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ABSTRACT

Secondary Analysis of Case-Control Studies

in Genomic Contexts. (August 2010)

Jiawei Wei, B.S., Zhejiang University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Raymond J. Carroll

This dissertation consists of five independent projects. In each project, a novel

statistical method was developed to address a practical problem encountered in ge-

nomic contexts. For example, we considered testing for constant nonparametric effects

in a general semiparametric regression model in genetic epidemiology; analyzed the

relationship between covariates in the secondary analysis of case-control data; per-

formed model selection in joint modeling of paired functional data; and assessed the

prediction ability of genes in gene expression data generated by the CodeLink System

from GE.

In the first project in Chapter II we considered the problem of testing for constant

nonparametric effects in a general semiparametric regression model when there is the

potential for interaction between the parametrically and nonparametrically modeled

variables. We derived a generalized likelihood ratio test for this hypothesis, showed

how to implement it, and gave evidence that it can improve statistical power when

compared to standard partially linear models.

The second project in Chapter III addressed the issue of score testing for the

independence of X and Y in the second analysis of case-control data. The semipara-

metric efficient approaches can be used to construct semiparametric score tests, but

they suffer from a lack of robustness to the assumed model for Y given X . We showed

how to adjust the semiparametric score test to make its level/Type I error correct
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even if the assumed model for Y given X is incorrect, and thus the test is robust.

The third project in Chapter IV took up the issue of estimation of a regression

function when Y given X follows a homoscedastic regression model. We showed how

to estimate the regression parameters in a rare disease case even if the assumed model

for Y given X is incorrect, and thus the estimates are model-robust.

In the fourth project in Chapter V we developed novel AIC and BIC-type meth-

ods for estimating the smoothing parameters in a joint model of paired, hierarchical

sparse functional data, and showed in our numerical work that they are many times

faster than 10-fold crossvalidation while at the same time giving results that are

remarkably close to the crossvalidated estimates.

In the fifth project in Chapter VI we introduced a practical permutation test

that uses cross-validated genetic predictors to determine if the list of genes in ques-

tion has “good” prediction ability. It avoids overfitting by using cross-validation to

derive the genetic predictor and determines if the count of genes that give “good”

prediction could have been obtained by chance. This test was then used to explore

gene expression of colonic tissue and exfoliated colonocytes in the fecal stream to

discover similarities between the two.
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CHAPTER I

INTRODUCTION

This dissertation consists of five independent projects. In each project, a novel sta-

tistical method was developed to address a practical problem encountered in genomic

contexts. In the first project, we considered the problem of testing for constant

nonparametric effect in a general semiparametric regression model when there is the

potential for interaction between the parametrically and nonparametrically modeled

variables. The work was originally motivated by a unique testing problem in genetic

epidemiology (Chatterjee, et al., 2006) that involved a typical generalized linear model

but with an additional term reminiscent of the Tukey one-degree-of-freedom formu-

lation. In this formulation, there are genetic variables, environmental variables, and

demographic variables. The interest is in testing for main effects of the genetic vari-

ables, while gaining statistical power by allowing for a possible interaction between

genes and the environment. Later work (Maity, et al., 2009) involved the possibil-

ity of modeling the environmental variable nonparametrically, but they focused on

whether there was a parametric main effect for the genetic variables. In this study,

we consider the complementary problem, where the interest is in testing for the main

effect of the nonparametrically modeled environmental variable. We derive a gener-

alized likelihood ratio test for this hypothesis, show how to implement it, and give

evidence that it can improve statistical power when compared to standard partially

linear models. An empirical example involving colorectal adenoma is used to illustrate

the methodology.

The second project addressed the issure of score testing for independence in the

The journal model is Journal of the American Statistical Association.
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secondary analysis of case-control data. Typical case-control studies focus on the

relationship between disease D and covariates (Y,X). In the secondary analysis of

case-control data, it is the relationship between Y and X that is of interest, but the

analysis of this relationship is complicated by the case-control sampling framework,

which is a type of biased sampling. Previous work has assumed a parametric distri-

bution for Y given X and derived semiparametric efficient estimation and inference

without any distributional assumptions about X : of course, the roles of X and Y

can be interchanged. In this study, we take up the issue of score testing for the

independence of X and Y . The semiparametric efficient approaches can be used to

construct semiparametric score tests, but they suffer from a lack of robustness to the

assumed model for Y given X . We take an entirely different and novel approach.

We show how to adjust the semiparametric score test to make its level/Type I error

asymptotically correct in the rare disease case even if the assumed model for Y given

X is incorrect, and thus the test is model robust. Extensions to linear regression with

additional covariates are discussed. Simulations and an empirical example are used

to illustrate the approach.

The third project took up the issue of estimation of a regression function when

Y given X follows a homoscedastic regression model in the secondary analysis of

case-control data. The semiparametric efficient approaches can be used to construct

semiparametric efficient estimates, but they suffer from a lack of robustness to the

assumed model for Y given X . We take an entirely different and novel approach in

the case that the disease is rare. We show how to estimate the regression parameters

in the rare disease case even if the assumed model for Y given X is incorrect, and

thus the estimates are model-robust. Simulations and an empirical example are used

to illustrate the approach.

We developed novel AIC and BIC type methods for estimating smoothing param-
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eters in a joint model of paired, sparse functional data in the fourth project. Utilizing

penalized B-splines, a new approach proposed by Zhou, et al. (2008) jointly models a

pair of sparsely observed functions through functional principal components. In their

approach, a stepwise addition and deletion procedure is employed to decide upon

the number of principal components (PCs) and crossvalidation is used to estimate

penalty parameters. However the choice of the cutoff point in the stepwise addition

and deletion procedure is subjective and the crossvalidation computation is very time

consuming. In this project we propose to select the number of PCs and estimate

the penalty parameters with a modified version of the Akaike information criterion

(AIC) and two modified versions of the Bayesian information criterion (BIC). Our

methods are computationally fast and straightforward to implement. We illustrate

our methods with simulations and the empirical data example used by Zhou, et al.

(2008).

In the fifth project, we introduced a practical permutation test that uses cross-

validated genetic predictors to determine if the list of genes in question has “good”

prediction ability. We call our the cross-validated permutation test. It avoids over-

fitting by using cross-validation to derive the genetic predictor and determines if the

count of genes that give “good” prediction could have been obtained by chance. This

test is then used to explore gene expression of colonic tissue and exfoliated colono-

cytes in the fecal stream to discovery similarities between the two, done at each of

the three stages of colonic tumorigenesis.
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CHAPTER II

TESTING FOR CONSTANT NONPARAMETRIC EFFECTS IN GENERAL

SEMIPARAMETRIC REGRESSION MODELS WITH INTERACTIONS

In this study, we consider the problem of testing for constant nonparametric effect in

a general semiparametric regression model when there is the potential for interaction

between the parametrically and nonparametrically modeled variables. The work was

originally motivated by a unique testing problem in genetic epidemiology (Chatterjee,

et al., 2006) that involved a typical generalized linear model but with an additional

term reminiscent of the Tukey one-degree-of-freedom formulation. In this formula-

tion, there are genetic variables, environmental variables, and demographic variables.

The interest is in testing for main effects of the genetic variables, while gaining statis-

tical power by allowing for a possible interaction between genes and the environment.

Later work (Maity, et al., 2009) involved the possibility of modeling the environmen-

tal variable nonparametrically, but they focused on whether there was a parametric

main effect for the genetic variables. In this study, we consider the complementary

problem, where the interest is in testing for the main effect of the nonparametrically

modeled environmental variable. We derive a generalized likelihood ratio test for this

hypothesis, show how to implement it, and give evidence that it can improve statisti-

cal power when compared to standard partially linear models. An empirical example

involving colorectal adenoma is used to illustrate the methodology.

A. Introduction

We consider the problem of testing for constant nonparametric effects in a general

semiparametric regression model when there is the potential for interaction between

the parametrically and nonparametrically modeled variables. The work was originally
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motivated by a unique testing problem in genetic epidemiology. Chatterjee, et al.

(2006) considered the following logistic regression type problem. Let Y be a binary

response, X a set of covariates that might possibly interact with a scalar covariate

Z, and let S be additional variables not thought to interact with Z. Let H(·) be the

logistic distribution function. Then they propose the model

pr(Y = 1|X,S, Z) = H(κ0 +XTβ0 + STη0 + Zθ0 + γXTβ0Zθ0). (2.1)

In their context, X represented a set of genetic variables such as single nucleotide

polymorphisms (SNP), S were demographic variables and Z was an environmental

effect. Their interest was in testing for a possible genetic main effect, H0 : β0 = 0

versus HA : β0 6= 0. When γ = 0, this is nothing more than an ordinary logistic

regression model, and thus the test is routine. However, Chatterjee, et al. argue that

if there is a possible gene-environment interaction, then capturing it via the Tukey-like

1-degree of freedom term γXTβ0Zθ0 has the potential to increase statistical power

greatly. They document this increase in power both in simulations and in empirical

work.

It is important to see that γ in (2.1) is not identifiable, because under the null

hypothesis, it disappears from the model. Hence, it is not a parameter to be estimated

per se, but is rather a tuning constant. Chatterjee, et al. fix γ along a range of values

L ≤ γ ≤ R, compute the score test T (γ) for each γ, and then take the maximum

value as the final test statistic. They then develop a simulation-based procedure for

computing an overall p-value.

Maity, et al. (2009) generalized models such as (2.1) to allow the effect of the

environmental variable Z to enter nonparametrically. Thus, for an unknown function
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θ0(·), their generalization of (2.1) becomes

pr(Y = 1|X,S, Z) = H
{
XTβ0 + STη0 + θ0(Z) + γXTβ0θ0(Z)

}
. (2.2)

They developed a testing procedure in model (2.2) for testing H0 : β0 = 0 versus HA :

β0 6= 0, and demonstrated increased power both via simulations and via empirical

work. As in Chatterjee, et al., Maity, et al. fix γ along a range of values L ≤ γ ≤ R,

compute the profile likelihood score test T (γ) for each γ, and then take the maximum

value as the final test statistic. They also develop a simulation-based procedure for

computing an overall p-value.

Both Chatterjee, et al. (2006) and Maity, et al. (2009) were focused on testing

for the main effect of a gene. However, testing for a main effect of the environmental

variable is also of great interest. In this study, we take up the question of testing

whether Z has any effect in model (2.2), i.e., H0 : θ(z) = constant. Of course,

when we set γ = 0, the result is a standard partially linear logistic model. We will

demonstrate that our testing procedure based on model (2.2) has the potential for

great gains in power, with little loss of power if γ = 0 actually obtains. Similar to

these papers, we will vary γ along a fixed range, form test statistics, maximize, and

then use simulation to form a final p-value. We too will demonstrate the potential

for an increase in power both in simulations and in empirical work.

An outline of this note is as follows. In Section B we will develop the statistical

methodology for more general problems than logistic regression. Section C gives a

simulation study, while Section D describes empirical work. The technical details

justifying the method are described for the logistic case in the Appendix A.
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B. Methodology

1. Basic Framework

Let (X,S) be vectors that do not have an entry 1.0 for an intercept.

Our methodology applies to general loglikelihood functions of the form

L
{
Y,XTβ0 + STη0 + θ0(Z) + γXTβ0θ0(Z), ζ0

}
, (2.3)

where β0 and η0 are the main effects, θ0(•) is an unknown function, ζ0 is a nuisance

parameter and γ is the interaction effect that is not to be estimated directly since

it is unidentified when either β0 = 0 or θ0(·) is a constant. All technical details will

be exhibited for the logistic model (2.2), although as we indicate below, the result

holds much more generally. As stated previously, the null hypothesis is H0 : θ0(·) =

constant.

2. Estimation of Model Components

To test H0, we use the concept of a generalized likelihood ratio test (Fan et al., 2001).

To implement the testing procedure, we need to estimate the model components under

the full and null models.

We use a kernel based profile method to estimate the parameters under the full

model. Let K(·) be a symmetric density function and for any bandwidth h, let

Kh(t) = K(t/h)/h. Then the local linear profile method works as follows: for any

given (β, η, ζ) = (β∗, η∗, ζ∗) and γ, we maximize the local loglikelihood

n∑

i=1

Kh(Zi − z0)L
(
Yi, α0 + α1(Zi − z0) +XT

i β
∗[1 + γ{α0 + α1(Zi − z0), ζ

∗}] + ST
i η

∗
)

with respect to α0 and α1, and set θ̂(z0, β
∗, η∗, ζ∗, γ) = α̂0. Then the profile estimates
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of (β, η, ζ) is obtained by maximizing

∑n
i=1L

{
Yi, X

T
i β + ST

i η + θ̂(Z, β, η, ζ, γ) + γXT
i βθ̂(Z, β, η, ζ, γ), ζ

}
. (2.4)

Let the resulting estimator be (β̂F , η̂F , ζ̂F ), where it is understood that these estimates

depend on the value of γ chosen.

Estimation under the null model is a purely parametric problem where one com-

putes the MLE in the reduced model under H0. We add an intercept κ so that we

are maximizing

∑n
i=1L

(
Yi, κ+XT

i β + ST
i η, ζ

)
.

Let (κ̂R, β̂R, η̂R, ζ̂R) be the resulting null model estimates.

Remark 1 For specific models, the maximization of (2.4) is quite simple and can

be implemented easily. For example, in logistic regression, the steps are as follows.

There is no nuisance parameter ζ . For any given (β, η), define Ui = XT
i β + ST

i η and

Vi = 1 + γXT
i β. Then θ̂(z0, β, η, γ) is the estimated intercept ξ0 in the linear logistic

regression model

pr(Yi = 1) = H {Ui + ξ0Vi + ξ1Vi(Zi − z0)}

with the weights Kh(Zi − z0). This procedure is a weighted logistic regression with

no intercept, an offset Ui, and predictors Vi and Vi(Zi − z0), and is hence easily

implemented. Computing (β̂F , η̂F ) is then done by performing maximum likelihood

under the model pr(Yi = 1) = H{XT
i β+ST

i η+θ̂(Z, β, η, γ)+γXT
i βθ̂(Z, β, η, γ)} based

on profile method. We used the function optim() in R with initial values estimated

by backfitting.
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3. Properties of Profile Estimates of Parameters and Functions

In order to be able to draw upon the work of Fan and Huang (2005) and Fan, et al.

(2001), we require to know the properties of the parameter and function estimates

under the null hypothesis of constant θ0(·).

The properties of profile estimates of parameters and function estimates have

been well-studied in fairly general contexts, see for example Claeskens and Van Kei-

legom (2003), Claeskens and Carroll (2007), Van Keilegom and Carroll (2007) and

Apanasovich, et al. (2009), among many others. Specifically, the parameter estimates

are n1/2-consistent and the function estimates have uniform linear expansions to order

op(n
−1/2). Conditions, summarized in Apanasovich, et al. (2009) and translated to

our context, are as follows. All assumptions are meant to apply to the null hypothe-

sis, since our asymptotic results pertain only to the null hypothesis of constant θ0(·).

This means that there are simplifications to the calculations of Apanasovich, et al.

(2009), who also study misspecified models, a topic not of relevance in this study.

(C.1) The kernel function K is a symmetric, continuously differentiable density func-

tion on [−1, 1] taking on the value zero at the boundaries.

(C.2) The bandwidth is h ∝ n−1/5.

(C.3) The random variables (X,S, Z) have compact support. The design density fZ(·)

of Z is strictly positive and twice continuously differentiable on its support.

(C.4) The parameter space, here denoted by B, is compact. For any (β∗, η∗, ζ∗),

let θ(z0, β
∗, η∗, ζ∗, γ) be the maximizer in v of E[L{Y, v + XTβ∗(1 + γv) +

STη∗, ζ∗}|Z = z0], which is assumed to exist. The function θ(·, β, η, ζ, γ) has 3

continuous derivatives in its arguments. We also assume that the same calcu-

lations done by Claeskens and Carroll (2007) can be applied to our context.
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(C.5) For each γ, and under the null hypothesis, θ(z, β, η, ζ, γ) is constant in z,

(β0, η0, ζ0) is the unique maximizer ofE(L[Y, θ(Z, β, η, ζ, γ)+XTβ{1+γθ(Z, β, η,

ζ, γ)}+STη, ζ ]). In addition, the second total derivative of this function is uni-

formly negative definite in a neighborhood of (β0, η0, ζ0).

(C.6) We can apply the results of Claeskens and Van Keilegom (2003) as needed. In

particular, their assumptions imply that uniformly in z0, for random variables

Ri possessing sufficient moments, then if subscript (1) means first derivative, if

Cn = n−1∑n
i=1Kh(Zi − z0)(Zi − z0)

jRi × {θ(z0) + (Zi − z0)θ
(1)(z0)};

Dn = n−1∑n
i=1Kh(Zi − z0)(Zi − z0)

jRi × {θ(Zi)},

then

supz0 |Cn −E(Cn)| = Op[h
j{log(n)/(nh)}1/2];

supz0 |Dn − E(Dn)| = Op[h
j{log(n)/(nh)}1/2].

Under these assumptions, at the null hypothesis, their work can be easily ex-

tended to show that uniformly on compact sets of γ, (β̂F , η̂F , ζ̂F ) are n1/2-consistent

estimates of (β0, η0, ζ0).

In addition, at the null hypothesis, we have the following result, also uniform in

compact sets of γ. If the parameter space for (β, η, ζ) is B, the true parameter value

is B0, and if subscripts Lθ(·) and Lθθ(·) denote the first and second derivatives with

respect to θ, respectively, define

Ω(z0,B0) = E(Lθθ[Y, θ(z0, β0, η0, ζ0) +XTβ0{1 + γθ(z0, β0, η0, ζ0)}+ STη0]|Z = z0).
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Then, with θ0(z0) ≡ θ0 at the null hypothesis,

θ̂(z0, β0, η0, ζ0, γ) = θ0 − n−1
∑n

i=1Kh(Zi − z0)Ri + op(n
−1/2); (2.5)

Ri = −Lθθ{Yi, θ0 +XTβ0(1 + γθ0) + STη0, ζ0}
fZ(z0)Ω(z0,B0)

4. Generalized Likelihood Ratio Test

Given any fixed γ, the generalized likelihood ratio test statistic is given by

Λn(γ) =
∑n

i=1

[
L
{
Yi, X

T
i β̂F + ST

i η̂F + θ̂(Z, β̂F , η̂F , ζ̂F , γ)

+ γXT
i β̂F θ̂(Z, β̂F , η̂F , ζ̂F , γ), ζ̂F

}

− L
{
Yi, κ̂R +XT

i β̂R + ST
i η̂R, ζ̂R

}]
.

UnderH0, from Section 3 we have that the parameters are estimated n1/2-consistently.

As in Fan and Huang (2005), this means that the likelihood ratio statistic behaves

asymptotically as if the parameters are known. As they note, it is easy to show that

the likelihood ratio statistic is Λn(γ) = Λ∗
n(γ) +Op(1), where

Λ∗
n(γ) =

∑n
i=1

[
L
{
Yi, X

T
i β0 + ST

i η0 + θ̂(Z, β0, η0, ζ0γ) + γXT
i β0θ̂(Z, β0, η0, ζ0γ), ζ0

}

−L
{
Yi, κ0 +XT

i β0 + ST
i η0, ζ0

}]
.

This statistic is easily analyzed because of the expansion (2.5), and indeed that expan-

sion allows us to use almost exactly the proof in Fan, et al. (2001), see also Fan and

Jiang (2005). Useful special cases of this general framework are the partially linear

Gaussian and partially linear logistic regression models. We will show the following

result for the partially linear logistic regression model in Appendix A. However, it

is clear from the proof that an analogous result can be easily established for general

likelihood problems.
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Theorem 1 Assume conditions (C.1)-(C.6). There is a constant rK depending on

the kernel function and a deterministic sequence µn(h) ∝ h−1 → ∞ depending on the

bandwidth h such that

rK {Λ∗
n(γ)− µn(h)} /{2rKµn(h)}1/2 ⇒ Normal(0, 1). (2.6)

A consequence of Theorem 1 is that because µn(h) → ∞,

rK {Λn(γ)− µn(h)} /{2rKµn(h)}1/2 ⇒ Normal(0, 1). (2.7)

Result (2.7) is the so-called Wilks-phenomenon, namely that the semiparametric like-

lihood ratio statistic has a common limiting distribution under the null hypothesis

independent of the problem.

5. Test Statistic and Implementation

While (2.7) holds, it is not very useful in practice for decision making because it

depends upon the bandwidth. This fact motivated Fan and Jiang (2005) to use a

bootstrap-type test. Here we propose a parametric bootstrap-type test to overcome

this problem (see below).

Since the true value of γ is unknown, we follow the idea of Davies (1987), Chat-

terjee, et al. (2006) and Maity, et al. (2009) and propose to use as the test statistic

T ∗
n = max

L≤γ≤R
Λn(γ),

where L and R are pre-specified lower and upper bounds for γ. A normalized version

of T ∗
n as in (2.7) converges to the maximum of a Gaussian process, see the Appendix

A. However, this is not very useful in terms of setting a critical level due to the

dependence upon the bandwidth. We propose instead a simulation based approach

to compute p-values as follows.
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• Let B be a large number, and for b = 1, ..., B, generate response data Yib from

the null model fits.

• For each of the b = 1, ..., B generated data sets, compute the test statistic T ∗
n,b.

• The p-value is then computed as B−1
∑B

b=1 I(T
∗
n,b > T ∗

n ).

C. Simulation Study

We simulated data using the partially linear logistic model

pr(Y |X,Z) = H{XTβ0 + θ(z) + γXTβ0θ(z)},

where H(·) denotes the logistic distribution function. The sample size was n = 1, 200,

X was standard bivariate normal, β0 = (1,−1)T, and Z was uniform on [−2, 2]. We

repeated the simulation 1, 000 times, for true values γtrue = 0, 1, 2. For each simulated

data set, we fit the null model, namely logistic in X , then simulated from this null

model B = 1, 000 times to obtain a p-value. The values of γ used to construct

our test statistic were 11 equally spaced values on the interval [−2, 2]. We used the

Epanechnikov kernel to estimate the function θ(·) and used bandwidth h = σ̂Zn
−1/5,

where σ̂Z is the standard deviation of Z. The results were not sensitive to varying h

by factors of 3.0 in each direction.

In the null case, for nominal 5% tests, the actual significance level of our test

was 3.9%, while the actual significance levels of the main effects test that set γ = 0

was 5.2%. For power calculations, the alternative values of the function were given

as θ(z) = c sine(2z) for c = 0.125, 0.250, 0.375.

The results are given in Figure 1. It is evident that our method has near-nominal

level, little power loss in the main effects only case (γtrue = 0), and considerable power

gain when there is an interaction.



14

0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
γ = 2

0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
γ = 0

0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
γ = 1

Figure 1. Results on power and level in the simulation for testing whether θ(·) is

constant.
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Because of the Wilks phenomenon and the similarity between kernel regression

and penalized spline regression, we also implemented the tests using penalized 2nd-

order B-splines with equally spaced knots and 10 basis functions. Because our theory

for kernel regression assumes that the same bandwidth is used for all values of γ,

the penalty parameter was chosen with γ = 0 using GCV (Ruppert, et al., 2003).

In fitting the non-null method, for any given γ we obtained estimates of β and θ(·)

by maximizing the loglikelihood function penalized by −(λ/2)ζTKζ , where λ is the

penalty parameter chosen as above, B(z) are the basis functions, θ(z) = BT(z)ζ , and

K is the penalty matrix. The results were almost identical to the kernel method.

D. Data Example

The data comes from a case-control study in Chatterjee et al. (2006). This study

investigates the association between colorectal adenoma, a precursor of colorectal

cancer, and NAT2, a candidate gene that is known to play an important role in

detoxification of certain aromatic carcinogens in cigarette smoke. In our data set, we

removed the nonsmokers, leaving 328 cases and 372 controls who were genotyped for

six known functional polymorphisms related to NAT2 acetylation activity.

Maity et al. (2009) considered an application involving the three most common

NAT2 diplotypes in comparison to the rest, which in our notation is X . The de-

mographic variables S include gender and three indicator dummy variables for age

level: between 60 and 65 years, between 65 and 70 years and more than 70 years.

We explored three different environmental variables Z, namely CIG STOP, the num-

ber of years since stopping smoking, PhIP, 2-Amino-1-methyl-6-phenylimidazo[4,5-

b]pyridine, which has been demonstrated to produce adenocarcinomas in mice, and

Red Meat, daily grams of red meat intake.
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The results are displayed in Table 1. We see that in all cases, the p-values using

our method are smaller than that when γ is fixed to = 0. This is not a theorem of

course, but it does show support with the results of the simulations, which indicate

that if there is an interaction, our method will have greater statistical power.

Table 1. Significance levels in the NAT2 example

Number of

Environment Diplotypes Our Method Fixing γ = 0

CIG STOP 1 0.000 0.000

2 0.000 0.000

3 0.000 0.001

Red Meat 1 0.464 0.639

2 0.381 0.595

3 0.470 0.623

PhIP 1 0.984 0.935

2 0.227 0.939

3 0.162 0.938

E. Discussion

We have shown how to test for a constant environmental effect in the model (2.2).

The methodology was described for kernel regression methods and justified in the

important logistic regression case. Numerically, we have found that regression spline

approaches are very close to being the same as kernel methods and much faster to

compute, although their theory remains an open question in this context.
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CHAPTER III

LOCALLY EFFICIENT SCORE TESTS FOR INDEPENDENCE IN THE

SECONDARY ANALYSIS OF CASE-CONTROL DATA

Typical case-control studies focus on the relationship between disease D and covari-

ates (Y,X). In the secondary analysis of case-control data, it is the relationship

between Y and X that is of interest, but the analysis of this relationship is compli-

cated by the case-control sampling framework, which is a type of biased sampling.

Previous work has assumed a parametric distribution for Y given X and derived semi-

parametric efficient estimation and inference without any distributional assumptions

about X : of course, the roles of X and Y can be interchanged.

In this study, we take up the issue of score testing for the independence of X and

Y . The semiparametric efficient approaches can be used to construct semiparametric

score tests, but they suffer from a lack of robustness to the assumed model for Y given

X . We take an entirely different and novel approach. We show how to adjust the

semiparametric score test to make its level/Type I error asymptotically correct in the

rare disease case even if the assumed model for Y given X is incorrect, and thus the

test is model robust. Extensions to linear regression with additional covariates are

discussed. Simulations and an empirical example are used to illustrate the approach.

A. Introduction

Suppose that data are originally collected from a case-control study of a relatively

rare disease. Let D be disease status, with D = 1 denoting a case and D = 0

denoting a control. Suppose also that D is to be modeled by covariates (Y, Z,X)

using a standard logistic regression formulation.

There is growing awareness that such case-control data can also be exploited to
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understand various facets of the relationship among (Y, Z,X). Although we deal with

many different types of models, it is instructive to consider simpler cases in order to

fix ideas. For example, suppose that one would like to model Y by (Z,X) using a

homoscedastic additive regression model

Y = g1(Z, ξ) + g2(X, β) + ǫ, (3.1)

where g1(·) and g2(·) are known functions, and where ǫ has mean zero and variance σ2

in the population, and is independent of (Z,X), but its distribution is otherwise not

specified. Suppose we are further interested in knowing whether X is an independent

predictor of Y given Z. We can formalize this by testing whether β = 0.

We cannot simply ignore the case-control sampling scheme and use the data as

is to test the hypothesis that β = 0, because if (Y,X) are independent predictors

of disease status D, the sampling is biased and in the case-control sample X is an

independent predictor of Y . However, since the disease is rare, to a surprisingly

good approximation we can test this hypothesis by simply using only the controls

in the study. Strictly speaking this is asymptotically incorrect, but in practical data

situations even with 5, 000 cases and 5, 000 controls, the level/Type I error of a

regression test that uses the controls is very close to nominal.

The question we address here is whether in model (3.1) we can use both the

cases and the controls to construct a test with greater power than using the controls

only, without making strong distributional assumptions about the distribution of the

experimental errors ǫ.

This chapter is organized as follows. In Section B, we start with the basic general

problem that the covariates are simply (Y,X) and the interest is in knowing whether

X is a predictor of Y . Here we describe recent work on case-control studies that allows

an efficient score-test based solution if the distribution of Y given X is specified up to
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parameters. While the solution is elegant, it suffers from the fact that the resulting

test does not have the correct level if the hypothesized distribution for Y given X is

misspecified, a fact we show both theoretically and in simulations (Section E).

Section C takes an entirely different and novel approach to the basic general

problem, and describes a simple score-type test that is robust to misspecification of

the distribution of Y given X . In Section D, we return to model (3.1) and describe

a robust score-type test for the hypothesis that β = 0. Section E presents a series of

simulation studies, while Section F presents a data analysis. Concluding remarks are

in Section G.

B. Efficient Parametric Methods and Robustness

1. Framework

Before eventually providing a solution for model (3.1), here we consider the general

problem that the covariates are (Y,X) and we wish to test whether Y and X are

independent. We start with a logistic regression model underlying the case-control

analysis, so that pr(D = 1|Y,X) = H{θ0 + m(Y,X, θ1)}, where H(·) is the logistic

distribution function and m(·) is an arbitrary known function with unknown param-

eter θ1. Let πd = pr(D = d), and suppose there are n1 cases with D = 1 and n0

controls with D = 0. Write n = n0 + n1 and define κ = θ0 + log(n1/n0)− log(π1/π0).

Parametric models start with a density/mass function for Y given X , written as

fY (y, x, β, ζ), where β = 0 means that Y and X are independent, and ζ is a nuisance

parameter.
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2. Prior Results and Robustness

For this problem, Jiang, et al. (2006), Chen, et al. (2008) and Lin and Zheng (2009)

derive the efficient profile likelihood, the latter importantly realizing that it can be

used in our context. We use the notation of Chen, et al. (2008), and instead of

proving formulae for the general case, we here provide formulae only for the rare

disease case, the subject of this study. Define Ω = (κ, θ1) and

Spar(d, y, x,Ω, β, ζ) = fY (y, x, β, ζ) exp[d{κ+m(y, x, θ1)}]. (3.2)

The previous authors show that the semiparametric efficient profile likelihood that

makes no assumptions about the distribution of X when the distribution of Y given

X is specified is, in the rare disease case, given by

Lpar(D, Y,X,Ω, β, ζ) =
Spar(D, Y,X,Ω, β, ζ)∫ ∑1
d=0 Spar(d, t, X,Ω, β, ζ)dt

.

Define L(y, x, ζ) = [∂log{fY (y, x, β, ζ)}/∂β]β=0. Then the score function for β evalu-

ated at the null hypothesis β = 0 is

Kpar(Y,X,Ω, ζ) =
∂log{Lpar(Y,X,Ω, β, ζ)}

β

∣∣
β=0

= L(Y,X, ζ)−
∫ ∑1

d=0L(t, X, ζ)Spar(d, t, X,Ω, 0, ζ)dt∫ ∑1
d=0 Spar(d, t, X,Ω, 0, ζ)dt

. (3.3)

Because Lpar(·) is a legitimate semiparametric profile likelihood, when summed over

the case-control data, the score statistic (3.3) has mean zero under our rare disease

assumption. Implementation of course involves estimating Ω. This can be done either

by maximizing the profile likelihood when β = 0 or much more easily from a logistic

regression of D on (Y,X), because this yields a consistent estimate of Ω.

In the Appendix B, we show that if the distribution of Y given X is misspeci-

fied, even under the null hypothesis of independence between (Y,X), then the score
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statistic does not in general have mean zero, and hence the score test is not model

robust. This motivates our search for a robust score-type test, a topic we take up in

the next section.

C. A Locally Efficient Robust Score Test

1. Preliminaries

First, in all our calculations and methods, we will estimate Ω consistently by a logistic

regression of D on the covariates.

Now that we know that the semiparametric efficient score test is not robust to

misspecification of the distribution of Y given X , we take up the topic of finding a

robust test. The approach is entirely different from that described in Section 2.

We start with a conjectured model for Y given X , e.g., see just above (3.3). Let

L(Y,X, ζ) be the null hypothesis score for this conjectured model. The idea is to

center this null score at its expectation, where the expectation is computed without

any modeling assumptions about Y . Remember that Ω = (κ, θ1), write the density

function of X as fX(·) and write the density function of Y under the null hypothesis

generically as fY (·). For the moment we will assume that fX(·) is known. Interest

is in testing whether Y and X are independent in the population, with data from a

case-control study. Define

S(d, y, x,Ω) = exp[d{κ+m(y, x, θ1)}]. (3.4)

Of course, (κ, θ1) can be estimated via ordinary logistic regression.

Under the hypothesis of independence, if Y is a continuous random variable,

Spinka, et al. propose to pretend that it is discrete with support at the observed Yi,
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pretending that

pr(Y = Yi) = pest(Yi) =
nπ0

n0
n−1

{∫
fX(x)

∑1
d=0S(d, Yi, x,Ω)dx

}−1

. (3.5)

Strictly speaking, this is only true when Y has a continuous density function, but in

what follows we use (3.5) in such a way that our methods apply to the discrete case.

2. The Theoretical Score Under the Null Hypothesis

To derive the method, we consider the alternative formulation (Chen, et al., 2009) of

case-control studies as random samples with missing data: of course, we use the only

for intuition, and do all technical calculations in the actual case-control study. In this

alternative formulation, we have random sampling and we observe (D, Y,X), which

we write as δ = 1, with pr(δ = 1|D = d, Y,X) ∝ nd/nπd. Then, in this formulation

∑1
d=0pr(D = d, Y = y,X = x|δ = 1)

=
{(nd/(nπd)}pr(D = d|Y = y,X = x)pr(Y = y|X = x)fX(x)∑1

p=0{np/(nπp)}
∫
pr(D = p|Y = t, X = v)pr(Y = t|X = v)fX(v))dtdv

=

∑1
d=0S(d, y, x,Ω)fY (y, x, β, ζ)fX(x)∑1

p=0

∫
S(p, t, v,Ω)fY (t, v, β, ζ)fX(v)dtdv

. (3.6)

Then the score for β in this alternative formulation calculated under the null hypoth-

esis is

L(Y,X, ζ)−
∑1

d=0

∫
L(t, x, ζ)S(d, t, x,Ω)fY (t)fX(x)dtdx∑1

d=0

∫
S(d, t, x,Ω)fY (t)fX(x)dtdx

. (3.7)

The problem of course is that we do not know the form of fY (·), so that the test

statistic (3.7) cannot be implemented. The idea is to replace fY (·) in (3.7) by the
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discrete distribution (3.5), leading to the test statistic

V(Ω) = n−1
∑n

i=1L(Yi, Xi, ζ)

−
∑n

i=1

∑1
d=0

∫
L(Yi, x, ζ)S(d, Yi, x,Ω)pest(Yi)fX(x)dx∑n

i=1

∑1
d=0

∫
S(d, Yi, x,Ω)pest(Yi)fX(x)dx

. (3.8)

We now show how to simplify this test statistic, that it has mean zero under the null

hypothesis even if the model for Y is misspecified under the null hypothesis, and that

it does not have mean zero in general at alternatives.

Theorem 1 Define

U(Y,Ω, ζ) =

∑1
d=0

∫
L(Y, x, ζ)S(d, Y, x,Ω)fX(x)dx∑1
d=0

∫
S(d, Y, x,Ω)fX(x)dx

. (3.9)

Then the test statistic V in (3.8) satisfies

V(Ω, ζ) = n−1
∑n

i=1{L(Yi, Xi, ζ)− U(Yi,Ω, ζ)}. (3.10)

In addition, if fX(·) is specified correctly, the score test statistic (3.10) has mean zero

in the case-control sampling scheme under the null hypothesis, but in general does not

have mean zero at alternatives.

3. Practical Implementation and Asymptotic Theory

In order to implement the test statistic (3.10), we have to estimate Ω = (κ, θ1), ζ if

applicable, and fX(·). We do this as follows.

• It is well known that Ω = (κ, θ1) can be estimated consistently by ordinary

logistic regression of D on (Y,X), and this is the estimate we use.

• The proof of Theorem 1 shows that as long as an estimate ζ̂ is converging at the

rate Op(n
−1/2) to some value ζ∗, the robust score V(Ω̂, ζ̂) will converge to zero

under the null hypothesis. Based on the rare disease assumption, estimation of
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ζ can be performed conveniently by using only the controls in the study, and

doing the estimation under the null hypothesis using the conjectured model

fY (y, x, β = 0, ζ).

• To estimate fX(·), we use the rare disease assumption, namely that fX(·) =

fX,cont(·), then density of X among the controls. Then the integrals in (3.9) can

be estimated unbiasedly as averages among the controls.

With these conventions, the test statistic becomes

V(Ω̂, ζ̂) = n−1∑n
i=1L(Yi, Xi, ζ̂)

−n−1
∑n

i=1

n−1
0

∑n
j=1(1−Dj)L(Y,Xj, ζ̂)S(d, Y,Xj, Ω̂)

n−1
0

∑n
j=1(1−Dj)S(d, Y,Xj, Ω̂)

. (3.11)

We sketch a proof of the followings result in Appendix B, which uses U-statistic

theory.

Theorem 2 Assume that as n → ∞, n0/n1 → c, where 0 < c < ∞. There is a func-

tion Λ(Y,X,Θ) defined in the Appendix B with the property that E{Λ(Y,X,Θ)|D} = 0

such that under the null hypothesis,

n1/2V(Ω̂, ζ̂) = n−1/2∑n
i=1Λ(Yi, Xi,Θ) + op(1)

→ Normal(0,Σ);

Σ =
∑1

d=0(nd/n)cov{Λ(Y,X,Θ)|D = d}.

We also show in Appendix B how to estimate Σ by method of moment calcula-

tions, although we find it simpler to estimate it by using the bootstrap, resampling

the cases and controls separately. With an estimate Σ̂, under the null hypothesis

nVT(Ω̂, ζ̂)Σ−1V(Ω̂, ζ̂) is asymptotically χ2
p, where p = dim(β), and the hypothesis of

independence can be tested by referring to chisquared percentiles.
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D. The Regression Case

We now return to model (3.1). We see that under the null hypothesis β = 0,

X is independent of Y − g1(Z, ξ), where now the nuisance parameter in our gen-

eral formulation is ζ = ξ. Hence, all of our previous results apply if L(Y,X, ζ) =

{∂g2(X, β)/∂β}β=0{Y − g1(Z, ξ)}, and, using the rare disease approximation, the

nuisance parameter ξ is estimated from the regression of Y on Z among the controls.

E. Simulation Studies

We performed a series of simulation studies both at and away from an hypothesized

normal model, with X binary, discrete and continuous. In general we will show that

our proposed test statistic has near nominal level (Type I error) in all cases, while an

implementation of the efficient test does not. We also show that while the test that

uses only the controls has near nominal level, our method has much greater power.

1. When X is Binary

Our first simulation occurs when X is binary. Here we consider the case of a genotype,

with minor allele frequency pA = 0.10, and with genotypes generated under Hardy

Weinberg Equilibrium. Assuming a dominant mode of inheritance, we have X as

binary with pr(X = 0) = (1 − pA)
2 = 0.81. The regression model for Y given X

was taken as Y = β0 + β1X + ǫ, with β0 = 0. We considered three distributions for

ǫ. The hypothesized model was Normal(0, σ2) with σ2 = 1. The misspecified models

were (a) Chisquared(7) centered and standardized to have mean zero and variance

one; and (b) centered and standardized Gamma(a, b), where a = (0.4, 0.8, 1.4, 1.8)

and b = 1.9. The logistic regression model has m(Y,X, θ1) = θ11Y + θ12X , with

θ11 = 0.25 and θ12 = 1. The value of θ0 = −3.50 was chosen so that the rate of
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disease in the population for the normal case was π1 = 0.045. The case-control study

had n1 = 500 cases and n0 = 500 controls. We generated 1, 000 simulated data sets.

Values β1 = 0.00 for the null hypothesis and β1 = (0.10, 0.15, 0.20, 0.30, 0.40, 0.50)

were taken to investigate level and power. We made the rare disease assumption,

so that Ω = {κ, θ1 = (θ11, θ12)}, and Ω was estimated by ordinary linear logistic

regression of D on (Y,X).

Here ζ = (β0, σ
2). We compared the efficient score test that assumes that Y =

Normal(β0+β1X, σ2) but make no assumptions about the distribution of X with the

robust method described, where for the former ζ was estimated efficiently at the null

hypothesis using the controls. In both cases, the variance of the score statistic was

estimated by 400 bootstrap samples. We use the rare disease assumption.

For the robust test, Ω = {κ, θ1 = (θ11, θ12)}, ζ = (β0, σ
2), fY (y, x, β, ζ) =

(2πσ2)1/2φ{(y − β0 − xβ1)/σ} and L(y, x, ζ) = [∂log{fY (y, x, β, ζ)}/∂β]β=0 = (y −

β0)x/σ
2, where φ(·) is the standard normal density function. We estimated β0 as the

mean of Y among the controls, and estimate σ2 as the mean squared error of the

linear regression of Y on X among the controls.

For the efficient test, the score function for β1 evaluated at the null hypothesis

β1 = 0 is

Kpar(y, x,Ω, ζ) = L(y, x, ζ)−
∫ ∑1

d=0L(t, x, ζ)Spar(d, t, x,Ω, 0, ζ)dt∫ ∑1
d=0 Spar(d, t, x,Ω, 0, ζ)dt

.

Rather than implement the efficient Wald test, which requires repeated numerical

integration, we instead estimate (Ω, ζ) as described above. Then, by simple algebra,

the score for β1 evaluated at β1 = 0 is proportional to

Tpar(y, x,Ω, ζ) = xy − x

∫ ∑1
d=0tSpar(d, t, x,Ω, 0, ζ)dt∫ ∑1
d=0 Spar(d, t, x,Ω, 0, ζ)dt

. (3.12)

In the Appendix B, we show how to compute (3.12) exactly without numerical integra-
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tion. The score test statistic then becomes Vpar(Ω̂, ζ̂) = n−1/2
∑n

i=1 Tpar(Yi, Xi, Ω̂, ζ̂).

In Table 2, the first two columns show the test levels of the robust test and

efficient score test with different distributions of ǫ. The robust test has near nominal

level in all cases, as expected by the theory. Also as expected, the level of the efficient

test is near nominal at the correctly specified normal distribution, but at the various

Gamma distributions it has inflated Type I error.

There are of course alternative methods. One is to ignore the case-control sam-

pling scheme entirely, and simply regress Y on X in the study data. As expected, this

has inflated level in all cases, see Table 2. An alternative is to use the rare-disease

assumption and regress Y on X among only the controls. Table 2 shows that this

procedure has near-nominal level in all cases. However, unlike our method, it uses

only 1/2 the data, and would be expected to suffer from lower power. In Table 3, we

compare the power of our method to this regression of Y on X among the controls,

both for the normal case and also one of the Gamma cases. In both, our method,

while equally robust in terms of test level, has much greater power.

Table 2. Test levels of normal, chisquared and gamma distributions for three methods

when X is binary

Score

Robust Efficient Regression Regression(c) pr(D = 1)

Normal(0,1) 0.054 0.062 0.088 0.047 0.045

Chisquared(7) 0.050 0.051 0.069 0.048 0.048

G(0.4,0.9109) 0.049 0.100 0.093 0.045 0.039

G(0.8,0.9109) 0.047 0.125 0.104 0.035 0.039

G(1.4,0.9109) 0.065 0.097 0.082 0.053 0.039

G(1.8,0.9109) 0.056 0.105 0.077 0.034 0.039
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Table 3. Powers of normal and gamma distributions when X is binary

β1 0.1 0.15 0.2 0.3 0.4 0.5

Robust Normal(0,1) 0.183 0.381 0.698 0.951 0.999 1.000

G(1.8,0.9) 0.150 0.316 0.537 0.926 0.998 1.000

Regression Normal(0,1) 0.102 0.177 0.316 0.636 0.875 0.977

G(1.8,0.9) 0.113 0.225 0.375 0.685 0.927 0.991

2. When X is Discrete

We next performed a similar simulation, with the only change being that X is dis-

crete with support points (−0.40, 0.15, 1.00, 1.30, 2.10), with respective probabilities

(0.04, 0.08, 0.16, 0.41, 0.31). We chose θ0 = −4.68 so that the probability of disease is

about 0.04.

The gain in power over the method that regresses Y on X among the controls is

demonstrated in Table 4. Table 5, shows that the robust test performs much better

than the efficient score test in terms of test level when the distribution of Y given X

is misspecified.

Table 4. Powers of normal and gamma distributions when X is discrete

β1 0.1 0.15 0.2 0.3 0.4 0.5

Robust Normal(0,1) 0.416 0.747 0.872 0.997 1.000 1.000

G(1.8,0.9) 0.443 0.768 0.884 0.994 1.000 1.000

Regression Normal(0,1) 0.272 0.524 0.811 0.989 1.000 1.000

G(1.8,0.9) 0.270 0.564 0.812 0.990 1.000 1.000
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Table 5. Test levels of normal, chisquared and gamma distributions for three methods

when X is discrete

Score

Robust Efficient Regression Regression(c) pr(D = 1)

Normal(0,1) 0.055 0.067 0.124 0.041 0.041

Chisquared(7) 0.053 0.089 0.157 0.061 0.042

G(0.4,0.9109) 0.031 0.398 0.156 0.053 0.042

G(0.8,0.9109) 0.041 0.257 0.143 0.053 0.042

G(1.4,0.9109) 0.036 0.173 0.140 0.061 0.042

G(1.8,0.9109) 0.041 0.133 0.153 0.058 0.042

3. When X is Continuous and Scalar

We formed a similar simulation as in the discrete case, with the only change being

that X is generated as Uniform(0, 1). We chose θ0 = −3.7 so that the probability

of disease is about 0.04. The gain in power over the method that regresses Y on

X among the controls is demonstrated in Table 6. Table 7, shows that the robust

test performs much better than the efficient score test in terms of test level when the

distribution of Y given X is misspecified.

Table 6. Powers of normal and gamma distributions when X is continuous

β1 0.1 0.15 0.2 0.3 0.4 0.5

Robust Normal(0,1) 0.131 0.235 0.367 0.700 0.925 0.994

G(1.8,0.9) 0.104 0.190 0.315 0.650 0.881 0.979

Regression Normal(0,1) 0.102 0.159 0.250 0.494 0.704 0.890

G(1.8,0.9) 0.090 0.144 0.225 0.461 0.720 0.893
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Table 7. Test levels of normal, chisquared and gamma distributions for three methods

when X is continuous

Score

Robust Efficient Regression Regression(c) pr(D = 1)

Normal(0,1) 0.053 0.057 0.067 0.056 0.042

Chisquared(7) 0.041 0.082 0.069 0.049 0.042

G(0.4,0.9109) 0.052 0.378 0.083 0.048 0.042

G(0.8,0.9109) 0.042 0.398 0.074 0.056 0.042

G(1.4,0.9109) 0.046 0.385 0.079 0.059 0.042

G(1.8,0.9109) 0.047 0.396 0.067 0.041 0.042

4. Model with Covariates

In this section we add a covariate Z in our model since in practice we always have

covariates. We generate Z as Uniform(0, 1). The regression model for Y given (X,Z)

was then taken as Y = β0 + β1X + β2Z + ǫ, with β0 = 1 and β2 = 0.5. We use

the controls to run the regression of Y on Z to estimate ζ = (β1, β2), then call

Y∗ = Y − ξ̂0 − ξ̂1Z, the residuals, and run the test as if Y∗ were our response. We got

similar results as the without covariates case in terms of test levels and power.

F. Applications

We analyze two gene (X) environment (Y ) interaction data sets, one in which Y and

X are thought to be independent, and the other in which Y and X are thought to

be related.
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1. Prostate Cancer Example

Chen, et al. (2009) investigate a case-control study of prostate cancer. The sample

includes 749 prostate cancer cases and 781 controls, also selected from the screening

arm of the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial

at the National Cancer Institute, USA (Gohagan, Prorok, Hayes, and Kramer 2000;

Moslehi et al. 2006). The main objective of the study is to examine the relationship

between risk of prostate cancer and [25(OH)D], a serum level biomarker of vitamin

D, that reflects both dietary and sunlight exposures. The anticancer effect of vi-

tamin D is hypothesized due to the ability of prostate cells to convert [25(OH)D)]

into 1,25-dihydroxy-vitamin D [1,25(OH)2D], the most active form of this vitamin,

which regulates the gene transcription of many proteins involving cellular differenti-

ation, proliferation, and apoptosis via the vitamin D receptor (VDR). Chen, et al.

(2009) write ”Given the downstream role of the VDR gene in the vitamin-D path-

way, it is very unlikely that these polymorphisms actually could influence the level of

the [25(OH)D] itself. Thus, the gene-environment independence assumption in this

application is likely to be valid”.

The notation of this chapter, D is the prostate cancer case-control status, Y is

the level of 1,25-dihydroxy-vitamin D and X is one of three SNP, and Z is age level

categorized into four groups and hence with three dummy variables. The quote above

suggests that Y and X are independent in the population, and hence our test should

find no evidence that any of the SNP are related to 1,25-dihydroxy-vitamin D level.

Indeed, this is the case: all p-values are greater than 0.35, as expected.
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2. Colorectal Adenoma

Chen, et al. also discuss a case-control study of colorectal adenoma, a precursor of

colorectal cancer. The study sample includes 628 prevalent advanced adenoma cases

and 635 gender-matched controls, also selected from the screening arm of the PLCO

Study. One of the main objectives of this study is to assess whether the smoking-

related risk of colorectal adenoma may be modified by certain haplotypes in NAT2,

a gene known to be important in the metabolism of smoking related carcinogens. In

addition, because NAT2 is involved in the smoking metabolism pathway, potentially it

can influence an individuals addiction to smoking itself, causing the gene-environment

independence assumption to be violated. In other words, hereD is colorectal adenoma

status, Y are various measures of smoking status, and X are various haplotypes.

Chen, et al. use Z as age in years and gender. They claim that it is reasonable to

suppose that in the population, Y and X are related.

The smoking variables used here are (a) years since stopping smoking censor at

45; (b) Number of packs smoked per day; and (c) pack years subtract 0.25 and censor

at 100, i.e., packs per day times years smoked. As in Maity, et al. (2009), we let X

be the indicator of the most common diplotype.

The results are given in Table 8. We see a statistically significantly protective

of the most common diplotype for the years since stopping smoking. Crucially, all

the p-values from the robust test are similar to those from regression among controls

only, and are much less than those from the efficient score test. This is not a theorem

of course, but it does show support with the results of the simulations, which indicate

that the efficient score test can have the wrong level if the distribution of Y given X

is misspecified. We also randomly sub-sampled 80% of the people 1,000 times for the

smoking variable (a), and found that 61.2% of times our test rejected the null, while
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the regression among controls rejected the null 34.9% of times. This indicated our

test will have great gain in statistical power over the method that regresses Y on X

among the controls.

Table 8. P-values in the NAT2 example

Environment Robust Non-Robust Regression

CIG STOP 0.041 0.081 0.036

PACK YEARS 0.215 0.364 0.243

PACK DAY 0.198 0.382 0.227

G. Discussion

The study of the relationship among secondary variables in a case-control study is

of great practical interest, because large case-control studies now exist and especially

include predictors or phenotypes Y and demographic, environmental and genetic

factors. As we have noted, the semiparametric efficient approaches can be used to

construct semiparametric score tests, but they suffer from a lack of robustness to

the assumed model for Y given X : it is possible to create skew distributions for the

regression errors that result in bias when normality is assumed.

Our approach is entirely different. While we specify a target regression error

distribution, we have shown that the test procedure is robust to violation of that

target distribution, both theoretically and in a simulation study. In the rare disease

case that would be the reason for a case-control study in the first place, an alternative

is to simply use only the data for the controls. We have shown in simulations and in

our two data examples that such throwing away of 50% of the data leads to a highly

non-trivial loss of power compared to our method.
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CHAPTER IV

LOCALLY EFFICIENT ESTIMATION FOR HOMOSCEDASTIC REGRESSION

IN THE SECONDARY ANALYSIS OF CASE-CONTROL DATA

Typical case-control studies focus on the relationship between disease D and covari-

ates (Y,X). In the secondary analysis of case-control data, it is the relationship be-

tween Y and X that is of interest, but the analysis of this relationship is complicated

by the case-control sampling framework. Previous work has assumed a paramet-

ric distribution for Y given X and derived semiparametric efficient estimation and

inference without any distributional assumptions about X .

In this project, we take up the issue of estimation of a regression function when

Y given X follows a homoscedastic regression model. The semiparametric efficient

approaches can be used to construct semiparametric efficient estimates, but they suffer

from a lack of robustness to the assumed model for Y given X . We take an entirely

different and novel approach in the case that the disease is rare. We show how to

estimate the regression parameters in the rare disease case even if the assumed model

for Y given X is incorrect, and thus the estimates are model-robust. Simulations and

an empirical example are used to illustrate the approach.

A. Introduction

Suppose that data are originally collected from a case-control study of a relatively

rare disease. Let D be disease status, with D = 1 denoting a case and D = 0 denoting

a control. Suppose also that D is to be modeled by covariates (Y,X) using a standard

logistic regression formulation.

There is growing awareness that such case-control data can also be exploited to

understand various facets of the relationship among (Y,X). We consider here the
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homoscedastic regression model

Y = αtrue + µ(X, βtrue) + ǫ, (4.1)

where αtrue is an intercept, µ(·) is a known function, and where ǫ has mean zero and

is independent of X , but its distribution is otherwise not specified.

To estimate (αtrue, βtrue), we cannot simply ignore the case-control sampling

scheme and use the data as is, because if X is an independent predictor of dis-

ease status D, the sampling is biased and in the case-control sample model (4.1) will

not hold. However, since the disease is rare, to a surprisingly good approximation we

can indeed use only the controls and obtain an approximately consistent estimate.

The question we address here is whether in model (4.1) we can use both the cases

and the controls to construct more efficient estimates of (αtrue, βtrue) than using the

controls only, at the same time without making distributional assumptions about the

distribution of the experimental errors ǫ.

This chapter is organized as follows. In Section B, we describe recent work on

case-control studies that allows efficient estimation if the distribution of Y given X

is specified up to parameters. While the solution is elegant, it suffers from the fact

that the resulting estimate is biased if the hypothesized distribution for Y given X is

misspecified.

Section C takes an entirely different approach to the basic general problem, and

describes a simple method that is robust to misspecification of the distribution of Y

given X . Section D presents a series of simulation studies, while Section E presents

a data analysis. Concluding remarks are in Section F. Technical details are given in

an appendix.
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B. Efficient Parametric Methods and Robustness

1. Framework

We start with a logistic regression model underlying the case-control analysis, so

that pr(D = 1|Y,X) = H{θ0 + m(Y,X, θ1)}, where H(·) is the logistic distribution

function and m(·) is an arbitrary known function with unknown parameter θ1. Let

πd = pr(D = d), and suppose there are n1 cases with D = 1 and n0 controls with

D = 0, write n = n0 + n1 and define κ = θ0 + log(n1/n0) − log(π1/π0). Write the

parametric model for Y given X as fǫ{y − µ(x, β), ζ}. If in the population Y given

X is normally distributed, then ζ = var(ǫ).

2. Prior Results and Robustness

For this problem, Jiang, et al. (2006), Chen, et al. (2008) and Lin and Zheng (2009)

derive the efficient profile likelihood, the latter noting importantly that it can be used

in our context. We use the notation of Chen, et al. (2008), and instead of proving

formulae for the general case, we here provide formulae only for the rare disease case,

the subject of this study. Define Ω = (κ, θ1) and

Spar(d, y, x,Ω, α, β, ζ) = fǫ{y − α− µ(x, β), ζ} exp[d{κ+m(y, x, θ1)}]. (4.2)

The previous authors show that the semiparametric efficient profile likelihood that

makes no assumptions about the distribution of X when the distribution of Y given

X is specified is

Lpar(D, Y,X,Ω, α, β, ζ) =
Spar(D, Y,X,Ω, α, β, ζ)∫ ∑1
d=0 Spar(d, t, X,Ω, α, β, ζ)dt

.

Taking logarithms, summing over the observed data and then maximizing in the

parameters yields semiparametric efficient inference. A difficulty arises however if the
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density fǫ(·) of ǫ is not specified properly.

To see what happens, we consider the score for β. Define Lpar(y, x, α, β, ζ) =

∂log[fǫ{y − α− µ(x, β), ζ}]/∂β. Then the score for β is

Kpar(D, Y,X,Ω, α, β, ζ) =
∂log{Lpar(D, Y,X,Ω, α, β, ζ)}

∂β
(4.3)

= Lpar(Y,X, α, β, ζ)

−
∫ ∑1

d=0 Lpar(t, X, α, β, ζ)Spar(d, t, X,Ω, α, β, ζ)dt∫ ∑1
d=0 Spar(d, t, X,Ω, α, β, ζ)dt

.

Because Lpar(·) is a legitimate semiparametric profile likelihood, when summed over

the case-control data and evaluated at the true parameters, the score (4.3) has mean

zero under our rare disease assumption. Unfortunately, (4.3), when evaluated at

the true parameter values, only has mean zero in general if the density fǫ(·) of ǫ is

specified properly, i.e., the approach is not model robust. This motivates our search

for a robust estimation method, a topic we take up in the next section.

C. Model-Robust Estimation

1. Preliminaries

Our method involves a multi-step process.

• Estimate the logistic regression parameters Ωtrue by ordinary logistic regression

of D on (Y,X). This can be done legitimately because it is well known that

ordinary logistic regression in a case-control study consistently estimates Ωtrue.

Call the result Ω̂.

• Write a conjectured version of the model for Y given X . In our case, we conjec-

ture a normal distribution with constant variance ζ . In general, we conjecture

a distribution where ǫ depends on a nuisance parameter ζ .
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• Compute the score function of the conjectured model for β and ζ . In the normal

case that we pursue, define R(β) = Y −µ(X, β) in which case the score function

for the conjectured model is proportional to ζ , which can be ignored, and hence

is

L{R(β), X, α, β} = µβ(X, β){R(β)− α}, (4.4)

where the subscript means differentiation with respect to β.

• The score (4.4) will not have mean zero in the case-control sampling scheme, so

we adjust it so that it has mean zero in general, even if the conjectured model

is not correct.

• For technical reasons described later, estimation of αtrue has to be done via an

auxiliary equation depending on the current values, which we generically call

α̂(β, Ω̂), which replaces α in the score (4.4), see below for the definition.

• Solve the adjusted score equation to estimate βtrue and hence αtrue. Good start-

ing values for β can be obtained by least squares regression among the controls.

2. The Methodology

The development of our methodology is somewhat involved. Here we simply state

our proposal, with its development given in subsequent subsections. As before, de-

fine R(β) = Y − µ(X, β) and define K{Ri(β), x, β,Ω} = 1 + exp[κ + m{Ri(β) +

µ(x, β), x,Ω}]. Let

α̂(β,Ω) =
n−1

∑n
i=1Ri(β){n−1

0

∑n
j=1(1−Dj)K{Ri(β), Xj, β,Ω}}−1

n−1
∑n

i=1{n−1
0

∑n
j=1(1−Dj)K{Ri(β), Xj, β,Ω}}−1

. (4.5)
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Let µβ(x, β) = ∂µ(x, β)/∂β and let L{R(β), X, α, β} be as in (4.4). Then define

Q̂n,est(β,Ω) = n−1/2
∑n

i=1

[
L{Ri(β), Xi, α̂(β,Ω), β} (4.6)

−
n−1
0

∑n
j=1(1−Dj)L{Ri(β), Xj, α̂(β,Ω), β}K{Ri(β), Xj, β,Ω}

n−1
0

∑n
j=1(1−Dj)K{Ri(β), Xj, β,Ω}

]
.

Our algorithm then is as follows.

• Estimate Ω by Ω̂, the logistic regression estimates of D on (Y,X). These are

known to produce consistent estimates of Ωtrue.

• Solve 0 = Q̂n,est(β, Ω̂) in β to obtain our estimate β̂.

In the next few subsections, we describe how we obtained (4.6), and at the end we

describe the asymptotic distribution theory.

3. Development of the Score when fX(·) and αtrue are Known

We first describe how to proceed when the intercept αtrue and the density fX(·) of X

in the population are known; of course they are not and we will show how to remove

these restrictions in subsequent sections. In what follows, we use the notation Ecc

as a short hand notation for expectation in the case-control sampling scheme. Thus,

Ecc{G(D, Y,X)} = n−1
∑n

i=1E{G(Di, Yi, Xi)|Di} =
∑1

d=0(nd/n)E{G(D, Y,X)|D =

d}.

To derive the method, we consider the alternative formulation (Chen, et al., 2009)

of case-control studies as random samples with missing data. Of course, we use this

only for intuition, and do all technical calculations in the actual case-control study.

In this alternative formulation, we have random sampling and we observe (D, Y,X),

thus setting the binary δ = 1, with pr(δ = 1|D = d, Y,X) ∝ nd/nπd. Then, in this
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formulation

pr(D = d, Y = y,X = x|δ = 1)

=
{(nd/(nπd)}pr(D = d|Y = y,X = x}pr{Y = y|X = x)fX(x)∑1

p=0{np/(nπp)}
∫
pr(D = p|Y = t, X = v)pr{Y = t|X = v}fX(v)dtdv

.

This means that the regression model in the alternative formulation is

pr(Y = y,X = x|δ = 1)

=

∑1
d=0(nd/πd)pr(D = d|Y = y,X = x}fǫ{y − αtrue − µ(x, β), ζ}fX(x)∑1

p=0(np/πp)
∫
pr(D = p|Y = t, X = v)fǫ{t− αtrue − µ(v, β), ζ}fX(v)dtdv

.

We now make the rare disease approximation so that
∑1

d=0(nd/πd)pr(D = d|Y =

y,X = x} = (n0/π0)+(n1/π1) exp{θ0+m(y, x, θ1)} = (n0/π0)[1+exp{κ+m(y, x, θ1)}].

If the conjectured model is the normal distribution, then we can drop the term ζ and

up to a constant of proportionality the score for β is

µβ(X, β){Y − αtrue − µ(X, β}

−
∫

µβ(v, β){t− αtrue − µ(v, β)}fǫ{t− αtrue − µ(v, β)}∫
fǫ{t− αtrue − µ(v, β)}[1 + exp{κ+m(y, v, θ1)}]fX(v)dtdv

×[1 + exp{κ+m(y, v, θ1)}]fX(v)dtdv.

We now make the change of variables R(β) = Y−µ(X, β), and recall thatK(r, x, β,Ω) =

1 + exp[κ+m{r + µ(x, β), x,Ω}]. Referring to (4.4), this means that the score for β

in the alternative formulation of Chen, et al. (2009) is

L{R(βtrue), X, αtrue, β} −
∫
L{t, x, αtrue, β}K(t, x, β,Ω)fǫ(t)fX(x)dtdx∫

K(t, x, β,Ω)fǫ(t)fX(x)dtdx
. (4.7)

The problem of course is that we do not know the form of fǫ(·), so that the score

(4.7) cannot be implemented. Spinka, et al. address this issue, although not directly

in our context. Noting that R(βtrue) and X are independent, we propose to replace
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fǫ(·) by pretending that it is discrete with support at the observed Ri(β), so that

pr{R(β) = Ri(β)} = pest{Ri(β),Ω}

=
nπ0

n0
n−1

{∫
fX(x)K{Ri(β), x, β,Ω}dx

}−1

. (4.8)

When we make this substitution in (4.7) and sum over the data, the score becomes

∑n
i=1L{Ri(β), Xi, αtrue, β}

−
∑n

i=1

∫
L{Ri(β), x, αtrue, β}K{Ri(β), x, β,Ω}pest{Ri(β),Ω}fX(x)dx
n−1

∑n
i=1

∫
K{Ri(β), x, β,Ω}pest{Ri(β),Ω}fX(x)dx

.

Because the denominator of this expression is π0/n0, by simple algebra is it readily

seen that the normalized score function for estimating β can be defined as

0 = Qn(αtrue, β,Ω) (4.9)

= n−1/2
∑n

i=1 [L{Ri(β), Xi, αtrue, β}

−
∫
L{Ri(β), x, αtrue, β}K{Ri(β), x, β,Ω}fX(x)dx∫

K{Ri(β), x, β,Ω}fX(x)dx

]
.

In Appendix C, we show that Ecc{Qn(αtrue, β,Ω)} equals zero when evaluated at

(αtrue, βtrue,Ωtrue), but not generally, and thus (4.9) is an unbiased estimating equation

in the case-control sampling scheme, and not just the alternative formulation.

Remark 1 If the conjectured model fǫ{y−αtrue−µ(x, β), ζ} is not the normal model,

then ζ must also be estimated. This can be done by replacing L{R(β), X, αtrue, β}

by ∂log[fǫ{Y − αtrue − µ(X, β), ζ}]/∂(β, ζ).

4. Implementation when fX(·) is Unknown but αtrue is Known

Of course, fX(·) is not known. Because the disease is rare, we propose to approximate

fX(·) by fX,cont(·), the density of X among the controls. We then estimate the inte-

grals in (4.9) unbiasedly by their averages among the controls, so that our estimating
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equation is

0 = Q̂n(αtrue, β,Ω) (4.10)

= n−1/2
∑n

i=1

[
L{Ri(β), Xi, αtrue, β}

−
n−1
0

∑n
j=1(1−Dj)L{Ri(β), Xj, αtrue, β}K{Ri(β), Xj, β,Ω}

n−1
0

∑n
j=1(1−Dj)K{Ri(β), Xj, β,Ω}

]
.

5. When the Intercept αtrue is Unknown

In most cases, the mean function will include an intercept, although of course our

methods are easily modified in case no intercept exists.

One might reasonably think that estimating the intercept is easy, e.g., simply

supplement the score with the score for the intercept, so that L{R(β), X, α, β} =

{1, µT
β (X, β)}T{R(β)− α}. The problem with this is that the first component of the

estimating equation (4.10) would then be identically zero, and thus will not produce an

estimate of the intercept. The reason for this is that the solution (4.8) was calculated

nonparametrically under the assumption that R(βtrue) and X are independent in the

population. Since Y − αtrue − XTβtrue and Y − XTβtrue are both independent of X

in the population, this means that (4.8) cannot lead to an estimate of the intercept.

Hence, an alternative approach is required.

To overcome this problem, we estimate the intercept of R(β) using the tilting

suggested by Spinka, et al., i.e., if fX(·) were known, then α could be estimated by

α̂1(β,Ω) =
n−1

∑n
i=1Ri(β)pest{Ri(β),Ω}

n−1
∑n

i=1pest{Ri(β),Ω}
,

a quantity that is free of the π0 that shows up in (4.8). If we then invoke the

rare disease approximation and replace the integral in the definition of pest(·) by its

therefore unbiased average n−1
0

∑n
j=1(1−Dj)K{Ri(β), Xj, β,Ω}, we get exactly (4.5).

Making this substitution in (4.10), we obtain (4.6). This completes the derivation of
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our methodology.

6. Distribution Theory

Let (Ω, β) = Θ, and let Θtrue denote its true value. Recall that fX,cont(·) is the density

function of X among the controls, and define

α(β,Ω) =
Ecc(R(β)[

∫
fcont(x)K{R(β), x, β,Ω}dx]−1)

Ecc([
∫
fcont(x)K{R(β), x, β,Ω}dx]−1)

;

T {R(β), X,Θ, fX,cont} = L{R(β), X, α(β,Ω), β}

−
∫
L{R(β), x, α(β,Ω), β}K{R(β), x,Θ}fX,cont(x)dx∫

K{R(β), x,Θ}fX,cont(x)dx

MΩ = Ecc

[
∂T {R(βtrue), X,Θtrue, fX,cont}

∂ΩT

]
;

Mβ = Ecc

[
∂T {R(βtrue), X,Θ, fX,cont}

∂βT

]
.

Define Gnum(r, x,Θ) = L{r, x, α(β,Ω)β}K(r, x,Θ) and Gden(r, x,Θ) = K(r, x,Θ) De-

fine Anum(r,Θ) = E{Gnum(r,X,Θ)|D = 0} and Aden(r,Θ) = E{Gden(r,X,Θ)|D =

0}. Define

Hn(β,Θ) = n−1/2
∑n

i=1

[
n−1
0

∑n
j=1(1−Dj)Gnum{Ri(β), Xj,Θ}

n−1
0

∑n
j=1(1−Dj)Gden{Ri(β), Xj,Θ} − Anum{Ri(β),Θ}

Aden{Ri(β),Θ}

]
.

Define

W{Ri(β), Xj, Dj,Θ}

= (1−Dj)
Gnum{Ri(β), Xj,Θ} − Anum{Ri(β),Θ}

Aden{Ri(β),Θ}

−(1−Dj)
Anum{Ri(β),Θ}[Gden{Ri(β), Xj,Θ} − Aden{Ri(β),Θ}]

A2
den{Ri(β),Θ} .
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Also define

c∗ = lim
n→∞

(n/n0);

Z̃i(β) = {Ri(β), Xi, Di};

z̃ = (r, x, d);

Q1{Z̃i(β), Z̃j(β),Θ) = W{Ri(β), Xj, Dj ,Θ}+W{Rj(β), Xi, Di,Θ};

Q2(z̃, β,Θ) = E[W{R(β), x, d,Θ}|D = 1];

h1(d, z̃, β,Θ) = E{Q1{z̃, Z̃(β),Θ}|D = d};

h2{Ri(β), Xi, Di,Θ} = c∗(n0/n)(1−Di)h1{Di, Z̃i(β), β,Θ}

+c∗(n1/n)(1−Di)Q2{Z̃i(β), β,Θ};

Φ(y, x, d,Ω) = {1, mΩ(y, x, θ1)}T[D −H{κ+m(y, x, θ1)}];

NΩ = − [Ecc {∂Φ(Y,X,D,Ω)/∂Ω}]−1 ;

µ1(d) = E[T {R(β0), X,Θ0, fX)|D = d];

µ4(d) = E{Φ(Y,X,D,Ω0)|D = d};

Λ(Yi, Xi, Di,Θ0) = MΩ(Θ0)NΩ(Ω0){Φ(Yi, Xi, Di,Ω0)− µ4(Di)}

−h2{Ri(β0), Xi, Di,Θ0}

+ [T {Ri(β0), Xi,Θ0, fX)− µ1(Di)] .

The asymptotic distribution of our estimator in the rare event case is given in

the following result, the proof of which is sketched in Appendix C.

Theorem 3 Let (Ω, β) = Θ, and let Θtrue denote its true value. Assume that

n1/n0 → c, where 0 < c < ∞. Also assume that Mβ is invertible. Under the rare

disease approximation that the distribution of X in the population is approximately

the same as the distribution of X among the controls, E{Λ(Y,X,D,Θtrue)|D} = 0
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and

n−1/2(β̂ − βtrue) = n−1/2
∑n

i=1Λ(Y,Xi, D,Θtrue) + op(1) (4.11)

→ Normal
[
0,Σ =

∑1
d=0(nd/n)cov{Λ(Y,X,D,Θtrue)|D = d}

]
.

An estimate of Σ can be obtained via the bootstrap or by substitution into the various

terms composing Λ(·) and then using its sample covariance matrix.

D. Simulation

We performed a small simulation study to assess the bias, coverage probability and

efficiency of our method with respect to linear regression only among the controls.

In our simulation study we generated X as Uniform(0,1), the regression model

for Y given X was taken as Y = β0 + β1X + ǫ, with β0 = β1 = 0. We considered

three distributions for ǫ. The conjectured model was Normal(0, σ2) with σ2 = 1.

The misspecified models were (a) Chisquared(7) centered and standardized to have

mean zero and variance one; and (b) centered and standardized Gamma(a, b), where

a = (0.4, 0.8, 1.4, 1.8) and b = 1.9. The logistic regression model has m(Y,X, θ1) =

θ11Y + θ12X , with θ11 = 0.25 and θ12 = 1. The value of θ0 = −3.70 was chosen so

that the rate of disease in the population for the normal case was π1 = 0.045. The

case-control study had n1 = 500 cases and n0 = 500 controls. We generated 1, 000

simulated data sets. We made the rare disease assumption, so that Ω = {κ, θ1 =

(θ11, θ12)}, and Ω was estimated by ordinary linear logistic regression of D on (Y,X).

For each simulated data set, the standard deviation of the β̂1 was estimated by 500

bootstrap samples. We use the rare disease assumption.

The results are displayed in Table 9, and our easily summarized. First, our

method is essentially unbiased. Second, it has actual coverage probabilities very close
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to the nominal level. Third, our method is much more efficient than using only the

controls, with mean squared error efficiencies ranging from 1.30 to 2.56.

Table 9. Simulation study for the estimation of β1

Mean S.D. Mean of C.P. of C.P. of MSE

Bias S.D. estimated S.D. 90% CI 95% CI Efficiency

Normal(0,1) 0.00 0.10 0.11 0.93 0.97 2.56

Chisquared(7) -0.01 0.12 0.12 0.90 0.95 1.78

Gamma(0.4,0.91) -0.02 0.13 0.14 0.91 0.96 1.30

Gamma(0.8,0.91) -0.01 0.13 0.13 0.91 0.96 1.42

Gamma(1.4,0.91) -0.01 0.12 0.12 0.89 0.95 1.51

Gamma(1.8,0.91) -0.01 0.12 0.12 0.91 0.95 1.62

E. An Empirical Example

We used our methodology to investigate two examples described by Chen, et al.

(2008). The basic purpose of the analysis is to show that in realistic settings, our

methodology leads to much more precise inference that regression using only the

controls.

1. Prostate Cancer

The first case-control study is one of prostate cancer. The sample includes 749

prostate cancer cases and 781 controls, selected from the screening arm of the Prostate,

Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial at the National Can-

cer Institute (Gohagan, et al., 2000; Moslehi et al., 2006). In the notation of this

chapter, D is the prostate cancer case-control status and Y is the level of 1,25-
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dihydroxy-vitamin D. Let Z be age level categorized into four groups and hence with

three dummy variables. There are three single nucleotide polymorphisms (SNP) of

interest, with possible values 0, 1, 2: we call them SNP-1, SNP-2 and SNP-3. Then

X combines Z with each SNP, with a linear regression model, and we are interested

in the estimate of the SNP effect.

The results are given in Table 10. We see in this table that none of the coefficients

for the SNP are statistically significantly different from zero, which is one of the

expectations that Chen, et al. cite. Crucially, the 95% confidence intervals using our

method are much shorter than using the control data only, and when translated into

mean squared error efficiency, for the three SNP suggest gains in efficiency of 68%,

136% and 125%.

Table 10. Results of the VDR data example

Robust Regression

Lower Upper Lower Upper MSE

X Estimate CI CI Estimate CI CI Efficiency

SNP-1 0.015 -0.165 0.195 -0.029 -0.262 0.204 1.68

SNP-2 0.023 -0.047 0.093 0.039 -0.069 0.146 2.36

SNP-3 0.015 -0.062 0.092 -0.045 -0.161 0.070 2.25

2. Colorectal Adenoma

Chen, et al. also discuss a case-control study of colorectal adenoma, a precursor of

colorectal cancer. The study sample includes 628 prevalent advanced adenoma cases

and 635 gender-matched controls, also selected from the screening arm of the PLCO

Study. Here D is colorectal adenoma status and Y are various measures of smoking
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status, namely (a) years since stopping smoking, which we censor at 45; (b) Number

of packs smoked per day; and (c) pack years, i.e., packs per day times years smoked.

For the latter, as in Chen, at al., we subtracted 0.25 and censored at 100. Here Z is

age in years and gender, and X is Z combined with an indicator of the most common

diplotype against the rest. We are interested in estimating the effect of the most

common diplotype.

The results are given in Table 11. We see a statistically significantly protective of

the most common diplotype for the years since stopping smoking. Again,crucially, the

95% confidence intervals using our method are much shorter than using the control

data only, and when translated into mean squared error efficiency, for the three SNP

suggest gains in efficiency of 95%, 143% and 148%.

Table 11. Results of the NAT2 data example

Robust Regression

Lower Upper Lower Upper MSE

Y Estimate CI CI Estimate CI CI Efficiency

C S -3.501 -5.716 -1.318 -3.240 -6.307 -0.173 1.95

P Y -0.040 -0.199 0.120 0.210 -0.039 0.458 2.43

P D 0.063 -0.058 0.184 0.135 -0.047 0.317 2.48

F. Discussion

The study of the relationship among secondary variables in a case-control study is

of great practical interest, because large case-control studies now exist and especially

include predictors or phenotypes Y and demographic, environmental and genetic

factors. The homoscedastic regression model (4.1) is particularly important when
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the predictors or phenotypes are continuous random variables, as they are in our two

examples.

As we have noted, if one is willing to specify the distribution of the regression er-

rors in the population up to a parameter, then it is possible to estimate the parameter

β in model (4.1) in an efficient manner. However, we have shown that misspecification

of that parameter model will lead to inconsistent estimation of β: it is possible to

create skew distributions for the regression errors that result in bias when normality

is assumed.

Our approach is entirely different. While we specify a target regression error

distribution, we have shown that the estimation is robust to violation of that target

distribution, both theoretically and in a simulation study. In the rare disease case

that would be the reason for a case-control study in the first place, an alternative is

to simply use only the data for the controls. We have shown in simulations and in

our two data examples that such throwing away of 50% of the data leads to a highly

non-trivial loss of efficiency compared to our method.
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CHAPTER V

MODEL SELECTION IN JOINT MODELLING OF PAIRED FUNCTIONAL

DATA

Utilizing penalized B-splines, a new approach proposed by Zhou, et al. (2008) jointly

models a pair of sparsely observed functions through functional principal components.

In their approach, a stepwise addition and deletion procedure is employed to decide

upon the number of principal components (PCs) and crossvalidation is used to es-

timate penalty parameters. However the choice of the cutoff point in the stepwise

addition and deletion procedure is subjective and the crossvalidation computation is

very time consuming. In this project we propose to select the number of PCs and

estimate the penalty parameters with a modified version of the Akaike information

criterion (AIC) and two modified versions of the Bayesian information criterion (BIC).

Our methods are computationally fast and straightforward to implement. We illus-

trate our methods with simulations and the empirical data example used by Zhou, et

al. (2008).

A. Introduction

Recently, Zhou et al. (2008) proposed a modeling framework to study the relationship

between two sparsely observed functional variables. In this framework, the data for

each variable are viewed as smooth curves measured at discrete time-points plus ran-

dom errors. While the curves for each variable are summarized using a few important

principal components, the association of the two longitudinal variables is modelled

through the association of the principal component scores. Penalized splines are used

to model the mean curves and the principal component curves. The proposed model

can be cast into a mixed effects model framework for model fitting, prediction and
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inference, and the EM algorithm is used for computation.

There are two aspects of the methodology that need improvement. First, cross-

validation is used to estimate the penalty parameters, but this is computationally

expensive. Second, stepwise addition and deletion based upon the changes of the es-

timated PC score variances to decide on the numbers of PCs. However, this stepwise

method is ad hoc since setting up the thresholds for stoping addition and delection

is a subjective choice.

The goal of this study is to develop a computationally efficient procedure for

selecting the penalty parameters and an automatic procedure for selecting the num-

ber of principal components. We propose to apply widely used information criteria

such as the Akaike’s information criterion (AIC) (Akaike, 1973) and the Bayesian

information criterion (BIC) (Schwarz, 1978) in this functional data analysis problem.

The information criteria are applicable here because the modeling framework of Zhou

et al. (2008) is likelihood based. Use of the information criteria helps us avoid multi-

ple runs of the EM algorithm required by crossvalidation and thus can substantially

speed up the penalty parameter selection process. It also makes it automatic to select

the number of principal components.

While we focus on the modeling of paired curves in this project, we would like

to point out there is a literature on modeling single curves using functional principal

components. For example, James et al. (2000) and Rice and Wu (2001) used splines

to model the functional PCs. Peng and Paul (2009) used crossvalidation for selecting

the number of B-spline xobasis functions and developed a quadratic approximation

for fast computation. Yao et al. (2005) proposed to estimate the functional principal

components for sparse functional data through the eigen-decomposition of the covari-

ance kernel estimated using two-dimensional smoothing. They also proposed to use

AIC to select the number of principal components.
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The rest of the chapter is organized as follows. In Section B, we first briefly review

the modeling approach of Zhou et al. (2008), then define the degrees of freedom and

the information criteria for the smoothing parameter and model selection. In Section

C we apply our methods on simulated data sets and one real data example and

compare our results with that using crossvalidation.

B. Methodology

1. A Reduced Rank Model for Sparsely Observed Paired Curves

Let Yi(t) and Zi(t) denote the two measurements at time t for the ith individual. The

joint model of Zhou et al. (2008) has the form

Yi(t) = µ(t) +
kα∑

j=1

fj(t)αij + ǫi(t) = µ(t) + f(t)Tαi + ǫi(t),

Zi(t) = ν(t) +

kβ∑

j=1

gj(t)βij + ξi(t) = ν(t) + g(t)Tβi + ξi(t).

(5.1)

where µ(t) and ν(t) are the mean curves, f = (f1, f2, .., fkα)
T and g = (g1, g2, .., gkβ)

T

are vectors of principal component curves, and ǫi(t) and ξi(t) are experimental errors.

The relationship between Yi(t) and Zi(t) is modeled through the correlation between

the principal component scores αi and βi. The αi’s, βi’s, ǫi’s and ξi’s are assumed

to have mean zero. The experimental errors ǫi(t) and ξi(t) are assumed uncorrelated

with constant variance σ2
ǫ and σ2

ξ , respectively. It is also assumed that the αi’s,

ǫi’s and ξi’s are mutually independent, as are the βi’s, ǫi’s and ξi’s. The principal

components are subject to the orthogonality constraints
∫
fjfl = δjl and

∫
gjgl = δjl,

with δkl being the Kronecker delta.

For identifiability purpose, the principal component scores αij , j = 1, . . . , kα, are

assumed independent with strictly decreasing variances, and similarly, the principal
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component scores βij, j = 1, · · · , kβ, are also independent with strictly decreasing

variances. Denote the diagonal covariance matrices of αi and βi by Dα and Dβ,

respectively. Denote cov(αi, βi) = C. It is assumed that αi and βi are jointly normally

distribution so that 

αi

βi


 ∼ N

{


0

0


 ,



Dα C

CT Dβ



}
.

The observed data consist of Yi(t) and Zi(t) sampled at a finite number of obser-

vation times. For each individual i, let ti1, . . . , tini
be the different time-points at which

measures are available. Based on the observed data, we estimate the unknown func-

tions using penalized splines where µ, ν, f and g are modeled as a member of the same

space of spline functions with dimension q. Let b(t) = {b1(t), . . . , bq(t)}T be an or-

thonomal basis of the spline space where the basis functions satisfy
∫
bj(t)bl(t) dt = δjl.

Let θµ and θν be q-dimensional vectors of spline coefficients such that

µ(t) = b(t)Tθµ, ν(t) = b(t)Tθν . (5.2)

Let Θf and Θg be respectively q × kα and q × kβ matrices of spline coefficients such

that

f(t)T = b(t)TΘf , g(t)T = b(t)TΘg. (5.3)

Write Yi = {Yi(ti1), .., Yi(tini
)}T and similarly for Zi. Let Bi = {b(ti1), .., b(tini

)}T.

The model for the observed data can be written as

Yi = Biθµ +BiΘfαi + ǫi,

Zi = Biθν +BiΘgβi + ξi,

βi = Λαi + ηi,

ǫi ∼ N(0, σ2
ǫ Ini

), ξi ∼ N(0, σ2
ξIni

), αi ∼ N(0, Dα), βi ∼ N(0, Dβ).

(5.4)

For identifiability of the model, we require that ΘT
f Θf = I and ΘT

g Θg = I, and the
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first nonzero element of each column of Θf and of Θg is positive.

Let L(Yi, Zi) denote the contribution to the likelihood from subject i. The joint

likelihood for the whole dataset is
∏n

i=1 L(Yi, Zi).Define matrixK =
∫
b′′(t){b′′(t)}Tdt.

The method of penalized likelihood minimizes the criterion

− 2

n∑

i=1

log{L(Yi, Zi; θµ, θν ,Θf ,Θg, Dα, Dβ, C)}

+ λµθ
T
µKθµ + λf

kα∑

j=1

θTfjKθfj + λνθ
T
ν Kθν + λg

kβ∑

j=1

θTgjKθgj ,

(5.5)

where θfj and θgj are, respectively, the j
th columns of Θf and Θg, and λµ, λν , λg, λg are

four penalty parameters. The EM algorithm is employed to minimize the penalized

likelihood criterion (5.5).

2. Selection of the Penalty Parameters

Because crossvalidation is computationally expensive in our context, as discussed in

Section 1, we propose to use information criteria such as AIC and BIC to select the

penalty parameters. Our proposal is motivated by existing results on asymptotic

equivalence of the CV criterion and the information criteria. In particular, Stone

(1977) and Shao (1997) showed that under some regularity conditions, the delete-one

subject CV criterion is asymptotically equivalent to AIC, while Shao (1997) showed

that the BIC and the delete-k subjects CV are asymptotically equivalent. Use of the

information criteria can substantially speed up the optimization program for selecting

the penalty parameters.

The AIC and BIC criteria are defined as

AIC = 2K − 2 log(L̂max), BIC = log(N)− 2 log(L̂max),

where K is the number of parameters in the model, N is the sample size, and L̂max
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is the maximized value of the likelihood function for the estimated model. Adding

penalties into the model fitting, it is not immediately clear how to count the number

of parameters. We propose to follow Section 3.13 of Ruppert, et al. (2003) and use the

effective degrees of freedom of the smoothers as the effective numbers of parameters.

For a giving penalty parameter λ, the effective degrees of freedom is defined as

df(λ) = trace

{( n∑

i=1

BT
i Bi + λK

)−1 n∑

i=1

BT
i Bi

}
,

Taking into account the effects of four penalty parameters, the total number of effec-

tive degrees of freedom for all four smoothing operations is

df(λµ, λν, λf , λg) = df(λµ) + df(λν) + kα × df(λf) + kβ × df(λg).

Then AIC in our context is defined as

AIC(λµ, λν , λf , λg) = 2 df(λµ, λν , λf , λg)− 2 log(L̂max).

We consider two versions of BIC where in the first version N is taken to be the

number of subjects Ns and in the second version N is taken to be the total number

of observations No. Specifically,

BICs(λµ, λν , λf , λg) = log(Ns) df(λµ, λν, λf , λg)− 2 log(L̂max),

BICo(λµ, λν , λf , λg) = log(No) df(λµ, λν , λf , λg)− 2 log(L̂max).

We select the penalty parameters by minmizing the above AIC, BICs or BICo criteria.

Note that to evaluate an information criterion for a fixed set of penalty param-

eters, the EM procedure only needs to be run once, compared with d times when

calculating the d-fold crossvalidation criterion. Therefore, roughly speaking, our in-

formation based procedure will take about 1/d of time compared with that using
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d-fold crossvalidation. Using information criteria also has other advantages. In par-

ticular, since the full data set is used in the estimation, the estimates are more stable

and in turn speeds up the EM procedure.

3. Selection of the Number of Important Principal Components

The information criteria defined above can also be used to select the number of

important principal components. To be specific, we first identify the ranges for kα

and kβ, which usually start from one and the largest values depend on the size of

the data. Next for a given pair of kα and kβ, estimate the smoothing parameters

following the procedure described in Section 2. Then record the AIC, BICs or BICo

values at the estimated smoothing parameters, denoted as AIC(kα, kβ), BICs(kα, kβ)

and BICo(kα, kβ). The selected numbers of principle components are (ksel
α , ksel

β ) =

argmin{(kα, kβ), AIC(kα, kβ)}, (ksel
α , ksel

β ) = argmin{(kα, kβ), BICs(kα, kβ)}, or (ksel
α ,

ksel
β ) = argmin{(kα, kβ), BICo(kα, kβ)}, respectively.

C. Application

1. Selection of the Smoothing Parameters in Simulation Studies

In this section we illustrate the proposed methods described in Section 2 and compare

the performance of our methods with that of the crossvalidation using simulated data

sets.

In each simulation run, we have n = 50 subjects. For simplicity of the presen-

tation, we sample each subject on 11 equally spaced time points from 0 to 1. Let

µ(t) = sin(2πt), ν(t) = sin(4πt). Let f1(t) = 1.4142cos(2πtij), f2(t) = 11.6508{(tij −

1/2)2 − cos(2πtij)/π
2}, g1(t) = 1.4142cos(4πtij) and g2(t) = 9.0613{(xj − 1/2)2 −

cos(4πxj)/(4π
2)}. Note that f1(t) and f2(t) are orthonormal, as are g1(t) and g2(t).
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For subject i, i = 1, · · · , 50, at time tij = (j − 1)/10, j = 1, · · · , 10, we simulate Yij

and Zij from model (5.1) with σ2
ǫ = 1, σ2

ξ = 1 under the following three scenarios:

• kα = 1, kβ = 1, Dα = 4, Dβ = 2 and cov(αi, βi) =
√
2.

• kα = 2, kβ = 1, diag(Dα) = (4, 2), Dβ = 2, cov(αi1, βi) =
√
2 and cov(αi1, βi) =

0.

• kα = 2, kβ = 2, diag(Dα) = (4, 2), diag(Dβ) = (2, 1), cov(αi1, βi1) =
√
2 and

cov(αi2, βi2) = 0.5.

Under each scenario, 1,000 data sets were generated. As our focus here is on the

smoothing parameter selection, in our simulation studies the data were all fit using

the correct numbers of principal components. Ten-fold crossvalidation was used in

all comparisons.

The simulated data were fit following the procedure described in Section B. We

search over a four dimensional space for optimal smoothing parameters that minimize

crossvalidation, AIC, BICs and BICo. Optimization was realized in R using L-BFGS-

B by Byrd et. al. (1995). This optimizing method uses a limited-memory modification

of the BFGS quasi-Newton method and requires preset lower and/or upper bounds,

which were set at 0.1 and 105 respectively.

Table 12. Average ratios of the computing time using AIC, BICs and BICo to that

using 10-fold CV

CV/AIC CV/BICs CV/BICo

kα = 1, kβ = 1 12.0 8.7 6.9

kα = 2, kβ = 1 13.8 8.4 6.6

kα = 2, kβ = 2 11.7 10.8 8.7
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Table 12 gives the ratios of the computing time between using 10-fold crossvalida-

tion and the model selection criteria AIC, BICs and BICo. Under the three simulation

scenario, AIC is between 11.7 and 13.8 times faster than the 10-fold crossvalidation;

BICn is between 8.4 and 10.8 faster and BICo is between 6.6 and 8.7 times faster.

While the improvement in computing time is consistent for AIC it is most pronounced

in the scenario of kα = 2, kβ = 2.

Table 13. Average smoothing parameters and corresponding degrees of freedom se-

lected using 10-fold crossvalidation, AIC, BICs and BICo

λµ λν λf λg dfλµ
dfλν

dfλf
dfλg

kα = 1 CV 40.4 10.3 43.2 5.2 8.3 9.3 8.3 10.1

kβ = 1 AIC 64.7 8.0 86.0 6.5 7.2 9.3 6.6 9.6

BICs 139.2 15.7 181.0 13.8 5.9 8.4 5.6 8.6

BICo 197.3 23.4 276.5 22.0 5.5 7.9 5.3 8.0

kα = 2 CV 43.9 8.9 54.6 6.6 8.2 9.5 7.5 10.0

kβ = 1 AIC 76.4 6.6 65.3 7.2 7.0 9.7 6.8 9.6

BICs 167.0 13.2 139.0 14.6 5.7 8.7 5.8 8.6

BICo 243.7 20.0 209.9 22.6 5.3 8.1 5.4 8.0

kα = 2 CV 39.1 9.7 52.0 14.6 8.4 9.6 7.7 9.0

kβ = 2 AIC 74.8 6.9 65.9 14.3 7.1 9.8 6.9 8.9

BICs 158.2 14.4 150.7 34.4 5.8 8.7 5.8 7.6

BICo 224.3 22.8 244.9 56.0 5.4 8.1 5.3 6.9

Table 13 shows the smoothing parameters chosen by different criteria and the

corresponding degrees of freedom defined in section 2. In general, BICo selected the

largest smoothing parameters while 10-fold crossvalidation selected the smallest.

In Table 14 we present the integrated mean squared errors of the mean functions
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and of the principal component functions, separably, as well as the average mean

squared errors of the variances of the principal component scores and of the variances

of measurement errors. With a few exceptions, our methods improve over that of the

10-fold crossvalidation. In most cases, BICs and BICo have smaller MSEs than AIC

in the estimation of the mean functions µ and ν, as well as σ2; AIC performs better

in estimating the principle component functions and the variances of the principle

component scores. All four methods have similar MSEs in estimating the covariance

matrix R of the principle component scores.

Table 14. Integrated mean squared errors

µ ν f g Dα Dβ R σ2
ǫ σ2

ξ

kα = 1 CV 0.08 0.05 0.01 0.02 0.06 0.03 0.25 0.0251 0.0046

kβ = 1 AIC 0.08 0.05 0.01 0.02 0.04 0.02 0.25 0.0015 0.0018

BICs 0.06 0.04 0.0064 0.02 0.04 0.04 0.25 0.0009 0.0012

BICo 0.05 0.03 0.0070 0.03 0.05 0.06 0.26 0.0007 0.0007

kα = 2 CV 0.12 0.05 0.05 0.03 0.03 0.03 0.26 0.0035 0.0070

kβ = 1 AIC 0.11 0.05 0.05 0.03 0.03 0.03 0.26 0.0030 0.0019

BICs 0.08 0.04 0.05 0.02 0.03 0.04 0.27 0.0016 0.0012

BICo 0.07 0.04 0.05 0.02 0.04 0.06 0.26 0.0012 0.0007

kα = 2 CV 0.12 0.10 0.06 0.12 0.03 0.01 0.16 0.0034 0.0038

kβ = 2 AIC 0.11 0.09 0.05 0.12 0.03 0.01 0.16 0.0028 0.0042

BICs 0.08 0.09 0.06 0.14 0.03 0.02 0.16 0.0014 0.0021

BICo 0.08 0.09 0.06 0.19 0.03 0.03 0.16 0.0011 0.0012

To summarize, the three proposed model selection criteria show great improve-

ment over using crossvalidation in model selection – all three methods dramatically
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reduce the computing time while improving the estimation precision. Among the

three criteria we proposed, AIC is fastest and BICo is slowest; in terms of estimating

the population mean curves and the measurement error variances, our results show

that BICo gives the smallest MSEs while AIC gives the largest MSEs; for the estima-

tion of the principle component functions and scores variances, AIC generally gives

the smallest MSEs and BICo gives the largest MSEs.

2. Selection of the Numbers of the Principle Components in Simulation Studies

We illustrate the selection of the numbers of the principle components with the pro-

posed criteria using simulation setup 3 in Section 1, where there are two principle

components for each variable. We generated 100 simulated data sets, applied the

model selection procedure using 10-fold crossvalidation suggested by Zhou, et. al.

(2008) as well as the procedure described in Section 3. In each simulation run, we set

the selection ranges of the numbers of the principle components from 1 to 3. There-

fore, there are 9 total possibilities for the pair (kα, kβ). Among the 100 simulations,

our proposed criteria picked the correct numbers of the PCs 100% of time while the

crossvalidation method was correct in 63% of time and selected (2, 1), (2, 3), (3, 1),

(3, 2) and (3, 3) the remaining 37% of the time. Our simulation results suggest the use

of one of the proposed criteria, gives not only faster, but also more accurate results.

3. Model Selection in the Rreal Data Example

Here we illustrate the proposed method using a data set from an AIDS clinical trial

ACTG 315 (Lederman et al. 1998) conducted by the AIDS Clinical Trials Group;

the same data was analyzed by Zhou, et al. (2008). In this clinical trial, forty-six

HIV-1 infected patients were treated with potent antiviral drugs (ritonavir, 3TC and

AZT). After initiation of the treatment on day 0, patients were followed for up to
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10 visits. Scheduled visit times common to all patients are 7, 14, 21, 28, 35, 42, 56,

70, 84 and 168 days. Since the patients did not follow exactly the scheduled times

and/or missed some visits, the actual visit times are irregularly spaced and different

for different patients. The visit time varies from day 0 to day 196. In the notation of

the joint model for paired functional data in Section 1, denote by Y the CD4+ cell

counts divided by 100 and by Z the base-10 logarithm of plasma hiv RNA copies.

To model the curves on the time interval [0, 196], cubic B-splines with 10 interior

knots were placed on scheduled visit times.

To fit this data, we need to estimate both the numbers of PCs and the smoothing

parameters. Due to the limited sample size, we restrict our choices of the numbers of

principle components (kα, kβ) to (1, 1), (1, 2), (2, 1), (2, 2) and (2, 3). We had difficulty

in computation with more than two PCs for CD4+ cell counts or more than three PCs

for the log viral load, largely because the variances of the PC scores were nearly zero.

Zhou, et al (2008) used 10-fold crossvalidation and chose one PC for CD4+ cell counts

and two PCs for the log viral load. Applying the procedure described in section 3, all

three criteria chose two principle components for both variables. As shown in Table

15, all three criteria scores have same patterns: the scores drop from (1, 1) to (2, 1),

(1, 2) and reach the lowest level at (2, 2). The biggest drop is from (2, 1) to (1, 2)

and the scores increase a little from (2, 2) to (2, 3). Based on the criteria scores, one

can either choose (2, 1) for the parsimony, as did in Zhou, et al. (2008), or choose

(2, 2) which we believe is the best model for this data. Compare our methods with

that of Zhou et al. (2008), in both models, the fitted values are similar; see Figure

2 for the mean curves and PC curves using kα = 1 and kβ = 2. On the other hand,

our methods are much faster: when one principal component for CD4+ cell counts

and two principal components for log viral load were used, AIC, BICs and BICo were

about 19 times faster; when two principal components for both CD4+ cell counts and
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log viral load were used, AIC, BICs and BICo were 10 - 12 times faster.

Table 15. AIC, BICs and BICo scores on AIDS data

(kα, kβ) AIC BICs BICo

(1, 1) -0.88 33.22 62.21

(2, 1) -11.82 29.13 62.26

(1, 2) -57.40 -28.79 5.02

(2, 2) -76.28 -45.34 -7.23

(2, 3) -75.11 -38.34 3.06

D. Discussion

We have shown how to select the smoothing parameters in joint model of paired sparse

functional data using novel versions of AIC and BIC. The methodology was described

for penalized spline mixed effects model and justified in the important paired sparse

functional data case. Numerically, we have found that AIC and BIC are very close

to being the same as 10-fold cross-validation in terms of model fits, while being much

faster computationally.
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Figure 2. Fitted mean curves and principal component curves using 10-fold crossvali-

dation, AIC, BICs and BICo for AIDS data.
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CHAPTER VI

PERMUTATION TEST FOR MICROARRAYS: COLONIC TUMORIGENESIS

PREDICTION IN THE EARLY STAGES OF DEVELOPMENT

In this study, we introduce a practical permutation test that uses cross-validated

genetic predictors to determine if the list of genes in question has “good” prediction

ability. We call it the cross-validated permutation test. It avoids overfitting by using

cross-validation to derive the genetic predictor and determines if the count of genes

that give “good” prediction could have been obtained by chance. This test is then

used to explore gene expression of colonic tissue and exfoliated colonocytes in the

fecal stream to discover similarities between the two, done at each of the three stages

of colonic tumorigenesis.

A. Introduction

1. Motivation for Genetic Influence on Colon Cancer

According to statistics compiled by the American Cancer Society in 2008 and 2009,

colon cancer is the third deadliest form of cancer in the U.S. among both men and

women. The prediction and eventual treatment of colon cancer at the early stages of

development is crucial for the population as a whole.

Moreover, the study of the development of cancer is not only of interest for the

benefit of public health as a whole, it is also an important topic for the successful

development of long term space missions, like traveling to Mars. In such long missions

humans would be exposed to prolonged doses of radiation which can potentially lead

to all types of cancerous tumors in a very short period of time. The attenuation

of these effects is therefore of great interest. To address these concerns our study
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design not only looks at cancerous tumor development as a result of exposure to

harmful chemical agents, it also considers the effects of radiation in tumorigenesis,

and specifically as it occurs in the colon.

In this work we study the prediction ability of genes to foretell colonic tumori-

genesis; however, to attack the problem of colon tumor development one must first

understand how the development occurs. Below we provide a brief description of the

stages of colonic tumor growth. The development of tumors in the colon happens

in 3 main stages: initiation, aberrant crypt foci (ACF) and finally tumor stage. At

the initiation stage the primary insult to the colon results in DNA damages. Con-

stant exposure to reactive oxygen species results in the damage to DNA, leading to

mutations. At the ACF or aberrant crypt foci stage, rogue colonic crypts begin to

form clusters or high multiplicity ACFs (HMACF) that signal the potential for tumor

development at these sites. Finally, the tumor stage is when actual tumors develop in

the colonic walls. As with HMACFs, tumors can be measured and counted to serve

as a phenotype that we can eventually predict.

It is well known that certain foods affect the development of cancer in the body

via anti-inflammatory mediators. More specifically n-3 polyunsaturated fatty acids,

found in fish oil, modulate the inflammatory process via genes such as interleukin-

1 β, see Kim et al. (2009). Hong et al. (2005) show that fish oil is protective

against oxidative DNA damage when compared against corn oil at the initiation

stage. Moreover, Hong et al. (1997) also show that fish oil is protective at each of

the three stages. Hence diet must be taken into account when studying the effects

certain genes have on the development of colonic cancer. Our study incorporates diet

by using a rat model where two different types of fiber (pectin and cellulose) and

two different types of oil (corn oil and fish oil) are employed. Tumor development is

induced by introducing both a chemical carcinogen, azoxymethane (AOM), as well
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as an environmental carcinogen, radiation.

In a compilation of all relevant studies that look at the contribution of genes on

gastric cancer in humans up to 2001, Gonzalez et al. (2002) found that interleukin-

1 β and NAT 1 variants are associated with increased gastric cancer. Hence the

expectation that certain genes may be able to predict colonic cancer is not without

merit.

Most genetic studies of colon cancer use gene expression from mucosal tissue ex-

tracted directly from the colon. This procedure is invasive and is not easily applicable

to human subjects. New ways to isolate mRNA from exfoliated colonocytes in the

fecal stream enable us to study the development of colonic cancer without invasive

procedures in both rats and humans, see Davidson et al. (1995) and Davidson et al.

(2003).

Our goal is to compare the prediction ability of genes to foretell colonic tu-

morigenesis at the ACF and tumor stages in both mucosal and fecal colonocytes via

microarray studies, albeit an indirect comparison but something that has never been

done until now.

This chapter is organized as follows: Section B gives a short description of the

data used to carry out the analysis, Section C introduces our permutation test and

gives results that provide specific gene lists that are able to predict tumor and non

tumor outcomes. Concluding remarks are in Section D.

B. Data

The data that will be used throughout this work are gene expression data generated

by the CodeLink System from GE. This platform is a gold standard for rat genome

studies and since our data come from rat models it is of course the method of choice.
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The normalization scheme used to make gene expression comparable between inde-

pendent arrays is performed by the GE system upon completion of the work, and

for most cases this scheme performs well. In our study, we are dealing with gene

expression derived from RNA found in mucosal tissue as well as in the fecal stream.

The standard normalization scheme works well on arrays from mucosal tissue; how-

ever, because of the normal degradation of RNA in the colon gene expression from

fecal matter is quite low and hence require a special normalization method. Liu et

al. (2005) studied this problem and developed a two-stage normalization scheme spe-

cially targeted to handle the problem of partially degraded RNA and it is one of the

methods we will use to normalize gene expression from the fecal stream.

In our aim to predict colonic tumorigenesis we will focus our efforts at both

the aberrant crypt foci or (ACF) and tumor stages of development. We will do our

prediction by using gene expression from RNA derived from both mucosal and fecal

samples. Mucosally derived microarrays are normalized via the standard method

while microarrays obtained from RNA in the fecal stream are normalized by both the

standard and two-stage methods. We will split our analysis into two parts, one where

all the genes in the microarray are considered as potential predictors and the other

where only a select number of genes, which will refer to as the rat colonic biomaker

list, is used. The genes in the rat colonic biomarker list are chosen because they are

known to be involved in the development of colon cancer.

The reason we are concentrating our efforts at ACF and tumor stages is simply

because the phenotypes are either inherently or can easily be dichotomized, and hence

prediction via well known classification methods can be readily accomplished. At the

tumor stage our outcomes are binary where a success indicates the existence of at

least one tumor in the colon and a failure means that no tumors where found in the

rat. At the ACF stage our binary outcomes where generated by dichotomizing the
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count of high multiplicity aberrant crypt foci (HMACF). If the count of HMACF was

greater than 4 we call that a success, which basically suggests a strong indication that

a tumor will appear. If the count was less than or equal to 4 then we deemed that

a failure. We label our successes at the ACF stage as tumor rats and our failures as

healthy rats.

At the ACF stage, there are fecal arrays for 15 healthy rats and 18 tumor rats

in the fecal arrays; while there are mucosal arrays, for 20 healthy rats and 13 tumor

rats. At the tumor stage, there are 39 healthy rats and 10 tumor rats with fecal array

data; while for the mucosal arrays, there are 61 healthy rats and 14 tumor rats.

Not only are we going to use gene expression to predict tumor outcomes, we will

also use additional factors of interest that influence the incidence of tumor develop-

ment. Recall that diet plays an important role in the development of colon cancer.

Both dietary fiber and lipid sources were manipulated in this study. The fiber sources

in the study were pectin and cellulose while the lipid sources were fish oil and corn

oil. Additional interest was placed on the mechanism by which carcinogenesis was

induced. In this study both a chemical carcinogen, azoxymethane or AOM, was em-

ployed as well as an environmental source: radiation. Overall the additional factors

to consider are: Diet and Radiation. Diet includes the four possible treatment com-

binations: fish oil with pectin (fishpect), fish oil with cellulose (fishcell), corn oil

with pectin (cornpect) and corn oil with cellulose (corncell). Radiation includes two

treatments: radiated or not.

In the next section we will introduce our permutation test and show how genes

are able to predict tumor outcomes and that their prediction ability surpasses that

of other covariates like diet and radiation.



69

C. Analysis

In this section we are going to perform cross-validated permutation tests (CPT),

cross-validated within treatment permutation tests (CWPT) and diagonal linear dis-

criminant analysis (DLDA). We propose CPT to assess the prediction ability of the

genetic predictors in our data, and illustrate this method using the data from Khan

et al (2001). CWPT is proposed to assess the improvement that genetic predictors

have over clinical predictors in our data, such as diet and radiation. We illustrate

the use of the CWPT by applying it to the breast cancer data that is described in

Hofling and Tibshirani (2008). In both the cross-validated permutation test and the

cross-validated within treatment permutation test we classify the tumor and healthy

subjects using linear discriminant analysis (LDA) using one gene at a time. We use

DLDA to perform similar classification; however, we use DLDA on a larger set of

genes to produce a classifier rule for tumor and healthy subjects. Missing data were

imputed by nearest neighbor averaging (function pamr.knnimpute() in R).

1. Cross-validated Permutation Test (CPT)

The premise of our work revolves around the assumption that genes have the ability

to predict tumor outcome in colonic tissue whether it be at the aberrant crypt foci

stage or the final tumor stage. However it is difficult to discern how many genes play

a vital role when discriminating between tumor or healthy outcomes. Recent work

by Hua et al. (2009) shows that using more than 5 genes to build classifiers is not

only computationally daunting, it does not improve error rates. This finding justifies

a conservative approach and hence we will use at most one gene to build a classifier

and then use it to predict tumor outcomes. We will do this at the ACF stage and

then at the tumor stage.
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Our classifier scheme is Fisher’s LDA which assumes that each class in the data

possesses a multivariate normal distribution with a mean µk and a covariance matrix

Σk, where k is the class iterator. In our application our classes are binary and therefore

k will be either 1 = tumor, or 2 = no tumor. A main assumption of the LDA is that

the covariance is the same across class and therefore Σk = Σ for all k, where Σ is

some common covariance matrix. When applying the LDA one does not know the

mean and variance parameters ahead of time so those must be estimated. We use

leave-one-out cross validation to train, test and produce error rates from our classifier.

Using LDA, we produce a classifier that tries to predict tumor and non-tumor

outcomes with one gene as the predictor. From this predictor we obtain classification

errors in the form of false negative (FN) and false positive (FP) rates and do this

for each of the 30,000+ genes found in the CodeLink microarray. We obtain these

FN and FP values for each gene in arrays collected from the two samples: mucosal

and fecal. For mucosal array normalization is standard; however, since normalization

can be tricky for the arrays produced from fecal matter we produced classifiers for

gene expressions that were normalized by two-stage method and also by the standard

normalization generated by the GE system. All these steps were reproduced at both

the ACF and tumor stages of colonic tumorigenesis.

The expectation is that after all this we will find genes that predict tumor out-

comes. Low false positive and false negative rates are good indicators that a gene

is able to do this. But how do we know that set of genes having low error rates, as

defined by the procedure outlined above, did not occur by chance? We will test this

hypothesis by doing a permutation test.

In this analysis we count the number of genes at both ACF and tumor stage whose

false negative and false positive rates fall below an arbitrarily defined threshold b. In

our work, we took b = 0.2. After obtaining this count of genes which we will denote
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as N , we perform a permutation test to see if the count of genes, N, is significant. In

this permutation test, we permutate the class labels 200 times. For each permutation,

we then count the number of genes whose false negative and false positive rates fall

below b=0.2 in each time. Let B = 200, for b = 1, ..., B, let Nb be the count of genes

in the bth permutation. Then our p− value =
∑B

b=1(Nb >= N)/B. We refer to this

as the cross-validated permutation test or (CPT). The cross-validation occurs when

we are building the classifier using the LDA.

We applied our cross-validated permutation test to the complete set of genes

found in the CodeLink arrays and on the shorter list of colonic biomarker genes. We

found that among all the genes in the complete list, 5 genes are statistically significant

with p − value = 0.015. These genes were found in the mucosal array at the ACF

stage and the gene IDs for these 5 genes are: GE1155319, GE1170229, GE1266696,

GE16725 and GE22209. We then performed CPT using one gene at a time plus diet

and radiation covariates as predictors and found one gene to be statistically significant

with p− value = 0.04. This gene was found in the two-stage normalized fecal array

at the tumor stage; the gene ID for this gene is GE21877, and it is also in the rat

colonic biomarker gene list.

We illustrate the ability of our method to detect genes of high predictive value by

applying it to the data from gene expression microarray experiments on small, round

blue-cell tumors (SRCTs), described in Khan et al (2001). There are four different

SRBCT tumor types: neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin

lymphoma (NHL), and the Ewing family of tumors (EWS). We found 87 genes are

statistically significant with p−value = 0. The counts of genes from 200 permutations

have mean 0 and standard deviation 0.

Using linear discriminant analysis with one gene as a predictor we were able to

find a short list of genes that can distinguish between individuals that have large
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numbers of ACF and those that do not. Using our cross-validated permutation test

we verified that the prediction ability of this set of genes did not occur at random,

and hence further research should aim towards discovering the function and role these

genes play in the development of colon cancer at the ACF stage. The inclusion of

radiation and diet as predictors in the CPT further revealed that interlukin 1β, or

GE21877, can distinguish between individuals that develop tumors and those that

do not. Further exploration revealed that elevated levels of this gene’s expression

correlates with the incidence of tumor, indicating that a high expression of this gene

could be a red flag if found in individuals at risk of colon cancer. However, only future

research can determine the usefulness of this gene as a prediction.

An interesting question arises from this analysis. How do the additional covari-

ates influence a genes ability to predict tumor outcomes? To answer this question we

introduce a new permutation test which also uses cross validation but now permutes

outcomes within a treatment class to asses the treatment’s influence on the classifier.

2. Cross-validated within Treatment Permutation Test (CWPT)

In this section we propose a cross-validated within treatment permutation test

(CWPT) to compare the prediction ability of genes to that of covariates like diet and

radiation. In this scenario we are testing the significance of the count of genes whose

joint false negative and false positive rates fall below that of the classifier formed by

only employing treatments as predictors. Again we are using LDA as the mode of

classification and the treatments used are covariates diet and radiation.

Define the false negative and false positive rates of a classifier that only includes

covariates as the predictors as FNc and FPc. These rates are constant for all the

genes. Let the false negative and false positive rates of classifiers that use both gene

expression and covariates as predictors be defined as FNcgi and FPcgi, where i is the
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gene iterator. Of course, FNcgi and FPcgi should not be greater than FNc and FPc

for gene i. Define Ti = I(FNcgi < (1 − a)FNc) × I(FPcgi < (1 − a)FPc), where

a = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. Here a indicates the improvement of the ith gene over

the covariate predictors. The larger the value of a the more improvement the gene

has over the covariates. If we define S =
∑N

i=1 Ti, where N is the number of genes in

the entire gene list, then a reasonable hypothesis is:

H0: S has the same distribution as if the class labels were assigned at random

within each treatment;

HA: H0 false.

We propose a p-value from a permutation test to obtain the significance of im-

provement of gene predictors over the diet and radiation covariates. For b = 1, . . . , B,

we resample the subjects with replacement within treatment, and define the false

negative and false positive rates with covariates only as FN b
c and FP b

c ; then we

permutate the class labels within covariates, and define the false negative and false

positive rates with both diet and radiation covariates and gene expression for gene i

as FN b
cgi and FP b

cgi. Let Tbi = I(FN b
cgi < (1− a)FN b

c )× I(FP b
cgi < (1− a)FP b

c ) and

Sb =
∑N

i=1 Tbi, then our p-value is p = B−1
∑B

b=1 I(Sb > S). We conclude that there

are S genes that improve classification significantly if the p-value for that S is less

than 0.10. We will refer to this as the cross-validated within treatment permutation

test or CWPT. We were liberal in our significance threshold of 0.10 since 0.05 was

too small to detect anything but one set of genes.

We performed the CWPT on the full list of genes from the two-stage normalized

fecal arrays, GE normalized fecal arrays and mucosal arrays at ACF and tumor stages.

Table 16 shows the number of genes that have false negative and false positive rates

that fall below that of the classifier using covariate predictors only and p-values of the

CWPT. In the two-stage normalized fecal array at ACF stage, there are 6980 genes
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that improve classification significantly when a = 0.2, with p-value p = 0.025. In the

GE normalized fecal array at the tumor stage, 415 and 50 genes improve classification

significantly when a = 0.4 and 0.5, with p-value p = 0.060 and 0.080 respectively.

Table 16. Permutation test within treatment for each gene in the entire gene list of

ACF and tumor stages.

ACF tumor

a n p n p

Fecal Arrays 0.2 6980(594) 0.025 1498(519) 0.484

Two-stage Normalized 0.3 393(176) 0.215 512(200) 0.469

0.4 166(93) 0.175 483(195) 0.328

0.5 15(12) 0.255 40(13) 0.359

0.6 2(2) 0.215 1(0) 0.422

0.7 1(0) 0.115 1(0) 0.125

Fecal Arrays 0.2 1652(1644) 0.260 2350(2296) 0.160

GE Normalized 0.3 385(385) 0.345 446(429) 0.245

0.4 143(143) 0.255 415(398) 0.060

0.5 19(19) 0.275 50(46) 0.080

0.6 1(0) 0.370 0(0) 1

0.7 0(0) 1 0(0) 1

Mucosal Arrays 0.2 689(687) 0.494 2(2) 0.760

0.3 205(204) 0.551 0(0) 1

0.4 44(44) 0.540 0(0) 1

0.5 44(44) 0.381 0(0) 1

0.6 2(2) 0.477 0(0) 1

0.7 0(0) 1 0(0) 1

Our cross-validated within treatment permutation test shows that there are great

number of genes that improve the classification of tumor phenotypes at both the

tumor and ACF stages of colonic tumorigenesis. Expression of 6980 genes at the
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ACF stage and that of 400+ genes at the tumor stage derived from fecal material

shows the most promise in having the ability to predict tumor outcomes above that

of treatment covariates: diet and radiation. This indicates that RNA harvested from

fecal material has the potential to predict tumor outcomes non-invasively and before

the actual development of the tumor.

The are a couple of drawbacks to this procedure. One is that now there are a very

large number of genes that we have to sort through to find only a handful that are of

true interest, and the other is that we used each gene as an independent predictor.

This is a reasonable assumption; however, using more than one gene to do prediction

might prove more powerful, if the selection process is appropriate. Inspired by these

observations we introduce a permutation test that uses more than one gene to predict

tumor outcomes.

3. Diagonal Linear Discriminant Analysis (DLDA)

As mentioned above, we now focus our methods so that multiple genes are used as

the predictors in the classifier machinery. Up to this point we have used LDA to the

classification, but because of the improved performance we will switch to the DLDA or

diagonal linear discriminant analysis, see Dudoit et al. (2002). As the name suggests

now the assumption on the covariance matrix of each class is equal but restricted to

a diagonal. The switch from LDA to DLDA is not major since up to this point we

have used only one gene as a predictor in the LDA, so in essence we have been doing

DLDA since the covariance matrix is of dimension 1× 1 and therefore diagonal.

As before we want to quantify the ability of genes to predict tumor outcomes

above and beyond the prediction that additional covariates provide. Our goal there-

fore, is not much different than what we presented in the previous section; however,

now we use DLDA and we use more than one gene as predictors.
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We performed a preliminary selection of genes based on the ratio of their between-

group to within-group sums of squares since lots of genes exhibit near-constant ex-

pression levels across samples. For gene j, the ratio is

BW (j) =

∑
i

∑
k I(yi = k)(x̄kj − x̄.j)

2

∑
i

∑
k I(yi = k)(xij − x̄kj)2

In the analysis, 15 and 25 genes with the largest BW ratio are selected at the ACF

stage and tumor stage, respectively. We selected the top 15 and 25 at the ACF and

tumor stages because they are approximately half the sample size found at each stage.

We performed DLDA on these selected genes, using leave-one-out cross validation to

build the classifier. We obtained the false negative and false positive rates using the

short list of genes; we obtained FN and FP rates using both the short gene list as well

as covariates and then performed our cross-validated within treatment permutation

test to assess the improvement of classification that genes demonstrate over covariates.

Define the false negative rate and false positive rate of the classifier that only

used the covariates as its predictors as FNc and FPc; and let the false negative rate

and false positive rate with both treatments and gene expression for all selected genes

be FNcg and FPcg. FNcg and FPcg should not be greater than FNc and FPc. A

reasonable hypothesis is:

H0 : FNc = FNcg and FPc = FPcg;

HA : FNcg < (1− a)FNc and FPcg < (1− a)FPc,

where a = 0, 0.1, 0.2. These hypotheses are reasonable because if the error rates of

the classifier which uses genes as predictors equal that of the classifier that did not

use genes as predictors, this means that the genes did not improve the classifier’s

ability to predict tumor outcomes. This is exactly what we want to find from these
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data.

Define T1 = (1 − a)FNc − FNcg, T2 = (1 − a)FPc − FPcg, and let G = (T 2
1 +

T 2
2 )I(T1 > 0, T2 > 0) be our test statistics. Then for b = 1, . . . , B, we resample the

animals with replacement within treatment, and define the false negative rate and

false positive rate with treatments only as FN b
c and FP b

c ; then we permutate the class

labels within treatment, and define the false negative rate and false positive rate with

both treatments and gene expression as FN b
cg and FP b

cg. Let Tb1 = (1−a)FN b
c−FN b

cg,

Tb2 = (1 − a)FP b
c − FP b

cg, and Gb = (T 2
1b + T 2

2b)I(T1b > 0, T2b > 0), then our p-value

is p = B−1
∑B

b=1 I(Gb >= G).

Table 17 shows the p-values for the entire gene list of normalized fecal arrays

at the ACF and tumor stages. At the tumor stage, the 25 selected genes in the GE

normalized fecal arrays improve the classification significantly over covariates when

a = 0 and 0.1. We did not find the genes in two-stage normalized fecal arrays and

mucosal arrays improve the classification significantly over covariates.

4. CWPT and DLDA on Breast Cancer Data

To show that our methods are comparable to others we apply our cross-validated

within treatment permutation tests to a published data set. We apply our CWPT

using one gene as the predictor and using a pre-selected set of genes. We will refer

to the one gene approach as the CWPT and the multigene approach simply as the

DLDA because it was used to do the classification when multiple genes we included.

We apply the CWPT and DLDA to the breast cancer data that is described in

Hofling and Tibshirani (2008) to illustrate our methods. This data consists of 4918

genes and 78 patients, in which 34 patients had poor prognosis and 44 patients had

a good prognosis. There are 6 covariates in this data set:
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Table 17. DLDA in the entire gene list of ACF and tumor stages.

ACF tumor

a p p

Fecal Arrays 0 0.065 1.000

Two-stage Normalized 0.1 1.000 1.000

0.2 1.000 1.000

Fecal Arrays 0 1.000 0.000

GE Normalized 0.1 1.000 0.000

0.2 1.000 1.000

Mucosal Arrays 0 1.000 1.000

0.1 1.000 1.000

0.2 1.000 1.000

• Tumor grade (good: 1,2; poor: 3)

• Estrogen receptor (ER) status (good: <= 10; poor: > 10)

• Progesterone receptor (PR) status (good: <= 10; poor: > 10)

• Tumor size (mm) (good: <= 20; poor: > 20)

• Patient age (yrs) (good: <= 40; poor: > 40)

• Angioinvasion (good: 0; poor: 1)

Since our analysis considers the two-way interactions of the covariates, we se-

lected the two covariates (ER and grade) that have the most significant main effects

in ANOVA.

After applying the CWPT we found 0 genes that have false negative rate and

false positive rate that fall below those when we use treatment covariates only. The
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false negative rate and false positive rate of the classifier with treatment covariates

as it only predictors are FNc = 0.500, FPc = 0.147.

We used the DLDA on these data, using 25 pre-selected genes, and found that

this list of genes did not improve the classification significantly, which is consistent

with the results from Hofling and Tibshirani (2008).

Our permutation tests are then shown to be comparable to pre-validation as

described by Hofling and Tibshirani (2008).

D. Conclusion

In this study, we developed cross-validated permutation test (CPT), cross-validated

within treatment permutation test (CWPT) and diagonal linear discriminant analysis

(DLDA) to assess the prediction ability of the genetic predictors in the gene expres-

sion data that are generated by CodeLink System from GE. From CPT, we found

5 genes in the mucosal array of ACF stage were statistically significant in terms of

predicting tumor outcome in colonic tissue; and 1 gene was significant in the two-

stage normalized array of tumor stage. By CWPT, we found hundreds to thousands

of genes improved classification significantly over covariates at both ACF and tumor

stages. From DLDA, the 25 selected genes in the GE normalized fecal arrays improve

the classification significantly over covariates at the tumor stage. The application on

SRCT data and breast cancer data gives similar results to those in Khan et al. (2001)

and Hofling and Tibshirani (2008).
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CHAPTER VII

CONCLUSION

In the first project we have shown how to test for a constant environmental effect

in general semiparametric regression models with interactions. The methodology

was described for kernel regression methods and justified in the important logistic

regression case. Numerically, we have found that regression spline approaches are

very close to being the same as kernel methods and much faster to compute, although

their theory remains an open question in this context.

The second project analyzed the relationship among secondary variables in a

case-control study, which is of great practical interest, because large case-control

studies now exist and especially include predictors or phenotypes Y and demographic,

environmental and genetic factors. As we have noted, the semiparametric efficient

approaches can be used to construct semiparametric score tests, but they suffer from

a lack of robustness to the assumed model for Y given X : it is possible to create skew

distributions for the regression errors that result in bias when normality is assumed.

Our approach is entirely different. The score statistic has mean zero under the null

hypothesis even the conjectured model is not correct, both theoretically and in a

simulation study. An alternative is to simply use only the data for the controls. We

have shown in simulations and in our two data examples that it suffer from lower

power compared to our method since it used only half of the data.

The third project took up the issue of estimation of a regression function when Y

given X follows a homoscedastic regression model in the secondary analysis of case-

control data. The homoscedastic regression model is particularly important when

the predictors or phenotypes are continuous random variables, as they are in our

two examples. As we have noted, if one is willing to specify the distribution of the
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regression errors in the population up to a parameter, then it is possible to estimate

the parameter β in an efficient manner. However, we have shown that misspecification

of that parameter model will lead to inconsistent estimation of β. Our approach is

entirely different. While we specify a target regression error distribution, we have

shown that the estimation is robust to violation of that target distribution, both

theoretically and in a simulation study. In the rare disease case that would be the

reason for a case-control study in the first place, an alternative is to simply use

only the data for the controls. We have shown in simulations and in our two data

examples that such throwing away of 50% of the data leads to a highly non-trivial

loss of efficiency compared to our method.

In the fourth project, we have shown how to select the smoothing parameters

in joint model of paired sparse functional data using novel versions of AIC and BIC.

The methodology was described for penalized spline mixed effects model and justified

in the important paired sparse functional data case. Numerically, we have found that

AIC and BIC are very close to being the same as 10-fold cross-validation in terms of

model fits, while being much faster computationally.

In the fifth project, we developed cross-validated permutation test (CPT), cross-

validated within treatment permutation test (CWPT) and diagonal linear discrimi-

nant analysis (DLDA) to assess the prediction ability of the genetic predictors in the

gene expression data that are generated by CodeLink System from GE. From CPT,

we found 5 genes in the mucosal array of ACF stage were statistically significant in

terms of predicting tumor outcome in colonic tissue; and 1 gene was significant in

the two-stage normalized array of tumor stage. By CWPT, we found hundreds to

thousands of genes improved classification significantly over covariates at both ACF

and tumor stages. From DLDA, the 25 selected genes in the GE normalized fecal

arrays improve the classification significantly over covariates at the tumor stage. The
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application on khan data and breast cancer data gives similar results to those in Khan

et al. (2001) and Hofling and Tibshirani (2008).
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APPENDIX A

TESTING FOR CONSTANT NONPARAMETRIC EFFECTS IN GENERAL

SEMIPARAMETRIC REGRESSION MODELS WITH INTERACTIONS

To illustrate the general result (2.7), we consider the partially linear logistic model

(2.2). However, it is clear from the expansions described in Section 3, which are quite

general, that the Wilks phenomenon result holds more generally.

Define W (γ) = 1 + γXTβ0.

1. Testing Theory

For the null model, we have that

pr(Y = 1|X,Z) = H(κ∗
0 +XTβ∗

0 + STη∗0)

independent of γ. Define θ(γ) so that κ∗
0 + XTβ∗

0 + STη∗0 = XTβ0 + STη0 + θ(γ) +

γXTβ0θ(γ). Then, under the null model,

pr(Y = 1|X,Z) = H{XTβ0 + STη0 +W (γ)θ(γ)}, (A.1)

while under the full model,

pr(Y = 1|X,Z) = H{XTβ0 + STη0 +W (γ)θ(Z, β0, η0, γ)}, (A.2)

and the null hypothesis is that

H0 : θ(z, β0, η0, γ) ≡ θ(γ). (A.3)

We have already described in Section 2 that we can treat (β∗
0 , η

∗
0) and (β0, η0)

as if they were known. In this case, with the exception of the minor difference of
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the offset XTβ0 + STη0 in (A.1) and (A.2), for any fixed γ the problem is exactly

the same as a special case of that studied by Fan, Zhang and Zhang (2001) in their

Theorem 10, which applies to generalized linear models. There are, however, huge

simplifications because the null hypothesis (A.3) takes a particularly simple form.

Let Kc(v) = K ∗K(v), the convolution function, and let Kch(v) = h−1Kc(v/h).

Define the volume of the support of Z to be V = E{1/fZ(Z)}, and also define

µn(h) = h−1V{K(0)− (1/2)
∫
K2(t)dt} and σ2

n(h) = 2µn(h)/rK , where

rK =
K(0)− (1/2)

∫
K2(t)dt∫

{K(t)− (1/2)Kc(t)}2dt
.

Let Λn(γ) be the likelihood ratio test statistic. Then by Fan et al. (2001), under the

null hypothesis, independent of the value of γ, σ−1
n (h){Λn(γ)−µn(h)} ⇒ Normal(0, 1).

This implies that the mean of rKΛn(γ) is rKµn(h) and the variance is 2µn(h)rK , as

one would have with a chi-squared random variable with rKµn(h) degrees of freedom,

see their Theorem 5 on page 165 and Theorem 10 on page 174.

Define

Ω(z0, γ) = fZ(z0)E[W 2(γ)H(1){XTβ0 + STη0 +W (γ)θ(Z, γ)}|Z = z0];

ǫ = Y −H{XTβ0 + STη0 +W (γ)θ(Z, γ)}.

Using Fan et al (2001) (see their page 191), which applies to generalized linear models

and allows heteroscedastic ǫi, we obtain

Λn(γ) = n−1∑2
k=1

∑n
i=1Kh(Zk − Zi)ǫkǫiWi(γ)Wk(γ)/Ω(Zk, γ)

−(1/2)n−2∑2
k=1

∑n
i=1

∑n
j=1H

(1){XT
k β0 + ST

k η0 +Wk(γ)θ(γ)}ǫiǫjWi(γ)

×Wj(γ)W
2
k (γ){Ω(Zk, γ)}−2Kh(Zi − Zk)Kh(Zj − Zk)× {1 + op(1)}

= {Tn(γ)− Sn(γ)} × {1 + op(1)}.
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Also, modulo higher order terms, it follows that

Tn(γ) = h−1K(0)E{1/fZ(Z)}+ n−1

n∑

k 6=i

Kh(Zk − Zi)ǫkǫiWk(γ)Wi(γ)/Ω(Zk, γ);

Sn(γ) = (1/2)h−1E{1/fZ(Z)}
∫

K2(t)dt

+(2n)−1
n∑

k 6=i

Kch(Zi − Zk)ǫkǫiWk(γ)Wi(γ)/Ω(Zk, γ).

Make the definition

Un(γ) = n−1
n∑

k 6=i

{Kh(Zk − Zi)− (1/2)Kch(Zk − Zi)}ǫkǫiWk(γ)Wi(γ)/Ω(Zk, γ).

Then we have that

Λn(γ) = {µn(h) + Un(γ)}{1 + op(1)}.

It is obvious that these results are uniform in compact sets for γ. Since the terms

{1 + op(1)} are actually {1 + op(h
−1/2)}, see Fan et al (2001), page 183, if D is such

a compact set, then uniformly in γ ∈ D, supγ∈D|h1/2{Λn(γ)− µn(h)} − h1/2Un(γ)| =

op(1). In section 2.b we show that h1/2Un(γ), as a process in γ, converges to a Gaussian

process.

2. Weak Convergence of Un

To prove that the process h1/2Un(γ) converges to a Gaussian process in γ ∈ D,

we have to show that the finite dimensional distributions converge to normality, and

that the process is tight.
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Make the definitions

aii(γ) = 0;

aij(γ) = h1/2{Kh(Zi − Zj)− (1/2)Kch(Zi − Zj)}Wi(γ)Wj(γ)/Ω(Zi, γ);

cij(γ) = n−1{aij(γ) + aji(γ)}ǫiǫj ,

the latter two are defined when i 6= j. Then we have that

h1/2Un(γ) =
∑

1≤i<j≤n

cij(γ),

where once again we note that (ǫi, ǫj) are independent of γ under the null hypothesis.

We use Proposition 3.2 in de Jong (1987) to show that h1/2Un(γ) converges to a

Gaussian distribution for any fixed γ. Define

GI =
∑

1≤i<j≤n

E{cij(γ)4};

GII =
∑

1≤i<j<k≤n

[
E{c2ij(γ)c2ik(γ)}+ E{c2ji(γ)c2jk(γ)}+ E{c2ki(γ)c2kj(γ)}

]
;

GIV =
∑

1≤i<j<k<l≤n

[
E{cij(γ)cik(γ)clj(γ)clk(γ)}+ E{cij(γ)cil(γ)ckj(γ)ckl(γ)}

+E{cik(γ)cil(γ)cjk(γ)cjl(γ)}
]
;

To apply this proposition, we need to check the following conditions:

C1. h1/2Un(γ) is clean in the sense of de Jong (1987).

Using Definition 2.1 in de Jong (1987), we call h1/2Un(γ) is clean if the coditional

expectations of cij vanish, and this is obviously true since E(ǫ|X,S, Z) = 0.

C2. var{h1/2Un(γ)} converges to a finite quantity as n → ∞.

C3. GI is of smaller order than var{h1/2Un(γ)}.
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C4. GII is of smaller order than var{h1/2Un(γ)}.

C5. GIV is of smaller order than var{h1/2Un(γ)}.

In what follows, we check conditions C2 - C5 as condition C1 follows directly

from the fact that E(ǫ|X,S, Z) = 0.

We use the following result:

Lemma 1 Let Zi and Zj are independent and identically distributed random vari-

ables with a strictly positive density and compact support and letK(·) be a symmetric

kernel. Define Km(c) to be the m− fold convolution of K(c). Then

E[K2
h(Zi − Zj)Ω(Zj , γ)/{fZ(Zj)fZ(Zi)Ω(Zi, γ)}]

= h−1K2(0) E{1/f(Zi)}{1 +O(h)}

E[K2
2h(Zi − Zj)Ω(Zj, γ)/{fZ(Zj)fZ(Zi)Ω(Zi, γ)}]

= h−1K4(0) E{1/f(Zi)}{1 +O(h)}

E[K2h(Zi − Zj)Kh(Zi − Zj)Ω(Zj , γ)/{fZ(Zj)fZ(Zi)Ω(Zi, γ)}]

= h−1K3(0) E{1/f(Zi)}{1 +O(h)}

To check condition C2, first observe that

var{h1/2Un(γ)} =
∑

i<j

E{c2ij(γ)}

Then we derive

E{c2ij(γ)} = (n−2/4)E[{aij(γ) + aji(γ)}2ǫ2i ǫ2j ]

= (n−2/4)E[{a2ij(γ) + a2ji(γ) + 2aij(γ)aji(γ)}ǫ2i ǫ2j ]

= A1 + A2 + A3.
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Now we see that, using Lemma 1,

A1 = hn−2E

(
[{Kh(Zi − Zj)− (1/2)Kch(Zi − Zj)}Wi(γ)Wj(γ)/Ω(Zi, γ)]

2ǫ2i ǫ
2
j

)

= hn−2E

(
[{Kh(Zi − Zj)− (1/2)Kch(Zi − Zj)}]2Ω(Zj , γ)

× {fZ(Zj)fZ(Zi)Ω(Zi, γ)}−1

)

= n−2[K2(0)−K4(0) + (1/4)K4(0)]E{1/fZ(Z)}{1 + O(h)}.

Similarly,

A2 = n−2[K2(0)−K3(0) + (1/4)K2(0)]E{1/fZ(Z)}{1 +O(h)};

A3 = n−2[2K2(0)− 2K3(0) + (1/2)K4(0)]E{1/fZ(Z)}{1 +O(h)}.

Hence we have

lim
n→∞

var{h1/2Un(γ)} = lim
n→∞

∑

i<j

E{c2ij(γ)}

= [4K2(0)− 4K3(0) +K4(0)]E{1/fZ(Z)},

and hence condition C2 is satisfied.

Next, similar calculations as in Lemma 1 show that

E{a4ij(γ)ǫ4i ǫ4j} = O(h−1);

E{a2ij(γ)a2ji(γ)ǫ4i ǫ4j} = O(h−1),

and it follows that E{c4ij(γ)} = O(n−4h−1). Hence we have that GI = O(n−2h−1) =

o(1).

To check condition C4, we observe that,

E{a2ij(γ)a2ik(γ)ǫ4i ǫ2jǫ2k} = O(h−1);

E{aij(γ)aji(γ)aik(γ)aki(γ)ǫ4i ǫ2jǫ2k} = O(h−1),
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and similarly for other terms in the expansion of c2ij(γ)c
2
ik(γ). It follows that

E{c2ij(γ)c2ik(γ)} = O(n−4h−1). Hence we have that GII = O(n−1h−1) = o(1).

Finally, to check condition C5, we note that

E{aij(γ)ajk(γ)akℓ(γ)aℓi(γ)ǫ2i ǫ2jǫ2kǫ2ℓ} = O(h),

and similarly for other cross product terms, and thus implying

E{cij(γ)cjk(γ)ckℓ(γ)cℓi(γ)} = O(n−4h). Hence we get GIV = O(h) = o(1).

We have thus shown that conditions C1-C5 are satisfied and hence the proof is

complete.

We have to show that there exists ζ > 0, η > 1, such that, for any γ1 < γ < γ2,

hζE
{
|Un(γ)− Un(γ1)|ζ |Un(γ)− Un(γ2)|ζ

}
≤ |γ1 − γ2|η, (A.4)

see Billingsley (1968, page 128). We show below that (A.4) holds for ζ = 1.

Using the Cauchy-Schwarz inequality we observe

h2E2 {|Un(γ)− Un(γ1)||Un(γ)− Un(γ2)|} ≤ E
{
h1/2|Un(γ)− Un(γ1)|

}2

×E
{
h1/2|Un(γ)− Un(γ2)|

}2
.

Recall that h1/2Un(γ) =
∑

1≤i<j≤n cij(γ). Let c
(1)
ij (γ) denote the first derivative of

cij(γ) with respect to γ and similarly for aij(γ). Now we see that

E
{
h1/2|Un(γ)− Un(γ1)|

}2
= E

[
∑

1≤i<j≤n

{cij(γ)− cij(γ1)}
]2

= E

[
∑

1≤i<j≤n

{cij(γ)− cij(γ1)}2
]

≤ (γ1 − γ2)
2C,

where C = n2supγ,γ1∈[L,R]E[{cij(γ) − cij(γ1)}2]. Similar calculations can be done
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for E
{
h1/2|Un(γ)− Un(γ2)|

}2
, and hence hE {|Un(γ)− Un(γ1)||Un(γ)− Un(γ2)|} ≤

|γ1 − γ2|2C. The only thing remaining is to show that C is finite, which follows

immediately from condition C2.

Note that K(s) = K(−s) and since Z has a positive density function on a

compact support, we have E{1/fZ(Z)} =
∫
z
dz. Then

E{K2
h(Zi − Zj)Ω(Zj , γ)/{fZ(Zj)fZ(Zi)Ω(Zi, γ)}}

= h−2

∫
K2{(zj − zi)/h}Ω(zj , γ)/{Ω(zi, γ)} dzi dzj

= h−1

∫
K2(t)Ω(zi + th, γ)/{Ω(zi, γ)} dzi dt

= h−1

∫
K2(t){Ω(zi, γ) +O(h)}/{Ω(zi, γ)} dZi dt

= h−1

∫
K2(t) dzi dt{1 +O(h)}

= h−1

∫
K2(t) dt E{1/f(Zi)}{1 +O(h)}

= h−1K2(0) E{1/f(Zi)}{1 +O(h)}.

Also,

E{K2
2h(Zi − Zj)Ω(Zj , γ)/{fZ(Zj)fZ(Zi)Ω(Zi, γ)}}

= h−2

∫
K2

2{(zj − zi)/h}Ω(zj , γ)/{Ω(zi, γ)} dzi dzj

= h−1

∫
K2

2 (t)Ω(zi + th, γ)/{Ω(zi, γ)} dzi dt

= h−1

∫
K2

2 (t){Ω(zi, γ) +O(h)}/{Ω(zi, γ)} dzi dt

= h−1

∫
K2

2 (t) dzi dt{1 +O(h)}

= h−1

∫
K2

2 (t) dt E{1/f(Zi)}{1 +O(h)}

= h−1K4(0) E{1/f(Zi)}{1 +O(h)}.
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Similarly, we derive

E{K2h(Zi − Zj)Kh(Zi − Zj)Ω(Zj , γ)/{fZ(Zj)fZ(Zi)Ω(Zi, γ)}}

= h−2

∫
K2{(zj − zi)/h}K{(zj − zi)/h}Ω(zj , γ)/{Ω(zi, γ)} dzi dzj

= h−1

∫
K2(t)K(t)Ω(zi + th, γ)/{Ω(zi, γ)} dzi dt

= h−1

∫
K2(t)K(t){Ω(zi, γ) +O(h)}/{Ω(zi, γ)} dzi dt

= h−1

∫
K2(t)K(t) dzi dt{1 +O(h)}

= h−1

∫
K2(t)K(t) dt E{1/f(Zi)}{1 +O(h)}

= h−1K3(0) E{1/f(Zi)}{1 +O(h)},

completing the proof.
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APPENDIX B

LOCALLY EFFICIENT SCORE TESTS FOR INDEPENDENCE IN THE

SECONDARY ANALYSIS OF CASE-CONTROL DATA

1. Robustness of the Efficient Score Test

Here we show that if the distribution of Y given X is misspecified, even under

the null hypothesis of independence between (Y,X), then the score statistic does not

in general have mean zero, and hence the score test is not robust.

We will use a result of Spinka, et al. (2005), who show that for any function

R(D, Y,X), under the null hypothesis

Ecc

{
n−1

∑n
i=1R(Di, Yi, Xi)

}
=

nπ0

n0

∫
fY (t)fX(x) (B.1)

×∑1
d=0R(d, t, x)S(d, t, x,Ω)dtdx,

where Ecc(·) means expectation in the case-control sampling scheme, i.e., Ecc{G(D, Y,

X)} = n−1
∑n

i=1E{G(Di, Yi, Xi)|Di}.

Theorem 4 Let the true distribution of Y under the null hypothesis of independence

be fy,true(y), while the distribution of X is given as fx(x). Then Ecc{
∑n

i=1Kpar(Yi, Xi,

Ω)} = 0 does not hold in general, and indeed the expectation is given as

nπ0

n0

∫
fx(s)

{∫
L(t, s)fy,true(t)

∑1
d=0C(d, t, s,Ω)dt

}
ds

−nπ0

n0

∫
fx(s)

∫
fy,true(t)

∑1
d=0C(d, t, s,Ω)dt∫

fY (t)
∑1

d=0C(d, t, s,Ω)dt

×
{∫

L(u, s)fY (u)
∑1

d=0C(d, u, s,Ω)du
}
ds.

The proof is a simple consequence of (B.1), plus some detailed algebra.
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2. Proof of Theorem 1

Using (B.1), we see that

Ecc

{
n−1

∑n
i=1L(Yi, Xi, ζ)

}
=

nπ0

n0

∫
fY (t)fX(x) (B.2)

×∑1
d=0L(t, x, ζ)S(d, t, x,Ω)dtdx.

Now note that

∑n
i=1

∑1
d=0

∫
S(d, Yi, x,Ω)pest(Yi)fX(x)dx

=
nπ0

n0

n−1∑n
i=1

∫
fX(x)

∑1
d=0S(d, Yi, x,Ω)dx

×{
∫

fX(x)
∑1

d=0S(d, Yi, x,Ω)dx}−1

=
nπ0

n0

.

Hence the right hand side of (3.8) is exactly equal to

Λ =
n0

nπ0

∑n
i=1

∑1
d=0

∫
L(Yi, x, ζ)S(d, Yi, x,Ω)pest(Yi)fX(x)dx

= n−1∑n
i=1

∑1
d=0

∫
L(Yi, x, ζ)S(d, Yi, x,Ω)fX(x)dx∫
fX(x)

∑1
d=0S(d, Yi, x,Ω)dx

= n−1
∑n

i=1

∑1
d=0

∫
L(Yi, x, ζ)fX(x)S(d, Yi, x,Ω)dx∑1
d=0

∫
fX(x)S(d, Yi, x,Ω)dx

= n−1
∑n

i=1U(Yi,Ω, ζ).
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Now apply (B.1), so that

Ecc(Λ) =
nπ0

n0

∫
fY (t)fX(x)

∑1
d=0U(t,Ω, ζ)S(d, t, x,Ω)dtdx

=
nπ0

n0

∫
fY (t)

∑1
d=0

∫
L(t, x, ζ)fX(x)S(d, t, x,Ω)dx∑1

d=0

∫
fX(x)S(d, t, x,Ω)dx

×
∫

fX(x)
∑1

d=0S(d, t, x,Ω)dxdt

=
nπ0

n0

∫
fY (t)

∫
fX(x)

∑1
d=0L(t, x, ζ)S(d, t, x,Ω)dx∫

fX(x)
∑1

d=0S(d, t, x,Ω)dx

×
∫

fX(x)
∑1

d=0S(d, t, x,Ω)dxdt

=
nπ0

n0

∫
fY (t)fX(x)

∑1
d=0L(t, x, ζ)S(d, t, x,Ω)dtdx. (B.3)

Since (B.2) and (B.3) are identical, we have thus shown that the test statistic (3.8)

numerically equals (3.10) and has mean zero under the hypothesis, as claimed.

Now we take up the question as to whether (3.10) has non-zero mean under the

alternative hypothesis. Under the alternative, Y and X and dependent, and we write

pr(X = x|Y ) = Q(x, y, κ), where Q(x, y, κ = 0) = fX(x). Define Salt(d, t, x,Ω, κ) the

same as S(d, t, x,Ω) except that fX(x) in the latter is replaced by Q(x, y, κ). As seen

in Chen, et al. (2008), for any function R(Y,X),

Ecc{n−1
∑n

i=1R(Yi, Xi)} =
nπ0

n0

∫
fY (t)fX(x)

∑1
d=0R(t, x)Salt(d, t, x,Ω, κ)dxdt.

Then we have that

Ecc{
∑n

i=1U(Yi,Ω, ζ)} =
nπ0

n0

∫
fY (t)fX(x)

∑1
d=0U(t,Ω, ζ)Salt(d, t, x,Ω, κ)dxdt

=
nπ0

n0

∫
fY (t)

∑1
d=0

∫
L(t, v, ζ)fX(v)S(d, t, v,Ω)dv∑1

d=0

∫
fX(u)S(d, t, u,Ω)du

×
∫

fX(x)
∑1

d=0Salt(d, t, x,Ω, κ)dxdt.
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Similarly,

Ecc{
∑n

i=1L(Yi, Xi, ζ)} =
nπ0

n0

∫
fY (t)fX(x)

∑1
d=0L(t, x, ζ)Salt(d, t, x,Ω, κ)dxdt.

Clearly, these expectations are generally different, and hence the test generally has

non-zero mean under alternatives.

3. Computation of (3.12)

Let erf(x) = 2Φ(
√
2x)− 1, where Φ(·) is the standard normal distribution func-

tion, and let φ(·) be the standard normal density function. Then ifA =
∫ ∑1

d=0tSpar(d,

t, x,Ω, 0, ζ)dt and B =
∫ ∑1

d=0 Spar(d, t, x, Omega, 0, ζ)dt, we have that

A = β0 + (β0 + θ11σ
2)C;

B = 1 + C.

where C = exp(κ+ θ11β0 + θ12x+ θ211σ
2/2). Both terms were computed using Math-

ematica, and checked numerically.

4. Asymptotic Distribution of V(Ω̂, ζ̂) in (3.11)

As in Theorem 2, n0/n1 → c, 0 < c < ∞. Let Θ = (Ω, ζ) and write Tn =

n1/2V(Ω̂, ζ̂). Define Gnum(y, x,Θ) = L(y, x, ζ)
∑1

d=0S(d, y, x,Ω) and Gden(y, x,Θ) =

∑1
d=0S(d, y, x,Ω). Then

Tn = n−1/2∑n
i=1

{
L(Yi, Xi, ζ̂)−

n−1
0

∑n
j=1(1−Dj)Gnum(Yi, Xj, Θ̂)

n−1
0

∑n
j=1(1−Dj)Gden(Yi, Xj, Θ̂)

}
.

DefineAnum(y,Θ) = E{Gnum(y,X,Θ)|D = 0} andAden(y,Θ) = E{Gden(y,X,Θ)|D =

0}. Define

M(y, x,Θ) =
∂

∂ΘT

{
L(y, x, ζ)− Anum(y,Θ)

Aden(y,Θ)

}
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Define Ecc{M(Y,X,Θ)} = n−1
∑n

i=1E{M(Yi, Xi,Θ)|Di}. By simple calculations,

using our estimators of Θ as described in Section 3, we have that for some Θ0 and

some estimating function Φ(Y,X,D,Θ0),

n1/2(Θ̂−Θ0) = n−1/2∑n
i=1Φ(Yi, Xi, Di) + op(1),

where Ecc{Φ(Y,X,D,Θ0)} =
∑n

i=1E{Φ(Yi, Xi, Di,Θ0)|Di} = 0. Make the definition

that µ5(d) = E{Φ(Y,X,D,Θ0)|D = d}, and since
∑n

i=1µr(Di) = 0, it follows that

Tn = n−1/2
∑n

i=1

{
L(Yi, Xi, ζ0)−

n−1
0

∑n
j=1(1−Dj)Gnum(Yi, Xj,Θ0)

n−1
0

∑n
j=1(1−Dj)Gden(Yi, Xj ,Θ0)

}

+Ecc{M(Y,X,Θ0)}n−1/2∑n
i=1{Φ(Yi, Xi, Di,Θ0)− µ5(Di)}+ op(1).

Define

Znum(Y,Θ0) = n
−1/2
0

∑n
j=1(1−Dj) {Gnum(Yi, Xj,Θ0)−Anum(Y,Θ0)} ;

Zden(Y,Θ0) = n
−1/2
0

∑n
j=1(1−Dj) {Gden(Yi, Xj,Θ0)−Aden(Y,Θ0)} .

Since by assumption n0/n1 → c, 0 < c < ∞, we have that Znum{R(β0),Θ0} = Op(1)

and Zden{R(β0),Θ0} = Op(1). Thus,

n−1
0

∑n
j=1(1−Dj)Gnum(Y,Xj,Θ0)

n−1
0

∑n
j=1(1−Dj)Gden(Y,Xj,Θ0)

− Anum(Y,Θ0)

Aden(Y,Θ0)

=
Anum(Y,Θ0) + n

−1/2
0 Znum(Y,Θ0)

Aden(Y,Θ0) + n
−1/2
0 Zden(Y,Θ0)

− Anum(Y,Θ0)

Aden(Y,Θ0)

=
n
−1/2
0 Znum(Y,Θ0)

Aden(Y,Θ0)
− Anum(Y,Θ0)

A2
den(Y,Θ0)

n
−1/2
0 Zden(Y,Θ0) + op(n

−1/2
0 ).
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Under regulatory conditions it follows that

Tn = n−1/2
∑n

i=1 {L(Yi, Xi,Θ0)− U(Yi,Θ0)}

+n−1/2
∑n

i=1

{
U(Yi,Θ0)−

Anum(Yi,Θ0)

Aden(Yi,Θ0)

}

−n−1
0 n−1/2

∑n
i=1

∑n
j=1(1−Dj)

Gnum(Yi, Xj,Θ0)−Anum(Yi,Θ0)

Aden(Yi,Θ0)

+n−1
0 n−1/2∑n

i=1

∑n
j=1

Anum(Yi,Θ0)

A2
den(Yi,Θ0)

(1−Dj){Gden(Yi, Xj,Θ0)−Aden(Yi,Θ0)}

+Ecc{M(Y,X,Θ0)}n−1/2∑n
i=1Φ(Yi, Xi, Di) + op(1)

= D1 +D2 +D3 +D4 +D5 + op(1).

We now proceed to analyze these terms in turn. By the rare disease assumption,

D2 = 0 since U(Yi,Θ0) ≈ Anum(Yi,Θ0)/Aden(Yi,Θ0). We know from Theorem 1 that

if µ1(d) = E{L(Y,X,Θ0)− U(Y,Θ0)|D = d}, then ∑n
i=1µ1i(Θ0) = 0, this latter sum

being the expectation in the case control sampling scheme. Hence

D1 +D2 +D5 = n−1/2∑n
i=1{L(Yi, Xi, ζ0)− U(Yi,Θ0)− µ1(Di)}

+n−1/2∑n
i=1Ecc{M(Y,X,Θ0)}{Φ(Yi, Xi, Di)− µ5(Di)}

= n−1/2∑n
i=1 K(Yi, Xi, Di,Θ0),

say, where E{K(Y,X,D,Θ0)|D} = 0.

Similarly, note that

0 = µ3(d, y) = E

{
(1−D)

Gnum(y,X,Θ0)−Anum(y,Θ0)

Aden(y,Θ0)
|D = d

}

0 = µ4(d, y) = E

[
(1−D)

Anum(y,Θ0){Gden(y,X,Θ0)−Aden(y,Θ0)}
A2

den(y,Θ0)
|D = d

]
.

Let c∗ = n/n0. Hence,

D3 +D4 = c∗n
−3/2

∑n
i=1

∑n
j=1W (Yi, Xj, Dj ,Θ0),
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where

W (Yi, Xj, Dj,Θ0) = −(1−Dj)
Gnum(Yi, Xj ,Θ0)−Anum(Yi,Θ0)

Aden(Yi,Θ0)

+(1−Dj)
Anum(Yi,Θ0){Gden(Yi, Xj,Θ0)−Aden(Yi,Θ0)}

A2
den(Yi,Θ0)

.

Notice that W (y, x, d = 1,Θ0) = 0 and E{W (y,X, d = 0,Θ0)|D = 0} = 0. With-

out loss of generality, we can make the first n0 observations be controls, and the

last n − n0 observations be the cases. Define Z̃i = (Yi, Xi, Di), Q1(Z̃i, Z̃j,Θ0) =

W (Yi, Xj , Dj,Θ0) + W (Yj, Xi, Di,Θ0), Q2(z̃,Θ0) = E{W (Y, x, d,Θ0)|D = 1} and

h1(z̃,Θ0) = E{Q1(z̃, Z̃,Θ0)|D = 0}. Then

D3 +D4 = c∗n
−3/2

∑n
i=1

∑n0

j=1W (Yi, Xj, Dj,Θ0)

= c∗n
−3/2∑n0

i=1

∑n0

j=1W (Yi, Xj, Dj,Θ0)

+c∗n
−3/2∑n

i0+1

∑n0

j=1W (Yi, Xj, Dj,Θ0)

= c∗n
−3/2∑n0

i=1

∑n0

j<iQ1(Z̃i, Z̃j,Θ0)

+c∗n1n
−3/2

∑n0

j=1n
−1
1

∑n
i0+1W (Yi, Xj, Dj ,Θ0) + op(1).

An easy calculation shows that

var
[
n−3/2∑n0

j=1

∑n
i0+1W (Yi, Xj, Dj,Θ0)− n1n

−3/2∑n0

i=1Q2(Z̃i,Θ0)
]
→ 0.

Hence we have shown that

D3 +D4 = c∗(n0/n)
3/2n

−3/2
0

∑n0

i=1

∑n0

j<iQ1(Z̃i, Z̃j,Θ0)

+c∗n1n
−3/2∑n0

i=1Q2(Z̃i,Θ0) + op(1).

Except for the factor c∗(n0/n)
3/2, the first term above is a classical symmetric U-

statistic of order two applied to independent and identically distributed observations,

since by convention the first n0 observations are the controls. It then follows from
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standard U-statistic results that

D3 +D4 = c∗(n0/n)
3/2n

−1/2
0

∑n0

i=1h1(0, Z̃i,Θ0) + c∗n1n
−3/2

∑n0

i=1Q2(Z̃i,Θ0) + op(1)

= c∗(n0/n)n
−1/2

∑n
i=1(1−Di)h1(Di, Z̃i,Θ0)

+c∗(n1/n)n
−1/2

∑n
i=1(1−Di)Q2(Z̃i,Θ0) + op(1)

= n−1/2∑n
i=1h2{Ri(β0), Xi, Di,Θ0}+ op(1),

say, where of course E[h2{R(β0), X,D,Θ0}|D] = 0. Define Λ(Y,X,D,Θ0) = K(Y,X,

D,Θ0) + h2(Y,X,D,Θ0). Because of the way we have set things up, Ecc{Λ(Y,X,D,

Θ0)} = 0 and the normalized test statistic satisfies

Tn = n−1/2∑n
i=1Λ(Yi, Xi, Di,Θ0) + op(1) → Normal(0,Σ);

Σ = = covcc(Y,X,D,Θ0) =
∑1

d=0(nd/n)cov{Λ(Y,X,D,Θ0)|D = d}.

In principle, all the terms in Λ(·,Θ0) can be estimated, and a method of moments

covariance matrix can constructed separately for both the cases and the controls in

order to estimate Σ.
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APPENDIX C

LOCALLY EFFICIENT ESTIMATION FOR HOMOSCEDASTIC REGRESSION

IN THE SECONDARY ANALYSIS OF CASE-CONTROL DATA

1. Unbiasedness of the Estimation Function (4.9)

Since this is a case-control sampling scheme, all expectations are conditional on

(D1, ..., Dn). Let Ecc denote the expectation under the case-control sampling scheme

and G an arbitrary function. Then, with (βtrue,Ωtrue) the true parameter, β an

arbitrary value, τ(x, β, βtrue) = µ(x, βtrue)− µ(x, β), and with R(β) = Y − µ(X, β),

Ecc [G{R(β), X}] = ∑1
d=0(nd/n)E[G{Y − µ(X, β), X}|D = d].

In order to derive the conditional density given the disease state we use the fact

that we assume a logistic model, P (D = 1|Y,X) = H{θ0 +m(Y,X, θ1)}, with H(x)

is the logistic distribution function, for which H{θ0 + m(Y,X, θ1)} = [1 − H{θ0 +

m(Y,X, θ1)}] exp{θ0+m(Y,X, θ1)}. Now write fY X(·) as the joint density/mass func-

tion of (Y,X) in the population. Then, with θ0 and θ1 denoting the true parameters,

πd = P (D = d)

=

∫
H{θ0 +m(y, x, θ1)}d[1−H{θ0 +m(y, x, θ1)}]1−dfY X(y, x) dy dx

=

∫
[1−H{θ0 +m(y, x, θ1)}] exp[d{θ0 +m(y, x, θ1)}]fY X(y, x) dy dx.

It then follows that the density/mass function of (Y,X) given D

fY X|D=d(y, x) =
exp[d{θ0 +m(y, x, θ1)}]fY X(y, x)

[1 + exp{θ0 +m(y, x, θ1)}]πd
.
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If we make the rare disease assumption, this becomes exp[d{θ0+m(y, x, θ1)}]fY X(y, x)

×π−1
d . Recall that κ = θ0 + log(n1/n0)− log(π/π0). The above expectation can now

be computed as

Ecc [G{R(β), X}]

=
∑1

d=0

nd

nπd

∫
G{y − µ(x, β), x} exp[d{θ0 +m(y, x, θ1)}]fY X(y, x) dy dx

=
n0

nπ0

∫ ∑1
d=0G{y − µ(x, β), x}nd/n0

πd/π0
exp[d{θ0 +m(y, x, θ1)}]fY X(y, x) dy dx

=
n0

nπ0

∫
G(r, x)[1 + exp[κ+m{r + µ(x, β), x, θ1}]fY X{r + µ(x, β), x} dr dx.

We now note that the joint density/mass function of (Y,X) in the population is

fY X(y, x) = fǫ{y − αtrue − µ(x, βtrue)}fX(x). Hence, fY X{r + µ(x, β), x} = fǫ{r −

αtrue − τ(x, β, βtrue)}fX(x). Thus,

Ecc [G{R(β), X}]

=
n0

nπ0

∫
G(r, x)[1 + exp[κ +m{r + µ(x, βtrue)− τ(x, β, βtrue), x, θ1}]

×fǫ{r − αtrue − τ(x, β, βtrue)}fX(x) dr dx

=
n0

nπ0

∫
G{r + τ(x, β, βtrue), x}[1 + exp[κ +m{r + µ(x, βtrue), x, θ1}]

×fǫ(r − αtrue)fX(x) dr dx.

Now, since K(r, x, βtrue,Ωtrue) = 1 + exp[κ +m{r + µ(x, βtrue), x, θ1}], we have that

Ecc [G{R(β), X}] (C.1)

=
n0

nπ0

∫
fǫ(r − αtrue)fX(x)K(r, x, βtrue,Ωtrue)G{r + τ(x, β, βtrue), x}drdx.
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It follows from (C.1) that

nπ0

n0
Ecc{Qn(αtrue, β,Ωtrue)}

= n1/2

∫
fǫ(r − αtrue)fX(x)K(r, x, βtrue,Ωtrue)

×
[
L{r + τ(x, β, βtrue), x, α(β,Ωtrue), β}

−
∫

L{r + τ(x, β, βtrue), v, α(β,Ωtrue), β}K{r + τ(x, β, βtrue), v, β,Ωtrue}∫
K{r + τ(x, β, βtrue), s, β,Ωtrue}fX(s)ds

×fX(v)dvdxdr

]
.

If β = βtrue, since τ(x, βtrue) = 0, it follows directly that Ecc{Qn(αtrue, βtrue,Ωtrue)}

= 0, and hence that Qn(β,Ω) is an unbiased estimating equation. If β 6= βtrue, then

in general we will have 0 6= Ecc{Qn(αtrue, β,Ωtrue)}.

2. A Technical Lemma

The following Lemma is used in our analysis, including for the intercept. Refer

to the definitions before the statement of Theorem 3.

Lemma 1 Under regulatory conditions, as (n0, n1) → ∞ such that n0/n1 → c, with

0 < c < ∞,

Hn(β,Θ) = n−1/2
∑n

i=1h2{Ri(β), Xi, Di,Θ}+ op(1), (C.2)

where E[h2{R(β), X,D,Θ}|D] = 0.

Sketch of Proof: Define

Znum{R(β),Θ} = n
−1/2
0

∑n
j=1(1−Dj) [Gnum{R(β), Xj,Θ)−Anum{R(β),Θ}] ;

Zden{R(β),Θ} = n
−1/2
0

∑n
j=1(1−Dj) [Gden{R(β), Xj,Θ} − Aden{R(β),Θ}] .

Since by assumption n0/n1 → c, 0 < c < ∞, we have that Znum{R(β),Θ} = Op(1)
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and Zden{R(β),Θ} = Op(1). Thus, by a Taylor series expansion

n−1
0

∑n
j=1(1−Dj)Gnum{R(β), Xj}

n−1
0

∑n
j=1(1−Dj)Gden{R(β), Xj}

− Anum{R(β),Θ}
Aden{R(β),Θ}

=
Anum{R(β),Θ}+ n

−1/2
0 Znum{R(β),Θ}

Aden{R(β),Θ}+ n
−1/2
0 Zden{R(β),Θ}

− Anum{R(β),Θ}
Aden{R(β),Θ}

=
n
−1/2
0 Znum{R(β),Θ}
Aden{R(β),Θ} − Anum{R(β),Θ}

A2
den{R(β),Θ} n

−1/2
0 Zden{R(β),Θ}+ op(n

−1/2
0 ).

Thus,

Hn(β,Θ) = n−1
0 n−1/2

∑n
i=1

∑n
j=1(1−Dj)

Gnum{Ri(β), Xj,Θ} − Anum{Ri(β),Θ}
Aden{Ri(β),Θ}

−n−1
0 n−1/2∑n

i=1

∑n
j=1

Anum{Ri(β),Θ}
A2

den{Ri(β),Θ}
×(1 −Dj) [Gden{Ri(β), Xj,Θ} − Aden{Ri(β),Θ}] + op(1)

= D1 +D2 + op(1).

By definition, E(D1|D1, ..., Dn) = E(D2|D1, ..., Dn) = 0. Let c∗ = n/n0. By the

definition of Gnum, etc.,

D1 +D2 = c∗n
−3/2

∑n
i=1

∑n
j=1W{Ri(β), Xj, Dj,Θ},

Notice that W (r, x, d = 1,Θ) = 0. Without loss of generality, we can make the first

n0 observations be the controls, and the last n− n0 observations be the cases. Then

D1 +D2 = c∗n
−3/2

∑n
i=1

∑n0

j=1W{Ri(β), Xj, Dj,Θ}

= c∗n
−3/2

∑n0

i=1

∑n0

j=1W{Ri(β), Xj, Dj,Θ}

+c∗n
−3/2

∑n
i0+1

∑n0

j=1W{Ri(β), Xj, Dj,Θ}

= c∗n
−3/2∑n0

i=1

∑n0

j<iQ1{Z̃i(β), Z̃j(β),Θ)

+c∗n1n
−3/2∑n0

j=1n
−1
1

∑n
i0+1W{Ri(β), Xj, Dj,Θ}+ op(1).
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An easy calculation shows that

var
[
n−3/2

∑n0

j=1

∑n
i0+1W{Ri(β), Xj, Dj ,Θ} − n1n

−3/2
∑n0

i=1Q2{Z̃i(β), β,Θ}
]
→ 0.

Hence we have shown that

D1 +D2 = c∗(n0/n)
3/2n

−3/2
0

∑n0

i=1

∑n0

j<iQ1{Z̃i(β), Z̃j(β), β,Θ}

+c∗n1n
−3/2

∑n0

i=1Q2{Z̃i(β), β,Θ}+ op(1).

Except for the factor c∗(n0/n)
3/2, the first term above is a classical symmetric U-

statistic of order two applied to independent and identically distributed observations,

since by convention the first n0 observations are the controls. It then follows from

standard U-statistic results that

D1 +D2 = c∗(n0/n)
3/2n

−1/2
0

∑n0

i=1h1{0, Z̃i(β), β,Θ}

+c∗n1n
−3/2∑n0

i=1Q2{Z̃i(β), β,Θ}+ op(1)

= c∗(n0/n)n
−1/2∑n

i=1(1−Di)h1{Di, Z̃i(β), β,Θ}

+c∗(n1/n)n
−1/2

∑n
i=1(1−Di)Q2{Z̃i(β), β,Θ}+ op(1)

= n−1/2
∑n

i=1h2{Ri(β), Xi, Di,Θ}+ op(1).

This completes the sketch of Lemma 1.

3. Sketch of the Asymptotic Theory for β̂

Under the rare disease approximation, the estimate is consistent for βtrue, and

α(βtrue,Ωtrue) = αtrue. Define MΩ, T {R(β), X,Θ, fX,cont}, and Mβ as in Section 6.
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Define

J {R(β), X, β,Ω) = µβ(X, β)−
∫
µβ(x, β)K{R(β), x, β,Ω}fX,cont(x)dx∫

K{R(β), x, β,Ω}fX,cont(x)dx
;

c1n(β,Ω) = n−1
∑n

i=1J {Ri(β), Xi, β,Ω);

c1(β,Ω) = Ecc[J {R(β), X, β,Ω)}.

We are solving 0 = Q̂n,est(β̂, Ω̂). By a Taylor series expansion,

0 = Q̂n,est(βtrue,Ωtrue) +
∂

∂βT
n−1/2Q̂n,est(βtrue,Ωtrue)n

1/2(β̂ − βtrue)

+
∂

∂ΩT
n−1/2Q̂n,est(βtrue,Ωtrue)n

1/2(Ω̂− Ωtrue) + op(1).

However, it is clear that for any (β,Ω), n−1/2Q̂n,est(β,Ω) = Ecc[T {R(β), X,Θ, fX,cont}]

+op(1). Hence it follows that

0 = Q̂n,est(βtrue,Ωtrue) +Mβn
1/2(β̂ − βtrue) +MΩn

1/2(Ω̂− Ωtrue) + op(1).

Because of its form,

Q̂n,est(βtrue,Ωtrue) = Q̂n(αtrue, βtrue,Ωtrue)

+c1(βtrue,Ωtrue)n
1/2{α̂(βtrue,Ωtrue)− α(βtrue,Ωtrue)}+ op(1).

However, under the rare disease approximation, when we replace fcont(·) by fX(·) in

the definition of J (·), by the same argument as in Section 1, c1(βtrue,Ωtrue) = 0. In

addition, using the same tools as in Lemma 1, n1/2{α̂(βtrue,Ωtrue)−α(βtrue,Ωtrue)} =

Op(1). We have thus shown that

n1/2(β̂ − βtrue) = −Mβ

{
Q̂n(αtrue, βtrue,Ωtrue) +MΩn

1/2(Ω̂− Ωtrue)
}
+ op(1). (C.3)

Remember that K(r, x,Θ) = 1+ exp[κ+m{r+µ(x, β), x,Ω}]. Define Φ(y, x, d,Ω) =
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{1, mΩ(y, x, θ1)}T[D −H{κ+m(y, x, θ1)}] and

NΩ = − [Ecc {∂Φ(Y,X,D,Ω)/∂Ω}]−1 .

Because Ω = (κ, θ1) is estimated by ordinary logistic regression, it follows from stan-

dard theory that

n−1/2(Ω̂− Ωtrue) = n−1/2
∑n

i=1NΩΦ(Yi, Xi, Di,Ωtrue).

We thus have from (C.3) that

n1/2(β̂ − βtrue) = −Mβ

{
Q̂n(αtrue, βtrue,Ωtrue)

+MΩn
−1/2

∑n
i=1NΩΦ(Yi, Xi, Di,Ωtrue)

}
+ op(1). (C.4)

We are now in a position to apply Lemma 1 to Q̂n(αtrue, βtrue,Ωtrue). In or-

der to apply Lemma 1, we define Gnum(r, x,Θ) = L{r, x, α(β,Ω), β}K(r, x,Θ) and

Gden(r, x,Θ) = K(r, x,Θ). Invoking Lemma 1, it follows that

Q̂n(βtrue,Θtrue) = n−1/2
∑n

i=1T {Ri(βtrue), Xi,Θtrue, fX,cont)

−n−1/2∑n
i=1h2{Ri(βtrue), Xi, Di,Θtrue}+ op(1).

We now make the rare disease assumption, and thus set fX(x) = fX,cont(x), and we

have

Q̂n(βtrue,Θtrue) = n−1/2∑n
i=1T {Ri(βtrue), Xi,Θtrue, fX)

−n−1/2∑n
i=1h2{Ri(βtrue), Xi, Di,Θtrue}+ op(1).

We have shown in Section 1 that the first term has mean zero. That is, if

µ1(d) = E[T {R(βtrue), X,Θtrue, fX)|D = d],
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then
∑n

i=1µ1(Di) = 0. Hence we have shown that

Q̂n(βtrue,Θtrue) = n−1/2
∑n

i=1 [T {Ri(βtrue), Xi,Θtrue, fX)− µ1(Di)]

−n−1/2
∑n

i=1h2{Ri(βtrue), Xi, Di,Θtrue}+ op(1).

Remember that E[h2{R(βtrue), X,D,Θtrue}|D] = 0. Now let µ4(d) = E{Φ(Y,X,D,

Ωtrue)|D = d}, and because of the unbiasedness of the estimating equation for logistic

regression,
∑n

i=1µ4(Di) = 0. Summarizing, we have shown that

n−1/2(β̂ − βtrue) = −M−1
β (Θtrue)n

−1/2
∑n

i=1Λ(Yi, Xi, Di,Θtrue) + op(1);

Λ(Yi, Xi, Di,Θtrue) = MΩ(Θtrue)NΩ(Ωtrue){Φ(Yi, Xi, Di,Ωtrue)− µ4(Di)}

−h2{Ri(βtrue), Xi, Di,Θtrue}

+ [T {Ri(βtrue), Xi,Θtrue, fX)− µ1(Di)] ;

0 = E[Λ(Y,X,D,Θtrue)|D],

as claimed.
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