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ABSTRACT 

 

Domain Bridging Interactions in the Allosteric Network for IIAGlc Inhibition of the 

Escherichia coli Glycerol Kinase. (August 2010) 

Edith Abena Acquaye, B.Sc., University of Ghana 

Chair of Advisory Committee: Dr. Donald W. Pettigrew 

  

Previous studies on inhibition of the Escherichia coli glycerol kinase enzyme 

have suggested that subunit-subunit or domain bridging interactions form part of the 

network in communicating ligand binding to inhibition. In this study, five amino acids 

were identified to be in close proximity to an Arg369 residue which is a domain bridging 

residue. Three of the amino acid residues (Q37, Y39 and Q104) are in domain I of the 

enzyme subunit, while the other two (M308 and Q314) are in domain II of the enzyme 

subunit. 

To evaluate the importance of each domain bridging residue in IIAGlc inhibition, 

alanine substitutions were made of the residues, and the kinetic properties characterized 

with respect to IIAGlc inhibition. Kinetic parameters obtained for each variant glycerol 

kinase enzyme was compared to values obtained for the Wild Type enzyme to assess the 

importance of the amino acid residue in IIAGlc inhibition. The effects of the substitutions 

on FBP inhibition as well as catalysis of the enzyme were also analyzed by obtaining 

kinetic parameters for each of the variant enzymes.  
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The results from this study indicate that the domain I bridging interactions with 

Arg369 are important in IIAGlc regulation of the E. coli glycerol kinase enzyme. The 

domain II bridging interactions appear to be unimportant in regulating IIAGlc inhibition. 

Two of the domain I bridging residues studied were also found to be important in FBP 

inhibition. These results indicate that some the domain bridging residues seen to be 

involved in IIAGlc regulation also appear to be involved in FBP regulation. In catalysis, 

with the exception of Q314, the rest of the domain I and II bridging residues appear to be 

important for substrate binding and/or catalysis.  
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CHAPTER I 

INTRODUCTION 

 

Under low glucose conditions, glycerol can be metabolized to provide energy in 

E. coli. Studies of glycerol metabolism have revealed two modes of glycerol 

dissimilation in bacteria. In the first mode, glycerol may be oxidized to 

dihydroxyacetone (DHA), and then phosphorylated to dihydroxyacetone phosphate 

(DHAP), while in the second method, glycerol is phosphorylated to glycerol-3-

phosphate (G3P), and then oxidized to DHAP. Both routes however result in the 

terminal product DHAP which enters the glycolytic pathway to provide energy for the 

organism (1). The enzymes involved in the preliminary steps of glycerol dissimilation 

are outlined below.  

Mode A: 

Enzyme 1: Glycerol dehydrogenase (EC l . l . l .6; Glycerol:NAD+ 2-oxidoreductase): 

Reaction 1: Glycerol + NAD+ ↔ DHA + NADH + H+ 

Enzyme 2: DHA kinase (EC 2 . 7 . 1 .28: Triokinase) 

Reaction 2: DHA + ATP → DHAP + ADP 

_________ 
This thesis follows the style of the Journal of Biological Chemistry. 
1.    The abbreviations used are: IIAGlc, enzyme of the PTS which is specific for glucose; 
βME, 2-mercaptoethanol; DHA, dihydroxyacetone; DHAP, dihydroxyacetone 
phosphate; FBP, fructose-1,6-bisphosphate; G3P, glycerol-3-phosphate; glp, glycerol 
phosphate regulon; IPTG, isopropylthiogalactoside; nH, Hill Coefficient; MGSA, 
MacConkey glycerol plates containing streptomycin and ampicillin; PTS, 
phosphoenolpyruvate:glycose phosphotransferase system; SDS, sodium dodecyl sulfate; 
TEA, triethanolamide; single and three letter abbreviations are used for amino acids. 
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Mode B:  

Enzyme 1: Glycerol kinase (EC 2 .7. 1 .30; ATP:glycerol 3-phosphotransferase): 

Reaction 1: Glycerol + ATP → G3P + ADP 

Enzyme 2: Glycerol-3-phosphate dehydrogenase (EC 1 . 1 . 1 .8; sn-Glycerol-3-

phosphate:NAD+ 2-oxidoreductase) 

Reaction 2: G3P → DHAP 

The phosphorylation of glycerol to glycerol-3-phosphate by the enzyme glycerol kinase 

has been found to be a key regulatory step in glycerol metabolism (1, 2). The EcGK is 

encoded by the glpK gene whose transcription is upregulated with other genes needed 

for glycerol metabolism (3, 4). The crystal structure of EcGK shows that it is a member 

of the sugar kinase kinase/actin/heat shock protein 70 (hsp 70) superfamily of proteins 

(5). These proteins are characterized by two large domains, I and II, one on either side of 

a deep narrow ATPase catalytic cleft (6, 7, 8). As with other sugar kinases, ligand 

binding to the EcGK is presumed to affect closure of the catalytic site cleft due to 

movement of one domain relative to the other (9, 10, 11). The catalytic activity of EcGK 

has been found to be activated by ATP which displays apparent two classes of binding 

sites, glycerol, (12) and by interaction with the glycerol facilitator (13). The Michaelis 

constants have been found to be 10-fold less than the substrate dissociation constants, 

suggesting that some step after the formation of the ternary complexes may be at least 

partially rate limiting (12).  

When glycerol is not needed as a carbon source, the activity of EcGK is 

allosterically regulated by the glycolytic intermediate fructose-1,6-bisphosphate (FBP) 
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(14), and the glucose-specific phosphocarrier protein of the 

phosphoenolpyruvate:glycose phosphostransferase system, IIAGlc (15). Regulation of 

EcGK by FBP is by feedback inhibition and has been found to display characteristics of 

a V system (14). EcGK exists in a dimer-tetramer equilibrium with the dimer being the 

active form and the tetramer being the inactive form. FBP binding has been shown to 

shift the equilibrium strongly towards the tetramer therefore effecting inhibition (16). In 

contrast, regulation by IIAGlc has been found to be via protein-protein interactions (5, 17, 

18). IIAGlc may be phosphorylated on the active site His90 which is the prevalent form of 

IIAGlc when extracellular glucose is not available (18). Unphosphorylated IIAGlc is thus 

the form which inhibits EcGK when glucose is available. The two allosteric inhibitors, 

FBP and IIAGlc, bind at distances of 35 Å and 30 Å, respectively, from the enzyme 

catalytic site (5). FBP binds only in domain I while IIAGlc binds only in domain II, 

raising the question of how the perturbations due to ligand binding at separate regions of 

the enzyme are propagated to the distant catalytic site in this oligomeric protein to result 

in inhibition. It is thought that the regulation of EcGK by the two allosteric inhibitors 

IIAGlc and FBP are independent of each other and can be genetically separated (18, 19).  

Analysis of the x-ray crystallographic structure of the E. coli glycerol kinase 

(EcGK) has not offered a complete insight into the allosteric inhibition of the enzyme. 

The structural basis for the allosteric control of EcGK appears different from that of the 

other members of the superfamily that EcGK belongs to (20). For most of the other 

superfamily members, including hexokinases, actin, and hsp 70, their crystal structures 

show that their allosteric effectors interact with both domains and it is generally believed 
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that the effectors act directly on the cleft closure (20). For these superfamily members, it 

appears that their allosteric regulation is as a result of direct steric action on the cleft 

closure due the interactions of the allosteric effectors with both domains. In EcGK 

however, the mechanism of allosteric regulation by IIAGlc and FBP does not appear to be 

due to direct steric action on the catalytic site closure because each allosteric effector is 

found to bind in only one domain.  

Current views on allosteric control of proteins have expanded on the classical 

view of allostery (21, 22). In the classical view, regulation of protein function by 

allosteric effectors was thought to be due to conformational changes that reflect global 

cooperativity within the protein (23, 24).  Recent studies of the allosteric control of 

proteins however indicate that allosteric behavior may occur as a result of changes in 

local interactions among a few amino acid residues (25, 26, 27, 28). These amino acids 

are thought to form networks for long-range energetic interactions in proteins (25). 

Previous studies of EcGK suggest that subunit-subunit/domain interactions of the E. coli 

glycerol kinase enzyme may be important for ligand binding of its allosteric inhibitors 

and subsequent inhibition. Such interactions may form part of the network for the 

allosteric control of EcGK; this would be in agreement with the current views of 

allosteric control of proteins.  

In 1993, Hurley et al. (5) suggested that the amino residue, Arg369, may be 

involved in the allosteric regulation of glycerol kinase. They reached this conclusion 

from analysis of the crystal structure of the glycerol kinase enzyme with the substrates 

ADP and glycerol, which showed Arg369 as present on a loop from one subunit which 
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penetrates deeply, approaching approximately 7 Å of the ADP molecule in the next 

subunit. Recent studies by Pettigrew (20) agreed with the hypothesis of Hurley et al. (5) 

by showing that truncation of the Arg369 residue with an R369A mutation resulted in a 

reduction of the inhibition of glycerol kinase by one of its allosteric inhibitors IIAGlc. 

The results also showed that inhibition by the other allosteric inhibitor FBP was not 

affected by the R369A substitution. Liu et al. in 1994 (29) also showed that an A65T 

mutation in glycerol kinase resulted in abolishing inhibition of glycerol kinase by FBP. 

Analysis of the crystal structure of the enzyme showed that this mutation is associated 

with an α-helix that constitutes one of the two subunit-subunit interfaces within the 

tetramer. These observations support the premise that the domain interactions of the 

Arg369 residue of the E. coli glycerol kinase enzyme may be important in the network of 

amino acid residues which communicate changes due to IIAGlc binding in the allosteric 

regulation of the enzyme.  

The crystal structure of EcGK shows that the Arg369 side chain from one subunit 

interacts with both domains of the other subunit. A close inspection of the domain 

bridging interactions shows three amino acids in domain I (Q37, Y39, Q104) with side 

chains within 3.5Å of the guanidino group of Arg369 and two amino acids in domain II 

(M308, Q314) with side chains within 4.8 Å of the guanidino group of Arg369. In this 

study, amino acid substitutions were therefore made for the five amino acid residues 

identified within 7 Å of the residue Arg369 to assess the contribution of the hydrogen 

bonding interactions between the side chains of the amino acids residues and the 

guanidino group of the Arg369 in the regulation of the enzyme by IIAGlc. The inhibition 
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parameters obtained were then compared to the Wild Type enzyme. Kinetic parameters 

were also obtained from measuring the extent of inhibition of the variant enzymes by 

FBP. The contribution of each domain interaction with Arg369 in the catalytic activity of 

the enzyme was determined from comparing the catalytic kinetic parameters obtained for 

the Wild Type and variant glycerol kinase enzymes.  

Some of the recent studies on the contributions of individual amino acids in 

enzyme catalysis and regulation use NMR spectroscopy as a useful tool because it is 

sensitive to molecular motion over a wide variety of timescales. The subunit size of the 

tetrameric EcGK is approximately 56 kD, which exceeds the protein NMR size limit of 

35 kD (30), therefore preventing the use of NMR to investigate the role of specific 

amino acid residues in EcGK. Structure perturbation studies have however proved to be 

a powerful alternative approach in studies of protein regulation. The effects of changes 

in the regulatory properties of the protein due to specific changes in the primary 

structure of the protein can be analyzed.  

In this study, structure perturbation was used to study the five amino acids 

identified in close proximity to Arg369. Amino acid substitutions were made and the 

effects of the mutations assessed by using kinetics to characterize the regulatory 

properties. The following specific aims were used to address the objective of 

understanding the role and contribution of the domain bridging interactions in the 

regulation of EcGK by IIAGlc.  
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Specific Aims 

1. Construction and purification of glycerol kinase variants with amino acid 

substitutions of the residues flanking the Arg369 residue. 

2. Characterization of the IIAGlc regulatory properties as well as the catalytic 

properties and regulation by FBP of the variant glycerol kinase enzymes. 

3. Evaluation of the contribution of each domain interaction with Arg369. 
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CHAPTER II 

MATERIALS AND METHODS 

 

Materials 

Chemicals and enzymes were purchased from Sigma-Aldrich Chemical Co. (St. 

Louis, Mo.) unless otherwise stated. The enzyme IIAGlc used in this study was purified 

from pVEX-crr plasmids expressing the IIAGlc encoding sequence and purified from the 

BL21 (DE3) strain of E. coli bearing the plasmid as described (31). The pVEX-crr 

plasmid was generously provided by Dr. Saul Roseman, Department of Biology, Johns 

Hopkins University (Baltimore, MD). SDS electrophoresis reagents were purchased 

from Fisher. Plasmid purification kits were purchased from Qiagen Sciences (Valencia, 

CA). The QuikChange™ site directed mutagenesis method was used for the purposes of 

this study 

 

Strains and Plasmids 

The strain of E. coli used in this study was the K12 DG1 (genotype: F- ara 

glpR208 ∆(lac-proAB) rpL (Strr) [Φ80dlac∆(lacZ)M15] thi glpK202) strain, which is 

streptomycin resistant and ampicillin sensitive. This strain of E. coli was constructed in 

the Pettigrew laboratory to provide a glycerol kinase deletion background for 

mutagenesis work. The pWT165 plasmid vector contains the Wild Type glycerol kinase 

gene and confers ampicillin resistance for positive selection of transformed cells. The 

pWT165 plasmid was previously constructed by cloning the Hind III fragment that 
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contains the glycerol kinase gene from the rfMl3 DNA that was used in the sequencing 

of the gene (32) into the vector pHG165 (33). Single mutations were introduced in the 

glycerol kinase encoding sequences by using the QuikChange™ site directed 

mutagenesis method for the purposes of this study. 

 

Mutant Plasmid DNA Construction 

Single mutations were introduced in the glycerol kinase encoding sequences by 

using the QuikChange™ site directed mutagenesis method. Table 1 shows the sites of 

the single amino acid substitutions that were made in the glycerol kinase coding 

sequence. Amino acid residues in domain I and II which are in close proximity to the 

Arg369 residue were substituted with alanine. One amino acid residue in domain I, Y39, 

was also substituted with phenylalanine to assess the contribution of the hydroxyl group 

interaction of the tyrosine residue with Arg369.  
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Table 1: Sites of single amino acid substitutions introduced into the glycerol kinase 

sequence  

Domain I substitutions    Domain II substitutions 

 

Q37A        M308A  

Y39A        Q314A 

Q104A 

Y39F 
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The native sequences below contain the sites for introducing the single mutations 

into the glycerol kinase encoding sequence. The desired sites for substitutions are 

underlined. The variant sequences with the desired mutations were used as primers for 

the site directed mutagenesis. For the alanine substitutions, the mutation site codon was 

changed to GCG (a codon for alanine) in primer 1 and CGC (anticodon) in primer 2. For 

the Y39F substitution however, the mutation site codon was changed to TTT (a codon 

for phenylalanine) in primer 1 and AAA (anticodon) in primer 2.  

 

Q37A  

PRIMER 1: 5’ - CAG CGC GAA TTT GAG CAA ATC TAC CCA AAA CCA - 3’ 

PRIMER 2: 5’ - TGG  TTT TGG  GTA GAT TTG CTC AAA TTC GCG CTG - 3’ 

 

Y39A 

PRIMER 1: 5’- GAA TTT GAG CAA ATC TAC CCA AAA CCA GGT TGG - 3’ 

PRIMER 2: 5’-  CCA ACC TGG TTT TGG  GTA GAT  TTG CTC AAA TTC - 3’ 

 

Y39F 

PRIMER 1: 5’ - GAA TTT GAG CAA ATC TTT CCA AAA CCA GGT TGG - 3’ 

PRIMER 2: 5’-  CCA ACC TGG TTT  TGG AAA GAT TTG  CTC AAA TTC - 3’ 
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Q104A 

PRIMER 1: 5’ - AAC GCC ATT  GTC TGG CAG TGC CGT CGT ACC GCA - 3’ 

PRIMER 2: 5’- TGC GGT ACG ACG GCA CTG CCA GAC AAT GGC GTT - 3’ 

 

M308A  

PRIMER 1: 5’ - GAA GGT GCG GTG TTT ATG GCA GGC GCA TCC ATT - 3’ 

PRIMER 2: 5’-  AAT GGA TGC GCC TGC CAT AAA CAC CGC ACC TTC - 3’ 

 

Q314A  

PRIMER 1: 5’- GCA GGC GCA TCC ATT CAG TGG CTG CGC GAT GAA - 3’ 

PRIMER 2: 5’ - TTC ATC GCG CAG CCA CTG AAT GGA TGC GCC TGC - 3’ 

The mutant strands were generated by PCR thermocycling using the conditions outlined 

below: 

1. 94oC for 1 minute  

2. 94oC for 30 seconds 

3. 59.8oC for 30 seconds 

4. 68oC for 20 minutes 

Repeat steps 2 to 4 for 15 cycles  

5. 68oC for 10 minutes 

6. 4oC - Hold 
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Transformation of E. coli and Verification of Mutant Plasmids 

The transformation of E. coli with the appropriate mutant plasmid was done by the 

calcium chloride method (34). Cells successfully transformed with the mutant plasmids 

were screened on MacConkey-glycerol plates containing ampicillin and streptomycin 

sulfate (MGSA plates). Cells containing the glpK gene in pWT165 plasmid are pink to 

purple on MacConkey glycerol agar depending on their ability to metabolize glycerol. 

The antibiotics ampicillin and streptomycin sulfate where indicated were added to final 

concentrations of 75µg/ml and 200µg/ml respectively. Transformants were then streaked 

on MGSA and single colonies picked and grown in 1X LB broth containing ampicillin 

and streptomycin sulfate (LBSA). Plasmid DNA was then purified from the cell cultures 

using the Qiagen™ miniprep DNA purification kit.  The purified plasmid DNA was 

sequenced and verified for incorporation of the desired amino acid substitution in the 

glycerol kinase gene. The primers used for sequencing the glycerol kinase sequence are 

written out in Table 2. The plasmid DNA from each glycerol kinase variant was 

sequenced using the ABI Big Dye method. The reactions were performed by using a 

reaction mix containing 400-600ng of speed vacuum dried purified DNA, 1µl of a 10µM 

stock of each primer, 2µl of ABI Big Dye (a polymerase, dideoxynucleotides mix),and 

3µl sterile milliQ water. The thermocycling conditions for the sequencing reaction were 

as follows: 

1. 95oC for 2 minutes 

2. 95 oC for 30 seconds 

3. 50 oC 15 seconds 
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4. 60 oC 4 minutes 

Repeat steps 2 to 4 for 99 cylces 

5. 4 oC - Hold 

The PCR products were cleaned by gel filtration using spin columns provided by 

the Gene Technologies Laboratory, Department of Biology, TAMU. The cleaned 

products of the sequencing reactions DNA were air dried in a SpeedVac and analyzed by 

the Gene Technologies Laboratory, Department of Biology, TAMU. The sequences 

obtained were then verified for correct incorporation of the desired single mutation by 

comparing each sequence to the Wild Type glycerol kinase sequence using the 

Sequencher® 4.1.4 software. 
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Table 2: Primer sequences used for amplification and sequencing of the glycerol kinase 

gene 

PRIMER NAME  SEQUENCE     GC CONTENT Tm 

 

DP 1   TGGCGAAAGCCGATATCAGTT        47.6                 56.8   

DP 2    GTGGAAGGCTCTCGCGAGCGT      66.7   64.3 

DP 3    GGCAAAGGCGGCACGCGTATT      61.9   63.7 

DP 4   TGGCTGCGCGATGAAATGAAG       52.4  58.7 

DP 5   GGCCGACTCTGGTATCCGTCT      61.9  60.7 

DP 6   TACCGTTACGCAGGCTGGAAA      52.4   58.8 

 

P 1   GACACGCTAATGATATTGGCA         42.9  53.0 

P 2   AATGCTCGCAGATTTCTGCGG          52.4  58.5 

P 3   AACAGCAATTCACCACGACGT         47.6  57.5 

P 4   CAGTGCCATAGGTGTTCTTCG           52.4  55.8 

P 5   CGGAATCGTAGGCGTCGTTAA          52.4  57.0 

P 6   TCGGACTGGAACTGCATCAGG          57.1  59.2 
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Enzyme Purification 

The variant glycerol kinase enzymes (Q37A, Y39A, Y39F, Q104A, M308A, and 

Q314A) were expressed and purified as described by Pettigrew et al., (35) with the 

following modifications: The enzyme was expressed from the pWT165 plasmid and not 

the pCJ102 plasmid. The transformed cells were grown in cultures containing both 

ampicillin and streptomycin. The purification procedure involved usage of a GE 

Pharmacia ATKA™ purifier system.   

Overexpression of Enzyme 

The E. coli cells containing the variant glycerol kinases were grown in 1 L of 2X 

LB broth containing streptomycin and ampicillin. Each culture was grown in a 37oC 

shaker overnight. The next day, the overnight culture was induced for three hours with 

IPTG at a concentration of 1 mM. The resulting cell cultures were spun at 6,000 rpm at 

4oC for 10 minutes, in a Sorvall RC5-B refrigerated super-speed centrifuge using a GS3 

rotor. The harvested cells were stored at -20oC until used. 

Cell Lysis 

Before cell lysis, the cells were resuspended in four volumes of glpK standard 

buffer pH 8.0 composed of 50 mM TEA, 2 mM glycerol, 1 mM EDTA and 2 mM βME 

(12). A W-220F sonicator with a microtip (Heat systems – Ultrasonics, Inc) was used to 

lyse the cells. The cells were sonicated for 10 minutes using 2 seconds sonication/3 

seconds off cycling, in a salt ice-bath, with the temperature of the cell suspension 

maintained below 10oC.  The resulting cell suspension was centrifuged at 12,000 rpm in 

a FiberLite F15S-8X50C rotor and the supernatant tested for activity.  
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Enzyme Purification 

The supernatant from the cell lysis was taken through steps of addition of 

streptomycin sulfate and ammonium sulfate to precipitate out nucleic acids and finally 

the glycerol kinase proteins. The streptomycin and ammonium sulfate steps were carried 

out in the cold unless indicated otherwise. The enzymes were purified using the AKTA 

purifier system which combines Q-Sepharose HP and Source 15Q affinity 

chromatography systems.  Each enzyme was stored as a crystalline ammonium sulfate 

suspension as described (35). 

Streptomycin Sulfate Treatment 

To precipitate nucleic acids, 20% streptomycin sulfate in glpK standard buffer 

pH 8.0 was added slowly to the crude supernatant while stirring continuously.  The 

volume of the 20% streptomycin sulfate prepared and added was 1/10th the volume of 

the crude supernatant. The mixture was stirred for an additional 30 minutes and then 

centrifuged for 10 minutes in the FiberLite F15S-8X50C rotor at 12,000 rpm. The 

supernatant volume was measured, labeled SSR and an aliquot assayed for activity. The 

pellet was stored at 4oC. 

Ammonium Sulfate Treatment 

The streptomycin sulfate treated supernatant was taken through two ammonium 

sulfate treatments to first precipitate out unwanted proteins and then to precipitate out 

the EcGK. In the first ammonium sulfate treatment, finely ground ammonium sulfate 

(24g/100 mL SSR) was slowly added with constant stirring. The stirring was continued 

for an additional 30 minutes in the cold room after which the solution was centrifuged 
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for 10 minutes in the FiberLite F15S-8X50C rotor at 12,000 rpm. The supernatant 

volume was measured, labeled ASSI and an aliquot assayed for activity. The resulting 

pellet was stored at 4oC. The ASSI was then taken through the second ammonium sulfate 

treatment by adding 22g/ 100 mL ASSI of finely ground ammonium sulfate while 

stirring continuously. The stirring was continued for an additional 30 minutes and the 

mixture centrifuged for 10 minutes in the FiberLite F15S-8X50C rotor at 12,000 rpm. 

The supernatant was labeled ASSIIsupe and the volume measured. The ASSIIsupe was 

assayed to make sure no activity was left in the ammonium sulfate fraction. The pellet 

was then resuspended in standard buffer pH 8.0 (1/10th the volume of the ASSIIsupe), 

and dialyzed overnight versus 1 L of standard buffer pH 8.0 and labeled ASSIIpptd. The 

ASSIIpptd was assayed for activity the next day. 

Column Purification 

 The proteins were then purified using the AKTATM purifier system which 

combined Q-Sepharose HP and Source 15Q affinity chromatography systems. The 

ASSIIpptd was first centrifuged at 12,000 rpm for 10 minutes in the FiberLite F15S-

8X50C rotor and then syringe filtered with the Millipore filter (0.45 µM). The protein 

was then run on the Q-Sepharose HP column (approximately 2.6 cm x 11.8 cm) with 

standard buffer pH 8.0 and eluted with 10-50% NaCl in standard buffer pH 8.0. Enzyme 

containing fractions as determined by assaying for enzyme activity were pooled. The Q-

Sepharose HP pool was then dialyzed against 1 L of standard buffer pH 7.0 and assayed 

for activity. The Q-Sepharose HP pool was centrifuged at 12,000 rpm for 10 minutes in 

the FiberLite F15S-8X50C rotor; syringe filtered and then run through the first Source 
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15Q column at pH 7.0 (approximately 1.5 cm x 11.2 cm); the column was then eluted 

with a 10-50% NaCl in standard buffer pH 8.0.  Enzyme containing fractions were 

pooled and dialyzed against 1 L of standard buffer pH 8.0. The Source 15Q pH 7.0 pool 

was then centrifuged at 12,000 rpm for 10 minutes in the FiberLite F15S-8X50C rotor; 

syringe filtered and then run through the second Source 15Q column at pH 8.0 and 

eluted with 10-50% NaCl gradient. The protein concentrations and enzyme activity of 

enzyme containing fractions were determined from the absorbance at 280nm on a 

Beckman UV/Vis DU800 spectrophotometer using an extinction coefficient of 1.73 

(mg/mL)-1cm-1 (36), and by assaying for enzyme activity respectively. Homogeneity of 

the purified glycerol kinase enzyme was then determined using SDS-PAGE with 

GelCode Blue stain, and pure fractions pooled. The purified proteins were dialyzed 

against standard buffer pH 8.0 and concentrated by ultrafiltration using the 30 000 kD 

molecular weight cut-off Centricon® centrifugal filter device. Each enzyme was stored 

as a crystalline ammonium sulfate suspension as described (35). 

Preparation of Purified Enzyme for Initial Velocity Studies and Inhibition Assays  

Before each experiment, each enzyme was passed through a NAP-10 mini-

column. The mini-column was first washed with three column volumes of standard 

buffer, pH 7.0 to equilibrate the column. A volume of the enzyme diluted in standard 

buffer, pH 7.0 and made up to 1 mL was loaded onto the equilibrated mini-column and 

the flow-through discarded. A volume of 1.4 mL of standard buffer, pH 7.0 was then 

loaded unto the mini-column and the flow-through collected for protein concentration 

and subsequent enzyme activity analysis. This served to remove the ammonium sulfate 
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that the enzymes were stored in. The concentration of the enzyme after passing through 

the mini-column was determined from the absorbance at 280nm on a Beckman UV/Vis 

DU800 spectrophotometer using an extinction coefficient of 1.73 (mg/mL)-1cm-1 (36).  

 

Enzyme Assays 

IIA
Glc

 Inhibition Studies 

IIAGlc inhibition of the enzyme activity of the glycerol kinase variants was 

measured in the forward reaction (glycerol to glycerol-3-phosphate) using the 

continuous ADP-coupled spectrophotometric assay at pH 7.0 and 25°C with a Beckman 

DU800 spectrophotometer.  The enzyme inhibition assay is composed of a 0.5 mL 

solution of 50mM triethanolamine-HCl buffer, 5 mM MgCl2, 20 mM KCl, 7.5 units each 

of pyruvate kinase and lactate dehydrogenase, 0.2 mM PEP, 0.2 mM NADH, 10 mM 

glycerol and 2.5 mM ATP with varying concentrations of IIAGlc from 0- 60 µM. The 

assay was initiated by the addition of the enzyme. Data were fit to equation 1 below 

using the Kaleidagraph software (Synergy Software, Reading, PA). The glycerol kinase 

enzyme concentration in each assay was varied from 0.5 to 5 µg/ml, depending on the 

activity of the variant enzyme. For each of the variant enzymes, the inhibition parameter 

K0.5 which is the apparent dissociation constant for allosteric effector binding was 

determined from the fits of the data to equation 1. 
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- X is the allosteric inhibitor IIAGlc,  
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- SA[X] is the specific activity at the concentration of the inhibitor,  

- SA0 is the specific activity in the absence of the inhibitor,  

- SA∞ is the specific activity in the saturating presence of inhibitor,  

- K0.5 is equal to the concentration of X that gives 50% of the maximum 

inhibition. 

Another inhibition parameter, W, is the coupling parameter which describes the effect of 

the allosteric ligand on Vmax and was determined from equation 2 below.  

  

oSA

SA
W ∞=      (2) 

where SA∞ – SA at saturating levels of the inhibitor 

 SAo – SA in the absence of the inhibitor  

The value of W is >1 if the allosteric effector increases the Vmax, and is <1 if Vmax is 

reduced by the allosteric effector. Where there is no allosteric effect on Vmax, W equals 

1.  

FBP Inhibition Studies 

The FBP inhibition assay also had the same components of the IIAGlc inhibition 

assay except FBP concentrations were varied from 0- 10 mM. Also, the reaction assay 

was incubated with the enzyme and FBP for 90 minutes before initiating the reaction by 

the addition of ATP. Data were fit to the equation 3 below using the Kaleidagraph 

software (Synergy Software, Reading, PA). 
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- X is the allosteric inhibitor FBP,  

- SA[X] is the specific activity at the concentration of the inhibitor,  

- SA0 is the specific activity in the absence of the inhibitor,  

- SA∞ is the specific activity in the saturating presence of inhibitor,  

- K0.5 is equal to the concentration of X that gives 50% of the maximum 

inhibition, 

- nH is the Hill Coefficient and describes the binding cooperativity of the 

allosteric effector.  

The glycerol kinase enzyme concentration in the FBP assays was varied from 0.5 to 5 

µg/ml, depending on the activity of the variant enzyme. For each of the variant enzymes, 

the inhibition parameter K0.5 which is the apparent dissociation constant for allosteric 

effector binding was determined from the fits of the data to equation 3. The coupling 

parameter W, for FBP inhibition was determined from equation 2.  

Enzyme Catalytic Activity Assays 

The assays to assess the catalytic activity of the variant enzymes had the same 

components of the inhibition assays except the substrate ATP was varied from 0 - 2.5 

mM and no inhibitor was added to the assays. Wild Type EcGK has been shown to 

display two classes of ATP binding sites (12). The determination of kinetic parameters is 

more accurate for the first ATP binding site. ATP concentrations were therefore varied 

from 0 – 0.1 mM to obtain the kinetic parameters for assessing the catalytic properties. 
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For variants where the substitutions appeared to decrease the ATP binding affinity , the 

ATP concentrations were varied up to 2.5 mM. Kinetic data was fit to the Michaelis-

Menten equation 4 below using the Kaleidagraph software (Synergy Software, Reading, 

PA).  

 

ATP
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max
o

K]ATP[

]ATP[V
v

+
=      (4) 

 
where the catalytic activity of the enzymes with respect to the substrate glycerol was 

assessed, glycerol concentration was varied from 0 – 1.6 mM, while ATP was varied 

from 0 – 2.5 mM. Kinetic data was fit to equation 5 below for a bi-substrate enzyme 

kinetics mechanism using the program EnzFitter (Biosoft, Cambridge, U.K.). The 

concentration of glycerol kinase enzyme used in the enzyme assays varied from 0.5 to 5 

µg/ml, depending on the activity of the variant enzyme. 
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- vo is the intial velocity at the concentration of substrate,  

- Vmax is the maximum velocity at saturating conditions of the substrate,  

- [ATP] is the concentration of ATP,  

- Km
ATP is the Michaelis constant for ATP,  

- [gol] is the concentration of glycerol, 

- Kia
ATP

 is the dissociation constant for ATP,  

- Km
gol is the Michaelis constant for glycerol. 
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 Binding Studies 

Sedimentation velocity experiments were used to assess IIAGlc binding to EcGK 

as described (37). Purified glycerol kinase protein samples were diluted to 0.3 mg/mL of 

glycerol kinase with standard buffer, pH 7.0. The IIAGlc concentration was varied from 0 

up to 90 µM. Samples were run in a Beckman model XL-A analytical ultracentrifuge at 

28,500 rpm and 25°C. Scans were performed at 280 nm with 4 minute intervals between 

scans. The data obtained were analyzed using the SVEDBERG program (version 6.38) 

to obtain the apparent sedimentation coefficient. The dissociation constant for IIAGlc 

binding to glycerol kinase was determined by fitting the IIAGlc concentration dependence 

of the apparent sedimentation coefficients (Sapp) to equation 6. 
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- So is the sedimentation coefficient in the absence of IIAGlc,  

- S∞ is the sedimentation coefficient in the saturating presence of IIAGlc,  

- Sapp is the apparent sedimentation coefficient, 

- [GK]TOT is the concentration of total enzyme, 

- [IIAGlc]TOT is the concentration of total IIAGlc, 

- Kd is the dissociation constant. 
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CHAPTER III 

RESULTS 

 

Construction and Purification of Variant Glycerol Kinases 

E. coli cells transformed with the products of the mutagenized DNA were 

selected on MGSA plates. Five to ten pink to purple colonies indicative of glycerol 

utilization were selected for sequencing to identify the mutants. Plasmid DNA purified 

from the E. coli cells which were sequenced confirmed at least one selected colony with 

the desired single mutations introduced into the glycerol kinase gene with no secondary 

mutations. 

The variant glycerol kinase enzymes Q37A, Y39A, Y39F, Q104A, M308A and 

Q314A were purified as outlined in the materials and methods section. During the 

purification steps, ammonium sulfate solubility of the variant enzymes was comparable 

to that of the Wild Type and to each other. Elution positions on the Q-Sepharose and 

Source 15Q chromatography columns were similar, suggesting that the structure of the 

enzyme was not grossly altered by the mutations incorporated. Each enzyme was 

purified as shown in the SDS-PAGE gel image (Figure 1). However, the specific activity 

after the final purification step of each variant enzyme varied. Wild Type glycerol kinase 

was found to have a specific activity of approximately 39 U/mg. Q37A, Y39F, Q104A 

and Q314A had specific activities comparable to Wild Type. There was however a 20-

fold reduction in the specific activity of Y39A and a 2-3 fold reduction in specific 

activity of M308A compared to the Wild Type.  
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       MWa      WTb      Q37A      Y39F      Y39A     Q104A     M308A   Q314Ac    MW 

      1          2        3          4         5          6           7          8          9 
 

 
a: Molecular Weight marker (10 to 250 kD) 
b: Wild Type glycerol kinase – purified by Pamela Miller 
c: Q314A variant – purified by Damien Terry 
 
Figure 1: SDS-PAGE of purified variant glycerol kinase proteins. For each well, 5 µg of 
protein was loaded. This gel picture is a composite of two separate gels. Wells 1 to 4, 6, 
7 and 9 are from one gel while wells 5 and 8 are from a different gel. 
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 Inhibition of Wild Type and Glycerol Kinase Variants 

Figures 2-7 show the IIAGlc inhibition of the Wild Type and alanine variant 

enzymes. The figure on page 35 shows the IIAGlc inhibition of the phenylalanine variant. 

Each of the alanine variants was inhibited by IIAGlc except for the Y39A variant, for 

which no inhibition was detected. The parameters K0.5 for IIAGlc inhibition were 

determined from fitting the dependence of the specific activity of the Wild Type and 

variant glycerol kinases on IIAGlc concentration to equation 1 while W was determined 

from equation 2. The kinetic constants determined from the IIAGlc inhibition studies 

displayed in Table 3 are the average values of the kinetic constants determined from at 

least two independent experiments.  

The K0.5 for IIAGlc binding to Wild Type glycerol kinase was found to be 4.6 µM. 

This value compares to what has been previously determined (29). Considering the 

domain I variants, there was a slight increase in the K0.5 value for the domain I Q37 

alanine variant. For the domain I variant Y39A, the K0.5 value was not determined 

because no inhibition was observed.  
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To assess the relative role of the tyrosine hydroxyl group and the aromatic ring in 

the loss of IIAGlc inhibition of the Y39A variant, the Y39F variant was constructed. The 

dependence of its catalytic activity on IIAGlc concentration shows it is inhibited by 

IIAGlc. The IIAGlc inhibition parameters for the Y39F variant are shown in Table 3. The 

K0.5 and W were not significantly different from the values obtained for Wild Type 

EcGK. Considering the domain II variants, the K0.5 was not significantly different from 

the Wild Type.  

The coupling parameter for Wild Type glycerol kinase has been found to be 

approximately 0.08. All of the alanine variants in both domain I and II with the 

exception of Y39A showed increases in the value of the coupling parameter. However, 

the increase is significant only for the Q104A variant, as indicated by the uncertainties in 

the parameter values. W for Y39A variant is equal to 1 since the enzyme was not 

inhibited even at high concentrations of IIAGlc.  
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Figure 2: Wild Type IIAGlc inhibition. The curve shows the fit of equation 1 to one of the 
independent experiments. Each data point is the specific activity determined from the 
indicated concentrations of IIAGlc. The averaged values of the parameters from the fits of 
the individual experiments are shown in Table 2. Assay conditions: 2.5 mM ATP, 0.5 
µg/mL enzyme. 
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Figure 3: Q37A IIAGlc inhibition. The curve shows the fit of equation 1 to one of the 
independent experiments. Each data point is the specific activity determined from the 
indicated concentrations of IIAGlc. The averaged values of the parameters from the fits of 
the individual experiments are shown in Table 2. Assay conditions: 2.5 mM ATP, 0.5 
µg/mL enzyme. 
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Figure 4: Y39A IIAGlc inhibition. The curve shows the fit of equation 1 to one of the 
independent experiments. Each data point is the specific activity determined from the 
indicated concentrations of IIAGlc. The averaged values of the parameters from the fits of 
the individual experiments are shown in Table 2. Assay conditions: 2.5 mM ATP, 5 
µg/mL enzyme. 
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Figure 5: Q104A IIAGlc inhibition. The curve shows the fit of equation 1 to one of the 
independent experiments. Each data point is the specific activity determined from the 
indicated concentrations of IIAGlc. The averaged values of the parameters from the fits of 
the individual experiments are shown in Table 2. Assay conditions: 2.5 mM ATP, 0.1 
µg/mL enzyme. 
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Figure 6: M308A IIAGlc inhibition. The curve shows the fit of equation 1 to one of the 
independent experiments. Each data point is the specific activity determined from the 
indicated concentrations of IIAGlc. The averaged values of the parameters from the fits of 
the individual experiments are shown in Table 2. Assay conditions: 2.5 mM ATP, 5 
µg/mL enzyme. 
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Figure 7: Q314A IIAGlc inhibition. The curve shows the fit of equation 1 to one of the 
independent experiments. Each data point is the specific activity determined from the 
indicated concentrations of IIAGlc. The averaged values of the parameters from the fits of 
the individual experiments are shown in Table 2. Assay conditions: 2.5 mM ATP, 0.5 
µg/mL enzyme. 
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Figure 8: Y39F IIAGlc inhibition. The curve shows the fit of equation 1 to one of the 
independent experiments. Each data point is the specific activity determined from the 
indicated concentrations of IIAGlc. The averaged values of the parameters from the fits of 
the individual experiments are shown in Table 2. Assay conditions: 2.5 mM ATP, 0.5 
µg/mL enzyme. 
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Table 3: IIAGlc inhibition parameters for Wild Type and variant E. coli glycerol kinases 

 

 K0.5, µM W 

Wild Type 4.6 ± 2.3 (2) 0.08 ± 0.07 (2) 

Q37A 9.7 ± 2 (2) 0.13 ± 0.06 (2) 

Y39Aa ND 1 (4) 

Y39F 8.9 ± 1.4 (3) 0.05 ± 0.03 (3) 

Q104A 6.8 ± 2.2 (5) 0.22 ± 0.05 (5) 

M308A 5.2 ± 0.40 (3) 0.13 ± 0.05 (3) 

Q314Aa 6.2 ± 1.6 (3) 0.12 ± 0.03 (3) 

a: These determinations were performed in part by Damien Terry. 
 
Nonlinear least-squares fitting of inhibition data to equation 1 was performed using the computer program 
Kaleidagraph by Synergy Software to obtain the inhibition parameters K0.5. W was determined from 
equation 2. Numbers in parenthesis indicate the number of independent determinations. The uncertainties 
shown for the inhibition parameters were determined from the propagated values of the standard errors of 
parameters obtained where n =2 and from the sample standard deviation where n>2.  
 
ND: Not determined. The K0.5 could not be determined because the Y39A enzyme was not found to be 
inhibited by IIAGlc. 
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 Binding Studies to the Variant Y39A 

The apparent loss of IIAGlc inhibition for the Y39A variant raised the question of 

whether the alanine substitution of Y39 abolished binding or the allosteric coupling to 

the catalytic site. To address this question of IIAGlc binding to the Y39A variant, a 

sedimentation velocity method was employed that was previously used to show that the 

IIAGlc binding site amino acids are not sufficient for transplanting allosteric control into 

glycerol kinase of another bacterium, Haemophilus influenzae (37). This method 

determines the increase of the sedimentation coefficient for glycerol kinase upon binding 

to IIAGlc. It benefits from the very low absorbance of IIAGlc at 280 nm due to its lack of 

tyrosine and tryptophan residues. The sedimentation coefficients were determined as 

described under Materials and Methods; preliminary results are shown in Table 4. The 

apparent dissociation constant for the IIAGlc binding to the Y39A variant was determined 

from the IIAGlc concentration dependence of the sedimentation coefficient and results of 

those experiments are shown in the figure on page 41. Three different glycerol kinase 

enzymes were used for those studies: the Wild Type enzyme, the Y39A variant, and an 

E478C DVN variant. The E478C DVN variant does not bind to IIAGlc because of a steric 

clash with the aspartate residue at residue 427 (D of DVN). This enzyme serves to 

measure the effect of solution viscosity increases due to increasing IIAGlc concentrations. 

The results show a small linear decrease in the sedimentation coefficient for the E478C 

DVN variant as IIAGlc concentration was increased. This expected small effect was used 

to correct the apparent sedimentation coefficients for the other two enzymes.  
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The line through the data points shows the fit to equation 6 to estimate the 

dissociation constant for IIAGlc binding to EcGK.  The sedimentation coefficient of the 

Wild Type enzyme showed an apparently hyperbolic dependence upon increasing IIAGlc 

concentration as expected for binding of 4 moles of an 18.1 kDa protein to 1 mole of a 

224 kDa protein. In the absence of IIAGlc, the sedimentation coefficient was about 11.1 

S, which agrees well with a value of 11.5 S calculated from the tetramer structure using 

the program HYDROPRO (38). The data are well described by the fitted line, indicating 

they are consistent with hyperbolic binding of IIAGlc to EcGK. The apparent dissociation 

constant for the binding was found to be 17 ± 7 µM. This value agrees well with the 

value of 7 ± 3 µM that is estimated from linked-functions analysis of IIAGlc inhibition 

(39). 

The sedimentation coefficient for the Y39A variant in the absence of IIAGlc was 

about 10.3, about 1 S less than for Wild Type, indicating that the dimer-tetramer 

equilibrium is shifted toward the dimer by the substitution. This shift is consistent with 

reduced apparent affinity for FBP that is described (Table 4).  
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The sedimentation coefficient for the Y39A variant shows an apparently 

hyperbolic dependence on IIAGlc concentration, as was seen for the Wild Type enzyme. 

The data are well described by the fit to equation 5, shown by the line in Figure 9. This 

result suggests that IIAGlc binding does not affect the dimer-tetramer equilibrium.  

The 1 S increase of the sedimentation coefficient for Y39A on addition of IIAGlc 

was similar to Wild Type, indicating that the Y39A variant binds to IIAGlc.   

The apparent dissociation constant for IIAGlc binding to the Y39A variant was found to 

be 20 ± 6 µM, which agrees well with the dissociation constant obtained for IIAGlc 

binding to the Wild Type enzyme. This result indicates that the Y39A substitution does 

not alter the affinity for IIAGlc binding, but completely uncouples the binding from 

inhibition of catalysis.  
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Table 4: Sedimentation coefficient parameters for EcGK and Y39A GK variant 

 

 Wild Type EcGK Y39A EcGK 

S20,w (-IIA
Glc) 11.2 10.3 

S20,w (+IIAGlc) 12.3 11.1 

 
S20,w – Sedimentation coefficient corrected to 20oC. Concentration of IIAGlc used was 90µM.  
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Figure 9: Sedimentation velocity analysis of IIAGlc binding. The lines show the fit of the 
data for EcGK, Y39A and E478C DVN to equation 6 to give the dissociation constants 
shown in the figure. The points show the experimentally-determined sedimentation 
coefficients at the indicated concentration of IIAGlc. The apparent sedimentation 
coefficients for Wild Type and Y39A glycerol kinase were corrected for viscosity 
increases using the E478C DVN mutant as a control which does not bind to IIAGlc. 
Enzyme concentration used was 0.3 mg/ml. 
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FBP Regulation of Wild Type and Glycerol Kinase Variants  

Inhibition by FBP was investigated by assessing the dependence of the activity of 

the glycerol kinases on FBP concentration as shown in Figures 10-16. FBP concentration 

was varied from 0 - 10mM and the inhibition parameters of the glycerol kinase variants 

to FBP determined. The kinetic parameters from the FBP inhibition studies are shown in 

Table 5. The inhibition parameters K0.5 and nH were determined from fitting the data 

from the inhibition curves to equation 3 while W was determined from equation 2.  

For the domain I variants Q37A, Y39A and Y39F, the K0.5 was increased 

compared to Wild Type. The K0.5 of the domain I variant Q104A was not significantly 

affected by the alanine substitution. For the domain II variants, the affinity of the 

M308A variant for FBP was increased due to the substitution, showing a two-fold 

decrease in the K0.5 compared to Wild Type glycerol kinase. The K0.5 of Q314A was 

however not affected.  

Only two of the variant enzymes, Q37 and Q314 showed changes in W. W was 

increased slightly by the alanine substitutions of these residues. For all of the variants, 

FBP inhibition was positively cooperative as for Wild Type glycerol kinase. The Hill 

coefficient was increased for the Q37A and Q104A variants but was similar to Wild 

Type for the rest of the mutants. The phenotypes of the variants on MGSA (Table 6) 

were characteristic of the effects of the substitutions on the K0.5; the significance of 

which are discussed later. 
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Figure 10: Wild Type FBP inhibition. Each data point is the specific activity determined 
from the indicated concentrations of FBP. The curve shows the fit of equation 3 to one 
of the independent experiments. The averaged values of the parameters from the fits of 
the individual experiments are shown in Table 4. Assay conditions: 2.5 mM ATP, 0.5 
µg/mL enzyme.  
 
  



 44

0

5

10

15

20

25

0.001 0.01 0.1 1 10 100

Q37A FBP Inhibition

[FBP], mM
 

Figure 11: Q37A FBP inhibition. Each data point is the specific activity determined from 
the indicated concentrations of FBP. The curve shows the fit of equation 3 to one of the 
independent experiments. The averaged values of the parameters from the fits of the 
individual experiments are shown in Table 4. Assay conditions: 2.5 mM ATP, 0.5 
µg/mL enzyme.  
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Figure 12: Y39A FBP inhibition. Each data point is the specific activity determined from 
the indicated concentrations of FBP. The curve shows the fit of equation 3 to one of the 
independent experiments. The averaged values of the parameters from the fits of the 
individual experiments are shown in Table 4. Assay conditions: 2.5 mM ATP, 5 µg/mL 
enzyme.  
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Figure 13: Y39F FBP inhibition. Each data point is the specific activity determined from 
the indicated concentrations of FBP. The curve shows the fit of equation 3 to one of the 
independent experiments. The averaged values of the parameters from the fits of the 
individual experiments are shown in Table 4. Assay conditions: 2.5 mM ATP, 0.5 
µg/mL enzyme.  
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Figure 14: Q104A FBP inhibition. Each data point is the specific activity determined 
from the indicated concentrations of FBP. The curve shows the fit of equation 3 to one 
of the independent experiments. The averaged values of the parameters from the fits of 
the individual experiments are shown in Table 4. Assay conditions: 2.5 mM ATP, 1 
µg/mL enzyme.  
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Figure 15: M308A FBP inhibition. Each data point is the specific activity determined 
from the indicated concentrations of FBP. The curve shows the fit of equation 3 to one 
of the independent experiments. The averaged values of the parameters from the fits of 
the individual experiments are shown in Table 4. Assay conditions: 2.5 mM ATP, 5 
µg/mL enzyme.  
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Figure 16: Q314A FBP inhibition. Each data point is the specific activity determined 
from the indicated concentrations of FBP. The curve shows the fit of equation 3 to one 
of the independent experiments. The averaged values of the parameters from the fits of 
the individual experiments are shown in Table 4. Assay conditions: 2.5 mM ATP, 0.5 
µg/mL enzyme.  
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Table 5: FBP inhibition parameters for Wild Type and variant E. coli glycerol kinase 

 

 K0.5, µM W nH 

Wild Typea 264 ± 134 (3) 0.04 ± 0.02 (3) 1.2 ± 0.3 (3) 

Q37A 1284 ± 247 (3) 0.15 ± 0.09 (3) 1.9 ± 0.8 (3) 

Y39A 1722 ± 204 (2) 0.06 ± 0.06 (2) 1.4 ± 0.2 (2) 

Y39F 965 ± 74 (3) 0.04 ± 0.01 (3) 2.0 ± 0.1 (3) 

Q104A 425 ± 9 (3) 0.02 ± 0.01 (3) 1.7 ± 0.1 (3) 

M308A 97 ± 19 (2) 0.04 ± 0.02 (2) 1.5 ± 0.2 (2) 

Q314Aa 317 ± 30 (2) 0.11 ± 0.04 (2) 1.6 ± 0.3 (2) 

a: These determinations were performed in part by Damien Terry 
 
Nonlinear least-squares fitting of inhibition data to equation 3 was performed using the computer program 
Kaleidagraph by Synergy Software to obtain the inhibition parameters K0.5 and nH. W was determined 
from equation 2. Numbers in parenthesis indicate the number of independent determinations. The 
uncertainties shown for the inhibition parameters were determined from the propagated values of the 
standard errors of parameters obtained where n=2 and from the sample standard deviation where n>2.  
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Table 6: Phenotypes of cells transformed with variant glycerol kinase  

 

E. coli Glycerol Kinase Phenotype of Colonies on MGSA plates 

Wild Type Purple 

Q37A Purple with foggy halo 

Y39A Purple with foggy halo 

Y39F Purple with slightly foggy halo 

Q104A Purple with slightly foggy halo 

M308A Pink  

Q314A Purple 

 
The phenotypes of the variant E. coli were recorded after overnight growth on MGSA plates.  
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Effects of the Domain Bridging Amino Acid Substitutions on Enzyme Catalytic 

Properties  

Initial velocity kinetic studies for each of the variant glycerol kinases were 

performed in the forward direction using the ADP coupled spectrophotometric assay at 

pH 7.0 and 25°C with a Beckman DU800 spectrophotometer. In each of the assays, 

glycerol was added to the enzyme to a final concentration of 10 mM. The dependence of 

the initial velocity of Wild Type and each glycerol kinase variant on the concentration of 

the substrate ATP is shown in Figures 17-23. The kinetic data obtained from the assays 

were fit to equation 4 in Materials and Methods. The kinetic constants were obtained 

from the fits of at least two independent experiments and are shown in Table 7.  

Considering domain I, the alanine substitutions had the effect of reducing the 

Vmax in Q37A and Y39A. The reduction in Vmax was most pronounced and significant in 

Y39A. Compared to the Vmax of the Wild Type enzyme, Q37A was reduced two-fold, 

while Y39A was reduced four-fold. The Vmax of Y39F was however unaffected by the 

substitutions, while it was increased for the Q140A variant. For domain II, the Vmax of 

M308A was significantly affected, with a three-fold reduction while the Vmax of Q314A 

was slightly increased by the substitution.  

The Michaelis constant (Km) for ATP of Wild Type glycerol kinase was also 

compared to the variant enzymes. The Km of the domain I variants Q37A and Y39F were 

not significantly affected. The alanine substitutions in Y39 and Q104 however resulted 

in an increased Km. The Km of Y39A was increased about twelve-fold higher than that of 

Wild Type glycerol kinase while Q104A had an approximately seven-fold increase in 
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the Km. In the determination of the Km for Y39A and Q104A, the apparent binding 

affinity for ATP of these variants appeared to shift the Km to the right. The ATP 

concentrations were therefore varied up to 2.5 mM. Considering domain II, the Km was 

not affected by the alanine substitution of both M308 and Q314.  

Due to the observed large effects of the Y39A substitution on the enzyme 

catalytic properties as had been observed for IIAGlc inhibition, the second substrate 

glycerol was varied to obtain the Michaelis constant for glycerol and the dissociation 

constant for ATP. The results are shown in Table 8. The Vmax and Km for ATP for the 

Y39A variant determined from both substrates agreed well with the value obtained from 

varying ATP alone. There was a significant increase in the Km for ATP and a decrease in 

the Vmax. The results showed that the Km for glycerol was also increased about 21-fold 

higher for Y39A compared to Wild Type. The dissociation constants (Kia) determined 

showed that the alanine substitution of Y39 resulted in a decrease in the Kia for ATP.  
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Figure 17: Wild Type ATP kinetics. Each data point is the specific activity determined 
from the indicated concentrations of ATP. The curve shows the fit to equation 4 to one 
of the independent experiments. The parameters from the average fit are shown in Table 
5. The enzyme concentration used in each assay was 0.5 µg/mL. 
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Figure 18: Q37A ATP kinetics. Each data point is the specific activity determined from 
the indicated concentrations of ATP. The curve shows the fit to equation 4 to one of the 
independent experiments. The averaged values of the parameters from the fits of the 
individual experiments are shown in Table 5. The enzyme concentration used in each 
assay was 0.5 µg/mL. 
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Figure 19: Y39A ATP kinetics. Each data point is the specific activity determined from 
the indicated concentrations of ATP. The curve shows the fit to equation 4 to one of the 
independent experiments. The averaged values of the parameters from the fits of the 
individual experiments are shown in Table 5. The enzyme concentration used in each 
assay was 5 µg/mL. 
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Figure 20: Y39F ATP kinetics. Each data point is the specific activity determined from 
the indicated concentrations of ATP. The curve shows the fit to equation 4 to one of the 
independent experiments. The parameters from the average fit are shown in Table 5. The 
enzyme concentration used in each assay was 0.5 µg/mL. 
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Figure 21: Q104A ATP kinetics. Each data point is the specific activity determined from 
the indicated concentrations of ATP. The curve shows the fit to equation 4 to one of the 
independent experiments. The parameters from the average fit are shown in Table 5. The 
enzyme concentration used in each assay was 1 µg/mL. 
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Figure 22: M308A ATP kinetics. Each data point is the specific activity determined from 
the indicated concentrations of ATP. The curve shows the fit to equation 4 to one of the 
independent experiments. The parameters from the average fit are shown in Table 5. The 
enzyme concentration used in each assay was 5 µg/mL. 
. 
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Figure 23: Q314A ATP kinetics. Each data point is the specific activity determined from 
the indicated concentrations of ATP. The curve shows the fit to equation 4 to one of the 
independent experiments. The parameters from the average fit are shown in Table 5. The 
enzyme concentration used in each assay was 0.5 µg/mL. 
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Table 7: Steady state kinetics for Wild Type and variant E. coli glycerol kinase 

 

 Vmax, U/mg Km
ATP, µM 

Wild Typea 12.9 ± 4.6 (2) 11.1 ± 13 (2) 

Q37A 8.6 ± 0.7 (2) 15.8 ± 4 (2) 

Y39A 3.4 ± 0.2 (2) 136 ± 29 (2) 

Y39F 21.4 ± 2.7 (3) 11.7 ± 2.7 (3) 

Q104A 22.5 ± 4.3 (3) 78 ± 25 (3) 

M308Aa 6.6 ± 0.3 (1) 12.6 ± 3.4 (3) 

Q314Aa 20.9 ± 0.9 (1) 14.8 ± 2.8 (3)  

a: These determinations were performed in part by Damien Terry 
 
Nonlinear least-squares fitting of inhibition data to equation 4 was performed using the computer program 
Kaleidagraph by Synergy Software to obtain the inhibition parameters Vmax and Km

ATP. Numbers in 
parenthesis indicate the number of independent determinations. The uncertainties shown for the inhibition 
parameters were determined from the propagated values of the standard errors of parameters obtained 
where n=2 and from the sample standard deviation where n>2. Where n=1, the enzyme was not found to 
be stable in the crystalline ammonium sulfate form it was stored in, resulting in an irreversible loss of 
activity which prevented the accurate determination of the Vmax over time.  The reported vaules are 
therefore for the earliest determination. The uncertainties shown for the single determinations are the 
standard errors of the parameters.  
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Table 8: Michaelis and dissociation constants of Wild Type and Y39A glycerol kinase 

 

 Vmax, U/mg Km for ATP, µM Kia for ATP, µM Km for glycerol, µM 

Wild 

Type 

15.7 ± 0.3 a 11.7 ± 0.7 86 ± 25a 4.9 ± 1.2 a 

Y39Ab 5.1 ± 0.1 110 ± 8 43 ± 15 105 ± 7 

a: Results from Pettigrew et al., (12). 
b: These determinations were performed by Shanna Mayorov. 

 

Nonlinear least-squares fitting of inhibition data to equation 5 was performed using the computer program 
EnzFitter (Biosoft, Cambridge, U.K) to obtain the inhibition parameters Vmax, Km for ATP, Kia for ATP, 
and Km for glycerol. The uncertainties shown for the inhibition parameters are the standard errors for the 
parameters.                                               
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CHAPTER IV 

DISCUSSION 

  

Five amino acids were identified to be within 7 Å of an Arg369 residue which was 

found to be important in IIAGlc inhibition. Three of the amino acids (Q37, Y39 and 

Q104) bridge domain I and Arg369 of EcGK while the other two bridge domain II and 

Arg369 of EcGK. This work used structure perturbation studies to understand the role of 

these domain bridging interactions in the regulation of EcGK by the allosteric inhibitor 

IIAGlc. The effects of the substitutions on FBP inhibition and catalytic properties of the 

enzyme were also assessed. 

 

Importance of the Domain Bridging Amino Acids in IIA
Glc

 Regulation of EcGK  

 

The effects of the substitutions of the domain bridging amino acids on the 

regulation of the EcGK by the inhibitors IIAGlc are discussed. IIAGlc inhibition for the 

domain I mutants were interesting since Y39A exhibited no IIAGlc inhibition, while 

Q37A and Q104A had reduced affinity for IIAGlc. The inhibition parameter, K0.5, is the 

apparent dissociation constant for allosteric effector binding and gives an indication of 

the binding affinity of the allosteric effector to the enzyme. The increased K0.5 values of 

the domain I alanine variants of Q37 and Q104 therefore suggest that the interactions of 

the domain I residues are important for regulating binding of the inhibitor IIAGlc to the 

EcGK enzyme. The interaction of Y39 with Arg369 seems particularly important in 

coupling binding with IIAGlc inhibition. This is because the Y39A substitution had the 
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effect of causing a lack of inhibition of the EcGK enzyme. The sedimentation velocity 

experiments however showed that the IIAGlc was still binding to the Y39A variant. The 

alanine substitution of this residue therefore appeared to uncouple binding of IIAGlc and 

inhibition. The coupling factor, W, was increased for the domain I residues Q37, Y39 

and Q104. The increase was however only significant for the Y39A variant. The value of 

W for Y39A was determined to be equal because even at high concentrations of IIAGlc 

the enzyme was not found to be inhibited. The increase in the coupling factor, W, 

reiterates the importance of the domain I residue Y39 in IIAGlc inhibition. The value of 

W is >1 if the allosteric effector increases the Vmax, and is <1 if Vmax is reduced by the 

allosteric effector. The alanine substitutions of the Y39 residue therefore appeared to 

decrease the ability of the EcGK enzyme to reduce the Vmax.  

To evaluate the role of the tyrosine hydroxyl group and aromatic ring in the loss 

of IIAGlc inhibition of the Y39A variant, the Y39F variant was constructed. The increase 

in K0.5 for the Y39F variant suggests that the hydroxyl group interaction of Y39 with 

Arg369 may still be important in IIAGlc binding. The large effect of the Y39A substitution 

on IIAGlc inhibition was therefore largely due to the loss of the interactions of the 

aromatic ring. The hydroxyl group interaction of Y39 with Arg369 however does not 

appear to be very important for inhibition since W for the Y39F variant was not 

significantly different from the Wild Type enzyme. 

The W for the domain II bridging variants was not significantly different from 

Wild Type, suggesting that the alanine mutations at these sites did not affect the ability 

of the enzyme to reduce the Vmax during IIAGlc inhibition. The K0.5 for IIAGlc binding 
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also remained similar to Wild Type, indicating that the domain II alanine substitutions 

did not affect the affinity for the inhibitor. These results indicate that the domain II 

bridging interactions with Arg369 may not be important in regulating inhibition of the 

enzyme by IIAGlc. 

Since the analysis of the crystal structure of the EcGK by Hurley et al. (5) 

showed Arg369 as an acid residue likely to be important in the IIAGlc regulation of EcGK, 

the crystal structures of two variant EcGK were superimposed in an attempt to illuminate 

any differences which may exist between the inhibited and uninhibited forms of the 

enzyme around the Arg369 residue. A previously determined crystal structure of EcGK 

with FBP bound was used to mimic the inhibited closed conformation of EcGK (40) and 

superposed with the structure of an EcGK variant S58W variant which is not inhibited 

by FBP (41). The crystal structure of the S58W variant of EcGK shows two asymmetric 

monomers in the dimer and the open form was used to mimic the uninhibited 

conformation of EcGK. The superimposed crystal structures shown in Figure 24 showed 

some differences in movement for the domain I amino acid residues within 4 Å which 

interact with the Arg369 loop. The domain II amino acid residues within 4 Å interacting 

with the Arg369 loop however do not seem affected by the open or closed conformations 

(Pettigrew, D.W unpublished). The observed movement of the domain I residues in close 

proximity to Arg369 is in agreement with the observed effects of domain I in regulating 

IIAGlc binding to the enzyme. 
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Solid color: EcGK·FBP complex (PDB: 1BO5). Inhibited closed conformation  
CPK color: S58W·gol·ADPCF2P complex (PDB: 1BWF). Open uninhibited conformation (asymmetric 
monomers in dimer) 
 

Figure 24: Superimposed crystal structures of E. coli glycerol kinase. The superimposed 
structure is a composite of structures from pdb files 1BO5 (40) and 1BWF (41). The 
pictures were generated from the crystal structures of EcGK using PyMOL (generously 
performed by Dr. Pingwei Li of Texas A&M University) and the superposition done 
using Deep View/Swiss-PdbViewer version 3.7 (42) and POV-Ray version 3.1 
(www.povray.org) by Dr. Donald Pettigrew of Texas A&M University. 
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Importance of the Domain Bridging Amino Acids in FBP Regulation of EcGK  

Previous studies have suggested that FBP and IIAGlc inhibition can be genetically 

separated. The effects of the R369A substitution which formed the basis of this study 

also indicated that the Arg369 residue was important only in IIAGlc inhibition, but had no 

observable effects on FBP inhibition. Inhibition to EcGK by FBP for the domain 

bridging variants was therefore investigated to evaluate the importance of the domain 

bridging amino acids in FBP inhibition.  

From Table 5, it can be seen that with the exception of Q104A, the domain I 

alanine substitutions resulted in significant increases in the K0.5 for FBP binding. The 

apparent binding affinity for FBP therefore appeared to be reduced due to the alanine 

substitutions. The domain I residues Q37 and Y39 therefore appear important in 

regulating FBP binding to the enzyme. For Y39, the FBP parameters of the 

phenylalanine variant were used to assess the importance of the hydroxyl group 

interaction with R369 in FBP inhibition. From the results in Table 5 for the Y39F 

variant, the hydroxyl group interaction of Y39 with Arg369 appears important in FBP 

binding although to a lesser extent than the hydrophobic portion. This is because 

removal of the hydroxyl group interaction by the phenylalanine substitution still affected 

the affinity of the enzyme for FBP as seen by the increase in the K0.5. The K0.5 for FBP 

binding of the domain I variant Q104A was not affected by the alanine substitutions, 

suggesting that this residue does not play a significant role in FBP binding. The coupling 

parameter, W, was not affected by any of the amino acid substitutions of the domain         



 68

I bridging residues. The residues studied may therefore not be essential in regulating the 

Vmax during FBP inhibition. 

The domain II variant, M308A was interesting because the K0.5 for FBP binding 

was lower than that of Wild Type. This observation suggests that the alanine substitution 

resulted in a variant which had a higher affinity for FBP. The implication of this for FBP 

binding is unclear. It is possible that the M308 residue is in the allosteric network for the 

regulation of FBP binding, and the interaction of M308 with Arg369 acts as a check to 

control the affinity of FBP binding. For the domain II substitutions, the K0.5 for FBP 

binding of the Q314A was not affected by the alanine substitution. The Q314 interaction 

with Arg369 may therefore be unimportant in regulating FBP binding. The W for domain 

II variants, M308A and Q314A were not significantly different from that of Wild Type, 

suggesting that these residues may unimportant for inhibition of the enzyme by FBP. 

The Hill coefficient for all the domain bridging variants studied were greater than one, 

indicating that the amino acid substitutions did not affect the positive cooperativity of 

FBP binding to EcGK.  

The observation that some domain I residues important for IIAGlc inhibition were 

also important for FBP inhibition was interesting. This observation suggests that signals 

involved in IIAGlc inhibition may go through channels which overlap the paths involved 

in FBP inhibition. Novotny et al, (18) and subsequently Saier (19) concluded that the 

regulation of FBP and IIAGlc inhibition operates by independent mechanisms because: 1) 

Mutants have been isolated which lack one type of regulation but completely retain 

regulation by the other. 2) IIAGlc inhibition of EcGK has not been found to be 
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concentration dependent but FBP inhibition of EcGK has been found to be concentration 

dependent. 3) The inhibitory effects of FBP and IIAGlc have been found to be additive at 

subsaturating conditions. These results however suggest that the domain I bridging 

residues Q37 and Y39 may be important for both FBP and IIAGlc inhibition. 

The phenotypes of the variants on MGSA plates (displayed in Table 6) are also 

consistent with the kinetic results. Wild Type glycerol kinase is purple on MGSA. Cells 

which lose FBP control of glycerol kinase have been observed to have a foggy purple 

phenotype on MacConkey glycerol, due to the uncontrolled use of glycerol as a carbon 

source. The domain I variants had a foggy purple phenotype consistent with the higher 

K0.5 values which are indicative of loss of FBP control. The M308A variant also had a 

pink phenotype consistent with the lower K0.5 value which is indicative of more FBP 

control. The Q314A variant which had K0.5 value similar to Wild Type was still purple.   

 

Effects of the Domain Bridging Substitutions on the Catalytic Properties of EcGK 

The Arg369 residue which penetrates from one subunit into another is found 

approximately 10 Å from the catalytic cleft of EcGK. The kinetic parameters Vmax and 

Km were therefore obtained for one of the substrates, ATP to assess the effects of the 

Arg369 domain bridging substitutions on the catalytic properties.  

The alanine substitutions of the domain I residues Q37A, Y39A and Q104A 

affected the catalytic properties. The effect was however mild in Q37A, where the Vmax 

was reduced by about 30% and the Michaelis constant was unaffected. This residue 

therefore appears to be important for catalysis, but not for substrate binding. The Q37A 
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substitution may have resulted in a local change in the enzyme which was not favorable 

for one of the chemical steps in the enzyme catalyzed reaction resulting in the observed 

reduction in the Vmax. The major effect on the catalytic properties was observed for the 

domain I Y39A substitution. The Vmax was substantially reduced by about 80% and the 

Michaelis constant increased about 12-fold. The large effects of this mutation on the 

catalytic properties were interesting because this residue appeared to be vital for IIAGlc 

inhibition. The observed decrease in the Vmax is suggestive that the interactions and/or 

local motions of the Y39 residue with Arg369 may be important in regulating the activity 

of the enzyme.  The increase in the Michaelis constant also suggests that the Y39 residue 

is important in ATP binding.  

Due to the large catalytic effects observed for the Y39A mutation, the second 

substrate, glycerol, was also varied in the assays to allow determination of the Michaelis 

constant for glycerol and the dissociation constant for ATP.  The Michaelis constant and 

dissociation constants are displayed in Table 8. The results show that the Y39A mutation 

resulted in an increase in the Michaelis constant for both ATP and glycerol. In EcGK, it 

has been observed that the Michaelis constants for the substrates ATP and glycerol are 

about 5 to 10 fold smaller than the substrate dissociation constants. This observation 

suggests that a step after the formation of the ternary complexes may be rate limiting. 

The Y39A substitution however did not eliminate the difference between the Michaelis 

and dissociation constants for ATP. Unlike the Wild Type enzyme however, the 

Michaelis constant was about 2-fold larger than the dissociation constant for ATP. The 

Y39A substitution may therefore have resulted in a switch of the rate limiting step to 
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occur before the formation of the ternary complexes. The effects of the Y39A 

substitution on the catalytic properties of EcGK are somewhat similar. The Vmax of the 

R369A variant was decreased similar to what was observed for Y39A. There was also a 

significant increase in the Km for ATP and glycerol for both variants. The alanine of both 

residues also affected the Km/Kia ratio for ATP binding. These results therefore suggest 

that the interaction of Arg369 and Y39 may be important for regulating the formation of 

the ternary complexes during catalysis of EGK. 

The phenylalanine variant of Y39 constructed to assess the hydrogen bonding 

interactions of the hydroxyl group on the tyrosine residue with Arg369 showed some 

interesting results. The Y39F substitution had very little effects on the catalytic 

properties of EcGK. There appeared to be no significant effect on the Michaelis 

constant, while the Vmax was slightly increased approximately two-fold. The observed 

two-fold increase in the Vmax, although small, may indicate an associated increase in the 

rate of motion of the interaction between Y39F and Arg369. The hydroxyl group of Y39 

may therefore be important in regulating the rate of motion in its interaction with the 

Arg369 residue but may not be vital during catalysis. The interactions of the hydrophobic 

portion of the tyrosine residue with Arg369 may therefore be more important in the 

enzyme catalysis since the alanine substitution reduced the area of the hydrophobic 

group interacting with Arg369, with a resultant reduction in the Vmax and an increase in 

the Michaelis constant.  

For the third domain I variant, Q104A, the Vmax appeared to increase almost two-

fold, while the Michaelis constant increased about eight-fold compared to the Wild Type 
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enzyme. The Q104A substitution therefore appeared to result in a decrease of the 

binding affinity for ATP, but increased the catalytic rate. The interaction of this residue 

with the Arg369 residue may therefore be important for substrate binding, but not 

significantly important for catalysis. The increase in Vmax observed may be due to a 

conformational change resulting from the alanine substitution of Q104 which was 

favorable for an increased the rate of catalysis of the enzyme.  

With the domain II alanine substitutions, M308A and Q314A, only the M308A 

substitution affected the catalytic properties of the enzyme. The Vmax and Michaelis 

constant of the Q314A variant were unaffected by the alanine substitution, suggesting 

that the interaction of this residue with Arg369 is not important in catalysis or substrate 

binding.  The Vmax of the M308A variant was however approximately 60% lower than 

that of Wild Type, but the Michaelis constant remained unaffected. This interaction of 

the M308A residue with Arg369 therefore appears important during catalysis of the 

enzyme. The different values of Vmax seen for the EcGK variants may be related to 

different contributions of each residue interaction with Arg369 and the effect on the rate 

of the active site closure motion. For example, the Y39F substitution resulted in an 

increase in the Vmax; apparently indicating an associated increase in the rate of motion at 

the active site.  
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The kinetic results indicate that the hydrogen bonding interactions of the domain 

I residues, Q37A and Y39A with the guanidino group of Arg369, as well as that of the 

domain II residue M308A with Arg369 are important during catalysis. The interactions of 

the domain I residues however appear to be more important for substrate binding than 

the interactions of the domain II residues with Arg369. Since these residues are far 

removed from the catalytic site of the enzyme, the results indicate that the domain I may 

form part of the network in communicating ATP binding to the active site during 

catalysis. 
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CHAPTER V 

CONCLUSIONS 

 

The results from this study indicate that the domain I bridging interactions with 

Arg369 are important in IIAGlc regulation of the E. coli glycerol kinase enzyme. The 

domain II bridging interactions appear to be unimportant in regulating IIAGlc inhibition. 

The domain I bridging residues Q37 and Y39 were also found to be important in FBP 

inhibition. From the observations of Novotny et al., (18), EcGK has the ability to 

genetically separate FBP and IIAGlc inhibition. These results however indicate that some 

residues seen to be involved in IIAGlc regulation also appear to be involved in FBP 

regulation. In catalysis, with the exception of Q314, the other domain bridging residues 

appear to be important for substrate binding and/or catalysis.  
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