COTTON RESPONSE TO 1-METHYLCYCLOPROPENE UNDER DIFFERENT LIGHT REGIMES AND GROWTH STAGES: LINT YIELD AND YIELD COMPONENTS

A Thesis

by

CHARLES WARREN CARDEN

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2010

Major Subject: Agronomy

COTTON RESPONSE TO 1-METHYLCYCLOPROPENE UNDER DIFFERENT LIGHT REGIMES AND GROWTH STAGES: LINT

YIELD AND YIELD COMPONENTS

A Thesis

by

CHARLES WARREN CARDEN

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Committee members,

Head of Department,

J. Tom Cothren Scott A. Senseman David William Reed David D. Baltensperger

August 2010

Major Subject: Agronomy

ABSTRACT

Cotton Response to 1-Methylcyclopropene Under Different Light Regimes and Growth Stages: Lint Yield and Yield Components. (August 2010) Charles Warren Carden, B.S., Texas A&M University Chair of Advisory Committee: Dr. J. Tom Cothren

Low photosynthetic photon flux density (PPFD) during certain growth periods of cotton (Gossypium hirsutum L.) has been shown to impact yield, ethylene synthesis, and fiber quality. Previous research with shading has shown that lint yield can be significantly reduced in the latter stages of growth. This two-year field study was conducted at the Texas A&M AgriLife Research Farm in Burleson County, Texas, in 2008 and 2009. The study evaluated the impact of an 8-day period of shade (63% reduction of PPFD) on cotton yield parameters, fiber quality, and the impact of 1-methylcyclopropene (1-MCP), an ethylene inhibitor, to alter detrimental cotton responses when applied as a foliar spray under shaded and non-shaded conditions. Shade and 1-MCP were imposed at four developmental stages of growth: pinhead square (PHS), first flower (FF), peak flower (PF), and boll development (BD). Data pooled over both years indicated that there were no significant differences in yield for 1-MCP treatments; however, numerical differences existed. Shade applied during the

BD stage of development showed significantly lower yield than the untreated control. These results showed a decline in seed cotton and ginned seed cotton by 522 and 207 kg ha⁻¹, respectively. To further analyze further yield components, box-mapping was conducted during both years. However, this data failed to explain consistent patterns of the observed yield responses. Data was also collected to determine the amount of fibers per seed and seed weights. Cotton fiber data did not show consistent correlations with the numerical increases and significant decreases in yield. Electrolyte leakage and stomatal conductance data also were collected. Electrolyte leakage showed no statistical differences when compared to the untreated control. Stomatal conductance measurements showed no consistency for treatments during both years.

DEDICATION

This thesis is dedicated to my brilliant and beautiful wife, Rebecca, without whom I would be nothing. She always comforts and consoles, never complains or interferes, asks nothing, and endures all.

ACKNOWLEDGEMENTS

I would like to extend my gratitude to all those who made contributions toward this endeavor. Dr. Scott Senseman, and Dr. David Reed served on my graduate committee and are recognized for their advice and support on this project. AgroFresh is also acknowledged for providing funding for this study. I would like to thank Josh Bynum for his positive influence through friendship, knowledge, and wisdom. Appreciation is also extended to all of the members of the Cotton Physiology Workgroup at Texas A&M University for their incalculable hours spent maintaining, and collecting data from a most time consuming research study. I am also very grateful for advice and assistance from Dr. Eric Hequet. My special thanks is extended to my mentor Dr. Tom Cothren for providing purpose, direction, and words of wisdom.

TABLE OF CONTENTS

]	Page
ABSTRACT	iii
DEDICATION	V
ACKNOWLEDGEMENTS	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	ix
CHAPTER	
I INTRODUCTION	1
II LITERATURE REVIEW	3
Ethylene Ethylene Synthesis Ethylene Perception and Signal Transduction Ethylene and Abscission Stress Induced Ethylene Effects of Lower Light (Shade) 1-Methylcyclopropene Effects of 1-Methylcyclopropene Cotton Fiber Development and Quality Objectives	3 4 5 6 6 7 7 7
III MATERIAL AND METHODS	11
IV RESULTS AND DISCUSSION	17
Plant Height and Total Nodes Electrolyte Leakage Stomatal Conductance Yield and Fiber Quality	25 27

CHAPTER	Page
Box-mapping Fibers and Seed	
V CONCLUSIONS	73
REFERENCES	76
APPENDIX A	84
APPENDIX B	
VITA	

LIST OF TABLES

TABLE		Page
1	List of treatments, rates, and growth stages of application for 2008 and 2009	12
2-a	Effect of 1-methylcyclopropene (1-MCP) and shade on plant height and total number of nodes during PHS, 2008	18
2-b	Effect of 1-methylcyclopropene (1-MCP) and shade on plant height and total number of nodes during FF, 2008	18
2-c	Effect of 1-methycyclopropene (1-MCP) and shade on plant height and total number of nodes during PF, 2008	19
2-d	Effect of 1-methycyclopropene (1-MCP) and shade on plant height and total number of nodes during BD, 2008	19
3-a	Effect of 1-methycyclopropene (1-MCP) and shade on plant height and total number of nodes during PHS, 2009	20
3-b	Effect of 1-methycyclopropene (1-MCP) and shade on plant height and total number of nodes during FF, 2009	20
3-c	Effect of 1-methycyclopropene (1-MCP) and shade on plant height and total number of nodes during PF, 2009	21
3-d	Effect of 1-methylcyclopropene (1-MCP) and shade on plant height and total number of nodes during BD, 2009	21
4-a	Effect of shade on plant heights, and total nodes prior to harvest, 2008	23
4-b	Effect of 1-methylcyclopropene (1-MCP) on plant heights, and total nodes prior to harvest, 2008	

TABLE

4-c	Effect of 1-methylcyclopropene (1-MCP) and shade on plant heights, and total nodes prior to harvest, 2008	23
5-a	Effect of shade on plant heights, and total nodes prior to harvest, 2009	24
5-b	Effect of 1-methylcyclopropene (1-MCP) on plant heights, and total nodes prior to harvest, 2009	24
5-с	Effect of 1-methylcyclopropene (1-MCP) and shade on plant heights, and total nodes prior to harvest, 2009	24
6	Effect of 1-methycyclopropene (1-MCP) and shade on electrolytic leakage during boll development (BD), 2008 and 2009	26
7-a	Effect of shade on electrolytic leakage prior to defoliation, 2008 and 2009	28
7-b	Effect of 1-methylcyclopropene (1-MCP) on electrolytic leakage at prior to defoliation, 2008 and 2009	28
7-с	Effect of 1-methylcyclopropene (1-MCP) and shade on electrolytic leakage prior to defoliation, 2008 and 2009	28
8	Stomatal conductance taken during first flower (FF), 2008	.29
9	Stomatal conductance taken during first flower (FF), 2009	.29
10	Stomatal conductance taken during peak flower (PF), 2008	.31

Page

xi

11	Stomatal conductance taken during peak flower (PF), 200931
12	Stomatal conductance taken during boll development (BD), 2008
13	Stomatal conductance taken during boll development (BD), 2009
14 - a	Effect of shade on stomatal conductance prior to defoliation, 2008
14-b	Effect of 1-methylcyclopropene (1-MCP) on stomatal conductance prior to defoliation, 2008
14-с	Effect of 1-methylcyclopropene (1-MCP) and shade on stomatal conductance prior to defoliation, 2008
15-a	Effect of shade on stomatal conductance prior to defoliation, 2009
15-b	Effect of 1-methylcyclopropene (1-MCP) on stomatal conductance prior to defoliation, 2009
15-с	Effect of 1-methylcyclopropene (1-MCP) and shade on stomatal conductance prior to defoliation, 2009
16-a	Effect of shade on seed cotton yield, gin turnout, and lint yield, 2008
16-b	Effect of 1-methylcyclopropene (1-MCP) on seed cotton yield, gin turnout, and lint yield, 200836

TABLE	
-------	--

16-с	Effect of 1-methylcyclopropene (1-MCP) and shade on seed cotton yield, gin turnout, and lint yield, 2008	36
17-a	Effect of shade on seed cotton yield, gin turnout, and lint yield, 2009	37
17-b	Effect of 1-methylcyclopropene (1-MCP) on seed cotton yield, gin turnout, and lint yield, 2009	37
17-с	Effect of 1-methylcyclopropene (1-MCP) and shade on seed cotton yield, gin turnout, and lint yield, 2009	37
18-a	Effect of shade on seed cotton yield, gin turnout, and lint yield, 2008 and 2009	38
18-b	Effect of 1-methylcyclopropene (1-MCP) on seed cotton yield, gin turnout, and lint yield, 2008 and 2009	38
18-с	Effect of 1-methylcyclopropene (1-MCP) and shade on seed cotton yield, gin turnout, and lint yield, 2008 and 2009	38
19-a	Effect of shade on lint quality parameters, 2008	40
19-b	Effect of 1-methylcyclopropene (1-MCP) on lint quality parameters, 2008	40
19-с	Effect of 1-methylcyclopropene (1-MCP) and shade on lint quality parameters, 2008	40
20-a	Effect of shade on lint quality parameters, 2009	41
20-b	Effect of 1-methylcyclopropene (1-MCP) on lint quality parameters, 2009	41

Page

Page

TABLE

20-с	Effect of 1-methylcyclopropene (1-MCP) and shade on lint quality parameters, 2009
21-а	Effect of shade on lint quality parameters, 2008 and 200942
21-b	Effect of 1-methylcyclopropene (1-MCP) on lint quality parameters, 2008 and 200942
21-с	Effect of 1-methylcyclopropene (1-MCP) and shade on lint quality parameters, 2008 and 200942
22-a	Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in first position, 2008
22-b	Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in first position, 200844
22-с	Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in first position, 200845
23-а	Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in first position, 2009
23-b	Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in first position, 200946
23-с	Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total weight per plant for sympodial branches 6 through 10 in first position, 200947

Page	TABLE
Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in second position, 2008	24-a
Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in second position, 200849	24-b
Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total weight per plant for sympodial branches 6 through 10 in second position, 200850	24-с
Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in second position, 2009	25-a
Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in second position, 200951	25-b
Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in second position, 200952	25-с
Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in thrid position, 2008	26-a
Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in thrid position, 200853	26-b

xiv

TABLE

26-с	Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in third position, 2008	54
27-a	Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in third position, 2009	55
27-b	Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in thrid position, 2009	55
27-с	Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in third position, 2009	56
28-a	Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 in first position, 2008.	57
28-b	Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 in first position, 2008	57
28-с	Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 first position, 2008	58
29-a	Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 in first position, 2009.	59

Page

Page

TABLE

29-b	Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 in first position, 2009
29-с	Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 first position, 200960
30-а	Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 in second position, 2008
30-b	Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 in second position, 2008
30-с	Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 second position, 200863
31 - a	Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 in second position, 2009
31-b	Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 in second position, 2009
31-с	Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 second position, 200965
32-a	Effect of shade on seed weight and number of fibers per seed for sympodial branches 6 through 10 in first position, 200867

TABLE	Page
32-b	Effect of 1-methylcyclopropene (1-MCP) on seed weight and number of fibers per seed for sympodial branches 6 through 10 in first position, 2008
32-с	Effect of 1-methylcyclopropene (1-MCP) and shade on seed weight and number of fibers per seed for sympodial branches 6 through 10 in first position, 200867
33-a	Effect of shade on seed weight and number of fibers per seed for sympodial branches 6 through 10 in first position, 200969
33-b	Effect of 1-methylcyclopropene (1-MCP) on seed weight and number of fibers per seed for sympodial branches 6 through 10 in first position, 2009
33-с	Effect of 1-methylcyclopropene (1-MCP) and shade on seed weight and number of fibers per seed for sympodial branches 6 through 10 in first position, 200969
34-a	Effect of shade on seed weight and number of fibers per seed for sympodial branches 6 through 10 in second position, 200870
34-b	Effect of 1-methylcyclopropene (1-MCP) on seed weight and number of fibers per seed for sympodial branches 6 through 10 in second position, 200870
34-c	Effect of 1-methylcyclopropene (1-MCP) and shade on seed weight and number of fibers per seed for sympodial branches 6 through 10 in second position, 200870
35-а	Effect of shade on seed weight and number of fibers per seed for sympodial branches 6 through 10 in second position, 200971

TABLE		Page
35-b	Effect of 1-methylcyclopropene (1-MCP) on seed weight and number of fibers per seed for sympodial branches 6 through 10 in second position, 2009	71
35-с	Effect of 1-methylcyclopropene (1-MCP) and shade on seed weight and number of fibers per seed for sympodial branches 6 through 10 in second position, 2009	71

CHAPTER I

INTRODUCTION

Cotton (*Gossypium hirsutum* L.) is subject to variable lint yield due to its high susceptibility to shed reproductive organs during the growing season (Guinn, 1982). Several factors can contribute to lower lint yield, such as extreme temperatures (Reddy et al., 1999; Zhao et al., 2005); moisture deficits (Pettigrew, 2004); poor fertility (Hake et al., 1989); drought stress (Guinn, 1982; Hake et al., 1992b; McMichael, 1979; McMichael and Jordan, 1973); and insect pressure (Holman and Oosterhuis, 1999). Previous studies have also shown that lower light conditions usually represented by cloud cover and extreme vegetative growth can reduce cotton lint yield (Baker, 1966; Eaton and Rigler, 1945; Goodman, 1955; Guinn, 1981; Zhao and Oosterhuis, 1998; Zhao and Oosterhuis, 2000). Zhao and Oosterhuis (2000) demonstrated that shade for 8-days (a 63% reduction in photosynthetic photon flux density) can decrease leaf weight, dry matter accumulation, lint yield, and fiber micronaire and strength during the latter stages of development. Light also directly affects the conversion of ACC into ethylene (Rikin et al., 1984) and is correlated with increased ethylene synthesis at lower light intensities (Vandenbussche et al., 2003). Recent studies This thesis follows the style of Crop Science.

have shown that 1-methylcyclopropene (1-MCP) is an effective ethylene inhibitor, and may have the potential to counter the effect of stresses that induce ethylene synthesis at lower light levels.

CHAPTER II

LITERATURE REVIEW

Ethylene

Ethylene is a hydrocarbon gas known as the fruit-ripening hormone (Theologis, 1992). Ethylene regulates a multitude of plant processes, ranging from seed germination to organ senescence (Bleeker and Kende, 2000). Its effects include inhibition of growth (Ecker, 1995), acceleration of respiration, modification of leaf and fruit pigments, abscission of leaves and fruits (Abeles and Rubinstein, 1964; Burg and Burg, 1966a; Burg and Burg, 1966b; Chadwick and Burg, 1967; De La Fuente and Leopold, 1968; Maxie and Crane, 1967), breakdown of proteins (Abeles et al., 1967; Leopold, 1967; Scott, 1967), acceleration of the rate of IAA inactivation (Shoji, 1950), and acceleration of pectin methyl esterase loss in the abscission zone (Osborne, 1955). Because boll retention is the primary factor in cotton yield (Hake et al., 1992a; Hake et al., 1992b; Wells and W.R. Meredith, 1983; Worley et al., 1974), it is important to protect a cotton crop from ethylene induced fruit shed.

Ethylene Synthesis

Ethylene is formed from methionine via S-adenosyl-L-methionine (AdoMet) and the cyclic non-protein amino acid 1-aminocyclopropane-1carboxylic acid (ACC) (Adams and Yang, 1979). Two enzymes catalyze the conversion of AdoMet to ACC and of ACC to ethylene, ACC synthase and ACC oxidase, respectively (Kende, 1993). ACC synthase also produces 5'methylthioadenosine, which is utilized for the synthesis of new methionine via a modified methionine cycle (Miyazaki and Yang, 1987). This pathway preserves the methylthio group through every turn of the cycle at the cost of one ATP (adenosine triphosphate) molecule, and is therefore capable of producing high rates of ethylene even when free methionine is low in abundance (Bleeker and Kende, 2000). ACC synthase has previously been shown to require pyridoxal phosphate as a cofactor (Boller et al., 1979; Yu et al., 1979) and is thought to be encoded by medium-sized gene families that are differentially regulated by various developmental, environmental, and hormonal signals (Kende, 1993; Zarembinski and Theologis, 1994).

Ethylene Perception and Signal Transduction

The primary component in the ethylene signaling pathway is the CTR1 gene product (Kieber et al., 1993). CTR1 is a Raf-like signaling kinase that consists of an 821-amino acid protein and functions as a negative regulator (Kieber et al., 1993). When ethylene binds to a homologous two-component receptor/response regulator, a kinase cascade is produced through the CTR1 Raf-like kinase and other components to the nucleus (Johnson et al., 1998). It has been suggested that the CTR1 may be involved in modulating cellular responses to extracellular signals due to its similarity with Raf-1; however, data has not yet supported this hypothesis (Heidecker et al., 1992; Kieber et al., 1993).

Ethylene and Abscission

In the late 1800's, many varieties of plants were reported to be mysteriously defoliating in the vicinity of gas illuminated lamps (Fahnestock, 1858). Later, research found that these plants were being exposed to leaks of ethylene gas from the illuminating lamps on the streets (Doubt, 1917; Neljubow, 1901). Today, it is well known that ethylene is the gaseous plant hormone that signals abscission (Abeles, 1968; Abeles et al., 1992; Suttle and Hulstranstrand, 1991). Ethylene stimulates the production of hydrolytic enzymes in the abscission zone that initiate cell separation in the abscission layer (Abeles, 1968; Abeles, 1969; Horton and Osborne, 1967; Moore, 1968). Abscission zones can be defined during the early development of organ systems as a band of cells that fail to enlarge and vacuolate along with surrounding tissues (Bleeker and Patterson, 1997). The ability of the hormone to initiate abscission depends on the sensitivity of the separation layer cells to the gas (Abeles, 1968). Crocker and Zimmerman (1932), as well as Harvey (1913), found that exposure to 0.1 to $2 \mu g$ mL⁻¹ ethylene produced epinasty without causing leaves to defoliate, but when applied with 2 to 10 µg mL⁻¹ ethylene, the older leaves abscised. However, Morgan (1969) found that low concentrations of ethylene did not cause leaf abscission, but rather caused young flowers and fruit to abscise in cotton.

Stress Induced Ethylene

Ethylene can be elicited by almost all biotic and abiotic stress conditions (Bleeker and Kende, 2000). Pathogen (Hoffman et al., 1999), nutritional (Guinn, 1976), temperature (Cooper et al., 1969), water (Ben-Yehoshua and Aloni, 1974; El-Beltagy and Hall, 1974; McMichael et al., 1972; Wright, 1977), and light (Craker et al., 1973; Lin et al., 2008; Rikin et al., 1984; Vandenbussche et al., 2003) stresses can increase ethylene production. Apelbaum and Yang (1981) found that wheat (*Triticum aestivum* L. cv. Anza) subjected to water stress increased ethylene production more than 30-fold within four hours. It is also known that light directly affects the conversion of ACC into ethylene (Rikin et al., 1984). In cotton, research demonstrates increased ethylene evolution and young boll abscission during low light conditions (Guinn, 1975; Rikin et al., 1984; Vandenbussche et al., 2003).

Effects of Lower Light (Shade)

Previous studies have shown that lower PPFD (photosynthetic photon flux density) represented by cloud cover and extreme vegetative growth can reduce cotton lint yield and is a major limiting factor in cotton lint yield (Baker, 1966). Zhao and Oosterhuis (2000) demonstrated that shade at 63% reduction in PPFD for 8-days decreased leaf weight, dry matter accumulation, lint yield, and fiber micronaire and strength during the latter stages of development in cotton. Decreasing light intensity has also been shown to increase the shedding of squares and bolls in cotton (Eaton and Ergle, 1954), and after a period of 3 days of shading (low PPFD), drastically reduced the number of mature cotton bolls by 75% (Dunlap, 1943).

1-Methylcyclopropene

1-methylcyclopropene (1-MCP) is an ethylene inhibitor (Blankenship and Dole, 2002; Sisler and Serek, 1997) that has proved to be widely successful in the horticulture industry. It is a stable, non-toxic gas (Binder and Bleeker, 2003) with a formula of C₄H₆, and is active at very low concentrations (Blankenship and Dole, 2002). It is thought that 1-MCP may interact with ethylene receptors when applied at very low concentrations (Blankenship and Dole, 2002) which would prevent ethylene-dependent responses (Sisler and Serek, 1997; Sisler et al., 1996). Recent studies have proposed various mechanisms for the action of 1-MCP. Binder and Bleeker (2003) suggested that 1-MCP may bind with the copper cofactor of the ethylene receptor, rendering action by only affecting a subset of the total receptor pool. Though an exact mode of action is not evident, 1-MCP has proven to be an effective ethylene inhibitor.

Effects of 1-Methylcyclopropene

In the horticulture industry, 1-MCP has shown to have an array of physiological effects, such as: decreased or inhibited ethylene production (Abdi et al., 1998; Jiang et al., 2001), postharvest quality of flowers (Serek et al., 1994), increased longevity of flowers (Serek et al., 1995), prevention of increased mRNAs abundance with ripening (Nakatsuka et al., 1997), negated membrane electrolyte leakage (Mao et al., 2004), reduced rate of abscission (Michaeli et al., 1999), and extended periods of fruit firmness (Tatsuki and Endo, 2006). In agronomic crops, 1-MCP has also shown to have positive effects. Mishra et al. (2008b) demonstrated decreased break strength in the abscission zone of cotton (*Gossypium hirsutum* var RST-39) when pretreated with 1-MCP. Mishra et al. (2008a) also documented that 1-MCP treated cotton resulted in significant inhibition of enzyme activities and transcript accumulation associated with abscission layer formation. 1-MCP research has also displayed higher stomatal resistance in water-stressed cotton, suggesting protection against water loss from evapotranspiration during drought (Kawakami et al., 2010). Kawakami et al. (2010) found that cotton plants had a higher activity of antioxidant enzymes and better maintenance of membrane integrity after application.

Cotton Fiber Development and Quality

Cotton yield is dependent on factors such as boll size, number of bolls, amount of seeds per boll, the amount of fibers per seed and seed size. Cotton fibers are derived from the outer ovule epidermal cells and when mature, can be over 25 mm long and 20 μ m in diameter. The primary cell walls of fibers elongate for approximately 15 to 27 days post anthesis (DPA) (Benedict, 1984), and secondary cell walls elongate overlapping primary cell wall formation at about 17 to 53 dpa (Schubert et al., 1973). Differences in fiber quality are dependent on fiber elongation rate and period (Ruan et al., 2001), and time of onset of secondary wall thickening (Schubert, 1975). Fiber formation is dependent on species, cultivar, and environmental conditions (Benedict et al., 1999). Limiting environmental factors during fiber development can affect fiber cell wall thickness. Fiber cell wall thickness is correlated with fiber maturity, an important parameter of fiber quality. The quality of fibers can be determined by HVI (High Volume Instrument) and AFIS (Advanced Fiber Information System) test instruments (Hequet et al., 2006).

Objectives

Previous studies have shown that lower PPFD reduces cotton lint yield, boll size, and fiber quality (Baker, 1966; Zhao and Oosterhuis, 2000). A reduction in PPFD by 63% for a period of 8-days proved to reduce lint yield by up to 52% during the latter stages of development (Zhao and Oosterhuis, 2000). Furthermore, lower light has shown to increase ethylene synthesis (Vandenbussche et al., 2003). Recent studies have shown that 1-MCP is an effective ethylene inhibitor, and may have the potential to counter the effect of stresses that induce ethylene synthesis at lower light levels. The purpose of this study was to evaluate methods to alleviate induced ethylene stress during cotton growth. The objectives of this study were to specifically evaluate: the impact of 8 days of shading (63% reduction in PPFD) on cotton yield during four developmental growth stages, and the impact of 1-MCP applied as a foliar spray (AF-600) at the rate of 25 g ha⁻¹ under shaded and non-shaded conditions at the same four developmental growth stages.

CHAPTER III

MATERIALS AND METHODS

In 2008 and 2009, a two-year field study was conducted at the Texas A&M AgriLife Research Farm in Burleson County, Texas. Field plots were located in the Brazos River Bottom on a Weswood silt loam (fine-silty, mixed superactive, thermic, Udifluventic Haplustepts), having a pH of 8.2.

Prior to planting, urea ammonium nitrate (32-0-0) was applied by injection at the rate of 135 kg ha⁻¹. Stoneville 4554 B2RF was planted both years at the rate of 129,727 seeds ha⁻¹ with a John Deere 1700 four-row MaxEmerge vacuum planter. Plots were irrigated by row-water as needed. Herbicide and pesticide applications were compliant with Texas Cooperative Extension recommendations for Burleson County.

The study was conducted as a randomized complete block design with thirteen treatments replicated four times (Table 1). Plots consisted of six 1-m rows that were 9.8-m in length that were hand thinned to a uniform population of 13 plants m⁻¹. 1-MCP was applied at the specified rate of 25 g ha⁻¹ using a compressed air small plot sprayer equipped with Tee Jet[®] (Spraying Systems Inc.) AI 11002 VS air-induction flat spray tips. Application of 1-MCP was applied during four developmental growth stages: PHS (pinhead-square), FF

	Rate‡	Time€	Growth Stage¥	Abbreviation
Treatment ⁺				
Shade	N/A	8d	PHS	SPHS
Shade	N/A	8d	FF	SFF
Shade	N/A	8d	PF	SPF
Shade	N/A	8d	BD	SBD
1-MCP	25 g ha ⁻¹	N/A	PHS	MPHS
1-MCP	25 g ha ⁻¹	N/A	FF	MFF
1-MCP	25 g ha ⁻¹	N/A	PF	MPF
1-MCP	25 g ha ⁻¹	N/A	BD	MBD
1-MCP & Shade	25 g ha ⁻¹	8d	PHS	SMPHS
1-MCP & Shade	25 g ha ⁻¹	8d	FF	SMFF
1-MCP & Shade	25 g ha ⁻¹	8d	PF	SMPF
1-MCP & Shade	25 g ha-1	8d	BD	SMBD
UTC	Ň/A	N/A	N/A	UTC

Table 1. List of treatments, rates, and growth stage of application for 2008 and 2009.

† Chemical and/or Shade treatment: Shade, 8 days at 63% reduction in light; 1-MCP, 1-methylcyclopropene; UTC, untreated control

‡ Chemical rate: N/A, none.

€ Time of Shading: N/A none.

¥ Developmental growth stage: PHS, pinhead-square; FF, first flower; PF, peak flower; BD, boll development.

¶ Abbreviations to be referred to in graphic figures at the results section.

(first flower), PF (peak flower), and BD (boll development). The PHS treatments were established when 60% of the plants were in pinhead square. FF was defined as the time when 60% of the plants had the first white flower. PF and BD stages were at 12 and 24 days after first flower, respectively. Light was decreased with a syntheticshade cloth (Harps Tarps; Tucker, GA) one day following the application of 1-MCP and continued for a period of eight days covering an area of 5 m² plot⁻¹. Light intensity under the shaded area (63% reduction in light) was confirmed with a Li-250 light meter (Li-Cor Inc. St. Lincoln, NE). Each shade cloth area was marked with flags for identification of the exact area that was shaded.

Data collected for the study consisted of plant height, total node count, stomatal conductance and resistance readings, leaf membrane electrolyte leakage, box-mapping, lint yield, fiber quality, and number of fibers per seed.

Plant height and total number of node measurements were taken during each developmental growth stage and prior to harvest. Ten randomly selected cotton plants were chosen from the fifth row in each plot on the day of each application of 1-MCP, and at 7 and 14 days after 1-MCP application for the measurement. Plant height was measured from the cotyledonary node to the terminal bud or apex. Plant nodes were counted beginning at the first node above the cotyledonary nodes to the upper most fully expanded leaf (true leaf) having a diameter of at least 2.5 cm. Stomatal conductance and resistance readings were taken from all plots at three or five days after application of 1-MCP during the FF, PF, and BD developmental growth stages from two randomly selected plants out of the fifth row of each plot. Stomatal conductance and resistance readings were taken using a SC-1 steady state diffusion leaf porometer (Decagon Devices, Inc., Pullman, WA). The leaf porometer is a device used to measure the function of the density, size, and degree of opening of stomata, reported in mmol m⁻² s⁻¹ conductance.

Just prior to harvest, a variation of box-mapping described by Jenkins and McCarty (1995) was conducted for the study during 2008 and 2009. Boxmapping consisted of the collection of final plant heights and nodes, total number of green and open bolls, and weights of open boll lint that were obtained from ten randomly selected plants from the second row of each plot.

During the BD growth stage and prior to defoliation for both years, leaf membrane electrolyte leakage data was taken from each plot. Five leaves from five randomly selected plants in each plot were collected from the third leaf down from the apical bud or apex, then immediately transported to the laboratory for analysis. Leaves were rinsed with deionized water. Five leaf disks (2 cm² in diameter) were then taken from the leaves, and placed in 10 ml of de-ionized water and incubated at 25° C (room temperature) for 1 hour. After incubation, electrical conductivity of the solution was measured using a conductivity meter (Oakton Instruments, Vernon Hills, Illinois, USA). The samples were then incubated again for 24 hours at 25° C in the same 10 mL of deionized water. After 24 hours samples were placed in a constant temperature bath (Magni Whirl[®]) for one hour at 95° C. After another 24 hours, conductivity of the leaf disk solution was measured again at 25° C. Electrolyte leakage was determined as the percent of total electrolytes following incubation at 1 hour 25°C.

Harvest aids (Appendix A) were applied during 2008 and 2009 when the plants were at 60% open boll. Plots were trimmed to the areas that were shaded (5 m²), then the third and fourth rows were harvested mechanically by a John Deere two-row plot spindle picker. Cotton lint yield from each row was weighed and averaged over the two rows for determination of seed cotton yield. A 150-g sub-sample was taken from each plot and ginned using a ten-saw, hand fed, portable gin to determine ginout percentage. A 50-g sample of ginned lint from each plot was then sent to the International Textile Center in Lubbock, for HVI (High Volume Instrument) analysis.

Seed cotton from bolls collected during box mapping was weighed and recorded. A 25-g sample of seed cotton was ginned using a single boll roller gin. Ginned lint was then weighed and sent to the International Textile Center in Lubbock, Texas for AFIS (Advanced Fiber Instrument System) analysis. Seeds collected from the 25 g sample were acid delinted, weighed, and counted. Scanning of mean seed surface area was done by a WinSEEDLETM seed image analysis system (Courtesy of Dr. Eric Hequet, Lubbock, TX). The amount of fibers seed⁻¹ was calculated by using the mean fiber length by number [L(n) km⁻¹] and linear density (mTex) of the lint samples analyzed by the AFIS. Mean surface area of seeds from the WinSEEDLETM scanning was used to determine the amount of fibers seed⁻¹ mm⁻².

All data collected were analyzed using SAS 9.2 statistical software (SAS Institute Inc., Cary, NC). Data for 2008 and 2009 were combined over years in the absence of year x treatment interaction. Pairwise comparisons of the means for data taken during individual growth stages (e.g. PHS, FF, PF, and BD) were analyzed using the Proc General Linear Model (GLM), and separated using Fisher's Protected Least Significant Difference (LSD) at the 5% significance level. LSMEANS contrast was used for pairwise comparisons of means for data collected at the end of both seasons from all thirteen treatments.

CHAPTER IV

RESULTS AND DISCUSSION

Plant Height and Total Nodes

Plant height and number of nodes were measured throughout the growing season during each developmental growth stage (Tables 2-a– 2-d and 3-a–3-d). Plant height and node measurements were taken three times for each growth stage, starting at the time of application of 1-MCP (0 DAT), seven days after application (7 DAT), and fourteen days after application (14 DAT). Plant height and node measurements at 0 DAT were taken as an initial measurement to insure uniformity across the study. Final plant height and total node measurements were taken during end-of-season box-mapping. Due to variation between years, an interaction of year x treatment was observed. Results are therefore reported on a by year basis.

In 2008 and 2009, PHS, FF, PF, and BD treatments at 0 DAT showed no significant differences in plant height and total nodes (Tables 2-a– 2-d and 3-a–3-d). These measurements insured uniformity of initial plant measurements. In 2008, treatments SPHS, MPHS, SMPHS at 7 DAT showed significantly greater plant heights and total nodes than the UTC (Table 2-a). For the same treatments and timings, in 2009, plant data showed no significant differences; however, the

17

	0 DAT		7 DAT		14 DAT	
	Plant height	Total nodes	Plant height	Total nodes	Plant height	Total nodes
Treatment ⁺	cm	—nodes plant-1—	cm	-nodes plant-1-	cm	—nodes plant-1—
SPHS	18.8a‡	7.4a	27.7a	9.3b	34.0a	11.6a
MPHS	20.7a	7.9a	29.4a	10.3a	35.7a	12.0a
SMPHS	20.1a	7.8a	28.6a	9.5b	35.8a	11.7a
UTC	18.6a	7.1a	21.5b	8.5c	30.2a	11.5a
Pr > F§	0.0528	0.0150	0.0085	0.0031	0.0978	0.1656

Table 2-a. Effect of 1-methylcyclopropene (1-MCP) and shade on plant height and total number of nodes during PHS, 2008.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fisher's protected LSD.

§ Probability of the ANOVA.

	0 DAT		7 DAT		14 DAT	
	Plant height	Total nodes	Plant height	Total nodes	Plant height	Total nodes
Treatment ⁺	cm	—nodes plant ⁻¹ —	cm	-nodes plant-1-	cm	—nodes plant ⁻¹ —
SFF	44.6a‡	12.7a	56.5a	14.5a	62.7a	16.1a
MFF	45.3a	13.6a	54.4a	15.3a	62.7a	16.1a
SMFF	44.5a	12.8a	59.0a	15.3a	67.8a	16.5a
UTC	42.8a	13.0a	52.4a	14.7a	61.3a	16.1a
Pr > F§	0.6183	0.3701	0.4230	0.3714	0.5958	0.5827

Table 2-b. Effect of 1-methylcyclopropene (1-MCP) and shade on plant height and total number of nodes during FF, 2008.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; FF, treatment initiated at first flower; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fisher's protected LSD.

§ Probability of the ANOVA.

	0	DAT	7]	DAT	14	DAT
	Plant height	Total nodes	Plant height	Total nodes	Plant height	Total nodes
Treatment ⁺	—cm—	—nodes plant-1—	—cm—	—nodes plant-1—	—cm—	—nodes plant-1—
SPF	64.0a‡	16.0a	65.8a	16.8a	67.5a	17.4a
MPF	62.6a	15.8a	63.7a	16.7a	65.1a	16.9a
SMPF	59.9a	15.9a	62.9a	16.7a	63.5a	16.8a
UTC	61.3a	15.7a	61.8a	16.2a	65.4a	16.7a
Pr > F§	0.0082	0.1683	0.0014	0.5180	0.0034	0.0220

Table 2-c. Effect of 1-methylcyclopropene (1-MCP) and shade on plant height and total number of nodes during PF, 2008.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PF, treatment initiated at peak flower; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fisher's protected LSD.

§ Probability of the ANOVA.

	0	0 DAT		7 DAT 14 DAT		DAT
	Plant height	Total nodes	Plant height	Total nodes	Plant height	Total nodes
Treatment ⁺	—cm—	—nodes plant-1—	—cm—	—nodes plant ⁻¹ —	—cm—	—nodes plant ⁻¹ —
SBD	59.4a‡	15.4a	57.1a	16.7a	58.8a	17.3a
MBD	66.9a	16.7a	62.4a	16.6a	65.6a	17.3a
SMBD	63.4a	16.6a	62.0a	16.5a	63.9a	17.8a
UTC	65.5a	16.7a	62.1a	16.9a	64.8a	17.9a
Pr > F§	0.3287	0.4423	0.4920	0.9455	0.3806	0.7489

Table 2-d. Effect of 1-methylcyclopropene (1-MCP) and shade on plant height and total number of nodes during BD, 2008.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fisher's protected LSD.

	0	DAT	71	DAT	14	DAT
	Plant height	Total nodes	Plant height	Total nodes	Plant height	Total nodes
Treatment ⁺	cm	—nodes plant-1—	cm	—nodes plant-1—	-cm-	-nodes plant-1-
SPHS	15.2a‡	6.9a	33.4a	7.6a	43.1a	9.3a
MPHS	14.8a	6.8a	31.0a	7.3a	40.7a	9.2a
SMPHS	15.6a	6.7a	34.9a	7.5a	42.5a	9.2a
UTC	16.2a	6.8a	30.1a	7.2a	39.5a	9.1a
Pr > F§	0.6318	0.7089	0.3200	0.3580	0.6303	0.8556

Table 3-a. Effect of 1-methylcyclopropene (1-MCP) and shade on plant height and total number of nodes during PHS, 2009.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fisher's protected LSD.

§ Probability of the ANOVA.

	0	DAT	7 I	DAT	14	DAT
	Plant height	Total nodes	Plant height	Total nodes	Plant height	Total nodes
Treatment ⁺	cm	—nodes plant-1—	cm	—nodes plant ⁻¹ —	cm	—nodes plant-1—
SFF	52.7a‡	10.9a	53.5a	11.4a	57.0a	12.5a
MFF	50.5a	11.0a	58.0a	11.0a	57.4a	12.4a
SMFF	50.0a	10.8a	51.7a	11.2a	57.0a	12.5a
UTC	48.7a	11.0a	51.3a	11.3a	56.6a	12.3a
Pr > F§	0.7820	0.9778	0.3750	0.7788	0.9915	0.9145

Table 3-b. Effect of 1-methylcyclopropene (1-MCP) and shade on plant height and total number of nodes during FF, 2009.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; FF, treatment initiated at first flower; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fisher's protected LSD.

	0	DAT	71	DAT	14	DAT
	Plant height	Total nodes	Plant height	Total nodes	Plant height	Total nodes
Treatment ⁺	cm	-nodes plant-1-	cm	-nodes plant-1-	cm	—nodes plant-1—
SPF	55.7a‡	12.5a	57.9a	16.0a	60.6a	17.0a
MPF	52.9a	11.9a	57.9a	15.9a	60.6a	17.7a
SMPF	53.1a	12.1a	58.5a	16.0a	61.1a	17.3a
UTC	54.6a	12.3a	59.9a	16.0a	61.3a	17.4a
Pr > F§	0.0798	0.1281	0.0075	0.1555	0.0003	0.0007

Table 3-c. Effect of 1-methylcyclopropene (1-MCP) and shade on plant height and total number of nodes during PF, 2009.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PF, treatment initiated at peak flower; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fisher's protected LSD.

§ Probability of the ANOVA.

	0	DAT	7 I	DAT	14	DAT
	Plant height	Total nodes	Plant height	Total nodes	Plant height	Total nodes
Treatment ⁺	cm	—nodes plant ⁻¹ —	cm	—nodes plant ⁻¹ —	cm	—nodes plant ^{_1} —
SBD	62.4a‡	17.3a	58.6a	16.3b	60.7b	17.9a
MBD	64.2a	17.7a	65.0a	18.2a	65.7a	18.7a
SMBD	64.8a	17.3a	62.6a	17.1a	64.6ab	17.7a
UTC	63.3a	17.3a	61.7a	17.4ab	63.3ab	19.9a
Pr > F§	0.0667	0.2305	0.2305	0.0033	0.0139	0.1980

Table 3-d. Effect of 1-methylcyclopropene (1-MCP) and shade on plant height and total number of nodes during BD, 2009.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fisher's protected LSD.

shaded treatments were still numerically higher in height and total nodes than the UTC (Table 3-a). At 14 DAT in 2008 no statistical differences were observed among treatments, but higher numerical values still existed for plant heights and total nodes when compared to the UTC (Table 2-a). In 2009, 14 DAT measurements showed no significant differences in plant height and nodes; however, slightly higher numerical values still existed for the same treatments when compared to the UTC (Table 3-a).

For measurements taken during all other growth stages, data failed to show significant differences in heights and nodes at 0 DAT, 7 DAT, and 14 DAT for all treatments when compared to the UTC (Tables 2-a– 2-d and 3-a–3-d). The results indicate that heights and nodes of shaded, and 1-MCP-treated plants were higher than the UTC during the early growth season.

Final plant heights were taken during end-of-season box-mapping (Tables 4-a–4-c and 5-a–5-c). Plant heights in 2008 and 2009, ranged from 66 to 79.8cm and 56.9 to 64.9cm, respectively. Total nodes measured from 20.5 to 22.2 and 20.4 to 22.4, respectively, in 2008 and 2009. For 2008 and 2009, plant heights and total nodes were not significantly different than the UTC across all treatments.

Table 4-a. Effect of Shau	ie on plant heights, and total houes pl	101 to Hai vest, 2008.	
	Plant height	Total nodes	
Treatment†	cm	-nodes plant ⁻¹	
SPHS	79.8a‡	22.2a	
SFF	72.3a	20.5b	
SPF	76.6a	21.3ab	
SBD	78.6a	21.5ab	
UTC	73.3a	21.4ab	

Table 4-a. Effect of shade on plant heights, and total nodes prior to harvest, 2008.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 4-b. Effect of 1-methylcyclopropene (1-MCP) on plant heights, and total nodes prior to harvest, 2008.

	Plant height	Total nodes
Treatment ⁺	cm	-nodes plant-1-
MPHS	71.3a‡	20.8a
MFF	74.5a	21.0a
MPF	74.6a	21.1a
MBD	76.5a	21.2a
UTC	73.3a	21.4a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

[‡] Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

10 1141 VESt, 200		
	Plant height	Total nodes
Treatment ⁺	cm	—nodes plant ⁻¹ —
SMPHS	76.7a§	22.2a
SPHS	79.8a	22.2a
SMFF	70.2a	20.5a
SFF	72.3a	20.5a
SMPF	66.0a	21.3a
SPF	76.6a	21.3a
SMBD	78.8a	21.5a
SBD	78.6a	21.5a

Table 4-c. Effect of 1-methylcyclopropene (1-MCP) and shade on plant heights, and total nodes prior to harvest, 2008.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages.

Table 3-a. Effect of shade off plant heights, and total houes phot to harvest, 2009.				
	Plant height	Total nodes		
Treatment†	cm	-nodes plant ⁻¹		
SPHS	58.5a‡	20.9ab		
SFF	64.5a	20.6b		
SPF	62.6a	21.8ab		
SBD	61.3a	22.2a		
UTC	60.0a	21 2ab		

Table 5-a. Effect of shade on plant heights, and total nodes prior to harvest, 2009.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 5-b. Effect of 1-methylcyclopropene (1-MCP) on plant heights, and total nodes prior to harvest, 2009.

	Plant height	Total nodes
Treatment ⁺	—cm—	—nodes plant ⁻¹ —
MPHS	61.3a‡	21.2ab
MFF	61.9a	21.6ab
MPF	56.9a	20.4b
MBD	63.4a	22.4a
UTC	60.0a	21.2ab

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

to nai vest, 200	<i>))</i> .	
	Plant height	Total nodes
Treatment ⁺	—cm—	—nodes plant ⁻¹ —
SMPHS	64.9a§	22.3a
SPHS	58.5a	20.9a
SMFF	61.7a	20.8a
SFF	64.52a	20.6a
SMPF	61.2a	22.0a
SPF	62.6a	21.8a
SMBD	62.0a	21.3a
SBD	61.3a	22.2a

Table 5-c. Effect of 1-methylcyclopropene (1-MCP) and shade on plant heights, and total nodes prior to harvest, 2009.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

[‡] Treatments are compared statistically only within developmental growth stages.

Electrolyte Leakage

Research indicates that increased rates of ethylene can stimulate higher membrane electrolyte leakage (Guthrie and Cothren, 1989). On the other hand, 1-MCP can inhibit ethylene, suggesting an ability to maintain the integrity of membranes. In 2008 and 2009, a variation of the technique described by Wang, et al. (2009) was used to determine treatment effects on electrolyte leakage. Samples were taken at two timings; during the BD growth stage and a few days prior to defoliation. The results for these measurements are expressed as the percent of total electrolytes leaked into the solution after 1-hour incubation at 25° C. Due to variability over years, a significant treatment x year interaction existed; therefore, results are reported by year.

In 2008 and 2009, percent total electrolytes leaked ranged from 6.8 to 7.8%, and 9.8 to 10.9%, respectively. For both years, percent total electrolytes leaked into the solution after 1-hour showed no significant differences among treatments when compared to the UTC for all treatments sampled during the boll development (BD) stage (Table 6). Percent total electrolytes leaked for measurements taken prior to defoliation ranged from 9.1 to 16.9%, and 8.3 to 10.5%, respectively, for 2008 and 2009. For both years of the study, all

u	during bon development (<i>BB</i>), 2000 und 2009.				
2008 percent total electrolytes†		2009 percent total electrolytes‡			
Treatment§	-%-	-%-			
SBD	7.8a¶	10.2a			
MBD	7.6a	10.9a			
SMBD	6.8a	10.5a			
UTC	7.1a	9.8a			
Pr > F#	0.5750	0.5144			

Table 6. Effect of 1-methycyclopropene (1-MCP) and shade on electrolytic leakage during boll development (BD), 2008 and 2009.

† Percent total electrolytes leaked after 1 hour at 25°C during 2008.

[‡] Percent total electrolytes leaked after 1 hour at 25°C during 2009.

§ Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; BD, treatment initiated at boll development; UTC, untreated control.

¶ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

treatments failed to show significant differences when compared to their respective controls (Tables 7-a–7-c).

Stomatal Conductance

Previous research has shown that 1-MCP treated cotton can display a higher stomatal resistance under stress (Kawakami et al., 2010). Inversely, a lower stomatal conductance would suggest a protection against water loss from evapotranspiration. For this study, adaxial and abaxial stomatal conductance was measured for treatments during the FF, PF, and BD developmental stages. A final measurement was taken from all treatments prior to defoliation. Due to a significant treatment x year interaction, results are reported by year.

Adaxial and abaxial measurements taken during the FF stage in 2008 ranged from 719 to 1038 mmol m⁻² s⁻² and 483 to 851 mmol m⁻² s⁻², respectively, and were not significantly different (Table 8). Results for 2009 for the FF stage ranged from 106 to 177 mmol m⁻² s⁻² and 48 to 105 mmol m⁻² s⁻², respectively, for adaxial and abaxial leaves. These conductance measurements also failed to show any significant differences (Table 9). Adaxial measurements taken during the PF growth stage ranged from 485 to 661 and 268 to 362 mmol m⁻² s⁻², respectively, in 2008 and 2009. Abaxial measurements ranged from 462 to 627 and 263 to 357 mmol m⁻² s⁻² in 2008 and 2009, respectively. Measurements for

27

Table 7-a. Effect of shade on electrolytic leakage prior to defoliation, 2008 and 2009.

	2008 percent total electrolytes ⁺	2009 percent total electrolytes [‡]
Treatment§	%_	_%_
SPHS	13.6a¶	10.3a
SFF	13.9a	10.4a
SPF	11.0a	10.0a
SBD	15.8a	10.0a
UTC	12.0a	10.5a

[†] Percent total electrolytes leaked after 1 hour at 25°C during 2008.

‡ Percent total electrolytes leaked after 1 hour at 25°C during 2009

§ Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

 \P Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 7-b. Effect of 1-methylcyclopropene (1-MCP) on electrolytic leakage at prior to defoliation, 2008 and 2009.

Treatment§ -%- MPHS 10.1a¶ MFF 12.0a MPF 9.1a MBD 11.4a UTC 12.0a		2008 percent total electrolytes†	2009 percent total electrolytes‡
MFF 12.0a 10.1a MPF 9.1a 10.2a MBD 11.4a 9.6a	Treatment§	_%_	_%_
MPF 9.1a 10.2a MBD 11.4a 9.6a	MPHS	10.1a¶	10.2a
MBD 11.4a 9.6a	MFF	12.0a	10.1a
	MPF	9.1a	10.2a
UTC 12.0a 10.5a	MBD	11.4a	9.6a
	UTC	12.0a	10.5a

† Percent total electrolytes leaked after 1 hour at 25°C during 2008

‡ Percent total electrolytes leaked after 1 hour at 25°C during 2009

§ Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

 \P Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 7-c. Effect of 1-methylcyclopropene (1-MCP) and shade on electrolytic leakage prior to defoliation, 2008 and 2009.

	2008 percent total electrolytes†	2009 percent total electrolytes [‡]
Treatment§	_%_	—%—
SMPHS	12.0a¶	10.2a
SPHS	13.6a	10.3a
SMFF	10.3a	9.9a
SFF	13.9a	10.4a
SMPF	10.0a	8.3a
SPF	11.0a	10.0a
SMBD	16.9a	10.1a
SBD	15.8a	10.0a

† Percent total electrolytes leaked after 1 hour at 25°C during 2008

‡ Percent total electrolytes leaked after 1 hour at 25°C during 2009

§ Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

¶ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

	Adaxial	Abaxial	Adaxial	Abaxial
	Tuunui	Tiouxiai	Temperature	Temperature
Treatment ⁺	$-mmol/(m^2 \cdot s)-$	$-mmol/(m^2 \cdot s)-$	-°C-	-°C-
SFF	719a‡	483a	35a	35a
MFF	1038a	851a	35a	35a
SMFF	723a	591a	35a	35a
UTC	922a	508a	36a	36a
Pr > F§	0.1599	0.1206	0.0066	0.0113

Table 8. Stomatal conductance taken during first flower (FF), 2008.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; FF, treatment initiated at first flower; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fisher's protected LSD.

§ Probability of the ANOVA.

Table 9. Stollatar conductance taken during hist nower (11), 2009.				
	Adaxial	Abaxial	Adaxial	Abaxial
			Temperature	Temperature
Treatment ⁺	$-mmol/(m^2 \cdot s)-$	$-mmol/(m^2 \cdot s)-$	-°C-	-°C-
SFF	151a‡	105a	38a	38a
MFF	113a	48a	41a	41a
SMFF	177a	62a	41a	41a
UTC	106a	67a	41a	41a
Pr > F§	0.2968	0.1654	0.0034	0.0051

Table 9. Stomatal conductance taken during first flower (FF), 2009.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; FF, treatment initiated at first flower; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fisher's protected LSD.

treatments taken during the PF growth stage were not significantly different for both years (Tables 10 and 11). The BD growth stage treatments in 2008 ranged from 354 to 455 and 393 to 484 mmol m⁻² s⁻² for adaxial and abaxial measurements, respectively. In 2009, during the BD stage of development, measurements ranged from 66 to 149 mmol m⁻² s⁻² and 127 to 156 mmol m⁻² s⁻², respectively, for adaxial and abaxial leaves. The treatments for both separate years in the BD growth stage were not significantly different from the UTC (Tables 12 and 13).

Final measurements were also taken during 2008 and 2009 at the end of the season (Tables 14-a-14-c and 15-a-15-c). Final measurements in 2008, showed a numerically higher conductance for the SBD and SPHS treatments when compared to the UTC (Table 14-a) for the adaxial leaves, but were not significantly different. In 2009, adaxial leaf results showed the inverse of the SBD treatment in 2008, however, the SPHS treatment was consistent numerically with 2008 results. Results from 2009 adaxial leaves also indicated a statistically higher conductance measurement for the SPF treatment when compared to the UTC. Abaxial leaves in 2009 also showed a much higher value of conductance for the SPF treatment aswell as the SPHS treatment that resulted in being significantly different than the UTC (Table 15-a). The abaxial results in 2009 for shaded treatments were not the same as statistical or numerical differences in

	Adaxial	Abaxial	Adaxial	Abaxial
			Temperature	Temperature
Treatment ⁺	$-mmol/(m^2 \cdot s)-$	$-mmol/(m^2 \cdot s)-$	-°C-	-°C-
SPF	595a‡	462a	31a	31a
MPF	485a	553a	30a	31a
SMPF	508a	496a	31a	31a
UTC	661a	627a	31a	31a
Pr > F§	0.1011	0.7312	0.0006	0.0007

Table 10. Stomatal conductance taken during peak flower (PF), 2008.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PF, treatment initiated at peak flower; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fisher's protected LSD.

§ Probability of the ANOVA.

Table 11. Stomatal conductance taken during peak flower (PF), 2009.				
	Adaxial	Abaxial	Adaxial	Abaxial
_			Temperature	Temperature
Treatment ⁺	$-mmol/(m^2 \cdot s)-$	$-mmol/(m^2 \cdot s)-$	°C	-°C-
SPF	268a‡	357a	37a	37a
MPF	293a	327a	38a	38a
SMPF	362a	263a	37a	37a
UTC	340a	282a	37a	37a
Pr > F§	0.6810	0.3740	0.0108	0.0576

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PF, treatment initiated at peak flower, UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fisher's protected LSD.

§ Probability of the ANOVA.

Table 12. Stomatal conductance taken during boll development (BD), 2008.

	Adaxial	Abaxial Adaxial		Abaxial
			Temperature	Temperature
Treatment ⁺	$-mmol/(m^2 \cdot s)-$	$-mmol/(m^2 \cdot s)-$	_°C—	-°C-
SBD	409a‡	473a	34a	34a
SMBD	407a	466a	34a	34a
MBD	354a	393a	35a	35a
UTC	455a	484a	35a	35a
Pr > F§	0.6466	0.8042	0.0030	0.0017

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; BD, treatment initiated at boll development, UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fisher's protected LSD.

		0	1 (//	
	Adaxial	Abaxial	Adaxial	Abaxial
			Temperature	Temperature
Treatment ⁺	$-mmol/(m^2 \cdot s)-$	$-mmol/(m^2 \cdot s)-$	-°C	-°C-
SBD	145a‡	156a	28a	28a
SMBD	66a	151a	27a	27a
MBD	149a	127a	28a	28a
UTC	136a	151a	28a	28a
Pr > F§	0.0508	0.7213	0.1564	0.2173

Table 13. Stomatal conductance taken during boll development (BD), 2009.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fisher's protected LSD.

Tuble 11 d. Effect of shade off stoffaddi conductance prior to defondition, 2000.				
	Adaxial	Abaxial	Adaxial Temperature	Abaxial Temperature
Treatment ⁺	-mmol/(m ² s)-	$-mmol/(m^2 s)-$	_°C—	_°C—
SPHS	592a‡	383a	32a	31a
SFF	366b	295a	31a	31a
SPF	370b	316a	32a	32a
SBD	528a	323a	31a	31a
UTC	509ab	332a	32a	32a

Table 14-a. Effect of shade on stomatal conductance prior to defoliation, 2008.

[‡] Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 14-b. Effect of 1-methylcyclopropene (1-MCP) on stomatal conductance prior to defoliation, 2008.

	Adaxial	Abaxial	Adaxial Temperature	Abaxial Temperature
Treatment ⁺	-mmol/(m ² ·s)-	$-mmol/(m^2 \cdot s)-$	_°C—	_°C—
MPHS	423a‡	338a	32a	32a
MFF	504a	380a	32a	32a
MPF	442a	291a	32a	32a
MBD	377a	305a	32a	32a
UTC	509a	332a	32a	32a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

[‡] Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

	Adaxial	Abaxial	Adaxial Temperature	Abaxial Temperature
Treatment ⁺	-mmol/(m ² s)-	$-mmol/(m^2 s)-$	-°C-	_°C_
SMPHS	593a§	368a	32a	32a
SPHS	592a	383a	32a	31a
SMFF	269a	216a	32a	
SFF	366a	295a	31a	31a
SMPF	420a	302a	32a	32a
SPF	370a	316a	32a	32a
SMBD	558a	237a	31a	31a
SBD	528a	323a	31a	31a

Table 14-c. Effect of 1-methylcyclopropene (1-MCP) and shade on stomatal conductance prior to defoliation, 2008.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

[‡] Treatments are compared statistically only within developmental growth stages.

	Adaxial	Abaxial	Adaxial Temperature	Abaxial Temperature
Treatment ⁺	$-mmol/(m^2 s)-$	$-mmol/(m^2 \cdot s)-$	_°C—	-°C
SPHS	77.27b‡	109.83a	39.0a	39.0a
SFF	77.43b	56.10b	38.6a	38.7a
SPF	155.87a	116.03a	39.3a	39.3a
SBD	38.87b	39.17b	39.3a	39.4a
UTC	49.70b	58.30b	39.7a	39.4a

Table 15-a. Effect of shade on stomatal conductance prior to defoliation, 2009.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 15-b. Effect of 1-methylcyclopropene (1-MCP) on stomatal conductance prior to defoliation, 2009.

	Adaxial	Abaxial	Adaxial Temperature	Abaxial Temperature
Treatment ⁺	$-mmol/(m^2 s)-$	$-mmol/(m^2 \cdot s)-$	_°C_	_°C—
MPHS	83.67bc‡	79.33a	39.2a	39.3a
MFF	74.63c	58.40a	39.4a	39.4a
MPF	137.43a	80.57a	39.5a	39.5a
MBD	133.07ab	69.27a	38.8a	38.9a
UTC	49.70c	58.30a	39.7a	39.4a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

	Adaxial	Abaxial	Adaxial Temperature	Abaxial Temperature
Treatment ⁺	-mmol/(m ² s)-	$-mmol/(m^2 s)-$	-°C-	_°C_
SMPHS	45.00a§	91.50a	38.8a	38.9a
SPHS	77.27a	109.83a	39.0a	39.0a
SMFF	84.38a	57.67a	39.4a	39.6a
SFF	77.43a	56.10a	38.6a	38.7a
SMPF	123.90a	140.07a	39.4a	39.3a
SPF	155.87a	116.03a	39.3a	39.3a
SMBD	100.50a	46.03a	38.3a	38.5a
SBD	38.87b	39.17a	39.3a	39.4a

Table 15-c. Effect of 1-methylcyclopropene (1-MCP) and shade on stomatal conductance prior to defoliation. 2009

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages.

2008. When looking at 1-MCP treated cotton, adaxial leaves or the MPF and MBD treatments were significantly higher than the UTC (15-b) in 2009. For adaxial leaves in 2008, the MPF and MBD treatments were numerically lower than the UTC and failed to show statistical differences (Table 14-b). Yield and Fiber Quality

Though yield, percent gin turnout, and fiber quality parameters displayed different results for 2008 and 2009 (Tables 16-a–16-c and 17-a–17-c), no year x treatment interaction existed for seed cotton yield, lint yield, percent gin turnout, and fiber quality parameters.

The SBD treatment was significantly lower in seed cotton and lint yield than the UTC (Table 18-a). Seed cotton and lint yield for the SBD treatment was 522 and 207 kg ha⁻¹ less than the UTC, respectively. Seed cotton and lint yield for all treatments ranged from 1746 to 2451, and 752 to 1076 kg ha⁻¹, respectively. 1-MCP treatments alone showed no statistical differences when compared to the UTC (Table 18-b). Additionally, for all shaded treatments, seed cotton and lint yield were numerically lower than the UTC. When considering the shaded 1-MCP treatments, although not significantly different, all 1-MCP treatments, except for one, were higher than their shaded UTC. The exception was for the SMPF and SPF treatments which ranged from 1807 to 2026 kg ha⁻¹, respectively for seedcotton, and 765 to 862 kg ha⁻¹, respectively, for lint (Table 18-c). The

Table 16-a. Effect of shade on seed cotton yield, gin turnout, and fint yield, 2008.				
	Seed cotton	Lint	Lint	
Treatment ⁺	—kg ha-1—	_%_	—kg ha-1—	
SPHS	2100ab‡	40.75a	873b	
SFF	2288ab	42.00a	954ab	
SPF	2600a	42.00a	1089a	
SBD	1856b	43.75a	815b	
UTC	2378b	42.25a	996ab	

Table 16-a. Effect of shade on seed cotton yield, gin turnout, and lint yield, 2008.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 16-b. Effect of 1-methylcyclopropene (1-MCP) on seed cotton yield, gin turnout, and lint vield, 2008.

	Seed cotton	Lint	Lint
Treatment ⁺	—kg ha-1—	_%_	—kg ha-1—
MPHS	2322a‡	43.25a	1003a
MFF	2500a	45.00a	1123a
MPF	2278a	45.25a	1031a
MBD	2623a	45.25a	1193a
UTC	2378a	42.25a	996a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

[‡] Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

turnout, a	and lint yield, 2008.		
	Seed cotton	Lint	Lint
Treatment ⁺	—kg ha-1—	_%_	—kg ha-1—
SMPHS	2100a§	43.50a	920a
SPHS	2100a	40.75a	873a
SMFF	2389a	42.50a	1016a
SFF	2288a	42.00a	954a
SMPF	2378a	41.50a	987a
SPF	2600a	42.00a	1089a
SMBD	1889a	46.50a	873a
SBD	1856a	43.75a	815a
		5 11 1 · · · · · · · · · · · · ·	

Table 16-c. Effect of 1-methylcyclopropene (1-MCP) and shade on seed cotton yield, gin turnout, and lint yield, 2008

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages.

Table 17-a. Effect of shade off seed cotton yield, gin turnout, and fint yield, 2009.				
	Seed cotton	Lint	Lint	
Treatment ⁺	—kg ha-1—	_%_	—kg ha-1—	
SPHS	2065ab‡	40.75a	859a	
SFF	1887bc	42.00a	824a	
SPF	1454c	42.00a	635b	
SBD	1637c	43.75a	691b	
UTC	2159a	42.25a	923a	

Table 17-a. Effect of shade on seed cotton yield, gin turnout, and lint yield, 2009.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 17-b. Effect of 1-methylcyclopropene (1-MCP) on seed cotton yield, gin turnout, and lint vield, 2009.

	Seed cotton	Lint	Lint
Treatment ⁺	—kg ha-1—	_%_	—kg ha-1—
MPHS	2198a‡	43.25a	947a
MFF	2259a	45.00a	992a
MPF	2270a	45.25a	969a
MBD	2281a	45.25a	958a
UTC	2159a	42.25a	923a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

turnout,	and lint yield, 2009.		
	Seed cotton	Lint	Lint
Treatment ⁺	—kg ha-1—	_%_	—kg ha-1—
SMPHS	2219a§	43.50a	967a
SPHS	2065a	40.75a	859a
SMFF	1798a	42.50a	778a
SFF	1887a	42.00a	824a
SMPF	1238a	41.50a	544a
SPF	1454a	42.00a	635a
SMBD	1909a	46.50a	827a
SBD	1637b	43.75a	691b
			A 1

Table 17-c. Effect of 1-methylcyclopropene (1-MCP) and shade on seed cotton yield, gin turnout, and lint yield, 2009.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages.

Table 10-a. Effect of shade on seed cotton yield, gin turnout, and fint yield, 2008 and 2009.				
	Seed cotton	Lint	Lint	
Treatment ⁺	—kg ha-1—	_%_	—kg ha-1—	
SPHS	2082ab‡	41.30a	857ab	
SFF	2087ab	42.72a	888ab	
SPF	2026ab	42.81a	862ab	
SBD	1746b	43.04a	752b	
UTC	2268a	42.47a	959a	

Table 18-a. Effect of shade on seed cotton yield, gin turnout, and lint yield, 2008 and 2009.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 18-b. Effect of 1-methylcyclopropene (1-MCP) on seed cotton yield, gin turnout, and lint yield, 2008 and 2009.

j,				
	Seed cotton	Lint	Lint	
Treatment ⁺	—kg ha-1—	_%_	—kg ha-1—	
MPHS	2259a‡	43.19a	974a	
MFF	2379a	44.37a	1056a	
MPF	2273a	44.00a	999a	
MBD	2451a	43.77a	1076a	
UTC	2268a	42.47a	959a	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

turnout, a	nu init yleiu, 2008 anu	2009.		
	Seed cotton	Lint	Lint	
Treatment ⁺	—kg ha-1—	-%	—kg ha-1—	
SMPHS	2159a§	43.62a	943a	
SPHS	2082a	41.30b	857a	
SMFF	2093a	42.93a	896a	
SFF	2087a	42.72a	888a	
SMPF	1807a	42.79a	765a	
SPF	2026a	42.81a	862a	
SMBD	1898a	44.83a	850a	
SBD	1746a	43.04a	752a	
1 1 1 1 1 1 1 1 1 1	16 01 16 4 16	CD 11 1		

Table 18-c. Effect of 1-methylcyclopropene (1-MCP) and shade on seed cotton yield, gin turnout, and lint yield, 2008 and 2009.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages.

SMPF and SPF treatments were not significantly different at the 0.05 level. All of the 1-MCP treatments alone showed numerically higher yield when compared to the UTC.

When considering 1-MCP in the different developmental growth stages, the MBD treatment had the greatest impact on yield, resulting in 183 and 117 kg ha⁻¹ more seed cotton and lint yield, respectively than the UTC (Table 18-b). However, these results were not statistically different.

For gin turnout, all 1-MCP treatments were numerically higher than the UTC (Table 18-b), but not significantly different. A significant difference for percent gin turnout was observed for the comparison of the SMPHS and SPHS treatments (Tables 18-c). Percent gin turnout for the SPHS was 41.30% while the SMPHS treatment was 43.62%. For the cotton variety ST 4554 B2RF, gin turnout is estimated to be approximately 41%.

High volume instrument testing (HVI) was used to determine fiber quality attributes: micronaire, length, uniformity, strength, elongation, reflectance (Rd), and the degree of yellowness (+b) (Tables 19-a–19-c, 20-a–20-c, and 21-a–21-c). For the SBD treatment, micronaire was significantly lower than the UTC (Table 21-a). Micronaire values were 5.0 and 5.4 for the SBD and UTC treatments, respectively. However, even though the SBD treatment exhibited lower micronaire, this value is still considered to be in the premium range.

Table 19-a.	. Effect of shade on	lint quality	parameters, 2008.
14010 17 44	million of officiate off		

	stade off file quality pare						
	Micronaire	Length	Uniformity	Strength	Elongation	Rd	+b
Treatment ⁺		-cm-		-g tex-1-			
SPHS	5.32a‡	1.10ab	83.00a	31.48a	9.95a	62.43a	9.25a
SFF	5.38a	1.09ab	82.18a	31.83a	10.50a	61.65a	9.40a
SPF	5.32a	1.14a	83.33a	31.85a	9.93a	61.28a	9.10a
SBD	5.22a	1.08b	81.85a	30.65a	9.98a	61.93a	9.18a
UTC	5.42a	1.08b	83.15a	30.70a	10.38a	62.10a	9.33a

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 19-b. Effect of 1-meth	vlcvclopropene (1	1-MCP) on lint a	uality parameters, 2008.

	Micronaire	Length	Uniformity	Strength	Elongation	Rd	+b
Treatment†		-cm-	•	-g tex-1-			
MPHS	5.37a‡	1.11a	82.70a	31.43a	9.97a	61.97a	9.03a
MFF	5.47a	1.11ab	82.75a	31.73a	9.88a	61.15a	9.08a
MPF	5.49a	1.05c	82.28a	29.23b	10.30a	61.33a	9.03a
MBD	5.43a	1.09abc	81.98a	30.55a	10.00a	61.20a	8.98a
UTC	5.42a	1.08bc	83.15a	30.70ab	10.38a	62.10a	9.33a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 19-c. Effect o	f 1-methylcyc	lopropene (1-MC	P) and shade on lint c	uality parameters, 2008.
----------------------	---------------	-----------------	------------------------	--------------------------

	Micronaire	Length	Uniformity	Strength	Elongation	Rd	+b
Treatment†		-cm-		-g tex-1-			
SMPHS	5.36a§	1.11a	82.40a	31.28a	10.15a	62.58a	9.15a
SPHS	5.32a	1.10a	83.00a	31.48a	9.95a	62.43a	9.25a
SMFF	5.37a	1.08a	81.80a	31.37a	10.33a	63.40a	9.37a
SFF	5.38a	1.09a	82.18a	31.83a	10.50a	61.65a	9.40a
SMPF	5.24a	1.13a	82.98a	31.00a	9.93a	63.70a	9.03a
SPF	5.32a	1.14a	83.33a	31.85a	9.93a	61.28a	9.10a
SMBD	5.29a	1.08a	81.55a	30.05a	10.20a	61.95a	9.20a
SBD	5.22a	1.08a	81.85a	30.65a	9.98a	61.93a	9.18a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages.

Table 20-a. Effect of shade on lint qu	ality parameters, 2009.
--	-------------------------

	Micronaire	Length	Uniformity	Strength	Elongation	Rd	+b
Treatment ⁺		-cm-		-g tex-1-			
SPHS	5.4a‡	1.11ab	83.6ab	30.6bc	5.7a	60.7a	8.5a
SFF	5.2ab	1.12a	84.9a	32.1a	6.2a	62.5a	7.9b
SPF	5.0ab	1.09b	83.3b	30.3c	6.1a	63.0a	8.3ab
SBD	4.8b	1.11ab	83.6ab	30.7abc	6.1a	62.3a	8.1b
UTC	5.3a	1.12ab	84.0ab	31.8ab	6.0a	62.9a	8.0b

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 20-b. Effect of 1-meth	vlcvclopropene (1-MCP) on lint a	uality parameters, 2009.

	Micronaire	Length	Uniformity	Strength	Elongation	Rd	+b
Treatment ⁺		-cm-	· · · · · ·	-g tex-1-			
MPHS	5.3a‡	1.11a	83.4a	31.3a	5.9a	61.6a	7.9a
MFF	5.2a	1.10a	83.6a	30.4a	6.2a	62.0a	7.9a
MPF	5.4a	1.11a	83.9a	31.5a	5.9a	64.2a	8.1a
MBD	5.4a	1.10a	83.6a	30.2a	6.0a	61.0a	7.8a
UTC	5.3a	1.12a	84.0a	31.8a	6.0a	62.9a	8.0a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

	Table 20-c. Effect of	f 1-methylcyclopr	ropene (1-MCP) an	ıd shade on lint qua	lity parameters, 2009
--	-----------------------	-------------------	-------------------	----------------------	-----------------------

	Micronaire	Length	Uniformity	Strength	Elongation	Rd	+b
Treatment ⁺		cm		-g tex-1-			
SMPHS	5.2a§	1.10a	83.5a	30.6a	6.2a	63.9a	8.3a
SPHS	5.4a	1.11a	83.6a	30.6a	5.7b	60.7a	8.5a
SMFF	5.0a	1.13a	83.8b	31.6a	6.0a	63.4a	7.9a
SFF	5.2a	1.13a	84.9a	32.1a	6.2a	62.5a	7.9a
SMPF	5.2a	1.09a	83.8a	29.6a	6.1a	62.7a	8.0a
SPF	5.0a	1.09a	83.3a	30.3a	6.1a	63.0a	8.3a
SMBD	4.8a	1.11a	84.2a	31.9a	6.1a	61.9a	8.1a
SBD	4.8a	1.11a	83.6a	30.7a	6.1a	62.3a	8.1a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages.

	Micronaire	Length	Uniformity	Strength	Elongation	Rd	+b
Treatment ⁺		-cm-	,	-g tex-1-	0		
SPHS	5.4a‡	1.10a	83.3a	31.0a	7.8a	61.6a	8.8a
SFF	5.3a	1.10a	83.5a	31.4a	8.3a	62.1a	8.6a
SPF	5.2ab	1.11a	83.3a	30.5a	8.0a	62.1a	8.7a
SBD	5.0b	1.10a	82.7a	30.6a	8.0a	62.1a	8.6a
UTC	5.4a	1.10a	83.6a	31.2a	8.2a	62.5a	8.6a

Table 21-a. Effect of shade on lint quality parameters, 2008 and 2009.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

	Micronaire	Length	Uniformity	Strength	Elongation	Rd	+b
Freatment†		-cm-		-g tex-1-			
MPHS	5.4a‡	1.11a	83.1a	31.4a	7.6a	61.7a	8.4a
MFF	5.3a	1.11a	83.2a	31.0a	8.0a	61.5a	8.5a
MPF	5.5a	1.08a	83.1a	30.3a	8.1a	62.7a	8.6a
MBD	5.4a	1.10a	82.8a	30.4a	8.0a	61.1a	8.4a
UTC	5.4a	1.10a	83.6a	31.2a	8.2a	62.5a	8.6a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 21-c. Effect of 1-methylcycl	lopropene (1-MCF) and shade on lint o	uality parameters	. 2008 and 2009

	Micronaire	Length	Uniformity	Strength	Elongation	Rd	+b
Treatment ⁺		cm		-g tex-1-			
SMPHS	5.3a§	1.10a	82.9a	30.9a	8.2a	63.2a	8.7a
SPHS	5.4a	1.10a	83.3a	31.0a	7.8a	61.6a	8.8a
SMFF	5.2a	1.10a	82.9a	31.5a	7.8a	63.4a	8.5a
SFF	5.3a	1.10a	83.5a	31.4a	8.3a	62.1a	8.6a
SMPF	5.2a	1.11a	83.4a	30.3a	8.0a	63.2a	8.5a
SPF	5.2a	1.11a	83.3a	30.5a	8.0a	62.1a	8.7a
SMBD	5.0a	1.10a	82.8a	30.9a	8.1a	61.9a	8.6a
SBD	5.0a	1.10a	82.7a	30.6a	8.0a	62.1a	8.6a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages.

Box-mapping

Prior to harvest, end of season box-mapping was conducted to explain possible yield differences. In 2008 and 2009, ten plants were randomly selected from each plot. Open bolls were collected by node and fruiting position to determine yield distribution throughout the plant using a variation described by Jenkins and McCarty (1995). Due to a significant year x treatment interaction, data could not be pooled over years.

In 2008 and 2009, there were no significant differences in the number of total bolls or weights for bolls located on nodes 3 through 5 in the first, second, and third positions (Appendix B). A large number of bolls were located on nodes 6 through 10. In 2008 and 2009, the total number of bolls on nodes 6 through 10 in first position ranged from 2.2 to 3.25 and 1.3 to 2.7 per plant, respectively. These numbers correspond to the weight values of 6.94 to 14.12g and 5.65 to 10.48g, respectively for 2008 and 2009. No significant differences were found among treatments for the number and weight of bolls in 2008 that correlate with yield results (Tables 22-a–22-c). In 2009, the number of bolls for the SFF treatment was significantly less than the UTC (Table 23-a). This correlates with the decrease in seedcotton for this year (Table 17-a). All other treatment weights and number of bolls for these nodal and fruiting positions were not significant (Tables 23-b and 23-c). Bolls on nodes 6 though 10 second

Table 22-a. Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in first position, 2008.

	Total bolls	Total weight	
Treatment ⁺	—boll plant ⁻¹ —	—g—	
SPHS	3.00a‡	11.88ab	
SFF	2.23a	6.94b	
SPF	2.45a	9.76ab	
SBD	3.05a	13.68a	
UTC	3.05a	12.90a	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 22-b. Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in first position, 2008.

	Total bolls	Total weight	
Treatment ⁺	—boll plant-1—	_g_	
MPHS	3.05a‡	12.44a	
MFF	3.25a	11.64a	
MPF	3.23a	13.62a	
MBD	3.15a	14.12a	
UTC	3.05a	12.90a	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

	Total bolls	Total weight
Treatment ⁺	—boll plant-1—	g
SMPHS	3.13a§	12.48a
SPHS	3.00a	11.88a
SMFF	2.20a	9.22a
SFF	2.23a	6.94a
SMPF	2.90a	9.27a
SPF	2.45a	9.76a
SMBD	3.08a	11.90a
SBD	3.05a	13.68a

Table 22-c. Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in first position, 2008.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Table 23-a. Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 6 three	ough 10 in
first position, 2009.	

	Total bolls	Total weight
Treatment ⁺	—boll plant ¹ —	g
SPHS	2.30a‡	7.28a
SFF	1.60b	7.11a
SPF	2.53a	9.52a
SBD	2.20ab	9.56a
UTC	2.33a	9.72a

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 23-b. Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial	
branches 6 through 10 in first position, 2009.	

	Total bolls	Total weight	
Treatment ⁺	—boll plant-1—	g	
MPHS	2.45a‡	8.93a	
MFF	2.43a	10.37a	
MPF	2.13a	8.08a	
MBD	2.70a	10.48a	
UTC	2.33a	9.72a	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	_g_
SMPHS	2.50a§	9.48a
SPHS	2.30a	7.28a
SMFF	1.30a	5.65a
SFF	1.60a	7.11a
SMPF	2.30a	8.59a
SPF	2.53a	9.52a
SMBD	2.30a	9.53a
SBD	2.20a	9.56a

Table 23-c. Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in first position, 2009.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

position ranged from 0.50 to 1.73 and 0.45 to 0.80 per plant, respectively, in 2008 and 2009 (Tables 24-a-24-c and 25-a-25-c). Corresponding weights ranged from 1.81 to 5.81g and 0.71 to 2.55 g per boll. The SPF and SBD treatments showed a significantly lower amount of bolls than the UTC in 2008, (Table 24-a). In 2009, data failed to show any significant results for the same boll numbers and weights (Table 25-a). For 1-MCP alone treatments, MBD displayed a numerically higher number of bolls and boll weights for both 2008 and 2009, but were not significantly different (Tables 24-b and 25-b). Results for 2008 also showed that the SMPF and SMBD treatments had significantly higher boll numbers and boll weights than their respective shade comparisons, SPF and SBD (Table 24-c). In 2009, the SMPF and SMBD treatments showed the inverse of 2008 boll numbers and weights, but were not statistically different than their respective comparisons, SPF and SBD (Table 25-c). In 2008 and 2009, bolls located on nodes 6 through 10 in the third position showed no significant differences in number or weight (Tables 26-a–26-c and 27-a–27-c).

Seed cotton located on nodes 11 through 15 also contributed a large amount to yield. First position bolls located in this section ranged from 1.80 to 3.05 in 2008, and 0.53 to 1.45 in 2009 (Tables 28-a-28-c and 29-a-29-c). Respective weights ranged from 5.94 to 10.52 g and 1.02 to 4.90g. In 2008, the SFF treatment

	Total bolls	Total weight	
Treatment ⁺	—boll plant ¹ —	_g_	
SPHS	1.35a‡	4.12a	
SFF	1.23ab	4.03a	
SPF	0.50c	1.81a	
SBD	0.65bc	1.91a	
UTC	1.33a	3.77a	

Table 24-a. Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in second position, 2008.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 24-b. Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in second position, 2008.

	Total bolls	Total weight	
Treatment ⁺	—boll plant-1—	_g_	
MPHS	0.98b‡	2.94b	
MFF	1.13ab	4.78ab	
MPF	1.15ab	4.02ab	
MBD	1.73a	5.81a	
UTC	1.33ab	3.77ab	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

	Total bolls	Total weight
Treatment ⁺	—boll plant ¹ —	g
SMPHS	1.33a§	4.62a
SPHS	1.35a	4.12a
SMFF	1.23a	4.44a
SFF	1.23a	4.03a
SMPF	0.75a	2.38a
SPF	0.50b	1.81b
CMPD	1 20-	2 70-
SMBD SBD	1.30a 0.65b	3.78a 1.91b

Table 24-c. Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in second position, 2008.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Second position, 2007.			
	Total bolls	Total weight	
Treatment ⁺	—boll plant ⁻¹ —	g	
SPHS	0.55a‡	1.83a	
SFF	0.68a	1.54a	
SPF	0.58a	1.42a	
SBD	0.78a	1.96a	
UTC	0.75a	2.20a	

Table 25-a. Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in second position, 2009.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 25-b. Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial	
branches 6 through 10 in second position, 2009.	

Statelles o unough to insecond position 2007.		
Total bolls	Total weight	
—boll plant ⁻¹ —	<u> </u>	
0.60a‡	1.71a	
0.73a	2.45a	
0.75a	2.19a	
0.80a	2.55a	
0.75a	2.20a	
	Total bolls —boll plant ¹ — 0.60a‡ 0.73a 0.75a 0.80a	Total bolls Total weight boll plant ⁻¹ - g- 0.60a‡ 1.71a 0.73a 2.45a 0.75a 2.19a 0.80a 2.55a

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	_g_
SMPHS	0.53a§	1.84a
SPHS	0.55a	1.83a
SMFF	0.43a	1.43a
SFF	0.68a	1.54a
SMPF	0.45a	0.71a
SPF	0.58a	1.42a
SMBD	0.70a	1.85a
SBD	0.78a	1.96a

Table 25-c. Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in second position, 2009.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Table 26-a. Effect of shade on number of bolls, and total boll weight per plant for sympodial branches	6 through 10 in
third position, 2008.	

	Total bolls	Total weight
Treatment ⁺	—boll plant-1—	_g_
SPHS	0.00a‡	0.00a
SFF	0.05a	0.20a
SPF	0.10a	0.48a
SBD	0.00a	0.00a
UTC	0.00a	0.00a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 26-b. Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial
branches 6 through 10 in third position, 2008.

	Total bolls	Total weight	
Treatment ⁺	—boll plant ¹ —	_g_	
MPHS	0.05a‡	0.16a	
MFF	0.10a	0.38a	
MPF	0.00a	0.00a	
MBD	0.00a	0.00a	
UTC	0.00a	0.00a	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
 ‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS

contrast matrix.

	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	g
SMPHS	0.15a§	0.50a
SPHS	0.00a	0.00a
SMFF	0.03a	0.09a
SFF	0.05a	0.20a
SMPF	0.15a	0.64a
SPF	0.23a	0.88a
SMBD	0.00a	0.00a
SBD	0.00a	0.00a

Table 26-c. Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in third position, 2008.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Table 27-a. Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in third position, 2009.

	Total bolls	Total weight	
Treatment ⁺	—boll plant ¹ —	—g—	
SPHS	0.08a‡	0.16a	
SFF	0.13a	0.29a	
SPF	0.03a	0.03a	
SBD	0.18a	0.47a	
UTC	0.23a	0.66a	

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 27-b. Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in third position, 2009.

	Total bolls	Total weight boll-1
Treatment ⁺	—boll plant ⁻¹ —	—g—
MPHS	0.15a‡	1.22a
MFF	0.33a	0.79a
MPF	0.13a	0.70a
MBD	0.25a	1.20a
UTC	0.23a	0.66a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	_g_
SMPHS	0.18a§	0.76a
SPHS	0.08a	0.16a
SMFF	0.33a	1.27a
SFF	0.13a	0.29a
SMPF	0.05a	0.18a
SPF	0.03a	0.03a
SMBD	0.05a	0.18a
SBD	0.18a	0.47a

Table 27-c. Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 6 through 10 in third position, 2009.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Table 28-a. Effect of shade on number of bolls, and total boll weight per p	plant for sympodial branches 11 through 15 in
first position, 2008.	

	Total bolls	Total weight	
Treatment†	—boll plant ⁻¹ —		
SPHS	2.30ab‡	8.16a	
SFF	3.05a	9.11a	
SPF	2.53ab	10.82a	
SBD	1.80b	6.79a	
UTC	2.10b	8.12a	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 28-b. Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 in first position, 2008.

	Total bolls	Total weight	
Treatment ⁺	—boll plant ⁻¹ —	—g—	
MPHS	1.88a‡	7.24a	
MFF	1.95a	6.69a	
MPF	1.80a	6.45a	
MBD	2.48a	8.12a	
UTC	2.10a	8.12a	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
 ‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS

contrast matrix.

	Total bolls	Total weight
Treatment ⁺	—boll plant-1—	g
SMPHS	2.75a§	10.51a
SPHS	2.30a	8.16a
SMFF	2.68b	8.30a
SFF	3.05a	9.11a
SMPF	2.08a	8.09a
SPF	2.53a	10.82a
SMBD	2.08a	5.94a
SBD	1.80a	6.79a

Table 28-c. Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 in first position, 2008.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Table 29-a. Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 in	L
first position, 2009.	

	Total bolls	Total weight	
Treatment†	—boll plant ⁻¹ —	—g—	
SPHS	0.53b‡	1.67b	
SFF	1.20a	3.95a	
SPF	0.55b	1.02b	
SBD	0.83ab	2.26ab	
UTC	1.08a	3.92a	

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 29-b. Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial	
branches 11 through 15 in first position, 2009.	

	Total bolls	Total weight	
Treatment ⁺	—boll plant-1—	—g—	
MPHS	1.05a‡	3.02a	
MFF	1.35a	4.72a	
MPF	0.85a	3.07a	
MBD	1.38a	4.51a	
UTC	1.08a	3.92a	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

	Total bolls	Total weight
Treatment†	—boll plant ⁻¹ —	_g_
SMPHS	0.93a§	2.55a
SPHS	0.53a	1.67a
SMFF	1.45a	4.90a
SFF	1.20a	3.95a
SMPF	0.60a	1.59a
SPF	0.55a	1.02a
SMBD	1.35a	4.31a
SBD	0.83b	2.26a

Table 29-c. Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 in first position, 2009.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

had a significantly larger number of bolls when compared to the UTC (Table 28a). In 2009, the amount of bolls and corresponding weights for treatments SPF and SPHS were significantly lower than the UTC (Table 29-a). Though the SPHS treatment did not correspond with overall yield differences for this year, the SPF treatment did, suggesting that yield differences treated with shade during this time may have been due to boll number differences. Second position bolls on nodes 11 through 15 in 2008 and 2009 ranged from 0.05 to 1.30 and 0.03 to 0.48 (Tables 30-a-30-c and 31-a-31-c). Boll weights ranged from 0.16 to 4.94 g and 0.09 to 1.27 g, correspondingly, in 2008 and 2009. Total bolls from 2008 data showed that the SBD treatment was significantly lower than the UTC. Though no statistical differences were observed for the corresponding weights, the SBD treatment showed a numerically lower weight than the UTC (Table 30-a). In 2009, the SBD treatment displayed no significant differences, but numerical values lower than the UTC were observed, corresponding with the previous year (Table 31-a). Though other statistical differences were observed throughout sympodial branches, many did not correspond to overall yield differences. This data can be found in Appendix B.

Table 30-a. Effect of shade on number of bolls, and total boll we	eight per plant for sympodial branches 11 through 15 in
second position, 2008.	

1.1.1			
	Total bolls	Total weight	
Treatment ⁺	—boll plant ⁻¹ —	—g—	
SPHS	0.18bc‡	0.59c	
SFF	0.50bc	3.20ab	
SPF	1.30a	4.94a	
SBD	0.05c	0.16c	
UTC	0.63b	1.51bc	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 30-b. Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial
branches 11 through 15 in second position, 2008.

biancies 1	i unough is in second position, 2008.		
	Total bolls	Total weight	
Treatment ⁺	—boll plant ⁻¹ —	—g—	
MPHS	0.40a‡	1.45a	
MFF	0.40a	1.40a	
MPF	0.20a	0.63a	
MBD	0.33a	1.27a	
UTC	0.63a	1.51a	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS

contrast matrix.

	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	—g—
SMPHS	0.70a§	3.01a
SPHS	0.18b	0.59b
SMFF	0.23a	0.65b
SFF	0.50a	3.20a
SMPF	0.68b	2.28b
SPF	1.30a	4.94a
SMBD	0.08a	0.24a
SBD	0.05a	0.16a

Table 30-c. Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 in second position, 2008.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Table 31-a. Effect of shade on number of bolls, and total boll we	eight per plant for sympodial branches 11 through 15 in
second position, 2009.	
T (11 11	T + 1 + 1 +

. . .

.. . .

.

4 1 11

	Total bolls	Total weight	
Treatment ⁺	—boll plant ¹ —	g	
SPHS	0.23ab‡	0.40a	
SFF	0.40a	1.07a	
SPF	0.05b	0.09a	
SBD	0.08b	0.16a	
UTC	0.30ab	0.92a	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

[‡] Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 31-b. Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial	
branches 11 through 15 in second position, 2009.	

	Total bolls	Total weight	
Treatment ⁺	—boll plant ⁻¹ —	—g—	
MPHS	0.30a‡	1.20a	
MFF	0.28a	0.61a	
MPF	0.28a	1.11a	
MBD	0.35a	0.77a	
UTC	0.30a	0.92a	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

	Total bolls	Total weight	
Treatment ⁺	—boll plant ⁻¹ —	—g—	
SMPHS	0.48a§	1.27a	
SPHS	0.23a	0.40a	
SMFF	0.30a	0.77a	
SFF	0.40a	1.07a	
SMPF	0.03a	0.10a	
SPF	0.05a	0.09a	
SMBD	0.20a	0.34a	
SBD	0.08a	0.16a	

Table 31-c. Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 in second position, 2009.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

In both years of this study, box-mapping failed to substantiate or provide consistent information on yield differences between treatments. However, final box-mapping, is still a useful tool in assessing plant growth and yield parameters on a whole plant basis. Although boll number and boll size are major factors that contribute to yield, differences in yield can be explained by many parameters beyond these two parameters.

Fibers and Seed

In an effort to further explain yield differences, data was collected from box-mapped samples to determine the amount of fibers per seed, and seed weights. Samples for both years were taken from sympodial branches 6 through 10 in the first and second positions. Due to a significant year x treatment interaction, data could not be pooled over years.

In 2008, seed weights ranged from 0.7 to 0.08 grams for sympodial branches 6 through 10 first position bolls (Table 32-a–32-c). Results show that the SBD treatment had a significantly less seed weight than the UTC. There were no significant differences in the amount of fibers per seed for the shade only treatments. The 1-MCP only treatments showed no significant differences in seed weight; however, the MBD treatment had a significantly higher number of fibers per seed and fibers per millimeter square than the UTC (Table 32-b).

66

10 111100	- peoraieii) =0001			
	Weight seed ⁻¹	Fibers seed ⁻¹	Fibers seed ⁻¹	
Treatment ⁺			mm ²	
SPHS	0.08a‡	19486a	190.75a	
SFF	0.08a	24050a	249.25a	
SPF	0.08a	17107a	162.25a	
SBD	0.07b	16988a	171.25a	
UTC	0.08a	16860a	162.25a	

Table 32-a. Effect of shade on seed weight and number of fibers per seed for sympodial branches 6 through 10 in first position, 2008.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 32-b. Effect of 1-methylcyclopropene (1-MCP) on seed weight and number of fibers per seed for sympodial branches 6 through 10 in first position, 2008.

	Weight seed ⁻¹	Fibers seed ⁻¹	Fibers seed ⁻¹	
Treatment ⁺	_g_		mm ²	
MPHS	0.08a‡	17721b	169.75ab	
MFF	0.08a	15092b	168.00b	
MPF	0.08a	17566b	147.75ab	
MBD	0.08a	28954a	279.00a	
UTC	0.08a	16860b	162.25b	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

[‡] Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

	Weight seed ⁻¹	Fibers seed ⁻¹	Fibers seed-1
Treatment ⁺			mm ²
SMPHS	0.08a§	16158a	153.25a
SPHS	0.08a	19486a	190.75a
SMFF	0.08a	18696a	196.00a
SFF	0.08a	24050a	249.25a
SMPF	0.08a	18697a	175.75a
SPF	0.08a	17107a	162.25a
SMBD	0.08a	17184a	168.00a
SBD	0.07a	16988a	171.25a

Table 32-c. Effect of 1-methylcyclopropene (1-MCP) and shade on seed weight and number of fibers per seed for sympodial branches 6 through 10 in first position, 2008.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages.

This correlates with the numerical differences in yield between the SBD and UTC treatments during 2008 and pooled years (Tables 16-b and 18-b). In 2009, the SBD treatment first position bolls showed no significant differences in seed weight and number of fibers per seed from the UTC; however, numerical differences in mean seed weight were observed (Table 33-a). First position bolls for the MPHS treatment showed a significantly higher mean seed weight, as well as a significantly higher amount of fibers per seed and fibers per millimeter square (Table 33-b). Data for 1-MCP and shade showed no statistical differences among all treatment comparisons (Table 33-c).

Fiber and seed data from second positions bolls located on branches 6 through 10 were also collected in 2008 and 2009 (Tables 34-a-34-c and 35-a-35-c). In 2008, mean seed weights for the SBD treatment bolls in the second position were significantly lower than the UTC (Table 34-a). Conversely, these differences were not observed in 2009. In 2008, a significantly lower amount of fibers per seed and millimeter square for the SFF treatment (Table 34-c) supported the numerical differences in yield for that year (Table 16-c) and pooled yield data (Table 18-c).

The second position bolls for the SMPF treatment demonstrated a significantly lower seed weight than the UTC in 2009 (Table 35-c). The results are a difference of two grams per seed. The SMBD treatment (Table 35-c), had a lower amount of fibers per seed than the UTC, suggesting that the higher yield

	Weight seed-1	Fibers seed ⁻¹	Fibers seed ⁻¹
Treatment ⁺	g		mm ²
SPHS	0.09a‡	14372a	134.95a
SFF	0.08a	14949a	139.21a
SPF	0.07a	12812a	122.46a
SBD	0.07a	13256a	130.44a
UTC	0.08a	14266a	135.53a

Table 33-a. Effect of shade on seed weight and number of fibers per seed for sympodial branches 6 through 10 in first position, 2009.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 33-b. Effect of 1-methylcyclopropene (1-MCP) on seed weight and number of fibers per seed for sympodial branches 6 through 10 in first position, 2009.

	Weight seed ⁻¹	Fibers seed ⁻¹	Fibers seed ⁻¹
Treatment ⁺			mm ²
MPHS	0.18a‡	29999a	286.57a
MFF	0.09b	14144b	129.06b
MPF	0.08b	14630b	138.47b
MBD	0.08b	14041b	132.56b
UTC	0.08b	14266b	135.53b

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 33-c. Effect of 1-methylcyclopropene (1-MCP) and shade on seed weight and number of fibers per seed	
for sympodial branches 6 through 10 in first position, 2009.	

	Weight seed ⁻¹	Fibers seed-1	Fibers seed ⁻¹
Treatment ⁺			mm ²
SMPHS	0.09a§	14196a	133.66a
SPHS	0.09a	14372a	134.95a
SMFF	0.07a	14843a	139.86a
SFF	0.08a	14949a	139.21a
SMPF	0.10a	19556a	190.52a
SPF	0.07a	12812a	122.46a
SMBD	0.08a	15020a	145.88a
SBD	0.07a	13256a	130.44a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square,
 FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
 ‡ Treatments are compared statistically only within developmental growth stages.

	Weight seed ⁻¹	Fibers seed ⁻¹	Fibers seed ⁻¹	
Treatment ⁺			mm ²	
SPHS	0.08a‡	14287a	152.50a	
SFF	0.08a	11842a	121.50a	
SPF	0.08a	13919a	139.50a	
SBD	0.06b	16541a	180.00a	
UTC	0.08a	14794a	155.00a	

Table 34-a. Effect of shade on seed weight and number of fibers per seed for sympodial branches 6 through 10 in second position, 2008.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 34-b. Effect of 1-methylcyclopropene (1-MCP) on seed weight and number of fibers per seed for sympodial branches 6 through 10 in second position, 2008.

	Weight seed ⁻¹	Fibers seed-1	Fibers seed-1
Treatment ⁺	g		—mm ² —
MPHS	0.07a‡	13782a	153.50a
MFF	0.08a	14708a	148.00a
MPF	0.07a	15051a	161.25a
MBD	0.07a	13837a	147.50a
UTC	0.08a	14794a	155.00a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

[‡] Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

seed for	sympodial branches 6 throug	h 10 in second position, 200	8.	
	Weight seed ⁻¹	Fibers seed-1	Fibers seed ⁻¹	-
Treatment ⁺	—g—		mm ²	-
SMPHS	0.08a§	13317a	140.50a	
SPHS	0.08a	14287a	152.50a	
SMFF	0.08a	34937a	350.75a	
SFF	0.08a	11842b	121.50b	
SMPF	0.08a	14088a	142.50a	
SPF	0.08a	13919a	139.50a	
SMBD	0.06a	15618a	171.25a	
SBD	0.06a	16541a	180.00a	

Table 34-c. Effect of 1-methylcyclopropene (1-MCP) and shade on seed weight and number of fibers per	
seed for sympodial branches 6 through 10 in second position, 2008.	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages.

	Weight seed ⁻¹	Fibers seed-1	Fibers seed ⁻¹
Treatment ⁺	 		—mm ² —
SPHS	0.08a‡	13219a	129.39a
SFF	0.07a	11144a	105.73a
SPF	0.06a	12857a	128.65a
SBD	0.07a	14943a	150.98a
UTC	0.06a	11649a	118.30a

Table 35-a. Effect of shade on seed weight and number of fibers per seed for sympodial branches 6 through 10 in second position, 2009.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

[‡] Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 35-b. Effect of 1-methylcyclopropene (1-MCP) on seed weight and number of fibers per seed for sympodial branches 6 through 10 in second position, 2009.

21	0	1 '	
	Weight seed ⁻¹	Fibers seed ⁻¹	Fibers seed ⁻¹
Treatment ⁺	g		mm ²
MPHS	0.06b‡	10074a	94.76a
MFF	0.09a	13720a	130.75a
MPF	0.07ab	12669a	124.72a
MBD	0.07ab	12926a	126.25a
UTC	0.06ab	11649a	118.30a

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Table 35-c. Effect of 1-methylcyclopropene (1-MCP) and shade on seed weight and number of fibers per seed
for sympodial branches 6 through 10 in second position, 2009.

	Weight seed ⁻¹	Fibers seed ⁻¹	Fibers seed ⁻¹	
Treatment ⁺			mm ²	
SMPHS	0.08a§	13139a	121.95a	
SPHS	0.08a	13219a	129.39a	
SMFF	0.08a	11851a	111.17a	
SFF	0.07a	11144a	105.73a	
SMPF	0.04b	11217a	118.97a	
SPF	0.06a	12857a	128.65a	
SMBD	0.06a	12775b	132.18a	
SBD	0.07a	14943a	150.98a	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages.

for the seed cotton and lint yield numeric differences for SMBD (Table 18-a–18c) were not determined by the amount of fibers per seed in this position.

CHAPTER V

CONCLUSIONS

Cotton is subject to many stresses that cause fruit abscission throughout the growing season. Since research has indicated that ethylene is the gaseous plant hormone that signals abscission and 1-methylcyclopropene (1-MCP) is an ethylene action inhibitor, it is conceivable that the chemical could counter the effects of stress induced by increased ethylene. Lower light, on the other hand, is one of the many stresses that contributes to cotton fruit abscission. According to the data in this two-year study, shade imposed for eight days during the boll development stage significantly reduced cotton yield. Though 1-MCP applied before an eight day period of shading did not significantly reduce the amount of yield loss, it did show higher numerical values during the boll development stage when compared to shaded cotton alone. The results for 1-MCP alone treated cotton, although not significant, also showed numerically higher values than the untreated control. Numerically higher values of percent ginout were also observed for 1-MCP treatments when compared to the untreated control. This could possibly mean that the chemical affected the amount of fibers per seed. Cotton fibers per seed and seed size did not show consistent correlations with the increase in cotton yield for 1-MCP treatments. Since the fibers were matured prior to 1-MCP application for the first and second position bolls located in the 6 through 10 sympodial branches, it is likely that cotton fibers

would have been affected during fiber development at a later time. Boxmapping, however, was unable to explain this possibility.

Research has also supported that higher ethylene concentrations can break down cell membranes, and 1-MCP can maintain cell membrane integrity. To investigate this, tests of electrolyte leakage were conducted. For both years, the percent total electrolytes leaked for shaded treatments failed to significant differences. In fact, it was anticipated that electrolytes would have been lost at a higher rate for shaded treatments. This however was not true in either year of this study. 1-MCP treatments under shaded and non-shaded conditions also failed to show statistical differences when compared to their controls.

Other researchers have shown that 1-MCP treated cotton can result in a lower stomatal conductance under stress. This study, however, showed only numerically lower conductance for 1-MCP alone treatments during the boll development stage, and a few days prior to defoliation. All other stages of growth were inconsistent in response to the compound.

Data from this study suggests that shade during the latter stage of growth, in this case the boll development stage, can significantly reduce cotton yield. The results of this study also suggest that1-MCP can possibly increase cotton yield when applied alone, and when applied prior to imposing a shade stress in the latter stages of growth. It is noted that these yield increases were not significant for 1-MCP treatments; however, the numerically higher yield

74

returns for the 1-MCP treatments are noteworthy. Although 1-MCP effects on other cotton growth yield parameters and components were few, the potential of this chemical in cotton production should not be ignored. New formulations of 1-MCP may improve delivery to the crop canopy and prolong its activity at the physiological level.

REFERENCES

- Abdi N., McGlasson W.B., and Holford P., Williams M., Mizrahik Y. 1998. Responses of climacteric and supressed-climacteric plums to treatment with propylene and 1-methylcyclopropene. Postharvest Biology and Technology 14:29-39.
- Abeles F.B. 1968. Role of RNA and protein synthesis in abscission. Plant Physiol. 43:1577-1586.
- Abeles F.B. 1969. Abscission: Role of cellulase. Plant Physiol. 44:447-452.
- Abeles F.B., and Rubinstein B. 1964. Regulation of ethylene evolution and leaf abscission by auxin. Plant Physiol. 39:963-969.
- Abeles F.B., Holm R.E., and Gahagan H.E. 1967. Abscission: The role of aging. Plant Physiol. 42:1351-1356.
- Abeles F.B., Morgan P.W., and Saltveit M.E. 1992. Ethylene in Plant Biology. 2nd ed. Academic Press, San Diego, CA.
- Adams D.O., and Yang S.F. 1979. Ethylene biosynthesis: Identification of 1aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA 76:170-174.
- Apelbaum A., and Yang S.F. 1981. Biosynthesis of stress ethylene induced by water deficit. Plant Physiol. 68:594-596.
- Baker D.N. 1966. Microclimate in the field. Trans. ASAE 9:67-84.
- Ben-Yehoshua S., Aloni B. 1974. Effect of water stress on ethylene production by detached leaves of Valencia organ (*Citrus sinensis* Osbeck). Plant Physiol. 53:863-865.
- Benedict C.R. 1984. Physiology, in R.J. Kohel and C.F. Lewis (eds.), *In Cotton*. Am. Soc. Agron., Madison, WI pp.151-200.
- Benedict C.R., Kohel R.J., and Lewis H.L. 1999. Cotton fiber quality. p. 269-288. In C.Wayne Smith and J. Tom Cothren (ed.) Cotton, origin, history, technology, and production, Wiley Series in Crop Science, John Wiley & Sons.

- Binder B.M., and Bleeker A.B. 2003. A model for ethylene receptor function and 1-methycyclopropene action. Issues and Advances in Postharvest Hort. Acta Hort. 628:177-187.
- Blankenship S.M., and Dole J.M. 2002. 1-Methycylcopropene: A review. Postharvest Biology and Technology 28:1-25.
- Bleeker A.B., and Patterson S.E. 1997. Last exit: Senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell 9:1169-1179.
- Bleeker A.B., and Kende H. 2000. Ethylene: A gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 16:1-18.
- Boller T., Herner R.C., and Kende H. 1979. Assay for an enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid. Planta 145:293-303.
- Burg S.P., and Burg E.A. 1966a. Auxin-induced ethylene formation. Its relation to flowering in pineapple. Science 152:1269.
- Burg S.P., and Burg E.A. 1966b. The interaction between auxin and ethylene and its role in plant growth control. Proc. Natl. Acad. Sci. USA 55:262-269.
- Chadwick A.V., and Burg S.P. 1967. An explanation of the inhibition of root growth caused by indole-3-acetic acid. Plant Physiol. 42:415-420.
- Cooper W.C., Rasmussen G.K., and Waldon E.S. 1969. Ethylene evolution stimulated by chilling in citrus and Persea Sp. Plant Physiol. 44:1194-1196.
- Craker L.E., Abeles F.B., and W. Shropshire J. 1973. Light-induced ethylene production in sorghum. Plant Physiol. 51:1082-1083.
- Crocker W., and Zimmerman P.W. 1932. Ethylene induced epinasty and the relation of gravity to it. Contrib. Boyce Thompson Inst. 4:177-218.
- De La Fuente R.K., and Leopold A.C. 1968. Senescence processes in leaf abscission. Plant Physiol. 43:1496-1502.
- Doubt S.L. 1917. The response of plants to illuminating gas. Bot. Gaz. (Chicago) 63:209-224.
- Dunlap A.A. 1943. Low light intensity and cotton boll shedding. Science 98:268-269.

- Eaton F.M., and Rigler N.E. 1945. Effect of light intensity, nitrogen supply, and fruiting on carbohydrate utilization by the cotton plant. Plant Physiol. 20:380-411.
- Eaton F.M., and Ergle D.R. 1954. Effects of shade and partial defoliation on carbohydrate levels and the growth, fruiting and fiber properties of cotton plants. Plant Physiol. 29:39-49.
- Ecker J.R. 1995. The ethylene signal transduction pathway in plants. Science 268:667-675.
- El-Beltagy A.S., and Hall M.A. 1974. Effect of water stress upon endogenous ethylene levels in *Vicia faba*. New Phytol. 73:47-59.
- Fahnestock G.W. 1858. Effects of carburetted hydrogen gas on a collection of exotic plants. Proc. Acad. Natl. Sci. Phila. May, p. 3-24.
- Goodman A. 1955. Correlation between cloud shade and shedding in cotton. Nature (London) 176:39.
- Guinn G. 1975. Water deficit and ethylene evolution by young cotton bolls. Plant Physiol. 57:403-405.
- Guinn G. 1976. Nutritional stress and ethylene evolution by young cotton bolls. Crop Sci. 16:89-91.
- Guinn G. 1981. Fruit age and changes in abscisic acid content, ethylene production, and abscission rate of cotton fruits. Plant Physiol. 69:349-352.
- Guinn G. 1982. Causes of square and boll shedding in cotton. USDA Tech. Bull. 1672:1-22.U.S. Gov. Print. Office, Washington, DC.
- Guthrie D.S., and Cothren J.T. 1989. Enhanced ethylene evolution and electrolyte leakage from methomyl-treated cotton (*Gossypium hirsutum*). Field Crops Res. 19:241-252.
- Hake K., Kerby T., and McCarty W. 1989. Effect of cold weather on yield and quality. *In* Cotton physiology today newsletter. National Cotton Council, Memphis, TN, Technical Services.
- Hake K., Banks J.C., Bourland F., Sasser P., Tugwell P., and Willford R. 1992a. Boll weathering. *In* Cotton physiology today newsletter vol. 3, no. 10. National Cotton Council, Memphis, TN, Technical Services.

- Hake K., Carter F., Mauney J., Namken N., Heitholt J., Kerby T., and PettigrewB. 1992b. Square rentention. *In* Cotton physiology today newsletter vol. 3, no. 6. National Cotton Council, Memphis, TN, Technical Services.
- Harvey E.M. 1913. The castor bean plant and laborator air. Bot. Gaz. Chicago 439-442.
- Heidecker G., Kolch W., Morrison D.K., and Rapp U.R. 1992. The role of Raf-1 phosphorylation in signal transduction. Adv. Cancer Res. 58:53-73.
- Hequet E.F., Wyatt B., and Abidi N. 2006. Creation of a set of reference material for cotton fiber maturity measurements. Textile Res. J. 76:576-586.
- Hoffman T., Schmidt J.C., Zheng X., and Bent A.F. 1999. Isolation of ethyleneinsensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease restance. Plant Physiol. 119:935-949.
- Holman E.M., and Oosterhuis D.M. 1999. Cotton Photosynthesis and carbon partitioning in response to floral bud loss due to insect damage. Crop Sci. 39:1347-1351.
- Horton R.F., and Osborne D.J. 1967. Senescence, abscission and cellulose activity in *Phaseolus vulgaris*. Nature 214:1086-1088.
- Jenkins J.N., and McCarty J.C. 1995. Useful tools in managing cotton production: End of season plant maps. Mississippi Agriculture and Forestry Experiment Station, Bulletin No. 1024. Starksville, MS.
- Jiang Y., Joyce J.D., and Terry L.A. 2001. 1-methycyclopropene treatment affects strawberry fruit decay. Postharvest Biology and Technology 23:227-232.
- Johnson P.R., Ecker J., and Ecker J.R. 1998. The ethylene gas signal transduction pathway: A molecular perspective. Annu. Rev. Genet. 32:227-254.
- Kawakami E.M., Oosterhuis D.M., and Snider J.L. 2010. Physiological Effects of 1-Methylcyclopropene on Well-Watered and Water-Stressed Cotton Plants. J Plant Growth regul.
- Kende H. 1993. Ethylene biosynthesis. Plant Physiol. 44:283-307.
- Kieber J.J., Rothenberg M., Roman G., Feldman K.A., and Ecker J.R. 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72:427.

- Leopold A.C. 1967. The mechanism of foliar abscission. Symp. Soc. Exptl. Biol. 21:507-516.
- Lin R.-C., Park H.-J., and Wang H.-Y. 2008. Role of *arabidopsis* RAP2.4 in regulating light-and ethylene-mediated developmental processes and drought stress tolerance. Mol. Plant 1:42-57.
- Mao L., Karakurt Y., and Huber D.J. 2004. Incidence of water-soaking and phospholipid catabolism in ripe watermelon (*Citrullus lanatus*) fruit: induction by ethylene and prophylactic effects of 1-methycyclopropene. Postharvest Biology and Technology 33:1-9.
- Maxie E.C., and Crane J.C. 1967. 2,4,5-Trichlorophenoxyacetic acid: Effect on ethylene production by fruits and leaves of fig tree. Science 155:1548-50.
- McMichael B.L. 1979. The influence of water stress on flowering and fruiting in cotton. *In* Proc. Beltwide Cotton Prod. Res. Phoenix, AZ. Conf. National Cotton Council of America p. 301-302.
- McMichael B.L., and Jordan W.R. 1973. Abscission processes in cotton: Introduction by plant water deficit. Agron. J. 65:202-204.
- McMichael B.L., Jordan W.R., and Powell R.D. 1972. An effect of water stress on ethylene production by intact cotton petioles. Plant Physiol. 49:658-660.
- Michaeli R.S., Phiosoph-Hadas J.R., and Meir S. 1999. Chilling-induced leaf abscission of *Ixora coccinea* plants. I. Induction by oxidative stress via increased sensitivity to ethylene. Plant Physiol. 107:166-173.
- Mishra A., Khare S., Trivedi P.K., and Nath P. 2008a. Ethylene induced cotton leaf abscission is associated with higher expression of cellulase (GhCel1) and increased activities of ethylene biosynthesis enzymes in abscission zone. Plant Physiol. and Biochem. 46:54-63.
- Mishra A., Khare S., Trivedi P.K., and Nath P. 2008b. Effect of ethylene, 1-MCP, ABA and IAA on break strength, cellulase and polygalacturonase activities during cotton leaf abscission. S. Afr. J. Bot. 74:282-287.
- Miyazaki J.H., and Yang S.F. 1987. The methionine salvage pathway in relation to ethylene and polyamine biosynthesis. Plant Physiol. 69:366-370.
- Moore D.J. 1968. Cell wall dissolution and enzyme secretion during leaf abscission. Plant Physiol. 43:1545-1559.

- Morgan P. 1969. Stimulation of Ethylene Evolution and Abscission in Cotton by 2-Chloroethanephosphonic Acid. Plant Physiol. 44:337-341.
- Nakatsuka A., Shiomi S., Kubo Y., and Inaba A. 1997. Expression and internal feedback regulation of ACC synthase and ACC oxidase genes in ripening tomato fruit. Plant Cell Physiol. 38:1103-1110.
- Neljubow D. 1901. Uber die Nutation der stengel von *Pisum sativum* und einiger anderen pflanzen. (In German, with English abstract.) Bot. Cetrabl. Beihefte 10:128-139.
- Osborne D.J. 1955. Acceleration of abscission by a factor produced in senescent leaves. Nature (London) 176:1161-1163.
- Pettigrew W.T. 2004. Crop physiology & metabolism. Physiological consequences of moisture deficti stress in cotton. Crop Sci. 44:1265-1272.
- Reddy K.R., Davidonis G.H., Johnson A.S., and Vinyard B.T. 1999. Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties. Agron. J. 91:851-858.
- Rikin A., Chalutz E., Anderson J.D. 1984. Rhythmicity in ethylene production in cotton seedlings. Plant Physiol. 75:493-495.
- Ruan Y.-L., Llewellyn D.J., and Furbank R.T. 2001. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13:47-60.
- Schubert A.M. 1975. Growth and development of the cotton fiber. Ph.D. diss. Texas A&M Univ. College Station, TX.
- Schubert A.M., Benedict C.R., Berlin J.D., and Kohel R.J. 1973. Cotton fiber development-kinetics of cell elongation and secondary wall thickening. Crop Sci. 13:704-709.
- Scott P.C. 1967. Abscission as a cellular senescence. Ph.D. Diss. Purdue Univ. Lafayette, Indiana.
- Serek M., Sisler E.C., and Reid M.S. 1994. Novel gaseous ethylene binding inhibitor prevents ethylene effects on potted flowering plants. J. Amer. Soc. Hort. Sci. 119:1230-1233.

- Serek M., Tamari G., Sisler E.C., and Borochov A. 1995. Inhibition of ethyleneinduced cellular senescence symptoms by 1-methylcyclopropene, a new inhibitor of ethylene action. Physiol. Plant. 94:229-232.
- Shoji K. 1950. Auxin relations in leaf abscission. Ph.D.Diss. University of California, Los Angeles.
- Sisler E.C., and Serek M. 1997. Inhibitors of ethylene responses in plants at the receptor level: Recent developments. Physiol. Plant. 100:577-582.
- Sisler E.C., Dupille E., and Serek M. 1996. Effect of 1-methylcyclopropene and methylenecyclopropane on ethylene binding and ethylene action on cut carnations. Plant Growth Reg. 18:79-86.
- Suttle J.C., Hulstranstrand. 1991. Ethylene-induced leaf abscission in cotton seedlings. The physiological bases for age-dependent differences in sensitivity. Plant Physiol. 95:29-33.
- Tatsuki M., and Endo A. 2006. Analyses of expression patterns of ethylene receptor genes in apple (*Malus domestica* Borkh.) fruits treated with or without 1-methycyclopropene (1-MCP). Soc. Hort. Sci. 75(6):481-487.
- Theologis A. 1992. One rotten apple spoils the whole bushel: The role of ethylene in fruit ripening. Cell 70:181-184.
- Vandenbussche F., Vriezen W.H., Smalles J., Laarhoven L., Harren F., and Straeten D. 2003. Ethylene and auxin control the Arabidopsis response to decreased light intensity. Plant Physiol. 133:1-11.
- Wang D.H., Li X.X., Su Z.K., and Ren H.X. 2009. The role of salicylic acid in response of two rice cultivars to chilling stress. Biologia Plant. 53:545-552.
- Wells R., and W.R. Meredith J. 1983. Comparative growth of obsolete and modern cotton cultivars. II. Reproductive dry matter partitioning. Crop Sci. 24:863-867.
- Worley S., Culp T.W., and Harrell D.C. 1974. The relative contributions of yield components to lint yield of upland cotton, *Gossypium hirsutum* L. Euphytica 23(2):399-403.
- Wright S. 1977. The relationship between leaf water potential and the levels of abscisic acid and ethylene in excised wheat leaves. Planta 134:183-189.

- Yu Y.-B., Adams D.O., and Yang S.F. 1979. 1-Aminocyclopropane-1-carboxylate synthase, a key enzyme in ethylene biosynthesis. Arch. Biochem. Biophys. 198:280-286.
- Zarembinski T.I., and Theologis A. 1994. Ethylene biosynthesis and action: A case of conservation Plant Mol. Biol. 26:1579-97.
- Zhao D., Oosterhuis D.M. 1998. Cotton responses to shade at different growth stages: Nonstructural carbohydrate compositions. Crop Sci. 38:1196-1203.
- Zhao D., Oosterhuis D.M. 2000. Cotton response to shade at different growth stages: Growth, lint yield and fibre quality. Exp. Agric. 36:27-39.
- Zhao D., Reddy K.R., Kakani V.G., Koti S., and Gao W. 2005. Physiological causes of cotton fruit abscission under conditions of high temperature and enhanced ultraviolet-B radiation. Physiol. Plant. 124:189-199.

APPENDIX A

CROP PRODUCTION PRODUCTS USED IN 2008 AND 2009

EXPERIMENT

The following products were used at the rates indicated for the designated weeds or pests.

Preplanting Broadleaf weeds and annual grasses	Dual [®] II-metolachlor: 1.17 L ha ⁻¹
	2-chloro- <i>N</i> -(2-ethyl-6-methylphenyl)- <i>N</i> - (2-Methoxy-1-methylethyl)acetamide
Planting & Early Season	Caporal [®] 4 L – prometryn: 2.34 L ha ⁻¹ 2,4-bis(isopropylamino)-6-methylthio)- <i>S</i> -triazine
Thrips (Thrips tabaci)	Temik [®] 15G-aldicarb: 5.61 kg ha ⁻¹ [2-methyl-2-(methylthio) propionaldehyde 0-(methylcarbomoy)]
Early & Mid-Season Annual grasses & Broad Leaves (phosphonomethyl)glycine	Roundup Magnum [®] - glyphosate: 1.61 L ha ⁻¹ N-
	Envoke [™] - trifolxysulfuron: 0.07 kg ha ⁻¹ 1-(4,6-dimethoxy-pyrimidin-2-yl)-3-[3- (2,2,2-trifuluroethoxy)-2- pyridylsulfonyl]urea(IUPAC)
Plant Growth Regulator	Pentia [®] - mepiquat pentaborate: 0.29 L ha ⁻¹ N,N-dimethylpiperidiniurn pentaborate

Harvest Aides	Ginstar [®] thidiazuron: 0.07 L ha ⁻¹ 5-
	Phenylcarbamoylamino-1,2,3-
	thiadiazole; diuron: 3-(3,4
	Dichlorophenyl)-1,1-
	dimethylurea; <i>N</i> ′-(3,4-dichlorophenyl)-
	N,N-dimethylurea
	Finish 6 Pro [®] -ethephon: 1.6 L ha ⁻¹ (2- chloroethyl) phosphonic acid; cyclanilide: 1-(2,4- dichlorophenylaminocarbonyl)- cyclopropane carboxylic acid
	Dropp [®] SC-thidiazuron: 0.15 L ha ⁻¹ (N-phenyl-N'-1,2,3-thiadiazol-5-ylurea)
Morning Glory (Ipomoea spp.)	Aim [®] EC: 0.07 kg ha ⁻¹ (Carfentrazone- ethyl)

APPENDIX B

BOX-MAPPING FOR 2008 AND 2009

Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 3 through 5 in first position, 2008.

	Total bolls	Total weight	
Treatment ⁺	—boll plant-1—	—g—	
SPHS	0.00a‡	0.00a	
SFF	0.03a	0.12a	
SPF	0.02a	0.13a	
SBD	0.00a	0.00a	
UTC	0.00a	0.00a	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 3 3 through 5 in first position, 2008.

	Total bolls	Total weight
Treatment ⁺	—boll plant-1—	—g—
MPHS	0.00a‡	0.00a
MFF	0.02a	0.02a
MPF	0.00a	0.00a
MBD	0.00a	0.00a
UTC	0.00a	0.00a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

branches 5 through 5 fr	Total bolls	Total weight
Treatment ⁺	-boll plant ⁻¹	-g-
SMPHS	0.00a§	0.00a
SPHS	0.00a	0.00a
SMFF	0.00a	0.00a
SFF	0.03a	0.12a
SMPF	0.00a	0.00a
SPF	0.02a	0.13a
SMBD	0.00a	0.00a
SBD	0.00a	0.00a

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 3 through 5 in first position, 2008.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages.

Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 3 through 5 in first position, 2009.

	Total bolls	Total weight
Treatment ⁺	—boll plant ¹ —	g
SPHS	0.08a‡	0.44a
SFF	0.08a	0.38a
SPF	0.03a	0.06a
SBD	0.10a	0.31a
UTC	0.13a	0.64a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 3
through 5 in first position, 2009.

¥	Total bolls	Total weight	
Treatment ⁺	—boll plant-1—	—g—	
MPHS	0.10a‡	0.25a	
MFF	0.15a	0.40a	
MPF	0.05a	0.16a	
MBD	0.15a	0.43a	
UTC	0.13a	0.64a	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

branches 5 through 5 in	1	
	Total bolls	Total weight
Treatment ⁺	—boll plant-1—	_g_
SMPHS	0.05a§	0.32a
SPHS	0.08a	0.44a
SMFF	0.15a	0.50a
SFF	0.08a	0.38a
SMPF	0.23a	0.77a
SPF	0.03a	0.06a
SMBD	0.08a	0.08a
SBD	0.10a	0.31a

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 3 through 5 in first position, 2009.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages.

Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 3 through 5 in second position, 2008.

	Total bolls	Total weight
Treatment ⁺	—boll plant ¹ —	g
SPHS	0.00a‡	0.00a
SFF	0.01a	0.10a
SPF	0.00a	0.00a
SBD	0.00a	0.00a
UTC	0.00a	0.00a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 3 through 5 in second position, 2008.

	Total bolls	Total weight	
Treatment ⁺	—boll plant ¹ —	—g—	
MPHS	0.00a‡	0.00a	
MFF	0.03a	0.11a	
MPF	0.00a	0.00a	
MBD	0.00a	0.00a	
UTC	0.00a	0.00a	

Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
 Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS

contrast matrix.

	Total bolls	Total weight
Treatment†	—boll plant ⁻¹ —	
SMPHS	0.00a§	0.00a
SPHS	0.00a	0.00a
SMFF	0.00a	0.00a
SFF	0.01a	0.10a
SMPF	0.03a	0.04a
SPF	0.00a	0.00a
SMBD	0.00a	0.00a
SBD	0.00a	0.00a

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 3 through 5 in second position, 2008.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 3 through 5 in second position, 2009.

	Total bolls	Total weight
Treatment ⁺	—boll plant-1—	g
SPHS	0.00a‡	0.00a
SFF	0.00a	0.00a
SPF	0.00a	0.00a
SBD	0.03a	0.06a
UTC	0.05a	0.10a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 3
through 5 in second position, 2009.

	Total bolls	Total weight	
Treatment ⁺	—boll plant ⁻¹ —	—g—	
MPHS	0.08a‡	0.21a	
MFF	0.05a	0.21a	
MPF	0.05a	0.06a	
MBD	0.00a	0.00a	
UTC	0.08a	0.18a	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

branches 5 through 5 in second position, 2009.		
	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	_g_
SMPHS	0.00a§	0.00a
SPHS	0.00a	0.00a
SMFF	0.00a	0.00a
SFF	0.00a	0.00a
SMPF	0.00a	0.00a
SPF	0.00a	0.00a
SMBD	0.00a	0.00a
SBD	0.03a	0.06a

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 3 through 5 in second position, 2009.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 3 through 5 in third position, 2008.

	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	_g_
SPHS	0.00a‡	0.00a
SFF	0.00a	0.00a
SPF	0.00a	0.00a
SBD	0.00a	0.00a
UTC	0.00a	0.00a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 3 through 5 in third position, 2008.

	Total bolls	Total weight	
Treatment ⁺	—boll plant ⁻¹ —	g	
MPHS	0.00a‡	0.00a	
MFF	0.03a	0.08a	
MPF	0.00a	0.00a	
MBD	0.00a	0.00a	
UTC	0.00a	0.00a	

Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
 Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS

contrast matrix.

branches 5 through 5 in	Total bolls	Total weight
Treatment ⁺	-boll plant ⁻¹	-g-
SMPHS	0.00a§	0.00a
SPHS	0.00a	0.00a
SMFF	0.00a	0.00a
SFF	0.00a	0.00a
SMPF	0.00a	0.00a
SPF	0.00a	0.00a
SMBD	0.00a	0.00a
SBD	0.00a	0.00a

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 3 through 5 in third position, 2008.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 in third position, 2008.

	Total bolls	Total weight	
Treatment ⁺	—boll plant ¹ —	—g—	
SPHS	0.00b‡	0.00b	
SFF	0.15b	0.23b	
SPF	0.38a	1.27a	
SBD	0.00b	0.00b	
UTC	0.00b	0.00b	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 in third position, 2008.

	Total bolls	Total weight	
Treatment ⁺	—boll plant ⁻¹ —	—g—	
MPHS	0.03a‡	0.08a	
MFF	0.00a	0.00a	
MPF	0.00a	0.00a	
MBD	0.08a	0.24a	
UTC	0.00a	0.00a	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

branches 11 through 1		TT + 1 + 1 +
	Total bolls	Total weight
Treatment†	—boll plant ⁻¹ —	—g—
SMPHS	0.13a§	0.50a
SPHS	0.00a	0.00a
SMFF	0.03a	0.06a
SFF	0.15a	0.23a
SMPF	0.18b	0.71a
SPF	0.38a	1.27a
SMBD	0.00a	0.00a
SBD	0.00a	0.00a

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 in third position, 2008.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 in third position, 2009.

	Total bolls	Total weight
Treatment ⁺	—boll plant-1—	_g_
SPHS	0.03a‡	0.06b
SFF	0.15a	1.58a
SPF	0.00a	0.00b
SBD	0.00a	0.00b
UTC	0.05a	0.11b

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 11
through 15 in third position, 2009.

	Total bolls	Total weight	
Treatment ⁺	—boll plant ⁻¹ —	—g—	
MPHS	0.05ab‡	0.14a	
MFF	0.23a	0.47a	
MPF	0.03b	0.70a	
MBD	0.00b	0.00a	
UTC	0.05b	0.11a	

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

¥	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	_g_
SMPHS	0.20a§	0.41a
SPHS	0.03a	0.06a
SMFF	0.13a	0.36a
SFF	0.15a	1.58a
SMPF	0.00a	0.00a
SPF	0.00a	0.00a
SMBD	0.03a	0.01a
SBD	0.00a	0.00a

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 11 through 15 in third position, 2009.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 16 through 20 in first position, 2008.

	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	g
SPHS	0.28b‡	0.95b
SFF	0.45b	1.12b
SPF	0.95a	3.12a
SBD	0.43b	0.36b
UTC	0.20b	0.55b

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 16 through 20 in first position, 2008.

	Total bolls	Total weight	
Treatment ⁺	—boll plant ⁻¹ —	—g—	
MPHS	0.38a‡	1.06a	
MFF	0.48a	1.44a	
MPF	0.13a	0.35a	
MBD	0.23a	0.68a	
UTC	0.20a	0.55a	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
 ‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS

	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	g
SMPHS	0.48a§	1.75a
SPHS	0.28a	0.95a
CMEE	0.42	1 47.
SMFF	0.43a	1.47a
SFF	0.45a	1.12a
SMPF	0.88a	2.29a
SPF	0.95a	3.12a
SMBD	0.15a	0.78a
SBD	0.43a	0.36a

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 16 through 20 in first position, 2008.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 16 through 20 in first position, 2009.

	Total bolls	Total weight
Treatment ⁺	—boll plant-1—	—g—
SPHS	0.00b‡	0.00b
SFF	0.48a	1.45a
SPF	0.00b	0.00b
SBD	0.03b	0.03b
UTC	0.15b	0.25b

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 16
through 20 in first position, 2009.

	Total bolls	Total weight	
Treatment ⁺	—boll plant ⁻¹ —	—g—	
MPHS	0.18a‡	0.34ab	
MFF	0.25a	0.94a	
MPF	0.03a	0.07b	
MBD	0.18a	0.53ab	
UTC	0.15a	0.25ab	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	g
SMPHS	0.48a§	1.67a
SPHS	0.00b	0.00b
SMFF	0.15b	0.27b
SFF	0.48a	1.45a
SMPF	0.08a	0.20a
SPF	0.00a	0.00a
SMBD	0.10a	0.14a
SBD	0.03a	0.03a

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 16 through 20 in first position, 2009.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 16 through 20 in second position, 2008.

	Total bolls	Total weight
Treatment ⁺	—boll plant ¹ —	g
SPHS	0.00a‡	0.00a
SFF	0.03a	0.07a
SPF	0.00a	0.00a
SBD	0.00a	0.00a
UTC	0.00a	0.00a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 16 through 20 in second position, 2008.

	Total bolls	Total weight	
Treatment ⁺	—boll plant ⁻¹ —	g	
MPHS	0.00a‡	0.00a	
MFF	0.00a	0.00a	
MPF	0.00a	0.00a	
MBD	0.00a	0.00a	
UTC	0.00a	0.00a	

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

0	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	
SMPHS	0.08a§	0.23a
SPHS	0.00b	0.00b
SMFF	0.03a	0.12a
SFF	0.03a	0.07a
SMPF	0.03a	0.07a
SPF	0.00a	0.00a
SMBD	0.00a	0.00a
SBD	0.00a	0.00a

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 16 through 20 in second position, 2008.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 16 through 20 in second position, 2009.

	Total bolls	Total weight
Treatment ⁺	—boll plant ¹ —	g
SPHS	0.05a‡	0.12a
SFF	0.10a	0.17a
SPF	0.00a	0.00a
SBD	0.00a	0.00a
UTC	0.03a	0.01a

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 16 through 20 in second position, 2009.

0	Total bolls	Total weight	
Treatment ⁺	—boll plant ⁻¹ —	g	
MPHS	0.03ab‡	0.03b	
MFF	0.00b	0.00b	
MPF	0.03ab	0.07ab	
MBD	0.15a	0.41a	
UTC	0.03ab	0.01b	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

¥	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	
SMPHS	0.08a§	0.11a
SPHS	0.05a	0.12a
SMFF	0.03a	0.00a
SFF	0.10a	0.17a
SMPF	0.00a	0.00a
SPF	0.00a	0.00a
SMBD	0.00a	0.00a
SBD	0.00a	0.00a

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 16 through 20 in second position, 2009.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 16 through 20 in third position, 2008.

	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	_g_
SPHS	0.00a‡	0.00a
SFF	0.00a	0.00a
SPF	0.00a	0.00a
SBD	0.00a	0.00a
UTC	0.00a	0.00a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 16 through 20 in third position, 2008.

	Total bolls	Total weight	
Treatment ⁺	—boll plant-1—	—g—	
MPHS	0.00a‡	0.00a	
MFF	0.00a	0.00a	
MPF	0.00a	0.00a	
MBD	0.00a	0.00a	
UTC	0.00a	0.00a	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

0	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	
SMPHS	0.00a§	0.00a
SPHS	0.00a	0.00a
SMFF	0.00a	0.00a
SFF	0.00a	0.00a
SMPF	0.00a	0.00a
SPF	0.00a	0.00a
SMBD	0.00a	0.00a
SBD	0.00a	0.00a

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 16 through 20 in third position, 2008.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 16 through 20 in third position, 2009.

	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	g
SPHS	0.00a‡	0.00a
SFF	0.00a	0.00a
SPF	0.00a	0.00a
SBD	0.00a	0.00a
UTC	0.00a	0.00a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 16
through 20 in third position, 2009.

	Total bolls	Total weight
Treatment ⁺	—boll plant-1—	g
MPHS	0.00b‡	0.00b
MFF	0.03a	0.06a
MPF	0.00b	0.00b
MBD	0.00b	0.00b
UTC	0.00b	0.00b

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

	Total bolls	Total weight
Treatment†	—boll plant ⁻¹ —	
SMPHS	0.00a§	0.00a
SPHS	0.00a	0.00a
SMFF	0.00a	0.00a
SFF	0.00a	0.00a
SMPF	0.00a	0.00a
SPF	0.00a	0.00a
SMBD	0.00a	0.00a
SBD	0.00a	0.00a

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 16 through 20 in third position, 2009.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 21through 25 in first position, 2008.

	Total bolls	Total weight
Treatment ⁺	—boll plant ¹ —	g
SPHS	0.00a‡	0.00a
SFF	0.00a	0.00a
SPF	0.00a	0.00a
SBD	0.00a	0.00a
UTC	0.00a	0.00a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 21through 25 in first position, 2008.

	Total bolls	Total weight	
Treatment ⁺	—boll plant ⁻¹ —	—g—	
MPHS	0.00a‡	0.00a	
MFF	0.00a	0.00a	
MPF	0.00a	0.00a	
MBD	0.00a	0.00a	
UTC	0.00a	0.00a	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
 ‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS

¥	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	_g_
SMPHS	0.00a§	0.00a
SPHS	0.00a	0.00a
SMFF	0.00a	0.00a
SFF	0.00a	0.00a
SMPF	0.00a	0.00a
SPF	0.00a	0.00a
SMBD	0.00a	0.00a
SBD	0.00a	0.00a

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 21through 25 in first position, 2008.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 21through 25 in first position, 2009.

	Total bolls	Total weight
Treatment ⁺	—boll plant ¹ —	—g—
SPHS	0.00a‡	0.00a
SFF	0.00a	0.00a
SPF	0.00a	0.00a
SBD	0.00a	0.00a
UTC	0.00a	0.00a

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

	Total bolls	Total weight boll ⁻¹	
Treatment ⁺	—boll plant ¹ —	g	
MPHS	0.00a‡	0.00a	
MFF	0.00a	0.00a	
MPF	0.00a	0.00a	
MBD	0.00a	0.00a	
UTC	0.00a	0.00a	

Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 21through 25 in first position, 2009.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

	Total bolls	Total weight
Treatment ⁺	—boll plant-1—	—g—
SMPHS	0.00a§	0.00a
SPHS	0.00a	0.00a
SMFF	0.00a	0.00a
SFF	0.00a	0.00a
	0.00	
SMPF	0.00a	0.00a
SPF	0.00a	0.00a
SMBD	0.00a	0.00a
SBD	0.00a	0.00a

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 21through 25 in first position, 2009.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 21through 25 in second position, 2008.

	Total bolls	Total weight
Treatment ⁺	—boll plant ¹ —	_g_
SPHS	0.00a‡	0.00a
SFF	0.00a	0.00a
SPF	0.00a	0.00a
SBD	0.00a	0.00a
UTC	0.00a	0.00a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 21through 25 in second position, 2008.

	Total bolls	Total weight	
Treatment ⁺	—boll plant ⁻¹ —	—g—	
MPHS	0.00a‡	0.00a	
MFF	0.00a	0.00a	
MPF	0.00a	0.00a	
MBD	0.00a	0.00a	
UTC	0.00a	0.00a	

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

branches 21through 25 in second position, 2008.		
	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	g
SMPHS	0.00a§	0.00a
SPHS	0.00a	0.00a
SMFF	0.00a	0.00a
SFF	0.00a	0.00a
SMPF	0.00a	0.00a
SPF	0.00a	0.00a
SMBD	0.00a	0.00a
SBD	0.00a	0.00a

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 21through 25 in second position, 2008.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 21through 25 in second position, 2009.

	Total bolls	Total weight
Treatment ⁺	—boll plant-1—	g
SPHS	0.00a‡	0.00a
SFF	0.00a	0.00a
SPF	0.00a	0.00a
SBD	0.00a	0.00a
UTC	0.00a	0.00a

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

21th ough 25 in second position, 2009.			
	Total bolls	Total weight	
Treatment ⁺	—boll plant ⁻¹ —	_g_	
MPHS	0.00a‡	0.00a	
MFF	0.00a	0.00a	
MPF	0.00a	0.00a	
MBD	0.00a	0.00a	
UTC	0.00a	0.00a	

Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 21through 25 in second position, 2009.

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

branches 21through 25 in second position, 2009.		
	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	g
SMPHS	0.00a§	0.00a
SPHS	0.00a	0.00a
SMFF	0.00a	0.00a
SFF	0.00a	0.00a
SMPF	0.00a	0.00a
SPF	0.00a	0.00a
SMBD	0.00a	0.00a
SBD	0.00a	0.00a

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 21through 25 in second position, 2009.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 21through 25 in third position, 2008.

	Total bolls	Total weight
Treatment ⁺	—boll plant ¹ —	g
SPHS	0.00a‡	0.00a
SFF	0.00a	0.00a
SPF	0.00a	0.00a
SBD	0.00a	0.00a
UTC	0.00a	0.00a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Effect of 1-methylcyclopropene (1-MCP) number of bolls, and total boll weight per plant for sympodial branches 21through 25 in third position, 2008.

	Total bolls	Total weight	
Treatment ⁺	—boll plant ¹ —	—g—	
MPHS	0.00a‡	0.00a	
MFF	0.00a	0.00a	
MPF	0.00a	0.00a	
MBD	0.00a	0.00a	
UTC	0.00a	0.00a	

Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
 Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS

contrast matrix.

	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	_g_
SMPHS	0.00a§	0.00a
SPHS	0.00a	0.00a
SMFF	0.00a	0.00a
SFF	0.00a	0.00a
SMPF	0.00a	0.00a
SPF	0.00a 0.00a	0.00a
		0.004
SMBD	0.00a	0.00a
SBD	0.00a	0.00a

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 21through 25 in third position, 2008.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Effect of shade on number of bolls, and total boll weight per plant for sympodial branches 21through 25 in third position, 2009.

	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	g
SPHS	0.00a‡	0.00a
SFF	0.00a	0.00a
SPF	0.00a	0.00a
SBD	0.00a	0.00a
UTC	0.00a	0.00a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for sympodial branches 21through 25 in third position, 2009.

	Total bolls	Total weight
Treatment ⁺	—boll plant ¹ —	_g_
MPHS	0.00a‡	0.00a
MFF	0.00a	0.00a
MPF	0.00a	0.00a
MBD	0.00a	0.00a
UTC	0.00a	0.00a

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

branches zittilbugh 25			
	Total bolls	Total weight	
Treatment ⁺	—boll plant ⁻¹ —	g	
SMPHS	0.00a§	0.00a	
SPHS	0.00a	0.00a	
SMFF	0.00a	0.00a	
SFF	0.00a	0.00a	
SMPF	0.00a	0.00a	
SPF	0.00a	0.00a	
SMBD	0.00a	0.00a	
SBD	0.00a	0.00a	

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for sympodial branches 21through 25 in third position, 2009.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Effect of shade on number of bolls, and total boll weigh	th per plant for vegetative branches, 2008.
--	---

	Total bolls	Total weight	
Treatment ⁺	—boll plant-1—	—g—	
SPHS	1.05a‡	4.03a	
SFF	1.23a	3.96a	
SPF	2.18a	7.05a	
SBD	1.10a	3.93a	
UTC	1.78a	6.68a	

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

	Total bolls	Total weight	
Treatment ⁺	—boll plant-1—	_g_	
MPHS	1.33b‡	4.49b	
MFF	2.73a	12.17a	
MPF	1.38b	5.02b	
MBD	1.70b	6.04b	
UTC	1.78b	6.68b	

Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for vegetative branches, 2008.

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for vegetative branches, 2008.

	Total bolls	Total weight
Treatment ⁺	—boll plant-1—	
SMPHS	2.55a§	10.11a
SPHS	1.05a	4.03b
SMFF	1.65a	5.42a
SFF	1.23a	3.96a
SMPF	1.98a	5.90a
SPF	2.18a	7.05a
SMBD	1.20a	4.21a
SBD	1.10a	3.93a

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.

‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

Effect of shade on number of bolls, and total boll weight per plant for vegetative branches, 2009.

	Total bolls	Total weight	
Treatment ⁺	—boll plant ¹ —	—g—	
SPHS	0.17a‡	0.50a	
SFF	0.67a	1.85a	
SPF	0.10a	0.23a	
SBD	0.27a	0.72a	
UTC	0.62a	1.92a	

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

‡ Values within a column followed by the same letter are not significantly different at the 0.05 probability level using LSMEANS contrast matrix.

Effect of 1-methylcyclopropene (1-MCP) on number of bolls, and total boll weight per plant for vegetative branches, 2009.

	Total bolls	Total weight
Treatment ⁺	—boll plant ⁻¹ —	—g—
MPHS	0.52a‡	1.48a
MFF	0.92a	2.98a
MPF	0.67a	1.36a
MBD	0.57a	1.90a
UTC	0.62a	1.92a

[†] Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development; UTC, untreated control.

Effect of 1-methylcyclopropene (1-MCP) and shade on number of bolls, and total boll weight per plant for vegetative branches, 2009.

	Total bolls	Total weight
Treatment ⁺	—boll plant-1—	_g_
SMPHS	0.37a§	1.08a
SPHS	0.17a	0.50a
SMFF	0.67a	1.95a
SFF	0.67a	1.85a
SMPF	0.20a	0.39a
SPF	0.10a	0.23a
SMBD	0.32a	0.90a
SBD	0.27a	0.72a

† Abbreviations: S, shade imposed for 8d; M, 1-MCP applied at specified rate; PHS, treatment initiated at pinhead square, FF, treatment initiated at first flower; PF, treatment initiated at peak flower; BD, treatment initiated at boll development.
‡ Treatments are compared statistically only within developmental growth stages. Values within a column followed by the same letter are not significantly different at the 0.05 probability level using Fischer's protected LSD.

VITA

Charles Warren Carden, son of Charles R. and Maria Carden, was born in Oklahoma. He graduated from Talihina High School in May 1999. Charles received a Bachelor of Science in agriculture science education from Texas A&M University in May 2008. Upon completion of his B.S. he entered the Master of Science program at Texas A&M University. He received his M.S. degree in August 2010. Charles intends to pursue a career in the agriculture research industry. His permanent address is 370 Olsen Blvd. 2474 TAMU College Station, TX 77843.