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ABSTRACT

Special Values of the Goss L-function

and Special Polynomials. (August 2010)

Brad Aubrey Lutes, B.S., Stephen F. Austin State University;

M.S., Texas Tech University

Chair of Advisory Committee: Dr. Matthew Papanikolas

Let K be the function field of an irreducible, smooth projective curve X defined over

Fq. Let ∞ be a fixed point on X and let A ⊆ K be the Dedekind domain of functions

which are regular away from ∞. Following the work of Greg Anderson, we define special

polynomials and explain how they are used to define an A-module (in the case where the

class number of A and the degree of ∞ are both one) known as the module of special points

associated to the Drinfeld A-module ρ. We show that this module is finitely generated and

explicitly compute its rank. We also show that if K is a function field such that the degree

of ∞ is one, then the Goss L-function, evaluated at 1, is a finite linear combination of

logarithms evaluated at algebraic points. We conclude with examples showing how to use

special polynomials to compute special values of both the Goss L-function and the Goss

zeta function.
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CHAPTER I

INTRODUCTION

Let X be an irreducible, smooth projective curve defined over Fq and let K be its function

field. One should view K as a positive characteristic analogue of Q. With this in mind,

the study of function fields closely mirrors that of number fields, especially cyclotomic

fields. The primary motivation for this dissertation is the paper of Anderson [2] in which

he considers the following classical results from the theory of cyclotomic fields:

(1) Let p be an odd prime and set e(x) := exp(2πix). Consider the cyclotomic field

Q(e(1/p)). Let C denote the circular units of this cyclotomic field. Then C is of rank

(p−3)/2.

(2) Let χ be a Dirichlet character on Z/nZ for some n > 1. If χ is a nontrivial character

such that χ(−1) = 1, then

L(1,χ) =−τ(χ)

f

f

∑
a=1

χ̄(a) log |1− e(a/ f )|

where L(s,χ) is the Dirichlet L-function associated to χ, f is the conductor of χ, and

τ(χ) is a Gauss sum.

Note that the previous special value is a finite Q̄-linear combination of logarithms evaluated

at algebraic points. In [2] Anderson proved a formula which relates the value of the Goss

L-function at 1 to logarithms of so called special points of the Carlitz module. Also, a result

analogous to (1) is shown in which these special points play the role of the circular units.

In Chapter II, we first begin with a discussion of the relevant notions from the theory

of function fields. If X is the curve associated to K, then fix a point ∞ ∈ X . We set A ⊆ K

This dissertation follows the style of Journal of Number Theory.
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to be the Dedekind domain of functions whose only poles are at ∞. In §B, we discuss the

primary object with which to study the arithmetic of function fields, namely Drinfeld A-

modules. For more information about Drinfeld A-modules, see [7], [8], [9], [10], [13], [19].

In this dissertation, we only consider Drinfeld-Hayes A-modules which are just Drinfeld A-

modules of rank 1 with some additional assumptions. In §C, we briefly discuss the Carlitz

module. It is the simplest example of a Drinfeld-Hayes A-module. In §D, we discuss

the notion of torsion points of a Drinfeld-Hayes A-module. It is here that the connection

between cyclotomic fields and function fields begins to come into focus. In §E, we give a

brief discussion of ramification in function fields.

In Sections F and G we discuss the connections between class field theory and char-

acters in function fields. We begin with a homomorphism χ : A→ C∞ which we call a

Dirichlet character. (Here C∞ is the function field analogue of C.) Let m := kerχ. Using

the class field theory of §F, we extend χ to a character ψ : Fm(A)→ C∞, where Fm(A)

consists of the fractional ideals of A relatively prime to m, such that ψ|A = χ. The Goss

L-function for ψ is defined to be

L( j,ψ) = ∑
I

ψ(I)
I[ j]

where the sum ranges over all integral ideals of A relatively prime to m. Here j denotes a

positive integer and I[ j] denotes a type of ideal exponentiation. For more background on

the Goss L-function, see [4], [5], [6].

In Chapter III, we discuss the results of Anderson. In [2], a function is said to be log-

algebraic if it is formally the logarithm of a power series algebraic over the field of rational

functions in z where z is an indeterminate. In §B, a function denoted `(b;z) is defined

for b ∈ H[t] where t is another indeterminate and H is the Hilbert class field of K. The

following fundamental result is proven in [2] and restated in this dissertation as Theorem

III.2:
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Theorem I.1. Let B be the integral closure of A in H. Let ρ be a Drinfeld-Hayes A-module

and let expρ be the exponential associated to ρ (cf., §II.B). For all b∈ B[t], the power series

expρ `(b;z) is in fact a polynomial in B[t,z].

The polynomials

{expρ `(b;z) | b ∈ B[t]}

are called special polynomials. In §C, we discuss the results of Anderson concerning spe-

cial polynomials and special points in the case of the Carlitz module C.

Let hA be the class number of A and let d∞ = deg∞. In Chapter IV, we discuss our

extensions of special points and special polynomials when hA = 1 and d∞ = 1. In §A, we

note that there are only four such function fields ([11], [18]). The curves associated to these

function fields are

• X1 : y2 = t3− t−1 over F3;

• X2 : y2 + y = t3 +α over F4 where α ∈ F4 satisfies α2 +α+1 = 0;

• X3 : y2 + y = t3 + t +1 over F2;

• X4 : y2 + y = t5 + t3 +1 over F2.

Let K1, . . . ,K4 be the function field of X1, . . . ,X4, respectively. Each K j has exactly one

Drinfeld-Hayes A j-module, which we denote by ρ j. In §B, we discuss shtuka functions

which are rational functions which allow us to (1) recover the Drinfeld-Hayes A j-module

ρ j and (2) explicitly compute the exponential associated to ρ j (cf., Theorem IV.9). In §C–

F, we explicitly compute the invariants i0(ρ j) and j0(tm;ρ j) (cf., Propositions IV.10 and

IV.15). In §G, we state as Proposition IV.17 our main result concerning the extension of

special polynomials:

Proposition I.2. For 1≤ j ≤ 4, let K j be the function field associated to the curve X j and

let ρ j be the unique Drinfeld-Hayes A j-module associated to K j.
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(1) The power series

S(tm;z) := expρ j `(tm;z) = ∑
i≥0

ei(ρ
j) ∑

a∈(A j)+

(
(ρ

j
a(t))m

a

)qi

zqi+dega

lies in A j[t,z].

(2) One has expρ j lm(x) = S(tm;1)|t=e j(x).

(3) For all c ∈ F×q , one has S(tm;z)|t=ct = cmS(tm;z), and moreover S(tm;z) is divisible

by tm.

(4) One has
S(tm;z)

tm

∣∣∣∣
t=0

= ∑
a∈(A j)+

am−1zqdega

for m > 0.

(5) Let i0(ρ j) and j0(tm;ρ j) be as in Propositions IV.10 and IV.15. The degree of S(tm;z)

in z (respectively t) does not exceed qbi0(ρ
j)+ j0(tm;ρ j)c (resp. mqbi0(ρ

j)+ j0(tm;ρ j)c).

(6) The specialization S(tm;1)∈A j[t] vanishes identically if m> 1 and m≡ 1 mod q−1.

In §H, we discuss our extension of special points when hA = 1 and d∞ = 1. Let d be a

positive integer and fix an irreducible p ∈ (A j)+ of degree d. For b ∈ (A j/p)×, set

s j
m(b) := expρ j lm(x) = S(tm;1)|t=e j(x)

where x = b̃/p and b̃≡ b mod p. The A j-module generated by points of the form s j
m(b) is

called the module of special points of ρ j. In §H and I, we show that this module is finitely

generated by the special points of the form

{s j
m(1) | 0≤ m≤ qd−1}.

In Chapter V, we are concerned with expressing the Goss L-function evaluated at 1 as

a linear combination of logarithms. In this chapter, we only assume that d∞ = 1. We make
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no assumption about hA. We first explicitly compute L(1,ψ) where ψ is as in §II.G. The

following result is restated as Proposition V.13 in Section E:

Proposition I.3. Let χ be a Dirichlet character on A with kernel m. Let ψ : Fm(A)→ C∞

be the character (as in §II.G) such that ψ|A = χ. Let {a1, . . . ,ah} be a set of representatives

of the equivalence classes of Cl(A) that are relatively prime to m where h = #Cl(A). Let µ

be as in (5.6) in §V.C and let d = degm. Then

L(1,ψ) =
h

∑
j=1

La j(1,ψ)

=
h

∑
j=1

−ψ(a j)
qd−1

∑
m=1

 1

a
[1]
j

∑
a∈(A/m)×

ψ(a)e∗m,a j
(a/ν j)

( ∑
b∈(A/m)×

ψ(b)−1lm,a j(bµ)

)
where ν j ∈ a j \a jm are chosen as in (5.14) in §V.E.

The numbers e∗m,a j
(a/ν j) are called the generalized dual coefficients. Their properties

are investigated in §D. The function lm,a j(x) is defined in §C.

We conclude Chapter V by showing that the expression lm,a j(aµ) is a finite linear

combination of logarithms evaluated at algebraic points (cf., (5.20)). More precisely, we

prove the following (which is restated as Theorem V.14):

Theorem I.4. Let ψ be as in the previous Proposition. Then there exist u1, . . . ,us ∈ C∞

with expρ(ui) ∈ K̄ and α1, . . . ,αs ∈ K̄ such that

L(1,ψ) =
s

∑
i=1

αiui.

In Chapter VI, we return to the case when hA = 1 and d∞ = 1. Our main result is the

following (restated as Theorem VI.4):

Theorem I.5. Let K be a function field over Fq (other than the rational function field

Fq(T )) satisfying hA = 1 and d∞ = 1. Let ρ be the unique Drinfeld-Hayes A-module with
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respect to a fixed sign function sgn. Let S be the A-module of special points of ρ as defined

in §IV.H. Then the A-rank of S equals (qd−1)(q−2)/(q−1).

In Chapter VII, we explicitly compute special polynomials for the function fields

K1, . . . ,K4. In Chapter VIII, we compute special values of the Goss L-function and the

Goss zeta function for these function fields. The following example is Example VIII.4:

Consider the curve X1. Consider the Dirichlet character

χ : A1→ F̄9

a = a(t,y) 7→ a(0,
√
−1).

Then

L(1,χ) =
logρ(ξ

′)+
√
−1logρ(ξ)

ξ′+
√
−1ξ

L(1,χ3) =
logρ(ξ

′)−
√
−1logρ(ξ)

ξ′−
√
−1ξ

where ξ is a generator of the t-torsion ρ1[t] and ξ′ := ρ1
η(ξ). We also consider (in Examples

VIII.5 and VIII.6) a function field for which hA = 2 to illustrate the computational complex-

ity involved in going from class number one to class number two. Finally we conclude in

Chapter IX with some remarks about special points and special polynomials when hA > 1.

As a final note, it would be interesting to compare the results contained in this dissertation

on special values of L-functions to recent work of Taelman [16], [17], [15] on Birch and

Swinnerton-Dyer type formulas for Drinfeld modules.
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CHAPTER II

PRELIMINARIES

A. Function Fields

Let X be an irreducible, smooth projective curve defined over the finite field Fq, where

q = pr for some prime p, and r > 0. Let ∞ denote a fixed point on X . If X ⊂ Pn, then the

ideal of X is

I(X) := 〈F ∈ Fq[x1, . . . ,xn+1],F homogeneous | F(P) = 0 ∀ P ∈ X〉.

Because X is irreducible, I(X) is a prime ideal; hence

Γ(X) := Fq[x1, . . . ,xn+1]/I(X)

is an integral domain. Let Frac(Γ(X)) denote the fraction field of Γ(X). The function field

of X is

K := {z ∈ Frac(Γ(X)) | ∃ f ,g ∈ Γ(X) of the same degree with z = f/g}.

The elements of K are called rational functions on X .

For P ∈ X , define

OP(X) := {z ∈ K | z = f/g, f and g of the same degree, g(P) 6= 0}.

Then OP(X) is a discrete valuation ring, i.e. it is a Noetherian local ring whose unique

maximal ideal is principal, and whose fraction field is K.

Given a discrete valuation ring R, another way to characterize it is that there exists an

irreducible element t ∈ R such that every nonzero element of R may be written uniquely as

utn, where u is a unit in R and n is a non-negative integer ([3], §2.4, Proposition 4). The
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element t is called a uniformizing parameter for R. For fixed t, every nonzero z ∈ K can be

written uniquely as utn, where u is a unit in OP(X) and n ∈ Z. We define ordP(z) := n and

say that n is the order of vanishing of z at P.

The function ordP : K→ Z∪{∞} is a valuation satisfying:

1. ordP(k) = +∞ if and only if k = 0;

2. ordP(k1k2) = ordP(k1)+ordP(k2);

3. ordP(k1 + k2)≥min{ordP(k1),ordP(k2)}

for all k1,k2 ∈ K. With this notation, we have that

OP(X) = {z ∈ K | ordP(z)≥ 0}

and its (unique) maximal ideal is

MP(X) = {z ∈ K | ordP(z)> 0}.

We thus have two natural objects to study: points on X and discrete valuation rings of

K. The following result tells us that these objects are essentially the same.

Theorem II.1 ([3], §7.1, Corollary 4). Let X be an irreducible non-singular projective

curve over a field F and let K be its function field. Then there is a natural one-to-one

correspondence between the closed points of X and the discrete valuation rings of K. If

P ∈ X, then OP(X) is the corresponding discrete valuation ring.

Let P be a point on X . Define the degree of P by

degP := dimFq OP(X)/MP(X).

We denote the degree of ∞ by d∞.
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Let A be the elements of K whose only poles are at ∞. Then A is a subring of K which

is also a Dedekind domain, i.e. an integral domain for which each nonzero ideal can be

factored uniquely into a product of prime ideals. For a 6= 0, let (a) be the ideal generated

by a in A. Then A/(a) is a finite dimensional Fq-vector space. Define the degree of a by

dega := dimFq A/(a).

We set the degree of 0 to be −∞. Equivalently, we have that

qdega = #(A/(a)).

Note that if A is a polynomial ring, then this notion of degree corresponds to the usual

notion of degree. Similarly, if I is an ideal of A, the degree of I is defined by

qdeg I = #(A/I).

Given a point P on X , we may consider its associated valuation ordP. Let 0 < α < 1

be a real number and consider the map | · |P : K→ R≥0 given by |x|P = αordP(x). It is easy

to see that | · |P defines a non-archimedean absolute value on K, i.e. it satisfies

1. |x|P = 0 if and only if x = 0;

2. |xy|P = |x|P|y|P for all x,y ∈ K;

3. |x+ y|P ≤max{|x|P, |y|P}.

Note that in the case of function fields, all absolute values are nonarchimedean.

Let K∞ be the completion of K with respect to the valuation ord∞. For x ∈ K∞, set

degx :=−d∞ord∞(x).

Note that this definition of degree restricted to elements of A reduces to our previous defi-

nition of degree. We denote by | · | the normalized absolute value associated to the point ∞,
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i.e.

|x| := q−d∞ord∞(x)

for all x ∈ K∞. Let K̄∞ be the algebraic closure of K∞. We extend | · | to K̄∞ via the formula

|z|=
∣∣NE

K∞
(z)
∣∣1/[E : K∞]

where E is any intermediate field containing z of finite degree over K∞ and NE
K∞

denotes the

norm from K∞ to E ([13], Chapter 13).

Define C∞ to be the completion of K̄∞ with respect to | · |. The absolute value | · |

extends uniquely to C∞ and so C∞ is a nonarchimedean field. It is also complete and

algebraically closed. Thus, in the context of function fields, C∞ behaves like C.

As for the other objects we have defined, one should think of A as an analogue of Z.

With this in mind, K and K∞ correspond to Q and R, respectively. Also, ∞ corresponds to

the unique archimedean place of Q, i.e. the Euclidean absolute value.

B. Drinfeld A-modules

Assuming that A is the function field analogue of Z, we want to generalize the notion of the

sign of a number. For nonzero elements of R, there are only two such possibilities, namely

positive or negative. This corresponds to the fact that Z× = {±1}. Note that K× = F×q and

we refer to Fq as the constant field of K. So the signs of elements of the function field are

elements of the corresponding constant field. Since K∞ is isomorphic to the field of Laurent

series Fqd∞ ((π)), where π is any uniformizer for O∞(X), we have that the constant field of

K∞ is Fqd∞ . (In this case we also say that π is a uniformizer at ∞.) Hence the signs of K∞

should lie in F×qd∞
.

Let M̂∞(X) := {z ∈ K∞ | ord∞(z)> 0}. We say that x is a 1-unit of K∞ if ord∞(x) = 0

and x−1 ∈ M̂∞(X). We denote the 1-units by U (1). Every element of K∞ can be written as
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cπnu, where c ∈ Fqd∞ , π is a fixed uniformizer at ∞, n ∈ Z, and u ∈U (1). A sign function

sgn : K×∞ → (Fqd∞ )
× is a homomorphism which is the identity on (Fqd∞ )

× and is trivial on

U (1). We use the convention that sgn(0)=0. An element of sign one is called monic. For

σ ∈ Gal(Fqd∞/Fq), the composite σ ◦ sgn is called twisting of the sign function sgn. The

number of possible sign functions equals #
(
Fqd∞

)×
= qd∞−1.

Define τ : C∞→ C∞ by τ(z) = zq for all z ∈ C∞. We call τ the q-th power Frobenius

map. Define C∞〈τ〉 to be the ring of polynomials in τ with coefficients in C∞ with “twisted”

multiplication, i.e.

τz = zq
τ

for all z ∈ C∞. Note that C∞〈τ〉 is a noncommutative ring. Let EndFq(C∞) denote the

Fq-algebra of Fq-endomorphisms of C∞ viewed as an additive group. The endomorphism

φ : C∞→ C∞ is in EndFq(C∞) if

(i) φ(z1 + z2) = φ(z1)+φ(z2) for all z1,z2 ∈ C∞ and

(ii) φ(αz) = αφ(z) for all α ∈ Fq and for all z ∈ C∞.

Then EndFq(C∞)⊆ C∞〈τ〉.

We define the homomorphism D : C∞〈τ〉 → C∞ by D(∑ciτ
i) = c0. A Drinfeld A-

module over C∞ consists of an Fq-algebra homomorphism ρ : A→ C∞〈τ〉 such that for all

a ∈ A

D(ρa) = a

where ρa := ρ(a). We also require that the image of ρ not be contained in C∞. Denote by

DrinA(C∞) the set of all Drinfeld A-modules over C∞. The rank of the Drinfeld A-module

ρ is defined to be the unique positive integer r such that

degτ(ρa) = r dega
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for all a∈A, where degτ(ρa) denotes the degree of ρa as a polynomial in τ. We next explain

why Drinfeld A-modules exist.

A lattice Λ is a discrete, finitely generated, A-submodule of C∞. The dimension of the

vector space K∞Λ over K∞ is called the rank of the lattice. Given Λ, we define

eΛ(z) := z ∏
λ∈Λ
λ 6=0

(
1− z

λ

)
,

where z∈C∞. Because Λ is discrete, eΛ is entire on C∞, and it is Fq-linear. By construction,

it is the unique entire function on C∞ with simple zeros on the elements of Λ and with

leading term z.

Let Λ⊆Λ′ be two lattices of the same rank. Then Λ′/Λ is a finite A-module. Consider

the surjective map eΛ : Λ′→ eΛ(Λ
′). The kernel of this map is clearly Λ, and thus Λ′/Λ∼=

eΛ(Λ
′). So eΛ(Λ

′) is a finite set.

Consider the polynomial

P(z;Λ
′/Λ) := z ∏

γ∈eΛ(Λ
′)

γ 6=0

(
1− z

γ

)
.

The polynomial P(z;Λ′/Λ) satisfies

eΛ′(x) = P(eΛ(x);Λ
′/Λ)

([13], Proposition 13.22). Now fix a lattice Λ of rank r and for each nonzero a ∈ A define

ρΛ
a ∈ C∞〈τ〉 by

ρ
Λ
a (z) := aP(z;a−1

Λ/Λ).

The map induced by sending a to ρΛ
a and 0 to 0 is a Drinfeld A-module of rank r ([13],

Theorem 13.23). The existence of Drinfeld A-modules is thus guaranteed by the following

result.
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Theorem II.2 ([13], Theorem 13.24). Let LatA(C∞) denote the set of lattices in C∞. The

map

LatA(C∞)→ DrinA(C∞)

Λ 7→ ρ
Λ

is a rank-preserving bijection.

Therefore, if Λ is a lattice of rank r, then there is a unique corresponding Drinfeld

A-module of rank r which we call ρ. The function which we previously denoted by eΛ will

now be denoted by expρ. We say that expρ is the exponential belonging to ρ. The function

expρ satisfies the following functional equation:

expρ(az) = ρa(expρ(z)) (2.1)

for all a ∈ A and for all z ∈ C∞. We denote the (multivalued) inverse of expρ by logρ, and

we call this the logarithm belonging to ρ.

A Drinfeld A-module ρ ∈ DrinA(C∞) is called normalized if the leading coefficient

µρ(a) of ρa belongs to Fqd∞ for all a ∈ A. If for some sign function sgn, the map a 7→ µρ(a)

is a twisting of sgn, then ρ is called sgn-normalized.

Fix a sign function sgn. A Drinfeld-Hayes A-module with respect to sgn is an injective

Fq-algebra homomorphism ρ : A→ C∞〈τ〉 such that for all nonzero a ∈ A the following

properties hold:

1. the degree of ρa as a polynomial in τ is deg a;

2. the coefficient of τ0 in ρa is a;

3. the leading coefficient of ρa is sgn(a).

Note that a Drinfeld-Hayes A-module is a rank one sgn-normalized Drinfeld A-module.
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Let ρ,ρ′ ∈ DrinA(C∞). A morphism from ρ to ρ′ is an element m ∈ C∞〈τ〉 such that

mρa = ρ′am for all a ∈ A. The set of all such morphisms is denoted HomC∞
(ρ,ρ′). We say

that ρ,ρ′ are isogenous over C∞ if

HomC∞
(ρ,ρ′) 6= (0).

Fix a nonzero ideal I ⊂ A and recall that ρI is defined to be the unique monic generator

of the left ideal in C∞〈τ〉 generated by {ρi | i ∈ I}. Then there is a uniquely determined

Drinfeld A-module I ∗ρ such that ρI is an isogeny from ρ to I ∗ρ, i.e. we have

ρIρa = (I ∗ρ)aρI

for all a ∈ A ([13], Proposition 13.13). Now suppose that ρ is a Drinfeld-Hayes A-module

with respect to a fixed sign function sgn. Since degτ ρI = deg I ([13], Proposition 13.17),

it follows that I ∗ρ has rank one. Since ρI is a monic polynomial in C∞〈τ〉 and since the

leading coefficient of ρa is sgn(a), we have that the leading coefficient of (I ∗ρ)a is also

sgn(a). Therefore, I ∗ρ is a Drinfeld-Hayes A-module.

Two Drinfeld A-modules ρ and ρ′ are isomorphic if there exists c∈C×∞ such that cρa =

ρ′ac for all a∈ A. Thus the set DrinA(C∞) may be partitioned into isomorphism classes. It is

enough to study sgn-normalized Drinfeld A-modules because every Drinfeld A-module ρ∈

DrinA(C∞) is isomorphic to a sgn-normalized Drinfeld A-module ([14], Theorem 13.5.14).

So we are interested in the number of Drinfeld-Hayes A-modules in each isomorphism

class.

For this dissertation, we consider only rank one Drinfeld A-modules. In this case, we

have the following results.

Proposition II.3 ([14], Proposition 13.5.16). If ρ and ρ′ = cρc−1 are sgn-normalized rank

one Drinfeld A-modules, then c ∈ F×qd∞
and µρ(a) = µρ′(a) for all a ∈ A.
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Theorem II.4 ([14], Corollary 13.5.17). Each isomorphism class of Drinfeld A-modules of

rank one over C∞ contains exactly (qd∞−1)/(q−1) Drinfeld-Hayes A-modules.

Note that the number of Drinfeld-Hayes A-modules equals the number of sgn functions

divided by #F×q .

Let ρ be a Drinfeld-Hayes A-module with respect to sgn. Since ρ is a Drinfeld A-

module of rank one, there exists a unique lattice Λ of rank one associated to ρ. The lattice

Λ has the form π̃ρI, where π̃ρ ∈ C∞ and I is an integral ideal of A ([13], Chapter 13). The

element π̃ρ is called the period of ρ.

C. The Carlitz Module

The simplest example of a Drinfeld-Hayes A-module is called the Carlitz module. Let

X = P1(Fq) and denote the unique point at infinity by ∞. Then K = Fq(T ) and A = Fq[T ].

Choose sgn such that sgn(T )=1. The Carlitz module C : Fq[T ]→ C∞〈τ〉 is defined by

C(T ) :=CT := T τ
0 + τ

and extended to all of A by Fq-linearity and the “twisted” multiplication rule. The lattice

associated to C is of the form π̃C A with

π̃C = q−1
√

T −T q
∞

∏
i=0

(
1− T qi−T

T qi+1−T

)

([13], Chapter 13). Notice that expC, the exponential associated with C, has simple zeros

on the elements of π̃C A. So if A is viewed as the function field analogue of Z, then the

element π̃C is analogous to 2πi.
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D. Torsion Points

Returning now to the case of a general ring A, ρ is defined on the elements of A but can

be extended to integral ideals of A as follows. One knows that C∞〈τ〉 has a right division

algorithm and every left ideal in C∞〈τ〉 is principal ([13], Lemma 13.11). So if I is an ideal

of A and J is the left ideal in C∞〈τ〉 generated by {ρi| i ∈ I}, then ρI is defined to be the

unique monic generator of J.

Let P be a prime ideal of A and let ρ[P] denote the roots of the polynomial ρP(x).

These are the P-torsion points of ρ. If the lattice associated to ρ is π̃ρI, then

ρ[P] = {expρ(π̃ρt) | t ∈ P−1I}

where P−1 = {x ∈ K | xP⊆ A}.

E. Ramification

Let L be a finite separable extension of K. Let P be a point on the curve X and consider

the associated discrete valuation ring OP(X). Let R be the integral closure of OP(X) in L.

Since L is a separable extension of K, R is a Dedekind domain. We may view the ideal

MP(X)R as an ideal of R. Hence this ideal has a unique prime ideal decomposition in R:

MP(X)R = pe1
1 · · ·p

eg
g

where each pi is a prime ideal of R. Let Rpi be the localization of R at pi which is a discrete

valuation ring whose maximal ideal is Pi := piRpi. Set OPi := Rpi. We say that the ideal Pi

lies above P. The set {P1, . . . ,Pg} consists of the all prime ideals of L which lie above P

([13], Chapter 7).

The ramification index of Pi with respect to P, denoted e(Pi/P), is the unique non-
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negative integer such that

POPi =P
e(Pi/P)
i .

The relative degree of Pi with respect to P, denoted f (Pi/P), is the dimension of OPi/Pi

over OP(X)/MP(X). The point P is said to be unramified in L if all prime ideals above P

in L are unramified. The point P is said to split completely in L if there are [L : K] prime

ideals above P in L.

F. Some Class Field Theory

Let H denote the Hilbert class field of A. The Hilbert class field H is the maximal abelian

extension of K such that ∞ splits completely and every finite point is unramified. One

knows that H is a separable extension of K ([10], §14). Let B denote the integral closure of

A in H, i.e. the set of all elements of H which are integral over A.

Let ρ ∈ DrinA(C∞) and let E be a subfield of C∞ containing K. Then E is a field of

definition for ρ if ρ is isomorphic to some ρ′ ∈DrinA(C∞) such that ρ′a ∈ E〈τ〉 for all a∈ A.

There exists a field of definition, denoted Kρ, which is contained in every field of definition

for ρ ([14], Theorem 13.5.9). The common field of definition of the rank one Drinfeld

A-modules is precisely H ([10], §15). In fact, we can say more.

Theorem II.5 (Takahashi, [10], Theorem 15.8). Every Drinfeld A-module ρ is isomorphic

to a Drinfeld A-module ρ′ which is defined over B.

The A-module M ⊆ K is a fractional ideal of A if there exists a nonzero element a ∈ A

such that aM ⊆ A. Let F(A) be the group of fractional ideals of A and let P(A) be the

subgroup of principal fractional ideals of A. The class group of A is

Cl(A) := F(A)/P(A).

Explicitly, two nonzero fractional ideals M, M′ are equivalent if there exists nonzero α,
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β ∈ A such that αM = βM′. We denote the equivalence of M and M′ in Cl(A) by M ∼M′.

The relation defined by ∼ is an equivalence relation and P(A) consists of the fractional

ideals of A equivalent to the ideal (1) = A. The class number of A is defined by

hA := #Cl(A).

We have that hA = [H : K] ([10], Theorem 15.6).

We have a map

F(A)×DrinA(C∞)→ DrinA(C∞)

(I,ρ) 7→ I ∗ρ.

This gives an action of F(A) on DrinA(C∞). If I is a principal ideal, then I ∗ρ is isomorphic

to ρ ([13], Proposition 13.14), so the above action descends to an action of Cl(A) on the set

of Drinfeld-Hayes A-modules. Furthermore, this action is one-to-one and transitive ([14],

Theorem 13.5.18). We will return to this later.

If σ ∈ Aut(C∞/K) and I is an ideal of A, then

I ∗σρ = σ(I ∗ρ)

where σρ is the map defined by a 7→ ρa followed by the action of ρ([14], §13.7). If ρ is a

Drinfeld-Hayes A-module, then so is σρ. In particular, we have that Gal(H/K) acts on the

set of Drinfeld-Hayes A-modules.

Let L be a finite, Galois extension of K whose constant field is E and set G :=

Gal(L/K). Let P be a point on X and let P be a prime ideal of L lying above P. Let

EP := OP/P, FP := OP(X)/MP(X).

These (finite) fields are the residue class fields of P and P, respectively. It is well known
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that Gal(EP/FP) is cyclic and generated by the Frobenius automorphism φP, which is de-

fined by φP(x) = xqdegP
for all x ∈ EP. Consider the following subgroup of G:

Z(P/P) := {σ ∈ G | σP=P}.

This is the decomposition group of P over P. If P is unramified, then Z(P/P)∼=Gal(EP/FP)

([13], Corollary to Theorem 9.6). Denote by (P,L/K) ∈ Z(P/P) the element which cor-

responds to φP under this isomorphism. The element (P,L/K) is called the Frobenius

automorphism of P for L/K. Explicitly, the Frobenius automorphism satisfies

(P,L/K)ω≡ ω
qdegP

(mod P)

for all ω ∈ OP. Furthermore, we have

(σP,L/K) = σ(P,L/K)σ−1

for all σ ∈ G ([13], Proposition 9.10). Thus, as P varies over the prime ideals lying above

P, the associated Frobenius automorphisms fill out a conjugacy class in G which we call

the Artin conjugacy class of P and denote by (P,L/K).

Let L and G be as above but also assume that L is an abelian extension of K. Let P1

and P2 be two unramified prime ideals of L lying above P. The Frobenius automorphisms

(P1,L/K) and (P2,L/K) are thus conjugate in G, and since G is abelian, these automor-

phisms are equal. The Artin conjugacy class (P,L/K) hence contains only one element of

G. This element, which we also denote by (P,L/K), is the Artin automorphism associated

to P.

We extend this definition multiplicatively to all ideals of K which are not divisible by

a ramified prime. Namely, let

I = Pe1
1 · · ·P

eg
g
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be an ideal of A where P1, . . . ,Pg are all unramified primes in L. Then the Artin automor-

phism associated to I is

(I,L/K) := (P1,L/K)e1 · · ·(Pg,L/K)eg .

If P is ramified in L, then set (P,L/K) := idGal(L/K). Thus, we may consider the Artin

automorphism associated to an arbitrary ideal of K.

Thus, Gal(H/K) and Cl(A) act on the set of Drinfeld-Hayes A-modules and the equa-

tion I ∗σρ = σ(I ∗ρ) shows that these actions commute with one another. Define a map

κ : Gal(H/K)→Cl(A)

as follows. Let (I,H/K) be the Artin automorphism associated to I. Write ρa =
dega

∑
i=0

ρa,iτ
i

where ρa,i ∈ H for all i. Define (I,H/K)ρ by

((I,H/K)ρ)a :=
dega

∑
i=0

ρ
(I,H/K)
a,i τ

i

for all a ∈ A. Then

κ((I,H/K)) = [Iρ]

where Iρ satisfies (I,H/K)ρ = Iρ ∗ ρ. The map κ is an isomorphism ([14], Proposition

13.5.22).

Consider

P+(A) = {xA | x ∈ K,sgn(x) = 1}

and define Pic+(A) := F(A)/P+(A). Fix a Drinfeld-Hayes A-module ρ. Let H+ be the

field generated over K by the coefficients of ρy for some nonconstant y ∈ A. This field H+

is independent of the choice of ρ ([10], §14). The field H+ is an extension of H of degree
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(qd∞−1)/(q−1) ([10], Theorems 14.7 and 15.6). The relation

(I,H+/K)ρ = I ∗ρ

holds and thus, Gal(H+/K) ∼= Pic+(A) and [H+ : K] = qd∞−1
q−1 hA ([14], Theorem 13.5.30).

Note that H+ is an extension of H which is nontrivial precisely when d∞ > 1.

Fix a prime ideal m of A and let Fm(A) be the subgroup of F(A) consisting of fractional

ideals that are prime to m. Let

P+
m(A) := {xA | x ∈ K×,sgn(x) = 1,x≡ 1 (mod m)}

and define

Pic+m(A) := Fm(A)/P+
m(A).

Let ρ be a Drinfeld-Hayes A-module and let ρ[m] denote the set of all m-torsion points

of ρ. The cyclic A-module ρ[m] is isomorphic to A/m ([10], §16). Let λ ∈ ρ[m] and let

Km := H+(ρ[m]). If I is an ideal of A prime to m, then

(I,Km/K)λ = ρI(λ)

for (I,Km/K) ∈Gal(Km/K) ([14], Theorem 13.5.43). This also gives an action of Pic+m(A)

on Km. Furthermore, we have that Pic+m(A) ∼= Gal(Km/K) ([10], §16). We also have that

(A/m)× ∼= Gal(Km/H+) via the map a 7→ ((a),Km/H+) ([10], §16).
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G. Character Groups and the Goss L-function

Consider the following groups

G := Gal(Km/K),

G′ := Gal(H+/K)∼= Pic+(A),

G′′ := Gal(Km/H+)∼= (A/m)×.

Thus, since G/G′′ ∼= Pic+(A), the following sequence is exact

0→ G′′→ G→ G′→ 0.

Define Ĝ := Hom(G,C×∞) and similarly define Ĝ′ and Ĝ′′. From these character groups, we

get another exact sequence

0→ Ĝ′→ Ĝ→ Ĝ′′→ 0.

Let χ be a Dirichlet character on A, i.e. χ : A→ C∞ is a homomorphism. Assume the

kernel of χ is m and that the order of χ is relatively prime to p. Then χ ∈ Ĝ′′. The map

Ĝ→ Ĝ′′ defined by ψ 7→ ψ|A is surjective. Fix ψ ∈ Ĝ such that ψ|A = χ. Thus, ψ is defined

on G∼= Pic+m(A). So we have extended the character

χ : A→ C∞

to the multiplicative character

ψ : Fm(A)→ C∞.

Let I be a fractional ideal which is not prime to m. By setting ψ(I) = 0, we now have a

multiplicative character defined on F(A).

Fix a sign function sgn and let π∈K∞ be a monic uniformizer at ∞. Every x∈K∞ may
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be written uniquely as

x = sgn(x)πord∞(x)〈x〉.

The element 〈x〉 is the 1-unit part of x. Recall that U (1) denotes the group of 1-units in

K∞. Let Û (1) be the group of 1-units in C∞. Consider the map P+(A)→ Û (1), (α) 7→ 〈α〉.

Because P+(A) has finite index in F(A), and because Û (1) is uniquely divisible, this map

uniquely extends to a map F(A)→ Û (1) (which we also denote by 〈·〉) ([7], Corollary 8.2.4).

Let π∗ ∈ C∞ be a fixed d∞-th root of π. Let I be a fractional ideal of A. For j ∈ Z, set

I[ j] := (π
− j
∗ )deg I〈I〉 j.

Now suppose ϖ ∈ K∞ is another monic uniformizer at ∞. Let 〈I〉ϖ be the 1-unit part

of I defined with respect to ϖ. Let ϖ∗ ∈ C∞ be a fixed d∞-th root of ϖ. And let I[ j]ϖ be

the exponentiation of I defined with respect to ϖ. Using ([7], Proposition 8.2.15) and the

definitions, one can show that there exists a d∞-th root of unity ζ such that

I[ j] = ζ
j deg II[ j]ϖ .

We now list some additional properties of this ideal exponentiation:

1. If I = (i), where i is monic, then I[ j] = i j ([7], Proposition 8.1.4).

2. If I = (i), where i= sgn(i)πord∞(i)〈i〉, then I[ j]= (π
− j
∗ )deg i〈i〉 j. ([7], Proposition 8.2.6)

3. Let e be the order of I in F(A)/P+(A). If Ie = (λ) for some monic λ ∈ K, then

I[ j] = (π
− j
∗ )deg I〈λ〉 j/e ([7], §8.2).

Let χ be a Dirichlet character on A whose kernel is m and whose order is relatively

prime to p. As before, we extend χ : A→ C∞ to the multiplicative character

ψ : Fm(A)→ C∞.
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For all fractional ideals I which are not prime to m, we set ψ(I)= 0 and so the multiplicative

character ψ is now defined on F(A). Note that ψ ∈ Ĝ and ψ|A = χ. The Goss L-function

for ψ is defined to be

L( j,ψ) = ∑
I

ψ(I)
I[ j]

where the sum ranges over all integral ideals I of A which are relatively prime to m.

We claim that L( j,ψ) converges in C∞ for integers j > 0. Write

L( j,ψ) = ∑
d≥0

∑
deg I=d

ψ(I)
I[ j]

=: ∑
d≥0

ad.

The coefficients ad are well-defined since there are only finitely many ideals of a given

degree. Since C∞ is a complete nonarchimedean field, it is enough to show that |ad| → 0

as d → ∞. Now either ψ(I) = 0 or |ψ(I)| = 1 since ψ(I) is in a finite extension of Fq.

To compute |I[ j]|, we use the expression for I[ j] as given in (3) above. First, note that any

1-unit has degree 0. This follows since if 〈i〉 denotes a 1-unit, then 〈i〉= 1 ·π0 · 〈i〉 and this

expression is unique. Hence, ord∞(〈i〉) = 0, which implies that the degree is 0. Second, the

degree of π is−1. Again, this follows from the uniqueness of expansion of elements in K∞.

Since π
d∞∗ = π, it follows that π∗ has degree −1/d∞ and so |π∗|= q−1/d∞ . Therefore,

|I[ j]|= |π∗|− j deg I|〈λ〉| j/e = q( j deg I)/d∞

and so

|ad|=

∣∣∣∣∣ ∑
deg I=d

ψ(I)
I[ j]

∣∣∣∣∣≤ max
deg I=d

(∣∣∣∣ψ(I)I[ j]

∣∣∣∣)= q(− jd)/d∞.

This proves the claim.
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CHAPTER III

RESULTS OF ANDERSON

In this chapter, we will review the techniques and results from [2].

A. Characteristic Zero and Log-algebraicity

We first recall some results from characteristic 0. Let e(z) := exp(2πiz). Fix an odd prime

p and consider the ring of integers Z[e(1/p)] of Q(e(1/p)).

Let C be the subgroup of Z[e(1/p)]× generated by

1− e(a/p)
1− e(1/p)

for a = 1, . . . , p−1. The elements of C are called circular units.

Theorem III.1 ([12], §19.1). (1) The group C of circular units is of rank (p− 3)/2. (2)

Moreover, C is of finite index in Z[e(1/p)]×.

Let χ : (Z/nZ)×→ C× be a Dirichlet character. Choose d > 0 such that d|n. Then d

is called an induced modulus for χ if

χ(a) = 1 whenever (a,n) = 1 and a≡ 1 (mod d).

The smallest induced modulus for χ is called the conductor of χ which we denote by f .

The L-series attached to χ is

L(s,χ) =
∞

∑
n=1

χ(n)
ns

for Re(s)> 1. If χ is not the trivial character and if χ(−1) = 1, then

L(1,χ) =−τ(χ)

f

f

∑
a=1

χ̄(a) log |1− e(a/ f )| (3.1)
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where

τ(χ) =
f

∑
a=1

χ(a)e(a/ f )

is a Gauss sum ([20], Theorem 4.9).

In [2], a formula analogous to (3.1) is proven which relates the value of the Goss L-

function at 1 to logarithms of so called special points of the Carlitz module. Also, a result

analogous to Theorem III.1(1) is proven in which the special points of the Carlitz module

play the role of the circular units.

Anderson says that (3.1) is proved by analyzing the formal power series identity

exp

(
−

∞

∑
n=1

zn

n

)
= 1− z (3.2)

over C. Hence, one of the goals of [2] is to prove a function field analogue of (3.2). In [2], a

function is said to be log-algebraic if it is formally the logarithm of a power series algebraic

over the field of rational functions in z. For example, the series
∞

∑
n=1

zn

n
is log-algebraic.

B. Special Polynomials

We return now to the case of function fields. Recall that H is the Hilbert class field of A

and B is the integral closure of A in H. Fix a Drinfeld-Hayes A-module ρ relative to a fixed

sign function sgn. Recall that expρ(z), for z ∈ C∞, is the exponential belonging to ρ. Since

expρ(z) is Fq-linear and has leading term z, it has a power series expansion of the form

expρ(z) = z+
∞

∑
i=1

ei(ρ)zqi

for ei(ρ) ∈ C∞. Set e0(ρ) = 1 and ei(ρ) = 0 for i < 0.

Let I be an integral ideal of A and let b ∈ H[t] where t is a variable. Set

I ∗b := ∑
i

b(I,H/K)
i ρI(t)i
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where b = ∑i bit i, (I,H/K) is the Artin automorphism of I and we write b(I,H/K)
i to denote

(I,H/K) acting on bi. Note that the map H[t]→ H[t] defined by b 7→ I ∗b is an A-algebra

endomorphism that stabilizes B[t].

For b ∈ H[t], define

`(b;z) := ∑
I

I ∗b
D(ρI)

zqdeg I
∈ H[t][[z]]

where the sum is over all nonzero integral ideals I of A and D(ρI) is the constant term of

ρI . Anderson calls this function a twisted A-harmonic series and views it as the analogue

of the harmonic series
∞

∑
n=1

zn

n
.

Now expand `(b;z) as a power series:

`(b;z) :=
∞

∑
i=0

`i(b)zqi
.

Note that the coefficients `i(b) ∈ H[t] for i ≥ 0. Set `i(b) = 0 for i < 0. For all integers i,

define

Zi(b) :=
∞

∑
j=0

e j(ρ)`i− j(b)q j
∈ H[t].

The sum defining Zi(b) is actually finite and clearly Zi(b) = 0 for i < 0. Define the formal

power series

Z(b;z) :=
∞

∑
i=0

Zi(b)zqi
∈ H[t][[z]].

As formal power series, we have

Z(b;z) = expρ `(b;z).

The following fundamental result is proven in [2].

Theorem III.2. ([2], Theorem 3) For all b ∈ B[t], the power series expρ `(b;z) is in fact a

polynomial in B[t,z].
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Theorem III.2 is viewed by Anderson as the analogue of

exp

(
−

∞

∑
n=1

zn

n

)
= 1− z

since it implies that the power series Z(b;z) is in B[t,z]. Hence, the twisted A-harmonic

series `(b;z) is log-algebraic. The polynomials

{Z(b;z) = expρ `(b;z) | b ∈ B[t]}

are called special polynomials.

Anderson’s strategy for proving Theorem III.2 is as follows:

1. Equip H[t] with a norm ‖ · ‖ for which B[t] is discrete.

2. Prove that the coefficients Zi(b) belong to B[t] if b ∈ B[t].

3. Prove that ‖Zi(b)‖→ 0 as i→ ∞.

From this, Anderson concludes that Zi(b) vanishes for i � 0 if b ∈ B[t]. In fact,

Anderson proves that if i is beyond a certain explicit index, then the coefficients Zi(b) are

identically zero. We will be concerned with computing this index in a later chapter.

Let π be a fixed monic uniformizer at ∞. The imaginary axis is defined to be the one-

dimensional K∞-subspace of K̄∞ spanned by the (q− 1)st roots of −π−1. We denote this

subspace by K∞ · q−1
√
−π−1.

For b = ∑i bit i ∈ H[t] and for an integral ideal I of A, consider

(I ∗b)(expρ(x)) = ∑
i

b(I,H/K)
i ρI(expρ(x))

i,

where x is in the imaginary axis. Recall that | · | denotes the normalized absolute value

associated to ∞. Let

‖b‖I := sup
x
|(I ∗b)(expρ(x))|
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where x ranges over the imaginary axis.

The following result shows that this supremum is always finite.

Lemma III.3 ([2], Lemma 1). For all b and I, the supremum ‖b‖I is finite and depends

only on the Artin automorphism (I,H/K) via the formula

‖b‖I = sup
x

∣∣∣∣∣∑i
b(I,H/K)

i (expI∗ρ(x))
i

∣∣∣∣∣ . (3.3)

Now set

‖b‖ := sup
I
‖b‖I (3.4)

where I ranges over all integral ideals of A. By the previous Lemma, ‖b‖ is finite for all b.

The function ‖ · ‖ is an ultrametric norm for H[t]. The properties of this norm are spelled

out in the next result.

Proposition III.4 ([2], Proposition 2). (1) There exists a positive integer n such that for all

b ∈ B[t] such that ‖b‖ ≤ 1 one has bqn
= b (and hence b is constant).

(2) If b ∈ B[t] satisfies ‖b‖< 1, then b = 0.

(3) The ring B[t] is discretely embedded in H[t] with respect to the topology defined by

the norm ‖ · ‖.

Next Anderson shows that the coefficients Zi(b), which a priori are in H[t], lie in B[t].

Let b = ∑i bit i ∈ H[t]. Let I be an integral ideal of A and let v be a finite valuation on H.

Set

v(b) := min
i

v(bi).

Proposition III.5 ([2], Proposition 6). For all b ∈ H[t] such that v(b) ≥ 0, and for all

integers i, we have v(Zi(b))≥ 0.

The third part of Anderson’s strategy for proving his Theorem III.2 is to give upper

bounds on the coefficients ei(ρ) and `i(b) in terms of the norm ‖ ·‖. First, the upper bound
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for ei(ρ).

Proposition III.6. ([2], Proposition 4) There exists a real number i0 ≥ 0 such that

‖ei(ρ)‖ ≤ q(i0−i)qi

for all integers i.

And now the upper bound for `i(b).

Proposition III.7. ([2], Proposition 7) For all b ∈H[t], there exists a real number j0(b)≥

0, such that

‖`i(b)‖ ≤ q j0(b)−i

for all integers i.

The number j0(b) can be explicitly computed as follows. Set

γ := max
I

qdeg I
∥∥∥∥ 1

D(ρI)

∥∥∥∥
where I ranges over all integral ideals of A. Note that the maximum exists because if I ∼ J

in Cl(A), then

qdeg I
∥∥∥∥ 1

D(ρI)

∥∥∥∥= qdegJ
∥∥∥∥ 1

D(ρJ)

∥∥∥∥ .
Thus, the maximum depends only on the ideal class of I. Then j0(b) is defined by

q j0(b) = max(1,γ ‖b‖).

The proof of Theorem III.2 can now be completed as follows. From the definition of

Zi(b) and by Propositions III.6 and III.7, we conclude

‖Zi(b)‖ ≤ sup
j≥0

q(i0+ j0(b)−i)q j
. (3.5)

Proposition III.5 implies that Zi(b) ∈ B[t] for all b ∈ B[t]. Thus, by Proposition III.4, we
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have that if i > i0 + j0(b) then Zi(b) = 0. This completes the proof. The numbers i0 and

j0(b) will be computed explicitly, first in the case of the Carlitz module, and later for a

more general function field.

C. Special Polynomials for the Carlitz Module

For the rest of this chapter (and for the rest of Anderson’s paper), the Drinfeld-Hayes A-

module in question is the Carlitz module C. Recall that the curve X = P1(Fq) and that the

distinguished point ∞ is the unique point at infinity on X . The degree of ∞, denoted d∞, is

1. The function field K = Fq(T ) and the functions regular away from ∞ are A = Fq[T ]. The

completion of K at ∞ is K∞ = Fq((1/T )). Elements of K∞ are of the form

∞

∑
i=m

ai

(
1
T

)i

for some m ∈ Z, ai ∈ Fq for all i, and am 6= 0. The field C∞ is the completion of K̄∞

with respect to | · |. Fix a sign function sgn such that sgn(T ) = 1. The Carlitz module

C : A→ C∞〈τ〉 is determined by

C(T ) :=CT := T τ
0 + τ,

where τ is the q-th power Frobenius map, and is extended to all of A by the “twisted” mul-

tiplication rule. It is easy to see (using the “twisted” multiplication rule and the definition

of CT ) that the image of A under the Carlitz module actually lies in A〈τ〉.

Let expC(z) be the exponential belonging to C. We also refer to this function as the

Carlitz exponential. It is known ([14], §13.4) that

expC(z) =
∞

∑
i=0

zqi

Di
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where D0 = 1 and, for i≥ 1,

Di :=
i−1

∏
j=0

(T qi
−T q j

).

In terms of our previous notation, ei(C) = 1/Di. The Carlitz exponential satisfies the fol-

lowing functional equation

expC(az) =Ca(expC(z))

for all a ∈ A and for all z ∈ C∞.

The lattice associated to C is of the form π̃C A where

π̃C = q−1
√

T −T q
∞

∏
i=0

(
1− T qi−T

T qi+1−T

)
.

The element π̃C is called the Carlitz period.

Let logC(z) be the logarithm belonging to C. This function, which by definition is the

formal power series inverse of expC, is also called the Carlitz logarithm. It is known ([14],

§13.4) that

logC(z) =
∞

∑
k=0

zqk

Lk

where L0 = 1 and, for k ≥ 1,

Lk :=
k

∏
j=1

(T −T q j
).

Define a function e : K∞→ K̄∞ by

e(x) := expC(π̃Cx).

For each nonnegative integer m, define the function lm : K∞→ K̄∞ by

lm(x) := ∑
a∈A+

e(ax)m

a
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where A+ denotes the set of monic elements of A. Define l0 : K∞→ K̄∞ by

l0(x) := ∑
a∈A+

1
a
.

The following is an explicit version of Theorem III.2 in the case of the Carlitz module.

We will be concerned with proving a generalization of this result in a later chapter.

Proposition III.8 ([2], Proposition 8). Let m be a nonnegative integer.

(1) The power series

Sm(t,z) := expC `(t
m;z) =

∞

∑
i=0

∑
a∈A+

1
Di

(
(Ca(t))m

a

)qi

zqi+dega

lies in A[t,z].

(2) If m < q, then Sm(t,z) = tmz.

(3) One has expC lm(x) = Sm(e(x),1) for all x ∈ K∞.

(4) For all θ ∈ F×q one has Sm(θt,z) = θmSm(t,z), and moreover Sm(t,z) is divisible by

tm.

(5) One has
Sm(t,z)

tm

∣∣∣∣
t=0

= ∑
a∈A+

am−1zqdega

for m > 0.

(6) The degree of Sm(t,z) in z (respectively t and T ) does not exceed qb(m−1)/(q−1)c (resp.

mqb(m−1)/(q−1)c and (m/q)qb(m−1)/(q−1)c).

(7) The specialization Sm(t,1) ∈ A[t] vanishes identically if m > 1 and m≡ 1 mod q−1.

We conclude our discussion of this Proposition with some remarks.

Remark III.9. The polynomial Sm(t,z) is called the m-th special polynomial for the Carlitz

module.
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Remark III.10. The choice of b ∈ B[t] in this case is b = tm. Note that since hA = 1, we

have that A = B.

Remark III.11. Recall that we have Z(tm;z) = expC `(t
m;z) and that Z(tm;z) may be ex-

panded as a power series:

Z(tm;z) =
∞

∑
i=0

Zi(tm)zqi
.

Proposition III.8(1) implies that

Zi(tm) =
1
Di

∑
a∈A+

(
(Ca(t))m

a

)qi

zqdega
.

From the remarks following Proposition III.7, we have that if i > i0+ j0(tm), then Zi(tm) =

0. Hence, qbi0+ j0(tm)c is an upper bound for the degree of Sm(t,z) in z. Thus, to prove

Proposition III.8(6), it is necessary to compute the numbers i0 and j0(tm). These numbers

are:

(1) i0 = 0;

(2) j0(tm) = m
q−1 .

Also, to compute j0(tm), it is necessary to compute the value ‖tm‖. In [2], it is shown

that

‖tm‖= sup
x∈K∞

{|expC(π̃Cx)|m}.

Since

|expC(π̃Cx)| ≤max
i≥0

(|ei(C)||π̃Cx|q
i
),

it is necessary to compute |π̃C|. This value is |π̃C|= qq/(q−1). We will return to these types

of calculations during the proof of our analogue of Proposition III.8.
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D. Special Points for the Carlitz Module

Fix a positive integer d. Let

M := {m ∈ Z | 1≤ m≤ qd−1,m 6≡ 1 mod q−1}.

Fix an irreducible p ∈ A+ of degree d and let (p) denote the ideal generated by p in A.

Consider the (p)-torsion of C:

C[(p)] =C[p] = {expC(π̃Ct) | t ∈ (p)−1A}

= {expC(π̃Ca/p) | a ∈ A}

= {e(a/p) | a ∈ A}.

Suppose a≡ a′ mod p. Then a = a′+pa′′ for some a′′ ∈ A. Therefore,

e(a/p) = e(a′/p)+ e(a′′) = e(a′/p)

since the Fq-linear function e(x) vanishes when x ∈ A. So the function e(x/p) for x ∈ A

depends only the residue of x mod p. Let Fp := A/p. For y ∈ Fp, choose y′ ∈ A such that

y≡ y′ mod p. Set

e(y/p) := e(y′/p). (3.6)

This definition is independent of the choice of y′ as we have previously shown. Thus, we

consider e(x/p) as a function on Fp.

It is known that C[p]∼= Fp as A-modules ([13], Proposition 12.4). Let λ := e(1/p) be

a generator of this module. Since d∞ = 1, we have that H+ = H. Since hA = 1, we have

H = K. Set

Kp := K(C[p]) = K(λ);

R := A[λ].
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The fraction field of R is K(λ) and, moreover, the integral closure of A in Kp is R ([13],

Proposition 12.9).

Let G := Gal(Kp/K). Let

a 7→ σa : F×p → G

be the unique isomorphism such that

σa(e(b/p)) = e(ab/p)

for all a,b ∈ Fp. Note that by the functional equation for the Carlitz module, it follows that

e(ab/p) =Ca(e(b/p)).

For any A-algebra R, let RC be a copy of R equipped with the A-module structure

(a,r) 7→ a∗ r :=Ca(r) : A×R→ R

The Carlitz exponential expC(z) becomes A-linear if viewed as a map K̄∞→ K̄C
∞. If r ∈ R

is viewed as an element of RC, i.e. via (1,r) 7→ C1(r) = r, then r is the coordinate of an

R-valued point of the Carlitz module.

Let m be a nonnegative integer. For each b ∈ F×p , let sm(b) be the R-valued point of

the Carlitz module with coordinate

sm(b) := expC `m(x) = Sm(e(x),1),

where x = b̃/p and b̃≡ b (mod p).

We claim that this definition does not depend upon the choice of b̃. Suppose b′ ∈ F×p

such that b′≡ b (mod p). Set x′= b′/p. Now b′≡ b̃ (mod p), so we may write b′= b̃+pa

for some a ∈ A. Then

e(x′) = e(b′/p) = e(b̃/p+a) = e(b̃/p) = e(x)
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since the Fq-linear function e(x) = expC(π̃Cx) vanishes if x ∈ A. This proves the claim.

Let S be the A-submodule of RC generated by the points of the form sm(b). Since

σasm(b) = sm(ab)

for all a,b ∈ F×p , the A-module S is G-stable. The elements of S are special points of the

Carlitz module. A special point is considered by Anderson to be the analogue of a circular

unit.

Since S0(t,z) = z by Proposition III.8(2), it follows that 1 ∈ A is the coordinate of the

special point s0(1). Note that λ ∈ R is the coordinate of the special point s1(1). To see

this, the coordinate of s1(1) is S1(e(1/p)) = e(1/p) by Proposition III.8(2). Also, s1(1) is

annihilated by p. In this case, observe that p∗ s1(1) =Cp(e(1/p)) = e(p ·1/p) = 0.

Since the module of special points is viewed as the analogue of the circular units,

Anderson proved a result analogous to Theorem III.1(1). First, Anderson showed that the

R-valued points of the Carlitz module of the form

{sm(1) | 0≤ m≤ qd−1}

generate S ([2], Proposition 9). Therefore, S is a finitely generated A-module. Then the

following result was proved.

Theorem III.12 ([2], Theorem 4). The A-rank of S is

(qd−1)((q−2)/(q−1)).

Remark III.13. We will refer to this result as Anderson’s A-rank theorem.

The rest of this chapter will be concerned with Anderson’s analogue of (3.1). Con-

sider ω : A→C×∞ where ω(a)≡ a mod p for all a ∈ A relatively prime to p. This is the Te-

ichumüller character on A. Notice that if a′ ≡ a′′ mod p, then ω(a′)≡ ω(a′′) mod p. Thus,
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for all a ∈ A relatively prime to p, ω(a) depends upon the residue of a mod p. Hence, we

consider ω as a character on F×p .

Proposition III.14 ([2], Proposition 10). Let m be an integer such that 1≤ m≤ qd−1.

(1) For every m and for every a∈ F×p , there exists a unique element e∗m(a)∈Kp such that

qd−1

∑
m=1

e(b/p)me∗m(a) = p ·δba

for all b ∈ F×p . Here,

δba =


1 if b = a;

0 if b 6= a.

(2) For all c ∈ F×q and for all a ∈ F×p , we have

e∗m(ca) = c−me∗m(a).

(3) For all a,b ∈ F×p , we have

σae∗m(b) = e∗m(ab).

(4) For all a ∈ F×p and for every m, we have

e∗m(a)− e(a/p)qd−1−m ∈ p ·R.

The numbers e∗m(a) are called dual coefficients.

Now let us recall our construction of the Goss L-function from the previous chapter.

Fix an integer 1 ≤ i ≤ qd − 1. We have that G = Gal(Kp/K) ∼= F×p . The character ωi ∈ Ĝ

and note that the kernel of ωi is p. The Goss L-function associated to ωi is

L( j,ωi) = ∑
I⊆A

(I,p)=1

ωi(I)
I[ j]

.
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Since hA = 1, the ideals of A are in bijection with A+. So, setting j = 1, we have

L(1,ωi) = ∑
a∈A+
(a,p)=1

ωi((a))
(a)[1]

= ∑
a∈A+
(a,p)=1

ωi(a)
a

.

Anderson then proved

L(1,ωi) =−
qd−1

∑
m=1

1
p ∑

a∈F×p

ω
i(a)e∗m(a)

 ∑
b∈F×p

ω
−i(b)lm(b/p)

 . (3.7)

We briefly explain the proof of this result. First, using Proposition III.14(1) and the

definition of the function lm(x), one shows

1
p

qd−1

∑
m=1

e∗m(a)lm(b/p) = ∑
n∈A+
(n,p)=1

bn≡a mod p

1
n

for all a,b ∈ F×p . Now multiply both sides of the preceding equation by ωi(a)ω−1(b) and

sum over a and b. And (3.7) follows.

By Proposition III.8(3) it follows that L(1,ωi) is an algebraic linear combination of

logarithms of special points. According to Anderson, this formula is the main reason for

viewing special points as analogues of circular units.
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CHAPTER IV

EXTENSIONS OF SPECIAL POINTS AND SPECIAL POLYNOMIALS WHEN hA = 1

AND d∞ = 1

A. Function Fields with hA = 1 and d∞ = 1

Our goals in this chapter are to prove an analogue of Proposition III.8 in the case of function

fields (other than Fq(T )) satisfying hA = 1 and d∞ = 1 and to define the module of special

points for such function fields. To do this, we will use the fact that there are only four

such function fields ([11], Theorem 2). The curves associated to these function fields are

as follows (cf., [18], Examples A–D):

• X1 : y2 = t3− t−1 over F3;

• X2 : y2 + y = t3 +α over F4 where α ∈ F4 satisfies α2 +α+1 = 0;

• X3 : y2 + y = t3 + t +1 over F2;

• X4 : y2 + y = t5 + t3 +1 over F2.

Note that we are writing these curves in the affine coordinates (t,y), but we also view

X1, X2, and X3 as projective plane curves as follows. Introduce a third variable z and

write coordinates in P2 as [t,y,z]. The equation defining each curve in P2 is given by

homogenizing the corresponding affine equation.

Consider X1. It is easy to check that the corresponding affine equation has no solutions

over F3. So the only possible points on this curve over F3 are at infinity. Homogenizing

the affine equation, we get

zy2 = t3− z2t− z3.

Setting z = 0, we conclude t = 0. Thus y 6= 0 (since at least on projective coordinate must

be nonzero), and since we are dealing with homogeneous coordinates, we conclude that
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the only point on X1 over F3 is [0,1,0]. A similar analysis shows that the only point on

all four curves (over F3, F4, F2, and F2 respectively) is the point [0,1,0]. Therefore, for

i = 1, . . . ,4, set

∞i := ∞ := [0,1,0].

We do not view X4 as a plane curve. It is easy to see that X4 is not smooth at ∞4. But

there exists a smooth projective curve X ′4 and a birational morphism φ from X ′4 onto X4. The

curve X ′4 is called the nonsingular model of X4. And the function field of X ′4 is identified,

using the map φ, with the function field of X4 ([3], §7.5).

Set

• A1 := F3[t,y]/(y2− t3 + t +1);

• A2 := F4[t,y]/(y2− y− t3−α);

• A3 := F2[t,y]/(y2− y− t3− t−1);

• A4 := F2[t,y]/(y2− y− t5− t3−1).

We have that A1, A2 and A3 are Dedekind domains since X1, X2 and X3 are smooth curves.

Since A4 consists of those rational functions which are regular away from ∞4, and ∞4 is the

only singular point on X4, we have that A4 is also a Dedekind domain. For i = 1, . . . ,4, the

function field Ki is defined to be the quotient field of Ai. For each Ki, we have hAi = 1 and

d∞ = 1 ([18], §2).

For each curve, we claim that deg t = 2. We will prove this for X1. The proof for the

remaining curves is similar. By definition, the number deg t satisfies

3deg t = #(A/(t)).
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Every element of A may be written as

f1(t)+ y f2(t)

for f1(t), f2(t) ∈ F3[t]. Thus,

A/(t)∼= {c+dy | c,d ∈ F3},

and this proves that deg t = 2.

For X1, X2, and X3, we claim that degy = 3. Again, we will prove this for X1 since

the proof for the remaining curves is similar. Observe that t3 = y2 + t +1≡ (t +1) mod y

and an easy induction argument shows that if j ≥ 3, then t j mod y is a polynomial in t of

degree ≤ 2. Hence,

A/(y)∼= {F1(t) | F1(t) ∈ F3[t],degF1 ≤ 2},

and so #(A/(y)) = 27. Therefore, degy = 3. A similar analysis shows that degy = 5 in the

case of X4.

B. Shtuka Functions

Let X be a smooth, irreducible projective curve defined over Fq and let K be its associated

function field. The divisor group of X , denoted Div(X), is the free abelian group generated

by the points of X . So a divisor D is a formal sum

D = ∑
P∈X

nP(P)

where nP ∈ Z and nP = 0 for all but finitely many P ∈ X . The group Gal(F̄q/Fq) acts on

Div(X):

Dσ := ∑
P∈X

nP(Pσ)
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for σ ∈ Gal(F̄q/Fq). Here Pσ is the point obtained by applying σ to the coordinates of P.

The divisor D is defined over K if Dσ = D for all σ ∈ Gal(F̄q/Fq). We denote the group of

divisors defined over K by DivK(X).

Let k ∈ K×. We associate to k a divisor by

div(k) := ∑
P∈X

ordP(k)(P).

(For a proof that div(k) is actually a divisor, see [13], Proposition 5.1.) Since

div(kσ) = div(k)σ

for all σ ∈ Gal(F̄q/Fq), we conclude that div(k) ∈ DivK(X).

Let ρ be a Drinfeld-Hayes A-module with respect to a fixed sign function sgn. For

i ≥ 0, let τi : C∞ → C∞ be the qi-th power Frobenius, i.e. τi(z) = zqi
for all z ∈ C∞. If

P ∈ X , then set P(i) to be the point obtained by raising the coordinates of P to the qi-th

power. If D = ∑P∈X nP(P) is a divisor, set

D(i) := ∑
P∈X

nP(P(i)).

If f is a function on X , set f (i) to be the function obtained by applying τi to the coefficients

of f . Note that

div( f (i)) = (div( f ))(i)

for all i≥ 0.

Let Ξ := (θ,η). We view θ ∈ C∞ as a constant which is a copy of the variable t and

η ∈C∞ as a constant which is a copy of the variable y. In other words, if (t,y) is a point on

X(Fq), then we think of (θ,η) as a point on X(C∞).

Let π∈K∞ be a monic uniformizer at ∞. Consider X̄ :=C∞⊗Fq X . Let F be a function
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on X̄ . Then F can be written
∞

∑
j=−m

a jπ
j,

with a j ∈ C∞ and a−m 6= 0. We set s̃gn F = a−m.

Proposition IV.1 ([7], §7.11). Let X̄ := C∞⊗Fq X. There exists a divisor V ∈ DivC∞
(X̄)

and a function f on X̄ such that

V (1)−V +(Ξ)− (∞(1)) = div( f ) (4.1)

holds in DivC∞
(X̄). If f is normalized so that s̃gn f = 1, then f is unique.

Definition IV.2. The function f is the shtuka function associated to ρ.

Remark IV.3. Suppose the curve X is defined by the vanishing of a polynomial g(t,y) ∈

Fq[t,y]. Then A = Fq[t,y]/(g). Define

Ā := C∞⊗Fq A = C∞[t,y]/(g).

The function field of X̄ is the fraction field of Ā. Therefore, the shtuka function f is an

element of the fraction field of Ā such that (4.1) holds. And if we assume that s̃gn f = 1,

then f is unique.

Now let us return to the case of our four curves. Let 1 ≤ i ≤ 4. Since hAi = 1 and

d∞ = 1, it follows that for each Ki, there is only one corresponding Drinfeld Ai-module,

and furthermore, it is a Drinfeld-Hayes Ai-module. Let ρi denote this Drinfeld-Hayes Ai-

module. We list them now (cf., [18] §2 and [7] §7.11).

• ρ1
t = θ+η(θ3−θ)τ+ τ2,

ρ1
y = η+η(η3−η)τ+(η9 +η3 +η)τ2 + τ3;

• ρ2
t = θ+(θ8 +θ2)τ+ τ2,

ρ2
y = η+(θ10 +θ)τ+(θ32 +θ8 +θ2)τ2 + τ3;
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• ρ3
t = θ+(θ2 +θ)τ+ τ2,

ρ3
y = η+(η2 +η)τ+θ(η2 +η)τ2 + τ3;

• ρ4
t = θ+(θ2 +θ)2τ+ τ2,

ρ4
y = η+b1τ+b2τ2 +b3τ3 +b4τ4 + τ5, where

b1 = (η2 +η)(θ2 +θ)

b2 = θ2(θ+1)(η2 +η)(θ3 +η)(θ3 +η+1)

b3 = η(η+1)(θ5 +θ3 +θ2 +θ+1)((1+θ2 +θ3)η+θ2 +θ4 +θ7)

×((1+θ2 +θ3)η+1+θ3 +θ4 +θ7)

b4 = (θ(η2 +η)(θ5 +θ2 +1)(θ+η)(θ+1+η))2.

Let f1(t,y), . . . , f4(t,y) denote the shtuka function associated to ρ1, . . . ,ρ4, respec-

tively. These functions are given by

• f1(t,y) =
−η(t−θ)+ y−η

t−θ−1
;

• f2(t,y) =
θ2(t +θ)+ y+η

t +θ
;

• f3(t,y) =
θ(t +θ)+ y+η

t +θ+1
;

• f4(t,y) =
(θ+ t)(θ4 +θ3 +(1+ t)θ2)+ y+η

θ3 + tθ2 +(1+ t)θ+ t2 + t
;

(cf., [7], §7.11).

Given the shtuka function fi(t,y), one can recover the Drinfeld-Hayes Ai-module ρi.

But first we need some definitions.

Definition IV.4. Let D = ∑P∈X nP(P) be a divisor of X j. The degree of D is defined as

degD := ∑
P∈X j

nP degP.

Definition IV.5. Let D = ∑P∈X nP(P) be a divisor of X j. We say that D is an effective

divisor if nP ≥ 0 for all P. We denote this by D≥ 0.
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Definition IV.6. Let D be a divisor of X j. Define

L(D) := {k ∈ K×j | div(k)+D≥ 0}∪{0}.

The space L(D) is a finite dimensional Fq-vector space ([13], Chapter 5). We define

l(D) := dimFq L(D).

Equivalently,

ql(D) = #L(D).

Definition IV.7. The genus of K j, denoted gK j , is defined to be the genus of X j.

The following is a corollary of the Riemann-Roch Theorem. It will be sufficient for

our applications.

Theorem IV.8 ([13], Corollary 4 to Theorem 5.4). Let D be a divisor of X j. If degD >

2gK j −2, then l(D) = degD−gK j +1.

We are now ready to explain how to use the shtuka function fi(t,y) to recover the

Drinfeld-Hayes Ai-module ρi. We give the details only for i = 1 as the remaining cases are

similar. Let L :=
⋃

m≥0 L(V +m∞). We claim that

1, f1, f1 f (1)1 , f1 f (1)1 f (2)1 , . . .

is a basis for L. First since ∞ = [0,1,0] for A1, it follows that ∞(i) = ∞ for all i≥ 0. Second,

the observation that

div( f (i)1 ) = (div( f ))(i)

for all i≥ 0 and (4.1) imply

div( f (i)1 ) =V (i+1)−V (i)+(Ξ(i))− (∞)
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for all i≥ 0. Hence,

div( f1 f (1)1 · · · f
(i)
1 ) = div( f1)+div( f (1)1 )+ · · ·+div( f (i)1 )

=V (i+1)−V +Ξ+Ξ
(1)+ · · ·+Ξ

(i)− (i+1)∞

for all i ≥ 0. It follows that f1 f (1)1 · · · f
(i)
1 ∈ L(V +(i+1)∞) since V is an effective divisor

(§7.11, [7]). And 1 ∈ L since div(1) = 0. Now degV = gK1 (§7.11, [7]) and so deg(V +

m∞) = gK1 +m = 1+m. Theorem IV.8 implies that

l(V +m∞) = 1+m−1+1 = m+1.

We have

L(V +m∞)( L(V +(m+1)∞)

since f1 f (1)1 · · · f
(m)
1 ∈ L(V +(m+1)∞) and f1 f (1)1 · · · f

(m)
1 /∈ L(V +m∞). It follows that L

is infinite-dimensional and this concludes the proof of the claim since

{1, f1, f1 f (1)1 , f1 f (1)1 f (2)1 , . . .}

is clearly a linearly independent subset of L over C∞.

Now t ∈ L since div(t) = 2(0)−2(∞). Write

t = a0 +a1 f1(t,y)+a2 f1(t,y) · f (1)1 (t,y)+ ∑
n≥3

an f1(t,y) f (1)1 (t,y) · · · f (n−1)
1 (t,y) (4.2)

for some constants a0,a1, . . . . From (4.1), we conclude that f1(θ,η) = 0 which implies that

a0 = θ. Also, (4.1) implies

div( f (1)1 ) =V (2)−V (1)+Ξ
(1)− (∞(2))

so that f (1)1 (t,y) vanishes at Ξ(1) = (θ3,η3) and does not vanish at Ξ(2) = (θ9,η9). There-
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fore,

a1 =
t−θ

f1(t,y)

∣∣∣∣
(t,y)=(θ3,η3)

= η(θ3−θ)

and

a2 =
t−θ−a1 f1(t,y)

f1(t,y) f (1)1 (t,y)

∣∣∣∣∣
(t,y)=(θ9,η9)

= 1

after some algebra because f (2)1 (t,y) vanishes at Ξ(2).

We now claim that an = 0 for n≥ 3. We have

deg( f1 f (1)1 · · · f
(n−1)
1 ) =−ord∞( f1 f (1)1 · · · f

(n−1)
1 ) = n

for all n≥ 1. Taking the degree of both sides of (4.2) and using the fact that deg t = 2, we

see that an = 0 for n ≥ 3. Hence, we have recovered ρ1
t . Since ρ1 is uniquely determined

by ρ1
t , we have thus recovered ρ1 from the shtuka function f1(t,y).

The following result is the main reason why we consider the shtuka function.

Theorem IV.9 ([7], Proposition 7.11.4). Let 1 ≤ i ≤ 4. Let Ki be as above. Let fi(t,y) be

the shtuka function associated to the Drinfeld-Hayes Ai-module ρi. Then

expρi(z) = z+ ∑
n≥1

zqn

( f (0)i · · · f
(n−1)
i ) |(t,y)=(θqn

,ηqn
)

,

where ( f (0)i · · · f
(n−1)
i ) |(t,y)=(θqn

,ηqn
)= f (0)i (θqn

,ηqn
) · · · f (n−1)

i (θqn
,ηqn

).

To see why this is true, consider the case i= 1 (and we will stop writing the index 1 for

the moment) and let E(z) be the function on the right hand side of the previous displayed

equation. We now explain how to use (4.2) to verify that E(z) satisfies

expρ(θz) = ρt(E(z)). (4.3)

First,

expρ(θz) = θz+ ∑
n≥1

θ3n
z3n

f · · · f (n−1)|
Ξ(n)

.
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We compute

ρt(expρ(z)) = θexpρ(z)+a1(expρ(z))
3 +(expρ(z))

9 (a1 = η(θ3−θ) as before)

= θexpρ(z)+a1

(
z3 + ∑

m≥1

z3m+1

[ f · · · f (m−1)|
Ξ(m)]3

)
+ z9 + ∑

n≥1

z3n+2

[ f · · · f (n−1)|
Ξ(n)]9

= θz+ ∑
l≥1

θz3l

f · · · f (l−1)|
Ξ(l)

+a1

(
z3 + ∑

m≥1

z3m+1

f (1) · · · f (m)|
Ξ(m+1)

)

+ z9 + ∑
n≥1

z3n+2

f (2) · · · f (n+1)|
Ξ(n+2)

= θz+ ∑
l≥1

θz3l

f · · · f (l−1)|
Ξ(l)

+a1

(
z3 + ∑

m≥1

z3m+1
f |

Ξ(m+1)

f · · · f (m)|
Ξ(m+1)

)

+ z9 + ∑
n≥1

z3n+2
f f (1)|

Ξ(n+2)

f · · · f (n+1)|
Ξ(n+2)

.

The coefficient of z in ρt(expρ(z)) is θ. The coefficient of z3 in ρt(expρ(z)) is

θ

f |
Ξ(1)

+a1 =
θ

f |
Ξ(1)

+
θ3−θ

f |
Ξ(1)

=
θ3

f |
Ξ(1)

as expected. The coefficient of z9 in ρt(expρ(z)) is

θ

f f (1)|
Ξ(2)

+
a1 f |

Ξ(2)

f f (1)|
Ξ(2)

+1 =
θ9− f f (1)|

Ξ(2)

f f (1)|
Ξ(2)

+1 =
θ9

f f (1)|
Ξ(2)

where the first equality follows from

θ
9−θ−a1 f |

Ξ(2) = f f (1)|
Ξ(2)

which is how the coefficient a2 was defined. Finally, if N ≥ 3, the coefficient of z3N
in

ρt(expρ(z)) is

θ

f · · · f (N−1)|
Ξ(N)

+
a1 f |

Ξ(N)

f · · · f (N−1)|
Ξ(N)

+
f f (1)|

Ξ(N)

f · · · f (N−1)|
Ξ(N)

=
θ3N

f · · · f (N−1)|
Ξ(N)
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which follows by evaluating both sides of Equation (4.2) at Ξ(N). This concludes the proof

of (4.3).

C. Computation of i0(ρ)

Let 1≤ j ≤ 4. We set i0(ρ j) to be the real number (from Proposition III.6) satisfying

‖ei(ρ
j)‖ ≤ q(i0(ρ

j)−i)qi

where e0(ρ
j) = 1 and the coefficients ei(ρ

j) for i≥ 1 are determined by

expρ j(z) = z+∑
i≥1

ei(ρ
j)zqi

.

Theorem IV.9 implies that

ei(ρ
j) =

1

f (0)j · · · f
(i−1)
j |

(t,y)=(θqi
,ηqi

)

(4.4)

for i≥ 1. Our explicit formulas for the shtuka functions imply that ei(ρ
j)∈K j for all i≥ 0.

Hence,

‖ei(ρ
j)‖= |ei(ρ

j)|.

Let Di(ρ
j) denote the denominator of the right hand side of (4.4). It follows that

degei(ρ
j) =−degDi(ρ

j) and so

|ei(ρ
j)|= q−degDi(ρ

j) (4.5)

for i≥ 1. We will also use the observation that for i≥ l,

f (l)j (θqi
,ηqi

) = f j(θ
qi−l

,ηqi−l
)ql

. (4.6)

Set

• A1 := F3[θ,η]/(η
2−θ3 +θ+1);
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• A2 := F4[θ,η]/(η
2−η−θ3−α);

• A3 := F2[θ,η]/(η
2−η−θ3−θ−1);

• A4 := F2[θ,η]/(η
2−η−θ5−θ3−1).

Note that each Ai is just Ai where we have replaced t with θ and y with η. We may define

the degree of an element in Ai, which we also denote by deg, exactly as we have done with

Ai. With this in mind, we have that deg t = degθ and degy = degη where the first deg is

the degree in Ai and the second deg is the degree in Ai.

First, consider K1. We have

f1(θ
3i
,η3i

) =
−η(θ3i−θ)+η3i−η

θ3i−θ−1
.

Note that degη3i
= 3 ·3i ≥ deg(η ·θ3i

) = 3+2 ·3i with equality if i = 1. Since

f1(θ
3,η3) =

−η(θ3−θ)+η3−η

θ3−θ−1
=

η(η2 +1)+η3−η

η2 =
1
η
,

we conclude that deg f1(θ
3,η3) =−3. For i≥ 2, we have

deg f1(θ
3i
,η3i

) = 3 ·3i−degθ
3i

= 3 ·3i−2 ·3i

= 3i.

If follows that

deg f1 f (1)1 · · · f
(i−1)
1 (θ3i

,η3i
) = deg f1(θ

3i
,η3i

) f1(θ
3i−1

,η3i−1
)3 · · · f1(θ

3,η3)3i−1

= 3i +3 ·3i−1 + · · ·3i−2 ·32 +3i−1(−3)

= (i−2)3i

for i ≥ 1 and so |ei(ρ
1)| = 3(2−i)3i

, for i ≥ 1. Since |e0(ρ
1)| = 1 ≤ 3(2−0)30

, we may take
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i0(ρ1) = 2.

For K2, we have

f2(θ
4i
,η4i

) =
θ2(θ4i

+θ)+η4i
+η

θ4i
+θ

,

and degη4i
= 3 ·4i ≥ deg(θ2 θ4i

) = 4+2 ·4i with equality if i = 1. Since

f2(θ
4,η4) =

θ2(θ4 +θ)+η4 +η

θ4 +θ
=

θ6 +θ3 +(θ6 +α2 +η2)+η

θ4 +θ

=
θ3 +α2 +θ3 +α

θ4 +θ

=
1

θ4 +θ
,

we have that deg f2(θ
4,η4) =−8. If i≥ 2, then

deg f2(θ
4i
,η4i

) = 3 ·4i−degθ
4i

= 3 ·4i−2 ·4i

= 4i.

It follows that

deg f2 f (1)2 · · · f
(i−1)
2 (θ4i

,η4i
) = deg f2(θ

4i
,η4i

) f2(θ
4i−1

,η4i−1
)4 · · · f2(θ

4,η4)4i−1

= 4i +4 ·4i−1 + · · ·4i−2 ·42 +4i−1(−8)

= (i−3)4i

for i≥ 1 and so |ei(ρ
2)|= 4(3−i)4i

for i≥ 1. Hence, we may take i0(ρ2) = 3.

For K3, we have

f3(θ
2i
,η2i

) =
θ(θ2i

+θ)+η2i
+η

θ2i
+θ+1

.

Note that degη2i
= 3 ·2i ≥ deg(θ θ2i

) = 2+2 ·2i with equality if i = 1. Since

f3(θ
2,η2) =

θ(θ2 +θ)+η2 +η

θ2 +θ+1
=

θ3 +θ2 +θ3 +θ+1
θ2 +θ+1

= 1,
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we conclude that deg f3(θ
2,η2) = 0. For i≥ 2, we have

deg f3(θ
2i
,η2i

) = 3 ·2i−degθ
2i

= 3 ·2i−2 ·2i

= 2i.

It follows that

deg f3 f (1)3 · · · f
(i−1)
3 (θ2i

,η2i
) = deg f3(θ

2i
,η2i

) f3(θ
2i−1

,η2i−1
)2 · · · f3(θ

2,η2)2i−1

= 2i +2 ·2i−1 + · · ·2i−2 ·22 +0

= (i−1)2i

for i≥ 1 and so |ei(ρ
3)|= 2(1−i)2i

for i≥ 1. Hence, we may take i0(ρ3) = 1.

The analysis for K4 is similar but more involved. Recall that for this curve, degη = 5.

We first begin by simplifying the shtuka function:

f4(t,y) =
(θ+ t)(θ4 +θ3 +(1+ t)θ2)+ y+η

θ3 + tθ2 +(1+ t)θ+ t2 + t

=
θ2t2 +(θ4 +θ2)t + y+θ5 +θ4 +θ3 +η

t2 +(θ2 +θ+1)t +θ3 +θ

Then

f4(θ
2i
,η2i

) =
θ2i+1+2 +θ2i+4 +θ2i+2 +η2i

+θ5 +θ4 +θ3 +η

θ2i+1
+θ2i+2 +θ2i+1 +θ2i

+θ3 +θ
.

First,

f4(θ
2,η2) =

θ6 +θ6 +θ4 +θ5 +θ4 +θ3 +η2 +η

θ4 +θ4 +θ3 +θ2 +θ3 +θ

=
θ5 +θ3 +θ5 +θ3 +1

θ2 +θ

=
1

θ2 +θ
,
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and so deg f4(θ
2,η2) =−4. Next,

f4(θ
4,η4) =

θ10 +θ8 +θ6 +θ5 +θ4 +θ3 +η4 +η

θ8 +θ6 +θ5 +θ4 +θ3 +θ
.

Since η4 = θ10+θ6+θ5+θ3+η, it follows that the term of highest degree in both the nu-

merator and denominator is θ8. Therefore, deg f4(θ
4,η4) = 0. For i≥ 3, the term of highest

degree in the numerator and denominator of f4(θ
2i
,η2i

) is η2i
and θ2i+1

, respectively. Thus,

deg f4(θ
2i
,η2i

) = 5 ·2i−2 ·2i+1 = 2i for i≥ 3.

We have that |e1(ρ
4)|= 24. Since

deg f4 f (1)4 (θ4,η4) = deg f4(θ
4,η4)+deg f4(θ

2,η2)2

=−8,

we conclude that |e2(ρ
4)|= 28. For i≥ 3, we have

deg f4 f (1)4 · · · f
(i−1)
4 (θ2i

,η2i
) = deg f4(θ

2i
,η2i

) f4(θ
2i−1

,η2i−1
)2 · · · f4(θ

4,η4)2i−2
f4(θ

2,η2)2i−1

= 2i +2 ·2i−1 + · · ·+8 ·2i−3 +0+(−4)2i−1

= (i−4)2i,

and so |ei(ρ
4)|= 2(4−i)2i

. It follows that we can take i0(ρ4) = 4.

We record our results for future reference.

Proposition IV.10. Let 1≤ j ≤ 4. Let K j and i0(ρ j) be as above. Then

(1) i0(ρ1) = 2.

(2) i0(ρ2) = 3.

(3) i0(ρ3) = 1.

(4) i0(ρ4) = 4.
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D. Computation of j0(tm;ρ j)

We continue with the notation of the previous sections.

Let π j be a fixed monic uniformizer at ∞ j. Recall that the imaginary axis is the one-

dimensional (K j)∞-subspace of ¯(K j)∞
spanned by the (q−1)st roots of −π

−1
j . We denote

this subspace by (K j)∞ · q−1
√
−π
−1
j .

For each K j, we set b = tm. In this section we will compute j0(tm;ρ j) which is deter-

mined by

q j0(tm;ρ j) = max(1,γ j‖tm‖)

where

γ j = max
I

qdeg I

∥∥∥∥∥ 1

D(ρ
j
I )

∥∥∥∥∥ .
The maximum is taken over all integral ideals I of A j. We first compute γ j since it will be

the same for each of our four function fields.

Since hA j = 1, it follows that A j is a principal ideal domain. Furthermore, the generator

of every ideal may be chosen to be a monic element of A j. Hence, there is a bijection

between (A j)+ and the integral ideals of A j. This implies that

γ = max
a∈(A j)+

qdega

∥∥∥∥∥∥ 1

D(ρ
j
(a))

∥∥∥∥∥∥ .
Since a ∈ (A j)+, we have ρ

j
(a) = ρ

j
a ([13], Proposition 13.14) and since ρ j is a Drinfeld-

Hayes A j-module, it follows that D(ρ
j
a) = a. Thus we are reduced to computing

∥∥∥∥1
a

∥∥∥∥ . By

Lemma III.3 and (3.4), it follows that∥∥∥∥1
a

∥∥∥∥= ∣∣∣∣1a
∣∣∣∣= q−dega,

and so γ j = 1 for all 1≤ j≤ 4. The computation of j0(tm;ρ j) is thus reduced to computing

‖tm‖.
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Again by Lemma III.3 and (3.4), and since hA j = 1, we have

‖tm‖= sup
a∈(A j)+

sup
x
|(exp(a)∗ρ j(x))m|

= sup
x
|(expρ j(x))m|,

where the second supremum is taken over all x in the imaginary axis. The second equality

holds since (a)∗ρ j = ρ j.

Suppose that the period lattice of ρ j equals π̃ρ j A. We claim that

(K j)∞ · π̃ρ j = (K j)∞ · q−1
√
−π
−1
j , (4.7)

where (K j)∞ · π̃ρ j denotes the (K j)∞-subspace of K̄ j∞ spanned by π̃ρ j . Since the period

lattice is contained in the imaginary axis ([2], §2.6), this proves ⊆. As for the other in-

clusion, since q−1
√
−π
−1
j = π j

q−1
√
−π
−q
j and π j ∈ (K j)∞, it is enough to show that (K j)∞ ·

q−1
√
−π
−q
j ⊆ (K j)∞ · π̃ρ j . Thus, we need only show that

q−1
√
−π
−q
j ∈ (K j)∞ · π̃ρ j . (4.8)

We know that π̃
q−1
ρ j ∈ (K j)∞ ([7], Theorem 7.10.10), so π̃

q−1
ρ j may be expressed in terms of

π j as

π̃
q−1
ρ j = cπ

(1−q)deg(π̃
ρ j )

j u,

where c := sgn(π̃q−1
ρ j ). Thus

π
−q
j = c−1u−1

π
−q+(q−1)deg(π̃

ρ j )

j · π̃q−1
ρ j

which, upon taking (q−1)st roots, proves (4.8) and thus (4.7).
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Consider K1. Set π1 = t/y. Consider the following inclusions:

A1 = F3[t,y] ⊆ K1 = F3(t,y) ⊆ (K1)∞ = F3((
t
y))

| | |

F3[t] ⊆ F3(t) ⊆ F3((
1
t )).

We have that [K1 : F3(t)] = 2 and we claim that

[(K1)∞ : F3((1/t))] = 2. (4.9)

We will use the following two results.

Theorem IV.11 ([14], Theorem 5.4.8). Let K be a function field and let X be the associated

curve. Let L/K be a finite extension of function fields. Let P ∈ X and let Pi be an ideal of L

lying above P. Denote by KP (respectively LPi) the completion of K (resp. L) with respect

to P (resp. Pi). Then

[LPi : KP] = e(Pi/P) f (Pi/P).

Theorem IV.12 ([13], Proposition 9.3). Let K, P and L be as before but assume now that

L/K is a Galois extension. Let {P1, . . . ,Pg(P)} be the prime ideals of L lying above P.

Then f (Pi/P) = f (P j/P) and e(Pi/P) = e(P j/P) for all 1≤ i, j≤ g(P). If we denote by

f (P) the common relative degree and by e(P) the common ramification index, then

e(P) f (P)g(P) = [L : K].

Since K1/F3(t) is Galois of degree 2, it follows that [(K1)∞ : F3((1/t))] is either 1 or

2. If it is 1, then (K1)∞ = F3((1/t)). Therefore, y ∈ F3((1/t)) and so

y = ∑
i≥m

αi

(
1
t

)i

for some m ∈ Z,αi ∈ F3 and αm 6= 0. Taking degrees we conclude that 3 =−2m, which is



58

a contradiction. This proves (4.9). We conclude that

(K1)∞ = F3((1/t))(y).

Now if y ∈ (K1)∞, then y = α+ βy for some α,β ∈ F3((1/t)). We have that y =

α+βy ∈ A1 if and only if α,β ∈ F3[t]. Putting everything together, we conclude that if x is

in the imaginary axis, then

x = yπ̃ρ1 for some y ∈ (K1)∞

= (a+ z)π̃ρ1

for some a ∈ A1 and for

z ∈ 1
t
F3[[1/t]]+

1
t
F3[[1/t]]y.

Since expρ1(x) = expρ1((a+ z)π̃ρ1) = expρ1(zπ̃ρ1), we conclude that

‖tm‖= sup
{
|expρ1(zπ̃ρ1)|m : z ∈ 1

t
F3[[1/t]]+

1
t
F3[[1/t]]y

}
.

Exactly as above, we may determine ‖tm‖ for the cases of K2 and K3. For K2, we have

‖tm‖= sup
{
|expρ2(zπ̃ρ2)|m : z ∈ 1

t
F4[[1/t]]+

1
t
F4[[1/t]]y

}
.

For K3, we have

‖tm‖= sup
{
|expρ3(zπ̃ρ3)|m : z ∈ 1

t
F2[[1/t]]+

1
t
F2[[1/t]]y

}
.

For K4, set π4 = t2/y. Again, using the same argument as above, we get

(K4)∞ = F2((t2/y)) = F2((1/t))(y)

and so

‖tm‖= sup
{
|expρ4(zπ̃ρ4)|m : z ∈ 1

t
F2[[1/t]]+

1
t
F2[[1/t]]y

}
.
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Now, for 1≤ j ≤ 4,

|expρ j(zπ̃ρ j)|=

∣∣∣∣∣ ∞

∑
i=0

ei(ρ
j)(zπ̃ρ j)qi

∣∣∣∣∣≤max
i≥0

(|ei(ρ
j)| |zπ̃ρ j |q

i
)

with equality holding if the values

{|ei(ρ
j)| · |zπ̃ρ j |q

i
: i≥ 0}

are distinct. Since we have already computed the values |ei(ρ
j)|, our computation of ‖tm‖

will be concluded upon computing |π̃ρ j |.

E. Computing the Absolute Value of the Period

We again continue with the notations of the previous sections. Let 1≤ j ≤ 4.

Definition IV.13. Let I j ⊆ A j be an ideal and a ∈ A j. Set

Za,I j(u) := ∑
b∈A j

b≡a mod I j

udegb.

The absolute value of the period π̃ρ j and the function Za,I j(u) are related to one another

via the following result.

Proposition IV.14 ([7], Corollary 7.10.11). Let Z′a,I j
(u) = d

duZa,I j(u). Then |π̃ρ j |= q
Z′0,A j

(1)
.

So we need to compute

Z0,A j(u) = ∑
b∈A j

udegb = ∑
i≥0

#(A j)iui

where (A j)i denotes the set of elements of A j of degree i. To compute #(A j)i, we will

appeal to Theorem IV.8 from Section B.

We first consider K1, K2, and K3 together since they each have genus 1. In what

follows, 1≤ j ≤ 3.
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Clearly, #(A j)0 = #F×q j
= q j−1 and, for i≥ 1, we have

#(A j)i = #{b ∈ A j : ord∞ j(b) =−i}

= #{b ∈ A j : ord∞(b)≥−i}−#{b ∈ A j : ord∞ j(b)≥−i+1}

= #L(i∞ j)−#L((i−1)∞ j)

= ql(i∞ j)
j −ql((i−1)∞ j)

j .

Now # (A j)1 = ql(∞ j)
j −ql(0)

j = ql(∞ j)−q j since l(0) = 1. By Theorem IV.8, since d∞ j = 1,

we have l(i∞ j) = i for i≥ 1. Hence,

#(A j)i =


q j−1 if i = 0;

0 if i = 1;

qi
j−qi−1

j if i≥ 2.

Hence,

Z0,A j(u) = q j−1+(q j−1)
q ju2

1−q ju
(4.10)

and so

Z′0,A j
(1) =

q j(q j−2)
1−q j

. (4.11)

For K4, gK4 = 2, and so our computation will be similar. As opposed to our previ-

ous analysis, we will use the fact that we know A4 explicitly. Recall that for K4, A4 =

F2[t,y]/(y2− y− t5− t3−1) with deg t = 2, degy = 5 and d∞4 = 1.

Note that

(A4)0 = F×2 ;

(A4)1 =∅;

(A4)2 = {t +a | a ∈ F2};

(A4)3 =∅;
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(A4)4 = {t2 +at +b | a,b ∈ F2};

(A4)5 = {y+at2 +bt + c | a,b,c ∈ F2}.

Theorem IV.8 implies `( j∞4) = j−1 for j ≥ 5. Thus, for i≥ 6,

#(A4)i = 2`(i∞4)−2`((i−1)∞4)

= 2i−1−2i−2

= 2i−2

exactly as above. We conclude that

Z0,A4(u) = 1+2u2 +4u4 +8u5 +∑
i≥6

2i−2ui

= 1+2u2 +4u4 +8u5 +
16u6

1−2u
,

and so

Z′0,A4
(1) =−4. (4.12)

F. Computing ‖tm‖

For K1, we have that |π̃ρ1|= 3−3/2 by (4.11) and

|ei(ρ
1)|=


1 if i = 0

3−(i−2)3i
if i≥ 1

from Section C. Thus, for

z ∈ 1
t
F3[[1/t]]+

1
t
F3[[1/t]]y,
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we have

|ei(ρ
1)(zπ̃ρ1)3i

|m =


(3degz3−3/2)m if i = 0

(3−(i−2)3i
33i degz3(−3/2)3i

)m if i≥ 1

=


3m(degz−3/2) if i = 0

3m3i(1/2+degz−i) if i≥ 1.

Let F1(i) := 3i(1/2+degz− i). Then F1 is maximized when i = degz+1/2−1/ log3.

Since i must be an integer, we conclude that F1 is maximized at either i = degz or at

i = degz−1. Since degz≤ 1, the maximum value of F1 on [1,∞)∩Z is

F1(degz) =
1
2

3degz.

So

|expρ1(zπ̃ρ1)|m = max
i≥1

(3m(degz−3/2),3m3i(1/2+degz−i))

= max(3m(degz−3/2),3m(1/2)degz)

= 3(m/2)3degz
.

Therefore

‖tm‖= sup
{

3(m/2)3degz
: z ∈ 1

t
F3[[1/t]]+

1
t
F3[[1/t]]y

}
= 33(m/2)

since the supremum is attained for z = y/t which is of degree 1. From the expression

3 j0(tm;ρ1) = max(1,‖tm‖),
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we conclude that

j0(tm;ρ
1) =

3
2

m. (4.13)

For K2, we have |π̃ρ2|= 4−8/3 by (4.11) and

|ei(ρ
2)|=


1 if i = 0

48 if i = 1

4−(i−3)4i
if i≥ 2

from Section C. Thus, for

z ∈ 1
t
F4[[1/t]]+

1
t
F4[[1/t]]y,

we have

|ei(ρ
2)(zπ̃ρ2)4i

|m =


(4degz4−8/3)m if i = 0

(4844degz4−32/3)m if i = 1

(4−(i−3)4i
44i degz4(−8/3)4i

)m if i≥ 2

=


4m(degz−8/3) if i = 0

4m(degz−8/3) if i = 1

4m4i(1/3+degz−i) if i≥ 2.

Let F2(i) := 4i(1/3+degz− i). Then F2 is maximized when i = degz+1/3−1/ log4.

Using the same argument as for K1, we conclude that the maximum value of F2 on [1,∞)∩Z

is

F2(degz) =
1
3

4degz.
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So

|expρ2(zπ̃ρ2)|m = max
i≥2

(4m(degz−8/3),4m(4degz−8/3),4m4i(1/3+degz−i))

= max(4m(degz−8/3),4m(4degz−8/3),4m(1/3)degz)

= 4(m/3)4degz
.

Therefore

‖tm‖= sup
{

4(m/3)4degz
: z ∈ 1

t
F4[[1/t]]+

1
t
F4[[1/t]]y

}
= 44(m/3)

since the supremum is attained for z = y/t which is of degree 1. From the expression

4 j0(tm;ρ2) = max(1,‖tm‖),

we conclude that

j0(tm;ρ
2) =

4
3

m. (4.14)

For K3, we have |π̃ρ3|= 1 by (4.11) and

|ei(ρ
3)|=


1 if i = 0,1

2−(i−1)2i
if i≥ 2

from Section C. Thus, for

z ∈ 1
t
F2[[1/t]]+

1
t
F2[[1/t]]y,
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we have

|ei(ρ
3)(zπ̃ρ3)2i

|m =


(2degz)m if i = 0

(22degz)m if i = 1

(2−(i−1)2i
22i degz)m if i≥ 2

=


2mdegz if i = 0

22mdegz if i = 1

2m2i(1+degz−i) if i≥ 2

Let F3(i) := 2i(1+ degz− i). Then F3 is maximized when i = degz+ 1− 1/ log2.

Using the same argument as for K1 and K2, we conclude that the maximum value of F3 on

[1,∞)∩Z is

F3(degz) = 2degz.

So

|expρ3(zπ̃ρ3)|m = max
i≥2

(2mdegz,22mdegz,2m2i(1+degz−i))

= max(2mdegz,22mdegz,2m2degz
)

= 2m2degz
.

Therefore

‖tm‖= sup
{

2m2degz
: z ∈ 1

t
F2[[1/t]]+

1
t
F2[[1/t]]y

}
= 22m

since the supremum is attained for z = y/t which is of degree 1. From the expression

2 j0(tm;ρ3) = max(1,‖tm‖),
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we conclude that

j0(tm;ρ
3) = 2m. (4.15)

The analysis for K4 is almost the same as our previous cases. The main difference is

that now degη = 5. We have |π̃ρ4|= 2−4 by (4.12) and

|ei(ρ
4)|=



1 if i = 0

24 if i = 1

28 if i = 2

2−(i−4)2i
if i≥ 3

from Section C. Thus, for

z ∈ 1
t
F2[[1/t]]+

1
t
F2[[1/t]]y,

we have

|ei(ρ
4)(zπ̃ρ4)2i

|m =



(2degz2−4)m if i = 0

(2422degz2−8)m if i = 1

(2824degz2−16)m if i = 2

(2−(i−4)2i
22i degz22i(−4))m if i≥ 3

=



2m(degz−4) if i = 0

2m(2degz−4) if i = 1

2m(4degz−8) if i = 2

2m2i(degz−i) if i≥ 3
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=


2m(degz−4) if i = 0

2m(2degz−4) if i = 1

2m2i(degz−i) if i≥ 2.

Note that now degz≤ 3.

Let F4(i) := 2i(degz− i). Then F4 is maximized when i = degz− 1/ log2. Since i

must be an integer, F4 is maximized at either i = degz−1 or at i = degz−2. Note that in

this case,

F4(degz−1) = F4(degz−2) = 2degz−1.

So

|expρ4(zπ̃ρ4)|m = max
i≥2

(2m(degz−4),2m(2degz−4),2m2i(degz−i))

= max(2m(degz−4),2m(2degz−4),2m2degz−1
)

= 2m2degz−1
.

Therefore

‖tm‖= sup
{

2m2degz−1
: z ∈ 1

t
F2[[1/t]]+

1
t
F2[[1/t]]y

}
= 24m

since the supremum is attained for z = y/t which is of degree 3. From the expression

2 j0(tm;ρ4) = max(1,‖tm‖),

we conclude that

j0(tm;ρ
4) = 4m. (4.16)

Let us recap our results.
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Proposition IV.15. For 1 ≤ j ≤ 4, let K j be the function field associated to the curve X j

and let ρ j be the unique Drinfeld-Hayes A j-module associated to K j. Let j0(tm;ρ j) be as

in Proposition III.7. Then

(1) j0(tm;ρ1) = (3/2)m.

(2) j0(tm;ρ2) = (4/3)m.

(3) j0(tm;ρ3) = 2m.

(4) j0(tm;ρ4) = 4m.

Remark IV.16. We note the following pattern evident in our previous result. For all 1 ≤

j ≤ 4,

j0(tm;ρ
j) = gK j

q j

q j−1
m.

G. Special Polynomials

We still continue with the notations of the previous sections. Let 1≤ j ≤ 4.

Consider the function e j : (K j)∞→ (K̄ j)∞ defined by

e j(x) := expρ j(π̃ρ jx)

and, for each nonnegative integer m, the function lm : (K j)∞→ (K̄ j)∞ defined by

lm(x) := ∑
a∈(A j)+

e j(ax)m

a
.

Define l0 : (K j)∞→ (K̄ j)∞ by

l0(x) := ∑
a∈(A j)+

1
a
.

Proposition IV.17. For 1 ≤ j ≤ 4, let K j be the function field associated to the curve X j

and let ρ j be the unique Drinfeld-Hayes A j-module associated to K j.
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(1) The power series

S(tm;z) := expρ j `(tm;z) = ∑
i≥0

ei(ρ
j) ∑

a∈(A j)+

(
(ρ

j
a(t))m

a

)qi

zqi+dega

lies in A j[t,z].

(2) One has expρ j lm(x) = S(tm;1)|t=e j(x).

(3) For all c ∈ F×q , one has S(tm;z)|t=ct = cmS(tm;z), and moreover S(tm;z) is divisible

by tm.

(4) One has
S(tm;z)

tm

∣∣∣∣
t=0

= ∑
a∈(A j)+

am−1zqdega

for m > 0.

(5) Let i0(ρ j) and j0(tm;ρ j) be as in Propositions IV.10 and IV.15. The degree of S(tm;z)

in z (respectively t) does not exceed qbi0(ρ
j)+ j0(tm;ρ j)c (resp. mqbi0(ρ

j)+ j0(tm;ρ j)c).

(6) The specialization S(tm;1)∈A j[t] vanishes identically if m> 1 and m≡ 1 mod q−1.

Proof. (1): Since hA j = 1, we have that K j is its own Hilbert class field. Hence, expρ j `(tm;z)∈

A j[t,z] by Theorem III.2.

(2): For all x ∈ (K j)∞, we have

ρ
j
a(e j(x)) = ρ

j
a(expρ j(π̃ρ jx)) = expρ j(aπ̃ρ jx) = e(ax).

Hence,

S(tm;1)|t=e j(x) = ∑
i≥0

ei(ρ
j) ∑

a∈(A j)+

(
e j(ax)m

a

)qi

= expρ j lm(x).

(3): This follows from (ρ
j
a(ct))m = (cρ

j
a(t))m and that (cm)qi

= cm for all c ∈ F×q .

(4): Since ρ
j
a = a+(higher order terms in τ), it follows that

ρ
j
a(t) = at +(higher order terms in t).
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Therefore, if i≥ 1, then (
(ρ

j
a(t))m

tm

)qi∣∣∣∣∣∣
t=0

= 0

and (
(ρ

j
a(t))m

tm

)∣∣∣∣∣
t=0

= am.

Hence,
S(tm;z)

tm

∣∣∣∣
t=0

= ∑
a∈(A j)+

1
a

(
(ρ

j
a(t))m

tm

)∣∣∣∣∣
t=0

zqdega
,

which gives the desired result. (Recall that e0(ρ
j) = 1.)

(5): The bound in the degree in z follows exactly as in Remark III.11. As for the other

bound, the general term in the sum defining S(tm;z) is

ei(ρ
j)

(
(ρ

j
a(t))m

a

)qi

zqi+dega
.

It satisfies

(degree in t)≤ m · (degree in z)

since the degree in t is qdegamqi and the degree in z is qi+dega. Since all terms of degree in z

exceeding qbi0(ρ
j)+ j0(tm;ρ j)c may be ignored in computing S(tm;z), the bound for the degree

in t follows.

(6): We will stop writing the index j for this part of the proof. Let p ∈ A+ be ir-

reducible of degree d and fix m > 1 such that m ≡ 1 mod q−1. It is enough to show

that S(tm;1)|t=e(1/p) = 0 since there are infinitely many p to choose from. By (2), this is

equivalent to showing that expρ lm(1/p) = 0 which is equivalent to showing that

lm(1/p)
π̃ρ

∈ A (4.17)
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since expρ vanishes on π̃ρA. Recall that expρ may be written as an infinite product:

expρ(z) = z ∏
a∈A
a6=0

(
1− z

aπ̃ρ

)

for all z ∈ C∞. Taking the logarithmic derivative with respect to z of the preceding expres-

sion, and using the fact that expρ has derivative 1, we get

1
expρ(z)

=
1
z
+ ∑

a∈A
a6=0

−1/(aπ̃ρ)

1− z/(aπ̃ρ)
=

1
z
+ ∑

a∈A
a6=0

1
z−aπ̃ρ

= ∑
a∈A

1
z−aπ̃ρ

.

Choose a0 ∈ A such that a0 6≡ 0 mod p and set z = a0π̃ρ/p in the previous expression. We

conclude

e(a0/p)−1 = p ∑
a∈A

1
π̃ρ(a0−pa)

= p ∑
b∈A

1
π̃ρ(a0 +pb)

where b =−a

= p ∑
a∈A

a≡a0 mod p

1
π̃ρa

. (4.18)

Also note
lm(1/p)

π̃ρ

= ∑
a∈A+

e(a/p)m

aπ̃ρ

= ∑
a∈A+
(a,p)=1

e(a/p)m

aπ̃ρ

. (4.19)

Since d∞ = 1, sgn(a) ∈ F×q . Consider the equation

∑
d∈F×q

∑
a∈A

(a,p)=1
sgn(a)=d

e(a/p)m

aπ̃ρ

= ∑
a∈A

(a,p)=1

e(a/p)m

aπ̃ρ

. (4.20)

If sgn(a) = d ∈ F×q , then

e(a/p)m

aπ̃ρ

=
e(da′/p)m

da′π̃ρ

for some a′ ∈ A+

=
dme(a′/p)m

da′π̃ρ
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=
de(a′/p)m

da′π̃ρ

since m≡ 1 mod q−1 and d ∈ F×q

=
e(a′/p)m

a′π̃ρ

. (4.21)

Hence, (4.20) becomes

∑
a∈A

(a,p)=1

e(a/p)m

aπ̃ρ

= (q−1) ∑
a∈A+
(a,p)=1

e(a/p)m

aπ̃ρ

=− ∑
a∈A+
(a,p)=1

e(a/p)m

aπ̃ρ

. (4.22)

Therefore (4.19) becomes

lm(1/p)
π̃ρ

= ∑
a∈A+
(a,p)=1

e(a/p)m

aπ̃ρ

=− ∑
a∈A

(a,p)=1

e(a/p)m

aπ̃ρ

(by (4.22))

=− ∑
a∈A

a6≡0 mod p

e(a/p)m

aπ̃ρ

((a,p) = 1⇔ a 6≡ 0 mod p)

=− ∑
b∈(A/p)×

∑
a∈A

a≡b mod p

e(a/p)m

aπ̃ρ

(a 6≡ 0 mod p⇔ a≡ b mod p for some b ∈ (A/p)×)

=− ∑
b∈(A/p)×

e(b/p)m
∑
a∈A

a≡b mod p

1
aπ̃ρ

=− ∑
b∈(A/p)×

e(b/p)m 1
pe(b/p)

(by (4.18))

=− ∑
b∈(A/p)×

e(b/p)m−1

p
.

(Refer to §III.D and (3.6) for how we view e(x/p) as a function on A/p.) We claim that

this last element belongs to A. To do this, we will use the Newton formulas.
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Lemma IV.18 ([12], pp. 26-27). (a) Let Y1, Y2, . . . , Yn be indeterminates and consider the

symmetric polynomials

s1 := s1(Y1,Y2, . . . ,Yn) := Y1 +Y2 + · · ·+Yn,

s2 := s2(Y1,Y2, . . . ,Yn) := Y1Y2 +Y1Y3 + · · ·Y2Y3 + · · ·Yn−1Yn;

· · ·

sk := sk(Y1,Y2, . . . ,Yn) := ∑
i1<i2<···<ik

Yi1Yi2 · · ·Yik (where k ≤ n),

· · ·

sn := sn(Y1,Y2, . . . ,Yn) := Y1Y2 · · ·Yn.

If Z is any indeterminate, then

Zn− s1Zn−1 + s2Zn−2−·· ·+(−1)kskZn−k + · · ·+(−1)nsn =
n

∏
k=1

(Z−Yk).

(b) Let p0 = n and pk := pk(Y1,Y2, . . . ,Yn) := Y k
1 +Y k

2 + · · ·+Y k
n where k ≥ 1. The

Newton formulas are as follows.

(i) If k ≤ n, then

pk− pk−1s1 + pk−2s2−·· ·+(−1)k−1 p1sk−1 +(−1)kksk = 0.

(ii) If k > n, then

pk− pk−1s1 + · · ·+(−1)n pk−nsn = 0.

Recall that the p-torsion points of ρ are, by definition, the roots of the polynomial

ρp(z). Explicitly, we have

ρ[p] = ρ[pA] = {e(x/p) | x ∈ A/pA}.
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Therefore,

ρp(z) = ∏
x∈A/pA

(z− e(x/p))

=
qd

∑
j=1

(−1) j+1ŝ j−1zqd+1− j

by Lemma IV.18(a) with {Y1, . . . ,Yqd} := {e(x/p) | x ∈ A/pA}, ŝ j−1 := s j−1(Y1, . . . ,Yqd)

and ŝ0 := 1.

Since hA = 1 and since, for each of our function fields, there is only one Drinfeld

A-module, we have that ρp(z) ∈ A[z] by Theorem II.5. This implies that ŝ j ∈ A for all

0≤ j ≤ qd−1. Also, ρp(z) is Eisenstein at p ([10], Proposition 11.4). This means that

p - ŝ0,
ŝ j

p
∈ A for 1≤ j ≤ qd−1, p2 - ŝqd−1. (4.23)

Set p̂k := pk(Y1, . . . ,Yqd). Using part (i) of (b), it follows that p̂1 ∈ A. A straightforward

induction argument then implies that p̂k ∈ A for all k. Now using either (i) or (ii) of part (b)

(depending on whether m− 1 ≤ qd or m− 1 > qd) and (4.23), we conclude p̂m−1/p ∈ A.

Therefore,

− p̂m−1

p
=− ∑

b∈(A/p)×

e(b/p)m−1

p
∈ A.

This completes the proof.

H. The Module of Special Points

Our setup of the module of special points will be similar to the case of the Carlitz module.

Let d be a positive integer. Let

M := {m ∈ Z | 1≤ m≤ qd−1,m 6≡ 1 (mod q−1)}.
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Fix a sign function sgn and let p ∈ (A j)+ be irreducible of degree d j. As in the case of the

Carlitz module, the p-torsion of ρ j is

ρ
j[p] = {expρ j(π̃ρ ja/p) | a ∈ A j}.

As before, ρ j[p] ∼= A j/p as A j-modules, so let λ j := expρ j(π̃ρ j/p) be a generator. Since

d∞ j = 1 and hA j = 1, we have that H j = K j where H j is the Hilbert class field of K j.

Set

(K j)p := K j(ρ
j[p]) = K j(λ j);

R j := A j[λ j].

The fraction field of R j is K j(λ j) and, moreover, the integral closure of A j in (K j)p is R j.

Let G j := Gal((K j)p j/K j). Let

a 7→ σa : (A j/p)×→ G j

be the unique isomorphism such that

σa(e j(b/p)) = e j(ab/p)

for all a,b ∈ (A j/p)×. By the functional equation (2.1), we have

e j(ab/p) = ρ
j
a(e j(b/p)).

Exactly as in the case of the Carlitz module, for any A j-algebra R, we let Rρ j
be a copy

of R equipped with the A j-module structure

(a,r) 7→ a∗ r := ρ
j
a(r) : A j×R→ R.

The exponential function expρ j is A j-linear if viewed as a map (K̄ j)∞→ (K̄ j)
ρ j

∞ . If r ∈ R is
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viewed as an element of Rρ j
via (1,r) 7→ ρ

j
1(r) = r, then r is the coordinate of an R-valued

point of ρ j.

Let m be a nonnegative integer. For each b ∈ (A j/p)×, let s j
m(b) be the R j-valued

point of ρ j with coordinate

s j
m(b) := expρ j lm(x) = S(tm;1)|t=e j(x)

where x = b̃/p and b̃ ≡ b (mod p). This definition does not depend upon the choice of b̃;

the proof is exactly the same as in the case of the Carlitz module.

Definition IV.19. Let S j denote the A j-submodule of Rρ j
generated by points of the form

s j
m(b). The elements of S j are called special points of ρ j.

For the rest of this chapter, we will forgo writing the letter j since our results hold for

all 1 ≤ j ≤ 4. We begin our analysis of S by first examining dependence relations among

the functions

{lm(x) | m≥ 0}.

Lemma IV.20. Let A be one of A1, . . . ,A4. Let a∈A, a 6= 0, x∈K∞, and m be a nonnegative

integer. Define a j ∈ A for j = m, . . . ,mqdega by

ρa(t)m =
mqdega

∑
j=m

a jt j.

Then

lm(ax) =
mqdega

∑
j=m

a jl j(x).

Proof. First note that since hA = 1, we have ρa(t) ∈ A[t]. So the coefficients a j do lie in A.

We have

mqdega

∑
j=m

a je(x) j = ρa(e(x))m = ρa(expρ(π̃ρx))m = expρ(aπ̃ρx)m = e(ax)m,
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where the penultimate equality follows from the functional equation (2.1).

Therefore,

mqdega

∑
j=m

a jl j(x) =
mqdega

∑
j=m

a j

(
∑

a∈A+

e(ax) j

a

)
= ∑

a∈A+

1
a

(
mqdega

∑
j=m

a je(ax) j

)

= ∑
a∈A+

1
a

e(a2x)m

= lm(ax).

Before we state our next lemma, we need to make a definition. Let A be one of

A1, . . . ,A4. For a ∈ A, define ρa,i ∈ A for i = 0, . . . ,dega by

ρa(t) =
dega

∑
i=0

ρa,i tqi
.

Note that since ρ is a Drinfeld-Hayes A-module, we have ρa,0 = a and ρa,dega = sgn(a).

Lemma IV.21. Let A be one of A1, . . . ,A4. Let m be a nonnegative integer. Then

lm+qd(1/p) =−
d−1

∑
i=0

ρp,ilm+qi(1/p).

Proof. We calculate

d−1

∑
i=0

ρp,ilm+qi(1/p)+ lm+qd(1/p) =
d

∑
i=0

ρp,ilm+qi(1/p)

=
d

∑
i=0

ρp,i ∑
a∈A+

e(a/p)m+qi

a

= ∑
a∈A+

1
a

e(a/p)m
d

∑
i=0

ρp,i expρ(aπ̃ρ/p)qi
.
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The inner sum is

ρp(expρ(aπ̃ρ/p)) = expρ(aπ̃ρ) by the functional equation (2.1)

= 0 since expρ vanishes on Aπ̃ρ.

This completes the proof.

Lemma IV.22. Let A be one of A1, . . . ,A4. We have

d

∑
i=1

ρp,ilqi−1(1/p) = (1−p)l0(1/p).

Proof. Let

φ(z) :=
ρp(z)

z
= p+

d

∑
i=1

ρp,izqi−1.

Then

pl0(1/p)+
d

∑
i=1

ρp,ilqi−1(1/p) =
d

∑
i=0

ρp,ilqi−1(1/p)

=
d

∑
i=0

ρp,i ∑
a∈A+

e(a/p)qi−1

a

= ∑
a∈A+

1
a

d

∑
i=0

ρp,ie(a/p)qi−1

= ∑
a∈A+

φ(e(a/p))
a

since ρp,0 = p.

If p | a, then a/p ∈ A, and so e(a/p) = 0. Therefore,

φ(e(a/p)) = p+
d

∑
i=1

ρp,i(e(a/p))qi−1 = p.
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If p - a, then e(a/p) 6= 0 and ρp(e(a/p)) = 0 exactly as in the previous lemma. Therefore,

φ(e(a/p)) =


p if p | a,

0 if p - a.

Continuing, we have

∑
a∈A+

φ(e(a/p))
a

= ∑
a∈A+

a≡0 (mod p)

p
a
= ∑

a′∈A+

p
pa′

by setting a = pa′

= l0(1/p).

This completes the proof.

I. The Finite Generation of S

In this section, A is one of A1, . . . ,A4. Let S be a subset of an A-module M. We write 〈S〉A

to denote the A-submodule of M generated by the elements of S. We recall that

M := {m ∈ Z | 1≤ m≤ qd−1,m 6≡ 1 (mod q−1)}.

Proposition IV.23. The quotient of S by 〈sm(1) | m ∈M ∪{1}〉A is generated, as an A-

module, by s0(1) and is annihilated by p−1.

Proof. Set

L := 〈lm(a/p) | m≥ 0,a ∈ A〉A.

We claim

L = 〈lm(1/p) | 0≤ m≤ qd−1〉A. (4.24)

Since every element of the form lm(1/p) for 0≤m≤ qd−1 is clearly in L , this proves
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⊇. As for the other inclusion, Lemma IV.20 implies

lm(a/p) =
mqdega

∑
j=m

a jl j(1/p) ∈ 〈lr(1/p) | m≤ r ≤ mqdega〉A.

Suppose r ∈ {m, . . . ,mqdega} such that r ≥ qd . Then r = qd +n for some n≥ 0. Therefore,

lr(1/p) = lqd+n(1/p) =−
d−1

∑
i=0

ρp,iln+qi(1/p)

by Lemma IV.21. If n+qi < qd for all 0≤ i≤ d−1, then this proves ⊆. Otherwise, there

exists an index j such that n+q j ≥ qd , and so n+q j = qd + k for some k ≥ 0. Thus,

ln+q j(1/p) = lk+qd(1/p),

and we may repeat the above argument using Lemma IV.21. This proves (4.24).

Given the original definition of L , note that exponentiating the elements of L gives

the coordinates of the special points of ρ. Therefore, by (4.24), we conclude

S= 〈sm(1) | 0≤ m≤ qd−1〉A. (4.25)

By Proposition III.8(6), the special point sm(1) vanishes for all m > 1 such that m ≡ 1

(mod q−1). Hence,

S= 〈sm(1) | m ∈M ∪{0,1}〉A.

This proves the first assertion of the Proposition.

As for the second assertion, it is enough to show

(p−1)∗ s0(1) ∈ 〈sm(1) | m ∈M ∪{1}〉A.

Note that the coordinate of the special point s0(1) is expρ l0(1/p). We calculate

(p−1)∗ s0(1) = ρp−1(s0(1))
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= ρp−1(expρ l0(1/p))

= expρ((p−1)l0(1/p))

= expρ

(
−

d

∑
i=1

ρp,ilqi−1(1/p)

)

where the last two equalities follow from the functional equation (2.1) and Lemma IV.22,

respectively. We view the sum inside the parentheses as an element of K̄ρ
∞. Since ρp,i ∈ A

for all i and since expρ is A-linear on K̄ρ
∞, we conclude

(p−1)∗ s0(1) =−
d

∑
i=1

ρp,i ∗ expρ(lqi−1(1/p)) =−
d

∑
i=1

ρp,i ∗ sqi−1(1).

This last expression clearly belongs to 〈sm(1) | m ∈M ∪{1}〉A. This concludes the proof.

Remark IV.24. We record here the content of (4.25): The module of special points S is

finitely generated as an A-module by the special points of the form

{sm(1) | 0≤ m≤ qd−1}.
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CHAPTER V

EXPRESSING SPECIAL VALUES AS LINEAR COMBINATIONS OF LOGARITHMS

Recall that in the case of the Carlitz module, if ω : F×p → C×∞ is the Teichmüller character

and e∗m(a) are the dual coefficients of Proposition III.14, then we have

L(1,ωi) =−
qd−1

∑
m=1

1
p ∑

a∈F×p

ω
i(a)e∗m(a)

 ∑
b∈F×p

ω
−i(b)lm(b/p)

 .

Our goal in this chapter is to prove an analogue of this formula for an arbitrary function

field.

A. Preliminary Functions–Part 1

Let K be an arbitrary function field over the finite field Fq. We assume that d∞ = 1. Let

m be a prime ideal of A ⊆ K and set d := degm. Recall from §II.F that H is the Hilbert

class field of K and B be the integral closure of A in H. Fix a sign function sgn and

let ρ be a Drinfeld-Hayes A-module with respect to sgn (cf., §II.B). Set Km := H(ρ[m]),

G := Gal(Km/K) (§II.F, II.G) and let C be the integral closure of B in Km.

Let χ be a Dirichlet character on A whose kernel is m. Since m is a prime ideal, A/m

is a field with #(A/m)× = qdegm− 1. Thus χ has order relatively prime to p. Fix ψ ∈ Ĝ

such that ψ|A = χ as in §II.G. Recall from §II.G that the Goss L-function for ψ is

L(s,ψ) = ∑
I

ψ(I)
I[s]

where the sum ranges over all integral ideals I of A which are relatively prime to m. Here s

is a positive integer.

Recall that two nonzero fractional ideals M and M′ are equivalent in Cl(A), and we

write M ∼M′, if there exist nonzero α,β ∈ A such that αM = βM′. Write h = hA and let
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{a1, . . . ,ah} be a set of representatives of the equivalence classes of Cl(A) that are relatively

prime to m. Then

L(s,ψ) =
h

∑
i=1

∑
I∼ai

ψ(I)
I[s]

.

Let

Am := {x ∈ K | ordm(x)≥ 0}.

We extend χ : A→ C∞ to a map (which we also call χ) defined on Am as follows:

χ : Am→ C∞

a
b
7→ χ(a)

χ(b)

for b /∈m. Since b /∈m, it follows that χ(b) 6= 0 and so the above map is well-defined.

Let I ∼ ai. Pick β,α ∈ A+ such that βI = αai. Then

ordm(βI) = ordm(αai)

which implies

ordm(β)+ordm(I) = ordm(α)+ordm(ai).

We have that ordm(I)≥ 0. Since ai and m are relatively prime, ordm(ai) = 0. We conclude

ordm(α/β)≥ 0,

i.e. α/β ∈ Am. Therefore,

ψ(I) = ψ(α/β)ψ(ai)

with ψ(α/β) = 0 if α/β is not a unit in Am. Thus,

L(s,ψ) =
h

∑
i=1

∑
γ∈(a−1

i )+

ψ(γai)

(γai)s
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=
h

∑
i=1

ψ(ai)

as
i

∑
γ∈(a−1

i )+

ψ(γ)

γs

where if γ = α/β ∈ Am, then ψ(γ) = ψ(α)/ψ(β).

Definition V.1. Let I be an integral ideal of A. Define

LI(s,ψ) :=
ψ(I)
I[s] ∑

ω∈(I−1)+

ψ(ω)

ωs ;

ζI,c(s) :=
1

I[s] ∑
n∈(I−1)+

n≡c (mod I−1m)

1
ns

for c ∈ I−1/I−1m.

Remark V.2. These two functions are related to each other via

LI(s,ψ) = ψ(I) ∑
c∈I−1/I−1m

ψ(c)ζI,c(s).

Lemma V.3. Suppose I ∼ J in Cl(A). Then LI(s,ψ) = LJ(s,ψ).

Proof. If I ∼ J, then αI = βJ for some α,β ∈ A+ relatively prime to m. The maps

I−1→ J−1 : γ 7→ γ
β

α
and J−1→ I−1 : ε 7→ ε

α

β

give a one-to-one correspondence between I−1 and J−1. Hence,

LI(s,ψ) =
ψ(I)
I[s] ∑

ω∈(I−1)+

ψ(ω)

ωs

=
ψ(β)ψ(J)

ψ(α)
(

βJ
α

)[s] ∑
ω∈(I−1)+

ψ(ω)

ωs

=
ψ(J)
J[s] ∑

ω∈(I−1)+

ψ(β)ψ(ω)

ψ(α)

(
1

β

α
ω

)s

=
ψ(J)
J[s] ∑

ω′∈(J−1)+

ψ(ω′)

(ω′)s where ω
′ := ωβ/α
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= LJ(s,ψ).

This Lemma implies that the function LI(s,ψ) depends only on the ideal class of I in

Cl(A). Therefore,

L(s,ψ) =
h

∑
i=1

Lai(s,ψ), (5.1)

and so the study of L(s,ψ) reduces to the study of the functions Lai(s,ψ) for 1≤ i≤ h.

B. Preliminary Functions–Part 2

We want to do a similar analysis in this section on the function `(b;z) which was originally

defined in Chapter III. We begin by recalling the definition of this function.

Let I be an integral ideal of A and let b(t) = ∑i bit i ∈ B[t] where t is a variable. Set

I ∗b(t) := ∑
i

b(I,H/K)
i ρI(t)i

where (I,H/K) is the Artin automorphism of I and we write b(I,H/K)
i to denote (I,H/K)

acting on bi. The map

H[t]→ H[t] : b 7→ I ∗b (5.2)

is an A-algebra endomorphism that stabilizes B[t].

Define

`(b(t);z) := ∑
I

I ∗b(t)
D(ρI)

zqdeg I

where the sum is over all integral ideals of A and D(ρI) is the constant term of ρI . Note

that

`(b(t);z) =
h

∑
i=1

∑
I∼ai

I ∗b(t)
D(ρI)

zqdeg I
.
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We now consider a general term in the second sum. If I∼ ai, then there exist βi,γi ∈A+

such that βiI = γiai. This implies that I = (γi/βi)ai and so γi/βi ∈ (a−1
i )+. Also, note that

(I,H/K) = ((γi/βi)ai,H/K). We would like to determine the relationship between D(ρI)

and D(ρai). To do this, we will need the following result.

Lemma V.4 ([13], Propositions 13.14 and 13.15). Let ρ be a Drinfeld A-module over C∞.

1. Let I,J be nonzero ideals of A. Then

ρIJ = (J ∗ρ)IρJ

where J ∗ρ is the Drinfeld A-module satisfying

ρJρa = (J ∗ρ)aρJ

for all a ∈ A.

2. If 0 6= b ∈ A, then write (b) for the ideal of A generated by b. Then ρ(b) = c−1ρb,

where c is the leading coefficient of ρb. Moreover, c[(b)∗ρ]a = ρac for all a ∈ A; i.e.,

(b)∗ρ is isomorphic to ρ over C∞.

Continuing, we have

ρβiI = ρI(βi) = ((βi)∗ρ)Iρ(βi).

Since βi ∈ A+ and since ρ is a Drinfeld-Hayes A-module, we conclude that

D(ρ(βi)) = D(ρβi) = βi.

Since ((βi)∗ρ) is isomorphic to ρ over C∞, it follows that

D(((βi)∗ρ)I) = D(ρI),
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and we get that

D(ρβiI) = βiD(ρI). (5.3)

Therefore,

D(ρI) =
γi

βi
D(ρai). (5.4)

Putting all of this together, we may write

`(b(t);z) =
h

∑
i=1

∑
I∼ai

I ∗b(t)
D(ρI)

zqdeg I

=
h

∑
i=1

∑
ω∈(a−1

i )+

(ωai)∗b(t)
ωD(ρai)

zqdegai+degω

,

and this motivates our next definition.

Definition V.5. Let I be an integral ideal of A and let b(t) ∈ B[t]. Define

`I(b(t);z) :=
1

D(ρI)
∑

ω∈(I−1)+

(ωI)∗b(t)
ω

zqdeg I+degω

.

Lemma V.6. Suppose I ∼ J in Cl(A). Then `I(b(t);z) = `J(b(t);z).

Proof. If I ∼ J in Cl(A), then αI = βJ for some α,β ∈ A+. Since the ∗ map from (5.2) is

an A-algebra endomorphism, we get

(ωI)∗b(t)
ω

=
( β

α
ω ·αI)∗b(t)

βω
=

( β

α
ω ·βJ)∗b(t)

βω
=

( β

α
ω · J)∗b(t)

ω
.

Now proceed as in the proof of Lemma V.3.

The function `I(b(t);z) therefore only depends on the class of I in Cl(A). Exactly as

in the case of L(s,ψ), we have

`(b(t);z) =
h

∑
i=1

`ai(b(t);z), (5.5)

and so the study of `(b(t);z) reduces to studying the functions `ai(b(t);z) for 1≤ i≤ h.
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C. Preliminary Functions–Part 3

Let ρ be a Drinfeld-Hayes A-module with respect to a fixed sign function sgn. Since ρ is a

Drinfeld A-module of rank one, then the period lattice of ρ has the form π̃ρI where I is an

integral ideal of A and π̃ρ ∈C∞. Recall that χ is our Dirichlet character on A with kernel m.

The map

A/m→m−1I/I (5.6)

a 7→ aµ

for µ ∈m−1I\ I is an isomorphism. We fix a choice of µ.

Definition V.7. Let I be an integral ideal of A. We define the function eI : K∞→ K̄∞ by

eI(x) := expI∗ρ(D(ρI)π̃ρx).

Remark V.8. If I = A = (1), then

eI(x) = exp(1)∗ρ(D(ρ(1))π̃ρx) = expρ(π̃ρx) = e(x).

Let us investigate how the function eI depends on the ideal I. If I ∼ J in Cl(A), then

αI = βJ for some α,β ∈ A+ relatively prime to m. Set γ := β/α ∈ (J−1)+. Then

eI(x) = eγJ(x) = expγJ∗ρ(D(ργJ)π̃ρx)

Recall that Cl(A) acts on DrinA(C∞) via the ∗ operation. Therefore, since γJ ∼ J in Cl(A),

it follows that γJ ∗ρ and J ∗ρ are isomorphic over C∞. Hence, expγJ∗ρ(z) = expJ∗ρ(z) for

all z ∈ C∞. We have already seen that D(ργJ) = γD(ρJ). We conclude that

eI(x) = eJ(γx).
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Recall that we have a function lm : K∞→ K̄∞ defined by

lm(x) = ∑
a∈A+

e(ax)m

a

if m > 0 and

l0(x) = ∑
a∈A+

1
a
.

Suppose that h = 1 and consider

`(tm;z) = ∑
a∈A+

(ρa(t))m

a
zqdega

.

If we set t = e(x) and z = 1, we get

`(tm;z)|t=e(x),z=1 = ∑
a∈A+

(ρa(e(x)))m

a

= ∑
a∈A+

e(ax)m

a

= lm(x). (5.7)

We want to investigate the value of

`I(tm;z)|t=eA(aµ),z=1 (5.8)

for a ∈ A and µ as in (5.6).

Lemma V.9 ([7], pp. 68-69). If I is an integral ideal of A, then

ρI(expρ(z)) = expI∗ρ(D(ρI)z)

for all z ∈ C∞.

In order to compute

`I(tm;z)|t=eA(aµ),z=1,
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we need to compute (ωI ∗ tm)|t=eA(aµ) for ω ∈ (I−1)+. We calculate

(ωI ∗ tm)|t=eA(aµ) = ρωI(eA(aµ))m

= expωI∗ρ(D(ρωI)π̃ρaµ)m by Lemma V.9.

We have already seen that D(ρωI) = ωD(ρI) and expωI∗ρ(z) = expI∗ρ(z). Hence,

(ωI ∗ tm)|t=eA(aµ) = expI∗ρ(D(ρI)ωπ̃ρaµ)m = eI(ωaµ)m,

and so

`I(tm;z)|t=eA(aµ),z=1 =
1

D(ρI)
∑

ω∈(I−1)+

eI(ωaµ)m

ω
. (5.9)

The similarities between the preceding expression and the analogous relation (5.7) in the

case of h = 1 inspire our next definition.

Definition V.10. For m≥ 0, we set

lm,I(x) :=
1

D(ρI)
∑

ω∈(I−1)+

eI(ωx)m

ω

for x ∈ K∞.

We note that lm,A(x) = lm(x) since D(ρA) = 1, A−1 = A, and eA(x) = e(x).

D. Generalized Dual Coefficients

In this section, we will prove the following generalization of Proposition III.14. We first

review the concept of m-torsion with respect to some of our preliminary functions. Let ρ

be a Drinfeld-Hayes A-module with respect to a fixed sign function sgn. Recall that the
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period lattice of ρ is π̃ρI. The m-torsion points of ρ are (cf., [19], §2.4)

ρ[m] = {expρ(π̃ρr) | r ∈m−1I/I}= {expρ(π̃ρaµ) | a ∈ A/m}

= {eA(aµ) | a ∈ A/m}.

Recall from §III.D and (3.6) how we considered the function e(x/p) as a function on

A/p. Similarly, we now consider eA(xµ) for x ∈ A. We claim that we may view eA(xµ) as a

function on A/m. Let a ∈ A and suppose a≡ a′ mod m. Then a = a′+ma′′ and so

eA(aµ) = expρ(π̃ρµa′+ π̃ρµma′′) = expρ(π̃ρµa′)+ expρ(π̃ρµma′′)

= expρ(π̃ρµa′)

= eA(a′µ)

since µma′′ ∈ I and expρ vanishes on π̃ρI. For y ∈ A/m, choose y′ ∈ A such that y ≡

y′ mod m. Set

eA(yµ) := eA(y′µ). (5.10)

This definition is independent of the choice of y′ as we have previously shown. Thus, we

consider eA(yµ) as a function on A/m.

Now given an integral ideal I, we may consider the Drinfeld-Hayes A-module I ∗ ρ

and consider its m-torsion. The period lattice of I ∗ρ is D(ρI)I−1π̃ρI ([13], Chapter 13).

We will compute the m-torsion points of I ∗ρ, denoted I ∗ρ[m], by mimicking the above

computation. We have

I ∗ρ[m] = {expρ(D(ρI)π̃ρr) | r ∈m−1I−1I/I−1I}

= {expρ(π̃ρD(ρI)ωµ) | ω ∈ I−1/I−1m}

= {eI(ωµ) | ω ∈ I−1/I−1m}.

As above, we consider eI(xµ) as a function on I−1/I−1m.
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Recall that Km := H(ρ[m]). It is known that Km is independent of the choice of

Drinfeld-Hayes A-module ([10], §16). Since I ∗ ρ is also a Drinfeld-Hayes A-module, it

follows that I ∗ ρ[m] ⊆ Km. We are now ready to state our generalization of Proposition

III.14. Set d := degm.

Proposition V.11. Let m be an integer such that 1≤ m≤ qd−1. Then for every m and for

every nonzero α ∈ I−1/I−1m, there exists a unique element e∗m,I(α) ∈ Km such that

qd−1

∑
m=1

eI(βµ)me∗m,I(α) = D(ρI) ·δβ,α

for all nonzero β ∈ I−1/I−1m.

Proof. The idea of the proof is to apply Lagrange interpolation to I−1/I−1m. For nonzero

γ ∈ I−1/I−1m, consider the Lagrange basis polynomial

Pγ(x) := ∏
06=λ∈I−1/I−1m

λ6=γ

x− eI(λµ)
eI(γµ)− eI(λµ)

.

By the previous discussion, Pγ(x) is a well-defined polynomial in Km[x]. The degree of

Pγ(x) is qd−1 since I−1/I−1m∼= A/m. Also,

Pγ(eI(ωµ)) = δγ,ω

for all ω ∈ I−1/I−1m by construction. For nonzero β ∈ I−1/I−1m, set

Fβ(x) := D(ρI)Pβ(x).

Then

Fβ(eI(ωµ)) = D(ρI)δγ,ω
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for all ω ∈ I−1/I−1m. Let

Dγ := ∏
06=λ∈I−1/I−1m

λ 6=γ

(eI(γµ)− eI(λµ)).

Then D−1
γ is the leading coefficient of Pγ(x). Now

Dβ

D(ρI)
Fβ(x) = DβPβ(x) is a monic

polynomial of degree qd−1 satisfying

(i) it vanishes on Zβ := {eI(αµ) | 0 6= α ∈ I−1/I−1m,α 6= β};

(ii) it equals Dβ when x = eI(βµ).

Suppose Gβ(x) is another monic polynomial of degree qd − 1 satisfying (i) and (ii).

Then DβPβ(x)−Gβ(x) vanishes on Zβ∪{eI(βµ)} and has degree < qd−1. Since #(Zβ∪

{eI(βµ)}) = qd−1, it follows that DβPβ(x)−Gβ(x) is identically zero. Hence, DβPβ(x) is

the unique monic polynomial of degree qd−1 in Km[x] satisfying (i) and (ii). Equivalently,

Fβ(x) is the unique polynomial of degree qd − 1 in Km[x] that vanishes on Zβ and equals

D(ρI) when x = eI(βµ).

Write

Fβ(x) =:
qd−1

∑
m=1

e∗m,I(β)x
m.

Then

Fβ(eI(αµ)) =


0 if α 6= β,

D(ρI) if α = β.

This completes the proof.

Corollary V.12. Let m be an integer such that 1≤ m≤ qd−1 and let 0 6= α ∈ I−1/I−1m.

Suppose that J is an integral ideal of A such that I ∼ J in Cl(A). Then

e∗m,I(α) = γ
−1e∗m,J(αγ

−1)
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where γ ∈ K+ is such that I = γ−1J.

Proof. First note that 0 6=αγ−1 ∈ J−1/J−1m and so the expression e∗m,J(αγ−1) makes sense.

Since I−1 = γJ−1, α = γω for some ω ∈ J−1. By the Proposition, we have

D(ρI) =
qd−1

∑
m=1

eI(αµ)me∗m,I(α)

=
qd−1

∑
m=1

eI(γωµ)me∗m,I(γω)

=
qd−1

∑
m=1

eJ(ωµ)me∗m,I(γω) (5.11)

where the last equality follows from Remark V.8.

Applying the Proposition to 0 6= ω ∈ J−1/J−1m, we get

qd−1

∑
m=1

eJ(ωµ)me∗m,J(ω) = D(ρJ) = γD(ρI).

Therefore,
qd−1

∑
m=1

eJ(ωµ)m e∗m,J(ω)

γ
=

qd−1

∑
m=1

eJ(ωµ)me∗m,I(γω).

By the uniqueness of the dual coefficients, we conclude

1
γ

e∗m,J(ω) = e∗m,I(γω)

which is equivalent to
1
γ

e∗m,J(αγ
−1) = e∗m,I(α).
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E. Main Result

We are now ready to compute our analogue of (3.7). Let 0 6= α ∈ I−1/I−1m and b ∈

(A/m)×. We calculate

qd−1

∑
m=1

e∗m,I(α)lm,I(bµ) =
qd−1

∑
m=1

e∗m,I(α)
1

D(ρI)
∑

ω∈(I−1)+

eI(ωbµ)m

ω

= ∑
ω∈(I−1)+

1
D(ρI)

1
ω

qd−1

∑
m=1

e∗m,I(α)eI(ωbµ)m

= ∑
ω∈(I−1)+
ω/∈I−1m

1
D(ρI)

1
ω

D(ρI)δα,ωb by Proposition V.11

= ∑
ω∈(I−1)+
ω/∈I−1m

α≡ωb (mod I−1m)

1
ω

= I[1]ζI,αb−1(1), (5.12)

and so
1

I[1]

qd−1

∑
m=1

e∗m,I(α)lm,I(bµ) = ζI,αb−1(1). (5.13)

The map

I−1/I−1m→ A/m (5.14)

α 7→ αν

for ν ∈ I \ Im is an isomorphism. We fix a choice of ν with the added condition that

ψ(ν) = 1.

We multiply both sides of (5.13) by ψ(αν)ψ(b)−1 to get

ψ(αν)ψ(b)−1 1
I[1]

qd−1

∑
m=1

e∗m,I(α)lm,I(bµ) = ψ(αν)ψ(b)−1
ζI,αb−1(1). (5.15)
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Set a := αν and notice that a ∈ (A/m)×. We have

ψ(I) ∑
a,b∈(A/m)×

ψ(a)ψ(b)−1 1
I[1]

qd−1

∑
m=1

e∗m,I(α)lm,I(bµ)

= ψ(I) ∑
a,b∈(A/m)×

ψ(a)ψ(b)−1
ζI,αb−1(1). (5.16)

The righthand side of (5.16), after some rearranging and appealing to the definition of

ζ, is
ψ(I)
I[1] ∑

b∈(A/m)×
ψ(b)−1

∑
a∈(A/m)×

∑
n∈(I−1)+

α≡bn mod I−1m

ψ(a)
n

. (5.17)

Now α ≡ bn mod I−1m implies a ≡ bnν mod I−1m. These congruences are equivalent

provided ν /∈ I−1m, which follows from the fact that ν ∈ I \ Im. And the congruence a ≡

bnν mod I−1m is equivalent to a≡ bnν mod m since nν ∈ A. Therefore, (5.17) becomes

ψ(I)
I[1] ∑

b∈(A/m)×
ψ(b)−1

∑
a∈(A/m)×

∑
n∈(I−1)+

a≡bnν mod m

ψ(a)
n

=
ψ(I)
I[1] ∑

b∈(A/m)×
ψ(b)−1

∑
n∈(I−1)+

ψ(bnν)

n

=
−ψ(I)

I[1]
ψ(ν) ∑

n∈(I−1)+

ψ(n)
n

=−LI(1,ψ)

where we used the facts that (i) the kernel of ψ is m, (ii) #(A/m)× = qd−1 =−1 mod p,

and (iii) ψ(ν) = 1 respectively. Plugging this back into (5.16) and rearranging the left hand

side yields

LI(1,ψ) =−ψ(I)
qd−1

∑
m=1

(
1

I[1] ∑
a∈(A/m)×

ψ(a)e∗m,I(α)

)(
∑

b∈(A/m)×
ψ(b)−1lm,I(bµ)

)
.

We immediately deduce our desired analogue of Anderson’s Equation (3.7).
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Proposition V.13. Let χ be a Dirichlet character on A with kernel m. Let ψ : Fm(A)→C∞

be the character (as in §II.G) such that ψ|A = χ. Let {a1, . . . ,ah} be a set of representatives

of the equivalence classes of Cl(A) that are relatively prime to m where h = #Cl(A). Let µ

be as in (5.6) and let d = degm. Then

L(1,ψ) =
h

∑
j=1

La j(1,ψ)

=
h

∑
j=1

−ψ(a j)
qd−1

∑
m=1

 1

a
[1]
j

∑
a∈(A/m)×

ψ(a)e∗m,a j
(a/ν j)

( ∑
b∈(A/m)×

ψ(b)−1lm,a j(bµ)

)
where ν j ∈ a j \a jm are chosen as in (5.14).

F. The Log-algebraicity of L(1,ψ)

We continue with the notations of the previous sections. By Theorem III.2, we have that

expρ `(b(t);z) = expρ

(
h

∑
j=1

`a j(b(t);z)

)
=

h

∑
j=1

expρ `a j(b(t);z)

is a polynomial in B[t,z] for all b(t)∈ B[t]. But this does not imply that expρ `a j(b(t);z) is a

polynomial in B[t,z] for any j. As in the class number one case, to study the log-algebraicity

of L(1,ψ), we must look at lm,a j(x) because of Proposition V.13.

Let S(tm,z) := expρ `(t
m;z) which is a polynomial in B[t,z] by Theorem III.2. For

a ∈ A, we get

S(tm,z)|t=eA(aµ),z=1 = expρ

(
h

∑
j=1

`aj(t
m;z)|t=eA(aµ),z=1

)
= expρ

(
h

∑
j=1

lm,a j(aµ)

)

so that
h

∑
j=1

lm,a j(aµ) = logρ

(
S(tm,z)|t=eA(aµ),z=1

)
. (5.18)

We would like to determine whether each lm,a j(aµ) can be expressed in a way similar to

(5.18).
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For every β ∈ B and for every integral ideal I of A, we have

`I(βtm;z)|t=eA(aµ),z=1 =
1

D(ρI)
∑

ω∈(I−1)+

β(ωI,H/K)eI(ωaµ)m

ω

since (ωI ∗βtm) = β(ωI,H/K)ρωI(t)m. Now ωI ∼ I in Cl(A). Since Cl(A) ∼= Gal(H/K), it

follows that (ωI,H/K) = (I,H/K). Therefore,

`I(βtm;z)|t=eA(aµ),z=1 = β
(I,H/K)lm,I(aµ).

Hence,
h

∑
j=1

β
(a j,H/K)lm,a j(aµ) = logρ(Polynomial|t=eA(aµ),z=1). (5.19)

So we now investigate sums which look like the lefthand side of the preceding expression.

For β ∈ B, set

Lm(β,x) :=
h

∑
j=1

β
(a j,H/K)lm,a j(x)

where x is a variable. Let {β1, . . . ,βh} be a subset of B which is linearly independent over

A. Consider the system

Lm(β1,x)

Lm(β2,x)
...

Lm(βh,x)


=



β
(a1,H/K)
1 β

(a2,H/K)
1 . . . β

(ah,H/K)
1

β
(a1,H/K)
2 β

(a2,H/K)
2 . . . β

(ah,H/K)
2

...

β
(a1,H/K)
h β

(a2,H/K)
h . . . β

(ah,H/K)
h





lm,a1(x)

lm,a2(x)
...

lm,ah(x)


.

Denote by D the h by h matrix on the right. Since {β1, . . . ,βh} are linearly independent

over A, the determinant of D is nonzero. By Cramer’s Rule, we conclude

lm,a j(x) = (detD)−1
h

∑
i=1

(−1)i+ jLm(βi,x)detDi j
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for all 1≤ j ≤ h where Di j denotes the i j-minor of D . Hence,

lm,a j(aµ) = (detD)−1
h

∑
i=1

(−1)i+ jLm(βi,aµ)detDi j. (5.20)

This, coupled with (5.19), implies the desired log-algebraic expression for lm,a j(aµ). We

record our result in the form of the following Theorem.

Theorem V.14. Let ψ be as in Proposition V.13. Then there exist u1, . . . ,us ∈ C∞ with

expρ(ui) ∈ K̄ and α1, . . . ,αs ∈ K̄ such that

L(1,ψ) =
s

∑
i=1

αiui.

In determining the log-algebraicity of L(1,ψ), we used the expression given in Propo-

sition V.13 as a starting point. We now briefly describe another way to prove Theorem V.14

by determining a simpler expression for L(1,ψ).

Recall (5.13):
1

I[1]

qd−1

∑
m=1

e∗m,I(α)lm,I(bµ) = ζI,αb−1(1)

where 0 6= α ∈ I−1/I−1m and b ∈ (A/m)×. We compute

L(1,ψ) =
h

∑
j=1

La j(1,ψ)

=
h

∑
j=1

ψ(a j) ∑
06=c∈a−1

j /a−1
j m

ψ(c)ζa j,c(1) (by Remark V.2)

=
h

∑
j=1

ψ(a j) ∑
06=c∈a−1

j /a−1
j m

ψ(c)

 1

a
[1]
j

qd−1

∑
m=1

e∗m,a j
(c)lm,a j(µ)


((5.13) with I = a j and b = 1)

=
qd−1

∑
m=1

 h

∑
j=1

ψ(a j)

a
[1]
j

∑
06=c∈a−1

j /a−1
j m

ψ(c)e∗m,a j
(c)

 lm,a j(µ).

This expression and (5.20) immediately imply Theorem V.14.
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CHAPTER VI

THE A-RANK THEOREM WHEN hA = 1 AND d∞ = 1

In this chapter, we will prove our analogue of the A-rank Theorem in the case of a function

field satisfying hA = 1 and d∞ = 1. Recall from §IV.A that there are only four such function

fields which we called K1, . . . ,K4. We refer the reader to §IV.A for the remaining notation.

The reader should assume that all objects A,ρ, etc., written without the index j, correspond

to one of A j,ρ
j, etc. for 1≤ j ≤ 4. We follow the argument of §4.7 and §4.8 in [2].

Let m be an ideal of A. Since hA = 1 and d∞ = 1, we have H+ = H = K. Let

ρ be a Drinfeld-Hayes A-module with respect to a fixed sign function sgn. Set Km :=

K(ρ[m]),G := Gal(Km/K), and G′′ := Gal(Km/K). Then G = G′′ ∼= (A/m)× and so Ĝ =

Ĝ′′. Since A is a principal ideal domain, there exists an irreducible p ∈ A+ such that

m= (p). Then A/m= A/p =: Fp is a field. Set d := degp.

Recall from (5.6) that the element µ ∈ (p)−1 \A is chosen such that

A/(p)→ (p)−1/A

a 7→ aµ

is an isomorphism. We choose µ = 1/p.

Let a ∈ (p)−1/A, b ∈ F×p and consider Equation (5.12) with I = (p) :

1
p

qd−1

∑
m=1

e∗m,(p)(α)lm,(p)(b/p) = ζ(p),αb−1(1). (6.1)

Since (p) = pA, Corollary V.12 implies

e∗m,(p)(α) = pe∗m,A(αp).
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Remark V.8 implies that

e(p)(x) = eA(x)

and so

lm,(p)(b/p) =
1
p ∑

ω∈(p)−1
+

e(p)(ωb/p)m

ω

=
1
p ∑

ω∈(p)−1
+

eA(ωb)m

ω

=
1
p ∑

n∈A+

eA(nb/p)m

1
pn

change variables ω→ (1/p)n

= ∑
n∈A+

eA(nb/p)m

n

= lm,A(b/p).

We also have

ζ(p),αb−1(1) =
1
p ∑

n∈(p)−1
+

n≡αb−1 mod A

1
n

by definition of ζ

=
1
p ∑

c∈A+
(c,p)=1

bc≡αp mod p

1
1
pc

n→ (1/p)c.

First note that the congruence

nc =
1
p

c≡ αb−1 mod A

is equivalent to

bc≡ αp mod p.
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The constraint (c,p) = 1 arises since αp mod p 6= 0. Therefore,

ζ(p),αb−1(1) = ∑
c∈A+
(c,p)=1

bc≡αp mod p

1
c
= ζA,αpb−1(1).

Putting everything together, (6.1) becomes

qd−1

∑
m=1

e∗m,A(αp)lm,A(b/p) = ζA,αpb−1(1). (6.2)

Set a := αp∈ F×p . The group G∼= F×p is cyclic implies that Ĝ is cyclic. Let φ be a generator

of Ĝ. Choose 1≤ i, j ≤ qd−1. Multiply both sides of (6.2) by φi(a)φ− j(b) and sum over a

and b. We get

∑
a,b∈F×p

φ
i(a)φ− j(b)

qd−1

∑
m=1

e∗m,A(a)lm,A(b/p) = ∑
a,b∈F×p

φ
i(a)φ− j(b)ζA,ab−1(1). (6.3)

The left hand side of (6.3) becomes

qd−1

∑
m=1

 ∑
a∈F×p

φ
i(a)e∗m,A(a)

 ∑
b∈F×p

φ
− j(b)lm,A(b/p)

 . (6.4)

The right hand side of (6.3) is

∑
a,b∈F×p

φ
i(a)φ− j(b)ζA,ab−1(1) = ∑

a,b∈F×p

φ
i(a)φ− j(b) ∑

n∈A+
bn≡a mod p

1
n

= ∑
a,b∈F×p

φ
− j(b) ∑

n∈A+
bn≡a mod p

φi(a)
n

= ∑
a,b∈F×p

φ
− j(b) ∑

n∈A+

φi(bn)
n

(the value of φ(a) is determined by a mod p)

=

 ∑
a∈F×p

1

 ∑
b∈F×p

φ
− j(b)φi(b) ∑

n∈A+

φi(n)
n
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=− ∑
b∈F×p

φ
− j(b)φi(b) ∑

n∈A+

φi(n)
n

(since # F×p = qd−1)

=−LA(1,φi) ∑
b∈F×p

φ
− j(b)φi(b)

=−LA(1,φi)(qd−1)δi j

(by the orthogonality relations, [13], Proposition 4.2)

= LA(1,φi)δi j.

Again, δi j = 0 if i 6= j and 1 if i = j. Hence, we have

LA(1,φi)δi j =
qd−1

∑
m=1

 ∑
a∈F×p

φ
i(a)e∗m,A(a)

 ∑
b∈F×p

φ
− j(b)lm,A(b/p)

 (6.5)

for all 1≤ i, j ≤ qd−1.

Lemma VI.1. Let ω be any generator of F×p . Let Y be the (qd − 1) by (qd − 1) matrix

whose i, j entry is li,A(ω j/p). Then detY 6= 0.

Proof. Let R be the (qd − 1) by (qd − 1) matrix whose i, j entry is the right hand side of

(6.5). Let R1 be the (qd−1) by (qd−1) matrix whose r,s entry is

∑
a∈F×p

φ
r(a)e∗s,A(a)

and let R2 be the (qd−1) by (qd−1) matrix whose t,u entry is

∑
b∈F×p

φ
−u(b)lt,A(b/p).

Notice that R = R1R2. If we write

∑
b∈F×p

φ
−u(b)lt,A(b/p) =

qd−1

∑
k=1

φ
−u(ωk)lt,A(ωk/p),
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then

R2 = Y


φ−1(ω) . . . φ−(q

d−1)(ω)

...

φ−1(ωqd−1) . . . φ−(q
d−1)(ωqd−1)

 .

If detY = 0, then

0 = detR =
qd−1

∏
i=1

LA(1,φi).

But LA(1,φi) does not vanish for all 1≤ i≤ qd−1. This contradiction completes the proof.

Let π be a fixed monic uniformizer at ∞.

Lemma VI.2. Let m be a nonnegative integer such that m 6≡ 1 mod q−1 and let x ∈ K∞.

Let Tr denote the trace from K∞ · q−1
√
−π−1 to K∞. Then Tr(lm,A(x)/π̃ρ) = 0.

Remark VI.3. If q = 2, then no value of m satisfies the hypothesis of the Lemma. Also, if

q = 2, then K∞ · q−1
√
−π−1 = K∞ since π̃

q−1
ρ ∈ K∞ for all q.

Proof. We claim that if n is a nonnegative integer such that n 6≡ 0 mod q−1, then Tr(π̃−n
ρ )=

0. Write n = n1 + r(q−1) where 0 < n1 < q−1. Since π̃
q−1
ρ ∈ K∞, we have

Tr(π̃−n
ρ ) = Tr(π̃−n1

ρ π̃
−r(q−1)
ρ ) = π̃

−r(q−1)
ρ Tr(π̃−n1

ρ ).

Recall from (4.7) that

K∞ · π̃ρ = K∞ ·
q−1
√
−π−1.

So π̃ρ = k q−1
√
−π−1 for some k ∈ K∞. We have

Tr(π̃−n1
ρ ) = k−n1Tr(( q−1

√
−π−1)−n1) = k−n1 ∑

σ

σ

(
(

q−1
√
−π−1)−n1

)
where the sum ranges over all σ ∈ Gal(K∞ · q−1

√
−π−1/K∞).

An element of Gal(K∞ · q−1
√
−π−1/K∞) permutes the roots of the equation zq−1 +
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π−1 = 0. And the roots of this equation are

{c q−1
√
−π−1 | c ∈ F×q }.

Thus,

Tr(π̃−n1
ρ ) = k−n1 ∑

c∈F×q

(c q−1
√
−π−1)−n1 = π̃

−n1
ρ ∑

c∈F×q

c−n1.

Note that inversion is an automorphism of F×q and that F×q is a cyclic group. Let g 6= 1

be a generator. Then

∑
c∈F×q

c−n1 = ∑
c∈F×q

cn1 =
q−1

∑
i=1

(gi)n1 =
gqn1−gn1

gn1−1

=
gn1(g(q−1)n1−gn1)

gn1−1

=
gn1(gn1−gn1)

gn1−1

= 0.

This proves the claim.

We may now finish the proof. Since lm,A(x)/π̃ρ ∈ K∞, we conclude

Tr
(

lm,A(x)
π̃m

ρ

)
= Tr

(
lm,A(x)

π̃ρ

1
π̃

m−1
ρ

)
=

lm,A(x)
π̃ρ

Tr

(
1

π̃
m−1
ρ

)
= 0

if m−1 6≡ 0 mod q−1 by our earlier claim. This concludes the proof.

Recall from §IV.H the set

M = {m ∈ Z | 1≤ m≤ qd−1,m 6≡ 1 mod q−1}.

We compute #M . Note that

#M = qd−1−#{1≤ m≤ qd−1 | m≡ 1 mod q−1}.
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If 1≤m≤ qd−1 and m≡ 1 mod q−1, then m= 1+k(q−1) with 0≤ k≤ (qd−2)/(q−1).

Therefore,

#M = qd−1−
(⌊

qd−1
q−1

⌋
+1
)
= qd−2−

⌊
qd−1
q−1

⌋
.

Since
qd−2
q−1

=
qd−1
q−1

− 1
q−1

,

we have ⌊
qd−1
q−1

⌋
=


2d−2 if q = 2

qd−1
q−1 −1 if q > 2.

Therefore,

#M =


0 if q = 2

(qd−1)q−2
q−1 if q > 2.

We are now ready to state our analogue of the A-rank theorem.

Theorem VI.4. Let K be a function field over Fq (other than the rational function field)

satisfying hA = 1 and d∞ = 1. Let ρ be the unique Drinfeld-Hayes A-module with respect to

a fixed sign function sgn. Let S be the A-module of special points of ρ as defined in §IV.H.

Then the A-rank of S equals (qd−1)(q−2)/(q−1).

Proof. We begin by showing that the special point

s1(1) := expρ lm,A(1/p)

is annihilated by p. That is, we must show

p∗ s1(1) := ρp(s1(1)) = 0.

From the proof of Proposition III.8(6), we have

l1,A(1/p)
π̃ρ

=− ∑
b∈(A/p)×

1
p
=−#(A/p)×

1
p
=−(qd−1)

1
p
=

1
p
.
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Then

s1(1) = expρ(π̃ρ/p) = e(1/p)

and so

ρp(s1(1)) = ρp(e(1/p) = e(1) = 0.

Thus, s1(1) is annihilated by p. Therefore, to prove the theorem, by Proposition IV.23, it is

enough to show that the set of special points {sm(1) | m ∈M } is linearly independent over

A.

Let {am | m ∈M } ⊂ A be such that

∑
m∈M

am ∗ sm(1) = 0. (6.6)

Recall that

a 7→ σa : F×p → Gal(Kp/K)

is the unique isomorphism such that

σa(e(b/p)) = e(ab/p)

for all a, b ∈ F×p . Also, we have that

σa(sm(b)) = sm(ab).

For any b ∈ F×p , apply σb to both sides of (6.6):

∑
m∈M

am ∗ sm(b) = 0.

By the definition of sm(b) (cf., §IV.H), we have

∑
m∈M

am ∗ expρ(lm,A(b/p)) = 0
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which implies

∑
m∈M

ρam(expρ(lm,A(b/p))) = 0.

Therefore,

0 = ∑
m∈M

expρ(amlm,A(b/p)) = expρ

(
∑

m∈M
amlm,A(b/p)

)
.

Hence,

∑
m∈M

amlm,A(b/p) ∈ π̃ρA

so that

∑
m∈M

amlm,A(b/p)/π̃ρ = a′.

for some a′ ∈ A.

Let Tr denote the trace as in Lemma VI.2. Then

a′ = Tr(a′) = ∑
m∈M

amTr
(

lm,A(b/p)
π̃ρ

)
= 0

by Lemma VI.2. Therefore,

∑
m∈M

amlm,A(b/p)/π̃ρ = 0

which implies

∑
m∈M

amlm,A(b/p) = 0. (6.7)

Define a column vector [αn]n=1,...,qd−1 by

αn =


an if n ∈M

0 if n /∈M .
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Let Y be the matrix from Lemma VI.1. Then

Y T [αn] =


l1,A(ω/p) · · · lqd−1,A(ω/p)

...

l1,A(ωqd−1/p) · · · lqd−1,A(ω
qd−1/p)

 [αn].

For 1≤ k ≤ qd−1, the k-th row of Y T [αn] is

α1l1,A(ωk/p)+α2l2,A(ωk/p)+ · · ·+αqd−1lqd−1,A(ω
k/p)

= ∑
m∈M

αmlm,A(ω
k/p) = 0

by (6.7). Therefore, [αn]∈ ker(Y T )= {0} by Lemma VI.1. Hence, the coefficients {am |m∈

M } are all zero. This completes the proof of the theorem.
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CHAPTER VII

EXAMPLES OF SPECIAL POLYNOMIALS

The following special polynomials were computed using Maple 12.

For K1, we have:

• S(t0;z) = z+ηz3 + z9

• S(t;z) = tz+ηt3z3 +
(
−t3(η− t6)

)
z9− t9z27

• S(t2;z) = t2z+ηt6z3 +
[
−θ(θ+1)(θ−1)(θ3−θ−1)t6 +ηt12 + t18]z9 +[

−η(θ12−θ10−θ9−θ6 +θ4−θ3−θ+1)t18 + t36]z27 + t54z81

For K2, we have:

• S(t0;z) = z+(θ4 +θ)z4 +(θ8 +θ2)z16 + z64

• S(t;z)= tz+(θ4+θ)t4z4+
[
(θ4 +θ)t4 +(θ8 +θ2)t16]z16+

[
(θ8 +θ2)t16 + t64]z64+

t64z256

For S(t;z), this is assuming that Z5(t) = 0 (cf., §III.B). For K3, we have:

• S(t0;z) = z+ z2

• S(t;z) = tz+ t2z2 + t2z4

• S(t2;z) = t2z+ t4z2 +
[
t2 +θ(θ+1)t4]z4 +

[
(θ2 +θ+1)t4 + t8]z8 + t8z16

We note that each of the above special polynomials S(t0;z) appears in §5.2 of [1] as well.
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CHAPTER VIII

EXAMPLES OF SPECIAL VALUES OF GOSS L-FUNCTIONS AND GOSS ZETA

FUNCTIONS

Definition VIII.1. Let K be the function field of an irreducible, smooth projective curve X

defined over Fq. Let ∞ be a fixed point on X and let A be the Dedekind domain of functions

which are regular away from ∞. Fix a sign function sgn. For a nonnegative integer n, the

Goss zeta function for K is

ζK(n) := ∑
I

1
I[n]

where the sum is over all ideals I of A.

Note that if d∞ = 1 and hA = 1, then

ζK(n) = ∑
a∈A+

1
an .

Example VIII.2 ([18], Equation (31)). Consider K1. Let ρ1 denote the unique Drinfeld-

Hayes A1-module as defined in §IV.B. By Proposition III.8, we have

S(t0;z) = expρ1 `(t0;z)

= expρ1

(
∑

a∈(A1)+

(a)∗1
a

z3dega

)

= expρ1

(
∑

a∈(A1)+

1
a

z3dega

)
.

Therefore,

S(t0;1) = expρ1(ζA1(1))

and so

ζK1(1) = logρ1(S(t0;1)) = logρ1(η−1).

Example VIII.3 ([18], Theorems VIII and X). Let j = 2,3 and consider K j. Exactly as in
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the previous example, we have

ζK2(1) = logρ2
(
1+(θ4 +θ)+(θ8 +θ

2)+1
)
= logρ2(θ8 +θ

4 +θ
2 +θ)

and

ζK3(1) = logρ3(0).

Example VIII.4. Consider the curve X1. In this example, we will stop writing the index 1.

Consider the Dirichlet character

χ : A→ F̄9

a = a(t,y) 7→ a(0,
√
−1).

Recall that

A = {F(t)+ yG(t) | F(t),G(t) ∈ F3[t]}.

Then kerχ = (t). We know

A/(t)∼= ρ[t].

Let ξ be a generator of ρ[t]. Consider a = F(t)+ yG(t) ∈ A. Since F(t)−F(0) ∈ (t), we

conclude

ρF(t)(ξ) = ρF(t)−F(0)+F(0)(ξ) = ρF(t)−F(0)(ξ)+ρF(0)(ξ)

= ρF(0)(ξ)

= F(0)ξ.

Since G(t)−G(0) ∈ (t), we conclude

ρyG(t)(ξ) = ρyG(0)(ξ)+ρyG(t)−yG(0)(ξ) = ρyG(0)(ξ)

= G(0)ρy(ξ)

=: G(0)ξ′.
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Note that ξ′ ∈ ρ[t] since

ρt(ξ
′) = ρt(ρy(ξ)) = ρty(ξ) = 0.

Therefore,

ρa(ξ) = F(0)ξ+G(0)ξ′

for all a = F(t)+ yG(t) ∈ A.

By Proposition III.8(1), we have

S(t;z) = expρ

(
∑

a∈A+

ρa(t)
a

z3dega

)
(8.1)

which implies

ξ = S(ξ;1) = expρ

 ∑
a∈A+

a=F(t)+yG(t)

F(0)ξ+G(0)ξ′

a

 . (8.2)

Let Gal(K/F3(t)) = {id,σ}. Since [K : F3(t)] = 2, we have σ(t) = t and σ(y) = −y.

Then

χ(a) = F(0)+G(0)
√
−1

a−σ(a) = F(t)+ yG(t)− (F(t)− yG(t)) =−yG(t)

a+σ(a) =−F(t).

Therefore,

F(0) = F(0,
√
−1) =−a(0,

√
−1)−σ(a)(0,

√
−1)
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and

G(0) = G(0,
√
−1) =

σ(a)(0,
√
−1)−a(0,

√
−1)√

−1

=−
√
−1
(

σ(a)(0,
√
−1)−a(0,

√
−1)

)
=
√
−1
(

a(0,
√
−1)−σ(a)(0,

√
−1)

)
.

Note that

χ
3(a) = χ(F(t)3 + y3G(t)3)

= F(0)3 +(−
√
−1)G(0)3 since y3 = y(t3− t−1)

= F(0)−
√
−1G(0) since F(0),G(0) ∈ F3

= χ(σ(a)).

Hence,

F(0)ξ+G(0)ξ′

a
=

F(0,
√
−1)ξ+G(0,

√
−1)ξ′

a

=

(
−a(0,

√
−1)−σ(a)(0,

√
−1)

)
ξ

a

+

√
−1
(
a(0,
√
−1)−σ(a)(0,

√
−1)

)
ξ′

a

=

(√
−1ξ′−ξ

)
χ(a)

a
+

(
−
√
−1ξ′−ξ

)
χ(σ(a))

a

=

(√
−1ξ′−ξ

)
χ(a)

a
+

(
−
√
−1ξ′−ξ

)
χ3(a)

a
.

(8.2) implies that

logρ(ξ) = (
√
−1ξ

′−ξ) ∑
a∈A+

χ(a)
a

+(−
√
−1ξ

′−ξ) ∑
a∈A+

χ3(a)
a

= (
√
−1ξ

′−ξ)L(1,χ)+(−
√
−1ξ

′−ξ)L(1,χ3). (8.3)

Now suppose we had taken ξ′ as our generator of ρ[t]. If a = F(t)+ yG(t), then as
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before, we have

ρa(ξ
′) = F(0)ξ′+G(0)ρy(ξ

′)

= F(0)ξ′+G(0)ρy(ρy(ξ))

= F(0)ξ′+G(0)ρy2(ξ)

= F(0)ξ′−G(0)ξ

since

ρy2(ξ) = ρt3(ξ)−ρt(ξ)−ρ1(ξ) =−ρ1(ξ) =−ξ.

Setting t = ξ′ and z = 1 in (8.1) yields

logρ(ξ
′) = ∑

a∈A+
a=F(t)+yG(t)

F(0)ξ′−G(0)ξ
a

. (8.4)

Exactly as above, we compute

F(0)ξ′−G(0)ξ
a

=

(
−χ(a)−χ3(a)

)
ξ′

a
−
√
−1
(
χ(a)−χ3(a)

)
ξ

a

=

(
−ξ′−

√
−1ξ

)
χ(a)

a
+

(
−ξ′+

√
−1ξ

)
χ3(a)

a
.

Thus, (8.4) implies

logρ(ξ
′) =

(
−ξ
′−
√
−1ξ

)
L(1,χ)+

(
−ξ
′+
√
−1ξ

)
L(1,χ3). (8.5)

(8.3) and (8.5) yield the following linear system: √−1ξ′−ξ −
√
−1ξ′−ξ

−ξ′−
√
−1ξ −ξ′+

√
−1ξ


 L(1,χ)

L(1,χ3)

=

 logρ(ξ)

logρ(ξ
′)

 .
Let A denote the 2 by 2 matrix on the left hand side of the preceding expression. Since

detA =
√
−1
(
(ξ′)2 +ξ

2) 6= 0,
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our system has a unique solution. We conclude

L(1,χ) =
logρ(ξ

′)+
√
−1logρ(ξ)

ξ′+
√
−1ξ

L(1,χ3) =
logρ(ξ

′)−
√
−1logρ(ξ)

ξ′−
√
−1ξ

.

Example VIII.5. Consider the elliptic curve E : y2 = t3− t2− t defined over F3. Note that

E(F3) = {(0,0), [0,1,0]}. Let ∞ := [0,1,0]. We have d∞ = 1. Set

A := F3[t,y]/(y2− t3 + t2 + t)

and let K be the fraction field of A. Here hA = 2.

Consider the Dirichlet character

χ : A→ F̄3

a = a(t,y) 7→ a(0,0).

Choose a sign function sgn and fix a Drinfeld-Hayes A-module ρ with respect to sgn. Set

I2 := (t,y). Note that I2 is a nonprincipal ideal of A such that kerχ = I2.

Let ξ be a generator of ρ[I2] ∼= (A/I2)
×. Since G′′ := Gal(H(ρ[I2])/H) ∼= (A/I2)

×, it

follows that χ ∈ Ĝ′′. Let G := Gal(H(ρ[I2])/K). As described in §II.G, we let ψ ∈ Ĝ be

such that ψ|A = χ.

By Theorem III.2,

expρ `(t;z) =: S(t;z)

is a polynomial in B[t,z] where B is the integral closure of A in the Hilbert class field H.

Let {A, I2} be a set of representatives of the equivalence classes of Cl(A). We compute (cf.,

§V.D)

`(t;z) = ∑
ω1∈(A−1)+

(ω1A)∗ t
ω1D(ρA)

z3degA+degω1 + ∑
ω2∈(I−1

2 )+

(ω2I2)∗ t
ω2D(ρI2)

z3deg I2+degω2
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= ∑
ω1∈A+

ρω1(t)
ω1

z3degω1 +
1

D(ρI2)
∑

ω2∈(I−1
2 )+

ρω2I2(t)
ω2

z31+degω2 (8.6)

where we have used that A−1 = A, D(ρA) = 1, degA = 0 and deg I2 = 1. This last fact

follows from the observations that I2
2 = (θ) and deg t = 2.

The maps

I2→ I−1
2 : a 7→ a

θ
and I−1

2 → I2 : ω2 7→ ω2θ

give a one-to-one correspondence between I−1
2 and I2. Setting ω′2 := ω2θ in (8.6) yields

`(t;z) = ∑
ω1∈A+

ρω1(t)
ω1

z3degω1 +
θ

D(ρI2)
∑

ω′2∈(I2)+

ρ(ω′2/θ)I2
(t)

ω′2
z3degω′2−1

. (8.7)

We now investigate the values ρa(ξ) for a ∈ A+ and ρ(ω′2/θ)I2
(ξ) for ω′2 ∈ I2. First note

that if a ∈ A, then a = F(t)+ yG(t) for some F(t),G(t) ∈ F3[t]. We calculate

ρa(ξ) = ρF(t)(ξ)+ρyG(t)(ξ) = ρF(t)(ξ) since yG(t) ∈ I2

= ρF(0)(ξ)+ρF(t)−F(0)(ξ)

= ρF(0)(ξ) since F(t)−F(0) ∈ I2

= F(0)ξ

= χ(a)ξ.

Now let ω′2 ∈ I2. Then ω′2 = f (t)+ yg(t) for some f (t),g(t) ∈ F3[t]. Furthermore, ω′2 ∈ I2

implies θ | f (t). We have

I2

(
ω′2
θ

)
⊆ I2

if and only if

(ω′2)⊆ (θ)

if and only if θ | ω′2. Hence, θ | ω′2 implies ρI2(ω
′
2/θ)(ξ) = 0.
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Now suppose θ - ω′2. Then

ηω′2
θ

= η
f (t)
θ

+(θ2−θ−1)g(t).

Since I2(ω
′
2/θ) = (ω′2,ηω′2/θ), it follows that ρI2(ω

′
2/θ) is the right gcd of ρω′2

and ρηω′2/θ,

i.e. there exists h(τ) ∈ C〈τ〉 such that

ρηω′2/θ = h(τ)ρω′2
+ρI2(ω

′
2/θ).

This implies

ρI2(ω
′
2/θ)(ξ) = ρηω′2/θ(ξ) = ρ(θ2−θ−1)g(t)(ξ).

Therefore, in computing ρI2(ω
′
2/θ)(ξ) we need only consider elements of (I2)+ of the form

ηg(t) where θ - g(t). In other words, we are reduced to looking at ρI2(αη/θ)(ξ) where

α ∈ A+ such that (α, I2) = 1.

Setting t = ξ and z = 1 in (8.7) yields

`(ξ;1) = ∑
ω1∈A+

ρω1(ξ)

ω1
+

θ

D(ρI2)
∑

a∈A+
(a,I2)=1

ρI2(aη/θ)(ξ)

aη
. (8.8)

We claim that ρI2(aη/θ)(ξ) ∈ ρ[I2]. Since I2
2 = (θ), we have

ρI2(ρI2(aη/θ)(ξ)) = ρI2
2 (aη/θ)(ξ) = ρaη(ξ) = 0

since aη ∈ I2. Since deg I2 = 1, ρI2(t) = D(ρI2)t + t3 = t(t− ξ)(t + ξ). Therefore, ρ[I2] =

{0,±ξ}. Furthermore, we have that

ξ =±
√
−D(ρI2).

For specificity, we fix ξ =
√
−D(ρI2). Now

ρI2(aη/θ)(ξ) = 0 ⇐⇒ I2

(aη

θ

)
⊆ I2 ⇐⇒ (aη)⊆ I2

2 = (θ) ⇐⇒ ordI2(aη)≥ 2.
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Since η2 ∈ I2
2 , it follows that 2ordI2(η)≥ 2. And (a, I2) = 1 implies ordI2(a) = 0. So

ordI2(aη) = ordI2(a)+ordI2(η)≥ 1.

Therefore, ρI2(aη/θ)(ξ) 6= 0.

Recall from §II.G that we have the exact sequence

0→ G′′→ G→ G′→ 0.

From §II.G, we know

G∼= FI2(A)/PI2(A)

and

G′ ∼=Cl(A)∼= F(A)/P(A).

It is easy to see that G is a cyclic group of order 4. Define

J :=
η

θ
I2 = (η,θ2−θ−1).

Consider

FI2(A)
PI2(A)

→ F(A)
P(A)

J mod PI2(A) 7→ J mod P(A).

Since ordI2(θ) = 2 and ordI2(η) = 1, it follows that ordI2(J) = 0 and so J ∈ FI2(A). Since

FI2(A)/PI2(A) is cyclic of order 4, the above map is uniquely determined by J provided

that J mod PI2(A) generates FI2(A)/PI2(A). This follows at once since

J2 = (θ2−θ−1), J4 = (θ4 +θ
3−θ

2−θ+1)

and

θ
4 +θ

3−θ
2−θ+1≡ 1 mod I2.
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(8.8) now becomes

`(ξ;1) = ∑
ω1∈A+

ρω1(ξ)

ω1
+

θ

D(ρI2)
∑

a∈A+
(a,I2)=1

ρaJ(ξ)

aη
. (8.9)

If a ∈ A+ and (a, I2) = 1, we have

ρaJ = ρJa = ((a)∗ρ)Jρa = ρJρa

hence

ρaJ(ξ) = ρJρa(ξ) = ρJ(χ(a)ξ) = χ(a)ρJ(ξ).

By the right division algorithm in C∞〈τ〉, there exists h(τ) ∈ C∞〈τ〉 such that

ρθ2−θ−1 = h(τ)ρη +ρJ.

Therefore,

ρJ(ξ) = ρJ(ξ)+h(τ)ρη(ξ) = ρθ2−θ−1(ξ) = ρ−1(ξ) =−ξ.

Hence,

ρaJ(ξ) =−χ(a)ξ

and so (8.9) now becomes

`(ξ;1) = ∑
ω1∈A+

ρω1(ξ)

ω1
+

θ

D(ρI2)
∑

a∈A+
(a,I2)=1

−χ(a)ξ
aη

. (8.10)

Fix ψ ∈ Ĝ such that ψ|A = χ as in §II.G. By our previous analysis, ψ is uniquely

determined by its value at J and ψ(J) is a fourth root of unity. So set ψ(J) =
√
−1. If

a ∈ FI2(A)/PI2(A) then a= βJi for some β ∈PI2(A), 1≤ i≤ 4. Since

ψ(β) = ψ((β)) = χ(β) = 1,
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we conclude

ψ(a) = ψ(Ji) = (
√
−1)i.

Now let I be an ideal of A such that I ∼ I2 in Cl(A). By our previous work,

I = a(η/θ)I2 = aJ

for some a ∈ A+ such that (a, I2) = 1. Note that

I[1] =
aη

θ
I[1]2 .

We now compute I[1]2 . Let π be a monic uniformizer at ∞. Since d∞ = 1, deg I2 = 1 and

I2
2 = (θ), we conclude from §II.G that

I[1]2 = π
−1〈θ〉1/2.

Since θ is monic of degree 2, we have

θ = π
−2〈θ〉

which implies that

I[1]2 =
√

θ.

Hence,

I[1] =
aη

θ

√
θ.

Also,

ψ(I) = ψ(aJ) = ψ(a)ψ(J) = χ(a)
√
−1.

And we have

ρaJ(ξ) =−χ(a)ξ =−χ(a)
√
−1
√

D(ρI2) =−
√

D(ρI2)ψ(I).
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Putting everything together, we conclude

`(ξ;1) = ∑
ω1∈A+

ρω1(ξ)

ω1
+

θ

D(ρI2)
∑

a∈A+
(a,I2)=1

−χ(a)ξ
aη

= ξ ∑
ω1∈A+

χ(ω1)

ω1
+

−θ√
D(ρI2)

∑
I∼I2

ψ(I)
I[1]

= ξ ∑
(ω1)∼A

ψ((ω1))

(ω1)[1]
−

√
θ√

D(ρI2)
∑

I∼I2

ψ(I)
I[1]

= logρ S(t;1)|t=ξ. (8.11)

Now another application of Theorem III.2 using
√

θt instead of t yields

expρ `(
√

θt;z) =: S(
√

θt;z)

is a polynomial in B[t,z]. Exactly as above, one shows

`(
√

θξ;1) =
√

θξ ∑
(ω1)∼A

ψ((ω1))

(ω1)[1]
+

θ√
D(ρI2)

∑
I∼I2

ψ(I)
I[1]

= logρ S(
√

θt;1)|t=ξ. (8.12)

Let Σ1 := ∑
(ω1)∼A

ψ((ω1))

(ω1)[1]
and Σ2 := ∑

I∼I2

ψ(I)
I[1]

. Then (8.11) and (8.12) yield the fol-

lowing linear system

ξΣ1−
√

θ√
D(ρI2)

Σ2 = logρ S(t;1)|t=ξ

√
θξΣ1 +

θ√
D(ρI2)

Σ2 = logρ S(
√

θt;1)|t=ξ

which we solve to obtain

Σ1 =−
1
ξ

logρ S(t;1)|t=ξ−
1

ξ
√

θ
logρ S(

√
θt;1)|t=ξ

Σ2 =

√
D(ρI2)√

θ
logρ S(t;1)|t=ξ−

√
D(ρI2)

θ
logρ S(

√
θt;1)|t=ξ.
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Hence,

L(1,ψ) = Σ1 +Σ2

=

(√
D(ρI2)√

θ
− 1

ξ

)
logρ S(t;1)|t=ξ +

(
−
√

D(ρI2)

θ
− 1

ξ
√

θ

)
logρ S(

√
θt;1)|t=ξ.

Using Maple 12, we were able to compute S(t;z):

S(t,z) = tz+
(
(−η−

√
θ)(θ−1)t3 + t

)
z3 +

(
t9 +(η+

√
θ(θ−1))t3

)
z9− t9z27.

But we were unable to compute S(
√

θt;z).

Example VIII.6. We continue with the previous example. Consider

ζK(1) = ∑
I

1
I[1]

= ∑
a∈A+

1
a
+ ∑

I∼I2

1
I[1]

.

Claim 1:

I ∼ I2 ⇐⇒ II2 = (α) for some α ∈ A+.

The implication⇐ follows immediately since I2
2 = (θ). As for⇒, if I ∼ I2 then aI = bI2

for some a,b ∈ A+. This implies that aII2 = bθ which implies

II2 =
bθ

a
∈ A.

This proves the claim.

Claim 2:

II2 = (α) for some α ∈ A+ ⇐⇒ α
2/θ ∈ A.

If II2 = (α), then

I2 =
(α2)

I2
2

=
(α2)

(θ)
⊆ A

which proves⇒. Conversely, if α ∈ A+ and α2/θ ∈ A, then (α2) = (θ)I for some ideal I.

This implies (α2) = I2
2 I and so (α) = I2I′ for some ideal I′.
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Claim 3:

{α ∈ A+ | α2/θ ∈ A}= (I2)+.

If α2/θ ∈ A, then Claim 2 implies that

ordI2(α) = ordI2(II2) = ordI2(I)+1≥ 1

which proves ⊆. Now if β ∈ (I2)+, then β = f (t)+ yg(t) for f (t),g(t) ∈ F3[t] and θ | f (t).

It follows that θ | β2 which completes the proof of the claim.

By Claim 1, we have

α = (α)[1] = I[1]I[1]2 = I[1]
√

θ.

Hence, Claims 2 and 3 imply

ζK(1) = ∑
a A+

1
a
+
√

θ ∑
α∈(I2)+

1
α
.

As in the previous example, we compute

`(t0;1) = ∑
a∈A+

1
a
+

θ

D(ρI2)
∑

α∈(I2)+

1
α

;

`(
√

θt0;1) =
√

θ ∑
a∈A+

1
a
−
√

θ
θ

D(ρI2)
∑

α∈(I2)+

1
α
.

We set

S(t0;1) := expρ `(t
0;1);

S(
√

θt0;1) := expρ `(
√

θt0;1).

Let Σ1 := ∑
a∈A+

1
a

and Σ2 := ∑
α∈(I2)+

1
α
. Then

ζK(1) = Σ1 +
√

θΣ2
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and we have the linear system

Σ1 +
θ

D(ρI2)
Σ2 = logρ S(t0;1)

√
θΣ1−

θ3/2

D(ρI2)
Σ2 = logρ S(

√
θt0;1).

Solving the system we obtain

Σ1 =− logρ S(t0;1)− 1√
θ

logρ S(
√

θt0;1);

Σ2 =−
D(ρI2)

θ
logρ S(t0;1)+

D(ρI2)

θ3/2 logρ S(
√

θt0;1).

Using Maple 12, one can compute

S(t0,z) = z− (θ3/2−θ
1/2 +η)z3 + z9;

S(
√

θt0,z) =
√

θz−
(

1−θ− η√
θ
+θ

3 +ηθ
3/2−η

√
θ

)
z3

+
(
−ηθ

3 +ηθ
2 +ηθ−η−θ

9/2 +
√

θ

)
z9 + z27.

Hence, the value ζK(1) can be explicitly computed as opposed to our previous example.
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CHAPTER IX

CONCLUSIONS

We conclude with some remarks about special points and special polynomials in the case

where hA > 1.

The special polynomials {expρ `(b;z) | b ∈ B[t]} of Theorem III.2 exist for any func-

tion field. The only concern we have about special polynomials for a general function field

is with respect to computation. If hA > 1, then the special polynomials are now polynomi-

als with coefficients in B. Examples VIII.5 and VIII.6 suggest that since the coefficients

lie in B, this adds to the difficulty in computing special polynomials explicitly. We think

that this suspicion is well founded due to our calculations which we presented in the afore-

mentioned examples. We are unsure if our choice of computational package is to blame for

our difficulties or if the special polynomials are truly difficult to compute for higher class

numbers.

Another issue concerning computation of special polynomials, which was addressed

in [2] but was not addressed in this dissertation, is the case of recursive formulas for the

special polynomials. In the case of the Carlitz module, the special polynomials satisfy

certain recursions which can reduce the amount of computational work ([2], Equations

27 and 28). We were able to derive a formula similar to [2] Equation 27 in the case of

the function fields K1, . . . ,K4, but we did not see how it would help in computing special

polynomials. This is why we did not include it in this dissertation. It remains to see if there

is a more efficient way of computing special polynomials.

A third issue is that of the number of terms to expect in a general special polyno-

mial. We suspect that the degree bounds of the special polynomials as given in Proposition

III.8(5) depend upon hA. Furthermore, we suspect that these degree bounds increase as hA

increases. The special polynomials listed in Examples VIII.5 and VIII.6 seem to support
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our claim. Concerning the function fields K1, . . . ,K4, we have gK j = 1 for 1 ≤ j ≤ 3 and

gK4 = 2. It seems to us that special polynomials in general should depend upon the genus

of the function field. For K1, . . . ,K4, we only saw this dependence in the computation of

j0(tm;ρi) for Proposition IV.15. We are not sure of the exact dependence between the genus

and special polynomials.

In computing special polynomials, we arrived at difficulties concerning the function

`(b;z) for b ∈ B[t]. If hA = 2, as we have already seen, the majority of the work that goes

into manipulating `(b;z) is directed towards the sum over the nonprincipal ideals of A. If

hA > 1, then in order to compute `(b;z), one must deal with hA− 1 such sums. And each

sum is over a class of nonprincipal ideals of A. It remains to be seen if there is a more

efficient way of explicitly dealing with these sums than the methods we employed.

As for special points when hA > 1, we are unable to make any predictions since it

is not clear to us how to define the module of special points in this case. Recall that our

definition of a special point when hA = 1 arises from Proposition III.8(2):

expρ lm(x) = S(tm;1)|t=e(x).

The proof of this identity follows from the functional equation (2.1) and the fact that `(tm;z)

can be written as a sum over A+. If hA > 1, then as we have already noted, `(b;z) for b∈B[t]

is a sum over the ideal classes of A. It is not clear to us what the analogue of Proposition

III.8(2) should be for a general function field. Thus, we are not sure how one should define

a special point when hA > 1.
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