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ABSTRACT 

Finite Element Modeling of Dermally-implanted Enzymatic Microparticle Glucose 

Sensors. (August 2010) 

Saniya Ali, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Michael J. McShane 

With the rising prevalence of diabetes, effective means of successful 

management of blood glucose levels are increasingly important. To improve on the ease 

of measurements, new technology is being developed to enable less invasive 

measurements. Some recent efforts have focused on the development of optical 

microscale glucose sensing systems based on the encapsulation of glucose oxidase 

within microspheres coated with polyelectrolyte multilayer nanofilms. In such sensors, a 

phosphorescent oxygen indicator is also co-encapsulated with the enzyme inside so that 

when glucose is present, glucose oxidase within the sensor reduces the local oxygen 

levels, causing a corresponding change in the luminescence intensity of the sensors. 

To test the aforementioned factors, a two-substrate, 2D FEM model of 

microscale optical glucose sensors in the dermis was developed. The model was used to 

predict the response time and sensitivity of glucose sensors with varying number and 

spacing of particles distributed in the dermis and varying physiological characteristics of 

the surrounding tissue; specifically, capillary density, blood vessel location relative to 

sensor, and glucose and oxygen consumption in tissue.  
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Simulations were conducted to determine the magnitude of the change in the 

response time of sensors. Because the steady-state oxygen concentration within the 

sensors for a given blood glucose level determines the signal output, steady-state 

concentration of oxygen within sensors and the surrounding tissue for the entire 

physiological glucose range was evaluated.  

 The utility of the model to predict the performance and efficacy of the sensors in 

the event of a host response to the foreign body implant was also evaluated. Simulations 

were performed to evaluate changes in sensor response and sensitivity in the occurrence 

of inflammation and progression of fibrous encapsulation of various thickness and 

density.  

 The results from these simulations have provided knowledge on the impact of 

physiological factors that can potentially degrade sensor function in vivo. Our results 

indicate that upon the occurrence of a host response, sensitivity is reduced while range is 

extended. Furthermore, using the model we have been able to determine which 

conditions in vivo improve response time, sensitivity, and the linear response range for 

these sensors.   
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1 INTRODUCTION 

More than 20 million people in the United States have diabetes and nearly 300 

million people worldwide suffer from the disease.
1
 Type I diabetes results if the pancreas 

does not produce insulin whereas Type II diabetes results if the insulin released by the 

pancreas does not accelerate the uptake of glucose by cells.
2
 In either case, diabetes, 

unless carefully monitored and treated, has severe long-term medical complications. The 

chronic effects of diabetes results with high blood glucose levels, maintained by a large 

fraction of the patients to avoid the acute effects of hypoglycemia which include 

fainting, coma, and even death.
2
 Due to poor regulation of normal glucose levels, 

hyperglycemic patients are more prone to damages in the retina, kidneys, nerves, and 

circulatory system. Hyperglycemia is the dominant cause of reduced longevity of 

diabetics. It is also the leading cause of blindness among US adults and an underlying 

factor in the majority of limb amputations and kidney transplants.
2
 

Clinical studies have shown that tight glucose control significantly improves 

long-term clinical outcomes.
3
 With the rising prevalence of diabetes, effective means of 

successful management of blood glucose levels is increasingly important. The typical 

glucose-monitoring regimen for diabetes patients involves piercing a finger to obtain a 

blood sample, which is generally collected on a test strip and then analyzed in a suitable 

device. The current standard of care recommends that this procedure be repeated a 

minimum of four times per day.
3
 Due to discomfort and pain, not all persons with 

diabetes are willing or able to adequately self-monitor blood glucose.  

____________ 

This thesis follows the style of Journal of Analytical Chemistry. 
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Furthermore, intermittent testing has significant limitations and cannot accurately 

portray the variability in glucose levels that may occur throughout the day. Compared 

with conventional direct glucose monitoring, defined as three to four blood glucose 

measurements per day, continuous monitoring provides much greater insight into 

glucose levels throughout the day and can help identify and prevent unwanted periods of 

hypo- and hyperglycemia.  

Continuous glucose monitoring systems (CGMS) based on highly selective 

enzyme electrodes are commercially available, such as Medtronic’s Guardian
® 

RT, 

MiniMed Paradigm REAL-Time System, Abbott Laboratories’ FreeStyle
™ 

Navigator, 

and DexCom’s STS
® 

Seven System, allowing patients to monitor fluctuations and trends 

that would otherwise go unnoticed with standard blood tests and intermittent finger stick 

measurements.
5
While these devices increase the ease of frequent glucose monitoring, 

they suffer from short lifetimes and have to be removed and replaced every 5 to 7 days 

(for the STS Seven CGMS system).
4
 

To improve on the ease of measurements, huge effort has focused on creating 

sensors that provide non-invasive means for glucose analysis as a tool to achieve better 

overall diabetes control. Sensors based on optical phenomena such as absorbance 

spectroscopy,
5
 Raman spectroscopy,

6
 and polarimetry

7
 have been proposed for non-

invasive glucose monitoring. However, these techniques exhibit poor sensitivity and 

selectivity, which makes them unreliable for accurate glucose analysis. While the entire 

field is too broad to review here, it is most relevant to this work to note that McShane et. 

al. have extensively developed minimally invasive glucose sensors based on 
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luminescence quenching of oxygen sensitive phosphors.
8
 Their efforts have focused on 

the development of optical microscale glucose sensing systems based on the 

encapsulation of glucose oxidase within microspheres coated with polyelectrolyte 

multilayer nanofilms. These sensors consist of porous microspheres with encapsulated 

glucose oxidase.
8
 To control the diffusivity of glucose and oxygen into these 

microparticle sensors, their surface is coated with polyelectrolyte nanofilms. In such 

sensors, a phosphorescent oxygen indicator is co-encapsulated with the enzyme inside 

the microspheres in order to report local oxygen levels, which can be related to blood 

glucose concentration.
8
 When glucose is present, glucose oxidase within the sensor 

reduces the local oxygen levels, causing a corresponding change in the luminescence 

intensity of the sensors. These sensors are meant to be implanted intradermally, from 

which the signal changes may be ―read out‖ using an external optical device.
8
 

These glucose sensors have been fabricated and tested in vitro demonstrating that 

they meet performance targets for sensitivity and response time over the physiologically-

relevant range. Prototypes of these sensors have demonstrated high sensitivity and fast 

response time in vitro (<90s); however, it is difficult to predict whether these sensors 

will perform reliably in vivo.
8
 The next step toward making these glucose sensors 

suitable to be implanted in the dermis for diabetes monitoring is testing their 

biocompatibility and efficiency in vivo. Factors that can vary from person to person and 

that are unmanageable during implantation or testing of these sensors can cause changes 

in sensor response. These changes in sensor response can diminish optimal performance, 

halting the prolonged use of sensors in vivo and leading to sensor failure.  
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In general, sensor failure can be linked to the events associated with trauma to 

and healing of the tissue surrounding the implanted device, such as inflammation, repair 

and encapsulation.
9-10

 At the final stage of the host response to the implants, the body 

tends to completely isolate the foreign implant by forming a fibrous membrane capsule 

around the implants.
 9-10

 The dense collagen fibers that make up fibrous capsules block 

the diffusion of analytes through the collagen matrix, slowing the diffusion of glucose 

and oxygen to the sensors. The result of this is a delay in the response time of the sensor 

to reach steady-state. Wound healing phenomena, the host response to the implant, and 

the structure and blood supply of the surrounding tissue are likely to influence sensor 

performance. Nevertheless, these factors have not been investigated systematically. In 

our study, some of these issues have been addressed. 

Additional factors that can potentially hinder long-term sensor reliability include 

component failure like glucose oxidase degradation. This issue has been addressed in 

previous studies.
11-12

 With enzymatic sensors, another noteworthy route of sensor failure 

is the deactivation of glucose oxidase either by the denaturation of enzyme over time or 

peroxide-mediated hydrolytic cleavage which depends on the peroxide concentration.
11-

12
  Loss of the enzyme can impair sensor function by reducing the reaction rate within 

the sensor matrix. Singh et al. showed that this dilemma can be resolved by 

incorporating catalase (CAT) in addition to glucose oxidase. With the co-immbolization 

of CAT, the deactivation of both enzymes is significantly reduced and the longevity of 

the sensors is enhanced, with effective operation for up to 3 months.
11

 Components of 

the sensor such as enzyme concentration, polyelectrolyte film thickness, porosity can be 
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controlled to tune the response of sensors.
12-13

 However, once these sensors are deployed 

in the body, there is no control over the changes in sensor response caused by 

physiological factors that are unmanageable such as blood vessel density and location 

relative to sensors. 

This project aims to understand how different physiological conditions can 

impact the performance of sensors. Several physiological parameters in vivo can 

influence glucose and oxygen diffusion to sensors implanted and affect sensor response 

such as number of blood vessels, sensor implantation site, number of sensors, and 

variability in the arrangement of sensors, and occurrences of host response. The 

aforementioned physiological factors have the potential to impair solute diffusion into 

the sensor causing the sensor to function slower and lose its sensitivity to glucose.  

Unlike sensor parameters, number of blood vessels, blood vessel location relative 

to sensors, and occurrences of host response are physiological parameters over which no 

degree of control can be exercised. Because the enzymatic microparticle-based glucose 

sensors rely heavily on the reaction-diffusion kinetics of substrate and immobilized 

enzyme, tailoring the response of sensors by changing a combination of sensor 

parameters is feasible. Previous studies have demonstrated that sensor parameters such 

as sphere size, sphere material, enzyme loading, nanofilm thickness, nanofilm material 

type, and oxygen indicator type can be experimentally controlled during synthesis and 

fabrication processes in a lab setting.
8,12-13

 However, tuning the response time, 

sensitivity, and range of sensors in vivo is not currently feasible. 
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Computational modeling can be helpful in predicting and understanding the 

influence of physiological conditions on the in vivo response of the sensors. Modeling of 

glucose sensors in the dermis has allowed us to predict the general trends in the 

luminescence intensity signal that will be obtained from a healthy patient without 

actually having to deploy these sensors in the dermis of a human or animal model.  

For this study, a two-substrate, 2D FEM model of microscale optical glucose 

sensors in the dermis was developed. The multi-scale model consists of a microsphere 

(or multiple microspheres) with a polyelectrolyte film coating as the sensor complex 

implanted in the center of a dermal tissue area. Each domain of the model—

polyelectrolyte film, microsphere, and the dermis was defined to mimic their function by 

taking account of geometry, tissue and sensor reactions, and glucose and oxygen 

diffusivities. 

The model was used to predict the response time and sensitivity of glucose 

sensors with varying number and spacing of particles distributed in the dermis and 

varying physiological characteristics of the surrounding dermal tissue; specifically, 

capillary density, blood vessel location relative to sensor, and glucose and oxygen 

consumption in tissue. The utility of the model to predict the performance of the sensors 

after the incidence of inflammation and fibrous capsule formation around the sensor 

implants was also evaluated.  

Findings from this study have allowed further insight into the mechanism of 

sensor failure during implantation, particularly with regard to tissue response to the 

implant and have revealed useful information for improving the prospects for long term 
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use of glucose monitoring systems. For example, increasing number of blood vessels 

results in faster response time and greater number of sensors implanted in the dermis 

results in higher sensitivity to glucose.  

The sections of this thesis have been organized as follows: Section 2 gives an in-

depth review of the current knowledge of microparticle-based glucose sensors, structure 

and physiology of prospective implantation sites, and general problems associated with 

implantable sensors. Section 3 describes the theory and design of the finite element 

model that was utilized for this study. Section 4 reports the results of simulations that 

characterize the changes in response time of sensors with different tissue architectures 

and variation in physiological parameters. Section 5 discusses the effects of various 

physiological parameters on the steady-state oxygen concentration within sensors, 

sensitivity, and linear response range. Section 6 describes the effects of host response, 

specifically the occurrence of inflammation upon implantation of sensors in the dermis 

and the progression of fibrous capsule formation, on the performance of sensors in vivo. 

Section 7 summarizes the major conclusions of the work presented in this thesis and 

discusses the implications of the findings with respect to future studies.  
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2 BACKGROUND 

Luminescent microparticles that can change their luminescence intensity in 

response to local glucose concentrations have recently been developed.
14

 The basic idea 

behind this technology is to dermally implant these microparticles and noninvasively 

monitor glucose with an external optical system as shown in Figure 2.1. Since these 

sensors are meant to function in the dermis, it is necessary to take into consideration 

elements of the in vivo environment that may or may not affect the ability of the sensor 

to function for a long period of time (several months). In addition to reviewing 

microparticle glucose sensors, issues related to the in vivo environment that affect mass 

transport and the kinetics within the sensor, which are critical to sensor performance, are 

also discussed.  

 

 

 

 

 

 

 

 

Figure 2.1   Schematic of microscale glucose sensor concept. 
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2.1 Microparticle-based Glucose Sensors  

Glucose sensors consist of porous microspheres with glucose oxidase 

encapsulated. Silica-based hybrid microparticles are used for glucose sensors in which 

the phosphorescent oxygen indicator and enzyme is immobilized. A phosphorescent 

oxygen indicator is co-encapsulated with the enzyme inside the microspheres in order to 

report local oxygen levels, which can be related to blood glucose concentration. As 

glucose diffuses into the sensor, local oxygen levels are proportionally reduced through 

glucose oxidase-initiated catalysis. The oxidation of glucose in the presence of oxygen 

and glucose oxidase may be expressed as:
15-16

 

 

 

              (2.1) 

 

Where G and O2  are the enzyme co-substrates, glucose and oxygen Eox and Ered are the 

oxidized and reduced forms of the enzyme, X is D-glucono-δ-lactone and  k1, k2, k3, k4, 

k5and k-1 are the forward and reverse reaction rate constants. To control the diffusivity of 

glucose and oxygen into these microparticle sensors, their surface is coated with 

polyelectrolyte nanofilms, the details of which are discussed later in the section.  

The trend in the field of glucose sensor research is to develop sensing materials 

with higher sensitivity and shorter response time. An ideal glucose sensor will be 

expected to exhibit high sensitivity and cover the entire clinical range of 40-600 mg/dL 

for in vivo monitoring.
17

 Glucose sensors have been fabricated, optimized, and tested in 
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vitro demonstrating that they meet performance targets for sensitivity and response time 

over the physiologically-relevant range.  

Brown et al. were the first to develop calcium alginate hydrogel microspheres, 

which contained glucose oxidase, an oxygen-quenched ruthenium compound, and 

diffusion-limiting nanofilms adsorbed to the surface using layer-by-layer self 

assembly.
14

 They showed the synthesis of glucose sensors and tested their capability in 

measuring glucose. Specifically, alginate microspheres with 10-15µm size and glucose 

oxidase immobilized in the matrix were synthesized. These prototype sensors had an 

oxygen-sensitive fluorescent dye, ruthenium-tris(4,7-diphenyl-1,10-phenanthroline) 

dichloride (Ru(dpp)), within the matrix and were reported to exhibit a linear response up 

to 400 mg/dL. However, the sensors exhibited poor sensitivity, with an increase in 

luminescence signals of only ~7%.
14

 Low sensitivity of such sensors makes them poor 

candidates for making accurate measurements in vivo. Because the enzymatic 

microparticle-based glucose sensors rely heavily on the reaction-diffusion kinetics of 

substrate and immobilized enzyme, tailoring the response of sensors by changing a 

combination of sensor parameters was shown to be feasible.
13

 

Theoretically, Brown et. al. showed the role of the size of microparticles and the 

thickness of the nanofilms on sensor response. Due to the small size of these sensors, the 

response time of sensors made from alginate microparticles was predicted to be less than 

3 seconds.
13

 The increase in the diameter of microspheres resulted in an increased 

sensitivity and a slight increase in the linear response range. In contrast, the model 

predicted that an increase in the thickness of the nanofilm will result in a reduced 
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sensitivity with increased response range.
13

 The effect of the thickness of nanofilm 

coatings on sensor response was further investigated by Stein et al. with sensors 

consisting of 5, 10, 15, 20, and 25 bilayers of different polyelectrolytes (poly(allylamine 

hydrochloride) (PAH) and poly(styrenesulfonate) (PSS)).
17

 The study experimentally 

showed a steady increase in response range and a decrease in sensitivity with increasing 

film thickness. Adjusting the film thickness was found to be effective in extending the 

range of sensors. Given the low sensitivity of early prototypes employing Ru oxygen 

indicators, Stein et. al. sought to increase the response by also using a more sensitive 

oxygen indicator, platinum(octaethylporphine) (PtOEP).
17

 The sensors, employing 

PtOEP, exhibited greater sensitivity than the sensing systems employing Ru oxygen 

indicators. The role of glucose oxidase enzyme concentration was also investigated and 

it was determined that an increase in enzyme concentration resulted in an increase in 

linear response range and reduced sensitivity over the range studied.
12

 These general 

trends were used to guide further sensor prototyping.  

It is important to stress that all the above tested parameters of sensors, such as 

sphere size, sphere material, enzyme loading, nanofilm thickness, and nanofilm material 

type can be controlled during the synthesis and immobilization processes in a lab setting. 

Because the in vivo environment is unpredictable and varies from tissue site to site, time 

to time, and person to person based on age, sex, and current health, tuning the response 

time, sensitivity, and range of sensors in vivo is not feasible. Since these sensors are 

meant to be implanted and function in the skin, it is important to understand how the 
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most prevalent physiological factors, for example, vascularization around implants can 

affect sensor response. 

2.2 Influence of Oxygen on Sensor Response Properties  

These enzymatic sensors rely on the glucose concentration-dependent depletion 

of local oxygen, enabling the indirect monitoring of glucose via measurement of local 

oxygen levels using an oxygen-sensitive indicator dye. Local glucose concentrations can 

be extracted from oxygen-dependent emission spectra or luminescence lifetimes. In 

short, the overall performance of enzymatic sensors is dependent on the oxygen sensing 

and indicator.  

Oxygen is a collisional quencher of luminescence.  In collisional quenching, the 

quencher (oxygen) collides with the dye or phosphor in the excited state and returns to 

the ground state.
18

  The Stern-Volmer equation describes the process of collisional 

quenching and the conversion of oxygen concentration to luminescence intensity or 

lifetime: 

 

              (2.2)                                                       

 

where, I0 and I are the luminescence intensities in the absence and presence of the 

quencher, τ0 and τare the decay lifetimes of the phosphor in the absence and presence of 

the quencher, kd is the diffusional biomolecular quenching constant, and [O2] is the 

concentration of the oxygen.
18

  The expected luminescence intensity for a certain bulk 
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glucose level can be predicted since these sensors are based on intensity or lifetime 

measurements of an oxygen-quenched fluorescent indicator. An increase in the 

luminescence intensity or lifetime will be observed for increased glucose levels. The 

Stern-Volmer quenching constant is Ksv is directly proportional to τ0 or natural lifetime.  

In order to achieve high sensitivity, larger values of Ksv are preferred.  Additionally, 

phosphors with longer natural lifetimes are expected to exhibit higher sensitivity towards 

oxygen. The quenching constant Ksv is calculated as the product of kd and τ0.
18

  The 

diffusional biomolecular quenching constant, kd, can be determined using the following 

equation: 

    310)(4 DqDNpk fq        (2.3) 

where Df and Dq are the diffusion coefficients of the quencher and phosphor, 

respectively, N is Avagadro’s number, and p is the probability of collision.
18

  It is 

important to note that the diffusion of oxygen through the sensor matrix can affect 

sensitivity. Therefore, material properties of the sensor such as porosity have to be 

considered to tune the sensitivity of the sensor, keeping in mind, that material properties 

can affect enzyme immobilization. In addition to sensor material properties, the type of 

indicator can also determine the sensitivity of glucose sensor. To achieve high 

sensitivity, phosphors with larger values of Ksv are preferred.  

Sensor prototypes employing Ru(dpp) oxygen indicator exhibited low 

sensitivity.
14

 Efforts to improve this response by using more sensitive oxygen indicators 

were initiated by Stein et. al. Stein et. al. employed platinum(octaethylporphine) 

(PtOEP) as an oxygen indicator.
8 

PtOEP has a natural lifetime that is ~30x higher than 
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Ru(dpp) and therefore exhibits a significantly higher sensitivity towards oxygen. The 

sensors exhibited a response with a sensitivity one order of magnitude greater than what 

was previously reported for systems employing Ru oxygen indicators.  The response 

time of these sensors employing PtOEP as the oxygen indicator was found to be ~86 

seconds.
8
 

2.3 Nanofilms 

Nanofilms are perm-selective membranes that have been used to perform the 

separation of molecules based on their size.
19-20

 Bruening et al. published a series of 

reports describing the transport of various molecular species through polyelectrolyte 

multilayers. 
19-20

 Studies have shown that by using nanofilms, the diffusion of molecules 

as large as glucose molecules can be substantially reduced without significantly affecting 

the diffusion molecules relative in size to oxygen.
19-20

  Nanofilm coatings on 

microparticle glucose sensors serve two purposes: (1) Alter the permeability to glucose 

and (2) Protect the sensor matrix from protein adsorption.   

Nanofilms on microparticle glucose sensors, coated by layer-by-layer self 

assembly technique of polyelectrolytes, have been shown to selectively alter the 

permeability of glucose molecules into the matrix.
17

 The Layer-by-Layer self assembly 

techniques allows the construction of complex nanofilms through simple adsorption of 

oppositely charged molecules in a sequential fashion.  In this technique as demonstrated 

in Figure 2.2, a charged substrate is exposed to oppositely charges molecules that 

electrostatically self-assemble on the substrate surface, forming a nanometer scale thin 
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film.  Subsequent molecular layers are adsorbed similarly, ultimately resulting in a 

nanofilm with the desired arrangement and thickness. 

 

 

 

 

 

 

 

Figure 2.2   Layer-by-layer nanofabrication process. 

 

This technology allows for a variety of nanofilms, based on the polyelectrolyte 

materials used, ranging in different thickness to be constructed through an extremely 

simple procedure. By increasing the thickness of the nanofilm or changing the nanofilm 

composition, it has been shown that glucose diffusion to sensor matrix can be 

significantly reduced.
17

 By doing so, the response range of the glucose sensors can be 

extended. To extend the response range of the sensors by decreasing the supply of 

glucose to the particle interior, the system becomes diffusion-limited. 

Mass transport limiting nanofilms also serve as a strategy to improve sensor 

biocompatibility. Glucose sensors have over the years proved to be inadequate for long 

term in vivo applications, with membrane biofouling playing a significant role in the loss 

of sensor function and initiation of host response. When polyelectrolyte films are 

exposed to the biological tissue environment, certain proteins can absorb rapidly on to 

the surface of the films as an initial response to foreign materials. The protein adsorption 
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can initiate a series of events leading to inflammation and ultimately fibrous capsule 

formation around the sensors. The formation of thick, collagenous fibrous capsule 

around sensors can affect glucose and oxygen flux to the sensors and to the surrounding 

tissue causing many undesirable, detrimental effects to the tissue and host. It can also 

affect sensor response and lead to loss of sensor function.  One simple strategy for 

improving sensor biocompatibility that has been utilized towards micro-particle glucose 

sensor design is to reduce protein adsorption. Surface modifications on the sensor’s outer 

membrane can be performed such as the incorporation of PEG or poly(ethylene glycol) 

into an existing polyelectrolyte nanofilm. Previous work has demonstrated PEG-grafted 

polyelectrolyte films had strong resistance to protein adsorption.
21-24

 The PEG polymer 

electrostatically adsorbs to the surface of polyelectrolyte films through layer-by-layer 

self-assembly and resists penetration by many proteins.
23,25

 Glucose sensors covered 

with PEG-g-PLL on the outer layer have been tested and shown to reduce albumin 

adhesion.
26

  Furthermore, resistance to protein adsorption could lead to less fibrous 

encapsulation as demonstrated in previous studies, however, the corresponding effect on 

sensor performance is unknown.
25

 

2.4 Structure of the Skin 

Because glucose sensors utilized for our studies are meant to be implanted in the 

dermis, the physiology and anatomy of the dermis will be reviewed. The skin consists of 

2 distinct layers, the epidermis and the dermis (shown in Figure 2.3), and resides above 

the subcutaneous tissue comprised of adipose (fat) and muscle.
27-28

 The dermis is 

approximately 1.3 mm in thickness; however skin thickness can vary depending on the 
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body site, with age, and between sexes (the skin thickness of a female being thinner than 

the male.
27,29

 The skin is the only organ besides the lungs that is directly exposed to 

atmospheric oxygen. Oxygen is consumed in all layers of the epidermis and dermis. The 

oxygen demand by the skin is partially satisfied by the blood. Oxygen levels range from 

0-277 μM supplied by diffusion from the atmosphere and diffusion from capillaries.
27-29

 

Oxygen diffusion coefficients in dermal papilla, from previous studies, have been 

estimated to be between 2.3 × 10
-5

 cm
2
/s and 1.0×10 

-5
 cm

2
/s by Grossmann et al.

30

     

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3   A representation of the structure of the skin.
1
 

 

The skin is highly vascularized: approximately 1 square inch of skin can contain 

up to 15 feet of blood vessels.
27,31

The interface between the epidermis and dermis 
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consists of a succession of papillae. Each papilla contains a capillary loop that supplies 

nutrients such as glucose and oxygen to the epidermis. The dermis exhibits a vasculature 

that is arranged within the two layers of the dermis: (1) the papillary dermis and (2)the 

reticular dermis. The border between the 2 layers of the dermis is distinguishable by a 

different collagen fiber arrangement. In the papillary dermis, the collagen fibers form a 

meshwork of predominately type III collagen, while the reticular dermis contains thick 

bundles of type I collagen fibers arranged more parallel to the surface of the skin.
27,31

At 

the interface between the dermis and subcutaneous layer lies the deep vascular plexus. 

The deep vascular plexus is generally a bundle of vessels that runs parallel to the skin 

surface. Arcades of capillaries from the deep vascular plexus rise perpendicular to the 

skin surface to another dense parallel vessel mat made up of capillaries called the 

superficial vascular plexus.
27,31-32

 Finally, small capillary loops arise from the superficial 

vascular plexus and go into each dermal papilla. The average distance from one capillary 

loop to another is 120 to 220 micrometers.
33

 

Additionally, the dermis consists of connective tissue, nerves, and the bases of 

hair follicles and sweat glands as seen in Figure 2.3. Because the large and more 

abundant adipose cells within the subcutaneous tissue of humans hinder glucose 

molecules traveling through the skin to reach sensors, it can be inferred that glucose 

diffusion in the human dermis could also possibly be hindered by the structural 

components of the dermis. According to Bashkatov et al., two mechanisms may 

contribute to the restricted glucose diffusion through the interstitial matrix.
34

 The 

glucose particles can stick to collagen fibrils, or they can be hindered by the size of the 
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mesh spacing between the fibrils. Because glucose is a polar molecule, its diffusion can 

also be hindered by the proteins, glycoproteins, and glycosaminoglycans contained in the 

interstitial fluid.
34

 The average glucose diffusion rate in the human dermis was 

experimentally determined to be 2.64 x 10
-6

cm
2
/s.

35
 This diffusivity value is significantly 

lower than the glucose diffusivity in water (6.9 x 10
-6

cm
2
/s).

34
 Glucose diffusivity in the 

dermis is expected to be lower than glucose diffusivity in water since there are several 

diffusion limiting components within the tissue such as collagen and cells. The glucose 

diffusion rate in the rat subcutaneous tissue is 2.35 x 10
-6

cm
2
/s.

36
 In comparison with the 

glucose diffusion rate in the human dermis, the glucose diffusivity in the rat dermis is 

slightly higher by ~10%. Because the rat skin is different in terms of thickness and 

amount of diffusion hindering contents in the tissue, this percentage difference is 

expected to be higher when comparing diffusivity of glucose in the dermis and 

subcutaneous tissue of humans.  

2.5 Rat Model for Predicting Glucose Sensor Response  

Rats will serve as the initial animal models to be used to test the performance and 

biocompatibility of implantable sensors within the body. Due to ease of handling, 

availability, and cost, the rat is most commonly used for the in vivo evaluation of micro-

particle glucose sensors. There are noteworthy differences in the anatomy and 

physiology of the skin between rats and humans. Compared to humans, rats have thin 

skin covered with fur. In contrast, humans have thick skin, consisting of several layers of 

living cells, with hair.
37

  Human subcutaneous tissue is primarily composed of large 

adipose cells, with fewer vessels than found in rat subcutaneous tissue.
37

 Additionally, 
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glucose diffusion in rats is not the same as that of humans.
37

 The large and more 

abundant adipose cells within the subcutaneaous tissue of humans can potentially hinder 

glucose molecules travelling through the skin to reach sensors. For this reason, glucose 

diffusion in the rat subcutis is much faster than in the human subcutis due to increased 

interstitial space, smaller cells and greater vessel density.
37

 Given these known 

differences, predicting sensor performance for the human in vivo environment by using 

the rat, as the testing animal model, may not be physiologically relevant. Additionally, 

some studies have suggested that humans are not affected to the same degree as rats by 

host response factors, such as biofouling, wound healing, fibrous encapsulation upon 

implantation of microdialysis probes.
38

 Nevertheless, animal models are more suitable 

than human subjects for sensor validation studies, since interventions and histological 

processing are more easily performed. 

2.6 Implanting Glucose Sensors in the Dermis  

Given the information on physiology of skin, a piercing device like a syringe 

with a hypodermic needle can potentially penetrate the epidermis and break vessels in 

the dermis. Due to the abundance of capillaries in the dermis, it would be impossible to 

enter the dermis without rupturing any vessels. To make sure that minimal damage to 

blood vessels is caused, skin can be penetrated about 1.6 to 2.2 mm deep.
27-28

 This is 

sufficiently deep to consistently penetrate the epidermis (up to 1.5 mm deep) and part of 

dermis while safely avoiding the deep dermal vascular plexus that contains the larger 

diameter blood vessels.
28,32

 Furthermore, extensive bruising due to blood leakage into 
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the tissue and discomfort to the patient can be avoided by controlling the depth at which 

sensors are implanted.  

The tissue damage created by the implantation procedure usually results in 

inflammation. Reddening and swelling are the classical signs of early events of 

inflammation indicating battle against infection. These signs are accompanied with a 

series of defensive reactions by cells of the immune response. Further progression of the 

immune response can potentially result in sensor failure. 

2.7 Sensor Failure In Vivo  

When artificial materials are implanted inside the body for long-term ranging 

from days to months, concerns are raised on the potential undesirable body responses to 

the implanted materials. The desirable host response may be total inertness and no 

interaction with tissue surrounding the implanted sensors. However, studies have shown 

that implanted electrochemical sensors fail after several days (ranging from 10 days to 

56 days).
39

 This implant failure can be attributed to the body’s immune response towards 

foreign materials. The evaluation of the biocompatibility of implantable delivery systems 

requires an understanding of the inflammatory and healing responses of implantable 

materials. Inflammation, wound healing and foreign body responses are generally 

considered as components of the tissue or cellular host responses to injury.  

The acute inflammatory response starts immediately, within seconds after the 

sensors are implanted in the skin.  During the initial acute response, a series of wide 

range attacks occur on the encountered foreign materials that constitute the sensor with 

the release of components from the provisional matrix (i.e. enzymes, growth factors, 
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cytokines).
40-41

 Fluid carrying plasma proteins and inflammatory cells migrate to the site 

of the foreign body or sensor, initiating the repair process. Acute inflammation, 

characterized by high concentrations of neutrophils and eosinophils gives rise to chronic 

inflammation as the transport of inflammatory cells (i.e. macrophage, monocytes, 

lymphocytes) are facilitated to the area.
40-42

 The primary role of these cells appears to be 

phagocytosis for the removal of dead tissue and other small particulates resulting from 

implantation. In the attempt to destroy the foreign body, these phagocytic cells release 

reactive oxygen species such as hydroxide and hydrogen peroxide, and enzymes 

intended to degrade the implant.
9-10,40-43

 

Macrophages initiate the repair of damaged tissue by forming granulation tissue 

surrounding the implant. Foreign body giant cells which are comprised of fused 

macrophages attach to the surface of implant.
40-43

 If the implant is not phagocytized by 

the cells, the body tends to completely isolate the foreign implant from the surrounding 

host environment by forming granulation tissue. Granulation tissue and foreign body 

giant cells, fused monocytes or macrophages, compose the foreign body reaction further 

with the formation of a fibrous membrane capsule around the implants as illustrated in 

Figure 2.4.
40,43

 The formation of capsules around the implant is mediated by fibroblasts. 

The formation of a dense, avascular collagen capsule around the implant—fibrosis is the 

final stage of the wound healing process to implanted materials and is dependent on the 

topography and shape of the implanted device.
9-10,40
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Figure 2.4   Illustration of a glucose molecule passing through tissue to the glucose  

         biosensor. Sensors can fail from the impedance of glucose molecule 

         diffusion due to the dense fibrous capsule formation.  

 

Fouling, which is the consequence of protein adsorption and cell adhesion on the 

sensor surface, leads to a declining signal due to diminished analyte transport.
9-10,36,42

 

These tissue reactions around the sensor can potentially affect the diffusion of oxygen 

and glucose and, and as a result, affect sensor response and sensitivity. For example, 

after 7 days, current prototype sensors (without immobilized catalase) operating under 

physiological conditions exhibit a 75% loss of sensor sensitivity as a direct result of 

interaction with the in vivo environment.
8
 

The formation of fibrous capsules around the sensors implanted in the dermis is 

of the greatest concern. A fibrous capsule fully develops and reaches a stable structure 

within 1 to 2 weeks.
44-45

 After this point, the reactive proliferation of the fibrous tissue 

halts. Previous investigators have measured the thickness of a fibrous capsule formed in 
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response to different implant materials. Wood et al. implanted disks that were 1500 µm 

thick into rats and found that the fibrous capsule thickness at 2 months averaged at max 

200 µm.
46

 Other investigations have obtained similar results: with sutures of 200 µm 

diameter implanted in the subcutaneous tissue of rabbits, fibrous capsule thickness of 85 

to 125 µm thick developed.
47

 Thus, there appears to be correlation between implant size 

and capsule thickness. Since our glucose sensors are 10 to 12 µm in diameter, it is 

reasonable to infer that the fibrous capsule around sensors, if at all, will develop to be 

less than 100 µm thick. While the problem with fibrous capsule formation may not occur 

with our implants due to their small size, it is an important issue to consider in the 

development and deployment of implantable devices.  

High resistance of a densely fibrous, avascular capsule has the potential to 

severely reduce the glucose supply to the sensor and thus reduce the sensor’s ability to 

output a reliable optical signal. The increase in glucose and oxygen consumption by 

macrophages in inflamed tissue can also contribute in the reduction of glucose supply to 

the sensor. Any faulty interpretation of the glucose concentration in the tissue 

surrounding the sensor due to the progression of host response could cause serious errors 

in in vivo sensor calibration. Calibration ensures that the apparent dermal glucose 

concentrations as indicated by the sensor oxygen levels accurately reflect the 

concentrations in the circulating blood. If the diffusion of glucose through the steady-

state structure of the fibrous tissue can be characterized, the fibrous capsule may be used 

towards sensor signal calibration. For this reason, understanding how inflammatory and 

long-term host responses interfere with sensor function is critical in developing reliable, 
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predictable, implantable glucose sensors. To date, no one has shown a convincing 

analysis of the effects of fibrous encapsulation or inflamed tissue formation leading to in 

vivo sensor failure. Therefore, this thesis aims to address these issues systematically. 
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3 THEORY 

 Mathematical models, if properly designed, can provide means of testing 

physiological parameters that are difficult to experimentally control and measure and 

that can significantly affect the performance of proposed microscale glucose sensors. 

Furthermore, modeling of glucose sensors in the dermis allows us to predict the general 

trends in the luminescence intensity signal that will be obtained from a healthy patient 

without actually having to deploy these sensors in the dermis of a human or animal 

model. Use of a 2D multi-scale model of a microscale glucose sensor implanted in the 

dermis, along with all reaction and diffusion processes for a two-substrate reaction are 

explained in this section.  

3.1 Enzyme Kinetics  

Glucose oxidase (GOx) is a well-characterized oxidoreductase enzyme, which 

catalyzes the oxidation of glucose to D-glucono-δ-lactone in the presence of oxygen.
15-16

 

The redox reaction of glucose and oxygen catalyzed by glucose oxidase is expressed as 

the following reaction scheme (same equation as described in the background section):  

  

 

           (3.1) 

 

Where G and O2  are the enzyme co-substrates, glucose and oxygen, Eox and Ered are the 

oxidized and reduced forms of the enzyme, X is D-glucono-δ-lactone, and  k1, k2, k3, k4, 

k5and k-1 are the forward and reverse reaction rate constants, respectively. From this 
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reaction scheme, a total of six equations may be written to describe the system in time 

and space, where the supply of substrate is supplied by diffusion with DG and DO being 

the diffusivities of glucose and oxygen, respectively. 

 (3.2) 

  
 

    

 
 

 

 
 

 

 
 

 

 

 

 

To simplify this system it was assumed that the formation and dissociation of 

intermediate complexes ( , ) occurs very rapidly such that

 .
14

 Using this assumption, the system may be 

simplified to two coupled partial differential equations in time and 2D space: 
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            (3.3) 

 

 

Where E0 is initial enzyme concentration and R is the reaction rate. CG and CO refer to 

bulk glucose and oxygen concentrations and DG and Do are glucose and oxygen 

diffusivities, respectively. This system can be solved, with boundary and initial 

conditions appropriate to the geometry illustrated in figure on page 34, within the spatial 

domains to obtain the concentration of each species in space and time. The reaction rate 

equation for equation 2.1 is derived: 

 

 

                 (3.4) 

 

According to Gibson et. al., who have thoroughly investigated the redox reaction 

of glucose and oxygen catalyzed by glucose oxidase, showed that the reaction rates, k3 

and k5, are kinetically insignificant first order rate constants.
16

 Therefore, the overall 

oxidation of glucose therefore behaves kinetically as:  

 

     (3.5) 

           

 

For this modified system, the reaction rate equation is: 

             (3.6) 
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Because the glucose sensors described in this thesis contain immobilized glucose 

oxidase, the reaction rate, sensorR , can be used in the two coupled partial differential 

equations of glucose and oxygen to obtain the concentration profile of oxygen inside the 

sensor for a given time. The values of rate constants k1, k2, k3, and k4are as follows: 

k1=2.1 [m
3
/(s*mol)], k2=90[1/s], k3=1000[1/s] and k4=1200[m

3
/(s*mol)].

16
 When these 

sensors are exposed to bulk glucose and oxygen, glucose and oxygen diffuses inside the 

porous microspheres matrix and activate the reaction shown by equation 2.1. At some 

point in time, the consumption of substrate is balanced with diffusion of the substrate. 

This point in time is known as the steady state. It is in this steady-state situation that 

glucose can be effectively monitored by taking measurements of oxygen within the 

sensor. The consumption of oxygen inside the sensor depends on the bulk glucose 

concentration reacting with glucose oxidase. As bulk glucose levels increase, the 

reaction rate within the sensor is expected to be higher, thus causing more oxygen within 

the sensor to be depleted. The sensors work by optically transducing glucose. Because 

these sensors are based on intensity measurements of an oxygen-quenched luminescent 

indicator, an increase in the luminescence intensity will be observed for increased 

glucose levels. 

Brown et. al. showed the synthesis of glucose sensors and tested their capability 

in measuring glucose.
14

 Alginate microspheres with 10-15µm size and glucose oxidase 

immobilized in the matrix were synthesized. These prototype sensors had an oxygen 

sensitive fluorescent dye, ruthenium-tris(4,7-diphenyl-1,10-phenanthroline) dichloride 

(Ru(dpp)), within the matrix and were reported to exhibit a linear response up to 400 
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mg/dL.
14

 The sensors exhibited poor sensitivity with an increase in luminescence signals 

by only ~7%.
14

 Low sensitivity of such sensors makes them poor candidates for making 

accurate measurements in vivo. Because the enzymatic microparticle-based glucose 

sensors rely heavily on the reaction-diffusion kinetics of substrate and immobilized 

enzyme, tailoring the response of sensors by changing a combination of sensor 

parameters is feasible. Specifically sensor parameters such as sphere size, sphere 

material, enzyme loading, nanofilm thickness, nanofilm material type, and oxygen 

indicator type can be experimentally controlled during synthesis process.  

Brown et. al. showed the role of the size of microparticle and the thickness of the 

nanofilm coating on the response of such sensors using a mathematical model.
13

 The 

response time of sensors made from alginate microparticles was found to be less than 3 

seconds which was attributed to the microscopic size of the sensors.
13

 The increase in the 

diameter of microspheres will result in an increased sensitivity and a slight increase in 

the linear response range. In contrast, the model predicted that an increase in the 

thickness of the nanofilm will result in a reduced sensitivity with increased response 

range. The role of glucose oxidase enzyme concentration was also investigated and it 

was determined that an increase in enzyme concentration will result in an increase in 

linear response range and reduced sensitivity.
12

 These general trends were used to guide 

further sensor prototyping.  

Sensor prototypes, employing Ru(dpp) oxygen indicator, that were developed by 

Brown et. al. exhibited low sensitivity.
14

 Efforts to increase this response by using more 

sensitive oxygen indicators were initiated by Stein et. al. Stein et. al. employed 
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platinum(octaethylporphine) (PtOEP) as an oxygen indicator. PtOEP has a natural 

lifetime that is ~30x higher than Ru(dpp) and therefore exhibits a significantly higher 

sensitivity towards oxygen.
8
 The response time of these sensors employing PtOEP as the 

oxygen indicator was found to be ~86 seconds.
8
 The effect of the thickness of nanofilm 

coatings on sensor response was investigated with sensors consisting of 5, 10, 15, 20, 

and 25 bilayers of different polyelectrolytes (poly(allylamine hydrochloride) (PAH) and 

poly(styrenesulfonate) (PSS)). The study showed a steady increase in response range and 

a decrease in sensitivity with increasing film thickness.
8
 Adjusting the film thickness 

was found to be effective in extending the range of sensors.  

It is important to stress that all the above tested parameters of sensors, such as 

sphere size, sphere material, enzyme loading, nanofilm thickness, nanofilm material 

type, and oxygen indicator type can be controlled during the synthesis and 

immobilization processes in a lab setting. Tuning the response time, sensitivity, and 

range of sensors in vivo is not feasible. Several physiological parameters in vivo can 

influence glucose and oxygen diffusion to sensors implanted and affect sensor response. 

This work focuses on understanding how much sensor response changes with 

unmanageable factors in vivo varying from person to person and during implantation 

such as number of blood vessels, sensor implantation site, number of sensors, variability 

in the arrangement of sensors, and occurrences of host response. 

The model described in this work does not consider the other factors involved in 

the reaction scheme such as hydrogen peroxide, since the observed luminescence signal 

for a physiological range of glucose will be primarily due to the oxygen concentration in 
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the sensor at steady-state. It is noteworthy to mention that hydrogen peroxide can cause 

hydrolytic cleavage and deactivation of enzyme within the sensor.
11-12

 Loss of the 

enzyme can impair sensor function by reducing the reaction rate within the sensor 

matrix. Singh et. al. showed that this dilemma can be resolved by incorporating catalase 

(CAT) in addition to glucose oxidase.
12

 With the co-immobilization of CAT, the 

deactivation of the both enzymes is significantly reduced and the longevity of the 

sensors is enhanced by up to 3 months.
12

 Because enzymatic glucose sensors measure 

glucose indirectly via changes in the oxygen concentration, the most important 

relationship considered in this work is the output of oxygen with various glucose 

concentrations. For all of the simulations described, involve obtaining the corresponding 

solution for oxygen concentration was obtained for a time lapse of 30 minutes. Steady-

state was easily achieved during this time period. 

3.2 Methods to Solve Reaction-diffusion Equations 

The system of equations used to model the response of glucose sensors are non-

linear partial differential equations since the reaction terms of glucose and oxygen in 

equation 3.3 are of second order. The finite element method (FEM) was used to solve the 

non-linear partial differential equations in this model. Finite element method is generally 

preferred over other methods for models consisting of domains with a complex 

geometry. For the studies conducted, COMSOL 3.5a (COMSOL, Inc, Burlington, MA), 

was used to perform the simulations, which estimates the solution using FEM.  
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3.3 Modeling Scheme  

3.3.1 Model Geometry 

The model for our sensing system includes a microsphere coated with a 

polyelectrolyte film as the glucose sensor implanted in the dermis. The role of 

polyelectrolyte film (PE) coatings on the porous microspheres is significant in achieving 

optimal sensor performance. The PE coatings on microspheres impose an additional 

transport barrier to glucose and oxygen molecules. The use of PE coating reduces the 

transport of glucose to the sensor matrix without significantly affecting the transport of 

oxygen, thereby resulting in an extension of the response range of microparticle-based 

glucose sensors.
17

 To simplify the representation of glucose sensors implanted in the 

complex structure of the dermal tissue containing several physiological elements, the 

geometry of the model was constructed in 2-D Cartesian coordinate system. The model, 

created in 2-D, depicts a cross-sectional view of a sensor in the dermal tissue. A 

schematic of the model is shown in Figure 3.1. 
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Figure 3.1 Perspective view of the skin physiological system with enzymatic glucose 

        sensor and other components derived from the physiology and anatomy 

        of the human dermis. 

 

Though not representative of the complex 3D nature of the skin, the 2D model 

provides a means for testing physiological parameters that are difficult to experimentally 

control and that can significantly affect the performance of glucose sensors. The skin 

consists of several distinct layers in addition to the dermis and components such as 

connective tissue, blood vessels, nerves, and the bases of hair follicles and sweat 

glands.
32

 Inclusion of all of these components within the model is possible but will make 

the model too complex to understand and validate the basic behavior of glucose sensors. 

To compute the transient response within the model consisting of components ranging 
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from nanometers to millimeters, the multi-scale approach in describing a microsphere 

sensor with nanofilms implanted millimeter scale deep in the dermis addresses the 

transport properties of diffusates (glucose and oxygen) through complex interactive 

materials.  

The different domains of the model include the dermal tissue, microsphere, and 

polyelectrolyte films. These domains were programmed to mimic their function by 

taking into account glucose and oxygen metabolic and diffusion rates. The sensor 

consists of a 12µm diameter porous microsphere coated with an 8-bilayer polyelectrolyte 

film of 200 nm thickness. The size of the microsphere and thickness of the nanoflim 

were chosen based on previous studies conducted with similar sensor properties in order 

to compare results from theoretical modeling from this work with previous experimental 

observations. The primary purpose of the polyelectrolyte films around the microsphere 

glucose sensor is to act as a transport barrier and reduce the transport of molecules 

similar in size to glucose without affecting the diffusion of oxygen. Reduction of glucose 

diffusion relative to oxygen diffusion to the enzyme concentrated microsphere helps to 

ensure that the sensor remains in the sensitive glucose-limited regime and thus assists in 

extending the response range of microparticle-based glucose sensors. 

The tissue domain was designed to mimic its physiological function and anatomy 

by taking into account glucose and oxygen metabolic and diffusion rates, geometry, 

tissue area, and capillary density. Because the average distance from one capillary loop 
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in the human dermis is about 120 to 220 micrometers,
33

 the sensors were initially 

modeled to be away from the capillary at a distance (d) of 100µm. A limitation to this 

model is that the blood vessels have been vertically aligned with the sensor, whereas the 

geometry of capillaries in vivo varies, with intertwining loops. This situation is not 

practical or necessary to model for these initial studies.  For the study on the effect of 

sensor location relative to the blood vessel on sensor response time, later described in 

this paper, the distance between the sensor and capillary is varied from 25μm to 150μm. 

3.3.2 Reaction and Diffusion Rates 

Unless otherwise stated, the model used the following values for glucose and 

oxygen metabolic rates (RG and RO) and diffusion rates (DG and DO) for all simulation. 

  

Table 3.1   Glucose and Oxygen Diffusion and Reaction Rates 

Domain DG[m
2
/s] DO[m

2
/s] RG[mol/(m

3
*s)] RO[mol/(m

3
*s)] 

Dermis 2.64E-10
35

 1.50E-09
30

 0.027
48-49

 1.04E-05
50

 

PE Film 9.87E-14
51

 2.52E-11
51

 0 0 

Microsphere 1.97E-12 1.00E-11 Rsensor Rsensor 

 

These constants were derived from experimental observations and literature on 

the human dermis, glucose oxidase, porous microspheres, and polyelectrolyte films. To 

determine the diffusivity within the microsphere matrix, the diffusivity of glucose and 

oxygen in water was multiplied by the porosity (α= .005) of porous microspheres.
52

 The 
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glucose metabolic rate in the dermis of healthy person was determined from literature on 

the diffusion properties of the dermis to be 0.027 mol/(m
3
s).

48-49
 The oxygen metabolic 

rate in the dermis of healthy person was determined form literature to be 1.043e-5 

mol/(m
3
s).

50
 Diffusivity of glucose and oxygen in the human dermis was determined to 

be 2.64e-10 m
2
/s for glucose and 1.5e-9 m

2
/s for oxygen.

7,35
 These parameter values 

obtained from literature have been determined from experiments in humans, specifically, 

in the dermis.  

For the dermal tissue space, the Michaelis-Menten equation was used to describe 

the metabolic consumption of the glucose and oxygen. In the Michaelis-Menten 

equation. 

   
CK

CV
CR

m

max)(         (3.7) 

 

 For the consumption of the solute (C), R(C) was assumed to have a negative 

value. In the equation stated above,  represents the maximum reaction rate in the 

tissue. The maximum reaction rate occurs when C>>  and the reaction rate is then said 

to be zero-order in the solute concentration (i.e C
0
).  is the Michaelis constant and 

represents the value of C for which the reaction rate is one-half the maximal value.
53

 

According to Fournier et. al., in many biological reactions, C>> , and it can be 

assumed that the reaction is zero-order and that = =RG for glucose consumption 

or RO for oxygen consumption in the dermal tissue space.
53

 The values for glucose and 
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oxygen consumption rates were obtained from literature and past studies on the human 

dermis. To understand the relative contribution and effect of the metabolic consumption 

of glucose and oxygen in the dermis on the response profile of the sensor, simulations in 

which there is no metabolic consumption of glucose and oxygen in the dermis domain 

(RG and RO = 0 ) were performed.
53

 The reaction rate, Rsensor, for the microsphere was 

derived from the glucose oxidase reaction scheme described in the equation 2.1. 

3.3.3 Mesh Quality 

 After specifying the geometry, Lagrange quadratic elements were used to mesh 

the sensor model. The mesh was refined further using Laplace’s algorithm in the sensor 

domain alone until the changes in the nodal locations were smaller than 1/100 µm. The 

quality of the mesh was judged for the model generated through evaluation of the 

number of distorted elements. The baseline mesh of the model consisted of 14,792 

elements. Because much of the reaction of interest is within the sensor, the mesh 

resolution was increased in the microsphere by splitting each of the 4-noded tetrahedral 

elements into two smaller tetrahedral to verify that the default resolution of the mesh 

was sufficient. Simulation and analysis confirmed that the resolution was sufficient since 

the results for the oxygen concentration within the central area of the sensor were not 

different with higher resolution mesh. 
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3.3.4 Initial and Boundary Conditions 

 Initial and boundary conditions were specified for each domain of the model. The 

different domains of the model include the dermal tissue, microsphere, and 

polyelectrolyte films. The initial enzyme concentration was specified to an 

experimentally determined amount of 0.02 mol/m
3
 or 20 µM for the microsphere domain 

only. There is no enzyme present in the dermal tissue or the polyelectrolyte films. Bulk 

oxygen concentration of 140 μM, an accepted value for intra-dermal oxygen, is present 

in the dermal tissue, sensor, and polyelectrolyte film.
54

 No initial glucose is present in 

any of the domains. It was assumed that at t=0
-
 oxygen concentration inside the sensors 

(i.e., microsphere and film) is equal to the bulk. At t=0, the system is ―turned on‖ in 

which enzyme in the sensor is activated and the release of glucose and oxygen supply 

from the capillary into the surrounding tissue is commenced. The reaction-kinetics 

within the sensor initiate as glucose diffuses in the sensor matrix. The diffusion-reaction 

process is solved for t=1800 seconds. The diffusion-reaction process was solved for a 

period beyond the point of when steady-state was achieved (within 350 seconds) to 

validate that the consumption is balanced with the diffusion from bulk. The steady-state 

solution is the internal oxygen concentration distribution inside the sensor. 

 The boundary conditions were specified by assigning a certain value to the 

concentration of glucose and oxygen at the boundary of each domain. The left boundary 

of the tissue was set to mimic the function of a blood vessel. Because blood vessels serve 

as a constant supplier of oxygen and glucose to the surrounding tissue, the left boundary 

of the tissue was set to supply bulk oxygen concentration of 140 μM and initial bulk 
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glucose concentration of 5 mM. For studies in which the steady-state concentration of 

oxygen within the sensors was determined for the entire blood glucose range which may 

be encountered by diabetic patients, the bulk glucose concentration at the left boundary 

of the tissue was altered from 0 to 20mM glucose. The dermal tissue boundary is 

insulated to have no flux. Boundaries of the sensor and polyelectrolyte film are set to 

have bi-directional flux where glucose and oxygen can diffuse in and out of the 

boundaries. 

 After specifying the initial and boundary conditions, the model was then solved 

using a direct solver, based on the Gauss-elimination method. Based on the initial 

conditions of glucose and oxygen concentration, the solution transfigures with time. At 

some point in time, the solution reaches steady-state, after which the concentration of the 

reactive species will not change with time. 

To solve for the oxygen concentration within the central area of the sensor and 

understand the reaction kinetics within the sensor, this model serves as an efficient, 

accurate method of determining the conditions in vivo that can potentially affect sensor 

performance in terms of response time and sensitivity. Furthermore, the model allows 

for testing physiological variables that are difficult to experimentally control during 

implantation of these sensors in the dermis of a human or animal model. Using the 

mathematical model described in this section, simulations were performed to provide 

general trends in sensor response in effect to varying different physiological parameters. 
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4 EFFECT OF SENSOR LOCATION RELATIVE TO BLOOD VESSELS ON 

SENSOR RESPONSE TIME 

4.1 Introduction  

For treating diabetes, it is desirable to have response times shorter than the time 

scale of physiological glucose excursions, to permit continuous glucose monitoring. 

Sensor response times requiring greater than seven minutes to reach 90% of steady state 

may present problems in monitoring patients when blood glucose levels fluctuate 

rapidly.
42

 Prototypes of enzymatic micropaticle-based glucose sensors have 

demonstrated fast response time in vitro (<90s); however, it is difficult to predict 

whether these sensors will perform reliably in vivo, where they will be subjected to 

various physiological conditions.
8
 

The response time of the sensor is primarily controlled by diffusion of glucose. 

Because blood vessels serve as a constant supplier of oxygen and glucose to the 

surrounding tissue, factors such as blood vessel density and location of blood vessels 

relative to the sensor can influence the response time of sensors implanted in the dermis. 

Other factors of the in vivo environment, such as consumption of glucose and oxygen by 

cells in the dermis and the number of sensors implanted can also play a critical role in 

the overall diffusion of glucose as well. Since these parameters are more difficult to 

experimentally control and measure, investigation of the effects of varying these 

parameters is important to consider via theoretical treatment.  
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Simulations were performed to predict response time with varying the number of 

particles distributed in the dermis and varying physiological characteristics of the 

surrounding dermal tissue; specifically, capillary density, blood vessel, location relative 

to sensor, and glucose and oxygen consumption in tissue. The physiological factors 

aforementioned have the potential to impair solute diffusion into the sensor causing the 

sensor function slowly in vivo. The results from these simulations will allow us to 

analyze how much the sensor response time changes with variations in the number of 

sensors, and in the number and location of blood vessels relative to the sensing system 

and if these changes in response time are acceptable for efficient sensor performance in 

vivo. Trends observed from this study using well-ordered geometries will give insight on 

the conditions and characteristics of the tissue in vivo that ensure a rapid sensor response 

time. If a combination of factors such as increase in number of sensors or blood vessels 

show a significant improvement of 50% or greater in the reduction of sensor response 

time, findings from this study could serve as a strategy for improving sensor 

performance upon implantation. 

4.2 Methods  

4.2.1 Varying Capillary Density and Location Relative to Sensor 

The two substrate 2D multi-scale baseline model of a single, microscale glucose 

sensor in the dermis, illustrated and described in Figure 3.1 in the Theory section 

(Section 3) was solved to investigate the role of blood vessel density and location of the 
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sensor relative to a blood vessel. Simulations were conducted to determine the 

magnitude of the change in the response time of sensors with doubling the amount of 

blood vessels around sensors. For all simulations conducted, the initial and boundary 

conditions remained the same as described for the baseline model of a single particle 

implanted in the dermis in the Theory section (Section 3). 

Being that the average distance from one capillary loop in the human dermis is about 

120 to 220 micrometers,
33

 the sensor was initially modeled to be located away from the 

capillary at a distance (d) away from the capillary of 100 micrometers. To determine the 

effect of sensor location relative to blood vessel, this distance between the sensor(s) and 

capillary was varied from 25μm to 150μm by varying the location of boundary B1. This 

boundary, acting as a blood vessel, was specified to supply a constant bulk oxygen 

concentration of 140 μM and bulk glucose concentration of 5 mM. 

In studying the effect of increasing blood vessels around the sensor(s), response 

profile obtained from simulation in which boundary B2 and B1 (left and right boundaries) 

were both specified to act as blood vessels was compared with the response profile from 

simulations with only B1 or the left boundary specified as a blood vessel. The response 

profiles allowed for comparing the differences in the response time of sensor(s) at 

different locations from the vessel and with doubling the amount of vessels influencing 

the diffusion of glucose and oxygen to the sensors. 

The step response was used to determine response time. With each parameter 

varied, transient analysis using a time-dependent solver was used to solve the change in 
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the average internal distribution of oxygen concentration in the sensor for up to t=1800 

sec with time stepping of 0.25 sec. The average oxygen concentration within the sensor 

is determined using integration of oxygen concentration within the microsphere area. 

Steady-state was achieved well before the simulation was completely solved for 1800 

sec. using the solution, the time to reach 95% (T95) of the steady state was determined.  

4.2.2 Varying Number of Sensors 

In the implantation process, sensors are suspended in a small amount of solution 

(50 to 100 µL) and introduced to the dermis via intra-dermal injection. Since it is 

difficult to control the number of sensors and their distribution within the dermis, 

changes in sensor response time with varying the number of sensors implanted in the 

dermis is essential to investigate. Furthermore, the reaction-kinetics within sensors can 

slow the diffusion of glucose and oxygen to sensors in the surrounding area and thus can 

affect the response of the entire sensing system as a whole. For all the above 

speculations, simulations for increasing blood vessels and varying location of blood 

vessels were conducted for another set of models differing in the number of sensors. 

Models consisting of sensors in a 3x3 array (9 sensors) and 4x4 array (16 sensors) in the 

dermis, shown in Figures 4.1 (a) and (b), were formulated to investigate the changes in 

response time with increasing the number of sensors implanted in the dermis. For all 

simulations conducted to determine the effect of varying the number of sensors on the 

collective response time of the sensing system, the initial and boundary conditions 
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remained the same as described for the baseline model of a single particle implanted in 

the dermis in the Theory section (Section 3). 

 

 

 

 

 

 

 

 

A) Schematic of sensors arranged in             B) Schematic of sensors arrange in 4x4      

3x3 Array (9 sensors)                   Array (16 sensors) 

 

 

Figure 4.1   Representation of models containing sensors arranged in A) 3x3 

             Array and B) 4x4 Array. 

 

The average internal oxygen concentration for each sensor in the array was solved 

using the same methods as described before. With each parameter varied, transient 

analysis using a time-dependent solver was used to solve the change in the average 

internal distribution of oxygen concentration in the sensor for up to t=1800 sec with time 

stepping of 0.25 sec. The average oxygen concentration within the sensor was 

determined using integration of oxygen concentration within the microsphere area. To 

calculate the collective response time of the array of sensors, the solution curve obtained 
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for all the sensors within the array was averaged. The response time value was 

determined from the average curve for the entire array of sensors. 

4.3 Results and Discussion  

The intent of this study was to assess the influence of blood vessels and their 

function as constant suppliers of glucose and oxygen on the response time of implantable 

sensors. Specifically, change in response time with varying sensor location relative to 

the capillary and the number of capillaries around the sensor was investigated. In 

portraying the physiological reactions in the dermis within the developed mathematical 

model, consumption rates of glucose and oxygen by cells in the tissue were integrated in 

the model. This consumption of glucose and oxygen within the dermis is attributed to the 

uptake of glucose and oxygen by skin cells lined and arranged within the tissue area. To 

reveal the impacts of tissue metabolism on the sensor response time, simulations were 

first conducted with a simplified version of the model, in which consumption of glucose 

and oxygen in the dermis was neglected (i.e. the reaction rates of glucose and oxygen, 

RG and RO were each set to zero in the tissue domain). With these settings, the only 

reaction involved is within the sensor (as described in Equation 3.3).  

To investigate the influence of tissue metabolism, number of blood vessels, and 

distances between the sensor and blood vessel, initial set of simulations were conducted 

with the model of a single sensor. The calculated response times of the sensor for each of 

the different tissue architectures at different distances of blood vessel away from the 
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sensor are shown in Figure 3.1. Several important observations can be made from this 

graph.  

First, it is obvious that the general trend of longer response time with increasing 

distance of blood vessel away from sensor is present for all architectures, as expected. 

As is already known, the blood vessel function supports the process of glucose and 

oxygen transport so sensors closer to the blood vessel or capillaries are expected to have 

a better access to the glucose and oxygen molecules present in blood. Assuming that 

glucose diffusivity (D) remains constant in the tissue, increasing the distance between 

the sensor implant surface and nearby blood vessels (L) increases the characteristic time 

of diffusion, t ≈ L
2
/D.

55
 Oxygen concentration profiles for all physiological situations 

were found to approach steady-state within 6 minutes. This response time is more than 

adequate for monitoring the fluctuations in the blood glucose, which usually occur over 

a period of 30 min.
56

 With blood vessels developing in close proximity of a distance less 

than 25 µm, analytes are expected to diffuse more rapidly into the device and reduce the 

response time by half compared with the response time of a sensor 50 µm away from the 

blood vessel. This exact relationship is evident in Figure 4.1 with the response time at a 

distance of 25 µm being 35 sec and at a distance of 50 µm being 70 sec. A difference in 

response time of only 30 sec with increasing the distance of sensor away capillary by 2X 

does not pose any problem in monitoring oscillating blood glucose levels in diabetic 

patients since blood glucose levels do not fluctuate within seconds. As expected, a 
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shorter distance of the blood vessel from the sensor results in a faster response time due 

to a shorter diffusion path between the blood vessel and the sensor for glucose 

molecules, diffusing out of the capillary membrane, to travel to the sensor. Interestingly, 

the results shown in Figure 4.2 illustrate a relation between increasing distance away 

from capillary on sensor response time. Sensor response time increases in proportional to 

the amount of distance away from capillary times by 2. For example, when increasing 

the distance between sensor and capillary from 25 µm to 150 µm, which is a 6X 

increase, the response time increases by ~12X (from ~25 sec at 25 µm to ~310 sec at 150 

µm). Again, when increasing the distance between sensor and capillary from 25 µm to 

100 µm, which is a 4X increase in distance, the response time increase by ~8X. 

Considering that the average distance from one capillary loop in the human dermis is 

about 120 to 220 micrometers, if sensors were to be situated at the maximum possible 

distance away from a capillary loop of 220 µm, the sensor response time would be 

approximately ~450 sec or ~7.5 min (determined from the existing relationship between 

distance away from capillary and sensor response time). Since fluctuations in blood 

glucose occur over a period of 30 min, sensor response time within seven minutes in 

vivo to reach 95% of steady state is adequately rapid enough to measure blood glucose 

excursions in diabetic patients. 
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Figure 4.2 Response time of sensor with varying distance between blood vessel and 

        sensor for the following conditions: sensor exposed to single capillary 

        and two capillaries, and sensor in tissue with and without glucose and 

        oxygen metabolism. 
 

As expected, consumption of glucose and oxygen in tissue does not make a 

significant impact to sensor response time. Consumption is far less relevant than 

diffusion in the tissue. This could be attributed to the diminutive glucose metabolic rate 

in the dermis of healthy person being only 0.027 mol/(m
3
s) and the oxygen consumption 

being a much less of an influence at a rate of 1.04e-5 mol/(m
3
s).

48-50
 The difference in 
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response times at each distance for sensors in tissue with glucose and oxygen 

metabolism versus sensors in tissue without glucose and oxygen consumption rate 

ranges from 1 to 20 seconds for single capillary. When the vessels are doubled, the range 

of difference in response time for sensors in tissue with glucose and oxygen 

consumption versus no consumption is much smaller ~1.75 to 3.75 seconds. Though the 

difference is small, accounting for the consumption of glucose and oxygen in the tissue 

slightly lengthens the response time of the sensor to reach steady-state as compared to 

having no metabolic rate of glucose and oxygen present in the dermis. This observation 

is more evident at longer distances of the sensor implantation site away from the blood 

vessel. The consequence of a greater distance between the sensor and the blood vessel is 

an increase in the tissue area and therefore an increase in the diffusion path which 

glucose molecules have to travel and overcome to reach the sensor. Having metabolism 

within tissue decreases overall glucose diffusion as the concentration of glucose 

molecules depletes. With less glucose diffusion through the polyelectrolyte membrane 

and into the sensor, it takes longer for the sensor to reach a balance between the 

consumption of the analyte with the diffusion of the analyte from bulk.  

When comparing the effects of doubling the blood vessels surrounding the 

sensor, a significant change in the response time is observed. An increase in the blood 

supply results in a shorter response time. By doubling the blood vessels around the 

sensors, the response time is expected to reduce proportional to the increase in the 
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number of blood vessels. However with an increase in the number of capillaries by only 

one, a decreased in the sensor response time by 2-3X is observed. The blood vessel 

function supports the process of glucose and oxygen transport by acting as a constant 

supplier of oxygen and glucose to the surrounding tissue and sensor. Glucose availability 

to sensors is significantly increased by increasing blood vessels adjacent to sensing 

systems. The movement of more glucose molecules is responsible for this shorter 

response time. At a distance of 25µm between blood vessel and sensor, the response 

time is relatively similar:  35.5 seconds with one blood vessel and 32.2 seconds with two 

blood vessels. As the location of the sensor away from the blood vessel increases, the 

difference in the response time between one blood vessel and two blood vessels 

increases by order of 2 at a distance of 50 µm, and order of 3 at distances of 100 µm and 

150 µm. Specifically, at the longest distance away from the capillary, an improvement of 

62.5% in the reduction of sensor response time is evident with doubling the amount of 

blood vessels. The results of this work suggest one strategy of improving sensor 

response time. Having more blood vessels closer to the sensors assist in supplying bulk 

glucose will speed up the reaction-kinetics within the sensor and requires a significantly 

shorter time to reach steady-state. One way this information can be used to our 

advantage in optimizing sensor performance in vivo is by inducing angiogenesis. 

Previous studies have shown the incorporation of growth factors in tissue such as 

vascular endothelial growth factor (VEGF) and Angiopoietin 1 (Ang-1) to activate 
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vascular development and angiogenesis.
57-59

 With functional blood vessels developing in 

close proximity around the sensors, glucose molecules will be able to diffuse more 

rapidly into the sensor matrix allowing for a shorter sensor response time.   

The variation in response time with the changes in the number of sensors 

implanted in the dermis was also evaluated. Solution to models consisting of sensors 

arranged in a 3x3 array (9 sensors) and 4x4 array (16 sensors) implanted in the dermis 

were compared with results from simulations of a single microsphere. For each model 

consisting of different number of sensors, simulations with varying the number of 

capillaries surrounding the sensing system and the distance of blood vessels away from 

the edge of the sensing system were performed. To calculate the collective response time 

of the array of sensors, the solution curve obtained for all the sensors within the array 

was averaged and time to reach 95% (T95) of the steady state was determined from the 

average curve of all the sensors. Figure 4.3 contains data from simulations in which the 

number of sensors varied. The effect of increasing the number of sensors is evident; as 

the number of sensors increase, there is an increase in the sensor response time. This 

implies that sensors do not act independently. The reaction-kinetics within a sensor can 

slow the diffusion of glucose and oxygen to surrounding sensors and thus slow the 

overall response time of the entire sensing. Additional simulations on arrays with 

different spacing have been performed, for which results are included in Section 5, to 

show that when glucose sensors are spaced far enough, they do act independently. 
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Figure 4.3   Response time with varying distance away from capillary for different 

           number of sensors. 

 

 

 The percent difference in response time between 1 and 9 sensors at 25 µm away 

from a single blood vessel is approximately 24 %. This percent difference decreases to 

17% at 50 µm, 12% at 100 µm, and 5% at 150 µm. In comparing the overall response 

time between 9 and 16 sensors, the percent difference is approximately 9% at a distance 

of 25 µm away from blood vessel. This percent difference in response time decreases as 

the distance between blood vessel and the sensor increases. Increasing distance 

decreases the difference in response time between arrays and single particles; however, 
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the response time increases overall with a greater distance between sensors and blood 

vessel. For sensors subjected to two blood vessels, we see that the difference in response 

time with number of sensors increasing is lower but not more than 10 seconds at each 

varying distance away from the capillary. This behavior is expected. Each sensor acts 

like a micro-reactor within which the diffusion and consumption of glucose and oxygen 

reach equilibrium at steady-state. When the number of sensors implanted in the dermis 

increase, the time to reach steady-state for all the sensors acting as a single sensing 

system can take longer since each sensor within the array can affect the diffusion of 

glucose and oxygen to the surrounding sensors. Another explanation for the response 

time increasing with number of sensors increasing could also be attributed to the overall 

size of the sensing system increasing. This explanation can be supported from previous 

work by Brown et. al. who showed from theoretical and experimental observations that 

response time increases as the radius of enzymatic glucose sensors increases.
13

 

It is noteworthy to stress again that by increasing the number of sensors, an 

increase in the sensor response time is observed which implies that sensors in an array 

do not act independently. This discovery can be used towards optimizing the signal of 

these glucose sensors by controlling the implantation and delivery of the sensors at an 

orientation such that the sensor are all apart at a given distance where they do not affect 

each other and act independently when glucose molecules diffuse into the matrix and 

initiate the enzymatic reaction leading to the depletion of local oxygen levels and the 
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consequential change in the luminescence of the immobilized oxygen-sensitive dye.  

One method of controlling the space between the sensors in the implantation process is 

to effectively immobilize sensors at a certain distance apart through the utilization of 

physical trapping in a PEG hydrogel.
60

 To investigate exactly how far apart the sensors 

need to be in order to act independently, simulations on arrays with different spacing 

have been performed, for which methods and results are included in Section 5. 

These observations suggest some interesting influences of blood vessel location 

relative to the sensor, blood vessel density, and the number of sensors on reaction-

kinetics within sensors and response time of the sensor to reach steady-state. All 

simulations of oxygen concentration depletion within the sensor until steady-state has 

been achieved indicated that the transient period occurred in less than six minutes. 

Though not representative of the complexity of the real sensing system that would exist 

in the dermis of a diabetic patient upon implantation which will realistically involve 

millions of particles implanted in the dermis and more than two blood vessels 

surrounding the sensors, the simulations conducted in this study provide general trends 

for different physiological cases. Furthermore, trends extracted from simulations allow 

for understanding the conditions necessary to speed up the response kinetics of these 

glucose sensors in vivo. Results show that an increase in blood vessels and closer 

proximity of blood vessels to the sensor leads to an improvement in the response time of 

the sensor. It is clear that neovascularization around implantable biosensors obviously 
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plays a critical role in their performance when implanted in the skin.  These results make 

it clear that the success in applications of implantable glucose sensing systems relies 

heavily on the time-dependent effects of physiological parameters on the sensors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 

5 EVALUATION OF CHANGES IN STEADY-STATE CONCENTRATION OF 

OXYGEN DUE TO BLOOD GLUCOSE CHANGES 

5.1 Introduction  

Enzymatic glucose sensors rely on the glucose concentration-dependent 

depletion of local oxygen, enabling the indirect optical monitoring of glucose via 

measurement of local oxygen levels using an oxygen-sensitive indicator dye. When 

sensors are exposed to bulk glucose and oxygen, these substrates diffuse inside the 

sensor matrix and prompt the enzymatic reaction of glucose oxidase with glucose. At 

some given point in time for fixed external substrate concentrations, steady state is 

achieved within the microspheres; after which this time, the glucose and oxygen 

concentrations within the microspheres depend on the equilibrium between the diffusion 

and reaction rates. For fixed bulk oxygen level, the reaction rate inside the sensors 

primarily depends on bulk glucose concentrations. Reaction rate increases with increased 

bulk glucose levels resulting in proportionally depleted oxygen levels inside the 

microspheres. The output signal is based on quenching of luminescence by oxygen in 

which an increase in emission intensity is observed for increased glucose levels. 

Therefore, the steady-state oxygen concentration within the sensors for a given blood 

glucose level determines the signal output obtained.  

Evaluating average steady-state concentration of oxygen within sensors and the 

surrounding tissue for the entire physiological glucose range is critical in calibrating 

sensors so that sensor output tracks blood glucose concentrations. The use of the dermal 

tissue as a site for continuous blood glucose monitoring assumes that the glucose 
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concentration in the interstitial tissue reflects blood glucose level. A faulty interpretation 

of dermal glucose concentrations can lead to serious errors in sensor calibration.  

It is important to note that with the depletion of oxygen in the sensors occurring 

upon reaction of glucose with glucose oxidase, oxygen concentration in the dermal tissue 

around and between sensors can potentially be depleted as well. Because of this, careful 

analysis in the steady-state oxygen concentration in the tissue surrounding the sensors is 

important to consider in terms of sensor design as well as calibration. Deprivation of 

adequate oxygen supply can cause tissue hypoxia, which should be avoided. In response 

to the tissue hypoxia, a cascade of events including the release of glycolytic enzymes 

and a decrease in local pH could not only result in cell and tissue death, but could also 

potentially degrade or damage the surface of the sensor. For this reason, simulations 

were performed to determine variations in steady-state oxygen concentration within 

sensors and in the surrounding tissue with increasing blood vessels around the sensing 

system, different numbers of sensors in the dermis, and varying the distance between 

sensors.  

5.2 Methods  

The baseline model of a single, microscale glucose sensor in the dermis 

illustrated and described in Figure 3.1 was used to perform simulations for evaluating 

changes in the steady-state oxygen concentration. A response profile was generated and 

analyzed by performing simulations at different blood glucose inputs for each different 

sensor configurations. Response profiles from simulations allowed for determining the 
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magnitude of change in sensitivity from increasing blood vessels around the sensors, 

variability in the number of sensors and the spacing between sensors. 

The initial and boundary conditions remained the same for all simulations for the 

baseline model of a single particle implanted in the dermis as described in the theory 

section. For the initial conditions, the oxygen concentration of 140 μM was assumed for 

the dermal tissue, sensor, polyelectrolyte film, and capillary. As before, initial glucose 

was assumed to be zero. All boundary conditions from the baseline model were retained 

except for the capillary boundary (left boundary), which was set to supply bulk oxygen 

concentration of 140 μM and bulk glucose concentration. The capillary glucose 

concentration was varied from 0 to 20 mM to evaluate the sensor response for relevant 

blood glucose range. The capillary oxygen concentration was always kept constant at 

140μM for which the response is predicted. 

The steady-state oxygen or sensor response to glucose is determined, first, at the 

lowest glucose level by observing when the oxygen concentration remains constant ( less 

than 0.01% between subsequent values). The same method is then repeated for different 

blood glucose level inputs to obtain a simulated response profile of glucose sensors. To 

predict the glucose response profile of a sensor, all settings remain same in each 

simulation, except the boundary condition for glucose on the boundaries acting as 

capillary, which is bulk the glucose concentration for which the response has to be 

determined. To compare the sensor response for each physiological situation, two figure 

of merit were used: (1) sensitivity and (2) the glucose concentration at which the 

maximum change in steady-state oxygen concentration is 50% from the response data. 
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Sensitivity—defined as the slope of the linear response—was estimated by performing a 

simple linear regression on the first few data points such that R
2 

≥ 0.95. 

5.2.1 Varying Capillary Density 

In studying the effect of blood vessel density around the sensor(s), the response 

profiles obtained from simulations in which boundaries B1 and B2 (left and right 

boundaries) were both specified to act as blood vessels was compared with the response 

profile from simulations with only B1 (left boundary) specified as a blood vessel. 

Boundaries set to act as blood vessels were specified to supply a constant bulk oxygen 

concentration of 140 μM and bulk glucose concentration from 0 to 20 mM to evaluate 

for the entire blood glucose range. This allowed us to compare the difference in the 

average steady-state concentration of sensor(s) for sensors adjacent to a single blood 

vessel versus two and two blood vessels. 

5.2.2 Varying Number of Sensors 

 Models consisting of sensors in a 3x3 and 4x4 array, shown in Figures 4.1 A and 

B were used to investigate the changes in steady-state oxygen concentration with 

increasing the number of sensors implanted in the dermis. Changes in the response 

profile with different blood glucose inputs were analyzed for increase in the number of 

sensors from 1 sensor to 9 sensors (arranged in a 3x3 array) to 16 sensors (arrange in a 

4x4 array) in the dermis. Steady-state oxygen concentration was evaluated within 

sensors and in the surrounding dermal tissue between sensors. For each sensor 

architecture, the location of the left tissue boundary relative to the edge of the sensors 
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was kept constant at 100 µm. The remaining tissue boundaries were also kept constant at 

100 µm for both the 3x3 and 4x4 sensor array configurations.  

5.2.3 Varying Space between Sensors 

 To evaluate the effects of glucose sensors on the surrounding tissue, simulations 

in which the space between the sensors in the 3x3 array were varied from 0 to 100 µm 

were also performed, variations in the steady-state oxygen concentration within the 

sensor and in the surrounding tissue for the different sensor configurations was 

determined using the Figure 5.1A and 5.1B. 

 

 

 

 

 

 

 

 

 

A) Schematic of sensors arranged a              B) Schematic of sensors arranged a  

certain distance apart (d) in 3x3 array         certain distance apart (d) in 4x4 array  

 

 
Figure 5.1   Representation of models containing sensors arranged a certain 

           distance apart (d) in A) 3x3 Array and B) 4x4 Array. 
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The space between the sensors (d) was varied by displacing the peripheral 

sensors apart from the central sensor in the array so that the distance from the center 

edge of one sensor to the other is a specified length. Specifically, simulations for sensors 

with 10, 20, 50, and 100 µm spacing were solved for oxygen concentration within the 

internal area of the microspheres by using an integration coupling variable, which is the 

value of the integral of oxygen concentration over area of the microsphere sub-domain. 

The steady-state oxygen concentration determined for each sensor in the array was 

averaged to determine the steady-state oxygen output of the entire sensing system 

consisting of 9 sensors for each different blood glucose input.  To determine steady-state 

oxygen concentration in the surrounding tissue between the sensors, a point (P) was 

placed in the center of the space between the sensors at which the change in oxygen 

concentration for all diverse sensor configurations was determined for each varying 

blood glucose input. 

5.3 Results and Discussion 

Because prototype glucose sensors rely on the measurement of local oxygen 

levels for the indirect monitoring of blood glucose, evaluating average steady-state 

concentration of oxygen within sensors and the surrounding tissue at various blood 

glucose levels is critical in calibrating sensors so that sensor output tracks blood glucose 

concentrations. The steady-state oxygen concentration within sensors and in the 

surrounding tissue was determined for conditions where blood supply increases, the 

number of sensors varies, or the space between sensors varies.  
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5.3.1 Results with Varying Capillary Density 

The first set of simulations was conducted to investigate the effect of increasing 

blood vessels on steady-state oxygen concentration within a single sensor implanted in 

the dermis. The single sensor mode was used to predict the response of enzymatic 

sensors when exposed to different glucose concentrations, as shown in Figure 5.2.  

A non-linear, inverse relationship is observed between the steady-state oxygen 

concentrations with varying concentrations of glucose. Higher glucose concentration 

causes greater depletion of oxygen within sensors and thus results in a lower steady-state 

oxygen concentration. The luminescence intensity or (lifetime) is inversely proportional 

to oxygen concentration and therefore directly proportional to glucose concentration, 

thus with greater oxygen depletion, an increase in luminescence intensity results at 

higher glucose concentrations. These results agree with previous work.
8,12

 

Results show that the amount of blood supply does not affect the steady-state 

oxygen concentration within sensors; however, it can affect the response time of the 

sensor to reach steady-state (as proven in Section 4). 

5.3.2 Effect of Tissue Consumption on Steady-state Oxygen Concentration 

To realize the impact of tissue consuming analytes on the steady-state oxygen 

concentration within sensors, simulations for increasing blood supply were conducted 

with a simplified version of the depicted model in which consumption of glucose and 

oxygen in the dermis was not included. Results for these simulations are shown in Figure 

5.2. 
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Figure 5.2   Predicted steady-state oxygen concentration within sensors embedded 

           in dermal tissue. Results are shown for considering and neglecting and 

           considering tissue consumption. Results for both single and dual 

           capillaries are also included. 
 

The results reveal that the steady-state oxygen levels, within a sensor implanted 

in the dermis are essentially the same for the different tissue architectures. A minor 

difference (< 6µM O2) at 2.5 and 5 mM glucose between a sensor implanted in tissue 

with consumption and without consumption is observed. This offset, less than 3% 

difference in steady-state oxygen concentration, is not significant to enough to impact 

the output signal or luminescence intensity nor the sensitivity of the sensors, being that 
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there is no change in the slope of the response curves, and therefore can be considered 

negligible. The offset observed can be attributed to the incorporation of consumption 

rates for glucose and oxygen in the tissue. Compared to a tissue model in which there is 

no glucose or oxygen metabolic consumption affecting the diffusivity of solutes into the 

sensor, the presence of glucose consumption in tissue would reduce the amount of 

glucose molecules diffusing into the sensor, resulting in a decrease in oxygen rate of 

depletion.  

5.3.3 Results with Varying the Number of Sensors 

The change in steady-state oxygen concentration and sensitivity with varying the 

number of sensors implanted in the dermis was evaluated. The solutions to models 

consisting of sensors arranged in a 3x3 array (9 sensors) and 4x4 array (16 sensors) 

implanted in the dermis were compared with results from simulations of a single 

microsphere. For each model consisting of different number of sensors, simulations with 

varying the number of capillaries surrounding the sensing system were performed 

(Figure 5.3).  

By analyzing the transient response for each sensor within a 3x3 array and in the 

tissue space between the sensors shown in Figures 5.3A and 5.3B, the behavior of each 

individual sensor and their effect on neighboring sensors can be realized. The symmetry 

of the model can be attributed for pairs of sensors in the array exhibiting congruent 

response profiles. For example, Sensor pairs 3&9, 1&7, 2&8 demonstrate the same 

transient reaction due to their identical location relative to the capillary. The steady-state 

concentration of oxygen for sensors farther away from the capillary is higher since the 
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rate of tissue consumption of glucose is faster than the rate of glucose diffusion through 

the tissue space. Similar behavior in the changes in steady-state oxygen for different 

glucose inputs within the tissue space between the sensors is observed, being that spaces 

1&3 and spaces 1&4 are congruent in their location relative to the capillary. Out of all 

the sensors in the array, Sensor 5 exhibits the lowest steady-state concentration and the 

highest sensitivity. Being that Sensor 5 is located in the center of the array, it is probable 

that the uptake of glucose and the consequential depletion of oxygen in the surrounding 

sensors affect the reaction kinetics within sensor 5. Figure 5.3B demonstrates clearly that 

the oxygen concentration in the surrounding tissue space decreases during the reaction 

time. Due to the lack of glucose oxidase enzyme in the tissue, the local oxygen within 

the dermal tissue area between sensors is governed solely by the metabolic consumption 

rate of oxygen, the reaction rate within the sensors consuming oxygen, and the 

interference of oxygen diffusion by the sensors neighboring the tissue space.  
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Figure 5.3     A) Transient response profiles of individual sensors in a 3x3 array 

            sensor matrix exposed to a single blood supply source (boundary

            highlighted in red). B) Depletion of oxygen over time within dermal   

           tissue space between sensors arranged in a 3x3 array. 
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The change in steady-state oxygen within each individual sensor and tissue space 

between sensors is more clearly observed in the array of images shown in Figure 5.4. 

Sensors arranged in a 3x3 array, in Figure 5.4, are exposed to a single blood supply 

source from the left boundary. The first row of images shows the change in glucose 

concentration in the tissue and sensors at given points in time and the second row 

indicates changes in local oxygen. As more glucose diffuses through the tissue and into 

the sensors, the gradual depletion in oxygen is observed. Steady-state is achieved within 

the microspheres before 120 seconds, after which the glucose and oxygen concentrations 

within the microspheres depend on the equilibrium between the diffusion and reaction 

rates.  

The array of images presented in Figure 5.5 show the reaction in the sensors 

arranged in 3x3 array exposed to two blood supply sources (right and left boundary). 

Comparing to Figure 5.4, where sensors are only exposed to one capillary, the steady-

state oxygen concentration is the same; however, the time to reach steady-state is faster. 

Steady-state is achieved within 60 seconds when sensors are exposed to two blood 

capillaries, compared to 120 seconds with only a single blood vessel. Thus, capillary 

density has no effect on the steady-state oxygen concentration in the sensors and thus 

does not affect the sensitivity of the sensors or alter the output signal. Because a 

significant improvement of 50% in the reduction of sensor response time is achieved 

with doubling the amount of blood vessels without any difference in the steady-state 

oxygen concentration, it is clear that capillary density has a huge impact on the response 

time of the sensors.  
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In vivo, blood vessels are not always vertically aligned as depicted in the model. 

The geometry of capillaries in vivo varies, with intertwining loops. The amount of blood 

vessels varies also, with not only the distinct layers of the skin and location on the body, 

but also with every person.
27

 One square inch of skin can contain up to 15 feet of blood 

vessels.
31,33

 These situations are not practical to model for these initial studies. However, 

the results for steady-state oxygen concentration within sensors at different blood 

glucose levels show that the level of oxygen at steady-state does not change with varying 

the amount of blood vessels. This assures that sensor calibration will not be dependent 

on the amount of blood vessels present in the dermal tissue and thus will not vary 

dramatically between individuals. Therefore, it is expected that sensor output will track 

blood glucose concentrations. Though steady-state oxygen concentration within sensors 

is not affected with changes in capillary density, the ability of the sensor to respond 

quickly enough to track changes in blood glucose can be affected with varying capillary 

density.  With increase in blood vessels, response time of the sensor is proportionally 

improved as demonstrated in this section and Section 4.  
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Figure 5.4   Change in glucose and oxygen concentrations (mM) at given points in 

         time until steady-state is achieved with a single blood supply source (left

         boundary). 
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Figure 5.5   Change in glucose and oxygen concentrations (mM) at given points in 

  time until steady-state is achieved with two blood supply sources (left

   and right boundary).  
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Changes in steady-state concentration with variation in the number of sensors 

implanted in the dermis were evaluated. Solution to models consisting of sensors 

arranged in a 3x3 array (9 sensors) and 4x4 array (16 sensors) implanted in the dermis 

were compared with results from simulations of a  single microsphere. The bulk glucose 

concentration inputs were varied from 0 to 20 mM to evaluate steady-state oxygen for 

the entire blood glucose range. To calculate the collective steady-state oxygen 

concentration of the array of sensors, the solution curve obtained for all the sensors 

within the array was averaged. From the average curve, the steady-state oxygen 

concentration for each blood glucose level was determined by observing when the 

oxygen concentration remains constant (less than 0.01% difference between subsequent 

values). 

For each model consisting of different number of sensors, simulations with 

varying the number of capillaries surrounding the sensing system were performed. 

Figure 5.6 and Figure 5.7 contain data from simulations in which the number of sensors 

varied. The effect of increasing the number of sensors is evident; as the number of 

sensors increase, the steady-state concentration of oxygen decreases for the same blood 

glucose inputs. This relationship is corresponded in the steady-state concentration of 

oxygen in the tissue space in between sensors. 

The effect of increasing the number of vessels for different number of sensors 

was expected, since increasing the oxygen supply via increasing blood vessels only 

affects how fast the sensor reaches steady-state and not the actual steady-state 
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concentration of oxygen. Any difference in steady-state concentration of oxygen with 

varying the amount blood supply is negligible.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6    Steady-state oxygen concentration within sensors for different number

          of sensors plotted for single or double blood vessels adjacent to sensors. 
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Figure 5.7  Average steady-state oxygen concentration in the tissue space

              between sensors for single and double blood vessels adjacent to 

            sensors. 
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There are several figures of merit that are used to characterize the response of 

sensors including: sensitivity, response range, and response time. Results of simulation 

intended to predict sensor response time with varying physiological conditions and 

sensor architectures were discussed in Section 4. In this section, the focus is on 

comparing physiological situations with the different number of sensors; thus, the 

sensitivity and the glucose concentration at which the maximum change in steady-state 

oxygen concentration is 50% from the response data (response range)was calculated. 

Sensitivity—defined as the slope of the linear response—was estimated by performing a 

simple linear regression on the first few data points such that R
2 

≥ 0.95. 

An ideal glucose sensor is expected to exhibit high sensitivity and cover the 

entire clinical range of 40 to 600 mg/dL for in vivo monitoring.
9
 Theoretically, it was 

predicted that an increase in the glucose and oxygen supply to the sensor matrix from 

blood vessels around the sensors can result in a substantial improvement in the 

sensitivity. Sensitivity was estimated using the data shown in Figure 5.6. As expected, 

by doubling the amount of blood vessels surrounding a single sensor, sensitivity 

increases by ~6%. For sensors arranged in 3x3 and 4x4 array, sensitivity increases by 

~4% and ~5%, respectively. Conversely, the range decreases with increase in blood 

vessels. The change in the range with an increase in blood vessels is small (< 0.5 mM). 

Because of this minute difference in the range, the amount of blood vessels does not 

affect the sensors’ ability to detect the clinical blood glucose range. The response range, 

with single sensor in the dermis exposed to one blood supply source, extends up to 4.67 

mM or 84.06 mg/dL of glucose. With a single sensor in the dermis exposed to two blood 
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vessels, the response range changes less than ~7%, to up to 4.37 mM or 78.66 mg/dL. 

With an increase in the number of sensors, a substantial improvement in the sensitivity 

and a reduction in the response range are observed. By increasing the number of sensors 

from 1 sensor to 9 sensors (3x3 array), the sensitivity improves by more than 45%, 

indicating that having more sensors implanted in the dermis makes the sensors to 

collectively generate a larger signal in response to glucose. Sensitivity improves further 

with increasing sensors from 9 (3x3 array) to 16 sensors (4x4 array) (up to 9%).  These 

findings demonstrate the feasibility of tuning sensitivity to the desired magnitude by 

controlling the number of sensors implanted in the dermis. The reduction in the response 

range of the sensors evident with increasing sensors can be attributed to the decrease in 

effective diffusivity of oxygen inside the sensors caused by their influence on other 

sensors in the periphery. However, the reduction in the range is small, less than ~ 1 mM. 

Results indicate that sensors respond linearly up to 4.7 mM (84.6 mg/dL) which does not 

cover the desired glucose range of up to 600 mg/dL. By altering the number of blood 

vessels around the sensors and controlling the amount of sensors implanted in the 

dermis, the analyte transport properties into the microsphere can be altered, resulting in 

control of response characteristics, such as sensitivity, linear range, and response time. 

5.3.4 Results with Space between Sensors 

With the depletion of oxygen in the sensors occurring upon reaction of glucose 

with glucose oxidase, oxygen concentration in the dermal tissue around and between 

sensors depletes as well. Deprivation of adequate oxygen supply not only affects the 

response of sensors, but can also cause tissue hypoxia which should be avoided. Careful 
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analysis of the steady-state oxygen concentration within sensors and in the tissue 

surrounding the sensors was performed for variations in the distance between the 

sensors. Analysis of steady-state oxygen concentration was conducted for internal sensor 

volume as well as the tissue space between sensors. Results for this study are depicted in 

Figure 5.8 for steady-state oxygen within sensors and in Figure 5.9 for local oxygen 

levels in the tissue space between sensors.  

 

Figure 5.8   Average steady-state oxygen concentration within sensors in a 3x3 

             array arranged at various distances apart from each other. 
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Figure 5.9   Average steady-state oxygen concentration in tissue space between 

             sensors in a 3x3 array arranged at various distances apart from each 

            other. 

 

The results show that as the tissue area or space increases between sensors, the 

steady-state oxygen concentration at different glucose inputs increases. A dramatic 

change in steady-state oxygen concentration within sensor and in the tissue space 

between sensors for each glucose input is observed when the spacing between the 

sensors varies from no space between sensors to 10 µm distance from sensor to sensor. 

The difference in steady-state oxygen for spacing greater than 10 µm between sensors 

does not change to a great extent. The steady-state oxygen concentration in the tissue 
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space between sensors does not vary considerably from sensors being spaced apart by 10 

µm. Even when this distance is multiplied by 10, sensors apart from each other by 

100µm do not exhibit a change in steady-state oxygen concentration proportional to the 

distance between sensors as was expected. Change in steady-state oxygen concentration 

within sensors and in the dermal tissue space between sensors for each glucose input 

compared between sensors spaced 50 µm apart versus 100 µm apart is less than 2%. 

Since the local oxygen levels in the tissue area between sensor approaches closer to the 

bulk oxygen concentration of 140 µM when sensors are separated by distances greater 

than 50 µm, it is reasonable to rationalize that sensors apart from each other at this 

distance of space between sensors act independently. It is noteworthy that any diseased 

state of the subject can alter steady-state oxygen concentration within sensors. This is 

because reaction from cells to a disease or other physiological conditions can differ from 

tissue cells from a healthy person. For example, thyroid gland diseases in which the 

regulation of glucose metabolism can be significantly affected could cause a different 

steady-state oxygen concentration in sensors. The results obtained from these 

simulations will not be directly applicable to all cases. Change in steady-state oxygen 

concentration with various diseased states of the individual will be the subject of future 

studies. 

An important outcome of this study is the revelation that sensors spaced at 

distances greater than 50 µm do not affect each other or influence the reaction kinetics or 

the diffusion of glucose and oxygen to the surrounding sensors. This discovery can be 

used towards optimizing the signal of glucose sensors. By controlling the implantation 
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and delivery of the sensors, we can orient sensors such that the sensors are all apart at a 

given distance where they do not affect each other. This way each sensor will act 

independently when glucose molecules diffuse into the matrix and initiate the enzymatic 

reaction, leading to the depletion of local oxygen levels and the consequential change in 

the luminescence of the immobilized oxygen-sensitive dye. 

One method of controlling the space between the sensors in the implantation 

process is to effectively immobilize sensors through the utilization of physical trapping 

in a PEG hydrogel.
60

 PEG is an important biomaterial, with excellent properties of 

biocompatibility and non-toxicity for implantation in the body. Due to its versatility, 

PEG has been utilized in several biomedical applications, including protein embedding 

substrates,
61

 and immobilization of quantum dots as small as 2-5 nm for the formation of 

novel photonic materials.
60

 Utilization of PEG can affect the diffusion of glucose and 

oxygen to sensors. Previous studies have shown an increase in glucose permeability 

through PEG-modified membranes.
62

 An increase in glucose and oxygen diffusivity will 

result in a faster response time of sensors. Additionally, functionalization of PEG 

hydrogels by the immobilization of phosphorescent sensors can potentially provide the 

hydrogel matrix with luminescent properties as demonstrated in a previous study 

conducted by Gattas-Asfura et al..
60

 This network can combine the advantages of the 

PEG polymer and the glucose sensors collectively within one system to provide effective 

glucose sensing in diabetic patients.  

With increase in space between sensors, glucose sensitivity and operational range 

could be affected. Under conditions where tissue space between sensors varies and, as a 
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result, alters the oxygen concentration in the sensor matrix, it is expected that decreased 

sensitivity and an increased response range would be observed. Higher oxygen levels 

around the tissue area with increase in tissue space between sensors extend the response 

range to up to 11.7 mM (210 mg/dL) when sensors are apart from each other by 100 µm. 

Compared to sensors adjacent to each other, where the range is limited to 3.1 mM (55.8 

mg/dL), the range is extended by 30% with an increase in tissue space by 10 µm. With 

increasing tissue area in between, sensors exhibit a steady decrease in sensitivity. The 

sensitivity drops by 34% when the spacing between sensors increases by only 10 µm. A 

greater increase in the distance between sensors results in a greater depreciation in 

sensitivity. In comparison with sensors spaced 10 µm, sensors spaced apart by 100 µm, 

results in a decrease in sensitivity by ~ 64%. The low sensitivity of sensors arranged in 

such organization makes them a poor candidate for making accurate measurements in 

vivo. Therefore, to achieve the desired performance in the operation range, the sensing 

system architecture must be arranged with explicit attention to number of sensors, tissue 

spacing between sensors in an array, and amount of blood vessels. 
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6 EFFECTS OF HOST RESPONSE ON THE SENSITIVITY AND 

PERFORMANCE OF SENSORS 

6.1 Introduction  

As these sensors are intended for in vivo application, they must remain functional 

for an extended period after implantation. It is difficult to predict whether a given sensor 

will perform reliably or will fail soon after implantation. This leaves open the question 

of whether the microparticle sensors under development and intended for injection into 

tissue will function adequately in vivo. 

Sensor failure in vivo can be linked to the events associated with healing of the 

tissue surrounding the implanted device, such as inflammation, repair and 

encapsulation.
42-43

 Upon implantation, adverse effects can be seen with sensors as the 

body releases a wide range of attacks on the encountered foreign materials that constitute 

the sensor. Cells, proteins, and other biological components adhere to the surface of the 

sensor and initiate inflammation and then the longer term encapsulation response.
40-44

 

The formation of a dense, avascular collagen capsule around the implant—fibrosis--is 

the final stage of the wound healing process to implanted materials.
40

 These tissue 

reactions around the sensor can potentially affect the diffusion of oxygen and glucose. 

Fibrosis tissue that is avascular would limit the sensors to accessible blood vessels. The 

dense collagen fibers in the tissue resist the mass transfer of glucose and oxygen. As a 

result, fibrosis can slow the response time and reduce the sensitivity of the sensor to 

reach steady-state. For example, after 7 days, current prototype sensors operating under 

physiological conditions exhibit a 75% loss of sensor sensitivity as a direct result of 
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interaction with the in vivo environment.
8
 Any faulty interpretation of the glucose 

concentration in the tissue surrounding the sensor due to the progression of host response 

could cause an inaccurate measurement or interpretation of blood glucose levels 

resulting in a hazardous clinical outcome.  

Sensor failure associated with healing of the tissue surrounding the implanted 

device was investigated in this study. This study will enable us to understand how much 

sensitivity and response of an implanted sensor system is affected by the progression of 

host response. Simulations were performed to evaluate the changes in the response time 

and steady-state concentration for the range of blood glucose levels upon the occurrence 

of inflammation and progression of fibrous encapsulation growth around the sensing 

system. The findings of this study will provide knowledge about the interaction between 

sensors in tissue and the consequential host response to foreign materials. The predicted 

trends could potentially allow improvements in sensor performance in vivo and provide 

tactics on managing tissue response to implantable devices.  

6.2 Methods  

6.2.1 Geometry of the Model 

To evaluate changes in sensor response and sensitivity upon the occurrence of a 

host response, the model with sensors arranged in a 3x3 array used for simulations in 

section 4 and 5 (illustrated in Figure 4.1A) was altered to include an additional domain 

around the sensors specified as either inflamed tissue or a fibrous capsule. A schematic 

of the proposed model is shown in Figure 6.1. 
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Figure 6.1    Schematic of 3x3 Array of microsphere sensors in the dermis incurring 

           a host response. 

 

The schematic represents a 3x3 array of sensors surrounded by initially a 10 µm 

thick fibrous capsule or inflamed tissue exposed to a single capillary (left boundary). In 

simulations where the effect of fibrous capsule thickness on the response of sensor was 

considered, the thickness of the tissue surrounding the sensors was varied from 1 to 100 

µm. The sensor geometry, parameters, and reaction kinetics for the sensor remained the 

same as used in the baseline model. The metabolic and diffusion rate of glucose and 

oxygen in the dermal tissue area outside of the domain representing either the fibrous 

capsule or inflamed tissue remained the same as the baseline model. Fibrosis and 
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inflammation were modeled by specifying specific glucose and oxygen diffusion and 

consumption rates for each case, as detailed below. 

6.2.2 Settings for Inflamed Tissue 

The tissue damage created by the implantation procedure of the sensors via intra-

dermal injection can result in inflammation, which is the local, nonspecific reaction of 

vascularized tissue to injury.
41

 Reddening and swelling are the classical signs of early 

events of inflammation indicating battle against infection. These signs are accompanied 

with a series of defensive reaction by neutrophils and eosinophils. 
41

 The primary role of 

these cells appears to be phagocytosis, aimed at for the removal of small particulates 

(<0.5µm) resulting from implantation.
40,63

 The cells participating in the initial host 

response exhibit a faster uptake rate of oxygen and glucose than normal dermal tissue 

cells. This higher metabolic rate of glucose and oxygen in inflamed tissue was accounted 

for within the reaction rate, R, in the PDE for glucose and oxygen of the diffusion model. 

To model the worst-case scenario, the maximum glucose and oxygen uptake rates for 

inflamed tissue, published values were found to be 5.96944 x 10
-5

 [mol/(m
3
*s)] for 

glucose and 5.625 x 10
-5

 [mol/(m
3
*s)] for oxygen.

64-70
 Thus, inflamed tissue consumes 

glucose at a rate 450 times slower than normal dermal tissue; however, oxygen is 

consumed approximately 5 times faster. 

6.2.3 Settings for Fibrous Capsule 

Further on during the immune response, macrophages initiate the repair of 

damaged tissue by forming granulation tissue surrounding the implant. Foreign body 
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giant cells which are comprised of fused macrophages attach to the surface of implant. 

The body tends to completely isolate the foreign implant by forming a fibrous membrane 

capsule around the implants.
40,42,71-72

 The dense collagen fibers that make up fibrous 

capsules may block the diffusion of analytes through the collagen matrix, which can 

potentially slow the diffusion of glucose and oxygen to the sensors. For simulating 

fibrous encapsulation around the sensors, the thickness of the capsule around the array of 

sensors (T) was varied from 1μm to 100μm.  

For each thickness, three different densities of fibrous capsules were also tested 

to investigate how density and thickness of the fibrous capsule affect sensor sensitivity 

and response. Previous studies by Sharkawy et. al. show that the highly dense collagen 

matrix that makes up a fibrous capsule impairs the diffusion of analytes.
36

This in turn 

could slow the response time of the sensor. The more densely packed the collagen fibers 

are in a fibrous capsule, the slower the diffusion rate of glucose and oxygen is through 

the capsule. 

Sharkawy et. al. determined the effective glucose diffusion coefficients through 

capsules of various densities forming around implants ranging from 1.11 ± 0.12 x 10
-6

 

cm
2
/s to 2.35 ± 0.24 x 10

-6
 cm

2
/s.

36
 To model the fibrous capsule, glucose and oxygen 

diffusion rates for three different densities of encapsulation were tested with varying 

thickness. Specifically, 1 x 10
-6

 cm
2
/s, 1.75 x 10

-6
 cm

2
/s, and 2.5 x 10

-6
 cm

2
/s glucose 

diffusion rates were used to model through fibrous capsules of various densities, in 

which a lower diffusion rate of glucose refers to a more dense capsule, was each tested 

for a variety of capsule thicknesses.  
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The oxygen diffusion rate within the fibrous capsule was assumed to be constant 

at 2 x 10
-9

 m
2
/s for varying thickness.

52
 The oxygen diffusion rate in fibrous tissue has 

been reported to be comparable to the diffusion rate of water. Due to limited information 

on oxygen diffusion rates through fibrous tissue, it was assumed that the diffusion rate of 

oxygen in fibrous tissue capsule is equivalent in magnitude to the diffusion of water. 

Being that the diffusion rates in the dermis are 2.64 x 10
-10

 m
2
/s for glucose and 1.5 x 10

-

9
 m

2
/s for oxygen, the diffusion rate for oxygen is greater in fibrous capsules.

30,35
 In 

contrast, the glucose rates for various densities are all less in fibrous capsules as 

compared to the diffusion rate of glucose in the healthy dermal tissue. As expected, 

fibrous encapsulation around sensors does hinder glucose diffusion to the sensors and 

could potentially impede sensor function. The results from these simulations were 

compared with a baseline situation in which there was no host response to the implant.   

Previous studies have shown that the foreign body response, in terms of the 

thickness of the capsule, varies with the implant size. In comparing literature on implants 

in the dermis with that of subcutaneous implants, it appears the fibrous tissue formed 

around dermally-embedded microspheres is much thinner, 1 to 10 µm in thickness, than 

capsules formed around subcutaneous sensors (>100µm).
73-74

 To cover the entire range 

of possible fibrous capsule thicknesses around microspheres, simulations were 

conducted for thickness of 1, 5, 10, 50, and 100 µm. 

6.2.4 Boundary and Initial Conditions 

For all simulations conducted for this study using the model depicted in Figure 

6.1, all boundary conditions and initial conditions remained the same as described for the 
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baseline model in the Theory section (Section 3). The only exception to this was for the 

capillary boundary conditions, which were set to supply bulk oxygen concentration of 

140 μM and bulk glucose concentration. The bulk glucose concentration was varied 

from 0 to 20 mM to evaluate for the entire blood glucose range. All boundary and initial 

conditions for these simulations remained the same as described for the baseline model. 

Again,it was assumed that at t=0
-
 oxygen concentration inside the sensors (i.e., 

microsphere and film) is equal to the bulk. The diffusion-reaction process was solved 

until t=2400 seconds, for exceeding the point of when steady-state was achieved to 

validate that the consumption is balanced with the diffusion from bulk. The capillary 

boundary (left boundary) was kept constant at a distance of 50 µm away from the array 

of sensors for simulations conducted for inflamed tissue of 10 µm. Steady-state oxygen 

concentration for each bulk glucose concentration was determined and plotted to 

estimate sensitivity and response range.  

6.3 Results  

Previous investigations have reviewed material-tissue interactions specifically for 

sensors which have shown that sensor failure can be linked to the events associated with 

healing of the tissue surrounding the implanted device, such as inflammation, and 

encapsulation.
75-76

 To understand the extent at which sensor performance can be 

impaired upon the occurrence of a host response, simulations were performed to evaluate 

changes in sensor response and sensitivity with the incidence of inflammation and 

progression of fibrous encapsulation with various thickness and collagen density.  
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6.3.1 Effects of Inflammation and Fibrous Capsule (FBC) on Response Time 

 

Simulations conducted in this study provide a general knowledge of what 

changes in response time can be expected to occur within the entire tissue healing 

process, from the incidence of inflammation upon intra-dermal implantation of sensors 

(within a few minutes) to the formation of a well-developed fibrous capsule formation 

(2-3 weeks).
47,72

 

Since inflamed tissue metabolizes oxygen faster than the surrounding dermal 

tissue, a loss of sensitivity and slower response sensor time are expected in the early 

(acute) phase. The response time increases to 91 sec with glucose input of 5 mM in the 

occurrence of inflammation. In comparison with sensors exhibiting no host response, the 

response time during inflammation increases by ~7%. It is already known that response 

time will be increased significantly, as a result of decreasing glucose diffusion to the 

sensor. Assuming that a fibrous capsule (glucose diffusivity of 2.5 x 10
-6

 cm
2
/s) 

consisting of loosely packed collagen develops around the sensors and has the same 

thickness of 10 µm as inflamed tissue, the sensor response time is ~4 minutes. In 

comparison with sensors displaying no tissue response, the delay in response with a 

fibrous encapsulation of sensors is significant—a ~64% increase. This may pose a 

problem in sensor function in vivo when considering the least favorable case for the 

structure of the fibrous capsule. 

In the worst-case scenario, the fibrous capsule could be 100 µm thick and possess 

a very densely-packed collagen matrix, causing the glucose diffusivity in the capsule to 
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be less than 1x 10
-6

 cm
2
/s. In this case, the response time may increase up to 9 min. If 

any changes in blood glucose levels do occur within 9 minutes, sensors in the above 

conditions will be inadequate and not reliable to predict the variations in glucose. 

Because fibrous capsule formation around the sensors has the potential to significantly 

impair sensor function in vivo, this foreign body reaction should be minimized. One 

possible approach to mitigate this is to promote vascularization around the sensors with 

the release of angiogenic factors such as VEGF.
58

 This suggestion is based on the 

previous findings that indicate that a significant improvement in response time results 

with an increase vascularization around the sensors (see Section 4). Vascular endothelial 

growth factor is an important signaling protein released by cells that stimulates the 

growth of new blood vessels from pre-existing vasculature. By promoting angiogenesis, 

VEGF restores the oxygen supply to tissues when blood circulation is inadequate. 

Studies have shown a significant increase in capillary tubule formation with the 

administration of vascular endothelial growth factor (VEGF).
59

 

6.3.2 Effects of Inflammation on Sensitivity and Range 

 

The results of simulations of inflamed tissue (10 µm thick) were compared to 

results for the case where no host response was present (refer to Figure 6.1). The bulk 

glucose concentration inputs were varied from 0 to 20 mM to evaluate steady-state 

oxygen for the entire blood glucose range. To calculate the collective steady-state 

oxygen concentration of the array of sensors, the values obtained for all the sensors 

within the array were averaged for each point in time. From the average curve, the 

steady-state oxygen concentration was calculated as before. 
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Figure 6.2   Comparison of the steady-state oxygen concentration in sensors over 

            the physiological range of glucose concentration (0 to 20mM) for two 

            cases of the baseline (no host response) and inflammation. 

 

The results clearly show an increase in steady-state oxygen concentration within 

sensors surrounded by inflamed tissue. At lower glucose concentrations, the difference 

in the steady-state oxygen concentration within sensors in inflamed tissue versus tissue 

with no immune response increases. The sensitivity and the glucose concentration at 

which the maximum change in steady-state oxygen concentration is 50% from the 
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response data (glucose range) were calculated for both cases. Sensitivity was estimated 

by performing a simple linear regression on the first few data points such that R
2 

≥ 0.95 

and determining the slope of the linear response. Upon the incidence of inflammation, 

the sensitivity is reduced by 66%; however; the glucose range is enhanced by 65%. The 

glucose range with inflammation occurring is ~ 138 mg/dL. This short response range of 

sensors does not extend to cover the full physiological range (0-600 mg/dL), which is a 

desired response range for in vivo monitoring of glucose. The occurrence of 

inflammation due to foreign body response to sensors implanted in the dermis results in 

a decreased sensitivity and an increase in the linear response range. This level of 

expected performance does not make the microparticle-based sensing approach to be 

very promising for in vivo monitoring of glucose.  

However, it is important to note that previous studies have demonstrated that 

sensor response can be customized to cover the physiological glucose range. 

Specifically, Stein et al. proved that by coating the microparticle sensors with layer-by-

layer deposited nanofilms to act as transport barrier, the range of sensors can be 

enhanced.
17

 Several characteristics of the nanofilms, such as thickness, deposition 

condition, and the outermost capping layer can be manipulated, allowing precise control 

over the response range of such sensors.
13,17

 Another effective method of increasing the 

response range that has been investigated is increasing the porosity of the 

microparticles.
12

 An increase in the porosity of microparticles yields an increase in 

oxygen flux relative to glucose. Sensors constructed from highly porous microparticles 
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were shown to exhibit a linear response up to 600 mg/dL.
12

 Since results show that 

inflammation can potentially impair the ability of these sensors to cover the hypo- (0–80 

mg/dL), normo- (80–120 mg/dL), and hyperglycemic levels (> 120 mg/dL), one method 

that can be utilized and has been shown effective to mitigate the foreign body reaction is 

the localized release of dexamethasone to reduce the inflammatory response.
77

 

6.3.3 Effects of Fibrous Capsule Thickness and Density on Sensitivity and Range 

 

The final stage of the foreign body response is the formation of a dense, 

avascular collagen capsule around the sensors. This network of collagen can potentially 

limit transport of oxygen and glucose to the implant and result in decreased sensitivity 

and increase the delay in response.
72,78-82

 To simulate fibrous encapsulation around the 

sensors, the thickness of the capsule around the array of sensors was varied from 1 to 

100μm. For each thickness, three different densities of fibrous capsules were tested to 

investigate how density and thickness of the fibrous capsule affect sensor sensitivity and 

response. It is reasonable to infer that the more densely packed the collagen fibers are in 

a fibrous capsule, the slower the diffusion rate of glucose is through the capsule. 

Sharkawyet. al. determined the effective glucose diffusion coefficients through capsules 

of various densities forming around implants ranging from 1.11 ± 0.12 x 10
-6

 to 2.35 ± 

0.24 x 10
-6

 cm
2
/s. For our study, three different densities of the capsule were tested. 

Specifically, 1 x 10
-6

, 1.75 x 10
-6

, and 2.5 x 10
-6

 cm
2
/s glucose diffusion rates were each 

tested for capsule thickness of 1, 5, 10, 50, and 100 µm, respectively. Results of these 

simulations are shown in subsequent figures (Figures 6.2 and 6.3). 
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The results of these simulations were compared to results for a case where no 

host response occurred to the implanted sensors. Figures 6.3, 6.4, and 6.5 show the 

response of sensors surrounded by a fibrous capsule of varying thickness ranging from 1 

to 100µm with the three different glucose diffusion rates. The general trends observed 

for all three glucose diffusion rates are same. Compared to no host response, a reduction 

in sensitivity and increase in the glucose range is observed with the occurrence of 

fibrosis. The magnitude of reduction in sensitivity and increase in the glucose range 

depends on two factors: the thickness and the density of the capsule.  

With the increase in the thickness of the capsule around the sensors, there is a 

greater collagen area that hinders the glucose molecules reaching the sensor; so it is 

expected that sensitivity of the sensors to glucose would decrease as thickness of the 

capsule increases. In contradiction to our expectations, the simulations indicate that the 

sensitivity of the glucose sensors increases with increasing thickness of the capsule. In 

comparison to the normal case (no fibrosis), a 70% decrease in sensitivity is observed for 

sensors surrounded by 1µm thick capsule. 
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Figure 6.3    Response of sensors surrounded by a fibrous capsule of varying 

     thickness ranging from 1 to 100µm with a constant glucose    

     diffusion rate of 1 x 10
-6

 cm
2
/s. 
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Figure 6.4 Response of sensors surrounded by a fibrous capsule of varying 

             thickness ranging from 1 to 100µm with a constant glucose diffusion 

  rate of 1.75 x 10
-6

 cm
2
/s. 
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Figure 6.5    Response of sensors surrounded by a fibrous capsule of varying 

     thickness ranging from 1 to 100µm with a constant glucose  

     diffusion rate of 2.5 x 10
-6

 cm
2
/s. 

 

This finding may be relevant to the fibrous encapsulation that develops around an 

implanted biosensor. For example, after 7 days, current prototype sensors operating 

under physiological conditions in rats exhibit a 75% loss of sensor sensitivity as a direct 

result of interaction with the in vivo environment.
9
 This could be due to a fibrous 

network similar to what has been simulated within our model, to be present in the real 

situation with sensors implanted in the dermis for more than 7 days.  When comparing 
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the sensitivity of sensors surrounded by 100 µm thick capsule to no fibrous capsule, a 

difference in sensitivity of ~20% is observed. Figures 6.6, 6.7, 6.8, 6.9, and 6.10 show 

the response of sensors surrounded by fibrous capsule of three different densities 

correlated with three different glucose diffusivities at 1, 5, 10, 50, and 100µm thickness, 

respectively. Figures 6.11 and 6.12 summarize the results observed in Figures 6.3 to 6.10 

showing the relationship between range and sensitivity, respectively, with fibrous 

capsule density (varying in glucose diffusivity) and thickness of the capsule. Analyzing 

these results show that at each distinct thickness of the capsule, sensitivity increases with 

decrease in density of collagen fibers in a capsule. With looking at the results for just the 

100 µm thick capsule, at glucose diffusivity of 1.75x 10
-6

 cm
2
/s, the difference in 

sensitivity with no fibrosis is only ~6%. At glucose diffusivity of 2.5 x 10
-6

 cm
2
/s, the 

sensitivity reduces more to a negligible difference of less than 0.5%. These results lead 

to the realization that fully-implanted sensors eliciting fibrosis could potentially have a 

very stable long-term function. The tissue surrounding the implanted sensors should 

reach a steady-state structure. If the steady-state structure of the tissue is comparable to 

the physiology of the best-case of fibrous tissue, then the sensitivity of sensors will be 

similar to sensitivity observed with no foreign body reaction occurring. According to the 

results, the ideal fibrous structure needs to have collagen loosely packed enough to 

exhibit a glucose diffusion rate greater than 2.5 x 10
-6

 cm
2
/s and stabilize to a thickness 

of 100 µm for the sensors to exhibit the highest sensitivity. Once the structure of the 

foreign body capsule has stabilized, it may be possible to monitor glucose from within 

the capsule over the course of months.
71
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Figure 6.6   Response of sensors surrounded by a fibrous capsule (thickness of 

  1µm) of varying collagen density corresponded with the different 

  glucose diffusivities. 
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Figure 6.7  Response of sensors surrounded by a fibrous capsule (thickness of 

  5µm) of varying collagen density corresponded with the different 

  glucose diffusivities. 
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Figure 6.8 Response of sensors surrounded by a fibrous capsule (thickness of 

  10µm) of varying collagen density corresponded with the different 

  glucose diffusivities. 
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Figure 6.9  Response of sensors surrounded by a fibrous capsule (thickness of 

  50µm) of varying collagen density corresponded with the different 

  glucose diffusivities. 
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Figure 6.10  Response of sensors surrounded by a fibrous capsule (thickness of 

  100µm) of varying collagen density corresponded with the different 

  glucose diffusivities. 
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Figure 6.11 Plots showing relationship of sensor range with fibrous capsule  

          thickness and density (reflected by glucose diffusivity—higher glucose 

          diffusivity referring to less dense collagen fibers in the capsule). 
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Figure 6.12   Plots showing relationship of sensitivity with fibrous capsule thickness 

             and density (reflected by glucose diffusivity—higher glucose 

             diffusivity referring to less dense collagen fibers in the capsule). 
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Compared to no host response, an increase in the glucose range is observed for 

all architectures of the fibrous tissue in comparison with no occurrence of fibrosis. The 

glucose range at maximum increases up to 10 µM or 183 mg/dL for sensors surrounded 

by 1µm thick capsule and at a glucose diffusion rate of 1 x 10
-6

 cm
2
/s. With the same 

thickness of 1µm for the fibrous capsule, as the glucose diffusion rate increases to 1.75 x 

10
-6

 cm
2
/s, the range decreases to 9.2 µM or 165 mg/dL. With an increase in glucose 

diffusion rate furthermore to 2.5 x 10
-6

 cm
2
/s, the range decreases to ~8.8 µM or ~160 

mg/dL. With increase in the thickness of the capsule from 1 to 100 µm at the lowest 

glucose diffusion rate in fibrous tissue, the glucose range decreases from 183 mg/dL to 

70 mg/dL. Increasing the thickness by 100X results in a decrease in glucose range by 

62%. Preferably, it would have been acceptable to see the response of sensors up to at 

least 19 µM or 350 mg/dL, which is the maximum glucose level for accepted clinical 

range. Findings from this study correlate with experiments in which in vivo experiments 

are conducted for weeks and months. These experiments have demonstrated that as the 

days progress, the sensor signals increase and eventually stabilize.
71,81

 

Compared to sensors exhibiting no host response, fibrous encapsulated sensors 

exhibit overall loss of sensor sensitivity and increase in glucose range.  Findings from 

this study reveal some useful information for improving the prospects for long term use 

of glucose monitoring systems. With an increase in the thickness of the capsule and 

decrease in the density of the packed collagen in the capsule, the sensitivity of the sensor 

improves but the glucose range decreases. From the results, an increase in sensitivity is 

observed with higher glucose diffusion rates within the fibrous capsule which can result 
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if the collagen bundles that make up a fibrous capsule are loosely packed so that they are 

less likely to impair analyte diffusion as has been demonstrated by Sharkawy et al.
36

 To 

improve sensitivity, one method that can be utilized is to ensure that the sensor matrix is 

more porous. Sharkawy et al. showed that, as compared to solid implants, porous 

implants let to capsular tissue that was sparser, and that allowed greater trans-capsular 

diffusion. In addition to their effect leading to a less dense fibrous capsule, porous 

membranes also promoted angiogenesis.
36

 This study also implies that rather than 

attempting to minimize the thickness of a fibrous capsule forming around long-term 

implanted sensors, a better approach towards enhancing sensor response would be to 

increase the vascularity of the tissue encapsulating them. Without suggesting any 

specific sensor design modifications here, the results of this study demonstrate that a 

means of enhancing implanted sensor response is to incite fibrovascular growth and 

sustained vasculature months after implantation. 
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7 CONCLUSION AND FUTURE WORK 

 

In this work, a two-substrate, 2D FEM model of microscale optical glucose 

sensors in the dermis was developed. Using the model, glucose sensors were 

characterized under mimicked in vivo conditions for potential used in minimally-

invasive diabetic monitoring systems.  These sensor function through enzyme based 

consumption of glucose and oxygen, where glucose-dependent oxygen levels within the 

sensor optically reported and the glucose levels indirectly extracted. The multi-scale 

model developed consists of a microsphere with a polyelectrolyte film as the sensor 

complex implanted in the center of a dermal tissue area. Each domain of the model—

polyelectrolyte film, microsphere, and the dermis-- was programmed to mimic their 

function by taking account of glucose and oxygen diffusivities and consumption. 

Though not representative of the complex 3D nature of the skin consisting of several 

distinct layers in addition to the dermis and components such as connective tissue, blood 

vessels, nerves, and the bases of hair follicles and sweat glands, the 2D model provides a 

mean for testing physiological parameters that are difficult to experimentally control and 

measure and that can significantly affect the performance of proposed glucose sensors. 

Furthermore, the resulting model can serve as a universal platform for any variation of a 

sensor implant; that is, it can be used to measure and predict the response of any 

implantable sensing device by simply changing the parameters and properties of the 

sensor of interest.  

The goal of this research was the design and development of a model that could 

be used in conjunction with in vivo studies to investigate the response properties of 
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individual sensors in an effort to understand how individual sensors behave within an 

array of sensors and how individual behavior contributes to overall response properties 

of the sensing system. Additionally, the model was utilized towards understanding the 

impact of physiological factors that can potentially degrade sensor function and response 

in vivo. Generally, physiological factors that can affect delivery of substrate to the 

sensors will impact the performance of these sensors. We focused on predicting the 

response time, sensitivity, and linear response range of glucose sensors with varying the 

number and spacing of particles distributed in the dermis and varying physiological 

characteristics of the surrounding dermal tissue; specifically, capillary density, blood 

vessel location relative to sensor, and glucose and oxygen consumption in tissue. The 

utility of the model to predict the performance and efficacy of the sensors after the 

incidence of inflammation and fibrous capsule formation around the sensor implants was 

also evaluated.  

Simulation results indicated that for all physiological situations that were tested, 

the sensors approached steady-state within 6 minutes. This response time is more than 

adequate for monitoring the fluctuations in the blood glucose, which usually occur over 

a period of 30 min.
56 

Theoretically, it was predicted that an increase in the glucose and 

oxygen supply to the sensor matrix from blood vessels around the sensors can result in a 

substantial improvement in the sensitivity. As expected, by doubling the amount of 

blood vessels, sensitivity increases. Furthermore, response time, as expected, improved 

2-fold with by doubling the blood supply. 

The results of this work suggest one strategy of improving sensor response time.  
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The effect of increasing the number of sensors is evident; as the number of 

sensors increase, there is an increase in the sensor response time. This implies that 

sensors do not act independently. To test this, careful analysis of the steady-state oxygen 

concentration within sensors and in the tissue surrounding the sensors was performed for 

variations in the space or distance between the sensors. The results show that as the 

packing density of sensors decreases, a decrease in sensitivity and an increase in the 

response range is observed. An important outcome of this study is that sensors apart at 

distances greater than 50 µm do not affect each other or influence the reaction kinetics or 

the diffusion of glucose and oxygen to the surrounding sensors. This discovery can be 

used towards optimizing the signal of glucose sensors by controlling the implantation 

and delivery of the sensors at an orientation such that the sensors are all apart at a given 

distance where they do not affect each other. With an increase in the number of sensors, 

a substantial improvement in the sensitivity and a reduction in the response range were 

observed. 

Simulations were also conducted in which the occurrence of a host response to 

the sensors in the dermis, specifically inflammation and fibrous encapsulation, was 

considered. The occurrence of inflammation due to foreign body response to sensors 

implanted in the dermis results in a decreased sensitivity and an increase in the linear 

response range. This behavior can be associated with the increase in metabolic 

consumption of oxygen in tissues by macrophages. The higher metabolic rate of oxygen 

in tissue causes steady-state oxygen in sensors to be lower for different glucose inputs 

causing sensitivity to decrease and range to increase. Compared to sensors exhibiting no 
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host response, fibrous encapsulated sensors exhibit and overall loss of sensor sensitivity 

and increase in glucose range. This could be attributed to densely packed collagen fibers 

limiting the diffusivity of glucose to the sensors. With increase in the thickness of the 

capsule and decrease in the density of the packed collagen in the capsule, the sensitivity 

of the sensor improves but the glucose range decreases. Our results indicate that by 

altering the number of blood vessels around the sensors and controlling the amount of 

sensors implanted in the dermis, the analyte transport properties into the microsphere can 

be altered, resulting in control of response characteristics, such as sensitivity, linear 

range, and response time. 

To make this model to be more accurate to the in vivo environment, a 3D 

asymmetric version can be created that includes consumption and diffusivity effects by 

other components in the skin. The skin consists of several distinct layers in addition to 

the dermis and components such as connective tissue, blood vessels, nerves, and the 

bases of hair follicles and sweat glands. In order to incorporate the aforementioned 

components into the model accurately, more literature research would need to be 

conducted to determine the geometry, diffusivity and consumption rates, as well as, their 

variability in location, position, and size in the dermis. Once this information is obtained, 

the geometry of the model and function of all components within the skin can be created. 

By obtaining this information, the assumption that was made in this work that the 

metabolic glucose and oxygen consumption is with the inclusion of all components with 

the dermis can be ruled out.  Additionally, the actual density of blood vessels that is 

present within an area of the dermis can accurately be incorporated within the 3D model. 
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Instead of looking at a cross-section of the skin and the sensor as was probable with the 

2D model described in this work, a 3D version would allow us to predict the actual 

response time and sensitivity that can be expected in vivo by looking at the changes in 

steady-state oxygen within the entire volume of the glucose sensor.  

By modeling, we have gained a better insight into the performance of such 

sensors in vivo. Future work should focus on testing the sensors under real physiological 

conditions of non-diabetics and diabetics. It would be advantageous for future work to 

concentrate on validating simulations results through experiments in animal models (i.e. 

rats). Simulation results indicated that a significant loss of sensitivity (>60%) would 

occur with fibrous capsule formation around sensors. An experimental validation would 

confirm simulation results. In vivo experiments on multiple animals investigating host 

response on sensor function is of utmost importance. From simulation results, it was 

concluded that sensor performance can be significantly enhanced upon the increase of 

vascularization surrounding the sensors. Therefore with experiments on animal models, 

it is necessary to incorporate some method of boosting angiogenesis upon the 

implantation of these sensors and testing sensor performance with and without the extra 

enhancement and conducting histology on the surrounding tissue. The enhancement in 

sensor sensitivity should be tracked over time corroborated with histological finding of 

the sensors and the surrounding tissue. The histology would allow for determining if 

inducing angiogenesis with the implantation of sensors in dermis changes the properties 

of the surrounding tissue where it would affect the host adversely. Determining the 

extent of fibrous capsule formation around sensors at specific times after implantation in 
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animal models could provide a direct assessment of the barrier properties of fibrous 

capsules around dermal micro-particle implants.   

A particularly interesting aspect of this work showed that at a certain distance 

apart from each other sensors can act independently. This way the glucose response 

range was significantly enhanced.  This discovery can be used towards optimizing the 

signal of glucose sensors by controlling the implantation and delivery of the sensors at 

an orientation such that the sensor are all apart at a given distance where they do not 

affect each other and act independently. One method of controlling the space between 

the sensors that is suggested is to effectively immobilize sensors through the utilization 

of physical trapping in a PEG hydrogel. This would involve developing a thin PEG 

hydrogel sheet in which sensors are each individually immobilized a certain micrometers 

apart from each other. This in itself would be quite a feat to develop, but could 

potentially provide effective glucose sensing in diabetic patients when methods for non-

invasive implantation of PEG hydrogel sheets is also considered. 

The results from this work have provided knowledge on the impact of physiological 

factors on sensor function in vivo. We now understand that the sensing system 

architecture must be arranged with explicit attention to number of sensors, tissue spacing 

between sensors in an array, and amount of blood vessels in order to achieve the desired 

performance in the operation range. Furthermore, this work has provided the basis for 

future studies on improving not only the response of prototype glucose sensors, but the 

functioning of any implant in the human body. 
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