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ABSTRACT 

The Biological and Molecular Analysis of a Tick-Encoded Serine  

Protease Inhibitor (S6) and its Role in the Feeding Cycle of the Lone  

Star Tick, Amblyomma americanum (L) (Acari: Ixodidae.) (August 2010) 

     Katelyn Cox Chalaire, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Albert Mulenga 

 

 Serine protease inhibitors (serpins) are a large superfamily of proteins that 

regulate critical proteolytic pathways by inhibiting serine proteases.  Tick-encoded 

serpins are thought to play a vital role in the feeding process.  To determine the 

relationship of Amblyomma americanum serpin 6 (S6) to tick feeding regulation, this 

study attempted to define the biological significance of this molecule through 

transcription and protein expression profiles, biochemical characterization of 

recombinant s6 (rS6), and the effects of in vivo post-transcriptional gene silencing on 

blood meal acquisition and fecundity.    

 Transcriptional analysis revealed that S6 mRNA is ubiquitously expressed in 

unfed and partially fed ticks through the initial 5 days of the feeding period.  S6 mRNA 

abundance in dissected tick organs showed a 3.7, 3.4, and 1.7- fold upregulation from 24 

h to 96 h in the salivary gland (SG), midgut (MG) and the carcass (CA) remnant after 

removal of  SG, MG respectively before downregulating at 120 h.  Native S6 protein is 

downregulated in response to tick feeding, with correlation between transcription and 

protein expression profiles only consistent from the unfed to 48 h.  Similarly, S6 protein 



 iv 

expression in dissected female tick tissues is reduced as feeding progresses, with S6 

being identified in SG, MG, ovary (OV), and CA from 24 h until 72 h.  Biochemical 

characterization of S6 was not achieved, as rS6 did not form an irreversible complex 

when incubated with chymotrypsin or trypsin. Although complete silencing of S6 and 

S6/S17 mRNA was achieved, post-transcriptional gene knockdown had no effect on tick 

feeding efficiency or fecundity.  These findings have been discussed in regards to the 

development of a vaccine against A. americanum and necessary future studies have been 

suggested for further characterization and assessment of biological significance.   
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CHAPTER I 

       INTRODUCTION 

 

Ticks and Tick-borne Diseases 

 Ticks are obligate blood sucking arthropods that parasitize a wide range of 

vertebrate hosts and can be found in all terrestrial regions of the world (Sonenshine, 

1993). The proposed origin of ticks varies between the Silurian period around 443 MYA 

(Oliver, 1989) to the more recent late Cretaceous period at approximately 120 MYA 

(Klompen et al., 1996).  The oldest tick fossil, found in New Jersey amber, was dated 

around 94-90 MYA by Klompen and Grimaldi (2001). Ticks, making up the suborder 

Ixodida, are the most primitive members of the class Arachnida (Sonenshine et al., 

2002).  There are well over 800 species distributed among three tick families, 650 of 

which belong to the 13 genera of Ixodidae, while Argasidae contains about 172 species 

distributed among 5 genera, and Nuttalliellidae has one species (Sonenshine et al., 

2006). The two tick families of principal importance are argasids and ixodids, 

respectively referred to as soft ticks and hard ticks. Hard ticks hunt their blood meal 

source while soft ticks are nest-dwelling, therefore argasids do not pose the same public 

health threat as ixodids (Balashov, 2006).   

Although direct tick feeding can cause damage to their hosts, they are mostly  

 
 
 
___________ 
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known for their role as vectors of disease-causing pathogens. Ticks surpass any other 

known arthropods in terms of the diversity of disease agents which they can transmit to 

both humans and animals, and are only outranked by mosquitoes in terms of their 

medical importance (Sonenshine, 1993). Ticks and tick-borne diseases (TBD) are one of 

the biggest concerns in global agriculture, particularly in regards to the cattle industry. 

Tick control and treatment of TBDs is estimated at 13 to 18 US dollars per animal, 

which translates to billions of dollars in global expenditures annually (de Castro, 1997). 

Important livestock TBDs include east coast fever (Theileria parva) vectored by R. 

appendiculatus, cattle tick fever (Babesia bigemina and B. bovis) vectored by 

Rhipicephalus (formerly, Boophilus) microplus and R. annulatus ticks, and tropical 

theileriosis (T. annulata) vectored by Hyalomma anatolicum (Sonenshine et al., 2002; 

Uilenberg et al., 2004; Gratz, 2006). Other livestock TBDs include bovine ehrlichiosis 

(Anaplasma bovis) and anaplasmosis that affect cattle (A. marginale) and sheep (A. 

ovis), which are transmitted by various genera of ticks (Sonenshine et al., 2002; 

Uilenberg et al., 2004; Gratz, 2006). In companion animals some of the commonly 

encountered TBDs include canine monocytotropic ehrlichiosis (Ehrlichia canis) and 

canine granulocytotropic ehrlichiosis (E. ewingii) (Sonenshine et al., 2002; Neer and 

Harrus, 2006), babesiosis caused by the Babesia canis and B. gibsoni protozoan 

parasites. Dogs can become infected with Hepatozoon canis or H. americanum, 

protozoan parasites that can cause Hepatozoonosis when Rhipicephalus sanguineus or 

Amblyomma maculatum ticks are ingested (Sonenshine et al., 2002). Important TBDs 

affecting equines include borreliosis (Borrelia burgdorferi), Tularemia (Francisella 
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tularensis), and Equine piroplasmosis (Babesia caballi and Theileria equi) (Sonenshine 

et al., 2002).  

In the United States, ticks transmit a greater number of etiological agents of 

vector-borne diseases than any other arthropod (Sonenshine, 1993). For many years, 

ticks and TBD were by and large considered a veterinary problem.  However, since the 

identification of Borrelia burgdorferi as the causative agent of Lyme disease in 1982 

(Burgdorfer et al., 1982; Burgdorfer, 1984) there has been a dramatic rise in the 

identification of human TBD incidence.  Between 1982 and 2004 there have been 15 

new tick-borne bacterial agents discovered or recognized as human pathogens (Parola 

and Roult, 2005). Some of the TBDs important to human health present in the United 

States are human babesiosis (Babesia microti, and B. divergens), Human monocytotropic 

ehrlichiosis (Ehrlichia chaffeensis), and Lyme disease (Borrelia burgdorferi) 

(Sonenshine et al., 2002; Neer and Harrus, 2006).  

 

Tick Control and TBD Prevention 

Currently, there is no single effective vaccine against any TBD, leaving tick 

population control as the optimal method of reducing the impact of these diseases on the 

livestock industry. At present this is accomplished with the use of chemical acaricides.  

Although this is the most commercially successful tick control method to date, there are 

many drawbacks associated with acaricides, including resistance to the active ingredient, 

contamination of environment, detrimental effect to non-target organisms, inefficiency 

regarding application, and chemical persistence.  Since the use of acaricides began in the 
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early 20th century, several chemical classes have been used against ticks only to have 

resistance develop. Oftentimes different active ingredients act on the same target and 

resistance subsequently develops. Those that have remained effective against ticks are 

very persistent in the environment, with residues being found in animal food products 

(Graf et al., 2004; George et al., 2004). Others, such as organophosphates, are non-

persistent but are closely related to chemicals that negatively affect vertebrates, such as 

nerve gases (Ware, 2000).  

Even when chemical control methods are effective and non-harmful to non-target 

organisms, they have the tendency to be very inefficient. For optimal use, acaricides 

must maintain a certain quality, quantity, and method of application. Not following the 

manufacturer’s protocol can allow for the persistence of ticks on the host. Acaricides are 

often mixed and administered by each livestock facility, so it is difficult to achieve 

consistent application.  Most acaricides need to come in contact with the tick to be 

effective, which is difficult to accomplish with any method other than dipping vats.  

Even this technique has its drawbacks, as dipping requires all animals to be assembled in 

one location for treatment.  This is time-consuming, costly, and stressful on the animals.  

Furthermore, the durability of these chemicals is short, so frequent reapplication is 

necessary (Ghosh et al., 2007; George et al., 2004).  Due to these serious drawbacks, 

there has been significant interest in the development of more sustainable, less toxic 

alternatives to the chemical control (Sonenshine et al., 2006). 
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Vaccination of Animals against Tick Feeding 

Vaccination against tick infestations has emerged as a viable and sustainable 

alternative to acaricide use (Jongejan and Uilenberg, 2004; Sonenshine, 1993; Willadsen 

et al., 1995). Advances in tick vaccine development were expertly reviewed by 

Willadsen (2004, 2006, and 2008), Mulenga et al., (2000, 2001a), and Maritz-Olivier et 

al. (2007). Anti-tick vaccines have been shown to be a practical, cost-effective and 

environmental friendly alternative to chemical control. While resistance to acaricides can 

be developed after one point mutation in tick genes, there must be a major change in 

protein expression for resistance to an anti-tick vaccine to arise, thus reducing the need 

for the constant development of new products (Willadsen, 2004). Vaccines are also non-

polluting, so animal food products will remain untainted, and residual effects will not 

remain in the environment (de la Fuente and Kocan, 2006). The commercialization of 

vaccines to R. microplus against two midgut antigens, Bm86 (TickGard) or Bm91 

(Gavac), in Australia and Cuba, respectively, confirmed the practicality of immunizing 

against ticks (Kemp et al., 1989; Willadsen et al., 1989).  However, a very effective tick 

vaccine has yet to be developed. The major limiting step preventing the development of 

a commercially viable tick vaccine is the identification and validation of target tick 

proteins that completely prevents tick feeding when disrupted (Willadsen, 2006).  

 Some of the most promising targets for an anti-tick vaccine are serpins.  The 

serpin superfamily is comprised of hundreds of proteins that have been identified in 

many different species, including mammals, arthropods, plants, and even viruses 

(Gettins, 2002; Gettins et al., 1996).  As a general rule, serpins function in eukaryotes to 
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regulate the proteolytic pathways, specifically inflammation, coagulation, and 

complement activity (Silverman et al., 2001; Gettins et al., 1996). Although most of the 

characterized serpins occur in man, at the turn of the last decade there has been a 

concerted effort to determine if tick-encoded serpins function to modulate the host’s 

immune system. 

 

Serpins and Tick Feeding Regulation 

Ticks are long-term feeders. They accomplish feeding by lacerating host tissue 

and small blood vessels to create a feeding site and then suck up the blood from the 

hematoma that forms in the feeding site (Sonenshine, 1993).  This method of feeding 

stimulates the host’s tissue repair response, including inflammation and blood 

coagulation, to stop further blood loss. To complete feeding, ticks secrete bioactive 

enzymes that prevent inflammation and blood clotting, thus ensuring continued blood 

flow to the feeding site (Nuttall et al., 2006). Given that the host’s primary lines of 

defense to tick feeding activity, inflammation and blood coagulation are regulated by 

serpins (Huntington, 2006; Gettins, 2002), it has been hypothesized that ticks may utilize 

serpins to evade the host’s immune response (Mulenga et al., 2001a). An increasing 

number of serpin-encoding cDNAs have been indentified in several tick species of 

medical and veterinary importance (Mulenga et al., 2001b, 2003, 2007, 2009; Imamura 

et al., 2005, 2006, 2008; Pervot et al., 2006, 2007; Sugino, 2003). In a recent study, 17 

Amblyomma americanum (Lone Star Tick) presumptive serpins that are expressed 

during the first five days of feeding were described (Mulenga et al., 2007). The objective 



 7 

of this study was to biologically and biochemically characterize one of the 17 sequences, 

S6 to gain insight into its role in the facilitation of blood meal acquisition by A. 

americanum. 

 

Significance of Research 

Amblyomma americanum (Lone Star Tick), is the most prevalent tick throughout 

the southeastern and south-central United States. This species is particularly widespread 

in Texas and Oklahoma, but it is also distributed along the Atlantic Coast up to New 

York and Maine (James et al., 2001; Sonenshine et al., 2002).  A voracious feeder, A. 

americanum will parasitize almost any vertebrate, including birds, reptiles, or mammals.  

The adult stage is closely associated with white-tailed deer but will feed on a variety of 

mammals and ground-dwelling birds (Kollars et al., 2000).  With all stages of Lone Star 

Ticks readily feeding on man, A. americanum is the cause of most human tick bites in 

the southern parts of the United States (James et al., 2001).  A. americanum has always 

been considered a major pest of both humans and livestock and it is major vector of 

pathogens, Borrelia lonestari, Francisella tularenis, and several Ehrlichia species 

(Sonenshine et al., 2002; Childs and Paddock, 2003).  
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CHAPTER II 

TEMPORAL AND SPATIAL CORRELATION OF mRNA AND PROTEIN 

EXPRESSION PATTERNS DURING THE FIRST FIVE DAYS OF AMBLYOMMA 

AMERICANUM FEEDING CYCLE 

 

Introduction 

The tick feeding process is compartmentalized into a series of behavioral and 

physiological changes that starts with attainment of appetence and ends in satiation 

(Walade and Rice, 1982). After attainment of appetence and the tick engages the host to 

start feeding, the act of blood meal uptake is broadly categorized into 3 steps: the 

preparatory feeding phase (PFP), Slow Feeding Phase (SFP), and Rapid Feeding Phase 

(RFP).  The PFP occurs during the first 24-36 hours (h). The first step is the insertion of 

its hyposthome into host skin, followed by the secretion of an adhesive substance 

(cement) that glues itself onto host skin, followed by the creation of the feeding lesion. 

This is followed by the SFP during the next 7-10 days in the case of adult ticks, and is 

when transmission of most tick-borne pathogens starts (Skotarczak, 2009; Uilenberg, 

2006), the ticks feeds in moderation to obtain nutrients required for intermolt growth 

(growth of new cuticle and visceral organs). The tick intermolt growth prepares the body 

mass to imbibe and accommodate large volumes of host blood during the RFP that 

occurs during the last 24 h of feeding (Sonenshine, 1993).  

To decipher molecular mechanisms regulating the tick feeding process, genomics 

and proteomics based procedures have been used to determine differential gene 



 9 

(Carvalho et al., 2010; Nene et al., 2002; Ribeiro et al. 2006; Anisuzzaman et al., 2009) 

and protein (Yamada et al., 2009; Anisuzzaman et al., 2009; Saito et al., 2009; Hajdusek 

et al., 2008; Gao et al., 2009) expression profiles during the tick feeding process.  These 

studies have routinely involved extraction of messenger RNA and total proteins from 

unfed and ticks that have fed for different periods. In this way numerous genes that are 

differentially down or upregulated, shut off or induced in response to tick feeding have 

been characterized (Mulenga et al., 2007; Narasimhan et al., 2007).  These data have 

revealed insight into candidate tick proteins that may regulate different phases of the tick 

feeding process.  

 In this study, the author adopted similar approaches to establish mRNA and 

protein expression profiles A. americanum S6 during the first 5 days of tick feeding. The 

author’s interest in examining the expression of S6 during the first 5 days was motivated 

by long-term goals of this research to identify key tick proteins that regulate early stages 

of tick feeding.  

 

Materials and Methods 

Ticks 

Ticks used in these experiments were obtained from an A. americanum L. colony 

from the laboratory of Dr. Pete Teel from the Entomology Department of Texas A&M 

University, College Station, Texas. This colony is maintained by feeding on chickens at 

the larval and nymphal stage and on cattle at the adult stage. 
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Tick dissections, total RNA extractions, cDNA synthesis, and protein extraction 

Adult female ticks were placed in cells attached to a naive calf that had been pre-

infested with adult males three days prior to encourage synchronized feeding. After 24 h, 

all unattached ticks were removed from cells.  Attached ticks were sampled every 24 h, 

starting at 24 h after attachment.  Ticks were collected for two purposes: total RNA 

extraction from whole ticks and from dissected tissues as well as for protein extraction 

from the same tissue samples.   Tick samples were collected at the unfed, 24, 48, 72, 96, 

and 120 h tick feeding time points.  Three adult female ticks were processed individually 

for RNA and protein extraction at each time point.  To homogenize, each tick was placed 

on a glass slide, chopped with a sterile razor blade, and then placed in the TRIzol total 

RNA extraction reagent (Novagen, Carlsbad, CA, USA).  Samples were stored at –80°C 

until used for RNA extractions.   

For tissue dissections, 8 ticks were collected at each time point (24, 48, 72, 96, 

and 120 h post-attachment).  Dissections were routinely done as previously described by 

Mulenga et al., (2001b). Ticks were placed under a dissecting scope on a hanging drop 

glass slide filled with Diethylpyrocarbonate(DEPC) treated water.  Using a sterile razor 

blade and soft tissue forceps, the dorsal shield was removed.  Tick organs, including the 

salivary glands (SG), midgut (MG), ovaries (OV), and remaining carcass tissue (CA), 

were dissected using forceps or 18 gauge needles. All dissected tissues were pooled in 

groups of eight for each time point.  The whole tissue samples were placed in TRIzol 

reagent and stored at -80°C until used for RNA extractions.   
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To extract total RNA, whole tick and tissue samples were thawed at room 

temperature and homogenized using a Sonic Dismembrator Model 100 (Thermo Fisher 

Scientific). Total RNA was extracted and re-suspended in RNAase free water according 

to the manufacturer’s protocol provided with the total RNA extraction reagent, TRIzol. 

Total RNA was quantified using a nanodrop ND-1000 Spectrophotometer (NanoDrop 

Technologies, Wilmington, DE, USA).  Total RNA (400 ng) was used to synthesize 

oligo dT primed cDNA synthesis using the Verso cDNA kit (Thermo Fisher Scientific).  

The resulting cDNA was then quantified as described above and stored at -20°C.   

To isolate total proteins, organic phases from total RNA extractions (above) were 

retained. These organic phases were treated with 0.3% ethanol to precipitate genomic (g) 

DNA. Subsequently, total proteins were precipitated using isopropanol.  The resulting 

pellet was washed 4 times in 0.3 M guanidine hydrochloride in 95% ethanol solution. 

The pellet was then dried in a Savant DNA 120 SpeedVac® Concentrator (Thermo 

Fisher Scientific) for 20-30 min and reconstituted in 1% sodium lauryl sulfate (SDS) 

nuclease-free water at 50°C.  

 

Tick saliva collection 

Tick saliva was collected from 30 ticks at 24 h, 48 h, and 96 h using the 

published protocol from Ribeiro et al. (2004). Ticks were placed dorsal-side up on tape, 

and sterile glass micropipettes were place over the tick’s hypostome.  To induce 

salivation, 5 µL of pilocarpine (50 mg/mL in 95% ethanol) was applied to the scutum 
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using a pipette.  The ticks were placed in an incubation chamber at 35°C for 3 h. The 

saliva was collected from the micropipettes by washing in PBS and stored at -80°C. 

 

Temporal and spatial analysis of transcript expression patterns of S6 during the first 5 

days 

To determine temporal and spatial expression patterns 200 ng of cDNA from 

whole tick or dissected tick organs, respectively, was used in a PCR reaction containing 

GoTaq® Green PCR Master Mix (Promega, Madison, WI, USA), forward and reverse 

S6 primers, S6 FWD and S6 REV (Table 2.1) at 0.1 µM final concentration in a 30 µL 

reaction.  The cycling conditions were an initial denaturation of 95°C for 2 minutes, 

followed by forty amplification cycles of 95°C for 45 seconds, 55°C for 30 seconds, and 

72°C for 1 minute, and a final extension of 72°C for 5 minutes.  For sample load control, 

a similar reaction was repeated using forward and reverse actin primers, actin FWD and 

REV (Table 2.1) at 0.1 µM final concentrations in a 30 µL reaction.  The cycling 

conditions were an initial denaturation of 95°C for 2 minutes, 40 amplification cycles of 

95°C for 45 seconds, 58°C for 30 seconds, and 72°C for 1 minute, and a final extension 

of 72°C for 5 minutes.  Eight µL of each PCR reaction product were electrophoresed 

along with a 1Kb DNA ladder (Promega) at 50 V on a 2% agarose gel containing 1 µg 

ethidium bromide in Tris-acetate-EDTA (TAE) buffer. The densities of the resulting 

bands were analyzed using the ImageJ analyzer software (available through the Resource 

Centre for Healthcare Technologies at http://rsbweb.nih.gov/ij/) to determine the relative 
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levels of transcription.  The variations between template concentrations were normalized 

according to the following formula:  

Y=V+V(H–X)/X 

where Y stands for the normalized mRNA density, V is the observed S6 PCR band 

            density in individual samples,  H is the highest tick actin PCR band density among tested 

samples, and X is the tick actin PCR band density.  

 

Construction of recombinant (r) serpin 6 expression plasmid 

To construct the expression plasmid, the S6 coding region (without the 5’ 

terminal region coding for the signal peptide) was unidirectionally sub-cloned into 

pRSET A vector (Novagen).  A sense and anti-sense primer pair, S6-FWD and S6-REV 

(Table 2.1), with added respective restriction enzyme sites, BamHI and HindIII were 

used to amplify the S6 mature protein coding region.  The pRSET A expression vector 

and S6 fragment were sequentially digested with BamHI and HindIII (New England 

BioLabs, Ipswich, MA, USA). For digestion with the HindIII the following reaction was 

composed in a 1.7 mL microcentrifuge tube (VWR, West Chester, PA, USA) for both 

the S6 coding region and the pRSET A expression vector: 20 µL of the target template 

(PCR product or vector), 5 µL of the 10X BamHI unique buffer, 5 µL of the 10X BSA, 

0.5 µL of BamHI, and 19.5 µL nuclease-free water. Each of these reactions was 

incubated overnight at 37°C. The entire reaction was electrophoresed at 100V on a 2% 

agarose gel that contained 1 µg ethidium bromide in TAE buffer and subjected to routine 

gel purification using StrataPrep DNA Gel Extraction Kit (Stratagene, La Jolla, CA, 
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USA). Five µL of the extracted product was electrophoresed on a 2% agarose gel to 

confirm DNA elution.  The second restriction enzyme digestion was completed as above 

but with the use of HindIII and buffer 2 (New England BioLabs).  The digestion was 

again confirmed by electrophoresis on a 2% agarose gel and purified using StrataPrep 

DNA Gel Extraction Kit using the previously described protocol.  The digested pRSET 

A vector and S6 insert were ligated in a 10 µL reaction using the T4 ligase enzyme 

(Promega).  This reaction was incubated at 4°C overnight.  Seven µL of the reaction was 

transformed in Subcloning Efficiency™ DH5α™ Competent Cells (Invitrogen) using 

routine heat shock methods (30 seconds at 42°C) following the manufacturer’s 

recommendations and then plated on agar plates containing ampicillin at 75 µg/mL final 

concentration.  

 

Table 2.1 DNA primers used for serpin 6 amplification, transcriptional analysis, 
and plasmid construction   

Designation Sequence Orientation 

Actin FWD 5’ GGACAGCTACGTGGGCGACGAGG 3’ Sense 

Actin REV 5’ CGATTTCACGCTCAGCCGTGGTGG 3’ Antisense 

S6 FWD 5’ CTGCTATCAGCGAGAGCACGCA 3’ Sense 

S6 REV 5’ TCTGCGTGAAATTTCTGTCATTCTGGA 3’ Antisense 

Serp6-FWD 5’ GGATCCGACGATGCACTGCTGGCCAAAGCTC 3’ Sense 

Serp6-REV 5’ AAGCTTGACCTTACCATTTAGTCTTATTCTGCGTG 3’  Antisense 
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The plates were incubated at 37°C overnight.  The transformants were chosen 

using blue-white selection.  The white colonies were further screened for the S6 insert by 

a PCR reaction containing GoTaq® Green Master Mix (Promega), spiked with a portion 

of the bacteria colony and forward and reverse S6-specific primers (Table 2.1) at 0.1 µM 

final concentration in a 10 µL reaction.  The cycling conditions were an initial 

denaturation of 95°C for 2 minutes, 40 amplification cycles of 95°C for 45 seconds, 

55°C for 30 seconds, and 72°C for 1 minute, and a final extension of 72°C for 5 minutes.  

The colonies that contained the insert were used to inoculate 6 mL of Luria Bertani (LB) 

broth with ampicillin at 75 µg/mL final concentration and incubated with shaking at 

37°C overnight.  The plasmid was purified using the Wizard® Plus SV Minipreps DNA 

Purification System (Promega) and product insertion was confirmed on a 2% agarose gel 

as previously described.  The S6-pRSETA expression plasmid was transformed in E. 

coliBL21 (DE) pLysS cells using routine heat shock methods and plated on agar plates 

as described above.  The resulting colonies were further screened for the S6 insert by 

PCR as described above.   

 

Expression and affinity purification of rS6  

For rS6 expression an insert positive colony was used to inoculate 5 mL of LB 

broth containing ampicillin at a 75 µg final concentration, and incubated with shaking at 

37°C overnight.  This was used as a starter culture to innoculate a 500 mL culture.  

When the culture reached an OD600 of 0.6 (using Genesys 10uv Spectophotometer, 

Thermo Fisher Scientific), the expression of rS6 was induced by adding isopropyl β-D-
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thiogalactoside (IPTG) for a 0.2 mM final concentration. The reaction was incubated for 

6 h at 37°C. Subsequently, the culture was pelleted by centrifugation (3,750xG for 15 

minutes) in 50 mL conical tubes, resuspended in 5 mL phosphate buffered saline (PBS), 

and lysed by sonication. The insoluble fraction was pelleted and re-suspended in 5 mL of 

denaturing binding buffer (8 M urea, 100 mM Tris-HCl, 500 mM NaCl, 5 mM 

imidazole), incubated at room temperature for 30 minutes, and centrifuged for 10 

minutes at 18,000xG.  The supernatant was filtered using a 0.2 µm syringe filter 

(Thermo Fisher Scientific) and retained for protein purification.   

 The rS6 was purified by affinity chromatography using the 1M HiTrap™ 

Chelating HP column (GE Healthcare Bio-Sciences Corp, Piscataway, NJ, USA) that 

was charged with 1 mL of 100 mM NiCl2 and equilibrated with 5 mL of the denaturing 

binding buffer.  The filtered supernant was applied to the column and purified by 

washing with 5 mL of each of the following: denaturing binding buffer, 50 mM 

imidazole denaturing wash buffer (8M urea, 100 mM Tris-HCl, 500 mM NaCl, 50 mM 

imidazole) and 100 mM imidazole denaturing wash buffer (8 M urea, 100 mM Tris-HCl, 

500 mM NaCl, 100 mM imidazole).  The protein was eluted from the column by 

applying the 500 mM imidazole elution buffer (8 M urea, 100 mM Tris-HCL, 500 mM 

NaCl, 50 mM imidazole) and collected in 0.5 mL fractions.  Recombinant protein 

expression was routinely verified by electrophoresis on a sodium dodecyl 

sulfate polyacrylamide (SDS-PAGE) gel under reducing conditions with Coomassie blue 

staining as detailed below. 

 

http://en.wikipedia.org/wiki/Polyacrylamide_gel�
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SDS-PAGE electrophoresis and Coomassie blue staining  

To visualize the results of the recombinant protein expression and purification, 

non-induced soluble and insoluble fractions and induced soluble and insoluble fractions 

and purified rS6 were run on a 12.5% acrylamide gel under denaturing conditions. The 

samples were heated to 95ºC for 5 minutes with 4x sample buffer containing SDS and 

dithiothreitol (DTT). Ten µL of each sample and 7 µL of the All Blue Precision Plus 

Protein Standard™ (Bio-Rad, Hercules, CA) was electrophoresed at 135V and 12 mA 

for 2 h.  The proteins were stained using Coomassie brilliant blue staining (40% Distilled 

Water, 10% Acetic Acid, 50% Methanol, and 2.5g of Coomassie-Blue powder) to verify 

expression and purification.  

 

Production of rabbit polyclonal antibodies to rS6  

Polyclonal antibody to the rS6 protein was produced in rabbits by a fee-for-

service company (Pacific Immunology, Ramona, CA). The protein was quantified by a 

Bradford Protein Assay using Coomassie (Bradford) Protein Assay Kit (Thermo Fisher 

Scientific). Approximately 4 mg of affinity purified rS6 purified protein were 

electrophoresed on two one well 12.5% SDS-PAGE and stained through Coomassie 

brilliant blue.  The target protein band was excised using a razor blade and the gel strip 

was sent out for polyclonal rabbit immunization. Therefore, pre-immune and immunized 

rabbit sera were available for use in immunoblotting analyses.   
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Temporal and spatial expression patterns of S6 native protein during the first five days 

of tick feeding 

To determine S6 temporal and spatial protein expression profiles, total protein 

extracts of whole tick, dissected organs of unfed and fed ticks from 24 through 120 h, 

and tick saliva collected from ticks fed for 24, 48 and 96 h were subjected to western 

blotting analyses using polyclonal antibodies to rS6.  Tick protein extracts and rS6 

(serving as a positive control) were resolved on a 12.5% polyacrylamide gel under 

reducing conditions.  Proteins in the gel were then transferred onto an Immobilon™ 

PVDF membrane (Millipore, Billerica, MA, USA) using the Xcell SureLock™ Mini-

Cell XCell II™ Blot Module (Invitrogen).  The membranes were washed in 20 mL of 

PBS-tween 20 (PBST) (0.05%) and then blocked overnight at 4°C by incubation in 5% 

blocking solution (1g dried skim milk added to 20 mL of PBST).  The blocked 

membranes were washed at room temperature 6 times for 5 minutes each with 20 ml 

PBST.  Following washing, the membranes were incubated for 1 h at room temperature 

(RT) in rabbit pre-immune or immune serum to rS6 (1:660, V/V) in blocking solution.  

After appropriate washing with PBST, the membranes were subsequently incubated for 

1 h at RT with horseradish peroxidase (HRP) conjugated goat anti-rabbit IgG (Millipore) 

(1:1000, V/V) in blocking solution.  After 6 washes in PBST, membranes were 

incubated with the metal enhanced DAB chromogenic substrate (Thermo Fischer 

Scientific) according to manufacturer's recommendations. After development of protein 

bands to desirable intensity, the membranes were washed in Milli-Q water to remove the 

substrate solution.  
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Results 

S6 mRNA is ubiquitously expressed in unfed and partially fed ticks through 5 days  

  Results summarized in Figures 2.1 and 2.2 show that S6 is ubiquitously 

expressed as revealed by its amplification in all tested tick organs from unfed ticks 

through day 5 of feeding. Results summarized in Figures 2.1A and 2.1B revealed that 

when examined in whole animals, S6 mRNA displays a peak in response to tick feeding 

activity. Visual PCR band intensity (Figure 2.1A) and normalized band densities (Figure 

2.1B) revealed that S6 transcript abundance is upregulated by 2 fold between 48 and 72 

h time points and then downregulated by 3 fold between 72 and 120 h time points. In 

contrast when examined at organ level, S6 displays an expression profile of where 

expression transcript abundance in SG, MG and CA is 3.7, 3.4, and 1.7 fold respectively 

up- regulated between 24 and 96 h time points, before its starts to go down by the 120 h 

time point (Figure 2.2A and 2.2B).  
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Figure 2.1 Temporal mRNA expression profile in individual whole ticks through 5 
days post-attachment. (A) 3 ticks from unfed, 24, 48, 72, 96, and 120 h feeding time 
points were processed individually for total RNA extraction and subjected to 2-step 
semi-quantitative RT-PCR to amplify the S6 fragment and tick actin (load control).  (B)  
Densities of S6 and tick actin PCR bands were determined using a web based ImageJ 
online program. Densities were normalized as described in the material and methods 
section using the following formula: Y=V+V(H–X)/X, where Y stands for the normalized 
mRNA density, V is the observed S6 PCR band density in individual samples,  H is the 
highest tick actin PCR band density among tested samples, and X is the tick actin PCR 
band density. Means and standard error of means (SEM) of the 3 PCR band densities 
were determined using the imageJ analyzer program and the plotted in Microsoft Office 
Excel 2007. The plotted normalized densities showed a peak at 72 h.  
 

rS6 predominantly expresses as an insoluble protein when induced at 37°C 

Figure 2.3 summarizes the expression and affinity purification rS6 in E. coli 

cells. SDS-PAGE electrophoresis and Coomassie brilliant blue staining of the 

supernatant and pellet fractions of recombinant E. coli lysate revealed that the protein 

expressed appeared at the expected ~47kDa molecular weight and that rS6 was 

successfully purified. When induced with IPTG at 37°C, rS6 was found to be 

predominantly present in the insoluble fraction (Figure 2.3).   
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Figure 2.2 Spatial and temporal mRNA expression profile in dissected tissue 
through 5 days post-attachment. (A) Spatial S6 mRNA expression in dissected tissue 
from 8 individuals fed from 24 h – 120 h were subjected to 2-step semi-quantitative RT-
PCR to amplify the S6 fragment and tick actin.  (B)  Densities of S6 and  tick actin PCR 
bands were determined as described in figure 2.1 and S6 transcript abundance was 
normalized.  S6 displays an expression profile in SG, MG, and CA is 3.7, 3.4, and 1.7 
fold respectively upregulated between 24 and 96 h time points and declines by 120 h.  
 
 
 

 
Figure 2.3  Expression and affinity purification of insoluble recombinant (r) S6. 
Expression of rS6 was induced for 6 h at 37°C by adding IPTG to 1mM final 
concentration. Samples were separated into soluble (supernant) and insoluble (pellet) 
fractions. These fractions were subjected to SDS-PAGE electrophoresis with Coomassie 
blue staining using a 12.5% acrylamide gel under denaturing conditions.  rS6 expressed 
at the expected size of 47 kDa in increased amounts in the pelleted fraction in the 
induced culture.  Purification through affinity chromatography was completed under 
denaturing conditions. Lanes A-F denote marker (A), uninduced soluble (B) and pellet 
(C), induced soluble (D) and pellet (E), and affinity purified rS6 (F).  
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Native S6 protein is ubiquitously expressed and downregulated in response to tick 

feeding 

 Western blot analyses confirmed that rS6 was immunogenic in rabbits as 

revealed by specific reactivity with rS6 and native S6 proteins (Figures 2.4, 2.5, and 

2.6). To investigate if the observed transcription profiles in Figures 2.1 and 2.2 

correlated with protein production, tick proteins extracted from the same animals that 

were used for RNA extraction were subjected to western blotting analyses using 

antibodies to rS6 as summarized in Figures 2.4 and 2.5. It is interesting to note that in 

whole animals, the temporal expression profile of the native S6 protein from unfed ticks 

through the 48 h feeding time point apparently correlated with the mRNA expression 

profiles (Figure 2.1). However from the 72 to the 120 h time point, protein production is 

apparently not correlated with mRNA expression patterns. At the mRNA level, S6 

transcript abundance appears to reach its peak at the 72 h time point and then starts to 

drop (Figure 2.1B). In contrast native S6 protein abundance at the 72 h time point 

(Figure 2.4B) is weaker than the 24 h time point. When examined in dissected tick 

organs, the native S6 protein expression profile (Figure 2.5) appears not to correlate with 

mRNA expression profiles in dissected tick organs (Figure 2.2). At the mRNA level S6 

is weakly expressed in all organs of 24 h fed ticks (Figure 2.2A and 2.2B). In contrast, 

native S6 is strongly expressed in organs of 24 h fed ticks (Figure 2.5 A-D). 
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Figure 2.4     Temporal expression analysis of the native S6 protein. Protein was 
individually extracted from three ticks per indicated feeding time point and subjected to 
western blotting analysis using the antibody to rS6 (panels A and B) or pre-immune 
serum (C and D). Arrowhead denotes native S6 protein.  
 
 
 

 
Figure 2.5   Spatial and temporal expression analysis of the native S6 protein. Total 
protein extracts of salivary gland (A), midgut (B), ovary (C) and other (D) were 
subjected to western blotting analysis using antibodies to rS6 (positive control). 
Arrowhead denotes native S6 protein.  
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S6 is potentially secreted into the host during tick feeding        

 Results summarized in Figure 2.6 suggest that S6 is potentially injected into the 

host during tick feeding. Antibodies to rS6 specifically reacted with the expected ~45 

kDa S6 protein band on 48 h tick saliva immunoblot. The presence of S6 in saliva at 48 

h correlates with both the temporal mRNA transcript and protein expression patterns in 

whole ticks (Figures 2.1 and 2.4) and the spatial expression of S6 mRNA and protein in 

the salivary glands at 48 h. The presence of S6 in tick saliva is proxy that it is secreted 

into the host during tick feeding 

 
Figure 2.6   Spatial expression analysis of S6 by western blotting analysis of tick 
saliva.  Saliva was collected by applying pilocarpine on the tick cuticle then collecting 
the secreted saliva using a capillary tube.  Through western blotting analysis it was 
discovered that S6 is expressed in saliva collected at the 48 h time point, which indicates 
that this is a potentially secreted protein during the SFP of the tick feeding process.  This 
is the first tick-encoded serpin confirmed to be present in saliva.  
 

Discussion 

The expression of S6 in salivary glands and midguts of A. americanum ticks and 

the high amino acid identity to other tick sequences (Mulenga et al., 2007) elicited the 

interest to gain deeper insight into the biological association of this protein to the tick 



 25 

feeding process. Differential transcription patterns of where certain tick genes are down 

or upregulated, induced or shut down in response to tick feeding activity is a commonly 

observed phenomenon (Carvalho et al., 2010; Nene et al., 2002; Anisuzzamand et al., 

2009). Broad interpretations of these data are that genes are induced or upregulated in 

response to tick feeding activity are likely to be associated with blood meal feeding 

regulation. On the other hand, biological functions of genes that are shut down or 

downregulated in response to feeding are thought to be either restricted to a particular 

tick feeding stage or not associated with tick feeding regulation (Almazán et al., 2003; 

de la Fuente et al., 2006; Hatta et al., 2010; Smith et al., 2009). Although the observed 

transcription pattern of S6 appears not to fit any previously described patterns, the strong 

expression of the S6 native protein during the first 24-48 h feeding time points of 

feeding strongly indicates that this protein regulates molecular events at the start of tick 

feeding, attachment onto host skin and creation of the feeding lesion (Sonenshine, 1993).  

Although ticks can cause damage to their hosts, they are mostly known for their 

role as vectors of tick-borne disease agents. Given that transmission of most tick-borne 

disease agents occurs after 48 h post attachment, a desirable tick vaccine will be one that 

blocks early stage tick feeding events. From this perspective, it was exciting to note that 

the S6 protein was strongly expressed during the 24-48 h time point when tick attaches 

onto host skin and creates its feeding lesion (Sonenshine, 1993) make this protein a 

desirable target antigen. In immunizing animals with recombinant proteins, a major 

drawback may be that the conferred antibody response may not be reactive with native 

proteins. From this perspective, it is interesting to note that rS6 was immunogenic and 
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specifically reacted with native the S6 protein. The significance of this is that rS6 can be 

used as an immunizing antigen. The expression of S6 in multiple tick organs as revealed 

by spatial RT-PCR and western blotting analyses is consistent with previous studies that 

show that both vertebrate and invertebrate serpins tend to be ubiquitously expressed 

(Gettins, 2002; Silverman et al., 2004; Huntington, 2006; Law et al., 2006; Irving et al., 

2002, 2006) . The ubiquitous expression pattern of S6 may underscore the significance 

of this protein in regulating tick physiology and thus make S6 an attractive target protein 

which if disrupted will compromise tick feeding success. 

In hypothesizing that tick encoded serpins play key role(s) in regulating evasion 

of host defense reactions by ticks (Prevot et al., 2007; Mulenga et al., 2001a, 2003, 2008, 

2009), the underlying assumption is that serpins are injected in the host during tick 

feeding. In previous studies this assumption was supported by expression of serpin 

mRNA in the tick salivary glands (Prevot et al., 2007, 2006; Mulenga et al., 2003, 2008, 

2009). In this study, specific reactivity of antibodies to rS6 on immunoblots of 

experimentally harvested tick saliva strongly supports that tick injection of S6 into the 

host occurs during tick feeding. This data for the first time provides direct evidence that 

serpins are part of tick proteins that injected into the tick feeding site to regulate tick 

feeding.  

Anti-tick protein antigens from saliva, such as S6 in this study have traditionally 

been classified as “exposed” in that they interact with host immune response factors 

during tick feeding. Conversely, target antigens based on non-tick saliva protein antigens 

are classified as “concealed” (Willadsen, 2004). In designing anti-tick vaccines against 
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animals, an important consideration is that natural tick infestations must provoke an 

anamnestic (production of antibodies caused by the second experience with the same 

antigen) antibody response in immunized animals to avoid the need for repeat 

immunizations. The expectation is that in animals immunized with tick saliva protein 

vaccine antigens, tick saliva proteins injected into the host during subsequent tick 

infestations will act as booster injections and the host immune memory will trigger a 

strong tick immunity response.  Thus the apparent secretion of S6 into the host during A. 

americanum feeding makes this molecule an attractive putative target antigen warranting 

further study. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 28 

CHAPTER III 
 

BIOCHEMICAL CHARACTERIZATION TO DETERMINE IF rS6 IS AN 

INHIBITORY SERPIN 

 

Introduction 

Serpins make up the largest superfamily of protease inhibitors that have been 

identified in species of mammals, arthropods, plants, and viruses (Irving et al., 2000; 

Gettins, 2002; Gettins et al., 1996; Huntington, 2006).  In eukaryotes where data on the 

biology of serpins has accumulated, this protein family is known to regulate important 

proteolytic pathways, blood coagulation, food digestion, fertilization, inflammation, and 

complement activity (Silverman et al., 2001; Gettins et al., 1996). The physiological 

balance between serpins and their protease substrates is critical in the maintenance of 

homeostasis, demonstrated by the many serious human diseases that result from 

imbalances, deficiencies, and mutations in serine proteases or serpins (Gettins et 

al.,1996; Gettins 2002; Huntington, 2006 Potempa et al., 1994; Silverman et al., 2001). 

This is a strong indication of the vital physiological role(s) these proteins play in a 

variety of organisms, including ticks.  

 Serpins were originally characterized as inhibitors of serine proteases, hence the 

acronym “serpin” (Gettins, 2002).  However, other serpins with inhibitory functions 

against cysteine proteases and those with no inhibitory functions have been identified 

and characterized. Serpins with inhibitory functions against cysteine proteases such as 

the inhibitor of caspases regulate apoptosis, a body defense mechanisms to eliminate 
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infected cells (Liphaus and Kiss, 2010) and play a vital role in preventing joint 

degradation by inhibiting cysteine proteases from breaking down collagen in bone 

(Cawston and Young, 2010). Some non-inhibitory serpins function to regulate 

homeostasis by serving as substrates for enzymes. For example, angiotensinogen acting 

as a substrate for renin, and the end product being major moderator of salt and water 

homeostasis and an effective vasoconstrictor (Morgan et al., 1996).  As another example, 

serpins secreted from the endometrium of pregnant ewes inhibit mitogen and peripheral 

blood lymphocytes to stop abortion caused by natural killer cell activity (Skopets et al., 

1995). On this basis, the superfamily name of “serine protease inhibitor or serpin” has 

become a misnomer; not all members function to inhibit serine proteases (Silverman et 

al., 2001) but still have very important biological functions.  Although similar in activity, 

cysteine inhibitors differ from their serine inhibiting counterparts in that the protease 

targets a cysteine residue (Barrett and Rawlings, 2001).  

Serpins that function as serine protease inhibitors are dramatically different from 

other classes of serine protease inhibitors by their size of at least 350-450 amino acids, 

and by undergoing a major conformational change to form a stable, often irreversible 

covalent complex with their target (Egelund et al., 1998; Gettins et al., 1996). The 

inhibitory reaction by serpins starts with the target protease recognizing the amino acid 

residues in the serpin’s reactive center loop (RCL) as a binding site so that the serpine 

acts as a pseudo substrate.  When the protease attempts to cleave the RCL at the active 

site, a covalent bond is formed between the serpin and protease. This causes the serpin’s 

conformation to go from stressed to relaxed, locking the two proteins together 
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indefinitely in an irreversible serine protease-serpin covalently bonded complex, 

effectively inhibiting the activity of both proteins (Whisstock et al.1998; Gettins et al., 

1996; Gettins, 2002; Huntington 2006; Irving et al., 2006; Silverman et al., 2001; 

Whisstock et al., 1998).  The serpin and target protease complex, which is removed from 

circulation within hours by membrane receptors (Gettins, 2002) has been shown to be 

resistant to SDS boiling. Validation of the serpin’s ability to form a complex with the 

protease is routinely done by the serpin and target protease complex formation assay 

(Iwanaga et al., 2003; Dobo et al., 2006; Zhao et al., 2005). In this assay candidate 

recombinant or purified native serpins are co-incubated with commercially available 

proteases. The formed serpin and target protease complex is then visualized by SDS-

PAGE with Coomassie (Dobo et al., 2006; Zhao et al., 2005) or western blotting analysis 

(Zhao et al., 2005).  In this study I adopted similar approaches to determine whether or 

not E. coli expressed rS6 had inhibitory functions against archetypes of the serine 

protease protein family, chymotrypsin and trypsin.   

 

Materials and Methods 

Expression and affinity purification of soluble rS6  

When induced at 37°C, rS6 expresses as inclusion bodies as described in Chapter 

II.  Given the limitations of incorrect folding associated with proteins expressed as 

inclusion bodies, rS6 was expressed at 18°C to encourage expression of the recombinant 

protein in a soluble fraction.  Protein expression and purification was conducted as 

described in Chapter II. A positive colony was used to inoculate 5 mL of LB broth 
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containing 75 µg final concentration of ampicillin and incubated with shaking at 18°C 

for 48 h.  This colony was used as a starter culture to inoculate a 500 mL culture. When 

the culture reached an OD600 of 0.6 by spectrophotometric measurement, the expression 

of soluble rS6 was induced by adding IPTG to 0.2 mM final concentration and 

incubating it for 12 h at 18°C.  The induced bacterial culture was pelleted by 

centrifugation, resuspended in 5 mL of 1X PBS, and lysed by sonication.  The lysate was 

separated by centrifugation and 5 mL of 2X native binding buffer (100 mM Tris-HCl, 

500 mM NaCl, 5 mM imidazole) was added to the soluble fraction.  This mixture was 

incubated at room temperature for 30 minutes and centrifuged for 10 minutes at 

18,000xG.  The supernatant was filtered using a 0.2 µm syringe filter and retained for 

protein purification.   

The rS6 was purified by affinity chromatography as described in Chapter II with 

minor modifications. The following buffers were used for purification: native binding 

buffer, 50 mM imidazole denaturing wash buffer (100 mM Tris-HCl, 500 mM NaCl, 50 

mM imidazole), 100 mM imidazole native wash buffer (100 mM Tris-HCl, 500 mM 

NaCl, 100 mM imidazole) and 500 mM imidazole elution buffer (100 mM Tris-HCl, 500 

mM NaCl, 500 mM imidazole). The eluted protein was collected in 0.5 mL fractions and 

recombinant protein expression was routinely verified by SDS-PAGE electrophoresis 

under reducing conditions and stained with Coomassie blue as described in Chapter II. 

Protein concentration was quantified by a Bradford protein assay (Coomassie Bradford 

Protein Assay Kit). The protein was then dialyzed against trypsin and chymotrypsin 
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digestion buffer, 100 mM Tris HCl containing 10 mM CaCl2 (pH 7.8) to prepare for the 

complex formation assay below. 

rS6 and target protease complex formation assay 

 Commercially available chymotrypsin and trypsin, the two archetypes of the 

serine protease family, were used in the complex formation assay. α-chymotrypsin from 

bovine pancreas Type II, lyophilized powder (Sigma-Aldrich, St. Louis, MO, USA) was 

reconstituted in 1 mM HCl containing 2 mM CaCl2 (pH 7.8) to form a 2 mg/mL 

concentration.   The chymotrypsin complex formation assay was composed in separate 

0.5 mL PCR tubes, each consisting of 11 µg of rS6, 10 µg of α-chymotrypsin, and 5 µL 

of the digestion buffer recommended by the protease manufacturer (100 mM Tris-HCl 

containing 10 mM CaCl2  [pH 7.8]). The reaction mixtures were incubated at the optimal 

temperature (37°C) for 0, 5, 10, 15, and 20 minutes.  This complex formation assay was 

repeated at suboptimal (25°C, 20°C, 15°C, and 4°C) temperatures and visualized by 

SDS-PAGE with Coomassie blue staining as described in Chapter II.  

 The complex formation assay was repeated using trypsin.  TPCK-treated trypsin 

(to remove chymotrypsin) from bovine pancreas (Sigma-Aldrich) was reconstituted in 

100mM Tris-HCl with a final 1 mM CaCl2 concentration (pH 8.5) to form a 2 mg/mL 

concentration.  As before, assays, were composed in separate 0.5 mL PCR tubes, each 

consisting of 11 µg rS6, 10 µg of  trypsin, and 5 µL of the digestion buffer 

recommended by the protease manufacturer (100 mM Tris-HCl with a final 1 mM CaCl2 

concentration [pH 8.5]). The assays were incubated at the optimal temperature (37°C) 
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and suboptimal (25°C, 20°C, 15°C, and 4°C) temperatures for 0, 5, 10, 15, and 20 

minutes.   

Visualization of rS6 and target protease complex 

 After incubation, the assays were heated at 95°C for 5 minutes in denaturing 4X 

sample buffer containing SDS and DTT. Each assay was electrophoresed on a 12.5% 

denaturing SDS-PAGE gel as described in Chapter II along with 10 µg of the protease 

and 15 µg of rS6 as positive controls.  The proteins were stained using Coomassie 

brilliant blue to visualize any complex formation.  The stained SDS-Page gels were 

examined for any molecular weight shift, indicating the formation of a rS6-target  

protease stable complex.   

 

Results 

rS6 expresses in both the soluble and insoluble fractions when expressed at 18°C 

Results summarized in Figure 3.1 show that at the suboptimal temperature, rS6 

expresses both in the soluble fraction of the lysate and in an inclusion body. The 

supernatant and pellet fractions of recombinant E. coli lysate were analyzed by SDS-

PAGE electrophoresis and Coomassie brilliant blue staining, revealing that the protein 

was detected at the expected ~47 kDa size in both soluble and pellet fractions. The 

soluble fraction was successfully purified and used in complex formation assays.  
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E. coli expressed rS6 does not form an irreversible complex when incubated with 

chymotrypsin or trypsin 

Results summarized in Figure 3.2 show that when incubated with chymotrypsin 

or trypsin at 37°C, 25°C, 20°C, 15°C, and 4°C for 0, 5, 10, 15, and 20 min there was no 

rS6 and target protease complex formation.  Except at the 0 min time point, rS6 was 

degraded and cleared in each of the assays (Figure 3.2). 

 

 

 
Figure 3.1  Expression and affinity purification of soluble recombinant (r) S6. 
Expression of rS6 was induced for 12 h at 18°C by adding IPTG to 1mM final 
concentration. E. coli cells disrupted by sonication were centrifuged and separated into 
soluble (supernatant) and insoluble (pellet) fractions. These fractions were subjected to 
SDS-PAGE electrophoresis with Coomassie blue staining using a 12.5% acrylamide gel 
under denaturing conditions.  rS6 expressed at the expected size of 47kDa in the 
supernatant fraction in the induced culture.  Purification through affinity 
chromatography was completed under denaturing conditions. Lanes A-F denotes marker 
(A), uninduced soluble (B) and pellet (C), induced soluble (D) and pellet (E), and 
affinity purified rS6 (F).  
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Figure 3.2   rS6 complex formation assay. Affinity purified soluble rS6 was co-
incubated with chymotrypsin (A) or trypsin  (B) at the indicated temperatures for 0, 5, 
10, 15, and 20 minutes. Each sample along with rS6 and the serine protease (controls) 
were run on a 12.5% SDS-Page denaturing gel (Mr[kDa] = molecular marker, 
rS6=recombinant Serpin 6, C= chymotrypsin, T= trypsin, 0= 0 minutes, 5= 5 minutes, 
10 = 10 minutes, 15= 15 minutes, and 20= 20 minutes.) There was no irreversible 
complex formation in any of the assays.  The rS6 and portions of the protease were 
degraded and cleared by the protease present in each of the assays at all of the incubation 
times after 0 minutes.  
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Discussion 

 Previous sequence and structure-based alignment analyses that predicted that S6 

was a putatively inhibitory serpin (Mulenga et al., 2007) elicited interest in the 

validatation of complex formation functions of this protein. My data in Chapter II of this 

thesis strongly supports that S6 is secreted into the host during tick feeding and suggests 

that it may interact with vertebrate derived proteases.  Although serpins with and without 

inhibitor functions against cysteine proteases have been identified, the majority of 

serpins are inhibitors of chymotrypsin and trypsin-like serine proteases (Gettins, 2000). 

On this basis, I chose to characterize inhibitor functions of rS6 by screening against α-

chymotrypsin and trypsin. Although the failure of rS6 to form complexes with either 

chymotrypsin or trypsin may indicate a lack of inhibitory functions for S6, I am 

interpreting these findings with caution. The inability for rS6 to function as an inhibitor 

of chymotrypsin and trypsin might have more to do with the expression of rS6 in E. coli 

rather than a true evaluation of its biochemical function.  One of most common 

posttranslational modifications affecting the biological activity of serpins is 

glycosylation, specifically N and O-type glycosylation (Gettins, 2002), the former being 

added to the nitrogen atom of Asn side chains in the endoplasmic reticulum (ER) and the 

latter being added by the Golgi apparatus to oxygen atoms of hydroxyls of Asn and Thr 

residues (Gettins, 2002). This process does not occur in a similar fashion in bacterial 

organisms, making recombinant expression of properly glycosylated proteins difficult.  

The cellular structure of eukaryotic and prokaryotic cells are very different, and 

prokaryotes lack internal membrane-bound organelles such as the ER and the Golgi 
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apparatus which are responsible for glycosylation in many higher organisms. 

Glycosylation in prokaryotes has just recently been discovered (Mescher et al., 1974, 

1976; Upreti et al., 2003).  The identification of glycosylation mechanism outside of the 

cellular membrane (Brooks, 2004; Upreti et al., 2003) revealed how different this 

process is in bacteria when compared to their eukaryotic counterparts.  

Additionally, comparisons between the eukaryotic cell lines (yeast, mammalian, 

and insect cells) used for recombinant protein expression reveal that they all have 

different glycosylation mechanisms (Brooks, 2004) causing recombinant proteins to not 

fold or function as their native counterparts. Considering this, a more efficient method 

for assessing the biological function of S6 would be to conduct additional inhibitory 

assays using native tick S6 protein procured by immunoprecipitation using the 

antibodies to rS6 to extract the protein from whole tick tissue.   

The apparent failure of rS6 to inhibit chymotrypsin or trypsin may also be 

explained by the possibility that S6 may have a cysteine rather than a serine protease 

inhibitor. It is also possible that S6 has a non-inhibitory function at the tick host 

interface. In future experiments I suggest including cysteine protease complexing assays.  

Despite these inconclusive results as to the inhibition ability of rS6, this 

experiment cannot be considered a full characterization of the functionality of S6. None 

of tick-encoded serpins characterized thus far have been experimentally demonstrated to 

be secreted at the tick-host interface. As stated in Chapter II, S6 has been found to be 

present in tick saliva, indicating that it is the only described serpin that is potentially 

secreted into the host.  It can therefore be surmised that the direct role of S6 in regulating 
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tick feeding remains to be ascertained and additional experiments need to be conducted 

to determine what is the biological function of S6. 
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CHAPTER IV 

RNA INTERFERENCE TO MEASURE THE EFFECTS OF POST-

TRANSCRIPTIONAL GENE SILENCING OF S6 AND S6/S17 ON TICK FEEDING 

SUCCESS 

 

Introduction 

The limiting step towards development of animal vaccines against tick feeding is 

the discovery and target validation of effective target antigens that when disrupted will 

compromise tick feeding success. In order to assess the significance of S6 expression in 

A. americanum feeding, post-transcriptional gene silencing using RNA interference 

(RNAi) mediated gene knockdown was conducted.  Fire et al., (1998) were the first to 

describe in vivo RNAi, noting that injection of dsRNA into the nematode Caenorhabditis 

elegans caused gene silencing throughout the organism and that was also inherited by its 

progeny. The RNAi pathway is a naturally occurring phenomenon in which the 

introduction of dsRNA induces the degradation of mRNA, which prevents further 

translation from taking place.  The mechanism of RNAi is initiated by the injection of 

dsRNA that correlates with the target gene. The injected dsRNA is digested into small 

interfering RNAs (siRNAs) by the Dicer enzyme. The resulting siRNAs migrate to their 

complementary mRNA molecules while guiding the RNA-induced silencing complexes 

(RISCs) that slices and destroys the target mRNA, thus inhibiting any further translation. 

The confidence in the use of RNAi as a method for studying gene function in ticks has 

recently been strengthened by the discovery of proteins and several conserved domains 
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related to the RNAi pathway identified in R. microplus by the screening for homologous 

genes using comparisons to C. elegans and Drosophila melanogaster genomes (Kurreck, 

2009). 

RNAi methodology has been successfully used to illuminate the biological 

significance of numerous genes that play an important role in tick feeding success in 

Amblyomma americanum (Mulenga and Khumthong, 2010; de la Fuente et al., 2010), 

Ixodes scapularis (Kocan et al., 2007; Aljamali et al., 2003), I. ricinus (Hajdusek et al., 

2010), Haemaphysalis longicornis (Alim et al., 2009; Liao et al., 2008), Dermacentor 

variabilis (Kocan et al. 2007), and  R. microplus  (Kocan et al., 2007) to assess the 

effects of gene silencing on tick feeding, reproduction, and progeny viability. 

In this study, the author utilized the RNAi silencing method to examine the 

biological significance of S6 in A. americanum tick feeding success and reproduction. 

Ability to attach onto host skin to start feeding, mortality, engorgement mass (EM, an 

index of amount of blood taken in by the tick), and fecundity (ability to covert blood 

meal to eggs) were assessed to measure the effects of S6 silencing on tick feeding 

success and reproduction.   

 

Materials and Methods 

Ticks 

Ticks used in these experiments were obtained from an Amblyomma americanum 

L. colony from the laboratory of Dr. Pete Teel from the Entomology Department of 

http://en.wikipedia.org/wiki/Drosophila_melanogaster�
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Texas A&M University, College Station, Texas. This colony is maintained by feeding on 

chickens at the larval and nymphal stage and on cattle as adults. 

 

Generation of dsRNA 

When compared to the published serpin sequences in A. americanum (Mulenga 

et al., 2007) S6 was shown to be very similar to S17. Thus for double stranded RNA 

(dsRNA) synthesis, I targeted two regions, the 3’ region unique to S6 to achieve the 

silencing of the 5’ region conserved between S6 and S17 (S6/S17) to silence both S6 and 

S17 and 3’ region to silence S6 alone. Templates for dsRNA synthesis of S6/17, S6, and 

green fluorescent protein (GFP, negative control) were amplified in 30 µL of reaction of 

the GoTaq® Green Master Mix (Promega) containing 0.1 µM final concentrations of 

forward and reverse primers with added T7 promoter sequences (Table 4.1).  The 

cycling conditions were an initial denaturation of 95°C for 2 minutes, followed by 40 

amplification cycles of 95°C for 45 seconds, 55°C for 30 seconds, and 72°C for 1 

minute, and a final extension of 72°C for 5 minutes.  The size of each amplicon was 

verified by electrophoresis along with a 1Kb DNA ladder (Promega) at 100 V on a 2% 

agarose gel containing 1 µg ethidium bromide in Tris-acetate-EDTA (TAE) buffer and 

purified using StrataPrep DNA Gel Extraction Kit as previously described in Chapter II. 

The purified DNA template was quantified using a nanodrop ND-1000 

Spectrophotometer (NanoDrop Technologies). 
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Table 4.1 Primers used from generation of dsRNA and validation of S6/S17 duel 
silencing and S6 silencing.  T7 promoter sequence in bold.  
Designation Sequence Orientation 

T7 S6-Specific FWD 5’ TAATACGACTCACTATAGGGCTGCTATCAGC 
GAGAGCACGCA 3’ 

Sense 

T7 S6-Specific REV 5’TAATACGACTCACTATAGGGTCTGCGTGAAATTTCTG 
TCATTCTGGA 3’ 

Antisense 

T7 Conserved FWD 5’ TAATACGACTCACTATAGGGCCACTTCGCCG 
TGAAGCTCCTC 3’ 

Sense 

T7 Conserved REV 5’ TAATACGACTCACTATAGGGGCACCTGCGTG 
GAGTGCGTCTAG 3’ 

Antisense 

T7 GFP FWD 5’TACGACTCACTATAGGGTCACGAACTCCAGC 
AGGACCATGTGATC 3’ 

Sense 

T7 GFP REV 5’TAATACGACTCACTATAGGGACGTAAACGGCC 
ACAAGTTCAGCGTGTC 3’ 

Antisense 

S6/S17FWD 5’ CCACTTCGCCGTGAAGCTCCTC 3’  Sense 
S6/S17 REV 5’ GCACCTGCGTGGAGTGCGTCTAG 3’ Antisense 
 

dsRNA was synthesized in vitro using the MEGAscript RNAi Kit according to 

instructions by the manufacturer (Ambion, Austin, TX, USA). Five transcription 

reactions were assembled at room temperature for both of the targets and the GFP using 

2 µg of linear DNA template, 10X T7 reaction buffer, and 2 µL each of the ATP, CTP, 

GTP, UTP, and T7 enzyme mix in a 30 µL reaction. The transcription reactions were 

incubated overnight at 37°C.  For the annealing step each of the reactions was incubated 

at 75°C in a water bath for 5 minutes then allowed to cool to room temperature.  1/400th 

of the dsRNA was verified by electrophoresis along with a 1Kb DNA ladder (Promega) 

at 100 V on a 2% agarose gel containing 1 µg ethidium bromide in Tris-acetate-EDTA 

(TAE) buffer. A nuclease digestion was used to remove any remaining DNA or ssRNA 

in each of the 5 reactions for the S6, S6/S17, and GFP. The 50 µL digestion reactions 

were assembled on ice and included 20 µL dsRNA, 5 µL 10X digestion buffer, and 2 µL 

of both the DNase I and RNase enzymes and incubated on ice for an hour.   All of the 
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reactions were purified by adding 50 µL 10X binding buffer, 250 µL of 100% ethanol, 

and 150 µL nuclease-free water to each of the reactions and applying the binding 

mixture to the provided filter cartridge and centrifuging at 18,000xG for 2 minutes.  The 

filters were washed using centrifugation as described above.  The 50 µL of the elution 

solution was applied to the filter and incubated for 2 minutes at 65°C.  The eluted 

dsRNA was collected by centrifugation for 2 minutes at 18,000xG.  The elution step was 

then repeated.   1/400th of the purified dsRNA was verified on a 2% agarose gel 

containing 1 µg ethidium bromide in TAE buffer.  The eluates for each target were 

combined and quantified using a nanodrop ND-1000 Spectrophotometer.  The reactions 

were concentrated to a 2 µg/µL final concentration through using a Savant DNA 120 

SpeedVac® Concentrator. 

 

Tick injections with dsRNA and feeding 

For each of the controls and treatments, 50 unfed female ticks were injected with 

1 µL (2 µg/µL) of S6/17,  S6 or  GFP (control) dsRNA, or TE diluent buffer using 33  

gauge half-inch needles attached to a 10 µL gastight syringe (Hamilton, Reno, NV, 

USA). The ticks were kept at 22°C overnight to observe any mortality resulting from the 

injection.  The treatment groups and an uninjected (naive) group were placed in separate 

cells pre-infested with males that were adhered on the back of the calf using livestock 

identification cement (Nasco, Fort Atkinson, WI). Unattached females were removed 

from the cells 48 h later.  The attached ticks were allowed to feed until detachment. 
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Detached females were collected every 24 h, weighed, placed in separate containers at 

22°C, and allowed to oviposit. 

 

Corroboration of RNAi-mediated silencing  

 To determine if tick injections with dsRNA triggered disruption of the target 

gene, three ticks per treatment were collected 48 h post-attachment.  These ticks were 

individually processed for total RNA extraction using the TRIzol reagent. Extracted total 

RNA was treated with RQ1 DNAse to eliminate genomic DNA contamination according 

to instructions by the manufacturer (Promega). DNAse treated RNA was then subjected 

to two-step semi-quantitative RT-PCR as described in Chapter II, using PCR primers 

targeting the S6 specific domain, S6-Specific FWD and REV, (Table 2.1) or the domain 

conserved between S6 and 17, S6/S17 FWD and REV (Table 4.1).   Tick actin forward 

and reverse primers (Table 2.1) were used for sample load control. Ten µL of the PCR 

reactions was analyzed by electrophoresis along with a 1 Kb DNA ladder at 50 V on a 

2% agarose gel containing 1 µg ethidium bromide in TAE buffer to qualitatively 

corroborate silencing. 

 

Assessment of effect of RNAi on tick feeding and fecundity 

To assess the effects of S6 mRNA silencing on tick feeding success and 

fecundity, tick-feeding parameters were recorded, including attachment rates (the 

number of attached was determined by subtracting the number of unattached ticks from 

the total number of ticks that were placed on the animal), mortality (number of ticks 
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dead after 48 h subtracted from number of ticks placed on animal), engorgement mass 

(EM) (mass of engorged tick after spontaneously detachment), and the egg mass 

conversion ratio (EMCR) (the mass of the egg clutch divided by EM). To assess the 

effect of silencing on fecundity, ticks were incubated at 25°C for 4 weeks to lay eggs. 

The EMCR was done to determine the ability of the tick to convert its blood meal to 

eggs.  To analyze the statistical significance of the differences observed between the 

silenced and control groups a one-way ANOVA and post-ANOVA pair-wise 

comparisons using Tukey’s HSD test was conducted with the help of the statistics 

department.  The web based Grubbs test (http://www.graphpad.com) was used to 

identify outlier samples which were subsequently removed from the analysis. 

 

Results 

Validation of RNAi-mediated silencing by RT-PCR 

The MegaScript in vitro RNA synthesis kit was used to successfully synthesize 

and purify S6/17(fragment targeting S6 and S17), S6 and GFP double stranded RNA 

(dsRNA). Semi-quantitative two-step RT-PCR expression analysis was used to confirm 

if microinjections of the RNAi-mediated silencing of S6 mRNA as summarized in 

Figure 4.1.  In both of the dsRNA-injected samples with the S6 and the S6/S17, S6 

transcript failed to be amplified in each of the ticks tested whereas actin was amplified, 

thus indicating that that silencing of S6 mRNA was achieved in the treatment groups 

(Figure 4.1).  The amplification of S6 and the S6/S17 regions in the three control groups 
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indicate that neither injection trauma nor the diluent buffer affected the S6 mRNA levels 

of the target gene. 

 
 

 
Figure 4.1 Validation of silencing by RT-PCR on individual ticks post-attachment.  
3 ticks from each group were processed individually for total RNA extraction and 
subjected to 2-step semi-quantitative RT-PCR to amplify the S6. S6/S17, and tick actin 
fragment (load control).  Results indicate that S6 and S6/S17 was successfully silenced 
in both of the treatment groups. 
 
 

The effect of S6 and S17 dual silencing or S6 alone on A. americanum tick feeding 

efficiency 

Based on mortality and attachment rates summarized in Table 4.2, the dual 

silencing of S6 and S17 and S6 alone was not lethal and did not affect the ability of ticks 

to attach onto host skin and start feeding as confirmed by Chi-square analysis (results 

not shown). To assess the effect of silencing on blood meal acquisition EM of 

spontaneously detached ticks were determined: Naive range 306.8-998.2 mg, (N=46); 

diluent range: 105.4 – 828.9 mg, (N=32); GFP range: 200.7-843.3 mg, (N=38); S6 

range: 277.0-935.2 mg, (N=39); S6/S17 range: 97.0-871.9 mg (N=38). When subjected 

to Grubbs analysis, no outlier samples were identified. A one-way ANOVA revealed 

that there were significant differences (F 4, 185 = 8.88, P < 0.0001) among mean EM 

summarized in Figure 4.2.  The post hoc pair-wise comparison using the Tukey’s HSD 
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Table 4.2 Overview of feeding and fecundity parameters of ticks subjected to RNAi for S6 and S6/S17. 
Treatment Groups  Number Infested  

on host  
Number attached 
48h post-infestation  

EM (mg)  Mortality (%)  Number of Ovipositing Ticks  EMCR (mg)  

Naive Control  50 45 655.07 0 45 370.63 
Diluent Control  50 46 466.69 0 46 318.08 
GFP Control  50 50 548.20 0 49 280.37 

S6  50 48 609.25 0 44 289.01 
S6/S17  50 50 491.74 0 45 266.54 
 
 
 

 
Figure 4.2   Analysis of the effect of silencing S6 and S6/S17 transcript on blood meal acquisition and fecundity. 50 unfed 
female ticks were injected with dsRNA S6, S6/S17, GFP, and diluent buffer.   Each group of ticks were fed on calf and 
weighed after detachment.  (A) Spontaneously detached ticks were photographed to document the physical phenotype. (B) 
Spontaneously detached ticks were individually weighed to determine the EM. The EM means for each group were subjected 
to one-way ANOVA and Tukey’s HSD pairwise comparison to determine the statistical significance between treatments. Mean 
EM of treated and controls were not statistically different. 
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test revealed that that dual S6 and S17 silencing caused ticks to obtain significantly 

smaller blood meals (mean EM= 491.742±26.449) when compared to non-injected 

control ticks (mean EM = 655.079±36.301, P<0.0001). However, the mean EM of 

S6/S17 silenced ticks was not statistically different from GFP-dsRNA (548.197±37.405, 

P=0.558) or diluent (466.691±39.119, P=0.968) treatments. Similarly, silencing of S6 

alone (609.25±26.11) showed did not show a significant reduction in A. americanum tick 

feeding efficiency when compared to non-injected (655.079±36.053, P=0.7092), GFP-

dsRNA (548.197±37.164, P=0.472) or diluent (466.691±38.889, P=0.0029) control 

groups.  It is important to note that mean EM of GFP-dsRNA and diluent injected 

control ticks were also significantly lower than the non-injected naive control (P=0.030 

and <0.0001, respectively).  

 

Dual silencing of S6 and S17 or S6 alone did not affect tick fecundity  

To assess the effect of RNAi silencing on the fecundity of A. americanum, 

engorged ticks were allowed to oviposit for 28 days and EMCR was determined. 

Through the Grubb’s test analysis it was determined that there was one outlier in each of  

the egg mass conversion ratio data sets. One way ANOVA revealed that there were 

significant differences (F=4,165=4.203, P=0.003) among mean EMCR average 

summarized in Figure 4.3.  Consistent with EM data, Tukey’s HSD post-hoc pair-wise 

analysis of mean EMCR revealed that dual silencing of S6/S17 (0.267±0.198) 

significantly reduced tick fecundity when compared to non-injected controls 

(0.371±0.028, P=0.003), but not  when compared to GFP-dsRNA (0.280±0.029, 
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P=0.990) or diluent (0.318±0.030, P=0.430) injected controls. Likewise, the EMCR for 

S6 silenced ticks (0.290±0.020) was statistically significant compared to the naive 

control (0.371±0.030, P=0.032), but not when compared to GFP-dsRNA (0.280±0.029, 

P=0.998) and diluent (0.318±0.030, P=0.868) injected controls.  

 

 

 
Figure 4.3 Effects of RNAi silencing of S6 and S6/S17 on fecundity measured as egg 
mas conversion ratio. After detached females were collected and weighed, they were 
placed in separate containers at 22°C to encourage oviposition.  For each detached 
female, the mass of the egg clutch was divided by the EM to determine the egg mass 
conversion ratio. The egg mass conversion (EMCR) ratio was analyzed by a one-way 
ANOVA and the Tukey’s HSD test to determine the significance in mean EMCR. Mean 
EMCR of treated and controls were not statistically different. 
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Discussion 

Based on studies described in Chapter II of this thesis it was determined that 

biological functions of S6 may be associated with regulation of the preparatory tick 

feeding phase.   The ubiquitous expression patterns of S6 at both mRNA and protein 

levels were suggestive of the importance of this molecule to tick feeding success.  Thus 

to validate these observations, the significance of S6 biological functions in regulating A. 

americanum feeding and reproduction was determined using RNAi silencing 

methodology as previously described (Mulenga and Khumthong, 2010). Although 

complete silencing was achieved as revealed by lack of amplification of the S6 transcript 

in all dsRNA injected ticks, silencing of S6 alone or the dual silencing of S6 and S17 did 

not prevent A. americanum ticks from attaching onto host skin and start feeding. With 

exception of tick-borne viruses which may be transmitted within the first few minutes 

after the tick attaching onto host skin (Nutall and Labuda, 2008), data in several studies 

indicate that animal and human tick-borne pathogens such as Theileria parva (Bishop et 

al., 2004), Babesia bigemina (Bock et al., 2004), Rickettsia rickettsii (Burgdorfer, 1975), 

Borrelia burgdoferi (Burgdorfer, 1982), and B. microti (Bock et al., 2004) are 

transmitted after ticks have been feeding for 2-3 days. Considering this, it is a logical 

argument that an effective target anti-tick antigen is one that prevents ticks from 

attachment and the initiation of feeding and implicitly would block tick-borne disease 

transmission.  

Given my findings that ticks were able to attach and initiate feeding despite the 

complete disruption of the S6 transcript, one may argue against S6 as being a suitable 

Table 4.2  Overview of feeding and fecundity parameters.   
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target anti-tick vaccine antigen.  On the basis of the inherent limitations of in vivo RNAi 

silencing as used in my study, the failure to stop ticks from initiating feeding in S6 

silencing is being interpreted with caution. Since data presented in Chapter II of this 

thesis shows S6 protein is expressed in unfed ticks, there is a possibility that, despite the 

complete disruption of the S6 mRNA, its protein was still available and functional. The 

consequence of this is that the S6 protein that existed prior to RNAi silencing would be 

available to mediate tick attachment onto host skin and initiation of blood meal feeding.  

In future studies, I suggest using the immunization and challenge infestation 

approach to evaluate the vaccine capacity of S6. My data in Chapter II shows that rS6 is 

immunogenic in rabbits and thus it can be used as an immunizing antigen. The 

immunization and challenge experiments would be to test the effect of antibodies to rS6 

on tick feeding, testing if they will bind to and interfere with biological functions of 

native S6. By feeding ticks on immunized animals, the effect of the S6 protein present in 

unfed ticks will be eliminated, as from initiation of feeding the antibodies will be 

available to bind native the S6 protein. The idea of immunizing animals against S6 as a 

method of preventing tick feeding is further strengthened by the protein’s apparent 

secretion into the host during tick feeding as demonstrated in Chapter II of this thesis. 

Although host antibodies can cross the tick midgut barrier (Brossard and Rais, 1984), 

antibody concentrations of ~20-50% (Brossard and Rais, 1984; Ben-Yakir et al., 1987) 

or 1000-3000 fold (Ben-Yakir, 1989) lower than titers in the host immune serum can 

actually interact with a non-tick saliva target protein. The implication of this is that if 

non-tick saliva proteins or concealed antigens are targeted in immunizations, the ability 
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of ticks to eliminate or destroy antibodies effectively reduces the protective level of tick 

resistance. This will not be so in the case of targeting S6 in that antigen-antibody 

interactions will occur at the tick host interface and not in the tick. A limited number of 

studies have shown that tick-encoded serpins have been proven to be potential vaccine 

candidates through host immunization with recombinant proteins derived from tick-

encoded serpins from H. longicornis (Sergino et al., 2003; Imamura et al., 2005), R. 

appendiculatus (Imamura et al., 2006, 2008) and I. ricinus (Prevot et al., 2007).  

Although several of these serpins have been confirmed as being concealed antigens 

(Sergino et al., 2003; Imamura et al., 2005, 2006), when used in immunization and 

challenge experiments, all have shown to have a negative effect on tick feeding success 

and fecundity, seen in a reduction of EM and increase in mortality.  

 It is also important to note that there are at least 15 other A. americanum serpins 

that are expressed together with S6 and S17 during the same tick feeding period 

(Mulenga et al., 2007).  It is possible that silencing of S6 and S6/S17 did not account for 

the redundancy of other serpins. The redundancy of function amongst these 15 other 

serpins may be another reason why dual silencing of S6 and S17 or S6 alone did not 

prevent ticks from starting to feed.  To overcome the problem of redundancy, using 

peptide immunogenic regions that are conserved among all or a majority of the A. 

americanum-encoded serpins as immunizing antigens might confer an immune response 

blocks the functions of all serpins. 

A fully fed female takes in host blood that is estimated at between 200-300 times 

the unfed tick weight (Sonenshine, 1993). Given the inconsistent observations in my 
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final EM data, it is unclear whether or not S6 plays a role in regulating blood meal 

uptake by ticks. Although the mean EM in dual silencing of S6 and S17 or S6 alone 

where significantly smaller than the non-injected control groups, they were significantly 

larger than or equal to control individuals respectively injected with diluent buffer or 

GFP-dsRNA. Based on my findings, injection of diluent buffer alone potentially affected 

tick feeding. To clarify the observed inconsistencies in my EM data, it will be desirable 

to repeat the experiment using a different diluent.  

After blood meal uptake, ticks convert their blood meal to egg mass (Sonenshine, 

1993). Consistent with my EM data, the effect of dual S6 and S17 silencing or S6 alone 

significantly affected the fecundity of A. americanum when compared to non-injected 

controls individuals, but not diluent or GFP-dsRNA injected control individuals. In 

summary, based on data presented here the biological significance of S6 in A. 

americanum feeding and reproduction remains unknown. Further studies are needed to 

conclusively determine the significance of S6 in tick feeding.  
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       CHAPTER V 

CONCLUSION 

Anti-tick vaccines are a sustainable, non-contaminating, and cost efficient 

alternative to chemical tick control methods.  This has encouraged the search for viable 

target antigens that play a critical role in the physiology of the tick.  The goal of this 

study was to establish the biological relationship of S6 to the tick feeding process and 

characterize the function of S6.   

The transcription and protein expression profiles of S6 show that it is present 

during the PFS and the SFS, indicating that it possibly plays a role in the establishment 

and maintenance of the feeding lesion and assists in blood meal acquisition.   

Transcriptional analysis reveals that S6 mRNA is ubiquitously expressed in unfed ticks 

through 5 days of the feeding, with PCR density analysis of transcription patterns show a 

peak at 72 h after attachment.  When whole ticks were analyzed by western blotting 

analysis, it was found that native S6 protein is ubiquitously expressed and 

downregulated in response to tick feeding, with correlation between transcription and 

protein expression profiles only consistent from the unfed stage to 48 h.  Protein 

expression is downregulated from 72 h to 120 h, indicating that S6 is not utilized during 

the latter part of the feeding cycle.  

To determine the spatial distribution of S6 during the first 5 days of feeding, 

mRNA and protein expression patterns in the SG, MG, OV, and CA were investigated.  

S6 mRNA abundance in dissected tick organs showed a 3.7, 3.4, and 1.7-fold 

upregulation from 24 h to 96 h in the SG, MG, and CA, respectively before 
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downregulating at 120 h.  S6 protein expression in dissected tick tissues similarly show 

downregulation in response to tick feeding, with S6 being identified in SG, MG, OV, 

and CA from 24 h until 72 h.  The presence of S6 in the salivary glands during the first 3 

days after attachment indicates that S6 might be one of the secreted molecules that play a 

critical role in tick feeding. To determine the likelihood of S6 being a secreted protein, 

tick saliva was analyzed for the presence of native S6. 

 S6 was found to be present in tick saliva after 48 h of feeding.  This result 

indicates that S6 is most likely an exposed molecule that is injected into the host to 

facilitate blood meal acquisition.  Exposed antigens oftentimes play a critical role in tick 

feeding physiology, and therefore inhibiting their function by way of immunization is 

likely to have a negative effect on feeding success.   Additionally, when compared to 

their concealed counterparts, exposed antigens are viewed as a more feasible vaccine 

target because of their ability to elicit a strong immune response.  S6 was found to be 

immunogenic proceeding immunizations with rS6, indicating that antibodies to the 

native tick-encoded S6 can effectively be produced.   

RNAi-mediated post-translational gene knockdown was used to determine the 

role of S6 in regards to obtaining a blood meal.  Dual silencing of S6/S17 and S6 

silencing had no significant negative effect on tick feeding and fecundity success, 

however limitations of the in vivo RNAi methodology prevented this technique from 

determining how the tick utilized S6 and S17.  RNAi does not clear the organism of 

existing protein, and as S6 is present at the unfed stage there is a chance the protein was 

still present and functional in the treated ticks.   Although this methodology is frequently 
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used in acarology to establish the function of unknown genes and to assess their viability 

as target antigens, it is not an accurate method for evaluating the biological significance 

of proteins that are expressed prior to dsRNA injection.  Given this limitation, the author 

suggests conducting an immunization and challenge infestation experiment as a more 

effective method of evaluating the potential of S6 and S6/S17 as a vaccine target against 

A. americanum.  The presence of 15 other serpins identified in A. americanum during the 

beginning of the feeding cycle suggests a redundancy of function amongst these 

proteins.  To account for this, peptides from immunogenic regions consistent amongst all 

or the majority of the serpins should be used to immunization to fully assess the effect of 

vaccination against all tick-encoded serpins.  

Based on sequence analysis and protein expression profiles there was a strong 

indication that S6 might be one of the many immunomodulatory molecules secreted into 

the tick-host interface to suppress the immune response.  To determine if S6 functions as 

an inhibitory protein, rS6 was co-incubated with serine protease archetypes 

chymotrypsin and trypsin and samples were analyzed on a SDS-PAGE for complex 

formation.  No complex formation was observed, but the results were inconclusive.  The 

lack of inhibition observed could be due to the incorrect folding related to recombinant 

protein expression. As an alternate approach, native S6 could be collected from tick 

tissues using immunoprecipitation for use in future inhibitory assays. Although most 

serpins inhibit serine proteases, some inhibit cysteine proteases or do not function as 

inhibitors.  To better characterize the function of S6, I propose additional assays using 

cysteine proteases in complex formation assays.   
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In conclusion, this study has provided important information regarding the 

development of an anti-tick vaccine.  Because of its occurrence in various tissues during 

the PFS and SFS indicates that S6 plays a critical physiological role in tick feeding.  

Additionally, S6 is the first serpin identified in tick saliva.  The presence of S6 in saliva 

collected at 48 h indicates that it is likely secreted into the host during feeding.  To better 

assess the ability of S6 as a target antigen, further work is needed to determine the 

characterization of S6 and the effect of immunization with S6 on tick feeding.  
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