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ABSTRACT

Linear Diagnostics to Assess the Performance of an Ensemble Forecast System.

(August 2010)

Elizabeth A. Satterfield, B.S., Georgia Institute of Technology;

M.S., University of Maryland

Chair of Advisory Committee: Dr. Istvan Szunyogh

The performance of an ensemble prediction system is inherently flow dependent.

This dissertation investigates the flow dependence of the ensemble performance with

the help of linear diagnostics applied to the ensemble perturbations in a small local

neighborhood of each model grid point location ℓ. A local error covariance matrix Pℓ

is defined for each local region and the diagnostics are applied to the linear space Sℓ

defined by the range of the ensemble based estimate of Pℓ. The particular diagnos-

tics are chosen to help investigate the ability of Sℓ to efficiently capture the space of

true forecast or analysis uncertainties, accurately predict the magnitude of forecast

or analysis uncertainties, and to distinguish between the importance of different state

space directions. Additionally, we aim to better understand the roots of the under-

estimation of the magnitude of uncertainty by the ensemble at longer forecast lead

times.

Numerical experiments are carried out with an implementation of the Local En-

semble Transform Kalman Filter (LETKF) data assimilation system on a reduced

(T62L28) resolution version of the National Centers for Environmental Prediction

(NCEP) Global Forecast System (GFS). Both simulated observations under the per-

fect model scenario and observations of the real atmosphere are used in these experi-

ments. It is found that (i) paradoxically, the linear space Sℓ provides an increasingly

better estimate of the space of forecast uncertainties as the time evolution of the
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ensemble perturbations becomes more nonlinear with increasing forecast time, (ii) Sℓ

provides a more reliable linear representation of the space of forecast uncertainties for

cases of more rapid error growth, (iii) the E-dimension is a reliable predictor of the

performance of Sℓ in predicting the space of forecast uncertainties, (iv) the ensemble

grossly underestimates the forecast error variance in Sℓ, (v) when realistic observation

coverage is used, the ensemble typically overestimates the uncertainty in the leading

eigen-directions of P̂ℓ and underestimates the uncertainty in the trailing directions

at analysis time and underestimates the uncertainty in all directions by the 120-hr

forecast lead time, and (vi) at analysis time, with a constant covariance inflation

factor, the ensemble typically underestimates uncertainty in densely observed regions

and overestimates the uncertainty in sparsely observed regions.
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CHAPTER I

INTRODUCTION*

Lorenz (1963a,b) showed that a nonlinear dynamical system with instabilities has

a finite limit of predictability. The loss of predictability is due to small errors in

initial conditions, which grow rapidly due to instabilities, and eventually lead to total

loss of predictability, an effect known as ”chaos”. Atmospheric models are chaotic, in

other words small errors in initial conditions can lead to large errors in forecasts. Since

errors in initial conditions are always present, degradation of forecasts with increasing

lead times is an inherent property of atmospheric forecasts, and inevitably results in

a complete loss of predictability (Kalnay, 2002). The average limit of atmospheric

predictability is generally accepted to be about 10-14 days. However, forecast skill is

also dependent on the atmospheric evolution itself, some forecast features can remain

predictable for longer than others.

One way to account for the chaotic nature of models is the use of ensemble

forecasting techniques. Ensembles of forecasts are started from a perturbed set of

initial conditions, representative of the uncertainty at analysis time. The evolved

ensemble is meant to provide a representation of uncertainty in space and time. These

The journal model is AMS Monthly Weather Review.

*Portions of this chapter have been reprinted from:
“Predictability of the Performance of an Ensemble Forecast System: Predictability
of the Space of Uncertanties” by E.A. Satterfield and I. Szunyogh, 2010, Mon. Wea.
Rev., 138, 962-981, c© Copyright 2010 American Meteorological Society (AMS)
and
“Predictability of the Performance of an Ensemble Forecast System: Predictability of
the Magnitude and the Spectrum of Incertainties” by E.A. Satterfield and I. Szunyogh,
2010, Mon. Wea. Rev., in review, c© Copyright 2010 American Meteorological
Society (AMS)
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forecasts started from slight differences in the analysis may be dramatically different

or somewhat similar, dependent on the background atmospheric flow. The evolved

ensemble can provide guidance about forecast reliability: if the ensemble members

evolve very differently, one would be less confident in the forecast than for the case

that the ensemble members show good agreement. ”Spaghetti plots” used to display

operational ensemble products frequently show high predictability in some areas,

where the evolved ensemble members remain similar to each other, low predictability

in other areas, in which the evolved ensemble members significantly differ (Kalnay,

2002). The mean of the evolved ensemble provides the best forecast in the root-

mean-squared error sense at all forecast lead times. By taking the ensemble mean

at forecast time, one can effectively filter uncertain features in the ensemble. The

ensemble spread (standard deviation of the ensemble) is often assumed to provide a

local estimate of the forecast uncertainty. Although this relationship, known as the

”spread-skill relationship” has not been firmly established, it is often used to provide

guidance for human forecasters (Kalnay, 2002). In general, the ensemble provides a

basis for the prediction of the full probability distribution, not only for the first two

statistical moments (mean and standard deviation.) Since the early 1990s most major

weather prediction centers have implemented ensemble prediction systems to account

for the influence of the spatiotemporal changes in predictability on the forecasts [e.g.,

Kalnay (2002); Palmer and Hagedorn (2006)].

Kuhl et al. (2007), KEA07 hereafter, showed that the spatiotemporal changes in

the predictability make the performance of an ensemble prediction system of a finite

number of ensemble members inherently flow dependent. Thus, a uniformly good

performance of the system over all weather situations cannot be expected. We refer

to this flow dependence of the performance of the finite size ensemble as the local

predictability of the ensemble performance. The study of KEA07 was based on as-
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similating randomly located simulated observations under the perfect model scenario

with an implementation of the Local Ensemble Transform Kalman Filter (LETKF)

data assimilation system (Hunt et al., 2006; Szunyogh et al., 2008) on a reduced

resolution (T62 and 28 vertical levels) version of the model component of the Na-

tional Centers for Environmental Prediction (NCEP) Global Forecast System (GFS).

Here, we extend the investigation of KEA07, building to a more realistic setting, by

first assimilating simulated observations in realistic locations under a perfect model

scenario and then assimilating an operationally used set of observations of the real

atmosphere.

The main goal of our study is to lay the theoretical foundation of a practical

approach to predict the spatiotemporal changes in the performance of an ensemble

prediction system. In particular, we define a local volume around each grid point ℓ

and define a local state vector that represents the model state in the local volume.

Then, we investigate the efficiency of the linear space Sℓ, defined by the range of the

ensemble based estimate of the local covariance matrix Pℓ for the components of the

local state vector, in capturing the true forecast uncertainties. Further, we assess the

quality of the prediction of the magnitude of the analysis and forecast uncertainties

and of the skill of the ensemble in distinguishing between the importance of the

different state space directions within Sℓ. The motivation to utilize the local approach

here is twofold: first, it provides a natural framework to study the spatial changes in

the ensemble performance; second, the experience with ensemble-based Kalman filter

data assimilation schemes strongly suggest that an ensemble of practically attainable

size can provide a sufficiently accurate estimate of the covariance between different

components of the state vectors, at short forecast times, only in localized regions [e.g.,

Houtekamer and Mitchell (2001); Szunyogh et al. (2005); Anderson (2007); Whitaker

and Hamill (2002); Hamill et al. (2001)].
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In this study, we use the LETKF algorithm to generate the ensemble initial

conditions to investigate the ability of the ensemble to capture the local structure

of the forecast errors, and to predict the magnitude and spectrum of uncertainties;

however, we expect our results to remain valid for any suitably formed ensemble based

Kalman filter scheme. Since we do not attempt to account for the effect of model

errors in our formulation of the ensemble, our results should not be used directly to

interpret the behavior of an ensemble system that also employs model perturbations,

e.g. the ensemble prediction system of the European Center for Medium Range

Forecasts (ECMWF, Berner et al. 2009). We believe, however, that our diagnostic

approach could be used to validate existing model perturbation schemes.

The structure of this dissertation is as follows. In Chapter II, we introduce the

diagnostics we use to assess and explain the performance of the ensemble prediction

system at the different locations and times. In Chapter III, we describe the design of

the numerical experiments. In Chapter IV, we examine the spatiotemporal evolution

of the forecast errors, which is our preferred way to assess the spatiotemporal evo-

lution of predictability, and we analyze the relationship between predictability and

our diagnostics. In Chapter V we examine the ability of the ensemble to accurately

capture the magnitude and spectrum of forecast uncertainties. In Chapter VI, we

summarize our conclusions.
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CHAPTER II

DIAGNOSTICS*

We use linear diagnostics applied to the ensemble perturbations in a small local

neighborhood of each model grid point to explore the spatio-temporally changing

predictive qualities of the ensemble. In particular, we define a local state vector

and the associated local covariance matrix to represent the state and the uncertainty

in the state estimate at each grid point. In addition, we introduce a set of local

diagnostics based on the eigen-solution of the local covariance matrix and a measure

of nonlinearity in the evolution of the local state vectors.

A. Local vectors and their covariance

We define a local state vector x(ℓ) with all N state variables of the model represen-

tation of the state within a local volume centered at location (grid point) ℓ. For the

rest of this dissertation, we will discuss what to do at an arbitrary location ℓ, and

so we now drop the argument ℓ from the notation of the local state vectors. The

mathematical model we adopt to predict the evolution of uncertainty in a local state

estimate (analysis or forecast), x
e, is based on the assumption that the error in the

state estimate,

ξ = x
e − x

t, (2.1)

*Portions of this chapter have been reprinted from:
“Predictability of the Performance of an Ensemble Forecast System: Predictability
of the Space of Uncertanties” by E.A. Satterfield and I. Szunyogh, 2010, Mon. Wea.
Rev., 138, 962-981, c© Copyright 2010 American Meteorological Society (AMS)
and
“Predictability of the Performance of an Ensemble Forecast System: Predictability of
the Magnitude and the Spectrum of Incertainties” by E.A. Satterfield and I. Szunyogh,
2010, Mon. Wea. Rev., in review, c© Copyright 2010 American Meteorological
Society (AMS)
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is a random variable. In Equation (2.1) x
t is the model representation of the, in

practice unknown, true state of the atmosphere. The covariance between the different

components of ξ is described by the error covariance matrix Pℓ.

We employ a K-member ensemble of local state estimates, x
e(k), k = 1 . . .K,

to predict the uncertainty in the knowledge of the local state. The ensemble-based

estimate of the covariance matrix Pℓ is

P̂ℓ = (K − 1)−1

k
∑

k=1

x
′(k)

(

x
′(k)

)T
, (2.2)

where the ensemble perturbations x
′(k), k=1. . .K, are defined by the difference

x
′(k) = x

e(k) − x̄, k = 1 . . .K, (2.3)

between the ensemble members x
(k), k = 1 . . .K, and the ensemble mean,

x̄ = K−1
K

∑

k=1

x
e(k). (2.4)

In Equation (2.2), T denotes the matrix transpose. The linear space Sℓ defined by the

range of P̂ℓ is spanned by the K ensemble perturbations. (We use the subscript ℓ in

the notation Pℓ, P̂ℓ, and Sℓ to emphasize that the linear space we are interested in is

defined for the local neighborhood of each grid point.) Based on Equations (2.3) and

(2.4) the sum of the ensemble perturbations is zero at all forecast lead times, that is,

K
∑

k=1

x
′(k) = 0. (2.5)

Equation (2.5) indicates that the K ensemble perturbations are not linearly indepen-

dent. Thus, the dimension of the linear space Sℓ cannot be larger than K-1.

To obtain a convenient orthonormal basis in Sℓ for the definition and compu-

tation of our diagnostics, we compute the eigen-solution of P̂. Since P̂ is a non-
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negative definite and symmetric N by N matrix, it has N non-negative eigenval-

ues, λ1 ≥ λ2 ≥ . . . ≥ λr . . . ≥ λN ≥ 0, and the N associated eigenvectors, un,

n = 1, . . . , N , are orthogonal with respect to the Euclidean inner product. That is,

when the eigenvectors are chosen to be of unit length with respect to the Euclidean

vector norm,
(

ui

)T
uj = δij , (2.6)

where δij = 1 for i = j and δij = 0 for i 6= j. When the number of components

of the local state vector is larger than the number of ensemble members (N > K),

only the first K − 1 eigenvalues can be larger than zero. (In what follows, N > K is

assumed unless noted otherwise.) In this case, the normalized eigenvectors associated

with the first K − 1 eigenvalues, uk, k = 1, . . . , K − 1, define an orthonormal basis

in Sℓ. The physical interpretation of the N -vectors uk, k = 1, . . . , K − 1, is that they

represent linearly independent patterns of uncertainty in the ensemble perturbations

in the local region at ℓ.

An arbitrary local state vector x can be decomposed as

x = x̄ + δx, (2.7)

where δx is the difference between x and the ensemble mean x̄. The perturbation

vector δx can be further decomposed as,

δx = δx(‖) + δx(⊥), (2.8)

where δx(‖) is the component that projects into Sℓ that is,

δx(‖) =
K−1
∑

k=1

δx
(‖)
k uk, (2.9)
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where the coordinate δx
(‖)
k , k = 1 . . .K − 1, can be computed by

δx
(‖)
k = δxT

uk. (2.10)

The vector δx(⊥) is the component of δx that projects into the null space of P̂ℓ. That

is, δx(⊥) cannot be represented by the ensemble perturbations. Using this notation,

the error ξ in the state estimate x
e can be decomposed as

ξ = x
e − x

t =
K−1
∑

k=1

[

(δxe − δxt)T
uk

]

uk +
(

δxe(⊥) − δxt(⊥)
)

= δξ(‖) + δξ(⊥), (2.11)

where,

δξ(‖) =

K−1
∑

k=1

[

(δxe − δxt)T
uk

]

uk, δξ(⊥) = δxe(⊥) − δxt(⊥). (2.12)

Although the ensemble mean, or the error in the ensemble mean, does not appear

directly in the local decomposition of the error (the rhs of Eq 2.11), the ensemble

mean provides the reference point for the definition of the basis vectors that span the

space Sℓ.

The main focus of our investigation in this dissertation is the linear space Sℓ.

We choose diagnostics and design numerical experiments to identify the conditions

under which the evolution of the forecast uncertainties can be efficiently described in

Sℓ. We emphasize that an ensemble forecast system can, in principle, describe the

evolution of the forecast uncertainty even if it is nonlinear. In that case, however,

it is not guaranteed that the probability distribution of the uncertainty is Gaussian.

In such a case the knowledge of the mean and the covariance matrix may not be

sufficient to fully describe the probability distribution. We still restrict our attention

to Sℓ, because our objective is to study spatio-temporal changes in the performance

of the ensemble. This requires a measure of performance that can be computed for

an arbitrary time and location.
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B. Diagnostics for the space of the uncertainties

1. Explained variance

Our choice of this measure is the explained variance, which measures the projection of

the analysis and forecast errors onto Sℓ. Formally, the explained variance is calculated

as

EV =
‖δξ(‖)‖
‖ξ‖ =

‖δξ(‖)‖
‖δξ(‖) + δξ(⊥)‖ . (2.13)

Here ‖ · ‖ is the Euclidean vector norm on the space of the local state vectors. (Since

Sℓ is a subspace of the space of the local state vectors, this norm can be used to

measure the magnitude of both the error and its projection into Sℓ.)

The larger EV , the more efficient Sℓ in capturing the uncertain components of

the analysis and forecast fields. EV takes its maximum value of one when the entire

forecast error projects into Sℓ (δξ(‖) = ξ and δξ(⊥) = 0), and takes its minimum

value of zero when the forecast error does not have projection into Sℓ (δξ(‖) = 0 and

δξ(⊥) = ξ). Our definition of explained variance is similar to the Perturbation versus

Error Correlation Analysis (PECA) diagnostic defined in Wei and Toth (2003) when

PECA is calculated using an optimally combined perturbation vector. The main

difference between the two diagnostics is that we calculate the explained variance

using local regions as opposed to the global domain used in Wei and Toth (2003).

Finally, we emphasize that the explained variance measures one specific aspect of

the performance of the ensemble system and a good performance with respect to

the explained variance does not guarantee good performance with respect to another

verification score.
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2. E-dimension

The ensemble dimension (E-dimension),

E =

[

∑K
i=1

√
λi

]2

∑K
i=1 λi

, (2.14)

which was introduced by Patil et al. (2001) and discussed in details in Oczkowski et al.

(2005), characterizes the local complexity of dynamics. E is a spatio-temporally evolv-

ing measure of the steepness of the eigenvalue spectrum, λ1 ≥ λ2 . . . ≥ λr . . . ≥ λK ,

having smaller values for a steeper spectrum (Szunyogh et al., 2007). For our choice

of the perturbations, where the K perturbations are linearly dependent, λK = 0, the

largest possible value of E is K-1. For a set of linearly independent ensemble pertur-

bations, the maximum value of E is equal to the number of ensemble perturbations,

K, which occurs when the uncertainty predicted by the ensemble is evenly distributed

between K linear spatial patterns in Sℓ.

3. Linearity of the local dynamics

The period of time in which model dynamics can be approximated as linear is com-

monly assumed to be 2-3 days (e.g., Palmer et al. 1994). Gilmour et al. (2001), using

an objective measure to quantify the importance of nonlinear effects on the dynamics

called relative nonlinearity, argued that the assumption of linearity may not be valid

for longer than 24 hours. To define the relative linearity measure, Gilmour et al.

(2001) considered the evolution of twin pairs of ensembles members, which were ob-

tained by adding the same ensemble perturbation to the analysis with both a positive

and a negative sign. We introduce a measure of linearity that is motivated by that

of Gilmour et al. (2001).
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The evolution of the kth ensemble member, x
e(k)
g is governed by the equation

x
e(k)
g = F(x̄a

g + δxa(k)
g ) = F(x̄a

g) + Lδxa(k)
g + N(x̄a

g, δx
a(k)
g ), (2.15)

where L is a linear operator and N is a nonlinear function of the analysis perturbation

δx
a(k)
g and the analysis x̄

a
g. The subscript g indicates that Equation (2.15) is for

global state vectors instead of the local state vectors we consider elsewhere in this

dissertation. Equation (2.15) is based on the Taylor expansion of the dynamics F

about x̄
a in the direction of the analysis perturbation δxa(k). Also, when x

e(k) refers

to an ensemble member at analysis time, F and L are the identity and N is zero.

Since

x
e
g = F(x̄a) (2.16)

and

x̄
e
g =

1

K

K
∑

k=1

x
e(k)
g , (2.17)

taking the ensemble mean of the two sides of Equation (2.15), we obtain

x̄
e
g = x

e
g +

1

K
L

K
∑

k=1

δxa(k)
g +

1

K

K
∑

k=1

N(xa
g, δx

a(k)
g ). (2.18)

Applying the global equivalent of Equation (2.5),the second term on the rhs. of

Equation (2.18) is zero. Thus, introducing the notation

e =
1

K

K
∑

k=1

N(xa
g , δx

a(k)
g ) (2.19)

for the ensemble mean of the nonlinearly evolving component of the forecast ensemble

members, Equation (2.18) yields

e = x̄
e
g − x

e
g. (2.20)

We define the local relative nonlinearity measure ρℓ as the ratio between the magni-
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tude of e and the ensemble average of the magnitude of the ensemble perturbations

for the local state vectors, that is,

ρℓ =
‖x̄e − x

e‖
1
K

∑K
k=1 ‖δxe(k)‖

. (2.21)

(Notice that Equation (2.21) is based on local state vectors.) One important difference

between our measure and that of Gilmour et al. (2001) is that instead of a pair of

perturbations, we consider a K -member ensemble. We make this choice because the

K-member analysis ensemble generated by the LETKF algorithm is not composed

of pairs, but has the property that the sum of the ensemble perturbations is zero at

analysis time. We also note that our definition is based on local state vectors and also

applied to global state vectors for comparison. The study of Gilmour et al. (2001) used

global state vectors, although their measure, in principal, could be applied locally as

well.

C. Diagnostics for the magnitude of the uncertainties

In section B, we focused on investigating the efficiency of the linear space Sℓ defined

by the range of P̂ℓ in capturing the error in the deterministic prediction, x
e started

from the ensemble mean analysis x̄
a. In this section, our goal is to investigate (i)

the accuracy of the ensemble prediction of the expected value of the magnitude of

the uncertainty and (ii) the accuracy of the ensemble prediction of the spectrum of

uncertainties within Sℓ. To achieve this goal, we apply diagnostics to the

δxt = x
t − x̄ (2.22)

difference between the model representation of the true state and the ensemble mean

state estimate, instead of ξ. The difference δxt is often referred to in the literature
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as the error in the ensemble mean forecast. This terminology is justified when the

ensemble mean is used as a deterministic forecast, which is motivated by the fact that

the mean of a perfectly designed ensemble would be the most accurate deterministic

forecast in the root-mean-square sense (Leith, 1974). In our study, however, we

consider x̄ to be the prediction of the mean of a probability distribution. Since,

except for the analysis time, δxt is expected to be nonzero even if x̄ is a perfect

prediction of the mean of the probability distribution, we refer to δxt as either the

difference between the ensemble mean and the model representations of the true state

or the local forecast uncertainty.

The motivation to apply diagnostics to δxt, instead of ξ, is that a verifiable

optimality condition between ||δxt||, the magnitude of δxt, and the ensemble variance

Vℓ = trace(P̂ℓ) exists at all forecast times: because Vℓ is a prediction of the variance

TVℓ = E[(δxt)2], where (δxt)2 = (δxt)T (δxt) = ||δxt||2, its expected value, V = E[Vℓ],

should satisfy the equation

V = TV, (2.23)

where TV = E[TVℓ]. (Hereafter, E[·] denotes the expected value.) Verifying the

relationship defined by Eq. (2.23), which is often referred to as the spread-skill rela-

tionship, is one of the most widely used diagnostics for the validation of an ensemble

prediction system. In contrast, all we know about the magnitude ||ξ|| of ξ is that

it should satisfy E[ξ2] = V (ξ2 = ξT ξ = ||ξ||2) at analysis time and, under an er-

godic hypothesis, E[ξ2] = 2V once the forecast time is so long that predictability

is completely lost (Leith, 1974). That is, no verifiable diagnostic relationship exists

between ξ2 and V at the intermediate forecast lead times. In addition, the first K−1



14

(nonzero) eigenvalues of P̂ℓ satisfy the equation

V =

K−1
∑

k=1

λk. (2.24)

We introduce the notation TV S = E[(δxt(‖))2] for the portion of the variance

that can be explained by Sl. In the optimal case, δxt would fully project onto Sℓ,

satisfying δxt = δxt(‖), leading to TV S = TV . But, when part of δxt is not captured

by the ensemble, x
t(⊥) 6= 0, which leads to TV S < TV .

When the ensemble correctly represents the variance of δxt(‖), V = TV S. For a

given ensemble system, V can be either smaller or larger than TV S. In the former case

(V < TV S) the ensemble underestimates the manitude of the uncertainty that can be

explained by Sℓ, while in the later case the ensemble overestimates the magnitude that

can be explained by Sℓ. It may even happen that the ensemble satisfies the optimality

condition of Eq. (2.23) for the wrong reason, overestimating the true variance in Sℓ

to compensate for the variance lost by not capturing all true error directions. This

situation occurs when the ensemble variance is tuned to satisfy Eq. (2.23) at a given

forecast time (e.g., 48-hr), but the ensemble cannot fully capture δxt. Such a situation

can be diagnosed by verifying that V > TV S. Analyzing the results of our numerical

experiment we always make a three-way comparison between TV , TV S, and V .

D. Diagnostics for the spectrum of uncertainties

While the explained variance diagnostic of section B quantifies the efficiency of the

space Sℓ in capturing the space of uncertainty in the state estimate, the comparison of

TV , TV S and V quantifies the quality of the ensemble in predicting the magnitude

of the uncertainty. These diagnostics, however, do not provide information about

the performance of the ensemble in distinguishing between the relative importance of
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the different error patterns within Sℓ. To introduce a diagnostic that can measure

the performance of the ensemble in quantifying the contributions of the different

error patterns to the total error within Sℓ, we first recall that the eigenvalue λk, is the

ensemble-based prediction of the variance of the uncertainty in the k-th eigendirection

1. We choose the d-ratio,

{

dk =

(

δxt
k

)2

λk
: k = 1, . . . K − 1

}

, (2.25)

which was first introduced in Ott et al. (2002), to measure the accuracy of the pre-

diction of the variance in the k-th eigendirection. In Eq. (2.25), δxt
k = (δxt)T

uk is

the k-th coordinate of δxt(‖) in the coordinate system {uk : k = 1, . . . , K − 1}. Since

the d-ratio is defined independently for each eigendirection, it is more appropriate to

talk about a spectrum of the d-ratio. It can be shown that if the ensemble correctly

predicts, in a statistical sense, the uncertainty in the k-th direction, the expected

value, E[dk], of dk at a given time and location is equal to one:

E
[

dk

]

= E

[

(

δxt
k

)2

λk

]

= E

[

(

δxt
k

)2

E
[

(

δxt
k

)2
]

]

=
1

E
[

(

δxt
k

)2
]E

[

(

δxt
k

)2
]

= 1, (2.26)

In Eq. (2.26) we made use of the fact that λk is the ensemble based prediction of

E
[

(

δxt
k

)2
]

, thus, for a correct prediction the two quantities must be equal. Since we

have a verifiable optimality condition only for the expected value of dk, we cannot

use dk to measure the performance of the ensemble at a given time and location.

Instead, we collect statistical samples of dk and obtain estimates of the expected

value by computing the sample means. A sample mean smaller than one indicates

that the ensemble tends to overestimate the uncertainty in the k-th direction, while

1Graphically, the vectors
√

λkuk are the principal axes of the ellipsoid defined by
(x− x)T (P)−1(x− x) = 1. This ellipsoid represents states of equal probability in Sℓ.
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a sample mean larger than one indicates that the ensemble tends to underestimate

the uncertainty in the k-th direction.

Finally, we note that the condition E[dk] = 1 is always satisfied when the random

variable,

d
1/2
k =

δxt
k√

λk

(2.27)

has an expected value equal to zero, E[d
1/2
k ] = 0, and a variance equal to one, E[d

1/2
k −

E[d
1/2
k ]] = 1, since

E[dk] = E2[d
1/2
k ] + E2[d

1/2
k − E[d

1/2
k ]]. (2.28)

A random variable similar to d
1/2
k was first introduced for the verification of the

ensemble forecast of a scalar variable by Talagrand et al. (1999) and was later named

the reduced centered random variable (RCRV) by Candille and Talagrand (2005) and

Descamps and Talagrand (2007). The difference between d
1/2
k and the RCRV is that

while RCRV is for a scalar atmospheric state variable, d
1/2
k is for a vector, the local

state vector, and a spectrum of scalar ratios is obtained by first projecting the centered

local state vector on the principal components of the ensemble-based estimate of

the background error covariance matrix and then performing the reduction by the

ensemble spread only in that particular eigendirection.
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CHAPTER III

EXPERIMENT DESIGN*

We carry out numerical experiments both under the perfect model scenario and in

a realistic NWP setting. In the perfect model experiments, we generate simulated

observations of the hypothetical “true” trajectory of the atmospheric state, where the

time series of “true” states, z, is generated by a 60-day model integration of the GFS

model at T62L28 resolution starting from an operational NCEP analysis truncated to

T62L28 resolution. We first repeat the experiment of KEA07 to verify that the find-

ings of that paper remain valid for the different time period investigated here (January

and February of 2004 instead of January and February of 2000).1 Then, we build to

the realistic NWP setting in two steps: first we replace the randomly located simu-

lated observations by simulated observations taken by a realistic observing network,

then we replace the simulated observations with observations of the real atmosphere.

On the one hand, comparing results from the two perfect model experiments, we can

detect features, which are caused by the spatiotemporal inhomogeneities in a realistic

observing network. On the other hand, comparing the results from the experiment

*Portions of this chapter have been reprinted from:
“Predictability of the Performance of an Ensemble Forecast System: Predictability
of the Space of Uncertanties” by E.A. Satterfield and I. Szunyogh, 2010, Mon. Wea.
Rev., 138, 962-981, c© Copyright 2010 American Meteorological Society (AMS)
and
“Predictability of the Performance of an Ensemble Forecast System: Predictability of
the Magnitude and the Spectrum of Incertainties” by E.A. Satterfield and I. Szunyogh,
2010, Mon. Wea. Rev., in review, c© Copyright 2010 American Meteorological
Society (AMS)

1Another important difference between the experiment design of the two studies is
that we use a later version of the LETKF. Most importantly, the LETKF used in this
study provides more accurate analyses in the polar regions. We also note that the
current implementation of the LETKF defines the local region in terms of distance
rather than by model grid points. Since we generate randomly placed simulated
observations to cover 10% of the model grid, as in KEA, our experiment considers a
greater number of observations for analyses at higher latitudes.
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that assimilates observations of the real atmosphere to the results of the experiment

that uses identically distributed simulated observations, we can detect features that

are due to model errors.

A. Observational data sets

1. Randomly placed simulated observations

The “truth”, z, is taken to be an integration of the GFS model starting from the

operational NCEP analysis at 0000 UTC 1 January 2004. At each grid point and

model level, we generate simulated observations of the two horizontal components of

the wind, the temperature, and the surface pressure by perturbing the “true” states

with normally distributed, zero mean assumed observational errors with standard

deviations of 1 K, 1.1 m/s, and 0.6 hPa for temperature, wind, and surface pressure,

respectively. Next, similar to Szunyogh et al. (2005) and KEA07, we randomly choose

2000 soundings, to reflect a 10% observational coverage of the model grid. By choosing

observations randomly, we ensure that the simulated observing network has little

systematic impact on the geographical distribution of analysis and forecast errors.

a. Simulated observations at realistic locations

In the second set of experiments, we assimilate simulated observations at the loca-

tions of routine non-radiance observations of the real atmosphere. These simulated

observations are generated by adding random observational noise, created by us-

ing the standard deviation of the estimated observational error provided with each

observation by NCEP, to the “true” grid point values of the surface pressure, the

temperature, and the two horizontal components of the wind vector. The location

and type of observations is obtained from a database that includes all nonradiance
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observations operationally assimilated at NCEP between 000UTC 1 January 2004

and 000UTC 15 February 2004, with the exception of satellite radiances, but includ-

ing satellite derived winds. We also exclude all surface observations, except for the

surface pressure and the scatterometer wind measurements over oceans.

b. Observations of the real atmosphere

Finally, the observations of the real atmosphere, which are used to obtain the type

and location for the simulated observations at realistic locations, are assimilated.

B. Selection of the LETKF parameters

For each observational data set, an analysis is obtained at the native model resolution

every 6 hours. Diagnostics are computed at a reduced 2.5◦ × 2.5◦ grid resolution.

We assimilate observations between 1 January 2004 0000 UTC and 15 February 2004

0000 UTC. In these experiments, we apply a multiplicative covariance inflation at

each analysis step to increase the magnitude of the estimated analysis uncertainty to

compensate for the loss of ensemble variance due to sampling errors, the effects of

nonlinearities and model errors. In essence, the covariance inflation factor controls

the magnitude of the analysis ensemble perturbations. In our code, the covariance

inflation factor, ρ = ρ(σ, ϕ), is a function of the model vertical coordinate σ and

the geographical latitude ϕ. That is, ρ is constant in the zonal direction at a given

model level and latitude. We tuned the covariance inflation factor independently for

the three experiments, trying to ensure that the ensemble of analysis perturbations

satisfies the condition V ≈ TV S in each experiment.

The parameters of the LETKF used in this experiment are the following:

• The ensemble has K = 40 members.
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• Observations are considered for assimilation in a 800 km horizontal radius of

the grid point, where the state is estimated.

• Observations have equal weight within a 500 km radius of the given grid point,

beyond which the weight of the observations tapers linearly to zero at 800 km.

• Observations are considered in a vertical patch radius centered at the grid point.

This layer has depth 0.35 scale height between model levels 1 to 15 and gradually

increases to 2 at the top of the model atmosphere.

• Surface pressure is assimilated at the first model level and temperature, and

zonal and meridional winds are assimilated at all 28 model levels.

• For simulated randomly distributed observations, we use a 25% covariance in-

flation at all vertical levels in all geographic regions. For the simulated observa-

tions taken at realistic locations, the covariance inflation is 2.5% at all vertical

levels in the SH extratropics and 10% in the NH extratropics. In the Tropics,

the covariance inflation varies from 2.5% to 7.5%. For the conventional obser-

vations of the real atmosphere, the covariance inflation tapers from 50% at the

surface to 40% at the top of the model atmosphere in the SH extratropics and

from 100% to 60% in the NH extratropics, and changes smoothly in the tropics

(between 25◦S and 25◦N) from the values of the SH extratropics to the values

of the NH extratropics.

C. Initialization

In the two sets of experiments which assimilate observations in realistic locations,

high-frequency oscillations (typically associated with gravity waves) are filtered from

all background ensemble members with a digital filter scheme (Huang and Lynch,
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1993), which is part of the NCEP GFS model and can be turned on or off by choice.

(Unlike in the original formulation of the digital filter algorithm, where a filtered

analysis is produced, the NCEP filter provides only a filtered background field.) We

use the filter with a 3 hr cutoff frequency. We find that turning the digital filter on

in these two sets of experiments leads to a major improvement of the analyses.

In the experiments with randomly placed observations, turning the digital fil-

ter on degrades the analysis in the Tropics (Figure 1). More precisely, the surface

pressure errors with the digital filter turned on (top panel of Figure 1) have a clear

wavenumber two pattern in the tropics. A more careful examination of the structure

of the error fields reveals that the digital filter wipes out the semidiurnal tidal wave 2.

We illustrate this effect of the filter by showing the spectrum of Fourier amplitudes of

the time series of surface pressure at the location 0◦N, 160◦W for the nature run and

the analyses prepared with and without the use of the digital filter (Figure 2). The

12-hr frequency oscillation characteristic of the semidiurnal tidal wave is not present

in the run that uses the digital filter, even though this oscillation is the dominant

signal in the nature run and in the analysis cycles that do not use the digital filter.

We note that the digital filter initialization also has a negative effect on the analysis

of the semidiurnal tidal wave in the two experiments that assimilate observations

at realistic locations. In those experiments, however, the problem does not get ex-

posed because the beneficial effect of the filter from removing spurious gravity waves,

that are not present in the experiment based on uniformly distributed observations,

outweighs the degradation from wiping out the semidiurnal tidal wave.

The semidiurnal tidal wave is primarily caused by the absorption of solar ra-

2The possibility that the error field in the top panel of Figure 1 may be associated
with the semidiurnal tidal wave signal was first pointed out to us by Nedjeljka Zagar
of the University of Ljubljana.
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diation by ozone in the stratosphere and the atmosphere. The response to this

stratospheric excitation propagates downward in the form of an inertia-gravity wave

(Chapman and Lindzen, 1970). Our conjecture is that the digital filter affects this

inertia-gravity wave. We also suspect that applying a digital filter initialization to

the analysis increment instead of filtering the 6-hr background forecast, which is the

general practice for variational data assimilation schemes, would eliminate the nega-

tive effect of the filter on the semi-diurnal tidal wave as suggested by Sankey et al.

(2007) 3.

D. Forecasts

We prepare the deterministic forecasts daily, started from the mean analysis at

0000UTC and 1200UTC, and output every 12 hours. These model integrations pro-

vide the state estimate x
a,f . At analysis time and at short forecast lead times (while

the time evolution of the ensemble perturbations stays linear), this state estimate pro-

vides our best deterministic estimate of the state. At longer lead times x
a,f simply

represents a forecast for which the analysis was drawn from a probability distribution

that is consistent with our estimate of the analysis uncertainty.

In addition to the state estimate, the LETKF also generates an ensemble of

analyses to estimate the uncertainty in the state estimate. These analyses serve as

initial conditions for the ensemble of forecasts. Ensemble forecasts are obtained once

daily, started from the ensemble of analyses, at 0000UTC and output every 12 hours.

Both the deterministic forecast and the ensemble forecasts are carried out to a five

day lead time. Unlike the experiments which use realistically placed observations,

forecasts for the experiment that assimilates observations in random locations are

3We are currently in the process of developing such an initialization algorithm for
the LETKF scheme.
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run without the use of the digital filter. We note that turning the digital filter off

in this experiment slightly increases the forecast error up to 12-hr lead times, after

which the filter has no effect on the forecast errors.

Forecast error statistics are computed by comparing the deterministic forecasts,

x
a,f , to the “true” states, z. Forecasts started from analyses generated by assimilating

conventional observations of the real atmosphere are verified using the high (T254L64)

resolution operational NCEP analyses truncated to 2.5◦ x 2.5◦ resolution as proxy

for the “true” state. (The local state vectors are defined on the 2.5◦ x 2.5◦ grid

and not on the nominally higher resolution native computational grid of the model.)

These operational analyses were obtained by NCEP assimilating a large number of

satellite radiance observations in addition to the conventional observations used in

our experiments. Forecast error statistics are generated for the 36-day period, 0000

UTC 11 January 2004 - 0000 UTC 15 February 2004.

E. Selection of the parameters of the diagnostics

We define the local state vector by all temperature, wind, and surface pressure grid

point variables in a cube that is defined by 5x5 horizontal grid points and the entire

column of the model atmosphere. Computing projections in the vector space Sℓ

requires the definition of a scalar product on Sℓ. In this dissertation, we follow the

approach of Oczkowski et al. (2005) and Kuhl et al. (2007): we use the Euclidean

scalar product, but before we compute it, we transform the ensemble perturbations to

ensure that all vector components have the same physical dimension. In particular,

we choose the transformation weights so, that the square of the Euclidean norm,

computed by taking the scalar product of a transformed ensemble perturbation by

itself, has dimension of energy. The use of this transformation to compute scalar
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products of the perturbations of the state vector of a primitive equation model was

first suggested by Talagrand (1981). Based on our previous experience (Oczkowski

et al., 2005, KEA07), for a specific choice of the local volume, the spatiotemporal

variability in the E-dimension and the explained variance for the first 5 forecast days

are associated with synoptic scale atmospheric processes. The choice of the local

state vector also determines the minimum number of ensemble members required to

provide a sufficiently accurate estimate of the local error covariance matrix Pℓ. The

problem of achieving a proper balance between the size of the local region and the

number of ensemble members was investigated in detail in the context of ensemble-

based Kalman filtering by Szunyogh et al. (2005). Since we expect the dynamically

active number of degrees of freedom to be the largest at analysis time, we chose the

number of ensemble members to be K = 40, a choice that was found to be sufficient

for an efficient data assimilation with the LETKF using similar size local regions by

Szunyogh et al. (2005). Since the dimension of the local state vector is N = 1975, our

choices for the local state vector and the ensemble size satisfy the condition K<N,

which was assumed in Chapter II.

To illustrate the only modest sensitivity of our diagnostics to the selection of the

local region size, which is a desirable property considering that the choice of the local

region is somewhat arbitrary, we show snapshots of the E-dimension and explained

variance for two different size local regions at the 120-hr forecast time (Figures 3

and 4). The results indicate, in agreement with Oczkowski et al. (2005), that while

the values of E-dimension somewhat increase, and the values of explained variance

somewhat decrease, with doubling the size of the local region in both horizontal

directions, the general location of the low-dimensional, and high explained variance,

regions are mostly unaffected. The figures also show that smaller region size, which

is used in the rest of the paper, provides a sharper resolution of the diagnostics.
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CHAPTER IV

NUMERICAL EXPERIMENTS FOR THE SPACE OF UNCERTAINTIES*

A. Forecast errors

First, to illustrate the general spatial distribution of the errors in the x
e
g state esti-

mate we examine the absolute error in the analyses and forecasts of the meridional

wind component at 500 hPa. We choose the meridional wind instead of the more

commonly used geopotential height, because this way we can use the same quantity

to characterize the errors in the Tropics and the extratropics. Plots of the absolute

error are obtained by computing the time average of ‖ξ‖ at each location (grid point).

Figure 5 shows the time mean absolute error at analysis time and at the 72-hr forecast

lead time for all three experiments. The results obtained by assimilating simulated

observations in randomly placed locations show that the largest analysis errors are in

the Tropics and the smallest analysis errors are in mid-latitude storm track regions,

in agreement with Szunyogh et al. (2005). Forecast errors become dominant in the

storm track regions within 48-72 hours. In comparison, when simulated observations

are placed in realistic locations, the results show that the distribution of the mag-

nitude of the analysis errors is strongly modulated by the observation density: the

lowest errors are over continents in the Northern Hemisphere and the highest errors

are over Antarctica and in the oceanic region between Cape Horn and the Antarctic

Peninsula.

We see strong similarities in the spatial distribution of the errors at analysis

*Portions of this chapter have been reprinted from:
“Predictability of the Performance of an Ensemble Forecast System: Predictability
of the Space of Uncertanties” by E.A. Satterfield and I. Szunyogh, 2010, Mon. Wea.
Rev., 138, 962-981, c© Copyright 2010 American Meteorological Society (AMS)
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time and for short term forecasts in both experiments that assimilate observations

in realistic locations. This similarity indicates that observation density plays a more

dominant role than model error in determining the large scale spatial variation of

the analysis and the short term forecast errors. Nevertheless, the results obtained

by assimilating observations of the real atmosphere show that the magnitude of the

forecast error is almost double the forecast error found in the experiments which used

simulated observations. In all three experiments, we find rapid growth of forecast

errors in the mid-latitude storm track regions, which become the dominant region of

forecast error by the 72-hr time. The dominance of the synoptic scale error structures

at and beyond the 72-hr forecast time is also well illustrate by Figures 6 which show

the evolution of the spectral distribution of the forecast errors: initially the magnitude

of the errors is similar in the 1-5, 6-10, and 21-42 wavenumber ranges and slightly

higher in the 11-20 wave number range, but at longer lead times the errors in the

6-10 wave number range become dominant (the dominance of the 6-10 wavenumber

range occurs more rapidly for the experiments that assimilate realistically placed

observations). Errors in the wave number range 21-42 saturate much faster than the

errors at the larger scale. The increasing wavelength of the dominant error structures

contributes to the general tendency of a decrease of the E-dimension. Also, the

increasing dominance of the synoptic scale error structures leads to the development

of local minima of the E-dimension in the regions of the main synoptic scale features.

B. E-dimension and explained variance

Szunyogh et al. (2005) showed that for lower values of E-dimension, the ensemble more

certainly captured the structure of the background error. KEA07 extended the E-

dimension diagnostic to study predictability of the performance of ensemble forecasts
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and found that, in the extratropics, atmospheric instabilities1 that led to fast local

error growth also led to low E-dimension and, therefore, to increased certainty that

a greater portion of the forecast error was efficiently captured by the ensemble.

We investigate the relationship between the E-dimension, explained variance,

and forecast errors with the help of joint probability distribution functions (JPDFs).

The JPDF shown in Figure 7 is obtained by calculating the number of occurrences

in each bin defined by ∆E × ∆EV , where ∆E denotes the bin increment for E-

dimension and ∆EV denotes the bin increment for the explained variance. The

number of occurrences is then normalized by ∆E × ∆EV × n, where n is the total

sample size, which is equal to the total number of grid points in a geographic region

multiplied by the total number of verification times. This normalization ensures that

the integral of the plotted values over all bins is equal to one. At analysis time, we find

lower values of E-dimension corresponding to higher values of explained variance for

the experiments which use realistically placed observations (two lower left panels of

Figure 7) than for the experiment that uses randomly placed simulated observations.

As forecast lead time increases, lower values of E-dimension have a greater probability

of corresponding to high value of explained variance. In good agreement with KEA07,

we find that at the 120-hr lead time (right panels of Figure 7), the lower the E-

dimension, the greater the probability that explained variance is high. We find this

relationship independent of experiment and geographic region. We also note that the

evolution of the E-dimension and explained variance is similar to that in KEA07 for

all three experiments. Our local results are in agreement with the findings of Wei and

1Here we use the term ”instability” in the mathematical sense, that is, it refers
to the divergence of nearby model trajectories in state space. These instabilities are
not always directly related to atmospheric instabilities characterized by the genera-
tion of transient kinetic energy (e.g., baroclinic instability, barotropic instability and
convection).



28

Toth (2003) for the global ensemble perturbations and errors, which showed higher

PECA values with increasing lead time due to the collapse of the phase space of

ensemble perturbations and forecast errors into a smaller dimensional subspace.

A unique feature of the results for the experiments which use real observations

(bottom two panels of Figure 7) is that the values of explained variance never reach

their theoretical upper limit of one. This behavior is most likely due to the effects of

the model errors, since in the two experiments that use simulated observations the

largest values of the explained variance are near one. We cannot determine, however,

based on the results of our experiments, whether this reduction in the maximum of

the explained variance occurs because some of the forecast errors are orthogonal to

the model attractor, thus an ensemble of model forecasts cannot capture them, or

because our approach to generate the ensemble perturbations does not enable the

members of the forecast ensemble to explore that part of the model attractor that

includes the true system state.

The results shown in Figure 7 suggest that the E-dimension may be a good linear

predictor of the lower bound of the explained variance at a given time and location.

To further explore this idea, we break up the 36 day data set into two sets of 18

days, and we try to find a quantitative relationship between the E-dimension and the

lower bound of the explained variance based on the first 18 days (training period),

which we can then use to predict the lower bound of the explained variance based on

the E-dimension for the second 18-day period. To obtain a prognostic equation, we

first order the values of E-dimension for the training period and divide them into 100

bins, each containing an equal number of data points. Each bin provides a pair of

data: a value of E defined by its mean for the bin and the minimum of the explained

variance in the bin, minEEV . Based on this paired data set the correlation between

E and minEEV is 0.9224, 0.6248, and 0.7353 at the 120-hr lead time for experiments
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that assimilate simulated observations in random locations, simulated observations

in realistic locations, and observations of the real atmosphere respectively, which are

statistically significant at the 99.99% level by a t-test. This supports our hypothesis

that E may be a good linear predictor of minEEV . Thus, we compute the linear

regression coefficients between the paired data over all of the bins, that is, we obtain

a and b, such that

minEEV = aE + b. (4.1)

The results are shown in Figure 8. The correlation values (0.906, 0.8206, and 0.669)

between the predicted and the actual minimum of the explained variance indicate a

linear relationship, which is statistically significant at the 99.99% confidence level by

a t-test. Nevertheless, when we use the related linear regression coefficients to predict

minEEV based on E, the predicted values are clearly overestimated in some cases.

This problem is most noticeable, for the experiment that assimilates observations of

the real atmosphere at analysis time. A more careful inspection of Figure 7 suggests

that this overestimation of the minimum explained variance by the linear model may

be due to a few statistical outliers of minEEV in the training data sets. To dampen

the effects of the outliers, we repeat our calculations using the 5th percentile value,

EV(5), of the explained variance instead of minEEV . That is, we obtain a and b such

that,

EV(5) = aE + b, P (EV ≤ EV(5)|E) = 0.05, (4.2)

where P (·|E) is the conditional probability given E. Since we have a hundred data

points in each bin, the 5th percentile of the explained variance is defined by the 5th

member of the ascending ordered set of values of explained variance. The results

are summarized in Figure 9, which shows that the linear expression based on the

E-dimension provides a better prediction of the 5th percentile than the minimum of
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EV. The prediction of the 5th percentile of explained variance is especially accurate

at longer forecast lead times, e.g. at the 120-hr lead time the correlation between the

predicted and the true value of the explained variance is greater than 0.94 and the

root-mean-square error of the prediction is less than 0.02 in all three experiments.

To further illustrate the predictive value of the linear relationship we found, we

plot a snapshot of the actual values of explained variance and the predicted 5th per-

centile, at the 120 hr forecast time for the experiment which assimilates conventional

observations of the real atmosphere (Figure 10). The upper panel of Figure 10 shows

an area of local low-dimensionality that develops in the northeast Pacific in an atmo-

spheric region dominated by a strong ridge. The location of the low-dimensional area

suggests that there is an uncertainty in the forecast of the ridge and that this uncer-

tainty is dominated by a few state space directions. The second panel of Figure 10

shows that, as expected based on Figure 7, the ensemble is efficient in capturing the

space of uncertainties in the low-dimensional region (EV ≈ 0.93) . When we use

the linear expression of Equation 4.2, we obtain a value of 0.85 for the 5th percentile

(which is slightly lower that the actual value of 0.93, as expected) which correctly pre-

dicts a good performance of the ensemble in capturing the uncertain forecast patterns

in the ridge region. We emphasize that a good prediction of the uncertain forecast

patterns is not a guarantee of a good prediction of the magnitude or the probability

distribution of the forecast uncertainty.

C. Explained variance and forecast error

Figure 11 shows the JPDF for the explained variance and the state estimation error in

the NH extratropics. While there is no obvious relationship between the magnitude

of the analysis errors and the explained variance (left panels), similar to the results
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of KEA07, the ensemble captures the patterns associated with larger forecast errors

more efficiently. In addition, both the minimum and the maximum of explained

variance increase with forecast time in all three experiments, which indicates that

Sℓ provides an increasingly better representation of the space of forecast uncertainty

with increasing forecast time (results are shown only for the 120-hr forecast time).

Figure 12 shows the mean E-dimension for the bins in the JPDF for the anal-

ysis and forecast error and the explained variance. Interestingly, the distribution

of E-dimension with explained variance at analysis time is more similar for the two

experiments which assimilate realistically distributed observations. For these two ex-

periments, we find locations where the explained variance is high and the E-dimension

is low, but the analysis error is relatively large. These are locations where the en-

semble efficiently captures the space of uncertainties, but there are no observations

available to take advantage of this information. Such locations do not exist for the

experiment that assimilates randomly placed observations, as in that experiment the

observational coverage is sufficiently dense at all locations to effectively remove the

background errors at locations of high explained variance (low E-dimension).

At the 120-hr forecast time, the findings of KEA07 extend to the more real-

istic settings: the instabilities that lead to large forecast errors also lead to low

E-dimension, and therefore, to higher explained variance. However, because low

E-dimension can occur even if the forecast error is small, the E-dimension cannot be

used to predict the magnitude of the forecast error. That is, we may not be able to

predict that the forecast error will be large at a given time and location, but we know

that if the error will be large, the ensemble will provide a reliable representation of

the potential forecast error patterns.
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D. Local linearity

As pointed out before, analyzing Figure 11, within the five day forecast range we

investigated in this dissertation, the minimum and maximum of the explained variance

increase with increasing forecast time. In other words, the linear space Sℓ provides an

increasingly better representation of the space of the forecast errors for longer forecast

lead times. This is a counterintuitive result, because the ensemble perturbations

are expected to evolve linearly only for the shortest forecast lead time, when their

magnitude is still small. In this case they can be considered a representation of the

tangent space to the nonlinear system trajectory. The evolution of the ensemble

perturbations is expected to become more nonlinear as their magnitude is growing

with increasing forecast time. In the remainder of this section, we investigate the

roots of this seemingly paradoxical result.

A potential resolution of the paradox is that while the evolution of the ensemble

perturbations becomes less linear with increasing forecast time with respect to a

global measure of nonlinearity, there may be local regions where linearity becomes

stronger with increasing forecast time. To explore this possibility, we first investigate

the local variability of the strength of nonlinearity. We do this by comparing the

mean and the standard deviation of the local values of the relative nonlinearity for

the different forecast lead times (Figure 13). While the globally averaged values of

relative nonlinearity computed with and without localization are similar, the standard

deviations of the values computed using localization show a strong local variability in

the degree of linearity. This variability is especially striking for the experiment which

assimilates randomly placed observations: values of the relative nonlinearity as low

as its mean at the 24-hr lead time are within one standard deviation at 120 hours.

Conversely, values as high as the mean at 84 hours are within one standard deviation
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at the 24-hr forecast lead time. While the local variability of the relative nonlinearity

is not negligible, the results do not support a scenario in which nonlinearity could

locally decrease at most locations. To confirm that high explained variance is not due

to strong local linearity, we also prepared scatter plots for the explained variance and

the relative nonlinearity (Figure 14). It is obvious, based on the scatter plot, that a

weak nonlinearity is not a necessary condition for high explained variance. Our results

are also in line with those who found that a tangent linear model can, qualitatively,

well predict the fastest growing error patterns for much longer times than it could be

expected based on the nonlinearity index (e.g., Reynolds and Rosmond 2003).

Our finding that while model errors double the magnitude of the forecast errors,

they do not decrease much the efficiency of the ensemble based linear space in repre-

senting the space of forecast errors, makes us speculate that a large part of the model

errors may simply act as an additional stochastic forcing.
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CHAPTER V

NUMERICAL EXPERIMENTS FOR THE MAGNITUDE AND SPECTRUM OF

UNCERTAINTIES*

A. Prediction of the magnitude of forecast error

Figure 15 shows the evolution of TV , TV S and V . In this figure the expected value

is estimated by taking the spatial average over all grid points in the NH extratropics

(30◦ N - 90◦ N) and the temporal average over all forecasts started between 0000

UTC 11 January 2004 and 0000 UTC 15 February 2004.

First we compare the total forecast error variance, TV , and the forecast error

variance in Sℓ, TV S. In the two perfect model experiments, TV S is only slightly

smaller than TV , which indicates that Sℓ provides an efficient representation of the

error space. As expected, in the third experiment, where part of TV is due to model

errors, the difference between TV and TV S is larger than in the two perfect model

experiments.

Interestingly, the difference between TV S and V at longer lead times is much

larger than the difference between TV and TV S. In other words, although the linear

space Sℓ spanned by the ensemble perturbations provides a good representation of the

space of forecast uncertainties, the ensemble severely underestimates the total variance

in Sℓ. Even though, this underestimation is more serious in the experiment where

model errors have an effect on the total error variance TV , the underestimation in

the two perfect model experiments is also significant. Thus, the underestimation of

*Portions of this chapter have been reprinted from:
“Predictability of the Performance of an Ensemble Forecast System: Predictability of
the Magnitude and the Spectrum of Incertainties” by E.A. Satterfield and I. Szunyogh,
2010, Mon. Wea. Rev., in review, c© Copyright 2010 American Meteorological
Society (AMS)



35

the forecast error variance cannot be fully explained by the lack of accounting for

the effect of model errors in our ensemble. Also, the underestimation cannot be

explained by an initial underestimation of the variance of the error in Sℓ, as initially

the ensemble variance V is tuned to be about equal to TV S. (Further inflating the

analysis ensemble members would lead to accounting for part of δx(⊥) by over inflating

δx(‖).)

When we fit TV to an exponential curve, TV = xo expat, we find the fastest

growth rate for the experiment that assimilates simulated observations in random

locations, where the doubling time (Td = a−1ln2) is Td = 25.5774 hours (Td = 19.7478

hours for TV S and Td = 23.1049 hours for V ). The growth rate is the slowest for

the experiment that uses observations of the real atmosphere. For this experiment,

Td = 33.1649 hours (Td = 25.7676 hours for TV S and Td = 42.7869 hours for V ).

For the experiment which assimilates realistically placed simulated observations, the

doubling time is Td = 26.9707 hours (Td = 22.3596 hours for TV S and Td = 26.9707

hours for V ). Interestingly, the initial growth rate of TV S and V is faster than

exponential growth: up until the 36-hr lead time, the time evolution of the growth

rate of TV S and V can be best approximated by a second-order polynomial.

Figure 16 shows the zonal power spectrum of the meridional wind at 500 hPa

averaged over all latitudes in the NH extratropics and over time. Left panels show

results which were obtained by computing the power spectra for each ensemble per-

turbation, then taking the ensemble mean of the spectra. Right panels show the

spectra for the δxt difference between the model representation of the truth and the

ensemble mean. The shape of the spectra and the time evolution of the spectra is very

similar all panels with the exception of the ensemble spectra for the real observations

(lower left panel). Unlike in the other panels, where a dominant range of wavenumber

6-10 emerges from a relatively flat initial spectrum, at analysis time, for the real ob-
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servations the spectrum of the ensemble perturbations has a well pronounced peak at

wavenumber 2. A more detailed investigation of this spectrum revealed that this peak

is associated with large ensemble variance in a region over the arctic north of Russia.

While the qualitative behavior of the spectra of δxt and the ensemble perturbations is

similar, as can be expected based on Figure 15, the amplitudes are larger for δxt than

for the ensemble perturbations. By computing the growth rates for the wave number

k=8, we find that the differences between the predicted and true uncertainties are

due to differences in the magnitude of the two quantities at analysis time, rather than

to a faster growth rate of the true uncertainty. This result suggests that the analy-

sis ensemble systematically underestimates the analysis uncertainty at the synoptic

(baroclinically most active) scale. Because we tuned the analysis ensemble to satisfy

V ≈ TV S at analysis time, there are two potential explanations for the underesti-

mation of the uncertainty at the synoptic scales. First, because the computations of

V and TV S involve spatial averaging over large regions, we may underestimate the

uncertainty in regions where it is associated with synoptic scale features due to an

overestimation of the uncertainty in regions where it is dominantly related to some

different scales. Second, the underestimation of the uncertainty at the synoptic scale

could be due to the overestimation of the importance of local error patterns asso-

ciated with different scales in Sℓ. The results we later show in this dissertation for

the spectrum of uncertainties clearly suggest the first scenario. For the case of the

real observations, the overestimation of the importance of wavenumber 2 features at

higher latitudes also point to the first scenario.



37

B. Prediction of the spatiotemporal changes in the magnitude of forecast error

The usual candidate for a predictor of ||δxt|| at location ℓ is the ensemble spread, V
1/2
ℓ ,

at the same location. These two quantities are known to have a positive correlation,

which is typically low at analysis time and asymptotes to a level of about 0.5 by about

72-hr lead time (e.g. Barker 1991, Houtekamer 1993, and Whitaker and Loughe 1998).

KEA07 found that the correlation for our system was in good agreement with those

earlier results. Since a correlation of 0.5 for a sample size of N=129,600 suggests

the existence of a linear relationship between the V
1/2
ℓ and ||δxt||, a prediction of

||δxt|| based on the V
1/2
ℓ with a linear regression may seem to be a natural choice.

Computing the correlation for our experiments, we find that it is largest for the case

of simulated observations at random locations (0.58), slightly lower for the case of

realistically placed simulated observations (0.52), and much lower for the realistic case

(0.26). This relatively large drop in the correlation for the realistic case would itself

provide an argument against using a linear regression to predict ||δxt||. An even more

problematic feature of the relationship between ||δxt|| and V
1/2
ℓ , which is illustrated

by Figure 17, is that for larger values of V
1/2
ℓ , ||δxt|| varies over a much wider range

of values. To better understand the problematic aspects of this result, we recall from

linear statistics, that univariate regression predicts the value of a random variable

y based on a predictor x by the E[y|x] conditional expectation of y given x (e.g.,

p.264 in Rao 1973). Thus, a prediction of ||δxt|| with a prediction of its conditional

expectation does not reflect the large potential magnitude of the forecast error for a

large value of the spread. This motivates us to investigate the relationship between

V
1/2
ℓ and the upper bound of ||δxt||, instead of the expectation of ||δxt|| given V

1/2
ℓ .

We start our investigation by breaking up the 36 day data set of 120-hr forecasts

into two sets of 18 days, and search for a quantitative linear relationship between Vℓ
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and the upper bound of ||δxt||2 given Vℓ based on the first 18 days (training period).

We then use the functional relationship found for this training period to predict the

upper bound of ||δxt||2 based on Vℓ for the second 18-day period. In order to dampen

the effects of outliers, we use the 95th percentile of the bin values of ||δxt||2 instead of

the bin maximum. To obtain a qualitative prognostic relationship, we first order the

values of Vℓ for the training period and divide them into 100 bins, each containing an

equal number of data points. Each bin provides a pair of data: a value of Vℓ defined

by its mean for the bin and the 95th percentile of ||δxt||2.

Based on the training data set, the correlation between the bin mean of Vℓ and

the bin 95th percentile of ||δxt||2 is 0.9889, 0.8176, and 0.9206 at the 120-hr lead time

for experiments that assimilate simulated random locations, simulated observations

in realistic locations, and observations of the real atmosphere respectively, which

are statistically significant at the 99.99% level by a t-test. This suggests that Vℓ

may be a good linear predictor of ||δxt||2, even in the realistic case. Thus, we use

the linear regression coefficients obtained for the training data set to predict the

95th percentile of ||δxt||2 for the second 18 days. The results are summarized in

Figure 18. The correlation values (0.9518, 0.8685, and 0.8568) between the predicted

and the actual 95th percentile values of ||δxt||2 indicate a linear relationship, which

is statistically significant at the 99.99% confidence level by a t-test. Encouraged by

the strong linear predictive relationship we find at 120-hr, we turn our attention to

the shorter lead times. At analysis time, we find lower correlation values between the

bin mean of Vℓ and the bin 95th percentile of ||δxt||2 (0.2472, 0.7076, and 0.2182) as

well as lower correlation values between the predicted and the actual 95th percentile

values of ||δxt||2 (0.2902, 0.6573, and 0.4161) than at 120-hr lead time. As can be

expected, the correlation values increase with forecats lead time, by the 48-hr lead

time both perfect model experiments show correlation values greater than 0.75 for
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both the training period and the prediction. For the case of realistic observations, the

correlation values remain relatively low untill around the 96-hr lead time, where we

find correlation values of 0.7259 for the training period and 0.6382 for the prediction

of 95th percentile values of ||δxt||2. We recall that 96-hr is about the lead time at

which the peak in the power series of the ensemble perturbations moves into the k=8

range, in better agreement with ||δxt|| (Figure 16).

C. Spectrum of the d-ratio

We now turn our attention to investigating the efficiency of the ensemble in distin-

guishing between the importance of the eigendirections (error patterns in physical

space) in Sℓ. We first compute the spectrum of d-ratio dk using the same definition of

the local volume as in our calculations of E-dimension and explained variance. The

results are summarized in Figure 19.

First we discuss the results for analysis time (left panels of Figure 19). We find

that for the experiment which assimilates simulated observations in random locations,

the ensemble only slightly underestimates the error in the directions it captures (upper

left panel). When realistically placed simulated observations are used, the ensemble

tends to underestimate uncertainty in all captured directions, with the exception of

the few leading directions (middle left panel). In the experiment with observations of

the real atmosphere, the uncertainty is underestimated in all directions captured by

the ensemble. The similarity between the shape of the spectra in the two experiments

that assimilate observations at realistic locations and the flat spectrum in the third

experiments, where observations are nearly uniformly distributed, suggests that the

larger underestimation of error variance in the trailing directions is due to the uneven

distribution of observations.
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As forecast time increases the underestimation of the error by the ensemble be-

comes increasingly more severe in all directions and in all experiments. We show

results for 120-hr forecast time (right panels of Figure 19). In the experiment with

randomly distributed observations, the spectrum remains flat (top right panel), while

in the experiment with realistically distributed simulated observations the slope of

the spectrum does not increase. In the realistic case, in contrast, the spectrum be-

comes much steeper indicating an increasingly more severe underestimation toward

the trailing directions. Comparing the spectra from the two experiments with realis-

tically distributed observations, we conclude that model errors lead to a more severe

underestimation of the forecast uncertainty in the trailing directions.

In order to obtain d-ratio figures whose meteorological (physical) meaning is

easier to interpret, we now change the definition of the local volume: we investi-

gate a single variable at a single level using 5 by 5 horizontal grid points. In these

calculations N=25 (N < K), hence, the upper bound for the E-dimension in Sℓ is

25. The variable and levels we choose for this analysis are the surface pressure, the

temperature at 850 hPa, the two horizontal wind components at 500 hPa, and the

geopotential height at 250 hPa. Figure 20 shows the time mean of this ratio in the

leading direction, d1, for the temperature at 850 hPa. For the experiment which

assimilates randomly placed observations, initially d1 is highest near the poles. The

main regions of enhanced baroclinicity over Japan and off the coast of Newfoundland

also show underestimation. The latter result suggests that when the distribution of

the observations is nearly uniform, the use of a zonally constant covariance inflation

factor in the analysis leads to an underestimation of the uncertainty in the dynam-

ically more active regions. In contrast, for the two experiments which assimilate

realistically placed observations d1 tends to reflect the local observation density: the

uncertainty is underestimated in regions of high observation density, such as Europe,
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Japan, and the United States, and underestimated in regions of lower observational

density, such as the Southern Hemisphere and the oceanic regions. This result is an

indication that our zonally constant covariance inflation factor cannot be tuned to

be optimal everywhere when there are zonal changes in observation density. Thus we

conjecture that implementing a spatially varying adaptive covariance inflation tech-

nique, such as described in Anderson (2009) or a localized version of Li et al. (2009),

may lead to an improvement of the analyses and the short term ensemble forecasts.

The time averaged spectrum of the d-ratio for a particular grid point (Figure 21) at

analysis time shows that for the two experiments which use simulated observations,

the ensemble, on average, overestimates the uncertainty in all directions, except for

the trailing directions, where uncertainty is underestimated. For the experiment that

uses observations of the real atmosphere, the ensemble underestimates uncertainty

in most directions, more severely for the trailing directions. For the same grid point

at the 120-hr lead time the two experiments that use simulated observations show

overestimation in all directions. For observations of the real atmosphere, the en-

semble overestimates the uncertainty in the leading directions and underestimates

uncertainty in the trailing directions.

D. Relationship between E-dimension and d-ratio

Since in Chapter IV we found the E-dimension a good predictor of the performance of

Sℓ in capturing the forecast error, we have been hoping to find a similar relationship

between the E-dimension and the quality of the prediction of the magnitude and the

spectrum of uncertainties by the ensemble. While all of our attempts at finding a

qualitative relationship between the E-dimension and the performance of the ensemble

in predicting the magnitude of the uncertainty have failed, we have found interesting
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differences between the spectra of d-ratios for different values of the E-dimension.

To explore the relationship between the E-dimension and the spectrum of d-

ratios, we output values of E-dimension and the corresponding values for the spec-

trum of the d-ratio. The data pairs are then ordered by E-dimension values and

divided equally into 100 bins. We find that at analysis time the spectrum is better

behaved for lower values of the E-dimension. For instance, while for the bin with the

lowest value of E-dimension (Figure 22 upper left panel) the spectrum is relatively

flat and the values are near one, for the bin with the highest values of E-dimension the

underestimation of the uncertainty by the ensemble is more severe. Interestingly, at

120-hr lead time the spectra are better behaved for the higher values of E-dimension.

For instance, for the same two examples compared at analysis time, the underesti-

mation of the forecast, with the exception of a few leading directions, is more severe

for the regions of low E-dimension. These results indicate that while the spectrum

of the d-ratio benefits from better representation of the space of uncertainties in the

low E-dimensional regions at analysis time, having a more diverse distribution of the

uncertainty at a longer forecast lead time improves the representation of the forecast

uncertainty. The practical implications of this result, when combined with the re-

sults of Chapter IV, is that while a forecaster should trust the 96-120 hr ensemble

predictions of the possible error patterns in the lower dimensional regions more, he or

she should also keep in mind that the seemingly unimportant patterns of uncertainty

play a more important role in reality than suggested by the raw ensemble forecast.

E. E-dimension, d-ratio, and forecast error

To further investigate the problem of underestimating the uncertainty with the an

ensemble that effectively captures the space of uncertainties, we plot the eigenvalue
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spectrum (normalized by the leading eigenvalue) and the percentage of TV S,

TV S(k) =

∑k
i=1 δ2

x
t(||)

∑K
i=1 δ2xt(||)

, (5.1)

captured by the first k eigendirections. Figure 23, which is obtained with the same

bin averaging techniques as Figure 22, shows the results for the minimum, median,

and maximum bin values of the E-dimension. At analysis time, these three values

of the E-dimension are 29.3679, 34.1271, and 36.3424 for the simulated observations

in random locations, 14.4292, 25.9455, and 35.4192 for the simulated observations

in realistic locations, and 21.8493, 31.88, and 36.9536 for observations of the real

atmosphere. At the 120-hr lead time, the minimum, median, and maximum bin

values of E-dimension are 6.34464, 14.0873, and 24.9761 for simulated observations

in random locations, 8.22311, 17.0315, and 26.0225 for simulated observations in

realistic locations, and 10.3602, 17.7928, and 25.7089 for observations of the real

atmosphere. We find that, low values of E show a quicker saturation of the percentage

of TV S compared to the eigenvalue spectrum. For example, for the experiment which

assimilates simulated observations in random locations, at the 120-hr lead time, at

the point where the eigenvalue spectrum approaches zero, only approximately 90%

of TV S has been captured by the ensemble. For the experiment that assimilates

observations of the real atmosphere, at the 120-hr lead time, even for the lowest

bin value of E-dimension, we find that all directions captured by the ensmeble are

necessary to capture 100% of TV S, but the eigenvalue spectrum saturates around

n=15 (in agreement with Figure 22, which shows that the ensemble underestimation

increases sharply for trailing directions). These results support the use of linear post-

processing techniques to increase the ensemble spread in the trailing directions at

longer forecast lead times.
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CHAPTER VI

CONCLUSIONS*

In this dissertation, we studied the spatiotemporally changing nature of predictability

by coupling a reduced resolution version of the model component of the NCEP GFS

with the LETKF data assimilation scheme. Our focus was on exploring the predictive

value of the linear space, Sℓ, spanned by the ensemble perturbations in capturing the

forecast uncertainties for the first five forecast days. We employed a hierarchy of

increasingly more realistic experiment designs in order to be able to investigate the

effects of the temporal and spatial distribution of the observations and the effects of

model errors. While we found that the distribution of the observations modulates the

distribution of the analysis and forecast errors and model errors lead to a doubling of

the average and maximum magnitude of the errors, the following main findings apply

to all experiment set ups, including the one that assimilated observations of the real

atmosphere:

• We have found that Sℓ provides an increasingly better representation of the

space of uncertainties with increasing forecast time.

• We have shown that the improving performance of Sℓ with increasing forecast

time is not due local linear error growth, but rather to nonlinearly evolving

forecast errors that have a growing projection on the linear space Sℓ.

*Portions of this chapter have been reprinted from:
“Predictability of the Performance of an Ensemble Forecast System: Predictability
of the Space of Uncertanties” by E.A. Satterfield and I. Szunyogh, 2010, Mon. Wea.
Rev., 138, 962-981, c© Copyright 2010 American Meteorological Society (AMS)
and
“Predictability of the Performance of an Ensemble Forecast System: Predictability of
the Magnitude and the Spectrum of Incertainties” by E.A. Satterfield and I. Szunyogh,
2010, Mon. Wea. Rev., in review, c© Copyright 2010 American Meteorological
Society (AMS)
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• We have shown that the E-dimension is strongly anti-correlated with the error

variance explained by the ensemble, thus, it is a reliable linear predictor of

the performance of Sℓ in capturing the most important forecast error patterns.

What makes this finding especially valuable is that E-dimension is always low

when the forecast error is large, that is, we can have high-confidence in the skill

of the ensemble in capturing the error patterns associated with the large error

in the deterministic forecast and we can use a simple linear regression to provide

a quantitative prediction of this skill at a given time and location.

• The results suggest that predicting the magnitude of the forecast uncertainty

and the relative importance of the different patterns of uncertainty is, in general,

a more difficult task than predicting the space of uncertainty (the collection of

the potential patterns of uncertainty).

• While the ensemble, which is tuned to provide near to optimal performance at

analysis time, provides a good representation of the space of forecast uncer-

tainty, it severely underestimates not only the total magnitude of the uncer-

tainty, but also the magnitude of the uncertainty that projects onto the space

spanned by the ensemble perturbations.

• The ensemble tends to more severely underestimate the forecast uncertainty in

the directions (for the patterns of uncertainty) that are present in the ensemble

with a small amplitude. This problem is more pronounced at locations where

the E-dimension is low (where a very few patterns dominate the predicted uncer-

tainty), which are, interestingly, also the locations where the ensemble provides

the best representation of the space of uncertainties.
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Some of our results point to shortcomings of our particular system. Most im-

portantly, using a zonally invariant multiplicative covariance inflation factor leads

to an underestimation of the local magnitude of the analysis uncertainty in regions

of dense observations and an overestimation of the local magnitude of the analysis

uncertainty in regions of sparse observations. Also, the system underestimates the

analysis uncertainty at the synoptic scales, which leads to an underestimation of the

forecast uncertainty at the same scale. These shortcomings of the system can be, most

likely, eliminated by implementing a more sophisticated covariance inflation scheme

on the LETKF. Some of our other results, on the other hand, have potentially broader

implications and, we hope to investigate the generality of these findings in the near

future utilizing the THORPEX Interactive Grand Global Ensemble (TIGGE) data

base. If we found that the results of this dissertation are general, that would sup-

port the approach followed by many synopticians in interpreting the raw ensemble

forecasts, which is based on paying more attention to the predicted patterns of un-

certainties than to the uncalibrated raw quantitative ensemble-based measures of the

uncertainty. Such findings would provide an additional argument for the use of post-

processing techniques to enhance the ensemble based forecasts. The fact that a linear

space Sℓ, provides a good representation of the uncertainty in the medium forecast

range confirms that linear statistical techniques, such as those based on reforecasts

(e.g., Hamill et al. 2004; Hamill and Whitaker 2006; Hamill et al. 2008; Hagedorn

et al. 2008), have a great potential to improve ensemble-based forecasts.

Finally, we believe that our reasoning behind using a simple linear regression to

predict the upper bound of the forecast uncertainty based on the spread is sufficiently

general to be valid for any ensemble forecast system. This relationship, along with the

strong predictive linear relationship between the E-dimensions and the performance

of the ensemble in capturing the patterns of uncertainty, could be implemented in
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operations after a proper tuning of the linear regression coefficients.
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APPENDIX A

FIGURES
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Fig. 1. The time mean absolute error of the surface pressure analysis assimilating simu-

lated observations at random locations with digital filter initialization (top) and

without digital filter initialization (bottom). The results shown in this figure

use a 10% covariance inflation at all vertical levels and in all geographic regions.

The average is taken over all analyses between 01 January 2004 0000UTC and

29 February 2004 1800UTC
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Fig. 2. Fourier analysis of the surface pressure analyses at the location 0◦S, 160◦W be-

tween 14 January 2004 0600UTC and 15 February 2004 0000UTC assimilating

simulated observations at random locations without digital filter initialization

(closed circles), with digital filter initialization (open circles). The spectrum

for the nature run is also shown (triangles). The results shown in this figure

are obtained with a 10% covariance inflation at all vertical levels and in all

geographic regions.
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Fig. 3. E-dimension (shades) and geopotential height control (contours) at the 250-hPa

level shown for the experiment that assimilates conventional observations for

a local region size of 5x5 (top panels) and 10x10 (bottom panels). Results are

shown for the 5-day forecast started on 4 Feb 2004.
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Fig. 4. Explained variance (shades) and geopotential height control (contours) at the

250-hPa level shown for the experiment that assimilates conventional obser-

vations for a local region size of 5x5 (top panels) and 10x10 (bottom panels).

Results are shown for the 5-day forecast started on 4 Feb 2004.

.
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Fig. 5. Time-mean absolute analysis/forecast error of the meridional wind com-

ponent (shades) and the geopotential height of the verifying analy-

sis/forecast(contours) at the 500 hPa pressure level. Results are shown for the

analysis (left) and the 72-hr forecast (right) for experiments that assimilate ran-

domly distributed simulated observations (top panel), simulated observations

at the locations of conventional observations (middle panel), and conventional

observations of the real atmosphere (bottom panel). The average is taken over

all forecasts started between 11 January 2004 0000UTC and 15 February 2004

0000UTC. Note the different scale for the forecast errors in the bottom panels.
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Fig. 6. Dependence of the time mean forecast error on the forecast lead time for the

meridional wind component at 500 hPa level in the NH extratropics. The evolu-

tion of the forecast error is shown for different ranges of the zonal wavenumber

k

.
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Fig. 7. Joint probability distribution of the E-dimension and the explained variance in

the NH extratropics. The bin increments are 0.005 for the explained variance

and 0.2 for the E-dimension. Shown are the distributions for the analysis (left)

and the 120-hr forecast lead time (right) for experiments that assimilate ran-

domly distributed simulated observations (top panel), simulated observations

at the locations of conventional observations (middle panel), and conventional

observations of the real atmosphere (bottom panel).



61

Fig. 8. Mean E-dimension and the minimum of explained variance of data divided

equally into 100 bins for the NH extratropics for the first 18 days (triangles).

The linear regression curve fitted to these data is shown by a solid straight

line. If the prediction of the explained variance by the linear statistical model

was perfect, the actual values for the second 18 days (open circles) would fall

on this line. Shown are the distributions for the analysis (left) and the 120-hr

forecast lead time (right) for experiments that assimilate randomly distributed

simulated observations (top panel), simulated observations at the locations of

conventional observations (middle panel), and conventional observations of the

real atmosphere (bottom panel). The legends show the correlation between

E and minEEV in the training data set (Rtraining) and between E and the

predicted value of minEEV .
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Fig. 9. Mean E-dimension and the 5th percentile of explained variance of data divided

equally into 100 bins for the NH extratropics for the first 18 days (triangles).

The linear regression curve fitted to these data is shown by a solid straight

line. If the prediction of the explained variance by the linear statistical model

was perfect, the actual values for the second 18 days (open circles) would fall

on this line. Shown are the distributions for the analysis (left) and the 120-hr

forecast lead time (right) for experiments that assimilate randomly distributed

simulated observations (top panel), simulated observations at the locations of

conventional observations (middle panel), and conventional observations of the

real atmosphere (bottom panel). The legends show the correlation between

E and minEEV in the training data set (Rtraining) and between E and the

predicted value of minEEV .



63

Fig. 10. Shown by contours are the 500 hPa geopotential heights (a) the actual values

of explained variance (b)the predicted values of explained variance (c) and the

error in the 500 hPa meridional wind (d) for the 120-hr forecast started on 20

January 2004 0000 UTC for the experiment that assimilates observations of

the real atmosphere. Values of the E-dimension are shown by color shades in

all four panels.
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Fig. 11. Joint probability distribution of the analysis/forecast errors and the explained

variance. The bin increments are 0.005 for the explained variance and 0.4 for

the forecast error. Results are shown for experiments that assimilate ran-

domly distributed simulated observations (top panel), simulated observations

at the locations of conventional observations (middle panel), and conventional

observations of the real atmosphere (bottom panel) for analysis (left) and the

120-hr forecast (right). Note the different scale for the forecast errors in the

bottom panel.
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Fig. 12. Color shades indicate the mean E-dimension for each nonempty bin in Fig-

ure 11. Shown are the distributions for experiments that assimilate randomly

distributed simulated observations (top panel), simulated observations at the

locations of conventional observations (middle panel), and conventional ob-

servations of the real atmosphere (bottom panel). Note the different scale for

the forecast errors in the bottom panel.
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Fig. 13. Time-mean of the globally averaged relative nonlinearity at each forecast lead

time. Results are shown for experiments that assimilate randomly distributed

simulated observations (top panel), simulated observations at the locations

of conventional observations (middle panel), and conventional observations of

the real atmosphere (bottom panel). The solid line shows the results obtained

when the relative nonlinearity is first calculated for local regions consisting of

5x5 model grid points and then the results are averaged over all local regions.

The associated standard deviation is also shown. The dashed line shows the

nonlinearity index computed for the global state vector.
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Fig. 14. Scatter plot of the NH explained variance and the relative nonlinearity. Re-

sults are shown for experiments that assimilate randomly distributed sim-

ulated observations (top panel), simulated observations at the locations of

conventional observations (middle panel), and conventional observations of

the real atmosphere (bottom panel).
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Fig. 15. The time evolution of TV (squares), TV S (triangles), and V (circles) for the

NH extratropics. Results are shown for experiments that assimilate randomly

distributed simulated observations (top panel), simulated observations at the

locations of conventional observations (middle panel), and observations of the

real atmosphere (bottom panel). Note the different scale in the bottom panel.
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Fig. 16. The zonal power spectrum of the meridional component of the wind averaged

over all latitudes in the NH extratropics and over time. Results are shown for

00-hr through 120-hr forecast lead times at 12-hr increments, averaged over

the ensemble perturbations (left) and for δxt (right) for the experiments which

assimilate simulated observations in random locations (top panels), simulated

observations in realistic locations (middle panels), and observations of the real

atmosphere (bottom panels).
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Fig. 17. Linear regression for ensemble skill based on spread. Shown are the NH results

for the actual values (gray dots) and predicted values (black line) at the 5-day

lead time for experiments that assimilate simulated observations in random

locations (top panel), simulated observations in realistic locations (middle

panel) and observations of the real atmosphere (bottom panel).
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Fig. 18. Mean V and the 95th percentile of TV of data divided equally into 100 bins

for the NH extratropics for the first 18 days (triangles). The linear regression

curve fitted to these data is shown by a solid straight line. If the prediction of

the 95th percentile of TV by the linear statistical model was perfect, the ac-

tual values for the second 18 days (open circles) would fall on this line. Shown

are the distributions for the analysis (left) and the 120-hr forecast lead time

(right) for experiments that assimilate randomly distributed simulated obser-

vations (top panel), simulated observations at the locations of conventional

observations (middle panel), and observations of the real atmosphere (bottom

panel). The legends show the correlation between V and 95th percentile of

TV in the training data set (Rtraining) and between V and the predicted value

of the 95th percentile of TV .
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Fig. 19. The time mean of the Northern Hemisphere average spectrum of the ratio

dk, calculated for all assimilated variables in the local regions with energy

rescaling. Results are shown for analysis time (left) and the 5-day lead time

(right) for experiments that assimilate randomly distributed simulated obser-

vations (top panel), simulated observations at the locations of conventional

observations (middle panel), and observations of the real atmosphere (bottom

panel). The average is taken over all forecasts started between 11 January

2004 0000UTC and 15 February 2004 0000UTC.
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Fig. 20. The time average of the ratio dk in the leading direction for the temperature

at 850 hPa. Results are shown for analysis time (left) and the 5-day forecast

(right) for experiments that assimilate randomly distributed simulated obser-

vations (top panel), simulated observations at the locations of conventional

observations (middle panel), and observations of the real atmosphere (bottom

panel). The average is taken over all forecasts started between 11 January

2004 0000UTC and 15 February 2004 0000UTC.
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Fig. 21. The spectrum of the ratio dk at the point 60◦N 120◦W for the temperature

at 850 hPa. Results are shown for the analysis time (left) and the 5-day fore-

cast (right) for experiments that assimilate randomly distributed simulated

observations (top panel), simulated observations at the locations of conven-

tional observations (middle panel), and conventional observations of the real

atmosphere (bottom panel). The average is taken over all forecasts started

between 11 January 2004 0000UTC and 15 February 2004 0000UTC.
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Fig. 22. The time mean of the Northern Hemisphere average spectrum of the ratio dk,

calculated for all assimilated variables in local regions with energy rescaling.

Results are shown for observations of the real atmosphere for the minimum

bin average of E-dimension (top panels), median bin average of E-dimension

(middle panels), and maximum bin average of E-dimension (bottom panels)

for analysis time (left panels) and the 120-hour forecast lead time (right pan-

els).
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Fig. 23. The eigenvalue spectrum (normalized by the leading eigenvalue) and the per-

centage of TVS for low (red plus signs), median (green open circles), and

high (blue triangles) values of E for the Northern Hemisphere. Shown are the

results at analysis time (left) and at 120-hour forecast lead time (right) for

the experiments which assimilate simulated observations in random locations

(top panels), simulated observations in realistic locations (middle panels), and

observation of the real atmosphere (bottom panels).
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