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ABSTRACT 

 

Robust Clock Synchronization in Wireless Sensor Networks. (August 2010) 

Sawin Saibua, B.Eng., Chulalongkorn University 

Chair of Advisory Committee: Dr. Erchin Serpedin 

 

Clock synchronization between any two nodes in a Wireless Sensor Network (WSNs) is 

generally accomplished through exchanging messages and adjusting clock offset and 

skew parameters of each node’s clock. To cope with unknown network message delays, 

the clock offset and skew estimation schemes have to be reliable and robust in order to 

attain long-term synchronization and save energy. 

 A joint clock offset and skew estimation scheme is studied and developed based 

on the Gaussian Mixture Kalman Particle Filter (GMKPF). The proposed estimation 

scheme is shown to be a more flexible alternative than the Gaussian Maximum 

Likelihood Estimator (GMLE) and the Exponential Maximum Likelihood Estimator 

(EMLE), and to be a robust estimation scheme in the presence of non-Gaussian/non-

exponential random delays. This study also includes a sub optimal method called 

Maximum Likelihood-like Estimator (MLLE) for Gaussian and exponential delays. 

 The computer simulations illustrate that the scheme based on GMKPF yields 

better results in terms of Mean Square Error (MSE) relative to GMLE, EMLE, GMLLE, 

and EMLLE, when the network delays are modeled as non-Gaussian/non-exponential 

distributions or as a mixture of several distributions. 
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CHAPTER I 

INTRODUCTION  

 

1.1 Wireless Sensor Networks and Their Applications 

Advancement in Micro-Electro-Mechanical systems (MEMS), wireless communications 

and digital electronics has allowed the development of small, low-cost, energy efficient, 

and multi-functional wireless sensing devices. Wireless sensors are featured in general 

with environmental sensing and data processing capabilities, and with means to freely 

communicate over short distance. This enables the sensor nodes to efficiently collaborate 

for collecting and processing information and to effectively operate over a large region. 

A system composed of a large number of sensor nodes is called a Wireless Sensor 

Network (WSN) [1], [2]. 

Given the promising features of WSNs, the number of applications involving 

WSNs has grown rapidly, and as a result, WSNs have found a wide range of practical 

applications in health, military, environment, trading, security, etc. For example, in a 

hospital, sensor networks can remotely monitor the patient’s physiological data and 

allow doctors to identify pre-determined symptoms in earlier stages. WSNs can relay the 

origin of wild fire by strategically, randomly, and densely deploying the sensor nodes in 

the forest. They can be embedded into home appliances such as TVs, refrigerators, and 

micro-waves and can be controlled locally and remotely by users. As a consequence, in 

the near future, WSNs could be integrated into many aspects of a person’s daily life [2]. 

____________ 
This thesis follows the style of IEEE Transactions on Automatic Control. 
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 There are many factors which influence the design of WSNs such as nodes’ fault 

tolerance, scalability, production costs, operation environments, network topology, 

hardware constraints, transmission media, and power consumption [2]. Especially, the 

sensor nodes’ power is limited because the scale of deployment makes them mostly 

inaccessible and their batteries are restricted in terms of power levels. In addition, data 

communication is the most vital operation in WSNs and requires huge portion of energy 

consumption which in general is greater than the energy required by the local data 

processing at each individual sensor node. Therefore, the most crucial factor in 

designing WSNs is to ensure the energy efficiency.   

 

1.2 Importance of Robust Clock Synchronization 

In any distributed systems, clock synchronization is a critical piece of infrastructure 

because it is a procedure for providing a common knowledge of time across the entire 

system which allows collaboration among the nodes in the system. WSN is an example 

of such a distributed system that needs clock synchronization in order to perform a 

number of fundamental operations such as data fusion, power management, transmission 

scheduling, tracking, etc. [1]. 

 Every individual sensor node in a network has its own clock function defined by 

its clock offset and skew parameters. Clock synchronization between any two nodes is 

generally accomplished by message exchanges. Due to the presence of non-deterministic 

and possibly unbounded message delays, messages can be delayed arbitrarily while 

transferring messages between any two nodes. This makes the clock synchronization a 
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difficult and complex problem. The most commonly proposed non-deterministic 

network delay distributions are the Gaussian, Exponential, Gamma, and Weibull 

probability density functions (pdfs) [3], [4], [5], [6]. The maximum likelihood estimators 

(MLEs) of clock offset and clock skew have been proposed for the Gaussian delay 

model and Exponential Delay model in [3], [7], respectively. However, paper [8] shows 

that MLE for the Gaussian delay model (GMLE) and the MLE for the Exponential delay 

model (EMLE) are quite sensitive to the network delay distribution. Consequently, any 

uncertainty in the knowledge of network delay distribution increases the number of 

message errors and the number of message retransmissions, which cause WSNs to waste 

more power to achieve synchronization. Therefore, robust clock synchronization 

techniques for WSNs are required to withstand the unknown or possibly time-varying 

distributions of the network delays in the uplink and downlink of message exchanges. In 

any distributed system, clock synchronization is a critical piece of infrastructure because 

it is a procedure for providing a common knowledge of time across the entire system 

which allows collaboration among nodes in the system. WSNs are one of such systems 

that need clock synchronization in order to perform a number of fundamental operations 

such as data fusion, power management, transmission scheduling, tracking, etc [1]. 

       Reference [4] proposes a robust clock offset estimation method in the presence of 

non-Gaussian random delays, referred to as the Gaussian Mixture Kalman Particle Filter 

(GMKPF). The Mean-Square Error (MSE) performance of GMKPF is superior than the 

MSE performance of GMLE and EMLE in general network delay distributions and in 

the presence of a small number of message exchanges. A reduced number of message 
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exchanges helps WSNs consume less energy which is one of the most important points 

in designing WSNs.  This thesis proposes to study a joint clock offset and skew 

estimation method based on GMKPF. The MSE performance of GMKPF, GMLE, and 

EMLE is simulated under Gaussian, Exponential, Gamma, Weibull delay distributions, 

and a mixing of two delay distributions. The computer simulation results show that the 

proposed scheme has superior performance relative to GMLE and EMLE in most 

network delay distributions. Therefore, GMKPF represents a very reliable scheme for 

joint clock offset and skew estimation. This will help guarantee long-term reliability of 

clock synchronization and reduce network-wide energy consumption, which is one of 

the key strategies for the successful deployment of long-lived WSNs.  

 

1.3 Literature Review 

A few protocols have been proposed for clock synchronization of WSNs. This research 

analyzes the clock sync protocols relying on two-way message exchanges between two 

nodes. The adopted scenario is similar to the Timing synch Protocol for Sensor 

Networks (TPSN) [9]. TPSN acts as a conventional sender-receiver protocol which 

assumes two operational stages: the level discovery phase and the synchronization 

phase. The global synchronization of the network is achieved by the two-way message 

exchanging mechanism through adjusting only its clock offset.  

By applying a probabilistic approach to deal with the clock synchronization problem 

in WSNs, Abdel-Ghaffar [3] classified the link delay as deterministic and non-

deterministic components. Abdel-Ghaffar also reviews five different clock offset 
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estimation algorithms which include the median round delay, the minimum round delay, 

the median phase, and the average phase under symmetric exponential link delay. Later, 

Jeske [10] mathematically proved that MLE of clock offset exists when the fixed delay 

components in each direction are equal and the variable delay is exponentially 

distribution with an unknown mean. This result was also consistent with the previously 

proposed estimators. In a work of Noh et al. [8], MLE for the symmetric Gaussian delay 

model was derived and the Joint Maximum Likelihood Estimator (JMLE) of clock offset 

and clock skew for the symmetric Gaussian model delay was also derived. In addition, 

Noh et al. [8] also proposed a less computationally complex method for clock offset and 

skew estimation under Gaussian and exponential delays, called the Maximum 

Likelihood-Like Estimator (MLLE). Furthermore, JMLE of clock offset and skew 

estimation for the symmetric exponential model delay was proposed by Chaudhari [11]. 

However, the previously proposed estimation methods are very sensitive to changes in 

the network delay distribution. Recently, Kim et al. [4] developed a robust estimation 

scheme for clock offset called the Gaussian Mixture Kalman Particle Filtering 

(GMKPF), and which was shown to provide better performance for arbitrary network 

delay distributions relative to MLE. Drawbacks of the study undertaken by Kim et al. [4] 

are the facts that analytical closed form expressions for MSE do not necessarily exist and 

that lower bounds are hard to derive. 

While significant progress has been made in the effort to efficiently estimate clock 

offset and skew, estimation schemes which are not sensitive to non-Gaussian/non-

exponential network delays have not been developed yet. This research, therefore, will 
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conduct a series of computer simulation to assess the performance of GMKPF in 

estimating both the clock offset and skew parameters. 

  

1.4 Problem Description 

The clock offset and skew parameters are two factors that determine the accuracy and 

guarantee long-term reliability of time synchronization in WSNs, and therefore, 

reduction of network energy consumption which is the key strategy in obtaining energy 

efficiency usage. 

Clock synchronization between any two nodes is generally accomplished by 

message exchanges. Due to the presence of non-deterministic message delays, messages 

can get delay arbitrarily. It is important to develop an estimator which performs well in 

any network delay environment. 

As depicted later in Chapter II, in the Figure on page 11, the clock offset and 

skew measurement is modeled as equation on page 11. In order to obtain a robust 

estimation scheme for clock offset and skew, GMKPF was first studied and the MSE 

performance of GMKPF was compared with the MSE performance of GMLE and 

EMLE through computer simulations. Then, GMKPF was used to estimate the clock 

offset and skew parameters by formulating the problem as described in Section 2.7. A 

series of computer simulations was conducted in order to verify the MSE performance of 

GMKPF through comparisons with JMLE and MLLE. 
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1.5 Research Objective 

This research aims at two main objectives: 

 Study the previously proposed clock offset and joint clock offset and skew 

parameter estimation methods: MLE, JMLE, MLLE, and GMKPF. 

 Conduct a computer simulation to study the robustness of the clock offset and 

skew estimation scheme based on GMKPF assuming Gaussian and general non-

Gaussian delay distributions such as exponential, Gamma, and Weibull and 

compare their MSE performance with  that of JMLE and MLLE. 

By achieving the above goals, this research was able to provide a robust clock 

synchronization method by estimating both the clock offset and skew parameters. 
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CHAPTER II 

SYSTEM DESCRIPTION AND BACKGROUND THEORIES 

 

2.1 Two-way Message Exchange Mechanism Without Clock Skew 

Assuming no clock skew, a number of N two-way message exchanges or sender-

receiver synchronization (SRS) exchanges are graphically shown in Figure 2.1. T1,k and 

T4,k represent the timestamps measured by the local clock of node A, while T2,k and T3,k 

represent the timestamps measured by the local clock of node B at the kth message 

exchange. 

Figure 2.1: Two-way message exchange mechanism which assumes only clock offset 

Based on the above pairwise message exchange mechanism, the clock offset 

measurement model can be represented in terms of the following two equations [8]: 

 
2, 1,

4, 3,

,

,
k k k

k k k

T T d X

T T d Y





   

   
 (2.1) 

where d denotes the fixed portions of the delay, and   represents the clock offset 

between node A and node B. kX  and kY  denote the variable portions of delay.   
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The equation (2.1) can also be rewritten as 

 
,

,
k k

k k

U d X

V d Y




  

  
 (2.2) 

where the time differences kU  and kV  corresponding to the thk  uplink and downlink 

message exchange, are defined as , ,k k kU T T 2 1  and 4, 3,k k kV T T  respectively.  

 

2.2 Maximum Likelihood Clock Offset Estimation 

Delay measurements in equation (2.2) produce a MLE of the clock offset when the fixed 

delays in each direction are equal and the variable delays in each direction assume the 

same distribution, namely Gaussian or exponential distribution. 

 

 2.2.1 Gaussian Delay Model 

Assuming the symmetric Gaussian delay for uplink and downlink, the set of delay 

observations 1{ }N
k kX  and 1{ }N

k kY   are independent and normally distributed with the same 

mean   and variance 2 . The likelihood function based on the observations 1{ }N
k kU   

and 1{ }N
k kV   is given by [8] 

2 2 2 2
2

1 1

1
( , , ) (2 ) exp{ [ ( ) ( ) ]}.

2

N N
N

k k
k k

L U d V d       




 

           (2.3) 

Differentiating the log-likelihood function gives 
 

 
2

1

ln ( ) 1
[ 2 ( )].

N

k k
k

L
U V

 
  


   

   (2.4) 
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Hence, the MLE of clock offset is given by 

2
1

ˆln ( ) 1 ˆ[ 2 ( )] 0
ˆ

N
GMLE

GMLE k k
kGMLE

L
U V

 
 


    


  

 1

( )
ˆ .

2 2

N

k k
k

GMLE

U V
U V

N
 




 


 (2.5) 

 

2.2.2 Exponential Delay Model 

Assuming the symmetric exponential delay model for the uplink and downlink, the set of 

delay observations 1{ }N
k kX  and 1{ }N

k kY   are independent and exponentially distributed 

with the same mean  . 1{ }N
k kU   and 1{ }N

k kV   define the order statistics of the sequences 

of observations 1{ }N
k kU  and 1{ }N

k kV  , respectively. The likelihood function based on the 

observations  is given by [9] 

 
2

1 1

(1) (1)

( , , ) exp{ [ 2 ]}

[ , ].

N N
N

k k
k k

L d U V Nd

I U d V d

  

 



 

   

    

   (2.6) 

MLE of clock offset is given by [9] 

 
(1) (1)ˆ .

2EMLE

U V 
  (2.7) 

 

2.3 Two-way Message Exchange Mechanism with Clock Offset and Skew 

Due to the imperfections of the clock oscillator, the clock of each node presents different 

clock offsets and skews. Moreover, the clock offset between two nodes actually keeps 

increasing because of the effect of clock skew. Therefore, a fixed value model or 
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equation (2.1) for clock offset is not sufficient for practical situations. As a consequence, 

estimating the clock offset and skew will increase the accuracy and maintain long-term 

reliability of synchronization.  

 

Figure 2.2: Two-way message exchange mechanism assuming both clock offset and 
skew. 

 
 The effect of clock offset and skew are depicted in Figure 2.2. Here, the 

timestamps in the kth message exchange T1,k and T4,k are measured at node A, and T2,k 

and T3,k are measured at node B. Assuming T1,1 is set to zero and it serves as the 

reference time, the clock offset and skew measurement could be modeled as [1]   

 
2, 1,

3, 4,

( ) ,

( ) ,
k k k

k k k

T T d X

T T d Y

 

 

   

   
 (2.8) 

where  represents the clock skew parameter. 

 

2.4 Joint Maximum Likelihood Estimation (JMLE) of Clock Offset and Skew 

The theory applied thus far for finding the MLE for the clock offset (assuming no clock 

skew) can be extended to find JMLE for a more general clock model (2.8). 
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2.4.1 Gaussian Delay Model 

Assume 1{ }N
k kX  and 1{ }N

k kY   are zero mean independent Gaussian distributed random 

variables with variance 2  and the fixed portion of delay d is known. The JMLE of 

clock offset and skew based on the observations 1, 1{ }N
k kT  , 2, 1{ }N

k kT  , 3, 1{ }N
k kT  , and 4, 1{ }N

k kT   

is given by [1] 

 

2 2

1, 4, 2, 3, 2, 3,
1 1 1

2, 3, 1, 4,
1 1

( ) ( ) ( )
ˆ ,

( ) ( ) 2

N N N

k k k k k k
k k k

GMLE N N

k k k k
k k

T T T T T T Q

T T T T NQ
   

 

   


  

  

 
 (2.9) 

 

2 2

1, 4, 2, 3, 2, 3,
1 1 1

1, 4, 2, 3, 1, 4,
1 1 1

2, 3,
1

1, 4,
1

2 [ ( ) ( ) ( ) ]
ˆ

( )[ ( ) ( ) 2 ]

( )
,

( )

N N N

k k k k k k
k k k

GMLE N N N

k k k k k k
k k k

N

k k
k
N

k k
k

N T T T T T T Q

T T T T T T NQ

T T

T T

   

  





    


   






  

  





 (2.10) 

where 1, 2, 3, 4, 2, 3,
1

[ ( ) ].
N

k k k k k k
k

Q T T T T T T d


    

 

2.4.2 Exponential Delay Model 

Assuming the symmetric exponential delay model for the uplink and downlink then the 

set of delay observations 1{ }N
k kX  and 1{ }N

k kY   are independently and exponentially 

distributed with the same mean . In paper [11], the authors assumed that  is known 

and categorized JMLE of clock offset and skew into four cases: 
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Case I: d known,   known; 

Case II: d unknown,   known; 

Case III: d known,   unknown; 

Case IV: d unknown,   unknown. 

 This thesis studies the MSE performance in the case that the fixed portion delay, 

d is known,   unknown and  unknown. The algorithm for finding ̂  and ̂ when d is 

known is given by the following operations:  

3, 1, 2, 4,,

1, 4,

2, 3,,

1, 4,

( ) ( )
1. ;

( ) ( )

;
( ) ( )

1,..., 1,..., ;

l k k lk l

k l

k lk l

k l

T T d T T d
Find

T d T d

T T

T d T d

k N and l N





  


  




  

   

 (2.11) 

, ,
2, 3,, ,

1, 4,

2. ( , ) {( , ) | };

1,..., ;

k l k l
r rk l k l

r r

T T
i j k l and

T d T d

r N

 
 

 
  

 

 

 (2.12) 

, ,
2, 3,, ,

1, 4,

3. ( , ) {( , ) | ( , ) ( , ), };

1,..., ;

k l k l
r rk l k l

r r

T T
m n k l k l i j and

T d T d

r N

 
 

 
   

 

 

 (2.13)

, , , ,ˆˆ4. min{ , }; max{ , };i j m n i j m n
EMLE EMLE        (2.14) 

 

2.5 Maximum Likelihood-Like Estimator (MLLE) 

Figure 2.2 shows that the clock difference between two nodes is monotonically 

increasing based on the linear clock skew model in equation (2.8). The largest clock 

difference is between the first and last time stamps. From this intuition, MLLE is 
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proposed in [8] based on the information provided solely by the first and the last 

timestamps. 

 Define the distances of the first and last time stamps as (1) 1, 1,1ND T T , 

(2) 2, 2,1ND T T , (3) 3, 3,1ND T T , and (4) 4, 4,1ND T T . From (2.8), subtracting 2,1T from  

2,NT  and subtracting 4,1T from 4,NT  yields 

2, 2,1 1, 1,1 1

3, 3,1 4, 4,1 1

( ) ,

( ) ,
N N N

N N N

T T T T X X

T T T T Y Y





    

    
 

which can be further rewritten as 

 
(2) (1) 1

(3) (4) 1

( ) ,

( ( )) .

N

N

D D X X

D D Y Y





  

  
 (2.15) 

 

2.5.1 Gaussian Delay Model 

In the Gaussian delay model, X1, XN, Y1, and YN are independent and identically 

normally distributed random variables with zero mean and variance 2 . Therefore, XN - 

X1 and YN - Y1 are normally distributed random variables with zero mean and variance 

2 2 . 

 Define XN - X1 as the variable P and YN - Y1 as the variable R. Then the joint pdf 

of P and R is given by 

 2 2
, 2 2

1 1
( , ) exp[ ( )].

4 4P Rf p r p r
 

    

Thus, the likelihood function based on model (2.15) is  
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 (1) (4)2 2 2 2 2
(2) (3)2 2

(2) (3)

1 1 1 1
( , ) exp ( ) ( ) .

4 4

D D
L D D

D D
 

   

         
    

 

Define 1'   and differentiating the log-likelihood function with respect to '  yields 

 

2
(1) (4)2 2 2 2

(2) (3)2
(2) (3)

2
(1) (4)2 2

(2) (3)2
(2) (3)

(1) (2) (3) (4)

2 2
(2) (3)

ln ( ', ) 1
( ' ) ( ' ) ,

' 2

ˆln ( ', ) 1
ˆ ˆ0 ( ' ) ( ' ) ,

ˆ ' 2

ˆ ' .

D DL
D D

D D

D DL
D D

D D

D D D D

D D

   
 

   
 



 
     

   
 

      
   






 

Thus, the MLLE for the Gaussian delay model (GMLLE) is given by: 

 
2 2
(2) (3)

(1) (2) (3) (4)

ˆ .GMLLE

D D

D D D D






 (2.16) 

Then, we could express the clock offset estimator as follows: 

 
' '

ˆ ,
2

k k
GMLLE

U V 
  (2.17) 

where '
2, 1,ˆk k GMLLE kU T T   and '

4, 3,ˆk GMLLE k kV T T  . 

 
 
2.5.2 Exponential Delay Model 

In the exponential delay model, X1, XN, Y1, and YN are independent and identically 

distributed normal random variables with the same mean, and XN - X1 and YN - Y1 are 

normally distributed random variables with zero mean. Similarly to the Gaussian delay 

model, XN - X1 is defined as the variable P and YN - Y1 is defined as the variable R. P 
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and R are zero mean Laplace distributed random variables with variance 2 2  and the 

joint pdf of P and R is given by 

 
2

,

1 1
( , ) exp[ (| | | |)].

2P Rf p r p r
 

    
 

 

The likelihood function based on model (2.15) is 

 
2

(2) (3)
(1) (4)

1 1
( , ) exp | | | | .

2

D D
L D D 

   
          

    
 

Substituting 1'  , the likelihood function can be rewritten as 

  
2

(2) (1) (4) (3)

1 1
( ', ) exp | ' | | ' | .

2
L D D D D   

 
             

 

The maximization of the likelihood function is reduced to 

 (2) (1) (4) (3)
'

ˆ ' arg min(| ' | | ' |).D D D D


       (2.18) 

Therefore, the MLLE of the exponential delay model (EMLLE) is given by; 

 

(2)
(2) (3)

(1)

(3)
(2) (3)

(4)

(2) (3)
(2) (3)

(1) (4)

,

ˆ ,

1
, .

2

EMLLE

D
D D

D

D
D D

D

D D
D D

D D




 


 

        

 (2.19) 

Then, we could express the clock offset estimator as 

 
' '

1 1min minˆ ,
2

k N k k N k
EMLLE

U V    
  (2.20) 

where '
2, 1,ˆk k EMLLE kU T T   and '

4, 3,ˆk EMLLE k kV T T  . 
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2.6 Clock Offset Estimation Based on the Gaussian Mixture Kalman Particle Filter  

Gaussian Mixture Kalman Particle Filter (GMKPF) provides a scheme which is robust to 

arbitrary random delay distributions such as asymmetric Gaussian, asymmetric 

exponential, Gamma, Weibull, as well as to mixtures of these delay models for 

estimating the clock offset in WSNs. In addition, an advantage of GMKPF is in terms of 

its superior performance as compared to GMLE and EMLE.  

 

2.6.1 Problem Modeling 

In this section, the two-way message exchange mechanism is represented by a set of 

state-space and observation equations, called a dynamic state-space model (DSSM), as 

depicted in Figure 2.3. The observations ky are conditionally independent given the state 

and are generated according to the probability density ( | )k kp y x . The state kx  evolves 

over time as an unobserved first order Markov process according to the probability 

density 1( | )k kp x x  . The DSSM can be described via the set of equations: 

 1 1( , ) ( ),k k kx f x v process equation   (2.21) 

 ( , ) ( ),k k ky h x n observation equation  (2.22) 

where kv  is the process noise of state transition function f , and kn is the observation 

noise of observation function h . 
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Figure 2.3: Dynamic state space model. 

Based on the clock synchronization model (2.2) from Section 2.1, the unknown 

clock offset  ’s behavior follows a Gauss-Markov dynamic channel model of the form: 

 1 ,k k kA v     (2.23) 

where A represents the state transition matrix for the clock offset. The noise vector kv  is 

modeled as a Gaussian random variable with zero mean and covariance [ ]T
k kE v v Q .   

The uplink delay kU and downlink delay kV  of the thk timing message exchange 

can be observed at node A and node B. The vector of observations [ ]T
k k kz U V  can be 

expressed as in the observation equation (2.22), 

 
1 1

,
1 1

k k k
k k k

k k k

U d X
z d n

V d Y





        

                   
 (2.24) 

where the observation noise vector is [ ]T
k k kn X Y . kX  and kY  may assume any 

distribution such as Gaussian, exponential, Gamma, Weibull or a mixture of two 

distributions. 
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Given all the observation samples 1 2{ , , , }k kZ z z z  , the goal is to find the 

minimum MSE estimator of the unknown clock offset k , which is given by 

 ˆ [ | ] ( | ) .k k k k k k kE Z p Z d        

The optimal method to recursively update the posterior density as new observations 

arrive is given by the recursive Bayesian estimation algorithm 

 1( | ) ( | ) ( | ),k k k k k kp Z Cp z p Z     

where          1 1 1 1 1( | ) ( | ) ( | )k k k k k k kp Z p p Z d            

and                        1

1( | ) ( | )k k k k kC p z p Z d  


  . 

However, the expression of ( | )k kp x Z can be obtained in closed-form expression only 

for the case of a linear Gaussian model. In equation (2.24), kX  and kY could be non-

Gaussian distributions, consequently, ( | )k kp x Z  cannot be analytically obtained. 

Alternatively, ( | )k kp x Z  can be recursively approximated via particle filtering. 

 

2.6.2 Framework of GMKPF 

Particle filtering is a sequential Monte Carlo methodology [12] where the basic idea is 

the recursive computation of relevant probability distributions using the concepts of 

importance sampling (IS) and approximation of probability distributions with discrete 

random measures. GMKPF in [4] is developed based on the Gaussian mixture sigma 

point particle filter (GMSPPF) proposed in [13].  The GMSPPF combines an IS based 

measurement update step with a Sigma-Point Kalman Filter (SPKF) [14] based on the 
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Gaussian sum filter [15] for the time update and proposal density function. Since the 

DSSM of clock synchronization explained in the previous section is a linear model, 

GMKPF implements the Kalman Filter (KF) [16] instead of SPKF. The framework of 

GMKPF mainly relies on these three elements: 

1) Gaussian mixture model (GMM) approximation 

Any probability ( )p x  can be approximated as closely as desired by a Gaussian mixture 

model (GMM) of the following form: 

 ( ) ( ) ( )

1

( ) ( ) ( ; , ),
G

g g g
g

g

p x p x N x P 


   (2.25) 

where G  stands for the number of mixing components, ( )g are the mixing weights and 

( ; , )N x P  denotes the normal distribution with mean vector   and positive definite 

covariance P. For example, the following density function can be approximated by 

GMMs: 

 
''

( '') ( '') ( '')

'' 1

, ( | ) ( | ) ( ; , ).
G

g g g
k k g k k k k

g

posterior density p x Z p x Z N x P 


    

The predicted and updated Gaussian component mean and covariance of ( | )g k kp x Z are 

calculated using KF. 

2) Importance sampling (IS) based measurement update 

In particle filtering, the distributions are approximated by discrete random measures 

defined by particles and weights assigned to the particles. If the distribution of interest is 

( )p x and its approximating random measure is ( ) ( )
1{ , }m m M

mx w   , where ( )mx  are the 
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particles, ( )mw are the corresponding weights, and M denotes the number of particles 

used in the approximation, then ( )p x  is approximated by [12] 

 ( ) ( )

1

( ) ( ),
M

m m

m

p x w x x


   

where ( )   is the Dirac delta function. With this approximation, computations of 

expectations are simplified and approximated by [12] 

 ( ) ( )

1

( ( )) ( ).
M

m m

m

E g x w g x


   

Based on DSSM model (2.23) and (2.24), the conditional mean state and corresponding 

error covariance are calculated as follows: 

 ( ) ( )

1

,
M

m m
k k k

m

w 


   (2.26) 

 ( ) ( ) ( )

1

[ ][ ] .
M

m m m T
k k k k k k

m

P w    


    (2.27) 

The updated importance weights can be obtained by [13] 

 
( ) ( ) ( )

( ) ( ) 1
1 ( ) ( )

0: 1 0:

( | ) ( | )
.

( | , )

m m m
m m k k k k

k k m m
k k k

p z p
w w

z

  
  






  

The distribution ( ) ( )
0: 1 0:( | , )m m

k k kz    is known as an importance function. In GMKPF, 

the proposal distribution for ( ) ( )
0: 1 0:( | , )m m

k k kz     is approximated by GMM from the 

bank of KFs. By sampling the particles from such a distribution will move the particles 

to areas of high likelihood which in turn resolves the sample depletion problem of 

particle filtering. Moreover, using the GMM approximation on the predictive posterior 

density function preserves the kernel smoothing nature. 
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3) Weighted EM for resampling and GMM recovery 

In standard particle filtering, resampling is needed in order to keep good performance of 

particle filter. Resampling is a scheme that discards particles which are assigned 

negligible weights and replicates particles with large weights [12]. Unfortunately, 

resampling causes particle depletion in cases where the measurement likelihood is very 

high. Consequently, the set of particles will be only copies of the same particle [17]. In 

GMKPF, the posterior density is represented by GMM; hence, the standard resampling 

method can be replaced by a weighted Expectation-Maximization (EM) algorithm [18]. 

It directly recovers a maximum-likelihood G-component GMM fit to the set of weighted 

samples; as a result, it prevents the particle depletion problem. The EM algorithm 

provides an iterative method of estimating   via 

 arg max ( | ).p z


   

The G-component GMM is specified by the parameter set 

(1) ( ) (1) ( ) (1) ( ){ ,..., , , ..., , ,..., }G G G
k k k k k kP P     . 

The EM algorithm represents a two-step iterative algorithm which is described by the 

following two steps: 

 

( ) ( )

( 1) ( )

: ( | ) [log ( | ) | ],

: arg max ( | ).

j j

j j

E step Q E p z

M step Q


   

  






  

Finally, the conditional mean state estimate and corresponding error covariance are 

calculated as follows: 
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( ) ( )

1

( ) ( ) ( ) ( )

1

,

( )( ) .

G
g g

k k k
g

G
g g g g T

k k k k k k
g

P P

  

    







     




 

 

 

2.6.3 GMKPF Algorithm 

In this section, the full GMKPF algorithm will be presented based on the framework 

described in the previous section. 

1) Time update and proposal distribution generation 

1.1) At time 1k  , initialize the state densities: 

 The posterior state density is approximated by 

( ) ( ) ( )
1 1 1 1 1 1

1

( | ) ( ; , )
G

g g g
g k k k k k k

g

p Z N P        


 ; 

 The process noise density is approximated by  

1 1

( ) ( ) ( )
1 1 1

1

( ) ( ; , )
k k

I
i i i

g k k k v v
i

p v N v P 
   



  ; 

 The observation noise density is approximated by 

( ) ( ) ( )

1

( ) ( ; , )
k k

J
j j j

g k k k n n
j

p n N n P 


 . 

1.2) During the time update step of KF (employing the system process 

equation (2.23), posterior state density 1 1( | )g k kp Z    and process noise 

density 1( )g kp v   from above), a Gaussian approximated predictive state 
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density
'

( ') ( ') ( ')
1

' 1

ˆˆ ˆ( | ) ( ; , )
G

g g g
g k k k k k k

g

p Z N P   


 is calculated. The Gaussian 

approximated posterior state density,  

''
( '') ( '') ( '')

'' 1

ˆ ( | ) ( ; , )
G

g g g
g k k k k k k

g

p Z N P   


  , 

is calculated during the measurement update step of KF (employing the 

system observation equation (2.24), current observation kz  pre-predictive 

state density 1ˆ ( | )g k kp Z   and observation noise density ( )g kp n ). 

2) Measurement update 

2.1) Draw M samples ( ){ ; 1,..., }m
k m M   from the importance density 

function ˆ ( | )g k kp Z . 

2.2) Calculate the corresponding importance weights:  

                        
( ) ( )

1( )
( )

ˆ( | ) ( | )

ˆ ( | )

m m
k k g k km

k m
g k k

p z p Z
w

p Z

 


 . 

2.3) Normalize the weights
( )

( )

( )

1

m
m k

k M
m

k
m

w
w

w








. 

2.4) Use a weighted EM algorithm to fit a G-component GMM to the set of 

weighted particles ( ) ( ){ , ; 1,..., }m m
k kw m M  , which represent the update 

GMM approximate state posterior distribution at time k, ( | )g k kp Z . 

3) Inference of the conditional mean and covariance 
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3.1)  ( ) ( )

1

M
m m

k k k
m

w 


   and ( ) ( ) ( )

1

[ ][ ]
M

m m m T
k k k k k k

m

P w    


    or equivalently, 

upon fitting the GMM approximate posterior distribution through the 

weighted EM algorithm, calculate the conditional mean state estimate and 

corresponding error covariance. 

 

2.7 Joint Clock Offset and Skew Estimation Based on GMKPF  

In this section, a robust scheme for estimation of clock offset and skew in wireless 

sensor networks is designed based on GMKPF. The only difference is the process 

equation and observation equation of state space model which will be described in 

Section 2.7.1.  

 

2.7.1 Problem Modeling 

Consider the clock offset and skew model (2.8); described by the equation 

2, 1,

3, 4,

( ) ,

( ) .
k k k

k k k

T T d X

T T d Y

 

 

   

   
 

Let
 

B be defined as 1 . Then, the model above can be rewritten as; 

 
2, 1, 1,

4, 3, 4,

( )(1 ) ,

( )(1 ) .
k k k k B B k

k k k k B B k

T T U d X T

T T V d Y T

  

  

      

      
 (2.28) 

Assuming, the unknown   and B obey a Gauss-Markov dynamic channel model of the 

form: 
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1

, 1 ,

1

k k
k

B k B k

k k k

A v

x Ax v

 
 







   
    

   

 
 (2.29) 

where A  represents the state transition matrix and ,[ ]T
k k B kx   . The noise vector kv  

is modeled as a Gaussian random variable with zero mean and covariance [ ]T
k kE v v Q .  

Based on observation model (2.28), the observation equation can be written as  
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 (2.30) 

where the observation noise vector [ ]T
k k kn X Y . kX  and kY  may assume any 

distribution such as Gaussian, exponential, Gamma, Weibull or a mixture of two 

distributions. 1, 4,[ ]T
k k kC T T  is treated as exogenous input to the state observation 

function. In short, we can write equation (2.30) as ,( , , )k k B k kz h C   where ( )h  is the 

state observation function. In Figure 2.4 is depicted a DSSM model for clock offset and 

skew estimation method based on GMKPF. 
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Figure 2.4: Dynamic state space model of clock offset and skew.
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CHAPTER III 

PERFORMANCE OF GMKPF 

 

3.1 Clock Offset Estimation Based on GMKPF 

In this section, computer simulation results will be presented to determine the 

performance of GMKPF (Section 2.6), GMLE and EMLE (Section 2.2) methods for 

estimating the clock offset in WSNs. The observation noise delay models are considered 

to be twelve delay distributions: symmetric Gaussian, symmetric exponential, 

asymmetric Gaussian, asymmetric exponential, Gamma, Weibull and mixtures of 

Gaussian and exponential, Gaussian and Gamma, Gaussian and Weibull, exponential 

and Gamma, exponential and Weibull, and Gamma and Weibull. The number of Monte 

Carlo simulations is 2000. The state transition matrix A of process equation is 0.99999. 

The process noise vk is assumed to be Gaussian with constant covariance, Q = 1e-5. The 

number of particles and GMM components are 1000 and 5, respectively. The experiment 

was done using Matlab and ReBEL Toolkit1.  

Figure 3.1 shows a plot of the clock offset estimation in each Monte Carlo 

simulation. The MSE performances of estimators are averaged over 2000 Monte Carlo 

runs. Figures A.1-A.12 show the MSEs of the estimators assuming that the random delay 

models are symmetric Gaussian, exponential, asymmetric Gaussian, exponential, 

Gamma, and Weibull distributions, and mixtures of two distributions respectively.  

____________ 
1 ReBEL is a Matlab toolkit for sequential Bayesian inference in General DSSMs. 
ReBEL is developed by MLSP Group at OGI and can be freely downloaded from 
http://cslu.ece.ogi.edu/mslp/rebel for academic and /or non-commercial use. 
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Figure 3.1: Clock offset state estimation via GMKPF. 

The subscripts 1 and 2 are used to differentiate between the parameters of delay 

distributions corresponding to the uplink and the downlink, respectively. For example, in 

Figure A.3, the parameters 1  and 2 are standard deviations of uplink and downlink 

assuming Gaussian delay distributions, respectively. The number of observations which 

are experimented in the simulation are 10, 15, 20, 25 and 30. To construct a mixing 

noise delay distribution, two distributions are mixed with equal weight. For example, a 

Gaussian delay and exponential delay are generated and mixed with an equal weight of 

50%. The number of observations which are experimented for the mixing case is 10, 16, 

22, and 28, respectively. 

From Figures A.1-A.12, GMKPF clearly outperforms GMLE and EMLE, and 

results in reduction of MSE over 100%. GMLE performs better than EMLE in the 

presence of Gaussian random delays (Figures A.1, A.3, A.7 and A.9) but it performs 
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poorer than EMLE in the presence of exponential, Gamma and Weibull random delays 

(Figures A.2, A.4-A.6, A.8, and A.10-A.12). This happens because Gamma and Weibull 

random delays are closer to the exponential random delay.  

 

3.2 Combination of Clock Offset and Skew Estimation Based on GMKPF 

In this section, computer simulation results will be presented to determine the 

performance of GMKPF (Section 2.7), JMLE for Gaussian and exponential delay 

models (Section 2.4), and MLLE for Gaussian and exponential delay models (Section 

2.5) for estimating the clock offset and skew in WSNs. The observation noise delay 

model is the same as in Section 3.1. The state transition matrix A of process equation is 

0.99999. The process noise kv  is assumed to be Gaussian with constant diagonal matrix 

covariance: 

Q =
1 5 0

0 1 5

e

e

 
  

. 

The number of particles and GMM components are 1000 and 5, respectively. The 

experiment was done using Matlab and ReBEL Toolkit. Figure 3.2 shows a plot of the 

clock offset and clock skew estimation for each Monte Carlo simulation. The MSE 

performances of estimators are averaged over 2,000 Monte Carlo runs. 

 Figures B.1-B.6 show the MSE of the estimators assuming that the random 

delays assume symmetric Gaussian, exponential, asymmetric Gaussian, exponential, 

Gamma, and Weibull distributions, respectively. The number of observations conducted 

in this simulation are 10, 15, 20, 25 and 30, respectively.  
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Figure 3.2: Clock offset and skew state estimation via GMKPF. 

 In the symmetric Gaussian delay case, Figure B.1, GMKPF and GMLE give 

almost the same performance in estimating the clock skew. However, GMKPF performs 
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better in estimating the clock offset. Notice that EMLE always give as a value: Not a 

Number (NaN) for any number of observations. This happens because the possible clock 

skew parameters (2.11) are not in the valid region (see equations (2.12) and (2.13)). 

MLLE performs poorer than MLE and GMKPF in estimating jointly the clock offset and 

skew. 

In the symmetric exponential delay case, Figure B.2, GMKPF gives slightly 

poorer MSE performance in estimating clock skew when compared to EMLE. GMKPF 

gives better MSE performance in estimating clock offset than EMLE, GMLE, GMLLE, 

and EMLLE. GMLE performs poorer than GMKPF and EMLE for joint estimation of 

clock offset and skew estimation. Both GMLLE and EMLLE give relatively the same 

performance and are poorer than MLE and GMKPF for clock offset and clock skew 

estimation.   

In other cases, Figures B.3-B.6, GMKPF performs better than MLEs and MLLEs 

in estimating both the clock offset and skew.  

Note that EMLE performs better GMLE in the exponential delay case but EMLE 

is very sensitive to other delay models, especially the Gaussian delay. It is interesting to 

note that the MSE of GMLE exhibits better performance than MLLE in estimating the 

clock skew parameter for any delay distributions. GMLE gives poorer performance in 

estimating the clock offset for Gamma and Weibull delay models which are closer to the 

exponential distribution than the Gaussian distribution. In addition, EMLLE and 

GMLLE give almost the same performance in estimating the clock skew parameter 

regardless of the type of random delays. This is due to the fact that the performance of 
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the MLLE is dominated by the set of distances   4

( ) 1i i
D


, which do not vary much with 

respect to the type of random delays.  

To quantify the robustness of the estimators further, Figures B.7-B.12 show the 

MSE performance of the GMKPF, GMLE, EMLE, GMLLE, and EMLLE under a 

mixture of two network delay distributions. The numbers of observations which are 

experimented are 10, 16, 22, and 28, respectively. 

GMKPF clearly outperforms the other estimators in every case. GMLE gives 

better performance than EMLE, GMLLE and EMLLE if the network delay model is 

closer to a Gaussian (Figures B.7-B.9). EMLE gives a NaN value in the case that the 

network delay is a mixture of Gaussian and other delay models (Figures B.7-B.9) and 

performs better than GMLE and MLLEs in case that the network delay is closer to the 

exponential delay model (Figures B.10-B.12).  GMLLE and EMLLE give almost the 

same performance for estimating the clock skew parameter. However, when they 

estimate the clock offset, the MSE performance diverges (Figures B.7-B.11). This shows 

that MLLEs are not robust to a mixing network delay model. 
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CHAPTER IV 

CONCLUSIONS AND RECOMMENDATIONS 

 

4.1 Conclusions 

A joint clock offset and skew estimation method was developed based on GMKPF and 

its robustness tested via computer simulations. The final results are: 

 GMKPF yields the best MSE performance relative to the most commonly 

proposed estimators in the presence of non-deterministic network delays 

distributions: Gaussian, exponential, Gamma, and Weibull, and mixture between 

two of these distributions. 

 The main drawback of GMKPF is its computational complexity. In addition, it 

takes considerable time in terms of calculation. However, GMKPF could yield 

the same MSE performance as MLE and MLLE in the case of lower number of 

message exchanges. 

 

4.2 Recommendations  

GMKPF’s performance depends on the number of particles and the number of Gaussian 

mixture components. Although, increasing the number of particles and GMM 

components lead to better performance, it requires a longer time in terms of completing 

the required computations. GMKPF could be studied further to identify the best number 

of particles and GMM components in estimating the clock offset and skew. GMKPF’s 

performance is also very sensitive to the process state transition matrix A (2.29), process 
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noise and initialisation of GMKPF estimator. The performance can vary drastically due 

to changes in these parameters. Thus, GMKPF could give even better performance, 

provided there is a study to determine the optimal values of these parameters. 
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APPENDIX A 

MSE PERFORMANCE OF CLOCK OFFSET ESTIMATION 

        BASED ON GMKPF  

 

 

Figure A.1: MSEs of clock offset estimators for symmetric Gaussian delays [ =1]. 
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Figure A.2: MSEs of clock offset estimators for symmetric exponential random delays 
[ =1]. 

 

 

Figure A.3: MSEs of clock offset estimators for asymmetric Gaussian random delays  
[ 1 =1, 2 =2]. 
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Figure A.4: MSEs of clock offset estimators for asymmetric exponential random delays  
[ 1 =1, 2 =2]. 

 

 

Figure A.5: MSEs of clock offset estimators for Gamma random delays  
[( 1 =2, 1 =1) and ( 2 =2, 2 =4)]. 
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Figure A.6: MSEs of clock offset estimators for Weibull random delays  
[( 1 =2, 1 =2) and ( 2 =6, 2 =2)]. 

 

 

Figure A.7: MSEs of clock offset estimators for a mixture of Gaussian  
[ 1 =1, 2 =2] and exponential [ 1 =1, 2 =2] random delays. 
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Figure A.8: MSEs of clock offset estimators for a mixture of Gaussian  
[ 1 =1, 2 =2] and Gamma [( 1 =2, 1 =1) and ( 2 =2, 2 =4)] random delays. 

 

 
 

Figure A.9: MSEs of clock offset estimators for a mixture of Gaussian  
[ 1 =1, 2 =2] and Weibull [( 1 =2, 1 =2) and ( 2 =6, 2 =2)] random delays.      
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Figure A.10: MSEs of clock offset estimators for a mixture of exponential 
[ 1 =1, 2 =2] and Gamma [( 1 =2, 1 =1) and ( 2 =2, 2 =4)] random delays. 

 

 
 

Figure A.11: MSEs of clock offset estimators for a mixture of exponential 
[ 1 =1, 2 =2] and Weibull [( 1 =2, 1 =2) and ( 2 =6, 2 =2)] random delays. 
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Figure A.12: MSEs of clock offset estimators for a mixture of Gamma  
[( 1 =2, 1 =1) and ( 2 =2, 2 =4)] and Weibull [( 1 =2, 1 =2) and ( 2 =6, 2 =2)] 

random delays. 
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APPENDIX B 

MSE PERFORMANCE OF CLOCK OFFSET AND SKEW ESTIMATION 

BASED ON GMKPF 

 

 

 

Figure B.1: MSEs of clock offset and skew estimators for symmetric Gaussian random 
delays [ =1]. 
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Figure B.2: MSEs of clock offset and skew estimators for symmetric exponential 
random delays [ =1]. 
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Figure B.3: MSEs of clock offset and skew estimators for asymmetric Gaussian random 
delays [ 1 =1, 2 =2]. 
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Figure B.4: MSEs of clock offset and skew estimators for asymmetric exponential 
random delays [ 1 =1, 2 =2]. 
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Figure B.5: MSEs of clock offset and skew estimators for Gamma random delays  
[( 1 =2, 1 =1) and ( 2 =2, 2 =4)]. 
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Figure B.6: MSEs of clock offset and skew estimators for Weibull random delays  
[( 1 =2, 1 =2) and ( 2 =6, 2 =2)]. 
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Figure B.7: MSEs of clock offset and skew estimators for a mixture of Gaussian  
[ 1 =1, 2 =2] and exponential [ 1 =1, 2 =2] random delays. 
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Figure B.8: MSEs of clock offset and skew estimators for a mixture of Gaussian  
[ 1 =1, 2 =2] and Gamma [( 1 =2, 1 =1) and ( 2 =2, 2 =4)] random delays. 
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Figure B.9: MSEs of clock offset and skew estimators for a mixture of Gaussian  
[ 1 =1, 2 =2] and Weibull [( 1 =2, 1 =2) and ( 2 =6, 2 =2)] random delays. 
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Figure B.10: MSEs of clock offset and skew estimators for a mixture of exponential 
[ 1 =1, 2 =2] and Gamma [( 1 =2, 1 =1) and ( 2 =2, 2 =4)] random delays. 
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Figure B.11: MSEs of clock offset and skew estimators for a mixture of exponential 
[ 1 =1, 2 =2] and Weibull [( 1 =2, 1 =2) and ( 2 =6, 2 =2)] random delays. 
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Figure B.12: MSEs of clock offset and skew estimators for a mixture of Gamma  
[( 1 =2, 1 =1) and ( 2 =2, 2 =4)] and Weibull [( 1 =2, 1 =2) and ( 2 =6, 2 =2)] 

random delays. 
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