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ABSTRACT

An Additive Bivariate Hierarchical Model

for Functional Data and Related Computations. (August 2010)

Andrew Middleton Redd, B.S., Weber State University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Raymond J. Carroll

The work presented in this dissertation centers on the theme of regression and

computation methodology. Functional data is an important class of longitudinal

data, and principal component analysis is an important approach to regression with

this type of data. Here we present an additive hierarchical bivariate functional data

model employing principal components to identify random effects. This additive

model extends the univariate functional principal component model. These models

are implemented in the pfda package for R. To fit the curves from this class of models

orthogonalized spline basis are used to reduce the dimensionality of the fit, but retain

flexibility. Methods for handing spline basis functions in a purely analytical manner,

including the orthogonalizing process and computing of penalty matrices used to fit

the principal component models are presented. The methods are implemented in the

R package orthogonalsplinebasis.

The projects discussed involve complicated coding for the implementations in R.

To facilitate this I created the NppToR utility to add R functionality to the popular

windows code editor Notepad++. A brief overview of the use of the utility is also

included.
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CHAPTER I

INTRODUCTION

Finding information from data is the soul of statistics. When one wants to find the

structure that underlies data we often use regression. Regression methodology for

functional data is what we consider here. I present an additive bivariate functional

data model that is based on the functional principal component model. This complex

model gives rise to many computational issues. Here we present the model and the

solution to implementing the algorithm.

Functional data analysis is an important class of longitudinal data that occurs in

many fields. Functional data is often complex which creates interesting statistical and

computational challenges. Functional data arises from the assumption that longitu-

dinal measurements on a subject reflect points sampled from an underlying function.

Examples abound from anywhere that things are expected to change smoothly, such

as weight gain or loss over time, or blood concentration levels of medication after

being administered. In these examples we know them to vary continuously but they

can only be sampled at discrete time points.

In functional principal components we examine the structure that constitutes the

curves we have sampled. Each sample is assumed to have a continuous curve for which

we have a finite set of points that represent our information about the curve. We

desire to extract an estimate of the actual curve, as well as understand the structure

of the curve.

In the functional principal component framework, each subject curve is assumed

to be composed from a global mean and a weighted sum of principal component

This dissertation follows the style of Biometrika.



2

curves, where each subject has its own set of weights. The principal component

functions are common across the entire data set. In this way, by examining the

curves across an entire dataset we are able to dissect the curves into their constituent

components, and reveal the structure of the data.

In real life, functions are not always functions of only one variable. In this paper

we extend the base model into functions of multiple variables. By considering two

variables that both act in the principal component framework we are able to handle

more complex data and reveal more structure. This model is complex, but so is the

data that it is used to analyze. The details of this model are given in Chapter II.

The functional principal component models are computationally expensive to fit.

To make the principal component models usable it is important to have an efficient

high performance algorithm. Chapter III discusses the details of the R package pfda.

This high performance package implements in C code the EM algorithms that fit the

functional principal component models. In addition to the additive model presented in

Chapter II, the original model for sparse irregular functional data presented by James

et al. (2000) and the paired model (Zhou et al., 2008), also based on The James et al.

model, are implemented. By implementing the algorithms in high efficiency C code,

we are able to see improvements of over 200 times over the execution time for a pure

R implementation. What was a ten hour procedure becomes a two minute procedure.

This execution time is reasonable, and makes the models practical for researchers to

use.

To model the curves in any of the principal component models B-splines are

used to reduce the dimensionality of the fit while retaining flexibility to fit the data.

B-splines use basis functions that add up to create a spline curve. Any curve that can

be fit with any spline curve can also be fit with a B-spline curve of the same degree.

Instead of using the standard B-spline basis functions we use an orthogonalized set
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of basis functions to make the model identifiable. Chapter IV discusses a method for

handling the orthogonalization of the B-spline basis functions as well as computing

penalty matrices. This methods allows for computing the transformations without

numerical calculus, and reduces the calculus steps to linear algebra operations. This

greatly improves speed and accuracy.

Programming these many implementations and complicated algorithms is diffi-

cult, having the proper tools greatly improves code readability and programmer effi-

ciency. While programming the packages presented here I created another program

to assist me. The NppToR utility adds R language structures and interoperability to

the popular Windows code editor Notepad++. Notepad++ is very popular in the

programmer community, and adding support for R interaction turns it into a powerful

R code editor as well.
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CHAPTER II

AN ADDITIVE BIVARIATE HIERARCHICAL FUNCTIONAL DATA MODEL

A. Introduction

In this chapter we discuss the base principal component model and one extension

to that base model. Functional data analysis deals with modeling data over time,

or equivalently another variable. In functional principal components we attempt to

decompose a function into components that describe the function.

Functional data is a special category of analysis for longitudinal data, where

the data is assumed to be sampled from underlying functions. In functional data

analysis the interest is not only at the discrete sampling points but also in the time

or space between the points, as well as the relationship between the functions and

other variables. James et al. (2000) introduce a functional principal component model

to analyze such data. The original model by James et al. (2000) was extended by

Zhou et al. (2008) to jointly model two response curves. Zhou also made several

contributions to the algorithms used to fit the model in the univariate case.

This chapter discusses a model that extends the James et al. model to consider

functions of two variables. The data required for fitting bivariate curves in practical

applications will often out pace the capabilities of the researcher to gather the required

data to perform such estimations. To overcome this limitation, which can be thought

of as a case of dimensionality, we propose a model where the bivariate function is fit

with additive functions from each of the predictor variables.

This model is for longitudinal data, where each subject has repeated observations

over the course of the study. Covariates are allowed as subject-specific variables.

The response Y is a function of two domain variables, T and X, which vary across
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observations. The effects of the covariates Z are assumed to have an additive effect,

leading to the general bivariate model: for the ith individual,

Yi(t, x) = hi(t, x) + ZT
i θZ + εi(t) (2.1)

where εi(t) is random noise with mean zero and variance σ2.

The bivariate function hi(·) is difficult to estimate completely nonparametrically.

To simplify we assume that the function is additive, so that

hi(t, x) = {µT (t) + hT i(t)}+ {µX(x) + hXi(x)} , (2.2)

(2.3)

where µT (t) and µX(x) are the mean fixed effects for the variables T and X, respec-

tively. The random effect curves, hT i(t) and hXi(x), are the individual subject-specific

deviations from the mean. Each of these functions are assumed to be estimable by a

set of principal components.

hT i(t) =

KT∑
j=1

fj(t)αi = f(t)αi; (2.4)

hXi(x) =

KX∑
j=1

gj(t)βj = g(x)βi, (2.5)

where f(t) and g(x) denote the sets of principal component functions for the variables

T and X, and (αi, βi) denote principal component scores, i.e. subject-specific random

effects. There are KT principal componentes for T , and KX principal components for

X.

Section B gives the background and foundations of the functional principal com-

ponent model as a single function of one variable. Section C gives details of the

bivariate hierarchical functional principal component model. Section D gives more

details on selecting the parameters that control the fit of the model: the number of
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principal components, and the penalty parameters. Section E describes issues that

arise in computing the solution. An example is given in Section F, using data from a

longitudinal study for AIDS patients on antiviral medication (Lederman et al., 1998;

Liang et al., 2003).

B. The Univariate Model

Here we first describe the univariate model, using T and Z. In the univariate func-

tional data framework each observational unit or subject has its own curve that we

are interested in modeling. The function is the sum of a mean function of time, µ(t),

plus an individual deviation from the mean, hi(t), plus additional additive effects

from other variables that influence the model, denoted by Zi, and given as

Yi(t) = µ(t) + hi(t) + ZT
i θZ + εi(t),

where εi(t) denotes random noise. The individual deviations from the mean are

restricted to the weighted sum of the principal component functions f(t) ={f1(t),. . . ,

fK(t)} where the weights are the principal component scores αi = (αi,1, . . . , αi,K), so

that hi(t) = f(t)Tαi =
∑K

j=1 αi,jfj(t). The principal component scores αi are also

assumed independent and identically distributed and to follow a normal distribution

with each of the components independent of the others. The univariate principal

component model then can be expressed as a mixed effects model. For the first K

principal components, in functional form, the model is

Yi(t) = µ(t) + f(t)αi + εi(t);

αi ∼ Normal(0, Dα); (2.6)

Dα = Diagonal(σ1, . . . , σK),
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with σ1 > · · · > σK . The ordering of the variances of the scores reflect that the first

principal component explains the most variance, the second the second most and so

on. For the model to be identifiable the principal components must be orthogonal,

and the scores independent. The orthogonality means that

tmax∫
tmin

fi(t)fj(t)dt = δij,

for i = 1, . . . , K and j = 1, . . . , K, where δij is the Kronecker delta,

δij =


1 if i = j,

0 if i 6= j.

We use a B-spline representation for the principal components. Let b(t) =

{b1(t), . . . , bP (t)} be the vector of B-spline basis functions evaluated at t. Let f(t) =

{f1(t), . . . , fK(t)}T. Each of the functions in the model is expressed in terms of the

basis. Let µ(t) = b(t)θµ; f(t) = b(t)Θf , where θµ is a fixed but unknown vector of

spline coefficients, and Θf is a P ×K matrix of spline coefficients transforming the

P basis function b(t) into the K principal component functions f(t).

To enforce the orthogonality constraints on the principal components the B-

spline basis functions are restricted to be orthogonal, that is

tmax∫
tmin

bi(t)bj(t)dt = δij.

For the principal components to be orthogonal using the orthogonal spline basis

functions, the coefficient matrix Θf must be orthogonal, i.e. ΘT
f Θf = I.

In practice, Yi(t) is observed at the finite set of times (ti1, . . . , timi
). Let Bi be

the B-spline basis matrix resulting from evaluating the basis functions at the time
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points ti = (ti1, . . . , timi
).

Bi =


b1(ti,1) · · · bP (ti,1)

...,
. . . ,

...

b1(ti,mi
) · · · bP (ti,mi

)

 .

The model expressed for the finite data and in terms of splines is

Yi = Biθµ +BiΘf + εi;

εi ∼ Normal(0, σ2Imi
),

where Yi = {Yi1, . . . , Yimi
}T.

James et al. (2000) control the smoothness of the curve estimates by limiting the

number of fixed knots for the splines. This can be problematic in many situations,

such as small data sets where the number of usable knots is limited. Zhou et al.

(2008) propose using a moderate number of knots and employing the method of

penalized likelihood. The roughness penalties control the flexibility of the fitted

functions µ(t) and f1(t), . . . , fK(t). The penalties proposed derive from the squared

second derivative of the curve to be estimated. This method penalizes directly the

smoothness of the curve. The penalty term of the univariate model takes the form

λµθ
T
µ

∫
b(2)(t)b(2)(t)Tdt θµ + λf

K∑
j=1

θTfj

∫
b(2)(t)b(2)(t)Tdt θfj,

where b(j)(t) = {b(j)1 (t), . . . , b
(j)
P (t)} is the set of jth derivatives of the B-spline basis

functions b(t).
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C. The Bivariate Model

The bivariate model is a generalization of the univariate model given in Section B.

Equations (2.1) – (2.4) give the basic structure of the additive bivariate hierarchical

functional data model. The complete model is

Yi(t) =
{
µT (t) + f(t)Tαi

}
+
{
µX(x) + g(t)Tβi

}
+ ZiθZ + εi(t); (2.7)

αi ∼ Normal(0, Dα); (2.8)

βi ∼ Normal(0, Dα);

cov(α, β) = C.

The principal component functions are required to be orthogonal, i.e.
∫
fi(t)fj(t)dt =

δij and
∫
gi(x)gj(x)dt = δij where δij is the Kronecker delta. Like the univariate

model, Dα and Dβ are both diagonal with decreasing elements. In contrast to the

univariate model, the model now has two domains for the splines, X and T , each

of which requires a set of B-spline basis functions to estimate the splines. Each set

of basis functions are required to be orthogonal. Let BT,i be the matrix resulting

from evaluating the orthogonalized basis functions for T , bT (t), at the points ti =

(ti,1, . . . , ti,mi
), and BX,i be the analogous matrix for evaluating the orthogonalized

basis functions for X, bX(x), at xi = (xi,1, . . . , xi,mi
). The resulting model for finite

data is

Yi = BT,iθT +BX,iθX +BT,iΘfαi +BT,iΘgβi + Zi + εi;

εi ∼ Normal(0, σ2Ini
);

ΘT
f Θf = I;

ΘT
g Θg = I,
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where Zi represents the ni×Kz matrix of Z variables, which are added to the model

in a purely parametric form.

The smoothness of the curves is controlled by four penalty terms, λT , λX , λf , and

λg, one each for the four groups of curves, two for the means, one for the principal

components of T , and one for the principal components of X. The penalties, which

are added to the log likelihood, take the form

λT θ
T
TKtθT + λXθ

T
XKxθX + λf

KT∑
j=1

θTfjKtθfj + λg

KX∑
j=1

θTgjKxθgj

where

Kt = =

tmax∫
tmin

b
(2)
T (t)b

(2)
T (t)Tdt;

Kx = =

xmax∫
xmin

b
(2)
X (t)b

(2)
X (t)Tdx.

The bivariate hierarchical functional principal component model is fit using an

EM algorithm, with the principal component scores as missing data. The details

of the EM algorithm are given in the Appendix. The algorithm must be fit given

the parameters of the model: the number of principal components, and the penalty

parameters. Methods for selecting these parameters are discussed in Section D.

D. Parameter Selection

The additive model presented here has several parameters that have to be specified or

estimated: (a) the number of principal components, and (b) the penalty parameters.

The penalty parameters can be handled in a few different ways; specified by

the researcher, or found through an optimization algorithm with a criteria such as

Akaike’s Information Criteria (AIC). The EM fitting algorithm when the penalties
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are given is computationally intensive. In addition the space for finding the penalty

parameters is four dimensional, two for each predictor variable, one each for the mean

and principal component functions. Optimizing over a four dimensional space, while

it may be the ideal, is not always pragmatic for exploratory data analysis with many

data sets due to very high computational requirements. We have also witnessed that

in some datasets the AIC can suffer from local minima affecting the results, which

can be mitigated by changing the starting value of the optimization algorithm.

A quick approach for exploratory data analysis is for the researcher to specify the

penalty parameters. Unfortunately, the raw penalty parameters are uninterpretable,

and so have little guidance as to what is a reasonable penalty. By transforming the

penalties into degrees of freedom, such as in Daniels et al. (2000), the penalties can

be specified in terms familiar to researchers. While specifying the penalty parameters

can give useful and reasonable results, the results will not be optimal, unless they

happen to coincide with the results of optimizing with a criteria.

The number of principal components could likewise be specified, but ideally

should be chosen by a criteria like AIC. The search space for finding the number of

principal components is only two dimensional and discrete. The optimal penalties are

dependent on the number of principal components. For analysis that requires finding

both the number of principal components and the penalties, a search for the optimal

penalties must be made at each different amount of principal components.

E. Computational Issues

1. Knot Selection

Following Ruppert et al. (2003) we select a nominal number of knots at the quantiles

of the distribution. We choose 11 by default. Ruppert et al. (2003) points out that
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we should pick enough knots to capture the structure in the data, but not so many

that it will unduly increase the computational burden.

2. Identifiability

For the model to be identifiable the principal component curves must be orthogonal,∫
fi(t)fj(t)dt = δij, otherwise two different curves would be estimating the same

portion of the model. Using orthogonal basis functions, this requirement is equivalent

to requiring an orthogonal coefficient matrix. This is the case with both variable T

and X. Chapter IV gives how to easily handle the orthogonalization of these basis

functions in a convenient and completely analytical way.

An identifiability issue that is unique to the additive principal component model

is the presence of two intercepts. Either mean function from T or X could estimate

the intercept, meaning that the intercept is only identifiable as the sum of the two.

To make the model identifiable one of the intercepts must be fixed. To fix one of the

intercepts one of the basis functions is removed, either from the basis functions for T

or from those for X, we use X but the choice is arbitrary.

F. Example: Aids Data

Zhou et al. (2008) discuss a dataset that considers AIDS patients over time. The

study was by the AIDS Clinical Trials Group, ATCG 315 (Lederman et al., 1998;

Liang et al., 2003). This study follows HIV-1 infected patients who are being treated

by antiviral medication. The study tracks the patients at regular intervals from initial

treatment on up to 196 days. The variables of interest in this study are the viral load,

measured as plasma HIV RNA copies, and immunological response, measured by the

CD4 glycoprotein markers.
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Zhou et al. (2008) consider the viral load, and immunological response as two

responses and jointly model the responses in the principal component framework. In

this paper we consider that immunological response is not only correlated with viral

load but consider the possibility that it is actually influenced by it. This bivariate

model considers time and viral load as the two domains.

This model serves as as an example of the method and so all recommendations

are followed here. The penalties as well as the number of principal components are

chosen by AIC. The model is expressed the same as previously with T denoting the

time or day of the trial and X denoting the RNA segment measurement of viral

load. The parameters are interpreted as θT is the coefficient vector for the mean CD4

response over time and θX is the mean response for the viral load. The principal

components Θf and Θg are corresponding to the day and viral load respectively. For

the model under consideration there is no other variable effects considered, so Z does

not appear in the model, and that step in the estimation is skipped.

Figure 1 shows the curves that are estimated from the model. For the two

principal components found for viral load, the variance of the principal component

scores is approximately one quarter of the variance for the first principal component.

Figure 2 shows a sample of reconstructed curves from the model.

The additive model can be complicated and confusing if researchers are not

careful. Since the model considers both variables together rather than separately it

helps to view the model in a 3 dimensional plot. Figure 3 show the additive model

for the aids data. Another point to consider and examine when interpreting mean

curves is that principal components can play a larger role than the mean functions. it

is important to examine the distribution of the principal component scores, because

while they are assumed to be mean zero, they are not constrained to be mean zero. It

is entirely possible that when viewing results that don’t entirely make sense, such as
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mean curves that have the wrong slope, the principal components may be absorbing

that effect.

By examining the mean and principal component functions we conclude that

the time effect is nominal, reducing to essentially an intercept for the model. The

majority of the variability is explained by the viral load. The principal components of

time have a little effect on adjusting the intercept for each subject. The mean curve

for the viral load shows that as viral load increases the immune response decreases,

the basic workings of the HIV virus. The principal components show how the mean

curves are altered for each subject in the study by adjusting the curvature of the

response.

G. Summary

The bivariate additive model presented here goes beyond what has been done previ-

ously. By investigating the effects of multiple variables in the principal component

framework we are able to correct for the correlation in the effects that may not be

apparent in separate models. The additive bivariate principal component model gives

deeper understanding into the structure of the data, than was available previously.

This analysis agrees with the results obtained by Zhou et al. (2008) on the general

points. We restrict our analysis to a subset of the range that Zhou et al. considers

because of the uncertainty in the later portions of the study, which Zhou et al. rec-

ognize. An interesting point that was not made by Zhou et al. is that the after

accounting for the effect of viral load on the immunological response the time since

baseline was small. This makes clinical sense, since the purpose of the study is to

investigate antiviral medications, the assumption is that the medications will inhibit

or suppress the viral load and allow the immunological response to recover.
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CHAPTER III

THE PFDA PACKAGE: PRINCIPAL COMPONENT ANALYSIS FOR

FUNCTIONAL DATA

A. Introduction

Functional principal components is a useful way to look at complex longitudinal

data. One disadvantage is that the models are complex and difficult to fit. Not only

is the EM fitting algorithm computationally expensive, but there are many model

parameters that must also be estimated. An efficient implementation is essential to

making these models usable. I have implemented the fitting algorithms in the R

package pfda .

The structure of this chapter is as follows. Section (B) gives a brief introduction

to the models that the package can fit. Section C gives an introduction to the package

and its primary function pfda(). Sections (D)–(G) discusses the arguments to pfda()

in detail including allowable values and the defaults. The programming strategy, and

problems that were overcome, are discussed in Section H.

B. The Models

There are five functional principal component models that are implemented in the

pfda package. The models include univariate, paired and additive models. The re-

sponses for the paired and univariate model can also include binary response variables.

Chapter II gives the details of the models, but for the sake of completeness in this

chapter we will review in general terms the functional principal component models.

The univariate model in the functional form is

Yi(t) = µ(t) + f(t)αi + εi(t), (3.1)
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where εi(t) denotes random noise. The model denotes an overall mean by µ(t) and the

subject specific deviation from the mean by f(t)α(i), which is formed by the weighted

sum of basis functions f(t) = {f1(t), . . . , fP (t)}. The model was introduced by James

et al. (2000). The principal component scores, αi, are assumed to be independent

and identically distributed. They follow a multivariate normal distribution, mean

zero, and independent but decreasing variances. The errors are independent normal

random variables with common variance.

The paired model of Zhou et al. (2008) considers two response variables that are

both modeled with the principal component framework shown in Equation (3.1).

Yi(t) = µ(t) + f(t)αi + εi(t);

Zi(t) = ν(t) + g(t)βi + ζi(t).

The difference between the paired model and two univariate models are that the

principal component scores (αi, βi) are assumed to be correlated. This functional

correlation is a primary interest of the model.

The additive model considers a single variable that has two predictor variables.

The details of the univariate and additive models are given in Chapter II covering

the additive model. The model, in the functional form, is

Yi(t) = {µT (t) + f(t)αi}+ {µX(x) + g(x)βi}+ εi(t).

The mean functions for each of the T and X are represented by µT (t) and µX(x).

The two sets of principal component functions are f(t) and g(x).

The model in Equation 3.1 is used directly for a model with a continuous re-
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sponse, but can also be applied to models with a binary response. The binary re-

sponse W , is assumed to be an indicator for the continuous latent variable, Y . By

including a step for the stochastic approximation of Y , the model can be applied to

binary responses. The paired model, can also handle a binary response in the same

manner, but only one of the responses is allowed to be a binary variable. The additive

model does not support binary response variables.

C. The Package

The principal component models for functional data analysis, presented in Section

(B), are implemented in the R package pfda . The models and fitting algorithms

can be accessed through the gateway function pfda(). Figure (4) shows the typical

arguments for the pfda function. Section (D) discusses the structure of the formulas

for the different models in detail. The driver argument, which can manually specify

the model to fit, is also considered there. The data argument is a data frame or

environment where the variable names used in the formulas can be resolved to data.

The knots argument indicates the location of the knots used for the B-splines

used in the curves. For additive models the knots argument must be a list of length

2. Ambiguity can be erased by naming the elements of the list corresponding to the

names use in the formula, but is not necessary and the elements of the list are assumed

to follow the same order as the variables appear in the formula. The number of knots

can also be controlled through the control structure that is discussed in Section (G).

The default is to use eleven knots at the quantiles of the data.

The penalties are fit through either the penalties or df arguments, but not

both. The penalties argument gives the raw penalties, which are uninterpretable.

The df argument gives an approximate number degrees of freedom for the curve.
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pfda ( formula , # Sp e c i f i e s v a r i a b l e s and model

data , # Data frame o f environment

knots , # Knot placement

penalties ,# Penal ty parameters

df , # Pena l t i e s s p e c i f i e d in degrees o f freedom

k , # Number o f p r i n c i p a l components

control , # Li s t o f c on t r o l parameters

driver ) # C l a r i f i e s model

Fig. 4. The pfda function for fitting functional principal components.

The reason that the degrees of freedom are approximate is because the true degrees

of freedom are complex and depend on parameters only known after the model is fit.

Penalties are discussed in detail in Section (F).

The number of principal components is specified by k. For the paired and the

additive models, there are two sets of principal components and k should be a vector

of length 2. The number of principal components are discussed in Section (E).

The model also has several several extra parameters that control the EM algo-

rithm, for example, the convergence tolerance. The control argument is a list of

these control values. The pfdaControl() function generates the list of appropri-

ate defaults, and should always be used. The controls for fitting the algorithm are

discussed in Section (G).
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D. Formulas

The formula argument of pfda() determines both the variables used and the model

that is fit. The model to fit is identified by the structure of the formula used. I

implement two new formula operators that only work with the pfda package;

• %&% bind together variables, on the left side of the formula indicates the paired

model, on the right an additive variable;

• %|% is always on the right side of the formula and indicates the domain vari-

able(s) on the left and subject identifier on the right of this operator.

For models that support extra, non principal component, variables, univariate and

additive models, the + operator indicates these. The models that can support a binary

response can be identified automatically if the variables passed into pfda are already

class logical or factor.

The driver argument to pfda() can specify the exact model to be fit. This

argument does not usually need to be specified since the model to be fit is inferred

from the structure of the formula.

• Y ~ T %|% ID is the formula structure for a univariate model;

• Y %&% Z ~ T %|% ID gives a paired model;

• Y ~ T %&% X %|% ID fits an additive model over the variables T and X.

The options for the driver function are:

• “single.continuous”

• “single.binary”

• “dual.continuous”
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• “dual.mixed”

• “additive”

The only times that a user may need to specify the driver is to use one of the binary

cases, “single.binary” or “dual.mixed”.

E. Number of Principal Components

The number of principal components is an important parameter in all of the models,

and is controlled with the k argument. For the models with two sets of principal com-

ponents, any of the paired or the additive models, the number of principal components

needs to be a vector or length 2.

When the number of principal components are not given, they are chosen by

AIC. Figure (5) shows the algorithm in pseudo code for determining the number of

principal components. This incremental method is the only possible solution, since

fitting too many principal components in this framework is unstable. For modeling

the paired responses, ignoring the correlation turns the model into two univariate

cases, and the number of principal components can be determined by fitting the

models ignoring correlation, then refitting for the joint model, as recommended in

Zhou et al. (2008).

The additive model is complex. Fitting the number of principal components to

the variables separately then combining like in the paired models can easily lead to

over fitting the model. The additive model requires a generalization of the algorithm

in Figure (5). This step-wise procedure considers both directions before taking a step,

but will not add more than one principal component for either T or X at one time.

One problem with finding the optimal number of principal components is that the

optimal penalty parameters are dependent on the number of principal components.
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0 let k = 1

1 Fit model with k principal components. Let AICk be the AIC for the model.

2 Fit model with k + 1 principal components. Let AICk+1 be the AIC for this

model.

3 If AICk+1 < AICk, set k = k+ 1 and go to 1. Otherwise stop with the optimal

model that has k principal components.

Fig. 5. The algorithm for finding the optimal number of principal components for the

univariate model.

Selection of the penalty parameters is addressed in the next section.

F. Penalty Parameter Specification and Optimization

Penalty parameters control the smoothness of the curves estimated from the mod-

els. Since the penalty parameters are so important to fitting the model the penalty

system was made flexible. Users can specify penalty parameters directly through the

penalties argument to pfda(). As has been stated, these have complicated units

and so are uninterpretable. The second option is to specify the number of degrees of

freedom through the df argument. This inverts an approximation of the degrees of

freedom to obtain penalty parameters for fitting the EM algorithm. This is useful for

exploratory data analysis because researchers often, from their subject expertise, have

a good idea of how smooth a curve will need to be to fit the data. Both arguments

are restricted to positive values, and degrees of freedom must have reasonable values;

for example, a line cannot have less than one degree of freedom here, and usually has

at least 2. The penalties and df arguments should not be specified simultaneously,
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Mean PC

X

T

λT λf

λX λg


Fig. 6. Illustration of format of penalty matrix.

but if they are the penalties argument has priority.

The penalties and df arguments are given as a vector or matrix of parameters.

For the single models this is simply a vector with the penalties for mean and principal

components, respectively. With those models with four penalties, paired and additive,

the penalties are given for the mean functions first then the penalties for the principal

components. For the additive model this is (λT , λX , λf , λg). This arrangement reflects

that the penalties form a two by two matrix with the rows being the variables, the

first column for the mean, and the second for the principal components, illustrated

in Figure 6.

One way that the penalty system is flexible is that the penalties can be partially

specified, through either the penalties or df arguments. If an element of either of

these is specified as NA the parameter will be chosen by optimizing a criteria. The

criteria to be used in optimizing is specified through the control$penalty.method

object. Valid options are "CV" for cross validation and "AIC" for Akaike’s Information

Criteria. Cross validation is not recommended but is an option for those who may

prefer it. The number of folds for cross validation is specified with control$nfolds.

The number of folds, which is specified as a natural number greater than two, specifies

the number of equal proportions to with hold and estimate from the remaining data.

AIC is the recommended methods for optimizing the penalty parameters and

is chosen by default. The optimization is performed through the R function optim,
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which is the recommendation when optimizing over multiple dimensions; a common

goal when optimizing the penalty parameters. AIC can suffer from local minima

when optimizing. This can be overcome by specifying the optim.start parameter of

the pfdaControl() function. This must be specified in the terms of raw parameters.

Also to help with the optimization the default starting point is a low 2.1 degrees of

freedom to favor smooth lines. The default optimization method is the Nelder-Mead

method, and can be changed with specifying optim.method in pfdaControl(), which

might be desired if optimizing only one penalty parameters.

G. Fitting Controls

The values needed for controlling the fit such as specifying a minimum variance or

the tolerance to determine convergence are specified in the control argument to the

pfda() function. Several values have been discussed in the previous sections. The

value for the control argument is created by the pfdaControl(). Widely appropriate

defaults are selected for values not specified, so it is unlikely that the user will have to

specify many of these parameters, but for the sake of completeness they are discussed

here. Only those named values specified by pfdaControl() are discussed here even

though there are some that can be specified, such as optim.start, that are not

created if they are not explicitly provided. Those are either discussed elsewhere and

appropriate defaults cannot be determined in advance, or they are considered to be

for internal use only.

• penalty.method was discussed in Section (F) and specifies the optimizing cri-

teria. Only ‘‘CV" and ‘‘AIC") are supported.

• minimum.variance specifies the minimum variance allowed and defaults to 1−4.

Also used for small numbers that are used to stabilize some computations.
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• convergence.tolerance defaults to 0.01 and is the criteria for the convergence

of the EM algorithm. Convergence criteria is computed as the sum of the

absolute relative difference of all fixed components.

• max.iterations determines the maximum number of iterations allowed before

the algorithm is determined to have failed to converge. The default is ten thou-

sand, which was determined on reasonable datasets with extreme parameters

that showed slow convergence. It is typical that, on reasonable dataset with

close to optimal parameters, the number of iterations stay below fifty.

• nfolds Used only with cross validation to determine the number of cross vali-

dated sets.

The next three arguments are control parameters for the stochastic approximation

involved with the univariate and paired models that use binary responses;

• binary.k0 and binary.kr control the number of samples to draw during the

burn-in period and afterwards, and

• binary.burnin specifies the length of the burn-in period.

The last argument nknots controls the default number of knots that are chosen for cre-

ating the B-spline basis functions. The knots are chosen by the quantile function, and

only unique knots are taken. These knots then are passed to OrthogonalSplineBasis

from the orthogonalsplinebasis package to create the basis functions used.

H. Approach to Implementation

1. Introduction

The models in the pfda package are complex and computationally intensive. Naive

approaches to program the algorithms for the functional principal components fail to
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reach performance requirements.

When prototyping these algorithm I quickly found that R code was far too slow

for implementing the algorithms. The R language is interpreted and convenient for

programming. Unfortunately, convenience for programming is bought with speed and

efficiency. Luckily R allows for compiled extensions that give great control over speed

and efficiency.

I found that the primary culprit for the naive program is the memory manage-

ment system. R has a garbage collection system , which is a programming language

feature that allocates memory as variables are created but does not release memory

until it gets to a point where there are too many unused variables. The algorithms

involve several large matrices that lead to large intermediate values that are allocated

in each function call and then left for the garbage collector. The problem with this in

the algorithms like those used in the this package are that it adds too much overhead

to the base computations.

The compiled code allows for very fine control over memory management. By

moving the EM algorithm to C code I was simultaneously able to optimize the memory

and use directly the most appropriate multiplication functions from the BLAS and

LAPACK high performance libraries that R is built on.

The final solution has the EM algorithm programed in C using the BLAS and

LAPACK routines, and is wrapped around R to make the interface easy and acces-

sible. The R portion of the code also handles the optimization for the penalties and

the number of principal components.

The final solution greatly improves the speed over the pure R approach. In terms

of quantifying the improvement from the naive implementation to the final hybrid

approach we have seen anywhere from 200 times faster with the hybrid approach, so

that the computation time is measured in minutes and seconds rather than hours and
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days.

2. C implementation

It makes programming sense to have all the algorithms together in one package. All

the models have similarities leading to the EM algorithms being very similar and in

particular having steps that are duplicated or special cases of steps for other models.

Each model requires its own function for The C code. By programming the steps once

and reusing them I can ensure code quality. Figure 7 shows an example of computing

the residuals. This function is used in every step.

The memory in the C code is optimized by allocating once the total amount of

memory needed and using it as a stack for all the functions. This adds a burden of

computing the maximum requirements beforehand, but greatly speeds up the algo-

rithm. Figure 8 shows the core function for the univariate algorithm. It also shows

the pfdaAlloc d() function that handles allocating space for temporary variables

from the memory pool dp, structured as a stack. Each function that uses tempo-

rary variables has a dp argument that holds a pointer to the current position in the

allocated stack.

3. R implementation

In the R code the primary function is the pfda() function. This acts as a gateway

function to the models. Each model has a function, called a driver function, that

handles optimizing the parameters appropriate to the model and passing the execution

on to the compiled portion of the code.

The pfda package takes full advantage of the programming structures in R. Sim-

ilar to the C code with the steps or the EM algorithm being similar, the optimization

steps are also very similar. The similarities are gathered together in blocks of code
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void s i n g l e c r e s i d (

double ∗ const Ry,

double const ∗ const y ,

double const ∗ const Z ,

int const ∗ const nobs ,

int const ∗ const M,

int const ∗ const N,

int const ∗ const kz ,

int const ∗ const k ,

double const ∗ const B,

int const ∗ const p ,

double const ∗ const tz ,

double const ∗ const tm ,

double const ∗ const t f ,

double const ∗ const alpha ,

int const ∗ const dl , double∗dp)

{

i f (Ry!=y ) dcopy (M, y,&one , Ry,&one ) ;

i f (Z && kz && tz && ∗kz ) dgemv (&NoTrans , M, kz , &mOne,

Z , M, tz , &one , &dOne , Ry , &one ) ;

pfda computeResid ( Ry , Ry , nobs , M, N, k , B, p , tm , t f ,

alpha , dl , dp ) ;

}

Fig. 7. The C function for computing residuals.
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void s i n g l e c c o r e (

double ∗ const y , // . . . o ther input v a r i a b l e s

double ∗ dp , int ∗ ip ){

double ∗ btb = pfdaAl loc d (∗p∗∗p∗∗N,&dp ) ;

pfda computebtb ( btb ,N,B,M, p , nobs , d l ) ;

p f d a s i (tm , t f , alpha , Da , aa , sigma , y , nobs , M, N, k ,

B, btb , p , minV , dl , dp , ip ) ;

int I =0;

double s igma old =0, conve rg enceCr i t e r i a =0;

double ∗ tmOld = pfdaAl loc d (∗p , &dp ) ;

// A l l o ca t e o ther v a r i a b l e f o r computing convergence

while ( I < ∗maxI ){

// se tup f o r convergence DELETED

s i n g l e c E ( alpha , aa , Saa , y , Z , B, tz , tm , t f , Da ,

sigma , nobs , N, M, kz , k , p , dl , dp , ip ) ;

s i n g l e c u n p e n a l i z e d ( tz , y , Z , B, tm , t f , alpha , nobs ,

N, M, kz , k , p , dl , dp , ip ) ;

// o ther s t e p s and compute convergence c r i t e r i a DELETED

I++; i f ( c onve rg enceCr i t e r i a < ∗ t o l )break ;

}

// f i n i s h i n g code DELETED

}

Fig. 8. The core function for computing the EM algorithm for the univariate model.
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called expressions. These blocks of code are combined together to form the driver

functions, inserted where appropriate with eval. Although this approach adds com-

plexity to the execution structure it improves maintainability and makes performance

and behavior uniform.

Figure 9 shows how the R code optimizes the penalties. This is a special helper

function that has to be declared to be internal to the driver function, giving it special

privileges of accessing variables from the environment of the driver function call. It

also employs a special function RecallWith that allows all the parameters to be the

same except those specified in the arguments of RecallWith. This is one code block

can, by careful programming, handle the optimization of the penalty parameters for

all the cases, both those with two and those with four penalty parameters.

I. Conclusion

The solution to functional principal components presented here and in the pfda pack-

age, is efficient in many ways. It is accessible and easy to learn for the user. It is

also has high performance. It is fast and memory efficient. The models are complex,

but by choosing reasonable defaults for the parameters it can and optimizes those it

cannot, the functions presented here keep complexity to a minimum.

The pfda package can be downloaded from the Comprehensive R Archive Net-

work, CRAN. The development versions can be downloaded from The pfda package

homepage at R-forge, http://pfda.r-forge.r-project.org.
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.F . optimize . p e n a l t i e s<−function ( ){

pix<−which( i s .na( p e n a l t i e s ) )

i f ( control$penal ty . method==’CV’ ){

# Cross v a l i d a t i o n code removed

} else i f ( control$penal ty . method==’AIC ’ ) {

message ( ” opt imiz ing p e n a l t i e s us ing AIC” )

a i c f<−function ( pen ){

p<−p e n a l t i e s

p [ pix ]<−exp( pen )

i f (any( i s . i n f i n i t e (p ) ) ) return ( I n f )

m<−try ( RecallWith ( p e n a l t i e s=p , fname=fname ) , s i l e n t=TRUE)

i f ( class (m)[1]==” try−e r r o r ” ) NA else AIC(m)

}

i f ( i s . null ( control$optim . start ) )

control$optim . start<−

rep ( l . from . df ( 2 . 1 , Bt , Kt ) , length ( pix ) )

optimpar<−optim( log ( control$optim . start ) , a i c f ,

method=control$optim . method )

p e n a l t i e s [ p ix ] <− exp( optimpar$par )

RecallWith ( p e n a l t i e s=p e n a l t i e s , fname=fname )

}

}

Fig. 9. The code block for optimizing penalties.
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CHAPTER IV

A COMMENT ON THE ORTHOGONALIZATION OF B-SPLINES BASIS

FUNCTIONS AND THEIR DERIVATIVES

A. Introduction

The intent of this chapter is to show how to accurately, simply and quickly construct

orthogonal B-spline basis functions, their derivatives, of any order, and their integrals.

This has important impact on a recent paper by Zhou, et al. (2008), as we now

describe.

Zhou, et al. consider a functional data analysis problem based upon a principal

components approach. For the ith individual, they propose the model

Yi(t) = µ(t) +
k∑
j=1

fj(t)αij + εi(t)

= µ(t) + f(t)Tαi + εi(t),

where µ(t) is the overall mean, fj is the jth principal component function, f =

(f1, . . . , fk)
T, and εi(t) is the random error. The principal components are subject to

the orthogonality constraint
∫
fjfl = δjl, the Kronecker delta.

Suppose that b(t) = {b1(t), . . . , bq(t)}T is an orthogonal spline basis with dimen-

sion q. Let θµ and Θf be, respectively, a q-dimensional vector and a q by k matrix of

spline coefficients. Zhou, et al. represent the mean and principal component functions

by a linear combination of the basis functions, µ(t) = b(t)Tθµ and f(t)T = b(t)TΘf .

This yields the reduced rank principal components model,

Yi(t) = b(t)Tθµ + b(t)TΘfαi + εi(t),
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where εi(t) ∼ (0, σ2
ε ), αi ∼ (0, Dα), Dα = diagonal matrix, subject to

ΘT
f Θf = I,

∫
b(t)b(t)Tdt = I. (4.1)

The equations in (4.1) imply that∫
f(t)f(t)Tdt = ΘT

f

∫
b(t)b(t)TdtΘf = I,

which are the usual orthogonality constraints on the principal component curves, and

show the necessity of using an orthogonalized set of basis functions. The parameters

of the model to be estimated are θµ, Θf , Dα = cov(αi), and σ2
ε .

If Li(Ψ) is the log likelihood function of the parameters Ψ of the model, they

then propose a penalized log likelihood of the form

n∑
i=1

Li(Ψ) + λµθµ

∫
b′′(t)b′′(t)Tθµdt+

λf

d∑
j=1

θTfj

∫
b′′(t)b′′(t)Tdt θfj. (4.2)

Zhou, et al. (2008) propose using numerical integration to construct approximately

orthogonal basis functions and approximate second derivatives.

The purpose of this chapter is to show that there exist results in the literature

(Qin, 2000) that enable much faster, simple and exact computation of the orthogonal

basis functions and direct calculation of their second derivatives.

An outline of this chapter is as follows. In Section B, we give a matrix repre-

sentation for B-splines , while Section C shows how to orthogonalize them. Section

D shows how to compute the derivatives of the orthogonalized basis functions simply

and efficiently, while Section E shows how to compute the integral and hence the

penalties in (4.2) exactly and efficiently.
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B. Qin’s Matrix Representation

In this chapter we assume that there are n + 1 knots {t0, . . . , tn} and that we are

using piecewise polynomials of degree k−1. Therefore, there are p = n− (k−1) basis

functions bk(t) = (b1,k(t), . . . , bp,k(t))
T. Let V = (v1, . . . , vp)

T represent the control

points for the spline curve, which could represent θmu, θnu, θf , or θg in Zhou, et al.

Qin’s representation is formed specifically for a given knot interval

t ∈ [ti, ti+1), ti < ti+1.

In this given interval there are k non-zero B-spline basis functions. We will represent

these by Bi,k(t). Qin’s representation then gives that

Bi,k(t) = U(t, i)TMk(i)

where

U(t, i) = (1, u, . . . , uk−1)T and

u = (t− ti)/(ti+1 − ti).

The segment of the curve on the interval t ∈ [ti, ti+1) can then be represented by

ci(t) = Bi,k(t)Ik(i)V = U(t, i)TMk(i)Ik(i)V

where Ik(i) = [0i−k I 0p−i] is a matrix that serves the purpose of selecting the basis

functions that are nonzero in the specified interval and 0j is a k × j matrix of zeros.
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The Mk(i) matrices are formed by the recursion relationship

Mk(i)

=

Mk−1(i)

0



×


(
I 0

)
+

[(
0 I

)
−
(
I 0

)]


d0,i−k+2

d0,i−k+3

...

d0,i




+

 0

Mk−1(i)



×


[(

0 I

)
−
(
I 0

)]


d1,i−k+2

d1,i−k+3

...

d1,i




and M0(i) = [1], where

d0,j =
ti − tj

tj+k−1 − tj
, and d1,j =

ti+1 − ti
tj+k−1 − tj

,

with the convention that 0/0 = 0.

From this specification we can define the basis functions and subsequently the

entire curve. The curve is specified as the sum of the individual curve segments each
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on its respective interval. The curve is then represented as

Ck(t) =
n−k∑
i=k−1

ci(t)1[ti,ti+1)(t)

=
n−k∑
i=k−1

1[ti,ti+1)(t)U(t, i)TMk(i)Ik(i)V,

where 1 denotes the indicator function. The basis functions given in the matrix

specification are

bk(t) =
n−k∑
i=k−1

1[ti,ti+1)Ik(i)
TMk(i)

TU(t, i).

C. Orthogonalization

To orthogonalize the basis functions we search for a linear transformation, Λ, such

that b̃(t) = Λb(t) forms an orthogonal set of functions. Let

Σ =

∫ tn−(k−1)

tk−1

b(t)b(t)Tdt

be the positive definite matrix formed by the integral of the outer product of the vector

of B-spline basis functions with itself over the defined domain. Then, if Λ = Σ−1/2 is

the inverse of the square root of the matrix, b̃(t) forms an orthogonal set of functions.∫ tn−(k−1)

tk−1

b̃(t)b̃(t)Tdt

=

∫ tn−(k−1)

tk−1

Λb(t)b(t)TΛTdt

= Σ−1/2
∫ tn−(k−1)

tk−1

b(t)b(t)TdtΣ−1/2

= I.
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Thanks to the matrix representation given above, the computation of Σ becomes

simple and can be computed without any complicated integration, as follows:

Σ =

∫ tn−(k−1)

tk−1

b(t)b(t)Tdt

=

∫ tn−(k−1)

tk−1

n∑
i=0

n∑
j=0

1[ti,ti+1)1[tj ,tj+1)

× Ik(i)TMk(i)
TU(t, i)U(t, j)TMk(j)Ik(j)dt.

The integral can be brought into the summations and note that the product of indi-

cator functions results in a Kronecker delta that removes the necessity of the double

summation.

1[ti,ti+1)1[tj ,tj+1) = δi,j ≡


1 if i = j,

0 if i 6= j.

This reduces the expression to

Σ =
n∑
i=0

∫ tn−(k−1)

tk−1

1[ti,ti+1)Ik(i)
TMk(i)

TU(t, i)

× U(t, i)TMk(i)Ik(i)dt

=
n∑
i=0

Ik(i)
TMk(i)

T

×
∫ ti+1

ti

U(t, i)U(t, i)TdtMk(i)Ik(i). (4.3)

This result is due to the fact that only the U(t, i) depends on t. To further simplify

we focus on the integral at the center of the last expression. Note that in U(t, i) u =

(t− ti)/(ti+1− ti), using this as a substitution and letting U = (1, u, . . . , uk− 1)T, we
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have the simplification∫ ti+1

ti

U(t, i)U(t, i)Tdt = (ti+1 − ti)
∫ 1

0

UUTdu. (4.4)

The expression in (4.4) can be evaluated simply and results in a Hankel matrix of the

form

∫ 1

0

UUTdu = ∆ =



1 1
2

1
3
· · · 1

k

1
2

1
3

. .
. ...

1
3

. .
. ...

... . .
. ...

1
k
· · · · · · · · · 1

2k−1


. (4.5)

Combining (4.3) and (4.5) we get the simple representation

Σ =
n∑
i=0

Ik(i)
TMk(i)

T∆Mk(i)Ik(i),

which can be easily computed. Then Λ can be computed by Cholesky or eigenvalue

decomposition. Unless there is an extraordinary number of knots and basis functions,

the computation of the square root matrix will not present any difficulties.

D. Derivatives

Qin notes that with this matrix representation taking derivatives also becomes a

rather simple process. The derivative of the spline function is the derivative of the

U(t) vector times the same matrix of coefficients times the additional weight of the

width of the interval. Shown as follows:

C ′(t) = b′(t)TV (4.6)
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and

b′(t) =
n−k∑
i=k−1

1[ti,ti+1)Ik(i)
TMk(i)

TU ′(t, i) (4.7)

where the derivative is taken with respect to t. By the same substitution for u that

was used in section C with integrals, the derivative can be reduced to a general form

for all intervals. This form can also be expressed in terms of a matrix operation. To

express this, notation will need to be developed. Let A be a k × k nilpotent matrix

with ones in the subdiagonal immediately below the primary diagonal. Let B be a

diagonal matrix with the elements 1, . . . , k on the main diagonal.

A =

0T 0

I 0



B =



1 0 · · · 0

0 2
...

...
. . . 0

0 · · · · · · k


Then we define the derivative matrix as the product of these two matrices D = AB.

Thus we can express the derivative of U as U ′ = DU . Moreover, the process can be

iterated to obtain the `th derivative given by

U (l)(t, i) = (ti+1 − ti)−lDlU (l)(t, i). (4.8)
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Combining the equations (4.6–4.8) yields a general representation of the derivatives

of splines and the derivative of the basis functions.

C(l)(t) = b(l)(t)TV ; (4.9)

b(l)(t) =
n−k∑
i=k−1

1[ti,ti+1)(ti+1 − ti)−l

× Ik(i)TMk(i)
TDlU(t, i). (4.10)

E. Application to Zhou, et al.

Here we show how to compute the integrals in (4.2). This can be reduced to simple

matrix algebra when applying Qin’s matrix representation and the formulas developed

in (4.5),(4.9),and(4.10), since∫ ∞
−∞

b′′(t)b′′(t)Tdt

=

∫ ∞
−∞

n−k∑
i=k−1

n−k∑
j=k−1

1[ti,ti+1)1[tj ,tj+1)

(ti+1 − ti)4

×
[
Ik(i)

TMk(i)
TD2U(t, i)

× U(t, j)T(D2)TMk(j)Ik(j)
]

dt

=

∫ ∞
−∞

n−k∑
i=k−1

1[ti,ti+1)

(ti+1 − ti)4

× Ik(i)TMk(i)
TD2U(t, i)

× U(t, i)T(D2)TMk(i)Ik(i)dt
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=
n−k∑
i=k−1

∫ ti+1

ti

(ti+1 − ti)−4

× Ik(i)TMk(i)
TD2U(t, i)

× U(t, i)T(D2)TMk(i)Ik(i)dt

=
n−k∑
i=k−1

(ti+1 − ti)−3Ik(i)TMk(i)
TD2

×
(∫ 1

0

UUTdt

)
(D2)TMk(i)Ik(i)

=
n−k∑
i=k−1

(ti+1 − ti)−3Ik(i)TMk(i)
TD2

×∆(D2)TMk(i)Ik(i).

F. Example

We have written an R package entitled orthogonalsplinebasis that uses the ma-

trix representation presented here to represent and manipulate the basis functions

directly. The package is available from The Comprehensive R Archive Network (R

Development Core Team 2009). We will use this package to present an example of the

matrix representation. For this example consider a spline basis on the domain (0, 5)

with one internal knot equally spaced between the endpoints of the interval. This

makes the complete set of knots (0, 0, 0, 0, 2.5, 5, 5, 5, 5) for the standard third degree

splines. The figures for this example are collected in the appendix. Figure 10 shows

the original basis functions, before any manipulations such as orthogonalization. The
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basis functions after orthogonalization are shown in Figure 11. The derivatives for

the three non-zero derivatives of the orthogonal basis function are shown in Figure

12. The definite integral of the spline basis functions is defined as

B(t) =

∫ t

−∞
b(x)dx,

where b(t) is a set of basis functions, and the integration is performed element-wise

over the vector of functions. The −∞ is for convenience, since we assume that

the basis functions are zero outside of the interval (tk−1, tn−(k−1)). The integral is

also computed explicitly and shown for both the original basis functions and the

orthogonalized basis functions in Figure 13.

The R package also supports basic spline fitting with a penalized least squares

methods. The penalty term, K, is a multiplier, λ, times the inner product of the

second derivative of the spline curve, as in Zhou, et al. (2008).

K = λµTψµ, and (4.11)

ψ =



84.0 −154.0 178.8 −137.3 74.9

−154.0 290.3 −351.9 269.2 −134.1

178.8 −351.9 484.6 −471.9 301.3

−137.3 269.2 −471.9 788.8 −749.0

74.9 −134.1 301.3 −749.0 833.3


. (4.12)

Here we are using the orthogonalized basis functions to estimate the curve. This

penalty effectively penalizes smoothness of the curve, a higher penalty leads to a

smoother curve. Figure 14 shows a generated example with fits for different values

of the penalty parameter. The data was generated from an exponential curve with
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Fig. 10. The basis functions for a third degree spline curve with equally spaced knots

on (0,5).



46

0 1 2 3 4 5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

Orthognalized Basis Functions

Fig. 11. The orthogonalized basis functions.
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Fig. 12. The derivatives for the basis functions for the original basis functions.



48

0.
0

0.
4

0.
8

1.
2

Integrated Basis Functions

O
rig

in
al

0 1 2 3 4 5

0.
0

0.
5

1.
0

O
rt

ho
go

na
l

Fig. 13. The integrated basis functions for both the original and the orthogonalized

basis functions.
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normal errors and a standard deviation of five,

y = exp(x) + ε

ε = Normal(0, σ = 5)

● ●

●
●

●

● ●
●

●

●

●

0 1 2 3 4 5

0
50

10
0

15
0

x
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Fits for various penalties using
 the inner product of the curve second derivative as the penalty

Penalty

True Mean
0
0.1
0.5
10

Fig. 14. The estimated curves for fits made with different values of the penalty pa-

rameter.

G. Discussion

By using Qin’s representation (Qin 2000) many important formulas can be derived

for the properties of the basis functions. This representation not only helps with
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orthogonalization but also with derivatives and integration. Applying these formulas

to the Zhou, et al. (2008) paper will help theoretically as well as computationally, as

explicit formulas are available for any terms that involve the basis functions.
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CHAPTER V

NPPTOR: R INTERACTION FOR NOTEPAD++

R (Ihaka & Gentleman, 1996) is a powerful programming language and analysis en-

vironment. Although interactions with R can be limited to single line commands

entered into an interactive R session, this is certainly not the norm. To harness the

full power of R, and it is far more common to write functions and blocks of code that

span several lines and are intended to be evaluated together. To make these blocks

and the scripts they form, an editor is needed. Since R scripts are just text, any text

editor will get the job done, but the more features it has, and the more elegant it is,

the more fun programming will be.

On Linux, users are forced to use an external text editor, such as Vim or Emacs.

These have been modified to have advantages such as syntax highlighting and code

folding. Both Vim and Emacs have methods for interacting with an active R session.

R for Windows on the other hand comes with a built-in editor which is devoid of

these features, but has the advantage of providing an easy way to evaluate code in

R. The presence of this built-in editor discourages users from using the alternatives

available. Some alternatives on the Windows system are Tinn-R (Grosjean, 2008)

and Eclipse (Eclipse Foundation, 2010) with the StatET plugin (The StatET Team,

2010). This chapter introduces the NppToR utility that adds R interactions and

syntax highlighting for Notepad++ (Notepad++ Team, 2010).

NppToR has been under development for over a year and has gained a serious

user base without ever being promoted outside of the R mailing lists. This chapter

gives an introduction and makes the case for the benefits of NppToR and Notepad++.

Instructions are given as to how a user would use and configure NppToR to make it

work best for them. NppToR can be downloaded from SourceForge (Sourceforge.net,
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2010b).

A. R Interactions for Notepad++

Notepad++ is often cited as the most popular text editor for developers on Windows

(see Pash, 2008; Gube, 2009). Notepad++ is fast and powerful, supports macros,

auto-completion, syntax highlighting, code folding, and many other features, in a

tabbed multi-document view. Just like Vim and Emacs are the most popular Linux

editors, it makes sense to leverage Notepad++ as an editor for R on Windows.

Notepad++ supports a wide array of languages, and with the release of version

5.6 supports R as a built-in language. Prior to version 5.6 the only support for R was

in the form of the user defined language system. One of the functions of NppToR is

to generate the files for use with the user defined language system.

The primary purpose of NppToR is to add the interaction capabilities between R

and Notepad++ that are present in the Windows R GUI and the other alternatives.

The ideology behind NppToR is to enable this connection without painful altering of

either R or Notepad++, and that configuring should be kept to a minimum. Because

of this motivation NppToR is neither an R package nor a Notepad++ plugin. It is

a small separate utility that enables evaluating code written in Notepad++ in R.

One advantage of the approach of NppToR is it allows for connecting to a running

R session rather than running an R session specifically for the interaction which is

necessary with some other approaches.

B. Using NppToR

NppToR is a small utility that sits in the system tray and enables R interaction for

Notepad++. Using NppToR occurs almost exclusively through the use of keyboard
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Fig. 15. NppToR sits as a utility in the system tray.

shortcuts. The shortcuts are completely configurable through the configuration di-

alogs accessed through the menu system from the system tray. Figure 15 shows the

NppToR icon in the Windows system tray along with the menu accessed through a

right click of the mouse.

NppToR has several ways to get your code into R for evaluation. The most

commonly used is evaluating code line by line or by selection. This is done by default

with the F8 key, which can be changed in the settings. Both pass selection and pass

line are activated by the same shortcut, evaluating a selection if text is selected in

Notepad++, otherwise evaluating the line of code the cursor is on and moving the

cursor to the beginning of the next line to step rapidly through lines of code. Also

available are passing an entire script and passing to the point in the file marked by

the cursor, with <control>+F8, and <shift>+F8 respectively. With any of these

options NppToR seeks out a current running R console and pastes the code into the

R GUI window. If NppToR cannot find a suitable R GUI Window it launches one,

and pastes the code into that window.
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If in addition to NppToR, R has the rcom package installed and loaded, NppToR

can take advantage of this and enable the silent transfer option, with <alt>+F8 as

the default shortcut. The purpose of the silent transfer is to silently evaluate code

that you do not want shown in the R GUI window. This is useful for such things as

updating the definitions of large functions.

NppToR does require specific settings on the R GUI window to work correctly.

Specifically the R GUI is required to run in the single document interface mode rather

than the default multiple document interface mode. The multiple document interface

is not needed when running NppToR, since Notepad++ will be used as the script

editor rather than the built-in editor. To make this as easy on the user as possible

NppToR makes use of a special ‘RConsole’ file that is used with every spawned R

process which forces the single document interface.

NppToR spawned R processes are started in the same location as the script to

make file referencing easier. It is typical that on Windows file names in R scripts

are full path names. With NppToR this is much easier since file names can be made

relative and the directory does not have to be changed every time an R session is

started. For example if the script reads in a data file ‘data.txt’ and the data file is in

the same directory as the script the file reference can simply be made as

Example 1 data<−read . t a b l e (” data . t x t ”)

rather than

Example 2 data<−read . t a b l e (”C:/ path / to / data . t x t ”)

There is also a menu item on the system tray menu to change an R session working

directory to the directory of the current script in Notepad++.
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Fig. 16. NppToR monitors active simulations allowing for an easy way to kill off

simulations that have been running too long.

The last method for R interaction is with batch processing. When doing simula-

tions these often run for hours, if not days, and are typically run in R’s batch mode.

NppToR maps the shortcut <control>+<alt>+F8 to running a script in batch mode.

In addition it keeps track of running simulations through a special window, shown in

Figure 16. This window easily allows for terminating simulations early. It also keeps

track of how long they have been running. Double clicking on the filename will bring

up a caption telling how long the simulation has been running for, to help the user

determine if the script has gotten out of hand or not. The window can be hidden

then called back through the system tray menu.

R has command like edit and fix to launch editors and scripts from inside R

itself. The idea behind fix is that you can alter the definition of functions and objects

in the workspace, with an editor. R monitors the editor and when closed updates the

definition of the object. On windows this editor is the R built-in editor by default,

but we would prefer to use Notepad++ for all the reasons already mentioned. Un-

fortunately, because of the multi-document interface of Notepad++ the mechanisms
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Fig. 17. The button that shows up when using Notepad++ to fix an R object.

for monitoring the external program don’t work as expected. AutoHotKey, which

the majority of NppToR is written in, provides a nice work around. Settings in the

‘Rprofile’ file that NppToR uses when spawning R processes, located in the NppToR

install directory, specify the settings and work around to use Notepad++ as the R

editor. Copying the contents of the file to the global R profile will make the set-

ting of using Notepad++ as the editor universal, regardless of whether an R process

was spawned by NppToR or not. When fixing or editing an item in R, The file is

brought up in Notepad++ and an overlayed button, shown in Figure 17 is placed

on the screen. When the user is finished editing the object clicking the button will

return the object to R to update the definition. If the user wishes not to update

the object just click the red close button instead. With two way interaction between

Notepad++ and R, Notepad++ is a complete replacement for the R built-in editor.

C. Configuring NppToR

Changes to NppToR settings are made with the settings dialog, shown in Figure 18,

accessible through the system tray menu. The program should work from install

without any configuring on the part of the user but there are several circumstances

that the user will want to change the settings, from the simplest of changing the

keyboard shortcuts to fine tuning the performance.

The shortcuts for the various methods of passing code are fully and easily con-

figurable. The keys are changed by typing in the code for the key. There is a key for
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Fig. 18. NppToR offers all configurable settings in one central configuration dialog.
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the codes on the bottom of the settings dialog. Simply prefix the shortcut keys with

symbols for one or more modifier keys, for example the code for the default batch

processing command is ^!F8 which reads as <control>+<alt>+F8, meaning the user

holds down both the control and alt keys when pressing the F8 function key to send

a script to R as a simulation batch file.

The default keyboard shortcuts are specifically chosen to not interfere with the

main use of Notepad++. The keyboard shortcuts that are chosen for NppToR will

override any function mapped to that key in Notepad++. Since NppToR is developed

with the idea of not modifying the interfaced programs, Notepad++ has no awareness

of the keyboard shortcuts employed by NppToR. This leaves the burden on the user

that if they want to change the shortcuts and that those shortcuts then interfere with

a Notepad++ function, that they must remap the Notepad++ keyboard shortcuts,

which are also fully customizable.

The executable paths are the next most likely things that the user may want

to configure. By default, the settings here are read from the registry for both the R

directory and the Notepad++ directory, where both are stored in a standard instal-

lation of either. In non-standard installations, the directories may not be found in

the registry and can be specified here. This is particularly the case if using portable

versions of the programs. A portable program is one that leaves no traces of being

run on the computer. Portable versions of both Notepad++ (Notepad++ Portable,

2009) and R (Redd, 2010) exist. NppToR supports the built-in Windows environment

variables, denoted in percent signs , and adds two additional portable variables the

%drive% and the %npptordir% pointing to the drive letter and the launch directory

of NppToR respectively.

The command line parameters will be passed onto the R GUI. Run Rgui --help

to see the options. For example, --no-save -q will turn off the message asking if
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you want to save on exit and suppress the startup message.

The performance settings should usually not have to be tweaked unless NppToR

is running on particularly slow computer. NppToR uses the clipboard to transfer code

into R. If there happens to be anything on the clipboard NppToR saves the clipboard

and then restores it after the code was pasted into R, if the ‘Restore clipboard after

pasting code into R’ option is set, which it is by default. The ‘Millisecond to wait

before restoring clipboard’ options gives the window of time that R has to paste the

code from when NppToR issues the paste command until it wipes the clipboard of

the code and restores the previous content. If this setting is too low the wrong thing

will be passed into R, and if it is too high performance is inhibited in issuing multiple

commands in rapid sequence, as often happens when evaluating through code. The

default setting tries to reach a reasonable medium that should work for most modern

computers, but may occasionally need to be adjusted.

The Maximum time to wait for R to load is a simple time limit to determine if a

R process was successfully spawned before giving an error. In a properly configured

system this setting should matter very little, and should only need to be increased if

it takes longer than 10 seconds for R to load.

The ‘Append new line to passed commands’ only takes effect when passing se-

lections, and not when passing line by line. The effect is that, when checked, any

passed code is automatically evaluated. Unchecking this option allows for passing

bits to the same line of code in R to construct a statement before evaluating it. The

default is for this option to be turned on and is the behavior that is usually seen in

other editors.

The PuTTy hotkey settings control the similar settings for interacting with a

remote R session running through PuTTy which, will be discussed in the next section.
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D. Interacting with R on a Server

NppToR not only allows for interaction with the R GUI on the current machine but

also allows interaction with an active remote session that is run through the SSH

client PuTTy. Often times users find that a server setup with R may run much faster

than a setup on the users Windows box. If a user can use PuTTy to open an active

R session on the remote machine NppToR can be used to facilitate passing code into

PuTTy, and thus into the R session on the remote machine. Be warned that NppToR

will not spawn remote processes, and that only passing by line or the entire file at

one is supported at this time.

E. Generating Syntax Files

Even though the current version of Notepad++ has native rules for highlighting and

code folding for R as a programming language, the rules generated by NppToR may

be preferred. The native Notepad++ highlighting omits several reserved keywords,

whereas the NppToR generated files includes these keywords as well as all the key-

words from the base and recommended packages. NppToR includes a syntax generator

utility, shown in Figure 19, that can integrate the keywords from a users library for

the user installed packages.

Figure 20 shows a simple comparison and illustrates some omissions of the built-in

syntax highlighter. The reserved keyword TRUE is omitted and the period is recognized

as a word boundary, and while it does hold some special meaning in the class system

it does not denote separate variable names and should not break highlighting as is

shown here.
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Fig. 19. NppToR dynamically generates syntax files based on the contents of the

user’s library.

Fig. 20. A comparison of the built-in syntax highlighting (top) to NppToR syntax

highlighting (bottom).
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F. Installing NppToR

A prerequisite of NppToR is to have installed Notepad++, which can be downloaded

from the SourceForge download page (Sourceforge.net, 2010a). NppToR can be down-

loaded from its SourceForge page (Sourceforge.net, 2010b). NppToR has both an

installable version and a version that can be ran without any install. The installed

version copies the executables to the users application data folder. This makes the

install user specific but removes the requirement that the install have administrator

privileges. One major advantage of the install is that is adds a shortcut to the users,

startup folder so that NppToR is always on. Since NppToR is a very small utility, it

loads quickly and consumes nearly no resources when not in use. It will not inter-

fere with any programs other than Notepad++. The non-install version is useful for

portable setups, which was discussed in the section on settings. It is also an option

for people who want to test NppToR.

G. Comparison with Alternatives

NppToR provides sharp contrast to the alternatives on Windows. In this comparison,

I will exclude the options of Vim and Emacs for Windows, since they are natively

Linux/Unix programs and have too foreign a feel for the majority of purely Windows

users to be comfortable with. Eclipse is a large integrated development environment

that organized large projects very well. This approach is the antithesis of NppToR.

Tinn-R is similar to what is achieved with Notepad++ and NppToR, a text editor

that can send commands to an R session. This approach though requires installation

for both the program and in R packages. It is also a stand alone project that forked

from the now defunct Tinn project, and so is left as an editor solely for R. Notepad++,

being one of the most popular text editors on Windows as well as being open source
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software like R, benefits from constant updates and a large pool of contributors and

users to offer support, test bugs and provide extensions.

H. Summary

NppToR mirrors the advantages of editors on other operating systems for Windows,

and does so in a native Windows approach. The power and strength of NppToR

comes in its simplicity. It leverages an already powerful editor to become a superior

editor for R. It provides all the functionality that a developer would want for R,

and enhances the experience in using both Notepad++ and R. NppToR provides

several avenues for interaction with R. Notepad++ also has the added advantage of

supporting multiple languages for those who develop packages that may have code

in C or FORTRAN and documentation in TEX. Notepad++ is a native Windows

program and prescribes to conventional Windows standards, minimizing the learning

curve. As users become proficient with the vast array of keyboard commands and the

macro system the true power of Notepad++ is revealed.
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CHAPTER VI

SUMMARY

In this dissertation we have discussed principal components in the functional frame-

work. The additive bivariate hierarchical model, uses these principal components. In

these models we consider data that is not only irregular but sparse, which enables

these models to be applied to a wide array of data sets, not only those with regular

and dense points. As we saw with the example of the AIDS data, these methods can

be applied to a wide variety of problems from the health and medical fields.

The ability to apply the models on such structures do not come free, assumptions

must be made that enable sharing of information across samples. Splines are used to

reduce the dimensionality of the problem to allow it to be identifiable in the sparse

data. From the papers in respected journals (James et al., 2000; Zhou et al., 2008),

we see that the handling of the orthogonalization of the B-spline basis functions is

not obvious. For this the orthogonalsplinebasis package for R is presented that

handles all the necessary calculations and greatly simplifies the process of forming

the matrices necessary for fitting the models.

Another cost of the flexibility of the models is the computational cost. The

pfda package, give a high efficiency implementation that does the computations in

reasonable time. Naive and pure R implementations fail, but a hybrid approach with

both R and C code reaches the requirements for a usable package.

All the programming involved had the byproduct of improving programming in

R on windows, in the form of NppToR. NppToR turns Notepad++ into the best R

programming environment on windows. It adds R interactions, and creates the most

dynamic syntax highlighting of any windows editor.
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APPENDIX A

DETAILS OF THE EM ALGORITHM FOR THE ADDITIVE PRINCIPAL

COMPONENT MODEL

Likelihood

In the forming of the likelihood we assume that the full data consists of the response,

yi, and the random effect principal component scores αi and βi for i = 1, . . . , n.

We assume that the random effects are missing and employ an EM algorithm to

maximize the likelihood. Since the method uses splines to estimate the curves, a

penalty is added to the log likelihood that effectively penalizes the smoothness of the

curves. This penalty is formed in terms of the second derivative of the curve.

Let Ω = (θZ , θT , θX ,Θf ,Θg, Dα, Dβ,Λ, σ) be the set of parameters for the model.

The log likelihood for the full data decomposes into

log{L(y, α, β|Ω)} =
n∑
i=1

[log {L (Yi|αi, βi,Ω)}+ log {L (α, β|Ω)}]

log {L (Yi|αi, βi,Ω)} = −(mi/2) log(σ2)− (2σ2)−1 ×

‖Yi − ZiθZ −BT,iθT −BX,iθX −BT,iΘfαi −BX,iΘgβi‖2 .

Where BT,i and BX,i are the matrices resulting from evaluating the points ti and xi

for the B-spline basis functions bT (t) and bX(x) respectively.

The relationship between α and β are assumed to be jointly normal with cor-

relation, but the components of α to be independent of other components of α and

the same for components of β. This is more easily structured as a regression model

between β and α. The choice of which variable to regress on the other is arbitrary



68

but changes the interpretation of Λ.

βi|αi = Λαi + ηi,

ηi = Normal(0,Σeta),

Ση = Dβ − ΛDαΛT,

So that the log likelihoods come out to be

log {L (α, β|Ω)} = log {L (β|α,Ω)}+ log {L (α|Ω)}

log {L (β|α,Ω)} = −(1/2) log |Ση| − (1/2)βT
i Σ−1η βi,

log {L (α|Ω)} = −(1/2) log |Dα| − (1/2)αT
i D
−1
α αi,

where Dα and Dβ denote diagonal matrices with elements of descending order.

Penalized Likelihood

The likelihood above is not maximized to fit the model, as this may be over pa-

rameterized in some cases. To control the smoothness of the nonparametric curves

involved penalties are added to the likelihood. The penalties that are included derive

from directly penalizing the smoothness of the curve. For this case the measure of

smoothness is defined as the integral of the squared second derivative of the curve.

This penalty

Kt =

t(N)∫
t(1)

b(2)(t)b(2)(t)Tdt (A.1)

is the penalty matrix that is derived from the outer product of the second derivative of

the basis functions for the T variable, for use with the T domain curves. Thanks to the
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use of splines the integrated second derivative of the mean curve for T , µT (t) = b(t)TθT

is

t(N)∫
t(1)

µT (t)Tµt(t)dt = θTTKtθT .

The formulas for the integrals for the other curves involved are formed in the same

manner. This yields the form the penalties take. The penalized log likelihood is

log{L(Y, α, β)}+ λT θ
T
TKtθT + λXθ

T
XKxθX + λf1

TΘT
fKtΘf1 + λg1

TΘT
gKxΘg1

where 1 denotes a vector of ones of appropriate length.

Marginal Likelihood

Since the principal component scores α and β are missing, the marginal log likelihood

of Y is important to understand.

log{L(y|Ω)} =
n∑
i=1

log{L(yi|Ω)}

Σi = BT,iΘfDαΘT
fB

T
T,i +BX,iΘgDβΘT

gB
T
X,i +

BT,iΘfDαΛTΘT
gB

T
X,i +BX,iΘgΛDαΘT

fB
T
T,i + σ2Imi

ri = yi − ZiθZ −BT,iθT −BX,iθX

log{L(yi|Ω)} = −(1/2) log |Σi| − (1/2)rTi Σ−1i ri

AIC

The Akaike’s information criteria is used for determining both the number of prin-

cipal components, and the optimal penalty parameters. It is computed by adding a

complexity penalty to the marginal likelihood of Y given the parameters of the model
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Ωmodel. The AIC is approximated by

AICmodel = −2 log{L(y|Ω)}+ 2 ∗ (dfT + dfX + Kαdf f + Kβdfg)

dfT = trace


(

n∑
i=1

BT
T,iBT,i + λTKt

)−1( n∑
i=1

BT
T,iBT,i

)
dfX = trace


(

n∑
i=1

BT
X,iBX,i + λXKx

)−1( n∑
i=1

BT
X,iBX,i

)
df f = trace


(

n∑
i=1

BT
T,iBT,i + λfKt

)−1( n∑
i=1

BT
T,iBT,i

)
dfg = trace


(

n∑
i=1

BT
X,iBX,i + λgKt

)−1( n∑
i=1

BT
X,iBX,i

)
As is discussed in Section D, this formula only approximates the AIC, due to in-

accuracies inherent in the estimation of the degrees of freedom, particularly for the

degrees of freedom associated with Θf and Θg.

E-Step of the EM algorithm

The E step of the EM algorithm consists of updating the distribution of the missing

principal component scores, α and β, given the data, y and the current estimates

of the parameters Ωcurr. The distribution is assumed to be jointly Normal, and the
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updated distribution can be given asαi
βi

 |Ωcurr, yi ∼ Normal


µi
νi

 ,

Σαα,i Σαβ,i

ΣT
αβ,i σββ,i


 ,

µi
νi

 =

Σαα,i Σαβ,i

ΣT
αβ,i σββ,i


ΘT

fB
T
T,iR

T
i /σ

2

ΘT
gB

T
X,iR

T
i /σ

2

 ,

Ri = yi − ZiθZ −BT,iθT −BX,iθX ,Σαα,i Σαβ,i

ΣT
αβ,i σββ,i

 =

∆α + ΘfB
T
T,iBT,iΘf/σ

2 χ+ ΘT
fB

T
T,iBX,iΘg/σ

2

χT + ΘT
gBX,iBT,iΘf/σ

2 ∆β + ΘT
gB

T
X,iBX,iΘg

 ,

∆α χ

χT ∆β

 =

Dα C

CT Dβ


−1

From here the needed moments used in the M-step are straight forward to compute.

M-Step of the EM algorithm

The algorithm for fitting the additive model presented in this paper, takes the form

of an EM algorithm. The missing portion of the data is the principal component

scores, α and β, which are assumed to have a joint Gaussian distribution. Each

of the marginal distributions for α and β are assumed to be uncorrelated Gaussian

distributions.

The steps of the maximization portion of the algorithm are given in the fol-

lowing paragraphs, and reflect the order in the implementation. While estimating

the components of the model all other parameters are held constant at their current

estimates.

1. Additive unpenalized variables are the simplest to estimate. The estimates
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are obtained by standard regression on the residuals.

θ̂Z =
(
ZTZ

)−1{ n∑
i=1

Zi (yi −BT,iθT −BX,iθX −BT,iΘfαi −BX,iΘgβi)

}

2. Second, estimate the mean curves for both variables. For the T variable, in

terms of the specified penalty parameter λT is

θ̂T =

{
n∑
i=1

(
BT
T,iBT,i + σ2λTKT

)}−1
n∑
i=1

BT
T,i (yi − ZiθZ −BX,iθX −BT,iΘfE(αi|yi,Ωcurr)−

BX,iΘgE(βi|yi,Ωcurr)) ,

where KT is the penalty matrix defined in equation A.1 The equation is analogous for

the estimating equation of θX ;

θ̂X =

{
n∑
i=1

(
BT
X,iBX,i + σ2λXKX

)}−1
n∑
i=1

BT
X,i (yi − ZiθZ −BT,iθT −BT,iΘfE(αi|yi,Ωcurr)−

BX,iΘgE(βi|yi,Ωcurr)) .

3. The estimation of the principal component curves is more complicated than

any of the other estimations, due to the relationship between the two sets of principal

components and the correlation between the scores. To estimate the curves each curve

must be estimated individually. Let Θf = (θf1, . . . , θfKT
), and θfj is the jth column

of Θf and the coefficients for the jth principal component curve. Also let Θf\j be the

matrix of Θf with the jth column removed, and let αi,\j the vector αi with the jth
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element removed.

θ̂fj =

[
n∑
i=1

E(α2
i,j|Ωcurr, yi)B

T
T,iBT,i + σ2λfKT

]−1
n∑
i=1

BT,i {RiE(αi,j|Ωcurr, yi)−BX,iΘgE(αi,j, βi|Ωcurr, yi)−

BT,iΘf\jE(αi,jαi,\j|Ωcurr, yi)
}

Ri = yi − ZiθZ −BT,iθT −BX,iθX

There is an analogous formula for updating the estimates of a column j of Θg.

θ̂gj =

[
n∑
i=1

E(β2
i,j|Ωcurr, yi)B

T
X,iBX,i + σ2λgKX

]−1
n∑
i=1

BX,i {RiE(βi,j|Ωcurr, yi)−BT,iΘfE(βi,j, αi|Ωcurr, yi)−

BX,iΘg\jE(βi,jβi,\j|Ωcurr, yi)
}

Ri = yi − ZiθZ −BT,iθT −BX,iθX

Each column is also orthogonalized, using a Gram-Schmidt process, to those columns

that have already been updated. Failure to orthogonalize will result in biased results

for the variances in the next step.

4. The last step is to estimate the variance components of the model, σ2, Dα,

and Dβ. In estimating these variances the estimates of Θf and Θg are updated to

force the orthogonality constraints on them. To estimate the overall variance, σ2,

σ̂2 = M−1
n∑
i=1

mi∑
j=1

(yij − ZijθZ −BT,ijθT −BX,ijθX −BT,ijΘfαi −BX,ijΘgβi)
2

The variances for the principal components are estimated through an Eigenvalue
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decomposition.

Θf,newDαΘT
f,new = Θf,old

(
1

n

n∑
i=1

E(αiα
T
i |Ωcurr, yi)

)
ΘT
f,old

Θg,newDβΘT
g,new = Θg,old

(
1

n

n∑
i=1

E(βiβ
T
i |Ωcurr, yi)

)
ΘT
g,old

The regression coefficient between the principal components is estimated with

λ̂ =

{
n∑
i=1

E(αiβi|Ωcurr, yi)

}T{ n∑
i=1

E(αiαi|Ωcurr, yi)

}−1
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