches and orders change if two batches have the same route

NB4. batches and orders change if new batches have at most the same distance

Alternative neighborhood definitions are compared in Table 6 relative to

different pick:walk time ratios. NB1 and NB4 are dominant. Specifically, when the

congestion is light, NB4 is slightly better than NB1. Since the initial solution guarantees

a near-optimal travel distance for the picker, the approach to search a neighbor in order

to reduce the blocking time is effective. In contrast, when heavy congestion exists, NB1

identifies better solutions. NB1 searches a much larger solution space than NB4, because

113

NB1 considers both the distance reduction and the delay reduction.

Table 6. Comparison of neighborhood rules in simulated annealing approach

Rules 5:1 10:1
WT+DT CPU WT+DT CPU

NB1 7.79 70.46 8.86 84.42

NB2 8.43 323.87 11.17 482.78

NB3 7.87 54.55 9.74 53.14

NB4 7.62 73.67 9.21 77.68

7.2.3 Comparison to available algorithms

Table 7 and Figure 30 compare the IBMsa method to other available batching

methods. The FCFS method groups orders into batches sequentially, and releases the

batches as they arrive. The seed algorithm is one of the most common batching methods.

The best seed algorithm in De Koster et al. (1999) is reported below. The CW II

approach, a variation of the Clarke and Wright algorithm (1964) appearing in De Koster

et al. (1999), is also considered. The table includes the performance of RBP. The LP

relaxation described in Chapter IV is used to obtain a lower bound (LB). Seed, CW II,

and RBP minimize only the travel distance and do not handle the release sequence. Thus,

the grouped batches are released in a FCFS manner.

Table 7 and Figure 30 (a) show how IBM dominates the other methods based on

the WT+DT criteria. The run time is less than 2 minutes. Specifically, the proposed

IBM achieves a 2.5 to 18% reduction in the total retrieval time compared to the near-

optimal distance-only approach, RBP, as depicted in Figure 30 (b).

114

Table 7. Comparison of WT+DT per order
 2:1 5:1 10:1 20:1
 WT+DT CPU WT+DT CPU WT+DT CPU WT+DT CPU
FCFS
+ Random release

17.69 20.25 25.39 36.84

Seed algorithm
+ Random release

11.14 0.03 15.65 0.03 24.00 0.03 42.04 0.03

CW (II)
+ Random release

8.69 136.93 11.44 135.70 16.92 135.77 28.90 133.78

RBP
+ Random release

7.65 46.80 9.91 49.03 14.50 48.53 24.51 48.74

IBMsa
 7.04 67.34 7.79 81.92 8.86 90.76 10.78 101.32

(a) (b)

Figure 30. Algorithm comparison with different throughput measurements: (a) WT+DT
per order; and (b) Walk time+delay time % in the total retrieval time.

7.2.4 Comparison across the number of orders

Table 8 summarizes the results across the number of orders over two batching

strategies. Compared to the best distance-based algorithm (RBP), IBMsa experiences

approximately 5 % to 14.0% reduction of the total retrieval time. The solution from

optimizing the retrieval time also results in 4% to 12% reduction of the completion time

(CT). When the pick:walk time ratio is small, the percentage reduction in retrieval time

decreases and the percentage gap to the lower bound is small. Both the sort-while-pick

strategy and the pick-then-sort strategy show a stable improvement of the total retrieval

time. When the problem size is small, IBMsa performs better, because the search space is

relatively smaller.

115

Table 8. Variation of the number of orders over two batching strategies

7.2.5 Other order picking profiles

Note that order picking environments can be more diverse. Table 9 summarizes

the results of additional experiments varying the number of aisles, storage policy,

number of pickers, and order size. The sort-while-pick strategy is evaluated for the

pick:walk time ratio of 5:1.

Storage policy

The storage profile in Table 9 exhibits an interesting result. When the pick:walk

time ratio = 10:1, the random storage policy performs best under no sequencing control.

After applying the IBM, the class-based approaches perform better based on the total

retrieval time criteria. This finding stresses a critical issue concerning the

interdependence of the storage policy and the order-size pattern and number of pickers.

If the class-based approach is used, the benefits of applying IBM are significant.

The number of pickers

More pickers cause more blocking. The proposed procedure shows an

Pick: Stategy # RBP+Random release LB IBMsa -best

walk orders RT CT

ratio WT WT+DT RT CT RT WT+DT Obj Red% LU gap % Obj Red% LU gap % Rule CPU

5:1 Sort 360 7.08 11.37 33.33 944.28 28.88 8.47 30.42 8.7% 5.3% 870.25 7.8% 32.4% NB1 30.30

while 720 6.72 9.91 31.89 1608.88 28.62 7.79 29.77 6.7% 4.0% 1504.50 6.5% 16.1% NB1 69.00

pick 1080 6.63 9.34 31.39 2305.15 28.61 7.40 29.45 6.2% 2.9% 2170.03 5.9% 11.9% NB4 138.57

1440 6.59 9.24 31.29 3008.38 28.57 7.33 29.38 6.1% 2.9% 2827.03 6.0% 9.6% NB4 159.86

Pick 360 5.92 11.34 29.41 929.15 23.63 8.36 26.44 10.1% 11.9% 875.33 5.8% 62.3% NB1 111.21

then 720 5.69 9.49 27.56 1493.90 23.50 7.25 25.32 8.1% 7.7% 1397.05 6.5% 31.2% NB1 148.65

sort 1080 5.70 8.62 26.78 2088.13 23.61 6.97 25.13 6.2% 6.4% 1957.08 6.3% 22.2% NB1 225.22

1440 5.61 8.25 26.42 2636.83 23.53 6.87 25.04 5.2% 6.4% 2521.55 4.4% 18.6% NB4 298.70

10:1 Sort 360 7.08 16.83 48.74 1371.15 38.84 9.49 41.40 15.1% 6.6% 1220.65 11.0% 38.5% NB1 37.12

while 720 6.72 14.50 46.47 2351.93 38.60 8.86 40.82 12.1% 5.7% 2098.08 10.8% 20.3% NB1 82.05

pick 1080 6.63 13.62 45.72 3362.13 38.66 8.89 40.99 10.3% 6.0% 3027.43 10.0% 15.7% NB1 154.65

1440 6.59 13.51 45.60 4390.95 38.61 9.02 41.11 9.8% 6.5% 3973.35 9.5% 14.1% NB1 180.00

Pick 360 5.92 17.28 45.31 1369.80 33.59 10.25 38.27 15.5% 14.0% 1237.70 9.6% 62.2% NB1 107.51

then 720 5.69 13.86 41.91 2269.18 33.48 8.86 36.91 11.9% 10.2% 1995.40 12.1% 31.8% NB1 148.53

sort 1080 5.70 12.42 40.62 3085.15 33.66 8.53 36.73 9.6% 9.1% 2828.80 8.3% 24.1% NB4 217.20

1440 5.61 11.80 40.01 3958.68 33.58 8.29 36.50 8.8% 8.7% 3631.93 8.3% 19.9% NB4 298.96

116

improvement beyond the other methods investigated. RT reduction and CT reduction are

9.7% and 8.8%, respectively when the pick:walk time ratio = 5:1. With a higher

pick:walk time ratio, more blocking occurs and the IBM algorithm shows greater

benefits on a percentage basis.

The number of aisles in OPS

In larger OPS, pickers ―spread out‖ in a picking area and there is less picker

blocking. Thus, the benefit from IBM diminishes. ―-‖ means that a lower bound solution

could not be obtained because the problem size is too large.

Order size

 We test three different order sizes. The IBM algorithm shows a robust benefit

over all values.

Table 9. The experimental results over diverse order picking environments

7.2.6 Side effects in a large-scale application

The control of picker blocking minimizes both the RT per order and the

Pick: RBP + Random release LB IBMsa - Sort-while-picking policy - best

walk Profiles Values RT CT

ratio WT WT+DT RT CT RT WT+DT Obj Red % LU gap% Obj Red % LU gap% Rule CPU

5:1 Default 6.72 9.91 31.89 1608.88 28.62 7.79 29.77 0.07 0.04 1504.50 0.06 0.16 NB1 69.00

Storage 5:3:2 7.69 9.64 31.62 1603.38 29.54 8.35 30.33 0.04 0.03 1532.53 0.04 0.15 NB4 153.76

random 9.24 10.40 32.38 1624.33 31.04 9.68 31.66 0.02 0.02 1595.20 0.02 0.14 NB4 203.89

#pickers 8 6.72 8.16 30.14 2832.10 28.62 6.93 28.91 0.04 0.01 2723.70 0.04 0.06 NB4 28.91

24 6.72 11.87 33.85 1221.53 28.62 8.59 30.57 0.10 0.07 1114.35 0.09 0.28 NB1 87.37

#aisles 20 10.14 11.77 33.77 1712.80 - 10.78 32.78 - - 1664.03 - - NB4 444.29

30 14.07 15.19 37.23 1850.35 - 14.41 36.46 - - 1805.65 - - NB4 654.93

order U(1,3) 6.98 9.34 31.32 1590.30 28.87 7.56 29.53 0.06 0.02 1498.95 0.06 0.15 NB4 83.45

size U(3,9) 11.13 17.30 59.25 2942.38 52.98 12.88 54.83 0.07 0.03 2757.43 0.06 0.15 NB4 478.31

U(5,15) 13.41 22.60 84.64 4194.13 75.34 16.22 78.26 0.08 0.04 3885.93 0.07 0.14 NB4 812.01

10:1 Default 0 6.72 14.50 46.47 2351.93 38.84 8.86 40.82 0.12 0.05 2098.08 0.11 1.38 NB1 82.05

Storage 5:3:2 7.69 12.42 44.38 2269.83 39.52 9.26 41.23 0.07 0.04 2110.55 0.07 0.18 NB4 168.26

random 9.24 12.09 44.05 2258.65 41.02 10.46 42.42 0.04 0.03 2166.98 0.04 0.17 NB4 213.22

#pickers 8 6.72 10.35 42.31 3983.85 38.84 7.24 39.20 0.07 0.01 3703.53 0.07 0.06 NB4 64.74

24 6.72 19.10 51.07 1850.28 38.84 10.61 42.57 0.17 0.10 1546.25 0.16 0.32 NB1 108.56

#aisles 20 10.14 14.28 46.26 2367.10 - 11.79 43.77 - - 2249.88 - - NB4 465.15

30 14.07 17.08 49.11 2454.68 - 15.21 47.24 - - 2360.50 - - NB4 677.16

order U(1,3) 6.98 12.90 44.86 2289.23 38.85 8.29 40.25 0.10 0.04 2042.75 0.11 0.16 NB4 120.33

size U(3,9) 11.13 24.82 96.72 4792.23 82.93 14.82 86.72 0.10 0.05 4360.45 0.09 0.17 NB4 1104.61

U(5,15) 13.41 32.92 144.99 7165.48 125.37 19.26 131.34 0.09 0.05 6513.75 0.09 0.15 NB4 1772.90

117

completion time. Table 10 includes additional analysis regarding the average and the

standard deviation of inter-arrival times between pickers. We collect the inter-arrival

time between pickers at the LU station and the 2nd aisle. With the proposed procedure,

the inter-arrival time becomes smaller and less variable. The smaller variance may

indicate that the pickers are more evenly spaced using the IBM method.

Table 10. Comparison of inter-completion time (the number of orders=2160,
Imax=20000)

8. CONCLUSION AND FURTHER STUDIES

This chapter presented: 1) the framework to optimize the order picking operation

in a circumnavigational order picking system, where both travel distance and time

blocked should be assessed; 2) the indexed order batching model (IBM) combining the

order batching problem and the batch sequencing problem; and 3) a simulated annealing

heuristic procedure to allow analysis of realistic problem sizes. The narrow-aisle

structure was exploited in developing the framework, the algorithm, and the procedure.

Experimental results showed that consideration for blocking in an integrated batching

and sequencing approach can have substantial benefits on performance criteria such as

total retrieval time or completion time.

This chapter has taken an initial step towards controlling congestion in a DC

5:1 10:1

Sequence LU station 2nd aisle LU station 2nd aisle

#pickers method RT CT Avg Std Avg Std RT CT Avg Std Avg Std

8 pickers RBP+Rand 29.76 8165.88 36.87 33.71 47.43 47.54 41.86 11494.53 52.07 49.07 66.67 71.61

IBMsa 28.69 7868.70 35.49 28.82 45.63 43.37 38.94 10696.53 48.39 40.63 61.83 64.65

16pickers RBP+Rand 31.09 4376.40 19.24 19.09 24.36 28.43 45.26 6386.68 28.32 29.35 35.56 44.64

IBMsa 29.18 4108.70 18.02 16.90 22.72 26.59 40.59 5688.20 25.09 23.42 31.17 32.20

24pickers RBP+Rand 32.55 3148.18 13.53 14.60 16.87 21.08 48.80 4729.53 20.61 23.10 25.46 33.32

IBMsa 29.95 2883.88 12.32 11.99 15.26 17.33 41.94 4010.88 17.22 16.79 21.21 23.01

118

facility. Specifically, we focused on the narrow-aisle order picking system, which is an

attractive OPS layout due to its cost merit from the standpoint of the DC design. The

proposed order picking operation procedure requires a reevaluation of some previous

research findings. For example, Ruben and Jacobs (1999) recognize the possibility of

productivity loss due to congestion under a class-based storage policy, which tends to

increase pick-density to shorten the travel distance. However, our experimental results

over the variation of the storage policy showed that if appropriate batching and

sequencing procedures, such as IBM, are implemented the congestion in a class-based

policy can be mitigated. IBM can also play a vital role in minimizing or preventing

picker utilization from dropping as the number of pickers increases. According to Gue et

al. (2006), the picker utilization drops as more pickers are staffed in an order picking

system. Thus, it is clear that under IBM some order picking system design rules relevant

to picker blocking should be reconsidered.

We suggest that our research be expanded to consider dynamic controls and to

explicitly account for other idle factors. First, to handle real-world problems, more

dynamic situations should be considered, for example, picking environments that

encounter cart breakdowns, search failures, and order changes. IBM requires new

planning when any of these difficulties are present. Second, while this study only

considers picker blocking, some order picking strategies encounter different idle factors,

such as hand-off delay in bucket brigade systems (Koo, 2009), which is a topic we will

address in the next chapter.

119

CHAPTER VII

ANALYSIS AND CONTROL OF PICKER BLOCKING IN A BUCKET

BRIGADE ORDER PICKING SYSTEM

Bucket brigades is an operation mode for order picking systems, which is

characterized by its self-balancing nature and high pick rates (Bartholdi and Eisenstein,

1996a). However, due to variability and uncertainty of the pick locations within a

particular order or batch, picker blocking can cause productivity losses. Furthermore, the

hand-off operation, which involves transiting partially-picked orders or batches from

upstream pickers to downstream pickers, can result in delays for the downstream pickers.

This chapter examines the significance of picker blocking and hand-off delay in bucket

brigade order picking and identifies the relevant analytical models, highlighting the

issues of blocking and hand-off delay through simulation studies. Our analytical results

identify several conditions for high order picking throughput, such as batch picking,

stable picking performance, and intermediate hand-off. A complete control procedure for

dynamic order picking is provided that mitigates both picker blocking and hand-off

delay. The proposed framework experiences 7 to 12% improvement of utilization across

diverse order picking situations when five pickers pick on average 20 items per tote.

1. INTRODUCTION

1.1 Bucket brigade order picking

A bucket brigade operational policy is attractive because the workload balancing

120

characteristic that allows dynamic reassignment of zones increases productivity with

minimal managerial or planning requirements. In the warehousing industry, the order

picking operation consists of retrieving customer orders from storage. To increase

throughput, multiple orders are often grouped in a batch for more efficient picking

operations.6 The method by which batches are assigned to pickers can have a significant

impact on picking performance. The bucket brigade concept used in general assembly-

line operations can be applied to order picking to achieve valued properties, such as the

self-balancing characteristic and minimum work-in-process (WIP) (Bartholdi and

Eisenstein, 1996a; Bartholdi and Eisenstein, 1996b). In practice, a bucket brigade order

picking strategy is often used with flow-rack shelving (Figure 31) in high throughput

warehouse environments. In this study, the combination of flow-rack shelving and the

bucket brigade strategy discussed in Bartholdi and Eisenstein (1996a) is referred to as a

bucket brigade order picking system (OPS).

Figure 31. A flow-rack OPS (Bartholdi and Eisenstein, 1996a).

The bucket brigade OPS is characterized by limited WIP, high picking

6 We discuss order pickers gathering batches. However, if batching is not used this would imply

one order per batch.

121

throughput, high space utilization, and the self-balancing property (Bartholdi and

Eisenstein, 1996a). However, as pick requirements are random over pick locations,

pickers often encounter blocking when the downstream picker is busy. In addition,

pickers may stand idle when the hand-off process is not synchronized.

In a bucket brigade OPS, multiple pickers help to pick a single batch. Pickers are

sequenced from upstream to downstream, and the sequence is maintained throughout.

Each batch is picked to a tote, and the tote is passed from one picker to the next

traversing the aisle. Pickers collect items at related pick faces in sequence. A picker

picks an item and places it in the tote assigned to a particular batch. The picker then

moves to the next pick face to continue processing the batch if there is no picker at the

next pick face. The upstream picker hands off the current tote upon meeting a

downstream picker who has no assigned tote. The picker most upstream (the first picker)

retrieves a new batch and tote from a loading station and begins picking at the first pick

face. The last picker releases the completed batch to the unloading station. A work area

for a picker is not predetermined and is dynamically resized through the pick-and-pass

process. Thus, this strategy eliminates the need for work zone load balancing, which can

be complicated and difficult (Bartholdi and Eisenstein, 1996a).

1.2 Performance under picker blocking and hand-off delay

A bucket brigade OPS does not allow pickers to pass due to the higher space

utilization (Bartholdi and Eisenstein, 1996a). Not allowing pickers to pass one another

can cause a delay in two ways. First, an upstream picker attempts to move forward to the

next pick face that is occupied by a busy downstream picker as shown in Figure 32 (a).

122

In this situation the upstream picker cannot hand-off the current batch to the downstream

picker because the downstream picker is currently executing a retrieval task. The

upstream picker also cannot pass over the downstream picker, because passing is not

allowed (picker blocking). Second, delay can occur when the downstream picker moves

upstream to take a hand-off from an upstream picker. If the upstream picker is picking

when the downstream picker encounters the upstream picker, the downstream picker

must wait until the upstream picker completes the pick. This is termed hand-off delay as

shown in Figure 32 (b).

(a) (b)

Figure 32. Delay situations in bucket brigade order picking: (a) picker blocking; and (b)
hand-off delay.

Performance regarding picker blocking and hand-off delay in bucket brigade

OPS is not well understood. In order to achieve the highest throughput, an individual

order picker’s region of operation within the aisle should stabilize so that the picker can

become familiar with the set of items and their location within the region (Lim and Yang,

2009). In diverse bucket brigade situations researchers (Armbruster and Gel, 2006;

Bartholdi and Eisenstein, 1996b; Bartholdi and Eisenstein, 2005; Bartholdi et al., 2001)

have identified operation rules or conditions that lead to stability. However, picker

blocking and hand-off delay can impact picker utilization (Bartholdi and Eisenstein,

123

1996b) and this issue has received little attention in the literature to date. Only Koo

(2009) investigates the productivity loss due to picker blocking and hand-off delays in a

bucket brigade OPS using simulation under the assumption picker capability is identical.

The throughput loss is 26.1% of the total working time, with 15.6% loss due to picker

blocking and 10.5% loss due to hand-off delay. To our knowledge, there is no analytical

model on picker blocking and hand-off delay in bucket brigade OPS which can help

engineers develop more effective operational strategies.

1.3 Our scope and goals

Order picking throughput is often measured by the ratio of time spent to pick to

time spent at a stop. Gue et al. (2006) introduced the throughput model for a narrow-

aisle order picking system with k pickers. We generalize Gue et al.’s result for a bucket

brigade OPS as described in Equation (7.1). When pickers are blocked with a fraction of

the time, b(k), where 0 ≤ b(k) ≤ 1, and a hand-off takes E[HO], where 0 ≤ E[HO] ≤

maximal pick time at a pick face, the throughput is:

 
 

  kb
HOEnkttptE

ptE
kk

wp















 1

][/1][

][


 (7.1)

where E[pt] stands for the expected number of picks at a stop and n is the number of

pick faces in bucket brigade OPS. The time to pick (tp) represents the average time the

picker is stopped and includes the time spent picking items. The time to walk (tw)

indicates the average time to walk past a pick face (location).

We assume that pickers perform identically, which is persuasive due to

simplicity of order picking, the relatively easy learning curve in order picking, and the

124

use of technology. In our model, walk speed is not instantaneous for both forward and

backward directions. Items in orders are randomly located in n pick faces and the

number of pickers (k) is relatively small compared to n. The time to load and unload

orders at the beginning and end of the aisle is negligible. Importantly, passing is not

allowed in this high density bucket brigade operation.

We develop analytical models for picker blocking and hand-off delays in a

bucket brigade OPS, where no correlation between two delays is assumed. We conduct a

simulation study to clarify the source of delays in diverse situations. The analytical and

simulation models allow for the size of delays to be quantified; however, a primary

purpose of our examination is to assist operational decision-making. A control model

and relevant algorithms are proposed to reduce the delays.

The chapter is organized as follows. Section 2 reviews the relevant order picking

literature and identifies new opportunities. In Section 3, we introduce analytical models

and control methods for picker blocking. Section 4 focuses on an analytical model of

hand-off delay and details the proposed control policy for reducing hand-off delay.

Section 5 describes a simulation study analyzing picker blocking and hand-off delay and

summarizes the experimental results. Section 6 concludes this chapter.

2. LITERATURE REVIEW

Bucket brigade models are typically characterized by work content model

(uniform or exponential), walk speed assumptions (finite or infinite speed in forward and

backward walks), and pickers’ velocity or capability (identical or non-identical). Bucket

brigade was originally proposed for the manufacturing setting, thus descriptions of this

125

work have been adapted for an order picking setting.

2.1 Picker blocking and hand-off delay in bucket brigades

Bartholdi and Eisenstein (1996b) introduce the bucket brigade management

method for manufacturing settings. Their three assumptions are: pickers travel with

instantaneous walk speed (including backward walk speed), a picker’s capability is

distinct and not identical, and workloads are uniformly and randomly distributed. Their

model considers non-identical capability and utilizes the capability difference to reduce

blocking. The highest throughput is obtained when pickers are sequenced with the

slowest picker in the location most upstream and the fastest picker in the location most

downstream. Picker blocking can be minimized when there are large capability

differences among pickers. The authors also suggest that hand-off delay can be reduced

through practice.

Bartholdi and Eisenstein (1996a) present the bucket brigade for order picking and

describe the productivity improvements through a physical implementation. In particular,

the authors emphasize that bucket brigades can achieve both high space utilization and

high picker utilization. However, since higher space utilization makes passing difficult,

they recommend the bucket brigade for high-volume, limited space picking operations

over the more traditional zone picking strategy. Further, the authors suggest another way

to reduce picker blocking is cooperation between neighboring pickers, where a blocked

picker aids a blocking picker with the help of pick-to-light technology. A blocked picker

picks items of a blocking picker, which are identified by pick-to-light.

 Bartholdi et al. (2001) develop a general performance model where the work

126

load is not uniform over the pick area. They show that bucket brigades is still

advantageous and self-balancing despite the fact that pick locations are exponentially

distributed. Their assumption states that when walk speed is instantaneous, pickers move

rapidly. Thus, hand-offs of all pickers occur simultanesously and sychronously, and

hand-off delays drop.

Bartholdi and Eisenstein (2005) analyze an assembly-line where the walk speed

is not infinite and the return trip of a picker after handing off his/her workload requires

significant time. Under these assumptions hand-off delay affects productivity. They find

a considerable loss of productivity by walk-back time and hand-off delay; nonetheless,

their practical application demonstrates a stable performance. Specifically, they assume

constant hand-off time to identify the operational stability, but do not evaluate the

productivity loss due to the hand-off operation. They do not observe the impacts of

picker blocking.

Koo (2009) shows that picker blocking and hand-off delay reduce the

productivity of the bucket brigade OPS when pickers have the same capability. The

author assumes that work load is random, pick time is not deterministic, and walk time is

infinite. He constrains each picker’s picking area by defining a downstream boundary

which he shows improves their productivity. Further, upstream pickers are allowed to

leave totes at the boundary location if a downstream picker is not available to take over

the tote. Under this set of assumptions Koo derives a closed form calculation for hand-

off delay as (k-1)*E[pick time]/2.

127

2.2 Issues

Reviewing the available studies, we identify four critical issues:

1) The impacts of picker blocking on a bucket brigade OPS when pickers have

similar picking abilities are not quantified or well understood for realistic

assumptions regarding pick and walk times. Koo (2009) reports the

productivity loss, but only considers a simulation study with an exponential

pick time and infinite walk time. These two assumptions are not typical of

realistic order picking operations.

2) Available picker blocking mitigation methods are not appropriate for the

general configuration described in this dissertation and do not maintain the

standard bucket brigade protocol. Cooperation between pickers (Bartholdi and

Eisenstein, 1996a) is not clearly explained by the authors. Its realization would

―break‖ a bucket brigade protocol because a blocked picker cannot assist a

blocking picker under the standard bucket brigade protocol. The passing

method proposed by Bartholdi and Eisenstein (2005) in the manufacturing

setting also is not appropriate in the current order picking configuration

because passing requires additional space for both pickers and totes. Moreover,

it is not obvious that passing would improve performance in order picking

because pickers may waste time passing over another picker. Koo (2009)’s

approach violates the basic principle of bucket brigade by assigning WIPs at

boundaries. In addition, stacking at boundaries increases WIPs and requires

additional space.

3) The impacts of hand-off delay on a bucket brigade order picking system have

not been properly investigated. The hand-off model by Koo (2009) is incorrect

when a variation of pick time is not zero (see Section 5 below). Moreover, his

study assumes instantaneous walk times. The impact of walk time on hand-off

delay has not been discussed in the literature.

4) Suggested methods to reduce hand-off delay lack operational details for

implementation or are not practical for real settings. Bartholdi and Eisenstein

128

(1996a) suggest a smooth hand-off operation; however, there is no description

of the operational implementation. In addition, simultaneous and sychronous

hand-off (Bartholdi et al., 2001) does not apply when both pick time and walk

time are finite.

3. ANALYSIS AND CONTROL OF PICKER BLOCKING

In this section, we develop analytical models of picker blocking and methods to

mitigate picker blocking for bucket brigade OPS. Recognizing that both standard

multiple-aisle rectangular order picking systems and bucket brigade order picking

systems can be characterized using the circular-aisle OPS abstraction, we apply the

blocking control model developed in Chapter V to a bucket brigade OPS under the

assumption of no passing. Finally, we utilize the control model to demonstrate the

reduction that can be achieved.

3.1 Picker blocking in a circular order picking aisle with two pickers

Gue et al. (2006) investigate the effects of picker blocking under a no-passing

policy, considering only single-pick situations. The circular order picking aisle

abstraction is used in developing both analytical models and a simulation study. Table

11, column 1, shows the closed-form expression for percentage of time blocked for two

pick to walk time ratios developed in Gue et al. (2006). Column 2 presents our results in

Chapter V. The analysis is undertaken for a two-picker OPS. Both approaches consider

two extreme cases: 1) walk speed is equal to unit pick time per pick face (pick time:walk

time = 1:1), and 2) walk speed is infinite (pick time:walk time = 1:0). The results in

Table 11 are developed for a rectangular multiple aisle warehouse with cross aisles at the

front and back of the picking area. Pickers take a one-way traversal route and passing is

129

not allowed. At a pick face, a batch includes an item with a probability p. Further, q

denotes 1-p, the probability of no item at a pick face. The models of Gue et al. (2006)

and Chapter V are distinguished by the number of picks per pick location, single vs.

multiple. The multiple-pick model can repeat a pick at the same pick face with

probability p.

Table 11. The percentage of time blocked when two pickers work (p=pick density, n=the
number of pick faces)

Pick:walk
time

Single-pick
 (Gue et al., 2006)

Multiple-picks
 (see Chapter V)

1:0
   pnp

p

112

1




 pn 12

1



1:1

   22
11 ppn

pq



12  pn

p

Gue et al. (2006) explain that the batch picking strategy can experience less

picker blocking when the pick density is either very low or very high. Chapter V and

Parikh and Meller (2010) show that the variation in pick density can be as important as

the level of pick density in determining the amount of blocking in a circular-aisle OPS.

One important observation in Chapter V is that batch picking can reduce picker blocking.

3.2 Picker blocking in bucket brigade order picking

Bucket brigade order picking has a special release mechanism of a new batch and

the mechanism impacts the picker blocking model. Thus, first, the release mechanism of

a new batch is explained. Second, picker blocking will be discussed. Note that in this

study we show the equivalence of the picker blocking models of the bucket brigade

order picking and the circular-aisle abstraction under specific situations, instead of a

130

direct development of the picker blocking model of bucket brigade order picking.

Figure 33 describes a series of hand-offs after completion of a batch. k pickers

are sequenced from the loading station to the unloading station in a decreasing sequence

of k,k-1,…, 2,1. When a batch (denote this batch ith batch) is finished by the picker most

downstream (picker 1), a new batch must enter the system. Picker 1 becomes idle and

moves backward to take over the batch of picker 2 who is moving forward with the i+1st

batch. Obviously, the hand-off occurs when they meet. Picker 2 changes direction

(backward towards the loading station) to take a new batch from a picker further

upstream (i.e., picker 3), when he/she meets an upstream picker he/she takes over i+2nd

batch, and then turns and continues picking in a forward direction. Finally, the picker

most upstream (picker k) arrives at the loading station to take over i+k
th batch, and

his/her arrival time at the loading station becomes the starting time of a new batch (i.e.,

i+k
th batch). The difference between the completion time of the ith batch and the starting

time of the i+k
th batch, which is a batch paired to the ith released batch, equals the sum of

backward walks and the hand-off delay occurring after completion of the ith batch.

131

Figure 33. A description of chain reaction after completion of batch i to release a new
batch i+k.

Assume that there is no hand-off delay and backward walk speed (empty travel

walking speed) is instantaneous similar to Bartholdi and Eisenstein (1996a). In addition,

k pickers have identical pick performance and walk speed as we assumed in Section 1.

Interestingly, with infinite backward walk speed and no hand-off delays, the circular-

aisle abstraction of the traversal routing rectangular picking system can be used to

characterize a bucket brigade OPS in terms of picker blocking. Further, the same picker

blocking model can be used for both analyses.

 The equivalence can be easily shown by replacing ―pickers‖ with ―batches‖. By

definition, picker blocking occurs while pickers repeat picking, walking, and blocking,

and the picking locations and durations are determined by batches. Thus, without loss of

generality, the picker blocking mechanism can be derived from the batches. In bucket

brigade order picking, picker blocking occurs when an upstream batch has no item to be

picked, but a downstream batch has some picks at the next pick face and holds the next

132

pick face. Then, the upstream batch may stay at the current pick face, which causes a

delay and becomes a picker blocking situation. A more rigorous proof follows.

Theorem 4. When the backward walk time is instantaneous and the hand-off

time is zero, the picker blocking model of bucket brigade order picking is equivalent to

the picker blocking model of the circular-aisle abstraction.

Proof.

When the batch most downstream is completed, it disappears from the system,

other batches in the system are handed off to the next pickers, and a new batch is

released. The completion, backward walks, and hand-offs occur instantaneously and

result in the release of a new batch. This proof shows that: order picking mechanisms of

two models (bucket brigade order picking and circular-aisle abstraction) are equivalent

until a batch is completed; the completion of a batch does not impact any locations and

times of current batches; and the release of a new batch has the same locations, time, and

batch.

1) Before completion of the batch most downstream

Without loss of generality, before completion of a batch, two models follow the

same procedure. For example, consider batches i, i+1, i+2, and i+3 as depicted in Figure

34. Figure 34 (a) is a circular-aisle abstraction, and Figure 34 (b) is a bucket brigade

order picking situation. The moving directions and batches are identical. Thus, until

batch i (bi) is completed, the two systems face the same situations of picker blocking.

133

(a) (b)

Figure 34. A normal situation example. In both models, four pickers process four batches.
Two pickers (picker 3 and 4) may have a chance of blocking depending on items in
batches i+2 and i+3 (the number of pick faces = 8, the number of pickers = 4): (a) a
circular-aisle abstraction; and (b) a bucket brigade OPS.

2) Completion of the batch most downstream and occurrence of hand-off

Since batch i has been completed, the chain reaction discussed in Figure 33 arises.

Due to the infinite backward walk speed and the zero hand-off delay, all batches will be

handed off at the same time. Batch i+k enters the system (i.e., the first pick face) and its

release time is identical to the completion time of batch i. The picker assignments of

batches i+1, i+2, …, i+k-1 are changed from 2,3,..,k to 1,…,k-1. Picker k captures batch

i+k. During this shift, there is no blocking. Then, recursively, case 1) repeats. In the

circular-aisle abstraction, the release location of a new batch is the first pick face and the

release time of a new batch is the completion time of kth before. Thus, the two systems

release a new batch into the same location at the same time when the backward walk

speed is infinite and the hand-off delay is negligible (see (a)

(b)

Figure 35).

134

(a) (b)

Figure 35. A completion and release example. Both models release batch i+4 at the same
time and it starts from pick face 1 (the number of pick faces = 8, the number of pickers =
4): (a) a circular-aisle abstraction; and (b) a bucket brigade OPS.

From Proofs 1 and 2, two systems are identical in steady state. Initialization and

finalization stages are beyond the scope of the analysis of the steady state. However,

technically, two models can start with the same procedure if they start together from the

loading station. The finalization stage also can be the same if they do not allow any

hand-off after the last batch enters the system. End of proof.

Having identified the equivalence of the picker blocking model in these two

settings, we are now able to develop the following insights:

1) Batch picking faces less picker blocking when the batch size is determined by

the number of items, not the number of orders. The batch size can be

determined by quantity of items the tote can hold when using a pick-then-sort

strategy, or number of orders (or the number of totes in a batch) in a sort-

while-pick strategy. When a batch includes a fixed number of items, pick

density is constant over batches. Thus, the variation of pick density decreases.

2) With a finite backward walk time, picker blocking may become less than the

infinite backward walk time case. The release of the i+k
th batch requires a

135

duration after the completion of the ith batch due to the backward walk times.

The distance between i+k
th and i+k-1st lengthens compared to the infinite

backward walk time case. Thus, picker blocking decreases.

3) When walk speed is not infinite and is not unit walk speed, hand-off delay

becomes more significant and picker blocking decreases. As hand-off delay

increases, the starting time of a new batch is delayed. Typically, picker

blocking decreases as hand-off delay increases.

3.3 Indexed order batching model for control

Since the picker blocking mechanism of a circular-aisle OPS has been identified,

and the equivalence of the bucket brigade OPS shown, the multiple-aisle IBM for picker

blocking control described in Chapter VI can be employed.

We generalize the model by relaxing two assumptions: the IBM for bucket

brigade order picking differs from the parallel-aisle IBM: 1) the starting time of the i+k
th

batch is determined by the cumulative sum of hand-off delay and backward walk time

upon completion of the ith batch; and 2) the IBM for bucket brigade order picking has no

routing problem. Based on these two differences, the abstracted IBM becomes the

following equation:

The indexed batching constraints associate the batching problem with the release

sequence. In-the-aisle picker blocking constraints are required to calculate overall picker

blocking. The IBM for bucket brigade OPS can update the release-time of batch i+k

using the following logic:

(Abstracted IBM with finite pickers) Min Walk time + Time delayed
Subject to
 Indexed batching constraints
 In-the-aisle picker blocking constraints
 Release-time updating constraints

136

where k is the number of pickers and i is the index of a batch. For E[HO] (the expected

time delayed per hand-off occurrence), we introduce a weight factor α. Because an

expected hand-off delay can vary depending on hand-off control (discussed below in

Section 5), the weight factor α is necessary. Moreover, usually the loading time is 0 in a

bucket brigade protocol. Thus, to obtain the starting time of the i+k
th batch, we use the

following equation:

For a detailed IBM formulation, see Appendix D.2.

The starting time of batch i+k at the loading station

= the completion time of the ith completed batch at the unloading station

+ unit backward time*n

+ α (k-1)E[HO]

The starting time of batch i+k at loading station

= the completion time of the i th completed batch at unloading station

+ the expected backward travel time by picker 1 for batch i+1

+ the expected hand-off delay by picker 1 for batch i+1

+ the expected backward travel time by picker 2 for batch i+2

+ the expected hand-off delay by picker 2 for batch i+2

…

+ the expected backward travel time by picker k for batch i+k

+ the expected loading time by picker k for batch i+k

= the completion time of the ith completed batch at the unloading station

+ the expected backward travel time by picker 1,..,k linked by batch i’s completion

+ the expected hand-off delay by picker 1,..,k-1

+ the expected loading time by picker k for batch i+k

= the completion time of the ith completed batch at the unloading station

+ unit backward time*n

+ (k-1)E[HO]

+ the expected loading time by picker k for batch i+k

137

4. ANALYSIS AND CONTROL OF HAND-OFF DELAY

In this section, we conduct an analytical study to quantify if hand-offs are a

significant source of delay and thus a concern of management. We develop a renewal

process model for the hand-off operation between two pickers when pick time is random

and walk time is instantaneous. We also propose a method to control hand-off delay.

4.1 Renewal process model for hand-off operation

We assume that walk speed is infinite and the number of picks is large enough

for analytical purposes. As in the previous blocking models, the first assumption (infinite

walk speed) is common in the bucket brigade literature. Section 5 below provides further

generalizations for cases with finite walk speed and fewer picks via a simulation study.

Consider that an upstream picker and a downstream picker are identical in terms

of pick time and walk time. The upstream picker makes stops 1, 2,… for picks whenever

a pick face contains at least one item to be picked. Note that each stop can process one or

more picks and can come from different batches. X1, X2, X3,… denotes the time spent for

the upstream picker to pick all items in a pick face at a stop. In other words, X1, X2, X3,…

becomes an inter-arrival time between stops. The mean of the inter-arrival time of stops

[X1, X2, X3,…] is E[X] and identical to average pick time per stop. The sequence, A1,

A2,…, represents the times at which the upstream picker completes the retrieval

operation at 1st stop, the retrieval operation at 2nd stop, …. . The downstream picker’s

returning time is the sum of the walking time, picking time, blocking time (if blocked),

and walk back for a particular batch. When the pick load is large enough, the returning

time of a downstream picker is close to random arrival. Here, the sequence, S1, S2, S3,...

138

is the arrival time of the downstream picker to take over a tote from the upstream picker.

The waiting time of a downstream picker is Y1, Y2, Y3,... for each arrival. The waiting

time for jth hand-off (Yj) becomes Ai-Sj where Ai stands for the completion time of pick(s)

at ith stop of the upstream picker.

The example in Figure 36 illustrates a hand-off delay of picker 1 when picker 2

processes the second item of batch 2 (B2
2, where the superscript indicates the batch

number and the subscript stands for items in a batch). Picker 1 has completed the last

two picks of batch 1 (B1
5 and B1

6) and unloaded the collected batch, he/she is idle at the

next pick face of picker 2. The idle time duration is Y1 (=A2-S1) when picker 1 arrives at

time S1 and picker 2 finishes the second item of batch 2 (B2
2) at time A2.

Figure 36. An example of hand-off and its appropriate renewal process.

From the situation we described above, the expected time delayed per hand-off

occurrence and the expected time delayed per batch can be derived.

139

Theorem 5. The expected waiting time (E[Y(t)]) is E[X2]/2E[X] and the hand-off

delay per batch is (k-1)* E[X2]/2E[X].

Proof.

 We derive the renewal processes based on the definition in Ross (1996). By

definition, E[X2]<∞, because X is the average pick time at a stop and X is finite as long

as the pick is completed.

The expected waiting time (E[Y(t)]) can be expressed as:

                 

       

   tFtXtXEth

xFxmtFtF

ydmytFyStYEtFStYEtYE

n

n

t

tNtN














|)(

,1 where

 ,|0|][

1

0

(7.2)

Since E[X2]<∞,    tFtXtXEth  |)(is directly Riemann integrable. Thus, we

can use the key renewal theorem:

       

   XEXE

XEdttFtXtXEtYE

2/

/|][

2

0



 


(7.3)

(See Appendix D.3 in detail.)

k-1 pickers are associated with hand-offs for a batch. Thus, the expected hand-off

time per batch is (k-1)* E[X2]/2E[X]. End of proof.

4.2 Intermediate hand-off rule and pick-first priority

The previous section estimated the expected wait time due to hand-off delay.

Equation (7.3) indicates that multiple-picks can increase the hand-off delay as the

140

variation increases. Note that we assume that the pick time at a stop is dependent on the

number of items, which is a multiple-pick situation at a pick face. Usually, the multiple-

pick situation concerns multiple products. In practice, while retrieving multiple items

from a pick face, an upstream picker may be able to yield remaining item(s) to a

downstream picker after completion of an item, not all of the items. This yielding seems

to be more practical and can prevent the stop-based model from overestimating the hand-

off delay.

This study terms the yielding the intermediate hand-off rule. This practical rule

and procedure can also reduce hand-off delay and simplify our other hand-off proofs.

When an upstream picker sees a downstream picker while processing multiple items,

he/she can yield the remaining picks to the downstream picker if he/she completes at

least one pick. This method can prevent unnecessarily long hand-off delays when

multiple-picks at a pick face are allowed. Then, under the intermediate hand-off rule, the

mean of the inter-arrival time of picks E[X] becomes the average pick time since a hand-

off can occur at the completion of every pick, not stop.

However, when the downstream picker becomes idle simultaneously as the

upstream picker starts the first pick, the upstream picker completes the first pick and

yields the batch after the completion. This exception to the intermediate hand-off rule is

called pick-first priority.

4.3 Control of hand-off delay: No-handshake hand-off policy

Initially, a hand-off policy to reduce delay is identified, and then an optimal

control value is presented. The hand-off delay stems from poor synchronization between

141

two pickers. Typically in a bucket brigade system two pickers meet and the upstream

picker hands the tote to the downstream picker. Pickers coming into direct contact is

termed a handshake hand-off. Our new policy relaxes this restriction, which is termed a

no-handshake hand-off policy. As depicted in Figure 37, an upstream picker decides to:

1) move forward to the next pick and retrieve the next pick; or 2) move backward,

leaving a batch at the location of the next pick. In the latter case, the downstream picker

will process the next pick upon taking over the batch.

Figure 37. No-handshake hand-off policy.

Next, conditions which determine the upstream pickers’ behavior are defined.

Walk speed is infinite and the pickers are identical. It is assumed that pickers can

accurately estimate expected hand-off delay. The assumption will be revisited when

discussing a practical application in Section 5. Consider a hand-off between two pickers.

Define τ as a threshold period of time. If the expected hand-off delay is longer than τ, the

upstream picker does not perform the next pick. In Figure 38 (a), Y2 is longer than τ, and

the upstream picker does not start the second pick, but leaves the current batch and

moves backward. The new hand-off time, zero, in Figure 38 (b) replaces Y2 in Figure 38

(a). The remaining timeline of the no-handshake hand-off bucket brigade differs from

the timeline of the regular bucket brigade because the upstream picker does not process a

pick relevant to A3 and instead the downstream picker retrieves the pick. Thus, the

142

remaining timeline uses A'3,A'4, A'5, S'2 and Y'2. Note that at S2, the downstream picker

does not wait, but picks an item. The second hand-off occurs at S'2.

(a)

(b)

Figure 38. Comparing two bucket brigade methods: (a) regular bucket brigade; and (b)
no-handshake hand-off bucket brigade.

Now we can derive an optimal policy. The waiting time by the downstream

picker is conditioned on the expected wait time. The waiting time under the new policy

is:

                 

       

   tFtXtXtXEth

xFxmtFtF

ydmytFyStYEtFStYEtYE

n

n

t

tNtN














,|)(

,1 where

 ,|0|][

1

0

'''

(7.4)

Since E[X2]<∞,    tFtXtXtXEth  ,|)(is directly Riemann integrable.

143

Thus, we can use the key renewal theorem:

     

     XExdFxdFx

XEdttFtXtXtXEtYE

2/

/,|)]([

2

0

2

0

'




























(7.5)

(See Appendix D.4 in detail.)

From Equation (7.5), we derive the following theorem.

Theorem 6. With a no-handshake hand-off policy, the minimum expected hand-

off delay is zero.

Proof.

Equation (7.5) is always greater than and equal to 0 over τ. When τ = 0, this value

is always zero as shown below in Equation (7.6).

    02

0

2  






 xdFxdFx

(7.6)

End of proof.

5. SIMULATION AND EXPERIMENTAL RESULTS

In Sections 3 and 4, analytical and control models were presented to quantify and

reduce picker blocking and hand-off delay. This section will verify the models using

simulations. In addition, the simulations are extended into practical situations since

several assumptions are inevitable in models: no hand-off delay in the picker blocking

model, and a large number of picks and infinite walk speeds in the hand-off models.

More importantly, the performance improvement will be evaluated in practical settings.

144

5.1 Simulation study on picker blocking

Figure 39 illustrates performance loss by picker blocking in 20-pick face bucket

brigade systems and circular picking systems with two pickers whose speed is from 0 to

infinite walk speed. Solid lines are the simulations’ results when pick:walk time = 1:0,

1:0.025, 1:0.05, 1:0.1, 1:0.25, 1:0.5, and 1:1 from top to bottom. The upper dotted line is

an analytical result with pick:walk time = 1: 0. The lower dotted line is a lower bound

with pick:walk time = 1:1. Deterministic pick time and walk speed hold.

When pick:walk time = 1:1, the delay in the bucket brigade picking is almost

identical to the pattern of the circular-aisle picking. When pick:walk time = 1:0, the

bucket brigade order picking faces less blocking than the analytical model and the

circular-aisle model. Our analysis indicates that the 1:0 model can include one hand-off

situation at the first pick face. By chance, as an upstream picker arrives at the first pick

face with a pick, he/she can face a downstream picker. According to the pick-first

priority, the upstream picker picks and the downstream picker waits. Our observation

indicates that when walk speed is not infinite or is unit walk speed, hand-off delay

becomes more of a concern. As hand-off delay arises, the starting time of a new batch is

delayed. Thus, picker blocking decreases.

145

(a) (b)

Figure 39. The percentage of time blocked (two-picker, 20 pick faces) with multiple-
picks with infinite backward walk with allowance of intermediate hand-off: (a) bucket
brigade system; and (b) circular-aisle system.

5.2 Simulation study on hand-off delay

A simulation study distinguishes when more and less hand-offs occur. The

benefits of the hand-off control strategy are demonstrated.

5.2.1 Impacts on hand-off delay by practical situations

In practice, pickers are neither infinitely fast nor do they process an infinite

number of picks. For a more realistic situation, we analyze the hand-off model using a

discrete-event simulation under the intermediate hand-off rule and pick-first priority.

More specifically, the walk time is classified by forward walk (i.e., loaded walk) and

backward walk (i.e., empty walk) according to the moving direction or the carrying

status of a tote. We consider five situations: 1) 100 pick faces and two pickers with 500

picks and infinite walk speed (notated 2NW-500); 2) 100 pick faces and five pickers

with 50 picks and infinite walk speed (5NW-50); 3) 100 pick faces and five pickers with

20 picks and infinite walk speed (5NW-20); 4) 100 pick faces and five pickers with 20

picks and forward walk time = 0.1 time per pick face (5FW-20); and 5) 100 pick faces

and five pickers with 20 picks, forward walk time = 0.1 time per pick face, and

146

backward walk time = 0.05 time per pick face (5BW-20). Additionally, we consider

three pick time distributions: Uni = uniform [min,max] = [0.5, 1.5], Tri = triangular [min,

mode, max] = [0.5, 1.0, 1.5], and Exp = exponential [mean] = [1.0], where the time unit

represents a time spent to retrieve an item. There are 20 simulation runs with 2000

orders per run; the number of simulation runs is obtained from: 1) the comparison

between our analytical models and simulation results; and 2) the experiment size

proposed by the simulation environments in Ruben and Jacobs (1999).

The comparison results are summarized in Table 12. We are interested in the gap

between analytical results and simulation values over order picking situations. 2NW-500

shows a very small gap compared to the analytical result. As the number of picks

decreases and the number of pickers increases (5NW-50, 5NW-20) the hand-off delay

decreases compared to the analytical value. Forward walk time and backward move also

impact the delay (5FW-20, 5BW-20); less hand-off delay is observed. When walking

takes positive time, pickers can confront each other while walking, not picking

frequently. In this case, a hand-off operation can be conducted without delay. Thus, the

average hand-off delay time is reduced.

Table 12. Average hand-off delay per occurrence over different order picking situations
Distribution Uni Tri Exp
 Time

delayed
Gap Time

delayed
Gap Time

delayed
Gap

Analytical value 0.5466 - 0.5208 - 1.0000 -
2NW-500 0.5419 0.87% 0.5207 0.02% 1.0010 -0.10%
5NW-50 0.5233 4.27% 0.5101 2.06% 0.8663 13.37%
5NW-20 0.4730 13.46% 0.4628 11.14% 0.7046 29.54%
5FW-20 0.3333 39.02% 0.4039 22.46% 0.6253 37.47%
5BW-20 0.3286 39.87% 0.3223 38.13% 0.5225 47.75%

147

5.2.2 No-handshake hand-off policy

A simulation study is conducted to investigate the proposed control methods

including the intermediate hand-off rule. The impact of picker blocking is minimized by

fixing the batch size and only allowing single picks at a given pick face. Several picking

environments are investigated by varying the pick time and the walk time distributions,

the number of pick faces, and workloads.

As depicted in Figure 40, τ = 0 achieves a minimum hand-off delay. While

Figure 40 (a) shows almost zero hand-off delay, Figure 40 (b) shows a relatively

significant hand-off delay in spite of τ = 0. The expected hand-off delay of 5NW-50,

5NW-20, 5FW-20, and 5BW-20 situations in Figure 40 (b) increases as the variance and

range of the pick time distribution increase. In particular, as the number of picks

decreases (5NW-50, 5NW-20 situations in Figure 40 (b)), the values of time delayed

increases when τ = 0. Situations relevant to the pick-first priority for the exponential

pick time cases occur more frequently because the number of picks is too small. When

an upstream picker takes a long time to pick an item, a downstream picker reaches the

hand-off location from the upstream picker before the upstream picker has completed the

first pick. As walking speed impacts the downstream picker’s performance (5FW-20 and

5FW-20 situations in Figure 40 (b)), the time to reach an upstream picker increases; thus

the time delayed decreases when τ = 0. In summary, while a significant portion of the

hand-off delay can be reduced through the no-handshake hand-off rule, the portion of

pick-first priority is exceptional, particularly for the exponential pick time cases in

Figure 40 (b). When the variation of pick time is very high and the number of picks is

148

small, the no-handshake hand-off rule functions poorly. The stable retrieval performance

plays an important role in employing the no-handshake hand-off rule appropriately.

(a) (b)

Figure 40. Impacts on hand-off delay of policy parameter over different picking
environments: (a) triangular pick time; and (b) exponential pick time.

5.3 Integrated control of picker blocking and hand-off delay

This section summarizes the computational implementation and discusses

insights from the analysis. IBM and no-handshake hand-off policy are implemented at

different operational levels. IBM is proposed to determine the content of batches and the

sequence of batches, while the no-handshake hand-off policy is an instruction given to

the picker. Instead of integrating the two control strategies, a hierarchical structure is

proposed. The details are as follows:

 Use IBM to reduce picker blocking

 Teach pickers the no-handshake hand-off policy to reduce hand-off delay

5.3.1 Experimental design

A modified order picking profile based on Koo (2009) is used to evaluate the

proposed procedure. We consider 100 pick faces and five pickers. A picker performs

149

with pick:(forward) walk:backward walk ratio = 1.0:0.1:0.05. We employ a triangular

distribution for pick time. Deterministic forward and backward walk times are assumed.

We compare two control cases: FCFS = sequence orders into batches on a first-come-

first-serve basis and release batches immediately after construction; and Cont = IBM +

no-handshake hand-off operation.

We investigate four different scenarios listed in Table 13. First, a standard

scenario uses the walk speed and picking capability configurations defined above.

Second, a capability scenario differentiates picking capabilities across pickers. The unit

time per pick for the five pickers in the simulation is differentiated into 1.5, 1.25, 1.0,

0.75, 0.5, where an average picker performs one pick per unit time. Third, the fast-walk

scenario looks at the variations in the walk speed of pickers which frequently appear in

the bucket brigade order picking literature (Bartholdi and Eisenstein, 1996b; Koo, 2009),

where the authors assume pickers’ travel with instantaneous walk speed. A fast-walk

situation increases walk speed into pick:walk:back = 1:0.05:0.025; this value is a fast

case in Gue et al. (2006). Fourth, in one small-OPS scenario, the walk speed is fast and

the OPS is small in size. The OPS has 50 pick faces.

We evaluate single order picking and batch order picking. We consider five

scenarios with varying average order sizes of 4, 6, 10, 20, and 50 items for the single

order picking strategy, and two items per order in the batch picking strategy. The order

size of each order is randomly selected based on a uniform distribution [min,max] =

[mean/2, mean*3/2]. Pick time is drawn from a triangular distribution of [min, mode,

max] = [0.5,1.0,1.5]. Note that according to our survey, a practical work load per picker

150

is 2~4 picks per batch (Koo, 2009) and four orders per batch (Bartholdi and Eisenstein,

1996a). Since an order size can vary, but is relatively small in a bucket brigade order

picking, batch picking considers 20 items as a regular batch size (i.e., four picks per

picker or two orders per picker) and 50 items for a heavy demand situation (i.e., 10 picks

per picker or five orders per picker).

As a performance measure, we compare utilization (%), time blocked (%), and

hand-off delay (%). Utilization is the percentage of time spent picking to overall

operations. Time blocked represents a productivity loss. Hand-off delay includes the

ratio of hand-off waiting time to the overall time. In addition, the column labeled Diff in

the result tables (Table 14 and Table 15) shows the comparison between FCFS and Cont.

Run time illustrates the computation time per cycle, where a cycle has k batches for k

pickers.

The simulation is implemented using C language and the IBM formulations using

ILOG CPLEX Callable Library C API 11.0.4. The executable files run on Windows

Server 2008 (Xeon 2.66 Ghz CPU, 12 GB memory, 32 bit implementation). We disable

both the branch-and-cut option and the heuristic search option to evaluate the exact

computational time. One instance includes 2000 orders and 20 runs consistent with

Ruben and Jacobs (1999). The picking environment is summarized in Table 13.

151

Table 13. Summary of experimental environments

Configuration Values
Scenarios Standard, Capability, Fast-walk, Small-OPS
Mean of order sizes 2, 4, 6, 10, 20, and 50
items per order Uniform distribution [min,max] = [mean/2, mean*3/2]
Pick time Triangular distribution [min, mode, max] = [0.5, 1.0, 1.5]
Forward walk time 0.1 or 0.05
Backward walk time 0.05 or 0.025
E[HO] 0.5208
α 0.016
Performance measure utilization (%), time blocked (%), and hand-off delay (%)
Runs per instance 20 runs with 2000 orders
The number of batches
per one IBM

5 orders or batches per an IBM cycle.

5.3.2 Single order picking

Using FCFS, utilization is 19.95% to 67.16% (Table 14 (Standard)). The

proposed approach (Cont) improves the utilization to 20.70~73.82%. In particular, when

order sizes are medium or large, picker blocking is of increased concern and picker

blocking control in the Cont approach is very effective. Compared to the batch picking,

the single order picking produces more picker blocking since a higher variation of pick

density is inevitable. IBM successfully manages the picker blocking. The reduction of

picker blocking amounts to 58.20% compared to FCFS when the order size is 20 items

per order. When the work load is higher and more pickers are used, blocking is more

serious and the proposed methods exhibit robust and better performance over FCFS.

Consistently, most hand-off delays are removed by the proposed control method. The

runtimes for the IBM algorithm are 0.095~0.417 seconds per a cycle to determine the

release sequence of five pickers. The FCFS in the capability scenario produces less

picker blocking compared to the standard scenario. Thus, the Cont experiences small

improvements. Fast-walk and small-OPS situations consistently show improvement in

152

terms of increased utilization.

Table 14. Experimental results on single order picking

5.3.3 Batch order picking

Table 15 summarizes the results of varying the batch size in bucket brigade OPS.

A 4.29~7.04% improvement of utilization in the standard picking situation is observed.

As identified in Section 4, batch picking can reduce the variation of pick density and

lead to less picker blocking. Thus, the results for batch picking are not as dramatic as

observed in the single order picking scenario. Specifically, in the standard situation, the

percentage of time blocked is 1.58~1.68%, whereas the FCFS situation is 2.60~2.89%.

Hand-off control consistently shows improvement; the percentage difference between

FCFS and Cont is 80.70~86.64%. The calculations related to the IBM average 0.387

seconds when the batch size is 20 and 1.254 seconds when the batch size is 50.

Scenarios Order Utilization (%) Time blocked (%) Hand-off delay (%) Run time

Size FCFS Cont Diff (%) FCFS Cont Diff (%) FCFS Cont Diff (%) (seconds)

Standard 4 19.95 20.70 3.75 2.66 1.46 45.09 2.26 0.34 85.15 0.095

6 26.67 28.05 5.17 3.85 1.91 50.41 2.68 0.41 84.67 0.125

10 36.51 38.95 6.67 5.61 2.56 54.38 3.01 0.48 83.92 0.164

20 50.82 55.21 8.64 8.09 3.38 58.20 2.92 0.53 81.97 0.229

50 67.16 73.82 9.92 10.56 3.90 63.05 2.14 0.47 78.09 0.417

Capability 4 19.83 19.97 0.72 1.42 0.82 42.15 2.96 0.23 92.32 0.077

6 26.33 27.06 2.75 1.98 1.03 47.94 3.49 0.26 92.42 0.106

10 36.01 37.67 4.61 2.70 1.38 48.97 3.93 0.34 91.23 0.152

20 50.84 53.90 6.02 3.55 1.74 50.99 3.90 0.46 88.30 0.215

50 69.41 73.29 5.60 4.16 1.84 55.64 2.91 0.49 83.01 0.394

Fast-walk 4 30.58 32.85 7.41 6.81 4.73 30.61 5.13 1.30 74.69 0.148

6 38.42 41.77 8.72 8.27 5.42 34.46 5.35 1.24 76.73 0.187

10 48.49 53.33 9.97 10.01 6.17 38.41 5.12 1.12 78.06 0.230

20 61.32 67.94 10.78 11.48 6.18 46.16 4.18 0.89 78.79 0.277

50 73.92 82.07 11.03 12.44 5.26 57.74 2.55 0.61 76.23 0.463

Small-OPS 4 40.34 44.62 10.62 12.79 11.02 13.81 9.06 3.54 60.97 0.092

6 47.99 53.52 11.51 13.46 11.19 16.85 8.63 2.94 65.90 0.109

10 57.16 64.05 12.06 13.99 10.49 25.01 7.47 2.30 69.17 0.124

20 67.98 76.10 11.94 13.79 8.61 37.54 5.53 1.57 71.64 0.166

50 77.64 86.58 11.51 13.46 6.23 53.68 3.08 0.91 70.36 0.282

153

Interestingly, the proposed approach shows some improvement under capability

instances, where the unit time per pick for the five pickers is not identical and pickers are

optimally sequenced to maximize the picker performance. We note that the capability

instance with batch picking is one of the best-performance order picking situations. Cont

can still give a benefit. Capability instances slightly increase blocking delays, but

achieve large reductions in hand-off delay, and thus lead to overall improvement in

performance.

The fast-walk and small-OPS order picking scenario indicate higher utilization

improvement by the proposed algorithm (3.87~9.45%). Computationally, fast-walk

scenarios experience on average 0.524~1.048 seconds per five batches and small-OPS

scenarios on average 0.338~0.737 seconds.

Table 15. Experimental results varying batch size

5.4 A distance-based heuristic approach for τ

Use of τ as a threshold is not practical in most circumstances since pickers

probably cannot accurately estimate expected hand-off. However, this finding is easily

transferrable to a distance-based heuristic approach. The difficulty of forecasting arises

Scenarios Batch Utilization (%) Time blocked (%) Hand-off delay (%) Run time

Size FCFS Cont Diff (%) FCFS Cont Diff (%) FCFS Cont Diff (%) (seconds)

Standard 20 52.34 56.02 7.04 2.60 1.68 35.34 3.37 0.45 86.64 0.387

50 72.56 75.67 4.29 2.89 1.58 45.28 2.37 0.46 80.70 1.254

Capability 20 51.10 54.29 6.25 1.05 1.06 -1.16 4.10 0.38 90.81 0.236

50 71.66 74.18 3.52 0.78 0.79 -1.68 3.06 0.42 86.37 0.530

Fast-walk 20 64.91 70.39 8.45 4.25 2.81 33.96 5.01 0.71 85.88 0.524

50 81.31 84.64 4.10 3.38 2.29 32.20 2.90 0.64 78.01 1.048

Small-OPS 20 73.03 79.94 9.45 5.94 4.19 29.46 6.51 1.40 78.43 0.338

50 86.34 89.68 3.87 3.81 2.86 24.93 3.25 0.94 70.95 0.737

154

because of the hand-off time of a downstream picker. We consider the situation that an

upstream picker notices the downstream picker who completes a hand-off, and thus

approaches in a backward direction. In this case, the upstream picker can decide to

continue picking the current batch based on the expected arrival time of the immediately

adjacent downstream picker. If the downstream picker is moving backward and the

expected arrival time is less than the expected pick completion time, the upstream picker

returns without picking. The expected arrival time can be measured by the distance from

the downstream picker. A benefit of the distance-based heuristic approach is its ease of

implementation, but the approach is also applicable when walk time is not so fast and

stable.

The result shows a gap compared to the previous Cont results as depicted in

Table 16, where α= 0.156 is determined by a simulation study. The heuristic approach

uses the distance = 20, which is derived from the average pick time divided by the

backward walk time = 1.0/0.05. The heuristic approach (Hcont) experiences 5.66%

improvement of utilization in a standard batch picking situation when the use of τ

produces 7.04% improvement. The gap amounts to 0.72~0.85% of utilization because of

increased hand-off delay. However, the results still outperform the FCFS with 3.12~5.66%

improvement of utilization.

Table 16. Comparison of Cont and heuristic approach (Hcont)

Insta- Batch Utilization (%) Time blocked (%) Hand-off delay (%) Run time

nce Size Cont Hcont Gap Cont Hcont Gap Cont Hcont Gap (seconds)

Sta- 20 56.02 55.30 -0.72 1.68 1.81 -0.12 0.45 1.42 -0.97 0.740

ndard 50 75.67 74.82 -0.85 1.58 1.71 -0.13 0.46 1.22 -0.76 1.427

155

6. CONCLUSIONS

This chapter has made three important contributions to the analysis and

understanding of bucket brigade OPS. First, analytical models of picker blocking and

hand-off delay in bucket brigade OPS are developed. Second, based on analytical studies

and additional simulation studies, the conditions are identified under which more

efficient operations can be achieved. Third, control methodologies are developed to

maximize order picking throughput.

Analytical models were developed to quantify the delays related to blocking and

hand-offs by extending the analogy of a circular-aisle OPS to the bucket brigade OPS.

The analytical results found: 1) batch picking can reduce picker blocking because of less

variation of an average work load per batch; and 2) decreased variability in pick time

reduces hand-off delay. Bartholdi and Eisenstein (1996b) emphasized the importance of

a smooth hand-off operation, but did not clearly define the smooth operation and its

rationale. Intermediate hand-off is one method which can reduce delays related to the

hand-off operation. Moreover, the reduction stems from less variance of the expected

pick time of an upstream picker.

 Directly controlling picker blocking and hand-off delay also maximizes

throughput. We found that IBM could mitigate picker blocking. Further, the analogy to a

circular-aisle OPS facilitated the development of models to batch orders and assign

batches to pickers to reduce blocking delays in bucket brigade systems. To reduce hand-

off delay, the synchronization requirement in upstream-to-downstream hand-off was

relaxed and strategies to coordinate the physical system were proposed. Both ideal

156

method and practical application were developed.

Based on our findings we suggest that future research should focus upon: 1)

practical application; 2) generalization of the proposed approach for bucket brigades

used in manufacturing operations; and 3) an integrated throughput model. The proposed

methods such as intermedidate hand-off, no-handshake hand-off, and IBM may be

difficult to implement in practice. In the case of the no-handshake hand-off, additional

studies on realistic implementation approaches (e.g., a distance-based heuristic approach)

could be undertaken. Since only order picking systems are considered, the next step is to

identify possible applications in other manufacturing and service areas, for example,

general manufacturing systems such as the assembly line described in Bartholdi and

Eisenstein (2005). A more comprehensive solution that integrates the models could

potentially contribute to a clearer understanding of bucket brigade operation.

157

CHAPTER VIII

CONTRIBUTIONS AND CONCLUSION

Order picking operations play a critical role in the order fulfilment process of

warehouses and DCs. Picking a batch of orders is favored when customers’ demands

create a large number of small orders. Thus, constructing an appropriate order batching

algorithm involves reducing the total retrieval workforce, and differs from a general

batching in that scalability in the number of orders, simplicity in routing, and congestion

must be addressed. This dissertation established four tasks:

 First, a large-scale and near-optimal order batching algorithm to minimize the

travel distance is developed. The outcomes of this research highlighted critical

observations of near-optimal, large-scale order batching: less congestion than

expectation, but still significant under some situations.

 Second, since the available literature cannot explain the observations, an analysis

and simulation study to identify the complex relationship between sources of

picker blocking and the relevant situations of a real-world firm is undertaken.

 Third, a new order batching model and its large-scale solution to manage both

distance and congestion simultaneously is developed.

 Fourth, we examined the significance of congestion and hand-off delays in

bucket brigade order picking, followed by providing a structured control

procedure for dynamic order picking which mitigates both picker blocking and

hand-off delay directly.

This dissertation makes three major contributions. First, the proposed analytical

studies give a clear understanding of picker blocking and hand-off delay in batch order

picking. Second, it introduces for the first time in the literature exact batch picking

158

frameworks to handle picker blocking. Third, efficient solution methodologies are

provided for two large-scale, practical order picking situations.

In particular, three new batching models are demonstrated:

1) A near-optimal, large-scale proximity-batching algorithm for traversal routing

methods is developed. We express it as route-selecting batching formulation (RSB). To

obtain an efficient and effective lower bound model for the batching problem, a route-

bin packing problem (RPP) is derived from RSB.

2) A new order batching procedure with picker blocking in a narrow-aisle

picking system is presented (IBM).

3) A new order batching procedure with picker blocking and hand-off delay is

addressed for a bucket-brigade picking system.

159

REFERENCES

Amazon.com (2004) 2003 Amazon.com Annual Report. Amazon.com, Inc., Seattle.

Armbruster, D., Gel, E.S. (2006) Bucket brigades revisted: Are they always effective?
European Journal of Operational Research, 172(1), 213-220.

Bartholdi, J.J., Eisenstein, D.D. (1996a) Bucket brigades: a self-organizing order-picking
system for a warehouse. Working paper.

Bartholdi, J.J., Eisenstein, D.D. (1996b) A production line that balances itself.
Operations Research, 44(1), 21-34.

Bartholdi, J.J., Eisenstein, D.D. (2005) Using bucket brigades to migrate from craft
manufacturing to assembly lines. Manufacturing Service Operations

Management, 7(2), 121-129.

Bartholdi, J.J., Eisenstein, D.D., Foley, R.D. (2001) Performance of bucket brigades
when work is stochastic. Operations Research, 49(5), 710-719.

Chen, M.-C., Wu, H.-P. (2005) An association-based clustering approach to order
batching considering customer demand patterns. Omega, 33(4), 333-343.

Clarke, G., Wright, J.W. (1964) Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research, 12, 568-581.

De Koster, R. (2003) Distribution strategies for online retailers. Engineering

Management, IEEE Transactions on, 50(4), 448-457.

De Koster, R. (2004) How To Assess a Warehouse Operation in a Single Tour. RSM
Erasmus University, Rotterdam, The Netherlands.

De Koster, R., Balk, B.M. (2008) Benchmarking and monitoring international
warehouse operations in Europe. Production and Operations Management, 17(2),
175-183.

De Koster, R., Van der Poort, E.S., Wolters, M. (1999) Efficient orderbatching methods
in warehouses. International Journal of Production Research, 37(7), 1479-1504.

De Koster, R., Yu, M. (2008) Minimizing makespan and throughput times at Aalsmeer
flower auction. The Journal of the Operational Research Society, 59(9), 9.

Frazelle, E. (2002) World-class Warehousing and Material Handling. McGraw-Hill,

160

New York.

Gademann, N., van de Velde, S. (2005) Order batching to minimize total travel time in a
parallel-aisle warehouse. IIE Transactions, 37(1), 63-75.

Gademann, N., Van den Berg, J., Van der Hoff, H. (2001) An order batching algorithm
for wave picking in a parallel-aisle warehouse. IIE Transactions, 33(5), 385.

Gong, Y., De Koster, R. (2008) A polling-based dynamic order picking system for
online retailers. IIE Transactions, 40, 1070-1082.

Gue, K.R., Meller, R.D., Skufca, J.D. (2006) The effects of pick density on order picking
areas with narrow aisles. IIE Transactions, 38(10), 859-868.

Hall, R.W. (1993) Distance approximations for routing manual pickers in a warehouse.
IIE Transactions, 25(4), 76.

Ho, Y.C., Tseng, Y.Y. (2006) A study on order-batching methods of order-picking in a
distribution centre with two cross-aisles. International Journal of Production

Research, 44(17), 3391-3417.

Hsu, C.M., Chen, K.Y., Chen, M.C. (2005) Batching orders in warehouses by
minimizing travel distance with genetic algorithms. Computers in Industry, 56(2),
169-178.

Jane, C.C. (2000) Storage location assignment in a distribution center. International

Journal of Physical Distribution & Logistics Management, 30(1), 55.

Jane, C.C., Laih, Y.W. (2005) A clustering algorithm for item assignment in a
synchronized zone order picking system. European Journal of Operational

Research, 166(2), 489-496.

Koo, P.-H. (2009) The use of bucket brigades in zone order picking systems. OR

Spectrum, 31(4).

Law, A.M., Kelton, W.D. (2000) Simulation Modeling and Analysis. McGraw-Hill,
Boston.

Le-Duc, T. (2005) Design and control of efficient order picking processes. Ph.D.
dissertation, Erasmus University, Rotterdam, The Netherlands.

Le-Duc, T., de Koster, R.M.B.M. (2007) Travel time estimation and order batching in a
2-block warehouse. European Journal of Operational Research, 176(1), 374-388.

Lewis, R.T., Parker, R.G. (1982) On a generalized bin-packing problem. Naval Research

Logistics Quarterly, 29(1), 119-145.

161

Lieu, C.C.A. (2005) Impact of inventory storage and retrieval schemes on productivity.
MBA. and MS. thesis, Massachusetts Institute of Technology, Cambridge, MA.

Lim, Y.F., Yang, K.K. (2009) Maximizing throughput of bucket brigades on discrete
work stations. Production and Operations Management, 18(1), 48-59.

Napolitano, M. (2008) Sitting tight - 2008 warehouse/DC operations survey results.
Logistics Management, 47(11), 47-50.

Napolitano, M. (2009) Real DC stories: low cost deep impact. Logistics Management,
48(1), 46-49.

Napolitano, M., Gross&Associates (2003) The Time, Space and Cost Guide to Better

Warehouse Design. The Distribution Group, Ogden, UT.

Pan, C.H., Liu, S.Y. (1995) A comparative study of order batching algorithms. Omega,
23(6), 691-700.

Parikh, P.J., Meller, R.D. (2009) Estimating picker blocking in wide-aisle order picking
systems. IIE Transactions, 41, 232-246.

Parikh, P.J., Meller, R.D. (2010) A note on worker blocking in narrow-aisle order
picking systems when pick time is non-deterministic. IIE Transactions, 42(6),
392 - 404.

Petersen, C.G. (1997) An evaluation of order picking routeing policies. International

Journal of Operations & Production Management, 17(11), 1098-1111.

Petersen, C.G. (2000) An evaluation of order picking policies for mail order companies.
Production and Operations Management, 9(4), 319-335.

Petersen, C.G., Schmenner, R.W. (1999) An evaluation of routing and volume-based
storage policies in an order picking operation. Decision Sciences, 30(2), 481-501.

Pinedo, M. (1995) Scheduling: Theory, Algorithms, and Systems. Prentice Hall,
Englewood Cliffs, NJ.

Ratliff, H.D., Rosenthal, A.S. (1983) Order-picking in a rectangular warehouse: a
solvable case of the traveling salesman problem. Operations Research, 31(3),
507-521.

Roodbergen, K.J., de Koster, R. (2001) Routing methods for warehouses with multiple
cross aisles. International Journal of Production Research, 39(9), 1865-1883.

Ross, S.M. (1996) Stochastic Processes. John Wiley & Sons, Inc., New York.

162

Ruben, R.A., Jacobs, F.R. (1999) Batch construction heuristics and storage assignment
strategies for walk/ride and pick systems. Management Science, 45(4), 575-596.

Skufca, J.D. (2005) k Workers in a circular warehouse: a random walk on a circle,
without passing. SIAM Review, 47(2), 301-314.

Tompkins, J.A., Bozer, Y.A., Tanchoco, J.M.A. (2003) Facilities Planning. J. Wiley,
Hoboken, NJ.

Wilson, R. (2008) 19th Annual State of Logistics Report. Council of Supply Chain
Management Professionals, Washington DC.

Won, J., Olafsson, S. (2005) Joint order batching and order picking in warehouse
operations. International Journal of Production Research, 43(7), 1427-1442.

Yu, M., De Koster, R.B.M. (2009) The impact of order batching and picking area zoning
on order picking system performance. European Journal of Operational

Research, 198(2), 480-490.

Zhang, M., Batta, R., Nagi, R. (2009) Modeling of workflow congestion and
optimization of flow routing in a manufacturing/warehouse facility. Management

Science, 55(2), 267-280.

163

 APPENDIX A

SUPPLEMENTARY FORMULATION, PROOF, ALGORITHM,

AND RESULTS DISCUSSED IN CHAPTER IV

A.1 FORMULATION OF BASIC RPP FROM RSB

The basic RPP can be derived from RSB. In particular, each constraint in the

basic RPP is derived from a constraint of RSB, or becomes a constraint aggregating

relevant constraints in RSB.

1) Objective function



 



  





Rr

rr

Rr Bb

brr

Bb Rr

brr

yLT

YLTYLT

 By definition, r

Bb

br yY 


2) Constraints (4.8)

From (4.2),

1
Bb

ob X Oo

1. . .
||21


Bobobob XXX Oo

1...
||||2211
 

 Rr

rbob

Rr

rbob

Rr

rbob BB
YXYXYX Oo Since 1 

Rr

brY

1...
||||2211
 

 Rr

rbob

Rr

rbob

Rr

rbob BB
YXYXYX Oo

1)...(
||||2211




 YXYXYX

Rr

rbobrbobrbob BB
 Oo

1)(
 

 YX

Rr Bb

brob Oo
By definition,

o r

Bb

b ro b xYX 


1
Rr

or x Oo

164

3) Constraints (4.9)

From (4.3),



































,

,

,

CAPA XQ

CAPA XQ

CAPA XQ

Oo

obo

Oo

obo

Oo

obo



 
 

 BbYbBb

BbYbBb

BbYbBb

RbrR

br

br







 ,1|

 ,1|

 ,1|

||

2

1

||

2

1

Assume that all b’s
have at least one
order



































,

,

,

||||

22

11

RR br

Oo

brobo

br

Oo

brobo

br

Oo

brobo

YCAPA YXQ

YCAPA YXQ

YCAPA YXQ



||

2

1

RBb

Bb

Bb







By definition,

1rbr
Y





























 

 

 

,

,

,

||

||

||

||

2

2

2

2

1

1

1

1

R

R

R

R

Bb

br

Bb Oo

brobo

Bb

br

Bb Oo

brobo

Bb

br

Bb Oo

brobo

YCAPA YXQ

YCAPA YXQ

YCAPA YXQ



Aggregate
constraints indexed
by r.
The new constraints
become weaker, thus
the new model
becomes a relaxation
of the original
constraints

 
 



rr Bb

br

Oo Bb

brobo YCAPA YXQ
Rr

,r

Oo

oro yCAPA xQ 


 Rr

By definition,
o r

Bb

b ro b xYX 


 and

r

Bb

br yY 


165

4) Constraints (4.10)

From (4.6),



































,

,

,

Rr

brraoaob

Rr

brraoaob

Rr

brraoaob

YRAOAX

YRAOAX

YRAOAX



 
 

  AaBbYbBb

AaBbYbBb

AaBbYbBb

RbrR

br

br







, ,1|

, ,1|

, ,1|

||

2

1

||

2

1

Assume that all
b’s have at least
one order



















,,

,

,

||

2

1

aroaob

aroaob

aroaob

R
RAOAX

RAOAX

RAOAX



AaBb

AaBb

AaBb

R 





,

,

,

||

2

1

 By definition,
1rbr

Y



















,

,

,

||||||

222

111

RRR brarbroaob

brarbroaob

brarbroaob

YRAYOAX

YRAYOAX

YRAYOAX



AaBb

AaBb

AaBb

R 





,

,

,

||

2

1

 Since 0brY ,
inequalities hold



































,

,

,

||

||||

||

||

2

22

2

2

1

11

1

1

R

RR

R

R

Bb

brar

Bb

broaob

Bb

brar

Bb

broaob

Bb

brar

Bb

broaob

YRAYOAX

YRAYOAX

YRAYOAX



Aa

Aa

Aa







Aggregate
constraints
indexed by r.
The new
constraints
become weaker,
thus the new
model becomes a
relaxation of the
original
constraints

166



































,

,

,

||

||||

||

||

2

22

2

2

1

11

1

1

R

RR

R

R

Bb

brar

Bb

broboa

Bb

brar

Bb

broboa

Bb

brar

Bb

broboa

YRAYXOA

YRAYXOA

YRAYXOA



Aa

Aa

Aa







,




rr Bb

brra

Bb

broboa YRAYXOA AaRr  ,

,rraoroa yRAyOA  AaRr  ,

By definition,
o r

Bb

b ro b xYX 


and r

Bb

br yY 


A.2 CLARKE AND WRIGHT II ALGORITHM (CLARKE AND WRIGHT, 1964;

DE KOSTER ET AL., 1999)

Step 1. Obtain the distance savings sij for all possible order pairs i,j when two

orders are grouped, given the capacity of the pick device.

Step 2. Sort the savings in decreasing order.

Step 3. Select the pair with the highest savings. In the case of a tie, select a

random pair.

Step 4. Combine both ―orders‖ to form a new cluster, if allowed by the pickers’

capacity. If not, choose the next combination on the list and repeat step 4.

Step 5. If not all order combinations have been included in a route, proceed with

Step 1. In the calculation, all clusters are considered as orders. Otherwise,

finish.

167

A.3 SIMULATED ANNEALING PROCEDURE FOR RBP

This section presents a simulated annealing algorithm for order batching to

obtain an improved solution from RBP and summarizes the experimental results.

Simulated annealing procedure

Simulated annealing is widely used in sequencing problems and order batching

problems. We employ an algorithm described in Pinedo (1995). For a batching situation,

a batching solution is given as BS1 and its total retrieval time as Obj(BS1). The major

characteristic is to accept a worse solution (BS) while progressively searching for a

better candidate solution of solution BSi with probability P(BSi,BS) = e^((Obj(BSi)-

Obj(BS)/ βi), where βi is referred to as the cooling parameter or temperature. To update

the cooling parameter (βi), we use a simple function ai where 0<a<1, a ∈ R (see Pinedo

(1995) in detail). Thus, the probability to admit an solution with a worse objective value

is gradually decreases as iteration i cumulatively updates the cooling parameter (βi)

using a, i.e., βi= a*βi-1 where i>1 and 0<a<1. To generate an initial solution (BS1), RBP

is used, which produces a solution that nearly minimizes the total retrieval distance. Imax

is the maximum number of iterations. T is the updated temperature.

168

The method for defining a neighborhood in a simulated annealing procedure is

critical to effective implementation (Pinedo, 1995). A general two-exchange method is

employed where a pair of orders is exchanged. This method appears in Gademann and

Van de Velde (2005).

Experimental results

Table A1 summarizes the experimental results over two capacity scenarios. The

pick-then-sort strategy has been assumed, which produced a relative large LU gap. Two

different capacity constraints are tested. We use Imax=10000 and the a=0.8.The

SA+RBP columns include experimental results by the simulated annealing procedure.

The Impv (%) column stands for the percentage of the objective value gap between RBP

and SA+RBP divided by the objective value by RBP.

Our experimental results exhibit a very small improvement of the travel distance.

Such small improvements stem from the solution quality by RBP and the limitation in

Step1. Set i = 1 and T = a.

Initialization

Obtain an initial feasible solution, BS1

Set Imax

Set the best solution BS* = BS1

Step 2. Generate a new batch solution BS from BSi, i.e. BS is the neighboring solution of BSi.

If Obj(BS*)<Obj(BS)<Obj(BSi), set BSi+1 = BS;

Else If Obj(BS)<Obj(BS*), set BS*= BSi+1 = BS;

Else if Obj(BS)> Obj(BSi), set BSn+1 = BS with a probability of e((Obj(BSi)-Obj(BS))/T);

Otherwise, BSi+1 = BSi

Step 3. Increase i = i+ 1.

Update the temperature T = T * a.

If i = Imax, then STOP; otherwise, go to Step 2.

169

the neighborhood search approach. The solutions by RBP are very close to optimal

relative to an objective function that minimizes travel distance. Thus, there are only

minimal gains to be achieved in terms of travel distance.

Table A1 The experimental results over SA + RBP

Capa # RBP SA + RBP
 orders ObjU CPU LU gap ObjU CPU LU gap Impv (%)

20 360 3076.1 32.40 2.81% 3076.1 32.55 2.81% 0.00%
 720 6043.7 68.29 2.88% 6037.0 69.36 2.77% 0.11%
 1080 9073.8 103.32 2.95% 9060.5 104.03 2.81% 0.15%

 1440 12038.7 215.64 3.30% 12024.1 216.30 3.18% 0.12%

30 360 2132.3 19.29 3.57% 2132.3 20.10 3.57% 0.00%
 720 4116.0 64.21 3.23% 4116.0 65.29 3.23% 0.00%
 1080 6141.1 76.32 3.03% 6140.3 77.83 3.02% 0.01%
 1440 8095.1 122.26 3.11% 8092.8 123.96 3.08% 0.03%

A.4 COMPUTATIONAL PERFORMANCE OVER OTHER ORDER PICKING

PROFILES

The number of aisles

Table A2 compares the CW II and RBP. The cardinality of the route set was

strongly dependent on the number of aisles. RPP-LP can only solve ~14-aisle or smaller

instances. Thus, Table A2 does not include LB results and LU gaps. Instead, we use the

following comparison:

RBP/CW: the ratio of ObjU to the objective function value of CW II. This

measure is used where a lower bound is impossible.

RBP still dominated CW II in RBP/CW, but RBP required a long computational

time as the number of aisles increased.

170

Table A2 The experimental results with the variation of the number of aisles

 # # CW II RBP

orders aisles Obj CPU ObjL ObjU CPU # routes RBP/CW

1080 10 8033.3 15.6 7175.0 7175.0 56.7 40.4 0.89

 20 12492.8 17.0 10647.5 10647.5 121.0 147.2 0.85

 30 16614.3 17.2 14379.6 14379.6 242.9 254.4 0.87

 40 20517.8 18.7 18418.0 18418.0 366.8 342.4 0.90

2160 10 15412.0 141.5 14186.6 14186.6 60.5 47.8 0.92

 20 23365.4 129.5 20287.7 20287.7 123.1 214.1 0.87

 30 31102.9 147.8 26587.4 26587.4 253.5 393.4 0.85

 40 37971.8 142.0 33637.3 33637.3 394.3 552.9 0.89

The route reduction step is not effective in the 40-aisle instance. As the number

of routes increased, we modulated the truncation time limit to produce good solutions;

specifically, 120 seconds, 180 seconds, and 240 seconds were allowed for 20-aisle, 30-

aisle, 40-aisle instances. However, despite this increase in the truncation time limit,

RBP’s performance suffered loss in the objective values. Figure A1 illustrates the

variations of the average travel length over different algorithms with respect to the

number of aisles. The performance gap between CW II and RBP did not widen as shown

in Figure A1 when the number of aisles was 40.

(a) (b)

Figure A1 The average travel length per order over the variation of the number of aisles:
(a) the number of orders = 1080, and (b) the number of orders = 2160.

171

Storage policy

Table A3 and Figure A2 include the test results with different storage policies.

Picking systems can operate under different storage pattern or storage policies As orders

were scattered more evenly, all algorithms had longer travel distance. In particular, the

computational time of RBP lengthened. The storage policy has an impact on the route set

of RBP. More uniformly-stored items produce more elementary routes. Thus, the

elementary route set becomes larger, and the number of combined routes also increases.

A larger route set results in longer computational time.

Table A3 The experimental results with the variation of storage policies

 # # CW II RBP
Orders aisles Obj CPU ObjL ObjU CPU # routes RBP/CW

ABC 10 18000.4 140.8 16181.4 16181.4 60.7 63.7 0.90
=0.5:0.3:0.2 20 28926.6 130.9 24043.8 24043.8 128.4 340.5 0.83
 30 38950.5 134.7 33104.8 33104.8 278.7 581.6 0.85
 40 47811.1 151.0 42441.0 42441.0 568.7 747.8 0.89

Random 10 22125.6 121.3 19310.4 19310.4 60.9 83.0 0.87
Storage 20 37872.4 126.9 34535.9 34535.9 150.0 554.5 0.91
 30 51343.2 138.2 46266.7 46266.7 347.9 796.4 0.90
 40 63794.8 155.1 57098.8 57098.8 699.6 901.9 0.90

(a) (b)

Figure A2 The average travel length per order over the variation of the storage policy (#
orders = 1080): (a) ABC ratio = 0.5:0.3:0.2; and (b) random storage policy.

172

APPENDIX B

SUPPLEMENTARY EXAMPLES, PROOF, VALIDATION, ALGORITHM, AND

RESULTS DISCUSSED IN CHAPTER V

B.1 PICKER BLOCKING MODEL OF PICK:WALK TIME = 1:1 IN A

NARROW-AISLE USING PICK AND WALK TASKS

Let Dt denote the distance between picker 1 and picker 2 at time t. Given the

pick:walk time ratio as 1:1, the distance d can be expressed as

(n+(picker 1 position)−(picker 2 position)) mod n

and ranges from 1 to n-1. To establish a Markov property, we can condition on the either

pick or walk state of a previous distance and connect to the either pick or walk state of a

posterior distance. Since there are two pickers and they can conduct either pick or walk,

four sub states are available: dpp, dwp, dpw, dww depending on the actions of pickers 1 and

2 and distance d, where p stands for a picking, w for a walking. In particular, two states,

1wp and n-1pw are augmented into ―blocked‖ because one picker attempts to walk toward

one occupied pick face. Then all states can be described as the states [1pp, 1pw, blocked,

1ww, 2pp, 2pw, 2wp, 2ww, . . . , (n − 1)pp, blocked, (n − 1)wp, (n − 1)ww]. When multiple-picks

are allowed, their transition probability forms a new relationship. Figure A3 illustrates

the transitions.

173

Figure A3. State space and transitions for the Markov chain model when the picking
time equals travel time.

The resulting transition matrix is:

























 11

11

00

00

00

nn DL

UDL

UDL

UD

A











where























22

22

22

1

0

00

0

0

qpqp

qp

qpqp

qpqp

D ,























22

22

22

22

00

00

00

00

qp

qp

qp

qp

D ,























22

22

22

1

0

0

00

0

qpqp

qpqp

qp

qpqp

Dn

174





















000

0000

000

000

1

pq

pq

pq

U ,




















000

000

000

000

pq

pq

pq

pq

U ,




















000

000

000

000

pq

pq

pq

pq

L ,




















000

000

0000

000

1

pq

pq

pq

Ln

Similar to Gue et al. (2006), we obtain the following v which satisfies vA=v.



















   



   1

2

2

22

2

22

1

2 ,,,,21,,,,,21,,,,,,

ndnddd

qpqpppppppppp,ppqppqpv

We can scale the stationary density using ||v||.

    
   

12

123

2213 222







pn

pn

qppqppppppnv

The blocking probability of picker 2 is

 

12
2 3

1:1



pn

p

v

v
bm

B.2 PICKER BLOCKING WHEN PICK:WALK TIME = 1:1 IN A WIDE-AISLE

A Markov property is applied in pick:walk time = 1:1 for a wide-aisle situation.

When multiple picks are allowed, their transition probability forms a transition diagram

as illustrated in Figure A4.

Figure A4. State space and transitions for the Markov chain model when picking time

equals travel time in a wide-aisle situation with multiple-pick allowance.

175

The resulting transition matrix which has (n+1) x (n+1) is:








































22

22

22

22

22

000

000

000

000

00
2

000
2

qpqqpq

pqqppq

pqqp

qppq

pqpqqp

qq
p

A















Stationary distribution

We obtain the following v which satisfies vA = v:











 


222 2

1
,,

2

1
,,1

p

q

p

q

p

q
v 

We can scale the stationary density using ||v|| to obtain a stationary probability.

From v above, we have:

 
  

  

 
2

2

2

2

2

2

2

2

22

2

22

2

22)1(22

2

2122

2

1122

2

1
11

p

pnpp

p

ppnnpp

p

pnqp

p

qnqp

p

q
n

p

q
v
















The blocking probability of blocking state of a picker is

 
   pnpp

p

p

pnppv

v
b







22

2

22

2

1

2
2

2

2

2

*1
 (A1)

176

B.3 PROOF OF PROBABILITY WITHOUT PASSING

   

       

  

  

q

pq

qq

pq

q
pqqpq

pqpqpq

xfyxfxYPyxYP

yYPyg

y

y
y

x

xy

x

yx

x

xyx

xx

tt

t



























































1

111

1

2

2

2

0

22

0

22

0

00

B.4 COMPARISON OF ANALYTICAL AND SIMULATION MODELS

Table A4 summarizes the results to validate the new analytical models and our

simulation models. The 1:1 analytical model is already identical to the model by Parikh

and Meller (2010). The results by the 1:0 analytical models also experienced

0.032~0.170% error gap compared to the results of Parikh and Meller (2010). The gap

between the performances of the simulation model and the analytical model is 0.01~0.33%

in terms of the percentage of the difference of the percentage of time blocked (i.e., Diff %

= (the percentage of time blocked by the analytical model – the percentage of time

blocked by the simulation model)/(the percentage of the time blocked by the analytical

model) * 100) except one instance. When picker blocking occurs rarely, for example

when p = 0.05 in pick:walk time = 1:1, the simulation model gives a relatively higher

difference. For other cases, the difference percentage is smaller than 0.33%. These

results show that the analytical model can well estimate a multiple-pick blocking

situation.

177

Table A4. Comparison of analytical and simulation results of the percentage of time
blocked in a circular aisle (20 pick faces)

B.5 CLARKE AND WRIGHT II ALGORITHM (CLARKE AND WRIGHT, 1964;

DE KOSTER ET AL., 1999)

Step 1. Obtain the distance savings sij for all possible order pairs i,j when two orders

are grouped, given the capacity of the pick device.

Step 2. Sort the savings in decreasing order.

Step 3. Select the pair with the highest savings. In the case of a tie, select a random

pair.

Step 4. Combine both orders to form a new cluster, if allowed by the pickers’

capacity. If not, choose the next combination on the list and repeat Step 4.

Step 5. If all order combinations have not been included in a route, proceed with Step

1. In the calculation, all clusters are considered as orders. Otherwise, finish.

B.6 A HEURISTIC ROUTE-PACKING BASED ORDER BATCHING

PROCEDURE (RBP)

RBP takes advantage of the traversal routing method. When traversal routing

Probability Pick:walk time =1:1 Pick:walk time =1:0

p Analytical Simulation Diff % Analytical Simulation Diff %

0.05 0.2618 0.2580 1.43 33.8983 33.8823 0.05

0.1 0.5208 0.5225 -0.33 25.6410 25.6283 0.05

0.2 1.0309 1.0313 -0.03 17.2414 17.2454 -0.02

0.3 1.5306 1.5256 0.33 12.9870 12.9916 -0.04

0.4 2.0202 2.0186 0.08 10.4167 10.4181 -0.01

0.5 2.5000 2.5005 -0.02 8.6957 8.6871 0.10

0.6 2.9703 2.9655 0.16 7.4627 7.4567 0.08

0.7 3.4314 3.4243 0.21 6.5359 6.5327 0.05

0.8 3.8835 3.8749 0.22 5.8140 5.8007 0.23

0.9 4.3269 4.3154 0.27 5.2356 5.2224 0.25

0.95 4.5455 4.5491 -0.08 4.9875 4.9917 -0.08

178

methods are used, all possible routes can be constructed from the warehouse layout.

Thus, given a batch, a best fit route can be selected as a bin-packing problem (called the

route-selecting order batching model (RSB)).

RBP is composed of three steps:

Step 1. Identifies potential route sets.

Step 2. Solves the RPP model heuristically. The RSB model stated above simplifies

the batching problem, but still contains partitioning constraints. A route-bin

packing problem (RPP) is developed by assigning orders to routes directly,

which can skip the partitioning stage. However, RPP is still computationally

difficult, and thus we consider two further computational improvements: a

partial route set and a truncated branch-and-bound approach.

Step 3. Restores a feasible solution from the infeasible solution by the relaxed model.

179

APPENDIX C

EXECUTABLE MIP FORMULATION FOR INDEXED BATCH

MODEL

Decision variables

,,, a
if

a
if

a
if DICDD

= the time delay of the ith batch at pick face f in aisle a, its cumulative

time delay, and its intermediate variable

,,, a
i

a
if

a
if LFLIL

= the leaving time of the ith batch at pick face f in aisle a

Formulation

Min

      

  Aa Bb

a

Fi
Bb

bb CDAWRBAWTAHNBANBVUTLT a22

s.t

,1
Bb

ob X O, o

 ,CAPA X

Oo

o b 


B, b

obb XBV 

B, bO, o 

 




Oo

obb XBV

B, b

1 bb BVBV

 ,BB b \

 
Bb

bBVNBV

 , 
Oo

bfobbf OPXPTBP

F, fB, b 

oboaba XOAVBA 

A, aB, bO, o 

  
 

 
 





















ba

ak

bkbaba

ba

ak

bkbaba

BAaBABAMINT

BAaBABAMINT

,..,0

,..,0

112

112

B bA a  ,

180

 ,2 




Aa

bab BANBA B, b

 ,bab BAaRBA  B, b

   
 

,1

,...,






Aak

bkbkb BAMBAkRBA B, b

  
 
 
 NPik

k ii APMSTLTCW
,...,1

0
0 1

00,  ,a fB, bNPi

  
 
 
 NPik

k ii APMSTLTCW
,...,1

0
0 1

00,  ,a fB, bNPi

  kkii APMCTLTCW   10
0

00 ,  ,a fB,iNPk

  kkii APMCTLTCW   10
0

00 ,  ,a fB,iNPk

  a
ijj,a

a
if YMAWBACCW   11

 ,Aa fB,j i 0\,0, 

  a
ijj,a

a
if YMAWBACCW   11

 ,Aa fB,j i 0\,0, 

 a
fi

a
i

a
if CWAVWTCW 1, 

  ,Aa

F fB,j i a

0\

,,





 ,1,
a

fb
a

if
a

if CPPCP 

A,aF fB, i a  ,

   , 001,
a
i

a
i

a
fi

a
if

a
if DCDCDDCD  

 

A,a

F fM i a





,0 ,

 
 
 

a
if

a
if

a
if

a
if

a
if

a
if

a
if

a
if

a
if

a
if

a
if

a
if

a
if

a
if

a

a
fi

a
if

a
if

a
fi

a
if

a
fi

a
if

DFMDI

DFMDI

DFMDXDI

DFMDXDI

DFMDX

DFMDX

Fff
WTCDCW

CPL

fAECWL

DX








































1

1

1

0

 and 0 if

0 if

otherwise
1,

1,1

1,1





 
A,a

F fB, i a





,0

 a
i

a
if AVMD   

A,a

F fB, i a





,0

181

 a
i

a
if AVMD 

 

A,a

F fB, i a





,0

  a
i

a
if

a
if AVMDID  1

 

A,a

F fB, i a





,0

  a
i

a
if

a
if AVMDID  1  

A,a

F fB, i a





,0












0 if

0 if

fCDCWCP

fCDCW
LI

a
if

a
if

a
if

a
if

a
ifa

if
 

A,a

F fB, i a





,0

 a
i

a
fi

a
if AVMLL   ,1  

A,a

F fB, i a





,0

 a
i

a
fi

a
if AVMLL   ,1

 

A,a

F fB, i a





,0

  a
i

a
if

a
if AVMLIL  1

 

A,a

F fB, i a





,0

  a
i

a
if

a
if AVMLIL  1  

A,a

F fB, i a





,0

 i
Bj

a
ij BVY 



 ,A aB, i 2,1\

 j

Bi

a
ij BVY 



 ,A aB, j 2,1\

if

a
if BPP 

  ,a

F fB, i a

2,1

,





  ,1
,

a
ijfFaj

a
if YMBPP a 



  ,Aa

F fB,j i a

2,1\

,,





  ,1
,

a
ijfFaj

a
if YMBPP a 



  ,Aa

F fB,j i a

2,1\

,,





 ,ia
a

i BAAV 

 ,aB, i 2,1

  ,1 a
ijja

a
i YMBAAV 

 ,AaB,j i 2,1\, 

  ,1 a
ijja

a
i YMBAAV 

 ,AaB,j i 2,1\, 

 , 0
0
00 bbb BAMCWBAC  ,AaB, b 1\

182

 , 0
0
00 bbb BAMCWBAC  ,AaB, b 1\

  , 1 0
0

0 0 bFbb BAMAE LBAC  ,AaB, b 1\

   ,BAMAE LBAC bFbb 0
0

0 10  ,AaB, b 1\

 ,1 bab,a-ba BAMAWBACBAC 

,AaB, b 1\

 ,1 bab,a-ba BAMAWBACBAC 

,AaB, b 1\

  ,1 ba
a

bba BAMWTLFBAC 

,AaB, b 1\

  ,1 ba
a

bba BAMWTLFBAC 

,AaB, b 1\

  ,1
,

a
ib

a

Fi

a
b YMLLF a 

,AaB,b i 1\, 

  ,1
,

a
ib

a

Fi

a
b YMLLF a 

,AaB,b i 1\, 

  
   1,11,

1,

11

1









i
a

jiaj

a
ijaj

BVMYMBAC

YMBAC

 ,AaB,j i 2,1\, 

 i

Bj

ij BVZ 


B, i

 j
Bi

ij BVZ 


B, i

  

 ij

jiAji

ZMUT

AWRBAAWRBAABACCT



 

1

11,

B,j i  ,

  

 ij

jiAji

ZMUT

AWRBAAWRBAABACCT



 

1

11,

B,j i  ,

  11 1   iii BVM CTCT

 ,BB i \

183

APPENDIX D

 SUPPLEMENTARY FORMULATIONS AND PROOFS DISCUSSED IN

CHAPTER VII

D.1 PACKING PROBLEM

The goal is to minimize the number of batches (A2). Yb is 0 if batch b is selected

and 0 otherwise. (A3) forces one order to be assigned once. (A4) is used to meet a

capacity constraint if necessary.

Min 
Bb

bY (A2)

s.t.

 1
Bb

obX

O, o (A3)

 b
Oo

obo YCAPAXOS  


B, b (A4)

D.2 INDEXED BATCHING MODEL (IBM) FOR BUCKET BRIGADE ORDER

PICKING

Parameters and decision variables

An OPS has a linear aisle with |F| pick faces. The pick faces are numbered 1 to F.

L/U stations are numbered 0 and F+1, respectively. The forward travel time between

neighboring pick faces is WT. The backward travel time between neighboring pick faces

is BW. The walk time from 0 to F+1 is equal to WT*(|F|+1) = AH. The L/U stations are

184

located in the front and rear of the aisle.

NP pickers work in the OPS, and the OPS is forced to assign all pickers. The

number of batches is not given, although the number of batches must be smaller than the

number of orders. Generally, the number of batches is greater than the number of pickers.

Two batching picking policies — pick-then-sort policy and sort-while-pick policy — are

considered; the policy impacts cart capacity. When a batch is completed, a new batch

enters the system. Its entrance time is updated based on the backward walk time and the

expected hand-off delay. All pickers are available initially.

Diverse decision variables are associated with the indexed order batching

problem. Fundamentally, orders are assigned to batches and their release orders through

index variables (Xoi). The starting time of batches in a picker’s second or more trips (CWi)

is updated. The overall procedure includes more variables.

Indices and parameters

fF , = the set of pick faces, its index f ∈ F
oO, = the set of orders, and its index o∈O
iB, = the set of batches, and its index i∈ B

ofOP = the number of picks of order o at pick face f

oOS = the number of picks in order o

iST = the starting time of ith batch

CAPA = the capacity of a cart (batch size)

PT = the pick time to pick an item

WT = the forward walk time between two pick faces

BW = the backward walk time between two pick faces

185

 HOE = the expected hand-off delay per occurrence

NP = the number of pickers

 = the weight on hand-off delay
 = the time required for the transition between two batches in a pick face

Decision variables

oiX = 1 if order o enters the ith order; 0 otherwise

ifif CPP ,

= the pick time of the ith batch at pick face f, and its cumulative pick time

ifif CDD ,

= the time delayed of the ith batch at pick face f, and its cumulative time
delayed

ifCW

= the cumulative walk time of the ith batch to pick face f

iCT
 = the completion time of the order which has finished at the ith batch

The goal is to minimize total walk time + total time delayed (A5). Walk time is

the sums of the travel times of all batches. The travel time of the ith batch is the sum of

the forward travel times (= AH*WT), the backward travel times (= AH*BW) if i >PK,

and the hand-off time if i >PK. DT is obtained by summing the cumulative delay at the

last pick face of all batches.

Min     
 






NBVb
Fi

 CDPKBHOENPBWAHBWTAH

,,1

][1



 (A5)

s.t.

 1
Bi

oiX

O, o (A6)

 CAPAXOS
Oo

oio  


B, i (A7)

186

, 
Oo

ofoiif OPXPTP

F, fB, i  (A8)

 



























0

0 , if
][1

0 , if

1,

,,,

fWTCW

fNPi
HOENPFBW

CDCWCP

fNPiST

CW

fi

FNPiFNPiFNPi

 i

if


 ,F fB, i 0  (A9)

 ,1,  fiifif CPPCP

, F fB, i  (A10)

  , 001, iifiifif DCDCDDCD  

 0  F fB, i (A11)

 







































otherwise0

},0{\
0,

0 if0,

1,11,11,1

1,11,1

FFf
WTCDCWCP

CDCWCP
Max

fCWCDCWMax

D a

ififif

fififi

ififi

if





 0 ,  F fB i (A12)

An order cannot be separated (A6) and a batch should keep the capacity

constraint (A7). (A7) is set for the item-based capacity. When there is order-based

capacity, constant 1 replaces OSo. As the release sequence is determined, the related

variables are assigned. The pick time vector of batch i at pick face f is updated with

batch j’s pick time (A8). Constraints (A9) update CWif at the loading station and pick

faces. At the loading station, CWif is determined using the pickers’ available time (STi)

or the completion time of the NP
th previous trip (CPi-NP,|F| + CWi-NP,|F| + CDi-NP,|F|) + the

returning time to the entrance. The starting time of batch NP+1 can be derived from the

completion time of the first completed batch, because the first responsible picker for the

first batch will be assigned to pick the NP+1 batch. Backward travel time and the

expected hand-off delay are added. Constraints (A10) and (A11) calculate the

cumulative pick time and delay time. Constraint (A12) calculates the time delayed (Dif)

using the leaving time at pick face f. At an f = 0, the leaving time of batch i is determined

187

by CWif + CDif since there is no pick operation. At a pick face (f>0), the leaving time is

assigned with CPif + CWif + CDif.

D.3 HAND-OFF MODEL

                 

       

      

       

            

   

 

























][2

][
)

][

1

|)(,

||][

||

|0|

,1 where

 ,|0|][

2

0

1

0

PTE

PTE
uudF

PTE

tFtXtXEththen

ydmytFytXytXEtFtXtXEtYE

ytXytXEyStYE

tXtXEStYE

xFxmtFtF

ydmytFyStYEtFStYEtYE

t

tN

tN

n

n

t

tNtN

     

   

   

 

  









2/

2/

/

/

/|][

2

0

2

0 0

0

0

XE

xdFx

xdFdttx

dtxdFtx

dttFtXtXEtYE

x

t













 

 







 



D.4 HAND-OFF DELAY WITH NO-HANDSHAKE MODE

   

   

       

   

    


























2/

/
2

/
2

//

/

/,|)]('[

2

0

2

2

0

2

0 0

0

0























  

 











 



xdFxdFx

xdFxdF
x

xdFdttxxdFdttx

dtxdFtx

dttFtXtXtXEtYE

t

tx

x

t

t

188

 

2

ex p

1

2
][






























e

eexe
HOE

xxx








5.1
2

5.1

5.0

3

2

2

3
][





























x
xx

HOE u n if

   















2

5.0
2

5.0

35.0

2
5.1

2

5.1

35.0

2

2

18

15.015.05.15.00.15.15.0

][

1

15.0,

2
3

5.1

1

2
3

2
222









































xx
x

xx
x

HOE tri

189

VITA

Soondo Hong studied at Pohang University of Science and Technology

(POSTECH), Korea, and received a Bachelor of Science degree in industrial engineering

in 1994. He graduated with a Master of Science degree in industrial engineering from

POSTECH in 1996. His first job was a software and systems engineer at LG

Semiconductor in Cheongju, Korea. From 1999 to 2002, he joined a venture company of

business solutions and consulting service as a consultant and project manager. He

worked as a research scientist at Korea Aerospace Research Institute (KARI) in Daejon,

Korea, in 2003.

He entered the Department of Industrial and Systems Engineering at Texas A&M

University in August 2004 and received his Ph.D. degree in industrial engineering under

the supervision of Dr. Andrew L. Johnson and Dr. Brett A. Peters.

Permanent email: soondo.hong@gmail.com

Permanent Address:

Soondo Hong

c/o Dr. Johnson and Dr. Peters

Department of Industrial and Systems Engineering

Texas A&M University

College Station TX 77840- 3131

