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ABSTRACT

Bayesian Nonparametric Methods for Protein Structure Prediction.

(August 2010)

Kristin Patricia Lennox, B.S., Texas A&M University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. David B. Dahl

The protein structure prediction problem consists of determining a protein’s three-dimensional

structure from the underlying sequence of amino acids. A standard approach for predicting

such structures is to conduct a stochastic search of conformation space in an attempt to find

a conformation that optimizes a scoring function. For one subclass of prediction protocols,

called template-based modeling, a new protein is suspected to be structurally similar to

other proteins with known structure. The solved related proteins may be used to guide the

search of protein structure space.

There are many potential applications for statistics in this area, ranging from the de-

velopment of structure scores to improving search algorithms. This dissertation focuses on

strategies for improving structure predictions by incorporating information about closely

related “template” protein structures into searches of protein conformation space. This is

accomplished by generating density estimates on conformation space via various simpli-

fications of structure models. By concentrating a search for good structure conformations

in areas that are inhabited by similar proteins, we improve the efficiency of our search and

increase the chances of finding a low-energy structure.

In the course of addressing this structural biology problem, we present a number of
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advances to the field of Bayesian nonparametric density estimation. We first develop a

method for density estimation with bivariate angular data that has applications to charac-

terizing protein backbone conformation space. We then extend this model to account for

multiple angle pairs, thereby addressing the problem of modeling protein regions instead

of single sequence positions. In the course of this analysis we incorporate an informative

prior into our nonparametric density estimate and find that this significantly improves per-

formance for protein loop prediction. The final piece of our structure prediction strategy is

to connect side-chain locations to our torsion angle representation of the protein backbone.

We accomplish this by using a Bayesian nonparametric model for dependence that can link

together two or more multivariate marginals distributions. In addition to its application for

our angular-linear data distribution, this dependence model can serve as an alternative to

nonparametric copula methods.
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CHAPTER I

INTRODUCTION

1.1 Protein Structure Prediction

The explosion of bioinformatics data from sources such as the Human Genome Project has

lead to something of an embarrassment of riches from the proteomics standpoint. While

protein sequences based on genetic information are becoming increasingly available, the

three-dimensional structures of these novel proteins remain elusive. These structures are

of great importance to molecular biologists as they provide insights into the behavior of

proteins in biological systems. The methods for experimentally determining protein struc-

ture, X-ray crystallography and NMR spectroscopy (Schlick, 2006, pp. 16–19), are both

expensive and time consuming. Although advances have greatly increased the speed and

affordability of these techniques (see e.g. Usón and Sheldrick, 1999; Clore and Schwieters,

2002) currently there is no experimental structure determination method which can keep

pace with the genomics revolution.

This has lead to the rise of the field of protein structure prediction. Protein structure

is generally divided up into four categories: primary through quaternary. Primary structure

is the sequence of amino acids composing a protein, while secondary structure consists

of well-defined three-dimensional motifs induced by hydrogen bonding. Tertiary structure

describes how these regular elements fit together, giving the full three-dimensional struc-

ture of a polypeptide chain, while quaternary structure describes how multiple chains fit

together. The typical goal of structure prediction is to arrive at tertiary structure using only

The format and style follow that of Biometrics.
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primary structure as a starting point.

Methods for structure prediction rely on a guided search of conformation space. A

typical example is the Rosetta software package (Das and Baker, 2008), which iterates

between random perturbations of a protein’s structure and the scoring of those changes

using an approximate energy function. An open problem for statisticians working in this

field is how to best integrate known information about protein structure into a probabilistic

search of protein conformation space.

1.1.1 Template-Based Structure Prediction

Template-based modeling, sometimes called homology modeling, uses solved structures

for similar proteins as a starting point when modeling a novel structure. Similarity is gen-

erally measured by sequence identity: the percentage of identical amino acids for each

sequence position in two aligned proteins. As libraries of solved structures, such as the

Protein Data Bank (PDB) (Kouranov et al., 2006), continue to grow, template-based mod-

eling can be extended to new classes of proteins, and existing models can be refined by the

addition of new data. The challenge for modern methods is to provide improvements over

the closest match among the template proteins (Kopp et al., 2007).

Since homology modeling gives us a well-defined population of structures, it makes

sense to discuss the distribution of such populations. A novel protein with high sequence

identity to a known structure family can be treated as a draw from some distribution for

these related structures. We can therefore base our conformation search on a distribution

estimated using the solved template-family members. A natural method for developing

such estimates is some form of nonparametric density estimation. This dissertation focuses

on developing and applying techniques from Bayesian nonparametric density estimation to

the problem of template-based modeling.
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1.1.2 Bayesian Nonparametrics

The proposed statistical models for proteomics data stem from Bayesian nonparametric

methods. As for all Bayesian inference, Bayesian nonparametrics methods require a prob-

ability distribution for all model parameters, making the name somewhat misleading. What

distinguishes these methods is that models are indexed by infinite parameter spaces, rather

than the finite parameter models of traditional parametric inference. Müller and Quintana

(2004) provide an overview of the field.

While Bayesian nonparametric techniques can be applied to a wide variety of prob-

lems, in the context of structure prediction we are primarily interested in density estimation.

Similar to frequentist kernel density estimation, these models can be viewed as infinite mix-

tures of (typically) unimodal distributions.

The workhorse of Bayesian nonparametric density estimation is the Dirichlet process

first described by Ferguson (1973). The Dirichlet process is a distribution on almost surely

discrete probability distributions. Using the stick-breaking representation of Sethuraman

(1994), a random measure G drawn from a Dirichlet process DP (τ0G0) takes the form:

G(B) =
∞∑
j=1

pjδγj
(B)

where δτ is an indicator function equal to 1 if γ ∈ B and 0 otherwise, γj ∼ G0,

p′j ∼Beta(1, τ0), p1 = p′1, and pj = p′j
∏j−1

k=1(1 − p′k) for j > 1. The distribution G0 is

typically referred to as the centering distribution, and defines the general “shape” of the

distributions drawn from the process. The parameter τ0 is known as the mass parameter,

and determines how concentrated the weights of the distribution G will tend to be.

The discreteness of draws from a Dirichlet process renders it unattractive for di-

rectly modeling continuous distributions. However Antoniak (1974) proposed the use of

the Dirichlet process to define an infinite mixture model. Consider a set of observations
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x1, ..., xn, and a family of distributions f(x|θ) indexed by parameter θ. A Dirichlet process

mixture (DPM) model takes the form:

xi | θi ∼ f(xi|θi)

θi | G ∼ G

G ∼ DP (τ0G0).

The discreteness of G means that there is positive probability that θi = θj for all i, j. Since

equality of the parameters would imply xi and xj are drawn from identical distributions,

they are considered to be clustered together. Hence, we are discussing a kind of mixture

model with a draw from a Dirichlet process serving as a prior on mixture components. Note

that some authors follow the convention of Antoniak in referring to such models as mixture

of Dirichlet process models.

A Bayesian density estimate P (x) based on such a model can be described by the

predictive distribution:

P (xn+1|x1, ..., xn) =

∫
f(xn+1|θ)dP (θ|x1, ..., xn) (1.1)

Density estimates of this form are discussed by Ferguson (1983) for the univariate case and

by Tiwari et al. (1988) for multivariate densities. Lo (1984) provides an interpretation of

such models in terms of a convolution between a kernel f and a Dirichlet process.

The density (1.1) generally can not be directly evaluated, and so some form of approx-

imation must be used. Early work with DPM models, for density estimation and otherwise,

was hampered by a lack of computational resources. Considerable effort was expended to

explore approximations and algorithms for faster computation (see e.g. Berry and Chris-

tensen, 1979; Kuo, 1986; West, 1990). Advances in both computing power and Markov

chain Monte Carlo (MCMC) techniques opened the door to sophisticated models for larger

and more complex datasets. Of particular interest is a result from Escobar and West (1995).
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They show that if one can generate B draws θ(1), ..., θ(B) from the posterior distribution

θ|x1, ..., xn through some MCMC scheme, then the approximation given by

P̂ (xn+1|x1, ..., xn) =
1

B

B∑
i=1

f(xn+1|θ(i))

is almost surely consistent for (1.1). Combined with work such as that of MacEachern and

Müller (1998) and Neal (2000) on MCMC methods for sampling from the posterior distri-

bution of DPM models with nonconjugate centering distributions, this gives a framework

for density estimation beyond the realm of Gaussian mixtures.

The remainder of this dissertation will present a number of such extensions within

the DPM framework. While these methods, ranging from the accommodation of angular

data to the nonparametric modeling of complex association, were developed to address

particular problems in protein structure prediction, they also have more general applications

in Bayesian parametric and nonparametric statistics.

1.2 Modeling φ, ψ Angles

Chapter II develops a Bayesian model for bivariate angular data that is particularly useful

in the context of protein structure prediction. A protein consists of a chain of covalently

linked amino acids. Each amino acid has four heavy atoms (C, Cα,N , andO) in addition to

a unique side-chain group. The side-chains are what distinguish the 20 unique amino acids

from one another, while the four heavy atoms make up the so-called protein backbone

(Schlick, 2006, p. 66).

A standard first step in protein structure prediction is generating candidate conforma-

tions for the protein backbone. This leads to difficulties with dimensionality; a full descrip-

tion of the backbone consists of the (x, y, z) coordinates for each heavy atom, which would

mean a 12n dimensional space for a polypeptide consisting of n amino acids. However,

the stereochemistry of the protein backbone leads to a simplification in the form of torsion
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angles. Ramachandran et al. (1963) noted that the backbone can be represented by a (φ, ψ)

angle pair at each sequence position, reducing the dimensionality of the problem to 2n.

Unlike Cartesian coordinates, which can be modeled using standard linear data techniques,

(φ, ψ) pairs require methods specific to angular data. (In particular, they exhibit wrapping:

the property that φ = φ+ 2πk for any integer k.)

Chapter II focuses on the use of Bayesian nonparametric density estimation for bi-

variate angular data, and particularly density estimation for (φ, ψ) angles. It contains the

necessary full conditional distributions and computational methods for Bayesian model-

ing using the bivariate von Mises sine model (Singh et al., 2002), which is a distribution

that accounts for the wrapping of bivariate angular data. However, as the sine model is

an elliptical distribution analogous to a bivariate normal, it cannot fully capture the behav-

ior of torsion angles. Therefore a DPM model, which allows us to generate distributions

incorporating multiple elliptical components, is more appropriate than a parametric model.

This technique is applied to assessing the use of “whole” versus “half” positions for

template-based structure prediction. Whole position data consists of a (φ, ψ) angle pair

for each sequence position, while a half position has a ψ angle from one position and a

φ angle from the subsequent position. Because two sequence positions are involved, half

positions can be classified into more specific categories by factors like amino acid and

secondary structure type. In theory, this should allow for improved structure prediction.

We demonstrate that this is indeed the case using data from the globin protein family.

1.3 Joint Distributions for the Protein Backbone

Chapter III presents models that can account for multiple (φ, ψ) pairs simultaneously. Re-

call that proteins consist of long chains of amino acids, and thus the backbone representa-

tion is a chain of (φ, ψ) angles. In order to adequately account for the structure of the data

some kind of joint modeling is necessary. In the context of template-based modeling, such
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joint distributions are particularly useful for loop and turn regions in proteins.

The core of a protein is composed of regular secondary structure elements such as

α-helices and β-strands. Such regions have highly conserved (φ, ψ) angle pairs, and are

relatively easy to predict. However, these regular secondary structure regions are connected

by flexible loops and turns. These areas can differ radically between members of the same

protein family, and are also the regions most prone to amino acid insertions and deletions.

Current knowledge-based loop prediction methods are either based on draws from coil

libraries (e.g. Fitzkee et al., 2005) or on datasets that are not limited to proteins similar to

the target (Boomsma et al., 2008).

Chapter III proposes a joint model for multiple (φ, ψ) pairs which is suitable for loop

modeling and provides continuous density estimates. It also contains two prior formula-

tions, the first of which is a direct extension of the single position model in Chapter II.

The second is a Dirichlet process mixture of hidden Markov models (DPM-HMM). One

characteristic of Bayesian density estimation not shared by kernel density methods is the

ability to incorporate prior knowledge into the shape of the final density estimate, and the

DPM-HMM takes full advantage of this property. The DPM-HMM infers the secondary

structure type at each sequence position via a hidden Markov model as an intermediate

step in density estimation. This significantly improves our model, as we can produce use-

ful secondary structure based density estimates even at alignment positions with little or no

observed data.

The necessary computational techniques and distributions for the use of this strategy

are presented, along with a method for dealing with the problem of “sparse data” aris-

ing from amino acid insertions and deletions. The noninformative prior and DPM-HMM

models are then compared to both the coil library of Fitzkee et al. (2005) and the de novo

DBN-torus model of Boomsma et al. (2008) for the EF loop of the globin protein family.
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1.4 Linking the Backbone to the Side-Chains

The challenge addressed in Chapter IV is how to link predictions for side-chain placement

to those for the (φ, ψ) representation of the protein backbone. Modeling the protein back-

bone is crucial for protein structure prediction, but is not sufficient to construct a complete

candidate structure. The placement of the amino acid side-chains, the residues branching

off from the backbone which are unique to each amino acid, is also required. Although a

typical side-chain consists of many atoms, a simplified representation is the position of the

side-chain centroid.

When performing joint modeling for side-chain and backbone data, each observation

consists of a (φ, ψ) pair for the backbone and a set of (x, y, z) coordinates for the side-

chain centroid. This is a combination of angular and linear data types. Although joint

distributions exist for angular and linear variables (Johnson and Wehrly, 1978), they are

difficult to use in the mixture modeling context.

This situation is addressed as a special case of a more general problem: how does

one develop a model of association between variables from different distribution families?

This could refer to angular-linear combinations, categorical-numerical combinations, or

any other situation where a standard multivariate distribution is unavailable or unsuitable.

The proposed model, referred to as a Dirichlet process dependence (DPD) model, can

be used in any situation when component variables can be modeled separately with standard

Bayesian procedures, but where a suitable joint model is nonobvious. Rather than explicitly

defining correlation style parameters, a DPD model handles association exclusively through

Dirichlet process induced clustering. This model can identify both distinct data populations

and within population association. Note that the noninformative prior model for the protein

backbone developed in Chapter III is an example of a DPD style model for association.

We apply this model to studying the relationship between side-chain and backbone



9

conformations in protein cliques. A clique is a set of amino acids which are in close contact

when a protein is folded, but not necessarily adjacent on the backbone. By investigating the

relationship between clique residues and backbone conformations, we can determine more

efficient methods for joint modeling and potentially develop side-chain driven structure

prediction methods.

1.5 Conclusions

The final chapter of the dissertation addresses all of the previous work in the dual contexts

of protein structure prediction and statistics. The previous chapters are examined both in

terms of the advances they represent in structural biology and their contribution in the field

of Bayesian statistical modeling. In addition, we discuss the roles of the various methods in

an algorithm developed for use in the CASP (Moult, 2005) experiment for protein structure

prediction. While the applications for these methods have been presented independently,

they can be incorporated into a coherent strategy for protein structure prediction. Further-

more the methods described are by no means limited to the structural biology framework.

Angular data is certainly not confined to biological applications, and DP models of associa-

tion are also valuable to a wider audience. By examining these methods in a wider context,

this section aims to give a more complete picture of the impact of this work.
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CHAPTER II

DENSITY ESTIMATION FOR PROTEIN CONFORMATION ANGLES USING A

BIVARIATE VON MISES DISTRIBUTION AND BAYESIAN NONPARAMETRICS*

2.1 Introduction

Computational structural genomics has emerged as a powerful tool for better understanding

protein structure and function using the wealth of data from ongoing genome projects. One

active area of research is the prediction of a protein’s structure, particularly its backbone,

from its underlying amino acid sequence (Dill et al., 2007).

Based on the fundamental work of Ramachandran (Ramachandran et al., 1963), the

description of the protein backbone has been simplified by replacing the (x, y, z) coordi-

nates of an amino acid residue’s four heavy atoms (N, Cα, C, and O) with the backbone

torsion angle pair (φ, ψ) (Figure 1). A standard visual representation is the Ramachandran

plot, in which φ angles are plotted against ψ angles. Because of their importance to struc-

ture prediction and their simple representation, a great deal of recent work has sought to

characterize the distributions of these angle pairs, with an eye towards predicting confor-

mational angles for novel proteins (Ho et al., 2003; Xue et al., 2008).

Datasets from the Protein Data Bank (PDB) (Berman et al., 2003) can consist of over

ten thousand angle pairs, which provide ample data for even relatively unsophisticated den-

* Material in this chapter is reprinted with permission from “Density Estimation for Protein
Conformation Angles Using a Bivariate von Mises Distribution and Bayesian Nonparamet-
rics” by Lennox, K. P., Dahl, D. B., Vannucci, M. and Tsai J. 2009. Journal of the Amer-
ican Statistical Association. 104, pp. 586–596, and “Correction to Density Estimation for
Protein Conformation Angles Using a Bivariate von Mises Distribution and Bayesian Non-
parametrics” by Lennox, K. P., Dahl, D. B., Vannucci, M. and Tsai J. 2009. Journal of the
American Statistical Association. 104, p. 1728
Journal URL: http://pubs.amstat.org/loi/jasa
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Figure 1: Diagram of protein backbone, including φ and ψ angles, whole positions, and
half positions. At the ith residue, the φ angle describes the torsion around the bond Ni-Cαi,
measuring the angle between the Ci−1-Ni and the Cαi-Ci bonds, while the ψ angle describes
the torsion around the bond Cαi-Ci, measuring the angle between the Ni-Cαi and the Ci-
Ni+1 bonds. (In the graphic, CH represents a Cα atom and the attached hydrogen atom.)
The torsion angle pair (φ, ψ) on either side of a residue R is considered a whole position.
Three such pairs are shown. The torsion angle pair (ψ, φ) on either side of a peptide bond,
between two residues, is considered a half position. Two such pairs are shown.

sity estimation methods. However, when the data are subdivided based on known charac-

teristics such as amino acid residue or secondary structure type at the relevant sequence po-

sition, datasets quickly become small, sometimes having only a few dozen or a few hundred

observations. A number of approaches to smooth density estimates from simple binning

methods for the (φ, ψ) distributions have been proposed (Hovmoller et al., 2002; Lovell

et al., 2003; Rother et al., 2008), but they behave poorly for these subdivided datasets. This

is unfortunate, since these subsets provide structure predictions that are more accurate, as

they utilizes more specific information about a particular sequence position. The issue is

further complicated by the circular nature of this data, with each angle falling in the interval

(−π, π], which renders traditional techniques inadequate for describing the distributional

characteristics. Distributions for angular data, particularly mixture distributions for bivari-
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ate angular data, are required.

Some methods have been proposed which exhibit better performance for small bivari-

ate angular datasets. Pertsemlidis et al. (2005) recommend estimating such distributions

using a finite number of Fourier basis functions. This method exhibits correct wrapping

behavior, but requires the estimation of a large number of parameters which may not be

readily interpretable. Other models exhibit more intuitive behavior. Mardia, Taylor, and

Subramaniam (2007) fit finite mixtures of bivariate von Mises distributions using the EM

algorithm. Dahl, Bohannan, Mo, Vannucci, and Tsai (2008) use a Dirichlet process mix-

ture (DPM) model and bivariate normal distributions to estimate the distribution of torsion

angles. However, neither of these methods is entirely satisfactory, as the first requires the

selection of the number of component distributions, and the second cannot properly account

for the wrapping of angular data.

We propose a nonparametric Bayesian model that takes the best aspects from Mardia

et al. (2007) and Dahl et al. (2008). Specifically, we use a bivariate von Mises distribution

as the centering and component distributions of a Dirichlet process mixture model. The use

of a DPM model offers advantages in that the number of component distributions need not

be fixed and inference accounts for the uncertainty in the number of components. Using

a bivariate von Mises distribution, rather than a non-angular distribution, also provides

estimates that properly account for the wrapped nature of angular data. In addition, the

model readily permits the incorporation of prior information, which is often available for

torsion angles.

Although some authors have studied Bayesian models for univariate angular data, to

our knowledge the Bayesian analysis of bivariate angular data, such as that arising in pro-

tein structure prediction, has not been treated in the literature. We provide the results

necessary for Bayesian analysis of bivariate angular data, including the full conditional

distributions and conditionally conjugate priors, for a version of the bivariate von Mises
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distribution known as the sine model (Singh, Hnizdo, and Demchuk, 2002). Due to the

complexity of this distribution, methods for sampling from the posterior distribution are

not obvious. Therefore we provide an MCMC scheme that mixes well without requiring

the tuning of any sampling parameters and show how to produce density estimates from

the MCMC sampler.

We use our method to address the bioinformatics question of what distributions should

be used when sampling to generate new candidate models for a protein’s structure, a matter

of considerable interest to the structure prediction community. Recall the illustration in

Figure 1, which depicts whole and half positions on a peptide backbone. Current methods

use data from whole positions, so the (φ, ψ) angle pairs across positions for an amino

acid are considered independently. An alternative is to use the so-called half positions,

which consist of ψ and φ angles on either side of a peptide bond. Treating data as half

positions allows for more precise categorization, since these angle pairs are associated with

two adjacent residues types, as opposed to a single residue for whole positions. Since they

make use of a finer classification of the dataset, half position distributions are more accurate

than those of the whole positions, thus providing a better description of backbone behavior.

Due to their specificity, datasets for half positions are often relatively small, a situation that

our proposed density estimation technique handles well.

Section 2.2 contains a review of past work in angular data analysis, including recent

work in mixture modeling. In Section 2.3, we describe our DPM model for bivariate an-

gular data that incorporates the von Mises sine model as a centering distribution in the

Dirichlet process prior. In Section 2.4, we present the groundwork for a Bayesian treat-

ment of the bivariate von Mises distribution and develop the relevant distribution theory,

including deriving the full conditional distributions and conditionally conjugate priors for

both the mean and precision parameters. We also describe our MCMC scheme for fitting

this model, and our associated density estimation technique. Section 2.5 details the novel
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results from our method, comparing the use of whole versus half positions for template

based protein structure modeling. Concluding comments are found in Section 2.6.

2.2 Review of Previous Statistical Work

As our method builds upon previous univariate and bivariate work with angular data, we

provide a review of this field. We also discuss the recent results in bivariate mixture model-

ing. It should be noted that the terms angular data and circular data are used interchange-

ably in the literature.

2.2.1 Univariate Angular Data

A common option for describing univariate circular data is the von Mises distribution

(see e.g. Mardia, 1975), which can be characterized in terms of either an angle or a unit

vector. In terms of an angle φ ∈ (−π, π], the density is written:

f(φ|µ, κ) = {2πI0(κ)}−1 exp{κ cos(φ− µ)}

where κ > 0 is a measure of concentration, µ is both the mode and circular mean, and

Im(x) is the modified Bessel function of the first kind of order m. This distribution is

symmetric and goes to a uniform distribution as κ→ 0. As discussed by Pewsey and Jones

(2005), this distribution can be approximated by a wrapped normal distribution.

There is extensive Bayesian literature for this univariate distribution. Mardia and El-

Atoum (1976) derived the full conditional distribution and conditionally conjugate prior

for µ, while Guttorp and Lockhart (1988) determined the full conditional and conditionally

conjugate prior for κ, as well as the conjugate prior and posterior distribution for simulta-

neous inference on µ and κ. Bagchi and Guttman (1988) developed the more general case

including the distributions on the sphere and hypersphere. More recently, Rodrigues et al.

(2000) presented an empirical Bayes approach to inference.
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2.2.2 Bivariate Angular Data

The original bivariate von Mises distribution was introduced by Mardia (1975) and was

defined with eight parameters. Rivest (1988) introduced a six parameter version. A five

parameter distribution is preferable, however, so that the parameters might have a familiar

interpretation, analogous to the bivariate normal.

Singh et al. (2002) introduced a five parameter subclass of Rivest’s distribution re-

ferred to as the sine model. The density for angular observations (φ, ψ) is of the form:

f(φ, ψ|µ, ν, κ1, κ2, λ) = C exp{κ1 cos(φ−µ) + κ2 cos(ψ− ν) + λ sin(φ−µ) sin(ψ− ν)}

(2.1)

for φ, ψ, µ, ν ∈ (−π, π], κ1, κ2 > 0, λ ∈ (−∞,∞), and

C−1 = 4π2

∞∑
m=0

(
2m

m

)(
λ2

4κ1κ2

)m
Im(κ1)Im(κ2). (2.2)

This density is unimodal when λ2 < κ1κ2 and bimodal otherwise. In the unimodal

situation, this density has a direct analogue to a bivariate normal with mean (µ, ν), and

precision matrix Σ−1, where Σ−1
11 = κ1, Σ−1

22 = κ2, and Σ−1
12 = Σ−1

21 = −λ. Note that this

normal approximation holds when the variance of the distribution is small, i.e. when κ1 and

κ2 are large. This correspondence to the bivariate normal distribution provides intuition for

the behavior of the sine model for various parameter values.

Bivariate angular data, particularly protein conformational angles, often have a distri-

bution with features that cannot be accommodated by a single von Mises distribution, even

when bimodality is permitted. Mardia et al. (2007) developed the cosine model, another

five parameter bivariate angular distribution, and suggested using the EM algorithm to fit

several finite mixtures of these models, each with a different numbers of components. They

employed the Akaike information criterion (AIC) for model selection. With this technique
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they estimated the density of (φ, ψ) angle pairs in the myoglobin and malate dehydrogenase

protein structures.

2.3 Bayesian Mixture Model with von Mises Distributions

Our model for bivariate angular distributions offers both the flexibility of the DPM model

and the technical accuracy provided by the use of a bivariate angular distribution. The

proposed model is:

(φi, ψi) | µi, νi,Ωi ∼ p((φi, ψi) | µi, νi,Ωi) (2.3)

(µi, νi,Ωi) | G ∼ G (2.4)

G ∼ DP (τ0H1H2), (2.5)

where p((φi, ψi)|µi, νi,Ωi) is a bivariate von Mises sine model in which Ωi is a 2 × 2

matrix with both off-diagonal elements equal to −λi and diagonal elements κ1i and κ2i.

This parameterization makes Ωi analogous to the precision matrix of the bivariate normal

distribution. The distribution G is a random realization from DP (τ0H1H2), a Dirichlet

process (Ferguson, 1973) with mass parameter τ0 and centering distribution H1H2. We

take H1 to be a bivariate von Mises sine model for the means µ and ν, and H2 to be a

bivariate Wishart distribution for the precision matrix Ω. An alternative noninformative

prior on the means is obtained using a uniform distribution on the square (−π, π]× (−π, π]

for H1. In either case, the result is a Bayesian mixture model (Antoniak, 1974), a broad

class of models reviewed by Müller and Quintana (2004).

In contrast, Dahl et al. (2008) modeled the distributions of conformational angles using

a DPM model that assumed bivariate normals as the component distributions. They took

the sampling model to be a bivariate normal distribution with precision matrix Σ−1
i and

also set H1 to be a bivariate normal. This approach is unsatisfactory for circular data and

exhibits particular problems when the underlying distribution has significant mass on the
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boundaries of the (−π, π]× (−π, π] region. Our use of the bivariate von Mises distribution

avoids this deficiency. Also, in contrast to our model, Dahl et al. (2008) used two separate

clusterings: one for the mean parameters and one for the precision parameters.

For our torsion angle application, we are particularly interested in predicting new

(φ, ψ) values based on the existing data and our DPM model. Density estimation using

DPM models is discussed by Escobar and West (1995). A nonparametric density estimate

of the (φ, ψ) space from data (φ,ψ) = ((φ1, ψ1), ..., (φn, ψn)) is a predictive distribution

for a new angle pair (φn+1, ψn+1), namely:

p((φn+1, ψn+1)|(φ,ψ)) =

∫
p((φn+1, ψn+1), (µn+1, νn+1,Ωn+1)|(φ,ψ))

d(µm+1, νn+1,Ωn+1)

=

∫
p((φn+1, ψn+1)|(µn+1, νn+1,Ωn+1))

× p((µn+1, νn+1,Ωn+1)|(φ,ψ))d(µn+1, νn+1,Ωn+1). (2.6)

We show in the next sections how to estimate this density and how it can be used for protein

structure prediction.

2.4 Model Estimation

The integral of the posterior predictive density in (2.6) cannot be expressed in closed form,

but it can be computed through Monte Carlo integration. Specifically, let (µ1
n+1, ν

1
n+1,

Ω1
n+1), . . . , (µ

B
n+1, ν

B
n+1,Ω

B
n+1) be B samples from the posterior predictive distribution of

(µn+1, νn+1,Ωn+1) obtained from some valid sampling scheme. Then

p((φn+1, ψn+1)|(φ,ψ)) ≈ 1

B

B∑
b=1

p((φn+1, ψn+1)|(µbn+1, ν
b
n+1,Ω

b
n+1)). (2.7)

While equation (2.7) can be evaluated for any value of (φn+1, ψn+1), for our purposes we

obtain density estimates by evaluating (2.7) on a grid of points and use linear interpolation

between them.
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All that remains is to determine how to sample from the posterior distribution of the

parameters. The Auxiliary Gibbs sampler of Neal (2000) provides an MCMC update of

the allocation of observations to clusters. We are at liberty to choose any valid updating

scheme for the mean and precision parameters. Since the joint posterior distribution for all

five parameters is intractable, the full conditionals of the mean and precision parameters are

a natural choice. We now present our novel results regarding: 1) conditionally conjugate

priors for this model, 2) full conditional distributions for both conditionally conjugate and

uniform priors, and 3) approximate sampling methods for each full conditional distribution.

2.4.1 Full Conditional Distributions of Mean and Precision Parameters

Using the notation from Mardia et al. (2007), the eight parameter bivariate von Mises dis-

tribution may be expressed as:

f(φ, ψ) ∝ exp{κ1 cos(φ− µ) + κ2 cos(ψ − ν)+

[cos(φ− µ), sin(φ− µ)]A[cos(ψ − ν), sin(ψ − ν)]T}

where A is a 2 × 2 matrix of association parameters. The sine model density from (2.1)

corresponds to the situation in which A11 = A12 = A21 = 0 and A22 = λ.

The conditionally conjugate prior for the mean parameters, whether observations are

from an eight parameter or sine model bivariate von Mises distribution, is an eight param-

eter bivariate von Mises distribution. We are particularly interested in using a sine model

prior with center (µ0, ν0) and precision parameters κ10, κ20, and λ0. This prior can be in-

terpreted as an additional observation with known precision parameters. As observations

with higher concentration values have greater weight in determining the posterior distribu-

tion parameters, less informative priors are those with κ10, κ20, and λ0 close to 0. This is

consistent with the fact that an alternative noninformative prior is a uniform distribution on

(−π, π]×(−π, π], which is the limit of the sine model prior when λ0 = 0 and κ10, κ20 → 0.
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Consider a set of observations (φi, ψi), i = 1, ..., n, each with known precision pa-

rameters κ1i, κ2i, and λi. The full conditional distribution for (µ, ν) is an eight parameter

bivariate von Mises distribution with full derivation and details given in Appendix A. The

full conditional parameters are:

µ̃ = arctan

(
n∑
i=1

κ1i[cos(φi), sin(φi)]

)
ν̃ = arctan

(
n∑
i=1

κ2i[cos(ψi), sin(ψi)]

)

κ̃1 =

∣∣∣∣∣
n∑
i=1

κ1i[cos(φi), sin(φi)]

∣∣∣∣∣ κ̃2 =

∣∣∣∣∣
n∑
i=1

κ2i[cos(ψi), sin(ψi)]

∣∣∣∣∣
Ã =

n∑
i=0

λi

 sin(φi − µ̃) sin(ψi − ν̃) − sin(φi − µ̃) cos(ψi − ν̃)

− cos(φi − µ̃) sin(ψi − ν̃) cos(φi − µ̃) cos(ψi − ν̃)

 . (2.8)

The mean parameters of the full conditional distribution are the directions of the sums of

the observation vectors, while the concentration parameters are the magnitudes of those

same vectors. These bivariate results are analogous to the univariate work of Mardia and

El-Atoum (1976).

When considering the full conditional distribution of the precision parameters of the

sine model, it may be assumed that the known means are both 0. The conditionally conju-

gate prior for the precision parameters is of the form:

π(κ1, κ2, λ) ∝

{
4π2

∞∑
m=0

(
2m

m

)(
λ2

4κ1κ2

)m
Im(κ1)Im(κ2)

}−c
× exp(Rφ0κ1 +Rψ0κ2 +Rφψ0λ). (2.9)

Here the prior assumes the role of c observations from the bivariate von Mises sine model,

and the prior parameters Rφ0 and Rψ0 are the sums of the magnitudes in the x direction

of the φ and ψ components, respectively, of these observations. The parameter Rφψ0 is the

sum of the products of the magnitudes in the y direction. For this interpretation to hold,

Rφ0, Rψ0, and Rφψ0 must be between −c and c. Notice that the conditionally conjugate
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prior, and corresponding full conditional distribution, are difficult to sample from due to the

infinite sums of Bessel functions. Notice also that this prior does not guarantee precision

parameters that will give unimodal sine model distributions.

2.4.2 Markov Chain Monte Carlo Sampler

The posterior distribution of our model parameters from Section 2.3 can be sampled through

Markov chain Monte Carlo using the Auxiliary Gibbs sampler of Neal (2000). This method

requires the ability to directly sample from the centering distribution. For this reason we

use a bivariate von Mises sine model, rather than an eight parameter bivariate von Mises

distribution, for H1. It is also difficult to sample from the conjugate prior for the preci-

sion parameters described in (2.9), and we instead use the Wishart distribution for H2(Ω)

in (2.5). In addition, a Wishart prior guarantees that the sampled matrix will be positive

definite, which is equivalent to the restriction that ensures unimodality for the sine model

component distributions. Eliminating bimodality both simplifies posterior simulation, and

increases the resemblance of the sampling model to that of a mixture of bivariate normal

distributions. This substitution is also appealing because, for large values of κ1 and κ2, this

von Mises model is nearly equivalent to a normal distribution. In this case, the Wishart

prior behaves much like the conjugate prior distribution in (2.9).

Auxiliary Gibbs sampling requires a valid updating scheme for the model parame-

ters. Generating MCMC samples for the full conditional distribution of the means is fairly

straightforward. As it is difficult to sample directly from the eight parameter full condi-

tional distribution, we instead generate proposals using a sine model as part of an indepen-

dence sampler. The parameters of our proposal distribution are:

µ̃ = arctan

(
n∑
i=1

κ1i[cos(φi), sin(φi)]

)
ν̃ = arctan

(
n∑
i=1

κ2i[cos(ψi), sin(ψi)]

)

κ̃1 =

∣∣∣∣∣
n∑
i=1

κ1i[cos(φi), sin(φi)]

∣∣∣∣∣ κ̃2 =

∣∣∣∣∣
n∑
i=1

κ2i[cos(ψi), sin(ψi)]

∣∣∣∣∣ .



21

λ̃ =

(
n∑
i=0

λi cos(φi − ψi)

)
{cos(µ̃− ν̃)}−1 .

This distribution uses the mean and concentration parameters from the true full conditional

distribution, altering only the parameters used to model association. The chosen depen-

dence parameter λ̃ has been found to work well in practice.

A simple method to sample from the sine model is to use a rejection sampler with

a uniform distribution as the majorizing density. The implementation requires some care,

however, as the full conditional distribution is not always unimodal. The value of the mode

in the unimodal case is (µ̃, ν̃), while the values in the bimodal case depend on the sign of

λ̃ and are given in the appendix of Mardia et al. (2007).

The update scheme for the concentration matrix Ω of a cluster is less straightforward.

Regardless of the choice of prior, the full conditional distribution of the precision parame-

ters would be difficult to sample from directly, due to the infinite sum of Bessel functions

and the fact that the constant of integration is not known in closed form. However, this

distribution is often well approximated by the full conditional of the precision parameters

from an analogous model in which the data are assumed to be normally distributed, par-

ticularly when a Wishart prior is used. An independence sampler using this equivalent

Wishart distribution generally provides a good acceptance rate. Further, this proposal dis-

tribution is automatic in the sense that the resulting sampling scheme does not require any

tuning parameters. The use of this proposal distribution is also consistent with previous

findings for the univariate case, where the full conditional distribution of κ was found to be

approximately χ2 distributed (Bagchi and Guttman, 1988).

An outline of this algorithm is given in Figure 2.
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1. Initialize the parameter values:

(a) Choose an initial clustering. Two obvious choices are: (1) one cluster for all
of the angle pairs, or (2) each angle pair in a cluster by itself.

(b) For each initial cluster S of observed angle pairs, initialize the value of the
common bivariate von Mises parameters µ, ν,Ω by sampling from the cen-
tering distribution H1(µ, ν)H2(Ω) of the DP prior.

2. Obtain draws from the posterior distribution by repeating the following:

(a) Given the mean and precision values, update the clustering configuration us-
ing one scan of the Auxiliary Gibbs sampler of Neal (2000).

(b) Given the clustering configuration and precision values, update the values of
(µ, ν) for each cluster using the independence sampler in Section 2.4.2.

(c) Given the clustering configuration and mean values, update the precision ma-
trix Ω for each cluster using the Wishart independence sampler described in
Section 2.4.2.

Figure 2: Summary of computational procedure for density estimation with angle pairs.

2.5 Template Based Modeling of Protein Structure

2.5.1 Motivation

In this section we use our proposed density estimation procedure to develop a more efficient

method for protein structure prediction. Methods specifically designed for angular data are

necessary since consideration of periodicity is essential for certain amino acids, such as

glycine. Figure 3 shows density estimates based on the normal model of Dahl et al. (2008)

and our own von Mises sine model. Notice that the normal model is unable to wrap between

the angles −π and π. The von Mises model identifies a single peak that includes mass at

all four corners, whereas the normal model identifies separate peaks at each corner for this

same portion of the data.

We also conducted a quantitative comparison of these two DPM models. To investi-

gate the improvement of the von Mises over the normal, we generated density estimates

for subsets of size 200 for each of the twenty amino acid datasets, once using normal cen-
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Figure 3: Ramachandran plots for the 121,497 angle pairs that make up the PDB dataset for
the residue glycine, along with density estimates based on both the normal and von Mises
distributions. The normal model is from the work of Dahl et al. (2008) while the von Mises
estimate is based on our model in Section 2.3. Note that glycine spans almost the complete
range of values in both φ and ψ, which makes the use of a method that correctly models
circular data critical.

tering and component distributions and once using the equivalent von Mises distributions.

In each case we used the prior parameter settings and clustering configuration from Dahl

et al. (2008), with separate clusterings for mean and precision parameters. We calculated

the Bayes factor for the two models using the full amino acid datasets, which ranged in size

from 23,000 to 143,000 observations. Our Bayes factor was defined as:

B((φ,ψ)) =
p((φ,ψ)|M1)

p((φ,ψ)|M2)

whereM1 was our von Mises model estimate andM2 was normal model estimate. The logs

of the Bayes factors ranged from 183 to 6,013 in absolute value, allowing us to draw clear

conclusions as to the superior model in each case. For nineteen of the twenty amino acids,

the Bayes factor indicated that the von Mises model was superior. While the normal model

fails to capture the wrapped nature of torsion angle data, our method provides robust and

elegant estimates of the (φ, ψ) distributions from large or small datasets.
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We can use our nonparametric density estimation procedure to estimate the density

of backbone torsion angle distributions. This approach allows us to investigate how well

distributions obtained from Protein Data Bank (PDB) data approximate the (φ, ψ) distribu-

tions at particular positions in a protein fold “family”. This is of interest since one popular

technique in protein structure prediction is to generate candidate conformations based on

the structures of known similar proteins. These fold families can provide a great deal of

information about the unknown structure, but most are very small, often with fewer than

10 members. This means that density estimation purely within a family has not been fea-

sible. In such cases, candidate distributions are generated based on large datasets with

similar characteristics to those of the sequence positions in the known structures. As cur-

rent search methods are mostly random walks in conformation space (Dill et al., 2007; Lee

and Skolnick, 2008; Das and Baker, 2008), improved modeling of these positional densities

increases the chance of finding a good structure. To assess the quality of these PDB “cate-

gory densities,” we compare density estimates from the PDB to those obtained from three

fold families: globins, immunoglobulins, and TIM barrels. Each represents a classic archi-

tecture in structural biology. The globins consist mostly of α-helical secondary structure,

and the immunoglobulins consist mostly of β-sheets. TIM barrels are a mixed structure

with both α-helices and β-sheets. These three families are fairly unique in that they have

enough known members that density estimation purely within a family is possible.

In contrast to standard methods, we not only consider the torsion angles around a se-

quence position or residue, but also the (ψ, φ) torsion angle pair around the peptide bond

(see Figure 1). Previously, this peptide centered view of torsion angles has only been ap-

plied to short amino acid chains (Anderson and Hermans, 1988; Grail and Payne, 2000).

Recall that we refer to the residue torsion angle pairs (φ, ψ) as “whole positions” and the

peptide torsion angle pairs (ψ, φ) as “half positions,” since they reside “half-way” between

whole sequence positions. By incorporating the characteristics of two residues, these half
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positions lead to a finer classification of the dataset, and provide an effective approach to in-

creasing the amount of information known about a particular angle pair without increasing

the complexity of the underlying model beyond two torsion angles.

Each whole position can be described by which of twenty amino acid residues is

present, and also the type of secondary structure at that location. We define secondary

structure in the same manner as the Definition of Secondary Structure for Proteins (DSSP)

program (Kabsch and Sander, 1983). The normal eight classes are condensed to four: he-

lices (H), sheets (E), coils (C), and turns (T). Residues without any specific structure are

assigned to the random coil (C) class. β-turns and G-turns were combined into the turn

(T) class. All helices were classified as (H). Strand and β-bulges were combined into the

extended strand (E) class. The twenty residues and four secondary structure classes provide

eighty possible classifications for whole position data.

Since a half position involves two residues, there are 400 categories when considering

only amino acid pairs, and 6,400 when the four secondary structure classes are included.

When considering half positions, we take the same data as used for the whole positions and

divide it into a much larger number of groups, which thins out the data considerably. This

reduction is worthwhile, however, since every amino acid and secondary structure type

exhibits unique behavior visible on the Ramachandran plot. Using adjacent pairs of amino

acids and structure types, as the half positions do, gives even more specific information

about a sequence position. As we will demonstrate, the use of half positions provides a

substantial increase over the available information provided by whole position data.

2.5.2 Methods and Diagnostics

The torsion angle distributions were estimated for the PDB whole and half positions, as

well as the three families of protein folds: globins, immunoglobulins, and TIM barrels.

For whole positions, in addition to the categories discussed before, we include a category
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ignoring secondary structure type for a total of 100 density estimates. The same was done

for half position densities, giving a total of 6,800 estimates.

For each of the three protein fold families, angle pairs for whole and half positions

were obtained for each sequence position. For instance, all 92 (φ, ψ) pairs at position

13 based on the globin alignment were used to estimate the relevant density. The same

was done for half positions, but the (ψ, φ) angles were centered around the peptide bond

between two residues. These alignments produced 183 residue positions for the globins,

343 for the immunoglobulins, and 274 for the TIM barrels.

For each dataset, two chains were run for 6,000 iterations, with the first 1,000 dis-

carded as burn in. For post burn in iterations, a draw was taken from the posterior distri-

bution and the resulting von Mises density was evaluated for a grid of 360 × 360 points.

Using 1 in 10 thinning, this gave B = 1, 000 samples to estimate the density using (2.7).

For datasets with over 2,000 observations, we used a random subsample of 2,000 observa-

tions.

Our von Mises model from Section 2.3 was used with mean prior parameters µ0 =

ν0 = 0, and Ω0 was a diagonal matrix with elements 1/π2. The small concentration values

made this prior largely noninformative. For the Wishart prior, we used used v = 2 degrees

of freedom and set the scale matrix B to have diagonal elements of 0.52, and off-diagonal

elements of 0 (making the expected value v
2
B−1 = B−1). This again provided a diffuse

centering distribution on the radian scale. The mass parameter τ0 of the Dirichlet process

was set to 1.

Convergence was evaluated using entropy as described by Green and Richardson

(2001). Figure 4 shows trace plots for the two MCMC chains for position 11 of the globin

family.
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Figure 4: Convergence diagnostics for globin position 11.

2.5.3 Comparison of Whole and Half Position Density Estimates

To judge whether the whole or half position density estimates provided a closer match to the

density at a particular position of a protein family, we used the Jensen-Shannon divergence:

1

2

(
DKL(P,

P +Q

2
) +DKL(Q,

P +Q

2
)

)
as a measure of distributional similarity, where DKL is the Kullback-Leibler divergence

defined by DKL(P,Q) =
∑

i P (i)log (P (i)/Q(i)). Both P and Q are density estimates

from our proposed procedure.

The positional density estimates were compared to all of the estimates from the PDB

using this divergence score. Whole position densities from each of the three fold families

were compared to the whole position category densities from the PDB, and half positions

from the fold families were compared to the half position category densities from the PDB.

The best matches, those with the lowest divergence values, are plotted against position in

Figure 5. It is evident that the half position comparisons produce lower divergence scores.

The mean minimum divergence for whole positions is 0.143, while the corresponding half

position value is 0.052. The paired sign test of the null hypothesis that the median min-

imum divergence score for whole positions is less than or equal to that for half positions

produced p-values less than 0.0001 for each structure family. The plot shows that the half
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Figure 5: A comparison of minimum divergence scores for whole versus half positions.

positions provide better matches at the beginning and ends of the structures, which consist

of coil secondary structure, and in the sheet regions of the immunoglobulins. Whole posi-

tions perform best in helical regions, but even then half positions provide a better match.

The worst matching cases are in areas with non-canonical turns or unique coils, which

correspond to the highest minimum divergence scores for all structure families.

A specific example of this behavior can be seen in Figure 6, which shows the globin

whole position 11 with the closest matching PDB density compared to the half position 11-

12 with its matching half position density from the PDB. It can be readily seen from these
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Figure 6: Ramachandran plots around globin position 11. A) Density estimate and data
for whole position 11. B) Density estimate and data for asparagine coil whole positions
which, at a divergence of 0.092, provides the best PDB match for globin whole position
11. C) Density estimate and data for the half position between residues 11 and 12. D)
Density estimate and data for aspartic acid sheet to methionine coil half positions which, at
a divergence of 0.037, provides the best PDB match for globin half position 11-12.
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figures that the whole position matches fairly well, but also includes extraneous density. By

instead considering the half position of the associated peptide, we find a closer match. This

is not surprising due to the increased specificity of the half position densities from the PDB,

not to mention the increased number of categories available for comparison. These results

suggest that the use of half position data as a substitute for whole position data provides

better results.

2.6 Discussion

We have presented a novel nonparametric Bayesian method for density estimation with

bivariate angular data. This method, unlike many currently used to estimate the density

of (φ, ψ) angle pairs, provides smooth estimates without requiring large datasets. This

allowed the estimation of the distributions for PDB half position data, as well as positional

data from three protein fold families. Using this new technique we were able to evaluate the

common practice of using whole position estimates for positional data. Our results indicate

that half position densities are more informative than the corresponding whole position

estimates.

Our Dirichlet process mixture model performs well for density estimation of bivariate

circular data. In contrast to previous work in this area, it does not require the setting of a

fixed number of components for the mixture. By incorporating the bivariate von Mises sine

model, we are able to account for the wrapping of the data, and the sine model’s equiv-

alence to the normal distribution allows for a straightforward interpretation and effective

implementation of a Markov chain Monte Carlo sampling scheme. This was made possi-

ble by our results regarding the full conditional distributions for the mean and precision

parameters.

We have demonstrated that our approach at half positions provides greater precision

than the use of whole positions for protein structure prediction. Unlike the fold families
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Figure 7: Density estimates for globin position 11 with different scale matrices for the
Wishart prior distribution.

shown here, most protein folds have very limited numbers of representatives in the PDB.

For these fold families, density estimation at each position, even using our method, is not

feasible. Therefore, the distributions used to approximate the backbone torsion angle space

are obtained from the PDB. When these distributions are inaccurate or too broad, as we

see for the whole positions, significant time is spent sampling the wrong areas of back-

bone conformation space. When searching using a random walk in conformation space,

this reduces the chance of finding a good structure. A reliable reduction of the backbone

search space using the half position distributions is a significant improvement to all struc-

ture prediction methods. The only way such half position distributions can be precisely

calculated is by using density estimation methods, such as ours, that properly address the

angular nature of the data and cope well with smaller datasets.

We conclude by briefly presenting the results of a sensitivity analysis we performed

for the Wishart prior and DP mass parameter. Three different scale matrices were consid-

ered for the Wishart prior. Each could be written as c2I , where I was the 2 × 2 identity

matrix, and c took values 0.25, 0.5, and 1.0. Figure 7 shows the resulting density estimates

for globin position 11. The changes between the density estimates are not dramatic, and
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Figure 8: Density estimates for globin position 11 for assorted values of the mass parame-
ter.

the effect is comparable to that of varying the bandwidth in kernel density estimation meth-

ods. Other positions showed similar behavior, although the effect of changing the prior

parameter is reduced as sample size increases..

We also investigated the sensitivity to changes in the mass parameter. We set τ0 to 0.5,

1.0, 2.0, and 5.0. A comparison of these estimates for position 11 is given in Figure 8. The

plots all look very similar. This is generally the behavior of the other positions, although

sometimes the 5.0 case exhibits slight but noticeable differences.

Convergence of the Markov chains was generally good, but we did encounter occa-
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sional difficulties, particularly when the mass parameter was small. However, even when

the trace plots of entropy for the two chains suggested convergence problems, the density

estimates generated by the separate chains were generally similar. Therefore, we do not

consider this to be a major issue. On the other hand, if the mass parameter is very small

severe problems can occur. As always, convergence diagnostics should be employed.
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CHAPTER III

A DIRICHLET PROCESS MIXTURE OF HIDDEN MARKOV MODELS FOR

PROTEIN STRUCTURE PREDICTION*

3.1 Introduction

The field of protein structure prediction has greatly benefited from formal statistical mod-

eling of available data (Osguthorpe, 2000; Bonneau and Baker, 2001). More automatic

methods for predicting protein structure are critical in the biological sciences as they help

to overcome a major bottleneck in effectively interpreting and using the vast amount of

genomic information: determining the structure, and therefore the function, of a gene’s

protein product. Currently the growth of genomic data far outstrips the rate at which ex-

perimental methods can solve protein structures. To help accelerate the process, protein

structure prediction methods aim to construct accurate three-dimensional models of a tar-

get protein’s native state using only the protein’s amino acid sequence.

Protein structure is typically described in terms of four categories: primary through

quaternary. Primary structure consists of the linear sequence of covalently bonded amino

acids that make up a protein’s polypeptide chain. Secondary structure describes the reg-

ularly repeating local motifs of α-helices, β-strands, turns, and coil regions. For a sin-

gle polypeptide chain, tertiary structure describes how the secondary structure elements

arrange in three-dimensional space to define a protein’s fold. By allowing the polypep-

tide chain to come back on itself, the loops and turns effectively define the arrangement

* Material in this chapter is reprinted with permission from “A Dirichlet Process Mixture
of Hidden Markov Models for Protein Structure Prediction” by Lennox, K. P., Dahl, D. B.,
Vannucci, M., Day, R. and Tsai J. 2010. The Annals of Applied Statistics. In press.
Journal URL: http://www.imstat.org/aoas/
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of the more regular secondary structure of α-helices and β-strands. Quaternary structure

describes how multiple folded polypeptide chains interact with one another. In a typical

structure prediction problem the primary structure is known, and the goal is to use this

information to predict the tertiary structure.

One of the standard approaches to this problem is template-based modeling. Template-

based methods are appropriate when the target sequence is similar to the sequence of one or

more proteins with known structure, essentially forming a protein fold “family.” Typically

the core of the modeled fold is well defined by regular secondary structure elements. One of

the major problems is modeling the loops and turns: those regions that allow the protein’s

tertiary structure to circle back on itself. Unlike the consistency of the core in a template-

based prediction, the variation in the loops and turns (both in terms of length and amino

acid composition) between structures with the same fold family is often quite large. For

this reason current knowledge-based methods do not use fold family data. Instead of the

template-based approach, they use libraries of loops which are similar in terms of length

and amino acid sequence to the target. However, such library datasets do not have the same

level of structural similarity as do purely within-family datasets. In this work, our approach

to modeling structural data allows us to effectively extend template-based modeling to the

loop and turn regions and thereby make more informed predictions of protein structure.

Our approach is based on the simplest representation of protein structure: the so-

called backbone torsion angles. This representation consists of a (φ, ψ) angle pair at each

sequence position in a protein, and it provides a reduction in complexity from using the 12

Cartesian coordinates for the four heavy backbone atoms at each position. This method for

describing protein structure was originally proposed by Ramachandran et al. (1963), and

the customary graphical representation of this type of data is the Ramachandran plot. The

Ramachandran plot in Figure 9 shows the (φ, ψ) angles of protein positions containing the

amino acid alanine. The pictured dataset was obtained from the Protein Data Bank (PDB,
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Figure 9: Ramachandran plot for the 130,965 angle pairs that make up the PDB dataset for
the amino acid alanine. Angles are measured in radians.

Kouranov et al., 2006), a repository of solved protein structures.

Density estimation of Ramachandran space is particularly useful for template-based

structure prediction. Because a target protein with unknown tertiary structure is known

to be related to several proteins with solved structures, models for bivariate angular data

can be used to estimate the distribution of (φ, ψ) angles for a protein family, and thereby

generate candidate structures for the target protein.

While there has been considerable recent work on modeling in Ramachandran space

at a single sequence position (see e.g. Ho et al., 2003; Lovell et al., 2003; Butterfoss et al.,

2005), models that accommodate multiple sequence positions remain uncommon. A no-

table exception is the DBN-torus method of Boomsma et al. (2008). However this approach

was developed primarily to address sampling of fragments in de novo protein structure pre-
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diction, and so specifically does not include protein family information. De novo structure

prediction is used when similar proteins with known structure are unavailable and is thus

inherently more difficult and less accurate than template based modeling. While template-

based methods can draw on a certain amount of known information, a common complica-

tion is that protein families typically have fewer than 100 members, and often fewer than

30 members.

Not only do protein families tend to have few members, but the data within a family

is “sparse,” particularly in loop regions. A template sequence for a protein structure family

is generated by simultaneously aligning all of the member proteins using amino acid type

at each sequence position. The sequences in a fold family are often of different lengths

due to different sizes of loops and turns. In such an alignment a typical member protein

is not represented at every sequence position. This leads to what we call a “sparse data”

problem. Note that this is not a missing data situation, as a sequence position is not merely

unobserved, but rather does not in fact exist.

A joint model for a large number of torsion angles using somewhat limited data can

be enhanced by leveraging prior knowledge about the underlying structure of the data. We

present a Bayesian nonparametric model incorporating a Dirichlet process (DP) with one

of two possible families of centering distributions for modeling the joint distributions of

multiple angle pairs in a protein backbone. Our model addresses the sparse data situation,

and also accommodates a larger number of sequence positions than previously considered

methods of template-based density estimation. One of our proposed centering distributions

leads to a largely noninformative prior, but we also propose a family of centering distribu-

tions based on known characteristics of protein secondary structure in the form of a hidden

Markov model (HMM). The inclusion of an HMM allows our model to share structural in-

formation across sequence positions. Since each secondary structure type has a distinctive

footprint on the Ramachandran plot, with this process we can use an informative prior to
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incorporate additional information into our model.

There is precedent for the use of a hidden Markov model for protein structure pre-

diction in the DBN-torus model of Boomsma et al. (2008). There, secondary structure

information is incorporated into the state space of a dynamic Bayesian network, a general-

ization of an HMM, which allows the DBN-torus model to infer secondary structure when

generating candidate angle pair sequences. The model generates significantly better candi-

dates, however, when secondary structure is provided from an external prediction method.

There are other differences between the DBN-torus method and our own which result from

the distinct applications of the two methods. DBN-torus is used for de novo structure pre-

diction; it is designed to make predictions for any kind of protein, and is not customized for

a particular fold family. In contrast, our method is tailored for template-based modeling.

Thus, the DBN-torus model can be used even when template information is unavailable,

but will miss opportunities for improvement when fold-family structure information exists.

We apply our method to the loop region between the E and F α-helices of the globin

protein template, which varies between 8 and 14 sequence positions in length. By bor-

rowing strength from neighbors containing numerous observations, our model generates

informative density estimates even if relatively little data is available at a given position.

This property gives our method a significant advantage in loop prediction by allowing the

use of fold family data. This extension of template-based modeling to loop regions was not

possible before the development of these statistical tools. We show that using our Dirich-

let process mixture of hidden Markov models (DPM-HMM) in a template-based approach

provides a better match to real structure data than does either a library-based method or

DBN-torus.

In Section 3.2 we give some background on previous work in torsion angle modeling,

as well as the bivariate von Mises distribution and the Dirichlet process. In Section 3.3 we

present our model along with the informative and noninformative priors. An explanation
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of how to fit this model and use it for density estimation is provided in Section 3.4. Section

3.5 contains an application of our method to estimate the joint density of torsion angles

in the EF loop region in the globin protein family. Finally, we discuss our conclusions in

Section 3.6.

3.2 Preliminaries

We illustrate the development of our model by first discussing methods for modeling in-

dividual torsion angle pairs. Working with torsion angles requires the use of distributions

specifically designed to account for the behavior of angular data. This data has the property

that an angle φ is identical to the angle φ+ 2kπ for all k ∈ {...,−1, 0, 1, ...}. The bivariate

von Mises distribution is commonly used for paired angular data.

Originally proposed as an eight parameter distribution by Mardia (1975), subclasses

of the bivariate von Mises with fewer parameters are considered easier to work with and

are often more interpretable. Rivest (1982) proposed a six parameter version, which has

been further refined into five parameter distributions. One such subclass, known as the

cosine model, was proposed by Mardia et al. (2007), who employed it in frequentist mixture

modeling of (φ, ψ) angles at individual sequence positions. We consider an alternative

developed by Singh et al. (2002) known as the sine model.

The sine model density for bivariate angular observations (φ, ψ) is defined as:

f(φ, ψ|µ, ν, κ1, κ2, λ) = C exp{κ1 cos(φ−µ) + κ2 cos(ψ− ν) + λ sin(φ−µ) sin(ψ− ν)}

(3.1)

for φ, ψ, µ, ν ∈ (−π, π], κ1, κ2 > 0, λ ∈ (−∞,∞), and

C−1 = 4π2

∞∑
m=0

(
2m

m

)(
λ2

4κ1κ2

)m
Im(κ1)Im(κ2). (3.2)

The parameters µ and ν determine the mean of the distribution, while κ1 and κ2 are pre-

cision parameters. The parameter λ determines the nature and strength of association be-
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tween φ and ψ. This density is unimodal when λ2 < κ1κ2 and bimodal otherwise. One

of the most attractive features of this particular parameterization of the bivariate von Mises

is that, when the precision parameters are large and the density is unimodal, it can be well

approximated by a bivariate normal distribution with mean (µ, ν) and precision matrix Ω,

where Ω11 = κ1, Ω22 = κ2, and Ω12 = Ω21 = −λ.

Singh et al. (2002) fit individual sine model distributions to torsion angle datasets.

Mardia et al. (2008) developed an extension of the bivariate sine model for n dimensional

angular data, but the constant of integration is unknown for n > 2, rendering it difficult to

use. We instead consider a method based on a Dirichlet process mixture model.

The Dirichlet process, first described by Ferguson (1973), is a distribution of ran-

dom measures which are discrete with probability one. The Dirichlet process is typically

parameterized as having a mass parameter τ0 and a centering distribution G0. Using the

stick-breaking representation of Sethuraman (1994), a random measure G drawn from a

Dirichlet process DP (τ0G0) takes the form:

G(B) =
∞∑
j=1

pjδγj
(B)

where δγ is an indicator function equal to 1 if γ ∈ B and 0 otherwise, γj ∼ G0,

p′j ∼Beta(1, τ0), and pj = p′j
∏j−1

k=1(1 − p′k). In this form, the discreteness of G is clearly

evident.

This discreteness renders the DP somewhat unattractive for directly modeling contin-

uous data. However it can be effectively used in hierarchical mixture models (Antoniak,

1974). Consider a dataset z1, ..., zn, and a family of distributions f(z|γ) with parameter γ.



41

A Dirichlet process mixture (DPM) model takes the form:

zi | γi ∼ f(zi|γi)

γi | G ∼ G

G ∼ DP (τ0G0) (3.3)

The discreteness of draws from a DP means that there is positive probability that γi = γj

for some i 6= j. For such i and j, zi and zj come from the same component distribution, and

are viewed as being clustered together. The clustering induced by DPM models generates

rich classes of distributions by using mixtures of simple component distributions.

While γ is generally taken to be scalar- or vector-valued, there is nothing inherent

in the definition of the DP that imposes such a restriction, and more complex centering

distributions have been explored (e.g., MacEachern, 2000; De Iorio et al., 2004; Gelfand

et al., 2005; Griffin and Steel, 2006; Dunson et al., 2007; Rodrı́guez et al., 2008). In a

model for the distribution of multiple angle pairs, we propose using a hidden Markov model

(HMM), a stochastic process, as the centering distribution G0. In the following section, we

describe how to use this hidden Markov model as a component of an informative prior for

protein conformation angle data.

3.3 Dirichlet Process Mixture Model for Multiple Alignment Positions

The necessary Bayesian procedures to use a DP mixture of bivariate von Mises sine distri-

butions for modeling torsion angle data at individual sequence positions were developed in

Chapter II. In this section we extend this model to multiple sequence positions, and provide

a noninformative prior that is directly analogous to the single position model. In addition

we describe a method for using an HMM as a centering distribution in an informative prior

for sequences of contiguous positions. We also show how to perform density estimation

using our model.
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Consider a protein family dataset consisting of n angle pair sequences denotedx1, ...,xn.

Let each observation have m sequence positions, whose angle pairs are denoted xi1, ..., xim

for the ith sequence, with xij = (φij, ψij). For the moment assume that we have complete

data, i.e. that every xij contains an observed (φ, ψ) pair. Then our base model for the jth

position in the ith sequence is as follows:

xij | θij ∼ f(xij | θij)

θi| G ∼ G

G ∼ DP (τ0H1H2), (3.4)

where θij consists of the parameters (µij, νij,Ωij), θi = (θi1, ..., θim), and f(x|θ) is a

bivariate von Mises sine model. The distributionG is a draw from a Dirichlet process, while

H1 and H2 are the centering distributions that provide atoms of the mean and precision

parameters, respectively. Note that the product H1H2 takes the role of G0 from (3.3).

For our purposes, H2 always consists of the product of m identical Wishart distribu-

tions we call h2. This centering distribution assumes independence for the precision pa-

rameters of sequence positions given clustering information. Similarly we do not assume

a relationship between the precision parameters and the mean parameters for any sequence

position, again restricting ourselves to the situation when clustering is known. The use

of a Wishart prior for bivariate von Mises precision parameters is motivated by concerns

about ease of sampling from the prior distribution and potential issues with identifiability.

A more detailed explanation is given in Chapter II.

We discuss two distinct choices for H1, the centering distribution for the sequence of

mean parameters (µi,νi). The first assumes a priori independence of the mean parame-

ters across sequence positions, while the second is designed to share information across

adjacent sequence positions using a hidden Markov model based on known properties of

protein secondary structure.
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3.3.1 Noninformative Prior for Multiple Sequence Positions

A straightforward extension of the existing single position DPM model takes H1 to be the

product of m identical bivariate von Mises distributions we call h1. For truly noninforma-

tive priors, a diffuse von Mises distribution may be replaced by a uniform distribution on

(−π, π]× (−π, π]. Both the von Mises and uniform versions of the model assume a priori

independence of the centering parameters (µij, νij) across sequence positions j. However

dependence can still appear in the posterior distribution. While we refer to this as the

noninformative model, and use it as such, there is no reason why informative distributions

could not be used as the components of H1, nor must these components be identical. The

primary distinguishing feature of this choice of model is that no assumptions are made as

to the relationship between the mean parameters at the various sequence positions.

An advantage of this choice for H1 is that sequence positions j and j + 1 need not be

physically adjacent in a protein. This situation could be of interest when modeling the joint

distribution of amino acid residues which are not neighbors with respect to the primary

structure of a protein, but which are close together when the protein is folded.

3.3.2 Informative DPM-HMM Model for Adjacent Sequence Positions

When considering adjacent positions, however, a model assuming independence is not

making use of all available information regarding protein structure. For this situation we

recommend a centering distribution H1 that consists of a hidden Markov model incorporat-

ing secondary structure information.

We call our model a Dirichlet process mixture on a hidden Markov model space, or

DPM-HMM. Hidden Markov models define a versatile class of mixture distributions. An

overview of Bayesian methods for hidden Markov models is given by Scott (2002). HMMs

are commonly used to determine membership of protein families for template-based struc-

ture modeling, but in this case the state space relates to the amino acid sequence, also known
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as the primary structure (see e.g. Karplus et al., 1997). We propose instead to use an HMM

for which the hidden state space consists of the secondary structure type at a particular

sequence position. While HMMs incorporating secondary structure have been used for de

novo structure prediction methods (Boomsma et al., 2008), they have not previously been

employed for template-based strategies. We can determine both the transition probabili-

ties between states and the distributions of (φ, ψ) angles for each secondary structure type

based on datasets in the Protein Data Bank. Such a model provides a knowledge-driven

alternative to our noninformative prior from Section 3.3.1 for adjacent sequence positions.

Our model has four hidden states corresponding to four secondary structure metatypes

defined by the Definition of Secondary Structure for Proteins (DSSP, Kabsch and Sander,

1983) program: turn (T), helix (H), strand (E), and random coil (C). These four types are

condensed from eight basic types, with all helices being characterized as (H), β-turns and

G-turns combined into the class (T), and both strands and β-bulges defined as (E). The

model for a realization θ from our hidden Markov model is defined as follows:

θj | sj ∼ f(θj | sj)

sj | sj−1 ∼M(sj | sj−1)

where sj defines the state of the Markov chain at position j, with sj ∈ {1, 2, 3, 4}.

M(sj|sj−1) is a discrete distribution on {1, 2, 3, 4} that selects a new state type with prob-

abilities determined by the previous state type. We set our transition probability matrix

based on 1.5 million sequence position pairs from the PDB, while the initialization proba-

bilities correspond to the stationary distribution for the chain. Note that s = (s1, ..., sm) is

an observation from a discrete time Markov process. We then define f(θj|sj) to be a prob-

ability distribution with parameters determined by the current secondary structure state of

the chain.

Single bivariate von Mises distributions are not adequate to serve as the state distribu-
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tions for the four secondary structure types. Instead, we use mixtures of between one and

five bivariate von Mises sine models. The amino acids proline and glycine exhibit dramat-

ically different secondary structure Ramachandran distributions, and so were given their

own distinct sets of secondary structure distributions. Figure 10 shows the state distribu-

tions used for each secondary structure class for the eighteen standard amino acids.

Although these are distributions for the means of the bivariate von Mises distribution,

we chose them to mimic the distributions of (φ, ψ) angles in each of these secondary struc-

ture classes, which means that they are somewhat more diffuse than necessary. The use

of these secondary state distributions in conjunction with the Markov chain on the state

space allows us to leverage information about secondary structure into improved density

estimates, and provides a biologically sound framework for sharing information across se-

quence positions.

Note that our model is not to be confused with the hidden Markov Dirichlet process

(HMDP) proposed by Xing and Sohn (2007). The HMDP is an implementation of a hidden

Markov model with an infinite state space, originally proposed by Beal et al. (2002). Their

model is an instance of the Hierarchical Dirichlet Process (HDP) of Teh et al. (2006),

whereas our DPM-HMM is a standard Dirichlet process with a novel centering distribution.

3.4 Density Estimation

Recall that we are interested in estimating the joint density of x = (φ, ψ) angles at each

sequence position for a candidate structure from some protein family. Our method, as

outlined by Escobar and West (1995), involves treating our density estimate as a mixture

of components f(xn+1|θn+1), which in our case are products of bivariate von Mises sine

models, mixed with respect to the posterior predictive distribution of the parameters θn+1.
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Figure 10: Graphical and numerical representations of our von Mises mixture distributions
for each of the four secondary structure states. Note that this is the general set of secondary
structure distributions, and is not used at positions containing the amino acids proline or
glycine.
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This can be written as:

P (xn+1|x1, ...,xn) =

∫
f(xn+1|θn+1)dP (θn+1|x1, ...,xn). (3.5)

This integral cannot be written in closed form, but can be well approximated by Monte

Carlo integration. This is achieved by acquiring samples θ1
n+1, ...,θ

B
n+1 from the posterior

predictive distribution for θn+1. Then:

P (xn+1|x1, ...,xn) ≈ 1

B

B∑
k=1

f(xn+1|θkn+1)

=
1

B

B∑
k=1

m∏
j=1

f(xn+1,j|θkn+1,j). (3.6)

While (3.6) can be evaluated for any (φ, ψ) sequence x, we are typically interested in

graphical representations of marginal distributions at each sequence position. For this pur-

pose we evaluate on a 360×360 grid at each alignment position. This general Monte Carlo

approach works for joint, marginal, and conditional densities.

3.4.1 Markov Chain Monte Carlo

All that remains is to determine how to obtain the samples from the posterior predictive dis-

tribution of θn+1, which consists of µn+1, νn+1, and Ωn+1. Fortunately, while our model is

novel, the behaviors of Dirichlet process mixtures, hidden Markov models, and the bivari-

ate von Mises distribution are well understood. The complexity of the posterior distribution

prevents direct sampling, but we have developed an effective Markov chain Monte Carlo

update scheme using an Auxiliary Gibbs sampler (Neal, 2000).

An initial state can be set by assigning all observations to clusters at random or accord-

ing to some deterministic method. Examples would be assigning all observations to distinct

clusters or assigning all observations to a single cluster. For each initial cluster, draw pa-

rameters from the appropriate centering distributions. After the state of our Markov chain

has been initialized, our first step is to update the clustering associated with our Dirichlet
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process. We use the Auxiliary Gibbs sampler of Neal (2000) with one auxiliary component

for this purpose. Having updated the clustering, we now must update the parameter val-

ues θ for each cluster by drawing values from full conditional distribution f(θ|xc), where

xc = {xi : i ∈ c} and c is the set of indices for members of said cluster. Once again,

this distribution is difficult to sample from directly, so we update instead using the full

conditional distributions f(µ,ν|Ω,xc) and f(Ω|µ,ν,xc).

In the case of the precision parameters Ω, the full conditional density cannot be written

in closed form, but is generally well approximated by the Wishart full conditional distri-

bution that results from the assumption that the data have a bivariate normal distribution

rather than a bivariate von Mises distribution. We update Ω by implementing an indepen-

dence sampler that uses this “equivalent” Wishart distribution as its proposal distribution at

each sequence position. Note that under our model, the full conditional distribution of Ω

does not depend on the choice of centering distribution of the mean parameters. The full

conditional is proportional to:

L(Ω|µ,ν,xc) ∝ H2(Ω) L(xc|Ω,µ,ν)

=
m∏
j=1

h2(Ωj)
∏
i∈c

f(xij|µj, νj,Ωj) (3.7)

where h2 is our component Wishart prior for a single sequence position, and f is a bi-

variate von Mises sine model with the relevant parameters. Notice that the positions are

independent given the clustering information, so it is trivial to update each Ωj separately.

After updating the precision parameters at each sequence position, we proceed to up-

date µ and ν using an independence sampler. For our noninformative prior, with a center-

ing distribution consisting of a single sine model, we use the update method described in

Chapter II. In this case, with H1 = (h1)
n where h1 is a bivariate von Mises distribution,
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the full conditional distribution is proportional to:

L(µ,ν|Ω,xc) ∝ H1(µ,ν) L(xc|Ω,µ,ν)

=
m∏
j=1

h1(µj, νj)
∏
i∈c

f(xij|µj, νj,Ωj) (3.8)

The DPM-HMM case where H1 is defined to be a hidden Markov model is somewhat

more complicated. The positions are no longer a priori, and therefore a posteriori, inde-

pendent given the clustering information. However, if the state chain s is known, draws

from the full conditional are trivial. Therefore we rewrite our full conditional distribution,

which is proportional to:

L(µ,ν|Ω,xc, s) ∝ H1(µ,ν|s) L(xc|Ω,µ,ν)

∝
m∏
j=1

f(µj, νj|sj)
∏
i∈c

f(xij|µj, νj,Ωj) (3.9)

where f(µ, ν|sj) is the secondary structure based distribution determined by the state at po-

sition j. Recall that our priors are finite mixtures of bivariate von Mises sine distributions.

Thus if we can generate draws from the full conditional distribution of s, we can update

µi and νi at each sequence position much as we did before. We use the forward-backward

(FB) algorithm of Chib (1996) to sample the full conditional distribution of s. Note that

s given µ and ν is independent of the data. Once we have the state information, generat-

ing samples from the distributions µj, νj|sj,Ωj, xcj is a straightforward process using an

independence sampler, the details for which are given in Appendix B.

An outline of the complete MCMC procedure is given in Figure 11.

3.4.2 The Sparse Data Problem

The model as described up to this point does not fully account for the complexity of actual

protein alignment data. Rather than being a simple vector xi of bivariate (φ, ψ) obser-

vations, the real data also includes a vector ai of length m which consists of variables
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1. Initialize the parameter values:

(a) Choose an initial clustering. Two obvious choices are: (1) one cluster for all
of the angle pair sequences, or (2) each angle pair sequence in a cluster by
itself.

(b) For each initial cluster c of observed angle pair sequences, initialize the value
of the common bivariate von Mises parameters µ,ν,Ω by sampling from the
centering distribution H1(µ,ν)H2(Ω) of the DP prior.

i. For the noninformative prior model, sample from each ofm independent
von Mises and Wishart distributions.

ii. For the DPM-HMM, obtain initial values for Ω from m independent
Wishart distributions and µ,ν from the hidden Markov model.

2. Obtain draws from the posterior distribution by repeating the following:

(a) Given the mean and precision values, update the clustering configuration us-
ing one scan of the Auxiliary Gibbs sampler of Neal (2000).

(b) Given the clustering configuration and mean values, update the precision ma-
trix Ω for each sequence position in each cluster using the Wishart indepen-
dence sampler described in Chapter II.

(c) If using the DPM-HMM, obtain a draw from the full conditional distribution
of the state sequence s using the FB algorithm developed by Chib (1996) for
each cluster.

(d) Given the clustering configuration, precision values, and (if applicable) state
information, update the values of (µ, ν) for each sequence position in each
cluster using the independence sampler given in Appendix B.

Figure 11: Computational procedure for DPM-HMM and nonparametric prior models for
torsion angle pairs.
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indicating whether or not peptide i was observed at each sequence position. Let aij = 1

if peptide i is included at alignment position j, and 0 otherwise. This data structure is

unique in several ways. Notice that ai is not only known for proteins with solved struc-

ture, but is also typically available for a target peptide sequence. Therefore, we can avoid

fitting a model that includes alignment positions which are not of interest for our particular

problem. Secondly, this is not a true “missing data” problem, as the unobserved sequence

positions are not only absent from our dataset, but do not exist.

Our model is able to adjust to sparse data with the following modification. Recall that

the full conditional distributions could be divided up into a prior component and a data

component at each sequence position. This makes it trivial to exclude an observation from

the likelihood, and hence posterior distribution calculation, at sequence positions where it

is not observed. For example, we can modify the full conditional distribution of the means

in the DPM-HMM model, given in equation (3.9), to be:

f(µ,ν|Ω,xc, s) ∝
m∏
j=1

f(µj, νj|sj)
∏
i∈c

f(xij|µj, νj,Ωj)
aij

The full conditional distributions for the precision parameters and the means with a nonin-

formative prior, equations (3.7) and (3.8) respectively, can be modified in a similar manner.

The likelihood of xi|θ is also used by the Auxiliary Gibbs sampler. Once again, adjust to

absent data by removing unobserved positions from the likelihood.

This model provides a straightforward method to cope with the sparse data problem

inherent in protein structure prediction. Note that the situation in which there is ample data

generally but sparse data at a few sequence positions particularly highlights the value of the

DPM-HMM model. Secondary structure at a sparse position can be inferred based on the

surrounding positions, which can allow us to provide a better density estimate at positions

with few observed data points.
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3.5 Application to Loop Modeling in the Globin Family

3.5.1 Background

A protein’s fold, or tertiary structure, consists of multiple elements of local, regular sec-

ondary structure (repeating local motifs) connected by the more variable loops and turns of

various lengths. These loop and turn regions can be vital to understanding the function of

the protein, as is the case in the immunoglobulin protein family where the conformation of

the highly variable loops determine how an antibody binds to its target antigens to initiate

the body’s immune response. These loop regions also tend to be the most structurally vari-

able parts of the protein, and modeling their structure remains an outstanding problem in

protein structure prediction (Baker and Sali, 2001). Current knowledge-based loop mod-

eling methods draw on generic loop libraries. Library-based methods search the Protein

Data Bank for loops with entrance and exit geometries similar to those of the target loop,

and use these PDB loops as templates for the target structure (e.g. Michalsky et al., 2003).

Note that library-based methods differ from typical template-based modeling in that they

do not confine themselves to loops within the target protein’s family. Strictly within family

estimates have not previously been possible. Using the DPM-HMM model, we are able to

compare a library-based approach to a purely within family template-based method for the

EF loop in the globin family.

The globins are proteins involved in oxygen binding and transport. The family is well

studied and has many known members. Therefore, the globin fold is suitable as a test case

for template-based structure prediction methods. A globin consists of eight helices packed

around the central oxygen binding site and connected by loops of varying lengths. The

helices are labeled A through H, with the loops labeled according to which helices they

connect. The EF loop is the longest loop in the canonical globin structure. We generated a

simultaneous alignment of 94 members of the globin family with known tertiary structure
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Table 1: A table giving the details on the EF loop for an alignment of 94 members of the
globin family. The columns are the alignment position, the number of proteins represented
at the position, the most conserved amino acid(s) at the alignment position, and the total
number of distinct amino acids observed at the alignment position.

Position # of Proteins Most Conserved AA # of AAs
93 94 LEU 7
94 94 ASP 10
95 94 ASN 9
96 26 ALA 11
97 28 GLY 8
98 28 LYS 10
99 94 LEU 7
100 1 THR 1
101 2 VAL 1
102 2 THR ARG 2
103 93 LYS 13
104 94 GLY 15
105 94 ALA 15
106 94 LEU 10

using MUSCLE (Edgar, 2004). For this alignment, positions 93-106 correspond to the EF

loop.

Table 1 gives a summary of the behavior of 94 representative globins in the EF loop

region. There is considerable diversity in both the length and amino acid composition of

this loop. Representative loops were between 8 and 14 amino acids long, and the highly

conserved regions, particularly at the tail end of the loop, exhibited considerable variability

in amino acid composition.

We compare three different methods for loop modeling: our DPM-HMM method with

globin family data, the noninformative prior model with globin family data, and a library-

based approach. Library approaches generate lists of loops similar to the target and use

these as templates for the target loop, generating a discrete distribution which almost surely

has mass 0 at the true conformation of the unknown loop. To make this method compa-
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rable to our density-based approaches, we used our noninformative prior model on library

datasets to generate a continuous density estimate. Note that all sequences in a library

dataset are of the same length, which means that they will never exhibit sparsity. For this

reason, fitting the DPM-HMM model on the library dataset would not present much im-

provement over the noninformative model.

3.5.2 Parameter Settings

For each of the 94 globins in the alignment we generated density estimates using each

of the three methods in question. For the DPM-HMM and noninformative models, we

excluded the target from the dataset used to generate the density estimates, but used amino

acid and sparse data information from the target protein. This is reasonable since primary

structure based alignments are available for template modeling of an unknown protein. For

the library-based estimate, we applied our noninformative prior model sequences from the

coil library of Fitzkee et al. (2005) which have the same length as the target sequence, and

have at least four sequence positions with identical amino acids. Library datasets ranged in

size from 17 to 436 angle pair sequences.

For each of our models we ran two chains: one starting with all observations in a single

cluster and one with all observations starting in individual clusters. Each chain was run for

11,000 iterations with the first 1,000 being discarded as burnin. Using 1 in 20 thinning, this

gave us a combined 1,000 draws from the posterior distribution of the parameters.

In all cases, our Wishart prior used v = 1, and we set the scale matrix B to have

diagonal elements of 0.25 and off-diagonal elements of 0. Note that we use the Bernardo

and Smith (1994, pp. 138–139) parameterization, with an expected value of vB−1 = B−1.

Our choice of v was motivated by the fact that this is the smallest possible value for which

moments exist for the Wishart distribution, and higher values would have lead to a more

informative prior. The choice ofB gave an expected standard deviation of about 30 degrees
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and assumed a priori that there was no correlation between φ and ψ, which seemed to

work well in practice. For our noninformative prior on the means, we took h1 to have

µ0 = ν0 = 0, κ10 = κ20 = 0.1, and λ0 = 0. This provided a diffuse centering distribution.

In all cases we took the DP mass parameter τ0 to be 1, although our results were

robust to departures from this value. For example, for two randomly selected proteins we

gave values for τ0 ranging between 0.2 and 15 giving prior expected numbers of clusters

from approximately 2 to 30. For our first peptide the observed mean cluster number ranged

from 3.96 to 4.46, while the second had values from 4.40 to 4.65. Thus even our most

extreme choices for the mass parameter changed the posterior mean number of clusters by

less than 1.

3.5.3 Results of Comparison to Library

We performed pairwise comparisons for each of our models using the Bayes factor, defined

as:

B((φ,ψ)) =
f((φ,ψ)|M1)

f((φ,ψ)|M2)

where M1 and M2 are density estimates generated by two of our three possible models. We

present the results of the analyses for our 94 leave-one-out models in Table 2.

First we will address the comparison between the DPM-HMM and noninformative

models using the globin data. These models show far more similarity to each other than

to the noninformative model using the library data, both in terms of the number of Bayes

factors indicating superiority on each side, and the fact that those Bayes factors tended

to be smaller in magnitude than those generated by comparisons to the library models.

Indeed, at positions with more than 30 observations the marginal distributions generated

by the two models appear to be very similar. In total, the DPM-HMM model was superior

to the noninformative prior model in 59 out of 94 cases. For the null hypothesis that the

probability that the DPM-HMM is superior to the noninformative model is less than or
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Table 2: Comparison between the DPM-HMM model on the globin family data, noninfor-
mative prior with globin data, and noninformative model with library data. The columns
Model X to Model Y give the percentage of the time that the likelihood for the target con-
formation using Model X was greater than the likelihood of the same conformation using
Model Y. This is the equivalent to a Bayes factor comparison with Model X in the numer-
ator being greater than 1.

DPM-HMM Noninf DPM-HMM
Loop Length Total to to to

Library Library Noninf
8 66 100% 100% 70%

10 3 67% 67% 67%
11 23 100% 96% 39%
13 1 100% 100% 100%
14 1 100% 100% 100%
All 94 99% 98% 63%

equal to 0.5, a binomial test yields a p-value of 0.009. Of these Bayes factor results, 68

met standard criteria for substantial evidence of superiority (|log10(B)| > 1/2, Kass and

Raftery, 1995), of which 45 supported the use of the DPM-HMM model, giving a p-value

of 0.005. This is in addition to the fact that the combined Bayes factor, the product of all

of the individual comparisons, has a value of 1038, which provides overwhelming evidence

in favor of using the DPM-HMM rather than the noninformative model. For this reason

we will only refer to the DPM-HMM model when making use of the globin dataset for the

remainder of the chapter.

Recall that the library model made use of loops which were of the same length as the

target and had a certain degree of similarity in terms of amino acid sequence. Thus the coil

library does not exhibit any sparse data behavior. It is also unlikely to recapture the globin

family EF loops due to the considerable variability in both length and amino acid compo-

sition. Our results indicate that the DPM-HMM model overwhelmingly outperforms the

library-based method. Not only is the relevant Bayes factor greater than 1 in 93 out of 94

cases, it is greater than 100 in 92 cases. The case in which the library-based method out-
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performed the DPM-HMM was also significant according to the Kass and Raftery (1995)

criteria, so there were no ambiguous individual cases. The combined Bayes factor was

10959, indicating that the DPM-HMM model was definitely superior to the library overall.

Figure 12 shows marginal density estimates generated for prototypical globin “1t1nB”

for both models, along with the true (φ, ψ) sequence for the protein for a portion of the EF

loop. By searching the PDB for loops that are similar to the target in terms of length

and sequence identity, the library method tends to place considerable mass in areas of

conformational space that are not occupied by members of the globin family. While the

members of the dataset for the globin family may not match the target loop in terms of

length or amino acid sequence, by virtue of being globins themselves they provide a better

match to the target conformation. This pattern of improvement held true regardless of loop

length. Significant improvement was found even for the length 13 and 14 loops, for which

sparse data was a particular problem.

Figure 13 shows the effect of the hidden Markov model prior as the number of ob-

servations increases. The density estimates shown are the DPM-HMM and noninformative

prior model fits for the globin “1d8uA,” for which the EF loop is of length 14. This means

that for the leave-one-out fit there is a sequence position with no observed data. At this

position, the DPM-HMM model clearly shows the influence of the coil state distribution,

while the noninformative model gives a distribution which is close to uniform. As the num-

ber of observations at a given sequence position increases, the differences between the two

models become less significant. For 25 data points the densities are very similar, and for 92

they are practically identical. This behavior is desirable, as we wish for the DPM-HMM to

compensate when data is very sparse but not to overwhelm a large number of observations.



58

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

DPM−HMM: Globin Data
Position 93

φ

ψ

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

DPM−HMM: Globin Data
Position 94

φ

ψ

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

DPM−HMM:Globin Data
Position 95

φ

ψ

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Coil Library
Position 93

φ

ψ

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Coil Library
Position 94

φ

ψ

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Coil Library
Position 95

φ

ψ

Figure 12: Density estimates for positions 93, 94, and 95 for protein “1t1nB.” The gray
dots indicate the data used to fit the model, while the diamonds show the true (φ, ψ) con-
formation of the target protein.

3.5.4 Results of Comparison to DBN-torus

In addition to comparing the DPM-HMM to the knowledge-based library method, we have

also conducted a comparison to the de novo DBN-torus sequence prediction method of

Boomsma et al. (2008). Unlike the previously addressed library-based methods, DBN-

torus uses continuous density estimates, but is not customized for loop regions. It can

be used to generate sequences of predicted angle pairs given amino acid data, secondary

structure data, or no input at all. The best results for DBN-torus are generated using amino

acid data and predicted secondary structure data. For each of our 94 targets, we generated

1,000 candidate draws using the DPM-HMM, DBN-torus with predicted secondary struc-
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Figure 13: A comparison of the DPM-HMM and noninformative prior models for the
length 14 loop of the globin “1d8uA.” Again, the gray dots represent data used to generate
the density estimate, while the diamonds indicate the true (φ, ψ) values.

ture data from PsiPred (McGuffin et al., 2000), and DBN-torus using the true secondary

structure data. Although having exact knowledge of secondary structure for a target pro-

tein is unrealistic in practice, it gives an idea of how well DBN-torus can perform with

optimal secondary structure prediction. We followed the strategy of Boomsma et al. (2008)

of using the angular RMSD to judge the accuracy of our predictions. For our purposes, the

angular RMSD is defined as:

aRMSD((φ1,ψ1), (φ2,ψ2)) =

√√√√ 1

m

m∑
i=1

(∆φ2
i + ∆ψ2

i )

where ∆zi = min(|z1i − z2i|, 2π − |z1i − z2i|).

For each target, the best candidate judged by minimum aRMSD was selected, and the
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Figure 14: Comparison of prediction accuracy between the DPM-HMM and DBN-torus.
DBN-torus has been given either predicted or real secondary structure information as in-
put. Small aRMSD values, here given in radians, indicate predictions which are close the
target’s true tertiary structure.

results are summarized in Figure 14. The DPM-HMM provides a better minimum aRMSD

estimate than DBN-torus in 75/94 cases with predicted secondary structure information and

67/94 cases with true secondary structure information. Note that even under this best case

scenario the DPM-HMM tends to provide better predictions than does DBN-torus. This

is unsurprising, as template-based methods typically outperform de novo methods where a

template is available. Proteins for which DBN-torus outperforms our DPM-HMM method

often contain an EF loop whose conformation is not a close match to other members of

the globin family. In such cases, good conformations are more likely to be sampled from

DBN-torus, which is based on the entire PDB, rather than the DPM-HMM mimicking the

behavior of the other globins.
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3.6 Discussion

We have presented a novel model for protein torsion angle data that is capable of estimating

the joint distribution of up to around 15 angle pairs simultaneously, and applied it to extend

template-based modeling to the notoriously difficult loop and turn regions. In contrast

to existing methods such as library-based loop prediction and DBN-torus, our model is

designed to make use of only data from highly similar proteins, which gives us an advantage

when such data is available. This is a significant advance in terms of statistical models for

this type of data, as well as a new approach to template-based structure prediction. In

addition to providing the basic model, we proposed two possible prior formulations with

interesting properties.

Our noninformative prior model, which is the direct extension of the single position

model from Chapter II, provides a method to jointly model sequence positions which may

or may not be adjacent in terms of a protein’s primary structure. This model allows for

the estimation of joint and conditional distributions for multiple sequence positions, which

permits the use of innovative methods to generate candidate distributions for protein struc-

ture.

While the noninformative prior model represents a significant advance over existing

methods, we also present an alternative model that incorporates prior information about

protein structure. This DPM-HMM model, which uses a hidden Markov model as the

centering distribution for a Dirichlet process, uses the unique characteristics of a protein’s

secondary structure to generate superior density estimates for torsion angles at sequential

alignment positions. We use a Bayes factor analysis to demonstrate that density estimates

generated with this model are closer to the true distribution of torsion angles in proteins

than our alternative ignoring secondary structure.

Regardless of our prior formulation, the model is capable of accommodating the sparse
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data problem inherent in protein structural data, and in the case of the DPM-HMM can

leverage information at adjacent sequence positions to compensate for sparse data. This

allows, for the first time, the extension of template-based modeling to the loop regions in

proteins. We show that within family data provides superior results to conventional library

and PDB-based loop modeling methods. As loop modeling is one of the critical problems

in protein structure prediction, this new model and its ability to enhance knowledge-based

structure prediction represents a significant contribution to this field.

Recall that our model treats the parameters of the bivariate von Mises sine model

nonparametrically through the use of the Dirichlet process prior centered on a parametric

distribution. It is a matter of some interest to compare this to the parametric alternative of

using the centering distribution itself as the prior for the bivariate von Mises parameters.

This would be equivalent to limiting our model to a single mixture component. Although

not every sequence position gives a strong indication of multiple mixture components, there

is at least one such sequence position for every loop in our dataset. (See, for example,

position 94 for the coil library dataset in Figure 12.) Attempts to model this data using only

a single component distribution lead to poor results, particularly since our model enforces

unimodality for each component via the Wishart prior. While the HMM prior does allow

for a mixture of bivariate von Mises distributions, all of these components will converge

to the same distribution as the number of observations increases, effectively reducing us

to a single component model again. The inadequacy of such a single component model is

reflected in the strong preference of the data for multiple clusters. While the prior expected

number of clusters goes to 1 as the mass parameter τ0 goes to 0, we found that the posterior

mean number of clusters only decreased by 1 (typically from 4 to 3) when τ0 decreased

from 1 to 10−10.

In working with our sampling schemes for both the DPM-HMM and noninformative

prior models we did occasionally encounter slow mixing and convergence problems, par-
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ticularly as the number of sequence positions under study increased. Figure 15 shows the

effects on the total number of clusters and entropy (Green and Richardson, 2001) per it-

eration caused by increasing sequence length. As the number of positions under study

increases, there is a greater chance of getting stuck in particular conformations, and also a

subtler tendency towards having fewer observed clusters. Although in this example the ef-

fects are fairly mild, more severe issues can occur even at relatively short sequence lengths.

However, even when problems appear to be evident on plots of standard convergence di-

agnostics, the density estimates generated by separate chains can be quite similar. For this

reason we recommend comparing the density estimates generated by multiple chains in

addition to the standard methods of diagnosing convergence problems.

We do not recommend that our method be used for simultaneous modeling of more

than about 15 sequence positions and convergence diagnostics should always be employed.

The use of multiple MCMC chains with different starting configurations is also highly

encouraged. Particular care should be taken with the noninformative prior model, which

seems to be more prone to these sorts of problems. We did not observe any effect of sparse

data on the speed of convergence or mixing.

Increases in sequence length and sample size both increase run time for our software,

although sequence length is the primary practical restriction as protein families tend to

have fewer than 100 members. For the analysis of the full globin dataset with 5, 10, 15, or

20 sequence positions, the run times for two chains with 11,000 iterations using a 3 GHz

processor were between 1 hour and 3.5 hours for the noninformative model and 2 hours to

8 hours for the DPM-HMM.

As the emphasis in this chapter is on loop modeling, which by its very nature is limited

to contiguous sequence positions, our application does not reflect the full extent of the

flexibility of our model. Our general method is a good source of simultaneous continuous

density estimates for large numbers of torsion angle pairs. This allows us to generate
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Figure 15: Convergence diagnostics for density estimates using the noninformative prior
model on the globin data with contiguous sequences beginning at position 93. Notice how
mixing worsens as the number of sequence positions increases.

candidate models by sampling from joint distributions, or to propagate a perturbation of

the torsion angle sequence at a single position up and down the chain through the use

of conditional distributions. Our noninformative prior model, while less impressive than

the DPM-HMM for contiguous sequence positions, can be applied to far richer classes of

torsion angle sets. This allows the modeling of the behavior of tertiary structure motifs,

which are composed of amino acids which are not adjacent in terms of primary structure,

but which are in close contact in the natural folded state of a protein. It can even be used to

investigate the structure of polypeptide complexes, as the (φ, ψ) positions modeled are not

required to belong to the same amino acid chain. The ability to model large numbers

of (φ, ψ) pairs simultaneously is an exciting advance which will offer new avenues of

exploration for template-based modeling, even beyond the field of loop prediction.
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The software used in this analysis is available for download at

http://www.stat.tamu.edu/∼dahl/software/cortorgles/.
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CHAPTER IV

A BAYESIAN NONPARAMETRIC MODEL FOR MULTIVARIATE DEPENDENCE

4.1 Introduction

In the two previous chapters we presented techniques for modeling the protein backbone

in the form of (φ, ψ) torsion angle pairs. However, the protein backbone is not in itself

a complete picture of the structure of a protein. In addition to the four heavy backbone

atoms, each amino acid from a protein sequence has a unique side-chain structure. These

side-chains are different for all 20 naturally-occurring amino acids, and these differences

ultimately determine the final three-dimensional structure of a protein. Our probabilistic

description of protein structure is not complete without including information on side-chain

location.

While side-chains can consist of many atoms, we will represent a side-chain’s position

with the location of the side-chain center of mass in three-dimensional space. Under this

model, we have five variables of interest at each sequence positions: the (φ, ψ) backbone

angle pair and the (x, y, z) coordinates of the centroid. This model is more complex than

it first appears, as it calls for a joint distribution between two angular and three linear

random variables. We saw in Chapters II and III that simple elliptical angular distributions

are often insufficient for modeling torsion angle pairs, so some kind of mixture model is

appropriate. Unfortunately, existing joint models for combinations of angular and linear

variables are not amenable to mixture modeling due to the lack of a closed form solution

for the constant of integration in higher dimensions (Johnson and Wehrly, 1978). However,

torsion angles and centroids could easily be described marginally in terms of mixtures of

bivariate von Mises and trivariate normal distributions respectively. We are left with two

relatively simple marginal models, but no clear way to link them in a joint distribution.
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A standard approach to these kinds of problems has been the use of copulas. Such

methods allow for marginal distributions to be specified first, and then their dependence

can be modeled via a function called a copula. Nelsen (2006) provides a good introduc-

tion to copulas and their properties. Parametric copula models, in which both the marginal

distributions and copula function are members of parametric families, are generally used

in practice. However, we are interested in the situation when the marginal distributions

of interest and their dependence relationship may not necessarily be well described by a

parametric family. There has been work with semiparametric copula models, for which

the marginal distributions are estimated nonparametrically but the copula is chosen from

a parametric family (Genest et al., 1995), and fully nonparametric models for which both

copula and marginals are nonparametrically estimated (Chen and Huang, 2005). However,

these nonparametric copulas methods have not been extended to multivariate marginals.

Even the use of standard parametric copulas is complicated by potential compatibility prob-

lems for multivariate marginal distributions (Nelsen, 2006, pp. 105–108).

We propose an alternative to nonparametric copula models which we call a Dirich-

let process dependence model (DPDM). Our motivation is to develop a general Bayesian

framework for multivariate problems which are relatively simple for either univariate or

multivariate marginal modeling, but which present difficulties in the context of the com-

plete multivariate model. Such situations could arise when a joint multivariate distribution

does not exist for some data structure, or when such distributions are not well suited for

mixture modeling. Note that we are considering cases when we are not necessarily in-

terested in quantifying dependence, and in fact simple numeric measures of dependence

may not exist. Our proposed model incorporates dependence information purely through

clustering induced by a Dirichlet process. Models fitting this description were proposed

previously in Chapter III for angle pair sequences and by Dunson and Xing (2009) for sets

of categorical random variables. However, we present a more general framework for such
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models which allows the experimenter to select their marginal distribution types to suit

their particular problem. In contrast with previous work, we do not require the marginal

variables to share a distribution type. The DPDM may be fully nonparametric or include

marginal information in the form of a prior. It can accommodate any marginal distribu-

tion (continuous, discrete, or categorical) which can be modeled with standard DP mixture

modeling techniques, and, in addition to permitting the joint modeling of disparate data

types, the DPDM can also accommodate component marginals of any dimension.

In Section 4.2, we present both the model formulation for the DPDM and a general

outline for computation. Using strategies developed for Bayesian nonparametric density

estimation, we are able to develop joint density functions which allow for straightforward

joint, marginal, and conditional computation and sampling. Section 4.3 explores some of

the properties of the DPDM model using two-dimensional examples. In Section 4.4 we

use the DPDM to develop joint density estimates for torsion angle pairs and centroids for a

protein structure dataset. In Section 4.5 we discuss our conclusions about both the protein

data analysis and the properties of our model.

4.2 The Dirichlet Process Dependence Model

4.2.1 Basic Model Formulation

The Dirichlet process (DP) is a distribution on almost surely discrete distributions first

described by Ferguson (1973). While the discreteness of draws from a Dirichlet process

makes them unsuitable as models for continuous data, the Dirichlet process works well

when incorporated into a prior for mixture modeling (Antoniak, 1974). Dirichlet process

mixture (DPM) models for density estimation are described by Ferguson (1983) for the uni-

variate case and Tiwari et al. (1988) for a general multivariate density. Our model takes the

basic DPM framework, and adjusts it to allow for the specification of specific marginal dis-

tribution types. We then take advantage of DP clustering to develop joint density estimates
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incorporating the specified marginal structure.

Consider a set of vector valued observations x1, ...,xn where each observation xi has

components xi1, ..., xim. Say that we have a partition {p1, ..., pr} = P on the integers 1

to m such that for each set xipj
= {xil}l∈pj

, we have a suitable Bayesian marginal model.

By this we mean that we can model x1pj
, ...,xnpj

as coming from a mixture of paramet-

ric distributions gj(·|θj) with suitable parameter θj . In order to satisfy the computational

requirements of our model, we will require a prior distribution Hj(θj) from which we can

obtain samples directly. Note that we do not require that the distributions gj belong to the

same parametric family, or even be of the same dimension. Nor do we require that the

parameter θj be univariate. We define a Dirichlet process dependence model for this data

as follows:

xipj
| θij ∼ gj(xipj

|θij)

θi| G ∼ G

G ∼ DP (τ0

r∏
j=1

Hj)

where G is a draw from a Dirichlet process, τ0 is the DP mass parameter, and the centering

distribution treats all of the component parameters within a draw as being independent.

Under this model, a set of parameters θi, which defines all marginal components gj for a

given observation xi, is distributed according to G, a draw from a Dirichlet process. Since

G is almost surely discrete, there is a positive probability that θi = θl for some l 6= i. If this

is the case, then we consider xi and xl to be clustered together. The centering distribution

component Hj for each parameter θij is taken to be the prior distribution from the marginal

case. Given clustering information we consider θij and θik, and thus xipj
and xipk

, to be

independent for j 6= k.

Note that the noninformative prior model from Chapter III took this form, where our

component distributions were bivariate von Mises and Hi was the product of a bivariate
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von Mises distribution and a Wishart distribution. This type of model was also employed

by Dunson and Xing (2009) for multivariate unordered categorical data. While in both of

these cases the marginal distributions all share a parametric family, this is not necessary.

4.2.2 Computation

We will use the method described by Escobar and West (1995) to generate a density es-

timate for xn+1. Specifically, we must obtain B draws from the posterior distribution

θ|x1, ...,xn. Given those draws, our density estimate for xn+1 is:

f(xn+1|x1, ...,xn) =
1

B

B∑
i=1

r∏
j=1

gj(xn+1,pj
|θ(i)
j )

where θ(i)
j is the jth component of the ith draw from the posterior distribution of θ. Notice

that this is a finite mixture distribution with the property that our components xipj
and xipl

,

l 6= j are independent given the knowledge of which mixture component they are drawn

from. This allows us to derive the DPDM marginal density estimate for component xn+1,pj
:

f(xn+1,pj
) =

1

B

B∑
i=1

gj(xn+1,pj
|θ(i)
j )

and the conditional distribution:

f(xn+1,pj
|{xn+1,pl

}, l ∈ L) =
B∑
i=1

wigj(xn+1,pj
|θ(i)
j )

where wi ∝
∏

l∈L gl(xn+1,l|θ(i)
l ), and

∑B
i=1wi = 1. Notice that our estimated marginal and

conditional distributions are finite mixtures of our component modeling distribution gj . Of

particular interest is the fact that the conditional distribution for any component is simply a

reweighted version of the marginal distribution. This gives us straightforward methods for

conditional computation and sampling.

However, all of these density estimates require that we first sample from the full con-

ditional distribution of θ. This distribution will generally not be tractable, so we provide a
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general algorithm involving full conditional distributions which should work for any choice

of components gj for which marginal Bayesian modeling is possible. Posterior computa-

tion should proceed in an iterative fashion: first update the clustering of the observations

given cluster parameter values, and then update all parameter values in a parametric fashion

within the clusters.

A good review of options for full conditional updates of data clustering can be found

in Neal (2000). In the case where all marginal component and centering distributions form

conjugate models, that is when Hl(θl) is the conjugate prior for gl(·|θl), then Gibbs sam-

pling methods for conjugate models may be used. For the more general case, we recom-

mend the Auxiliary Gibbs sampler of Neal (2000) for full conditional cluster updates. The

Auxiliary Gibbs sampler is one of the most flexible alternatives for obtaining clustering

conformations in that it requires the ability to sample directly from Hl(θl), but not that it

be a conjugate prior. We use the Auxiliary Gibbs sampler with one auxiliary component

for all of the analysis in this paper. Given clustering information, it is possible to update θj

independently of all θl, l 6= j. Therefore, within a cluster it is possible to treat θj according

to a parametric Bayes model with the centering distribution component Hj treated as the

prior for θj , and only considering data xipj
for which the ith observation is included in the

current cluster. Both Metropolis and Gibbs updating schemes are suitable for this purpose.

A synopsis of our general posterior sampling method is given in Figure 16. For an example

of a sampling algorithm with specific component marginals, refer to the material on the

nonparametric prior in Section 3.4.1.

4.3 Simulation Studies

4.3.1 Detecting Clustering and Correlation

To evaluate the behavior of DPD style models, we consider a test case with mixtures of

bivariate normal distributions. Two test distributions were considered; the first is a single
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1. Initialize the parameter values:

(a) Choose an initial clustering. Two obvious choices are: (1) one cluster con-
taining all observations, or (2) each observation in a cluster by itself.

(b) For each initial cluster of observations pairs, initialize the value of each
marginal parameter set by sampling from the appropriate marginal centering
distribution.

2. Obtain draws from the posterior distribution by repeating the following:

(a) Given all parameter values, update the clustering configuration using one
scan of the Auxiliary Gibbs sampler of Neal (2000).

(b) For each component distribution, update the relevant parameter set θj for
each cluster.

(c) To obtain a sample from the posterior distribution of θ, select an existing
cluster with probability proportional to the number of members, or a new
cluster with probability proportional to τ0. If an existing cluster is chosen,
take the parameters from that cluster. If a new cluster is chosen, draw a
parameter set from the centering distribution.

Figure 16: General computational procedure for DPDM model fitting and sampling.

bivariate normal distribution, and the second is a mixture of two bivariate normal distribu-

tions. They are described in Table 3.

A DPD model was developed which treated each cluster as consisting of the product of

independent normal distributions f1(xi1|µi1, σ2
i1)f2(xi2|µi2, σ2

i2). All association between

the two random variables comes from the clustering induced by the Dirichlet process. This

model is philosophically similar to the multivariate kernel density estimator of Epanech-

nikov (1969), for which each dimension had only a single bandwidth parameter.

Model fits were generated for samples of size 50, 100, and 500 for each test distri-

bution. For each test distribution and sample size, two MCMC chains were run for 6,000

iterations with the first 1,000 discarded as burn in, and 1-in-10 thinning. This gave 1,000

draws from the posterior distribution. The standard Gibbs sampler for univariate normal

data was used for updates. The centering distributions H1 and H2 both took 1/σ2
i ∼ χ2

1(1)
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Table 3: Distributions used for simulation studies. The first is a single bivariate normal
distribution with negative covariance, while the second is a mixture of two bivariate normal
distributions.

Test Distribution 1
weight µ1 µ2 σ2

1 σ2
2 σ12

1.0 0.0 0.0 0.25 0.5 -0.25

Test Distribution 2
weight µ1 µ2 σ2

1 σ2
2 σ12

0.5 1.0 -1.0 0.25 0.25 -0.20
0.5 -1.0 1.0 0.25 0.25 0.10

and µi ∼ N(0, σ2
i ). The DP mass parameter was set to 1. Our two MCMC chains differed

only in whether all observations started in a single cluster or were initialized in n distinct

clusters. The resulting density estimates are displayed in Figure 17.

The DPD model quickly identifies the distinct component distributions for the mixture

case, but takes longer to pick up on the within component correlation. This is unsurprising,

as the only way to model this correlation is with overlapping clusters. These results indicate

that the DPDM performs best when the prior assumption of independence given clustering

holds.

4.3.2 Effect of the Mass Parameter

Most prior parameters for a DPD model will depend on what component marginal distribu-

tions are being used. However, the mass parameter τ0 is common to all DPD models, and

so warrants special attention in this general discussion. The role of τ0 in mixture modeling

is described by Ferguson (1983). He shows that as τ0 → 0, it becomes increasingly likely

that all observations will be clustered together. This extreme case results in a Bayesian

parametric density estimate. On the other hand, as τ0 →∞, it becomes increasingly likely

that all observations will belong to distinct clusters. The resulting density estimate will be

imprecise, and not terribly useful. However, in the space between the extrema there is a
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Figure 17: Density plots for DPD model. Each column is a different sample size, while
each row is a separate test distribution.

considerable amount of interesting behavior to explore for τ0.

Since increasing τ0 boosts our expected number of clusters, the manipulation of this

parameter could be useful for DPD models. Specifically, since all association between

components is modeled via clustering, increasing the number of clusters should increase

the sensitivity to dependence. However, the benefits of increasing the number of clusters

must be weighed against the disadvantage of decreasing the number of observations in each

cluster.

To test this theory, we again considered sample sizes n = 50, 100, and 500, as well

as mass parameter values τ0 = 0.1, 1, 3, 6 and 10. We obtained 100 sample sets for each

sample size n from our single normal test distribution from the previous section. Recall

that this distribution only displayed within component correlation. We generate a density

estimate using the same methods described in the previous section for each sample set and
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Table 4: Summary of average divergence scores for various sample size and mass param-
eter settings.

τ0
0.1 1 3 6 10

n = 50 27.178 25.785 25.494 26.010 27.364
n = 100 16.375 15.319 15.303 15.760 16.651
n = 500 4.441 4.297 4.333 4.408 4.563

τ0 value.

To gauge the similarity of our density estimates to the true distribution, we employed

the Jensen-Shannon divergence on a 100×100 grid over the region [−3, 3] × [−3, 3]. The

formula for this divergence score is:

1

2

(
DKL

(
f̂ ,
f̂ + f

2

)
+DKL

(
f,
f̂ + f

2

))
where DKL is the Kullback-Leibler divergence defined by DKL(f, f̂)

=
∑

i f(i)log
(
f(i)/f̂(i)

)
, f is our true distribution function, and f̂ is our density estimate.

The lower the divergence score, the closer our density estimate is to the true distribution.

The average of the 100 divergence scores for each n, τ0 combination is given in Table 4.

As we expect, divergence drops as sample size increases. The influence of the mass

parameter τ0 fades as sample size increases, although the optimal value changes little, being

3 for n = 50, 100 and 1 for n = 500. It is somewhat disappointing to note that adjusting

the mass parameter alone does not offer dramatic improvements in the density estimate.

As previously mentioned, increasing the mass parameter increases the expected number

of clusters and thus reduces the expected cluster size. This is probably the cause of the

degradation of model quality seen for very large values of the mass parameter.

4.3.3 Marginal Distributions

Since one of the attractive qualities of a DPD model is the ability to specify particular

marginal distribution structures, it would be interesting to see how this model fares against
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Table 5: Summary of average divergence scores for marginal models. Notice that the
purely marginal models outperform the DPDM based marginals.

Marginal Models for x1

τ0
0.1 1 3 6 10

Marginal Model n = 50 0.104 0.143 0.240 0.379 0.563
n = 100 0.049 0.070 0.116 0.186 0.277
n = 500 0.008 0.013 0.021 0.036 0.053

DPDM Marginal n = 50 0.106 0.146 0.215 0.310 0.431
n = 100 0.089 0.103 0.129 0.171 0.230
n = 500 0.027 0.028 0.033 0.039 0.048

Marginal Models for x2

τ0
0.1 1 3 6 10

Marginal Model n = 50 0.083 0.105 0.164 0.258 0.380
n = 100 0.042 0.054 0.084 0.126 0.189
n = 500 0.008 0.010 0.015 0.024 0.036

DPDM Marginal n = 50 0.084 0.098 0.125 0.172 0.232
n = 100 0.070 0.076 0.085 0.101 0.127
n = 500 0.031 0.029 0.030 0.030 0.032

the marginal model alone. That is, we wish to know how the marginal distribution derived

from a DPD model fit on a multivariate dataset compares to the marginal distribution fit

on the variable of interest alone. We fit such marginal models on the 300 samples dis-

cussed in Section 4.3.2. We used the same scheme, including number of MCMC chains

and prior parameter settings, described in the previous section with the only difference be-

ing that we were now fitting a univariate instead of bivariate distribution. We calculated the

Jensen-Shannon divergence on 100 equally spaced points between -3 and 3 for both our

new marginal models and the marginal distribution estimates derived from our bivariate

DPDM density estimate as described in Section 4.2.2. The results are given in Table 5.

Notice how marginal models generally perform best for τ0 = 0.1. This makes sense,

as our test distribution has univariate normal margins. However, it means that the DPDM
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generally has different optimal mass parameters for joint and marginal modeling. Notice

how the best marginal model outperforms the best DPDM marginal even for the larger

sample sizes. This could be attributed to the fact that the DPDM is designed for joint

modeling, and so loses some efficiency in the marginals by generating clusters based on

multiple random variables simultaneously. These results also suggest that marginal and

DPDM models have different optimal mass parameter settings, and this fact should be

taken into account when choosing between modeling data with independent marginals or

a DPDM. The fact that the DPDM is at a disadvantage modeling marginal distributions

also indicates that in cases with weak dependence, the DPDM may be outperformed by a

model based on independent marginals. This situation will arise when the advantages of

dependence modeling are overwhelmed by the degradation of performance in the marginal

distributions. These factors will come into play, and must be accounted for, when we apply

our DPDM model to real data with an unknown joint distribution..

4.4 Application to Protein Relative Packing Groups

4.4.1 Introduction to Protein Cliques

A protein is a long, unbranched chain of amino acids. These chains fold up into three-

dimensional conformations which are of keen interest to biologists, as a protein’s structure

determines its function and behavior in biological systems. There are 20 naturally occurring

amino acids, each of which in composed of four heavy backbone atoms (an alpha carbon

atom Cα, a carbonyl carbon atom C, an oxygen atom O, and a nitrogen atom N ) and

a distinctive side-chain. While the backbone atoms are common to all amino acids, the

side-chains are all different and in large part determine the final structure of the protein.

A common simplified representation of the protein backbone is a sequence of (φ, ψ)

angle pairs, one for each sequence position. This representation was initially proposed by

Ramachandran et al. (1963). We will also simplify the side-chain representation by using
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the Cartesian coordinates of the side-chain centroid, which we define as the location of the

center of mass of the side-chain relative to the Cα atom of the amino acid backbone.

An outstanding problem in structural biology is modeling the relationship between

backbone and side-chain conformations for protein relative packing groups (RPGs), first

defined by Holmes and Tsai (2005). A protein clique is a set of amino acids which are in

close contact when a protein is folded. A relative packing group is a set of protein cliques

with certain shared characteristics. An RPG may be composed of cliques from members

of a single protein family, or from similarly packed regions across a variety of different

protein types.

Since relative packing groups are a recent development in structural biology, the rela-

tionship between amino acid positions and backbone conformation for members of cliques

has not been studied. The distributions have been characterized separately (Day et al.,

2010), but joint modeling would provide additional information about typical clique be-

havior within an RPG. Joint distributions for the behavior of torsion angles and side-chain

centroids would also be invaluable in the area of structure prediction. Such distributions

could be used for applications such as generating candidate backbone-centroid conforma-

tions for proposed structures, or for evaluating the feasibility of structures developed by

alternative methods. Note that these applications would require rapid conditional and un-

conditional sampling and density evaluation respectively.

The necessity for mixture models has precluded the use of existing linear-angular

models (Johnson and Wehrly, 1978) due to computational intractability. However, the ex-

istence of relatively straightforward marginal mixture models makes this problem an excel-

lent candidate for a DPDM. In the remainder of this section we will present such a model,

and use it to study a relative packing group from immunoglobulin-binding proteins.
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4.4.2 Methods

We propose a Dirichlet process dependence model for association between protein torsion

angles and centroid coordinates. Our model can be summarized as follows:

φi, ψi | µi, νi,Ωi ∼ g1(φi, ψi |µi, νi,Ωi)

xi, yi, zi | θi,Σ−1
i ∼ g2(xi, yi, zi |θi,Σ−1

i )

µi, νi,Ωi,θi,Σ
−1
i | G ∼ G

G ∼ DP (τ0H1H2).

Here, the distribution G is a draw from a Dirichlet process with centering distributions H1

and H2 for the parameter sets (µ, ν,Ω) and (θ,Σ−1) respectively. The distribution g1 is

a bivariate von Mises sine model with mean parameters µ, ν, and precision matrix Ω as

described in previous chapters. The distribution g2 is a trivariate normal distribution with

mean vector θ and precision matrix Σ−1. The centering distribution H1 is the product of

a bivariate von Mises sine model and a Wishart distribution, and sampling can proceed

according to the algorithm described in Chapter II. H2 is the normal-Wishart conjugate

prior distribution for multivariate normal data with unknown mean vector and covariance

matrix.

Unless otherwise noted, all calculations were carried out with the following prior pa-

rameter settings. The mass parameter τ0 was equal to 3. The bivariate von Mises com-

ponent of H1 had a mean of (0, 0) and the precision matrix equal to 0.1I2 where In is the

n × n identity matrix. The Wishart component had a shape parameter α = 1 and scale

matrix β = 0.1I2. The multivariate normal-Wishart H2 had Wishart parameters α = 1.5

and β = 0.25I3, while the normal component had a mean of 0 and a scaling factor λ = 1.

Note that all parameterizations are consistent with those of Bernardo and Smith (1994),

and thus the Wishart distributions have an expected value of αβ−1. Most parameters were
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chosen to minimize the influence of the prior distribution, or because they were found to

work well in practice. The Cartesian coordinate data points for each clique position were

centered at the origin before modeling.

For each model, two MCMC chains were run for 6,000 iterations, the first 1,000 of

which served as burnin. Using 1-in-10 thinning, this gave 1,000 draws from the posterior

distribution of the parameter sets. One chain was initialized with all observations in a single

cluster, while the other started with all observations in individual clusters.

4.4.3 Testing for Dependence

We consider a dataset based on a highly populated relative packing group which is char-

acterized by cliques of four residues with one residue in a region of protein with helical

structure and the remaining three residues coming from two different strand structure re-

gions. We will consider a set of 61 such cliques from the immunoglobulin-binding protein

G and protein L domains. These are proteins produced by bacteria which bind to human

antibodies. Plots of angle pairs and centroid locations for each position are shown in Fig-

ure 18. Angle pairs for positions 1,3, and 4 show typical strand conformations, while the

torsion angles for position 2 are in a helical region.

One potential avenue for biological investigation is to determine whether or not clique

side-chain locations constrain the conformation of a protein’s backbone. This is equivalent

to the existence of dependence between side-chain centroid and torsion angle distributions.

We designed a permutation test to determine if there was identifiable dependence between

torsion angles and centroid positions. For each clique position we randomly divided the

data into six groups: five of ten and one of eleven. We then generated permutation den-

sity estimates in the following manner: we took all data excluding a single group, and

considered this to be our training set. We generated one hundred permutations of the cen-

troid coordinates for each set, thus ensuring that angle pairs and centroid coordinates were
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matched randomly. (Note that individual angle pairs were not permuted, nor were individ-

ual centroid coordinates.) This generated 100 datasets with the same marginal structure as

the true training data, but with potential dependence between angle pairs and coordinates

removed. By comparing density estimates based on this altered data to those based on the

original, we can determine whether or not incorporating dependence structure is important

for modeling the observed data.

Using the model described in Section 4.4.2, we generated DPDM density estimates on

each of the permuted training sets as well as for the original data. This gave us a total of

606 density estimates per clique position. We then generated an estimated density statistic

for each permutation. We define the estimated density value to be:

Vi =
n∏
j=1

f̂i,−j(φj, ψj, xj, yj, zj)

where i denotes the ith permutation and the subscript −j indicates that the density esti-

mate f̂ was fit on a dataset not including the jth observation. Note that, due to the fact

that permutation occurs after the division of the data into groups, the assignment of six

given permutation groups together into a single cross-validation set i is arbitrary. We also

calculated this statistic for density estimates fit on the unpermuted dataset. The results

are summarized in Figure 19. The boxplots show the distribution of log10(Vi) for the 100

permutations for each sequence position, while stars mark the value of the log10 estimated

density for the true dataset.

Clique positions 1, 3, and 4 all show strong evidence of dependence, with the latter

two positions being particularly striking. In all of these cases the test statistic for density

estimates based on unpermuted data showed a higher probability than any of the 100 per-

muted data density estimates. There was no evidence of association at position 2, with the

unpermuted data statistic in the 37th percentile of the permutation distribution.

These results are interesting in that they demonstrate that, while dependence certainly
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Figure 19: Summary of the permutation test for clique data. Boxplots show the estimated
log densities for permuted data, while the stars show the value for the true dataset.

may exist between a side-chain centroid and the protein backbone, there exist certain clique

positions where it either does not exist or can not be effectively modeled using our tech-

nique. In particular, while we detected dependence at all three sequence positions in sheet

regions, none was found at the single position in a helical region. To further explore this sit-

uation we compared the density estimates generated by the DPD model and an appropriate

independence model. Specifically, we fit the DP mixture of bivariate von Mises distribu-

tions from Chapter II for the torsion angles and a separate DP mixture of normals for the

centroid coordinates.

In order to compensate for the differing preferences for mass parameter values be-

tween the joint and marginal models, we fit density estimates using τ0 equal to 0.1, 1, 3,
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Table 6: Summary of comparison between independence and DPD models. Numbers
in the density column are the log10 of the estimated density statistic. The value for τ0
corresponds to the mass parameter value which gave the highest estimated density. Note
that the independence model is the product of the angle and centroid models.

Clique Position
1 2 3 4

Density τ0 Density τ0 Density τ0 Density τ0
Angles -18.204 1 31.522 6 -18.077 0.1 -13.156 1

Centroid -91.181 1 -95.434 1 -77.346 3 -72.346 3
Independence Model -109.385 - -63.913 - -95.423 - -85.502 -

DPD Model -115.910 6 -72.607 3 -89.326 3 -82.571 3

6, and 10. Using the formula derived by Antoniak (1974), we find that this gives prior ex-

pected numbers of clusters of about 1.4, 5, 9, 14, and 19 respectively. We generate model

fits and use the estimated density in the same manner as before. The results are shown in

Table 6, which gives the highest estimated log density value and the τ0 for which it was

achieved. Note that for the independent angle and centroid models the optimal τ0 is chosen

separately. The independence model refers to the product of the best angle and centroid

models for a given clique position.

We can treat our estimated densities as components of a Bayes factor with no prior

preference between dependence and independence by taking the difference between the log

densities for the DPD and independence models. We find that the differences are -6.525,

-8.964, 6.097, and 2.931. All of these values represent substantial evidence for or against

the DPDM model according to the criteria of Kass and Raftery (1995). The dependence

model for position 2 is the most strongly disfavored, which agrees with our permutation test

result which found no dependence there. Interestingly the DPDM model is also disfavored

at position 1, for which we did identify dependence previously. This is probably due to the

fact we are dealing with moderate sample sizes, and the DPDM marginal model penalty

could be overwhelming the advantages of identifying dependence at this position. This
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result highlights the fact that a straight comparison between a marginal independence and

DPDM model is not the best way to test for dependence, as factors such as the marginal

modeling penalty and different optimal prior parameter settings could lead to misleading

results. Positions 3 and 4 are substantially better represented by the DPDM model than the

marginal independence model. Recalling the permutation test results, these positions were

also the most dramatically different from the permutation distribution.

The results are interesting from a biological perspective as there is an apparent rela-

tionship between secondary structure type and dependence between the side-chain location

and torsion angles. The strongest evidence of dependence was found for clique positions

in strand secondary structure regions, while none was found for the helical position. In re-

gards to the results in the second portion of our analysis, it is interesting to note that clique

positions 3 and 4 are actually local to one another on the backbone. This suggests that the

region of the backbone where these clique positions are located is more constrained than

the region corresponding to position 1. A comparatively small change in centroid location,

which might not influence position 1, has the potential to noticeably rearrange the backbone

at positions 3 or 4.

The results also serve to highlight a few interesting statistical points. First, we see that

the dependence model tends to favor higher τ0 values than the marginal models, although

the pattern does not always hold within a clique position. Secondly, we see the disadvan-

tage of using a DPDM where there is no apparent dependence. The sacrifice in the quality

of marginals suffered by the DPD model at clique position 2 puts it at a severe disadvan-

tage when compared to the independence model. Similar results at position 1 suggest that

dependence at that location, while identifiable, is weak. For this reason we recommend that

the DPD model should be used with some care, particularly for small to moderate sample

sizes.



86

4.5 Discussion

We have proposed a new method for nonparametric modeling of dependence incorporating

Dirichlet process mixtures of component distributions. Our method provides advantages

over nonparametric copula models in its natural handling of multivariate marginal distribu-

tions and straightforward conditional computation.

In applying our model to protein structure data we were able to demonstrate the value

of joint modeling between side-chain position and backbone conformation. In the course

of this analysis, we presented a DPDM permutation test for dependence. We discovered

that the level dependence will vary from position to position in a protein RPG. This in-

formation can be used to increase the efficiency of protein structure prediction models by

incorporating dependence structure only where it is needed.

A brief mention is warranted for some potential issues regarding the efficiency of our

proposed MCMC scheme. The results in Chapter III indicated that the noninformative prior

model, which followed our proposed DPDM framework, experienced mixing problems as

the number of component distributions increased. This suggests that as the number of

component distributions increases, vigilance for MCMC issues should also increase. While

there is no theoretical limit to the number of component marginals, this issue will impose

practical restrictions.
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CHAPTER V

CONCLUSIONS

We have presented a number of innovative statistical models designed to answer open ques-

tions in the protein structure prediction community. The material from Chapter II allowed

density estimation to be performed for torsion angle data with much smaller sample sizes

than had been possible with existing binning methods. This let us describe the behavior of

the so-called half positions for torsion angle data in a rigorous statistical way. This analy-

sis demonstrated that half position distributions are better suited than whole positions for

template-based modeling.

Our extension of this single position model in Chapter III permitted the application of

template-based modeling methods to loop regions for the first time. In addition to a straight-

forward nonparametric model, we also took full advantage of the ability of Bayesian density

estimation to incorporate prior information by presenting the DPM-HMM. This allowed us

to leverage information from surrounding sequence positions to obtain informative density

estimates even at alignment positions with few or no observed data points. We found our

method to be an effective means of compensating for the sparse data problem in protein

loop regions, and our method proved superior to existing alternatives for loop modeling.

Our final contribution to the field of protein structure prediction was the development

of a model which would link together the backbone and side-chain conformations. This

involved a multivariate angular-linear data mix, and in our nonparametric context existing

joint models were unsuitable. We therefore defined a class of Dirichlet process dependence

models in Chapter IV which have attractive properties in terms of modeling flexibility and

computation. We applied this method to a clique dataset to investigate the joint behavior

of torsion angle pairs and side-chain centroids. We arrived at the somewhat surprising
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result that while joint modeling is often desirable for this data, this is not always the case.

This insight opens up new areas of inquiry in the study of protein cliques, and also allows

for more efficient structure prediction. By presenting methods which allow us to test the

efficacy of DPDM models, we can pursue improved prediction strategies which incorporate

dependence only where there is strong evidence that it exists.

One of the hallmarks of these research projects was the mutual advancement of statis-

tics and biology through the development of new statistical methods. Each biological prob-

lem under study was either not addressed or insufficiently addressed by existing statistical

methodology, and improved methodology suggested areas of biological interest which were

not accessible previously. The purpose of all of this statistical development was to improve

template-based structure prediction strategies to be employed in the CASP (Critical As-

sessment of Techniques for Protein Structure, see e.g. Moult, 2005) 9 experiment. CASP

is an international structure prediction competition, and the methods presented in this dis-

sertation are being employed by a CASP competition team. The DPM-HMM method from

Chapter III is being used to generate candidate loops for a protein structure prediction al-

gorithm, while the DPDM for torsion angles and side-chain centroids from Chapter IV

is being employed as a scoring function for side-chain placement. Competitions such as

this one provide an excellent avenue for the application of new statistical ideas, and the

introduction of advanced statistical modeling to the wider scientific community.

Beyond CASP, the general statistical strategies developed are not limited to biological

applications. The methods presented in Chapters II and III are suitable for other bivariate

or multivariate angular data situations, such as characterizing wind direction. The idea of

combining an informative prior with a Bayesian nonparametric technique, as in the case of

the DPM-HMM, can be applied in any density estimation setting, and presents an advantage

over frequentist kernel density techniques. The DPD model provides an alternative to non-

parametric copulas wherever they might be applied, and offers key advantages particularly
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in terms of modeling multivariate marginals. The further applicability of these strategies,

all initially developed to solve structural biology problems, emphasizes the versatility of

the field of statistics.
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APPENDIX A

DERIVATION OF FULL CONDITIONAL DISTRIBUTION IN CHAPTER II

We will consider a general eight parameter bivariate von Mises distribution. Using the

representation from Mardia et al. (2007), the density can be expressed as:

f(φi, ψi) ∝ exp{κ1i cos(φi − µ) + κ2i cos(ψi − ν)+

[cos(φi − µ), sin(φi − µ)]Ai[cos(ψi − ν), sin(ψi − ν)]T}

where Ai is a 2 × 2 matrix. For a dataset consisting of (φi, ψi), i = 1, ...n, the full condi-

tional log density of (µ, ν) up to a constant can be expressed as:

L(µ, ν) =
n∑
i=1

κ1i cos(φi − µ) + κ2i cos(ψi − ν)

+ [cos(φi − µ), sin(φi − µ)]Ai[cos(ψi − ν), sin(ψi − ν)]T

=

(
n∑
i=1

κ1i[cos(φi), sin(φi)]

)
[cos(µ), sin(µ)]T

+

(
n∑
i=1

κ2i[cos(ψi), sin(ψi)]

)
[cos(ν), sin(ν)]T

+
n∑
i=1

[cos(φi − µ), sin(φi − µ)]Ai[cos(ψi − ν), sin(ψi − ν)]T .

Notice that the first two terms are consistent with a bivariate von Mises distribution with:

µ̃ = arctan

(
n∑
i=1

κ1i[cos(φi), sin(φi)]

)
ν̃ = arctan

(
n∑
i=1

κ2i[cos(ψi), sin(ψi)]

)

κ̃1 =

∣∣∣∣∣
n∑
i=1

κ1i[cos(φi), sin(φi)]

∣∣∣∣∣ κ̃2 =

∣∣∣∣∣
n∑
i=1

κ2i[cos(ψi), sin(ψi)]

∣∣∣∣∣ .
The full conditional means are the directions of the sums of the observation vectors, while

the full conditional concentration parameters are the magnitudes of the same sums. This
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allows us to rewrite the log likelihood as:

=κ̃1 cos(µ− µ̃) + κ̃2 cos(ν − ν̃)

+
n∑
i=1

[cos(φi − µ), sin(φi − µ)]Ai[cos(ψi − ν), sin(ψi − ν)]T .

We will now focus on the final term of the log likelihood to determine Ã.

n∑
i=1

[cos(φi − µ), sin(φi − µ)]Ai[cos(ψi − ν), sin(ψi − ν)]T

=
n∑
i=1

[cos(µ), sin(µ)]

 cos(φi) sin(φi)

sin(φi) − cos(φi)

Ai
 cos(ψi) sin(ψi)

sin(ψi) − cos(ψi)

 [cos(ν), sin(ν)]T

=[cos(µ), sin(µ)]

 cos(µ̃) − sin(µ̃)

sin(µ̃) cos(µ̃)


 cos(µ̃) − sin(µ̃)

sin(µ̃) cos(µ̃)


−1

 n∑
i=1

 cos(φi) sin(φi)

sin(φi) − cos(φi)

Ai
 cos(ψi) sin(ψi)

sin(ψi) − cos(ψi)




 cos(ν̃) sin(ν̃)

− sin(ν̃) cos(ν̃)


−1  cos(ν̃) sin(ν̃)

− sin(ν̃) cos(ν̃)

 [cos(ν), sin(ν)]T

=[cos(µ− µ̃), sin(µ− µ̃)]

 cos(µ̃) − sin(µ̃)

sin(µ̃) cos(µ̃)


−1

 n∑
i=1

 cos(φi) sin(φi)

sin(φi) − cos(φi)

Ai
 cos(ψi) sin(ψi)

sin(ψi) − cos(ψi)




 cos(ν̃) sin(ν̃)

− sin(ν̃) cos(ν̃)


−1

[cos(ν − ν̃), sin(ν − ν̃)]T .
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Note that the determinants of the µ̃ and ν̃ matrices are both cos(0) = 1.

=[cos(µ− µ̃), sin(µ− µ̃)]

(
n∑
i=1

 cos(µ̃) sin(µ̃)

− sin(µ̃) cos(µ̃)


 cos(φi) sin(φi)

sin(φi) − cos(φi)

Ai
 cos(ψi) sin(ψi)

sin(ψi) − cos(ψi)


 cos(ν̃) − sin(ν̃)

sin(ν̃) cos(ν̃)


 [cos(ν − ν̃), sin(ν − ν̃)]T

=[cos(µ− µ̃), sin(µ− µ̃)] n∑
i=1

 cos(φi − µ̃) sin(φi − µ̃)

sin(φi − µ̃) − cos(φi − µ̃)

Ai
 cos(ψi − ν̃) sin(ψi − ν̃)

sin(ψi − ν̃) − cos(ψi − ν̃)




[cos(ν − ν̃), sin(ν − ν̃)]T .

So our full conditional matrix (with a uniform prior) will be:

Ã =
n∑
i=1

 cos(φi − µ̃) sin(φi − µ̃)

sin(φi − µ̃) − cos(φi − µ̃)

Ai
 cos(ψi − ν̃) sin(ψi − ν̃)

sin(ψi − ν̃) − cos(ψi − ν̃)

 .
Now consider the situation with a bivariate von Mises prior on (µ, ν) with parameters

µ0, ν0, κ10, κ20, and A0 =

 a b

c d

. For the purposes of calculating µ̃, ν̃, κ̃1, and κ̃2 the

prior can be treated as an additional observation with φ0 = µ0 and ψ0 = ν0. The situation

for the matrix Ã is slightly more complicated. The full conditional matrix changes to:

Ã =

 n∑
i=1

 cos(φi − µ̃) sin(φi − µ̃)

sin(φi − µ̃) − cos(φi − µ̃)

Ai
 cos(ψi − ν̃) sin(ψi − ν̃)

sin(ψi − ν̃) − cos(ψi − ν̃)




+

 cos(µ0 − µ̃) sin(µ0 − µ̃)

sin(µ0 − µ̃) − cos(µ0 − µ̃)

A′0
 cos(ν0 − ν̃) sin(ν0 − ν̃)

sin(ν0 − ν̃) − cos(ν0 − ν̃)
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where A′0 =

 a −b

−c d

. Note that when b = c = 0, as in the case of the Rivest (1988),

sine (Singh et al., 2002), and cosine (Mardia et al., 2007) models, then A0 = A′0.

So if we are dealing with a bivariate von Mises sine model with a sine model prior, in

which case Ai is a matrix with λi in the lower right corner and 0s elsewhere, then:

Ã =
n∑
i=0

 cos(φi − µ̃) sin(φi − µ̃)

sin(φi − µ̃) − cos(φi − µ̃)


 0 0

0 λi


 cos(ψi − ν̃) sin(ψi − ν̃)

sin(ψi − ν̃) − cos(ψi − ν̃)


=

n∑
i=0

λi

 sin(φi − µ̃) sin(ψi − ν̃) − sin(φi − µ̃) cos(ψi − ν̃)

− cos(φi − µ̃) sin(ψi − ν̃) cos(φi − µ̃) cos(ψi − ν̃)


An alternative derivation for the full conditional distribution for the sine model was

independently developed by Mardia (2009).
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APPENDIX B

DERIVATION OF FULL CONDITIONAL DISTRIBUTION IN CHAPTER III

As we showed in Appendix A, the full conditional distribution for a set of observations with

bivariate von Mises sine model distributions and a sine model prior is an eight parameter

bivariate von Mises distribution with parameters:

µ̃ = arctan

(
n∑
i=0

κ1i[cos(φi), sin(φi)]

)
ν̃ = arctan

(
n∑
i=0

κ2i[cos(ψi), sin(ψi)]

)

κ̃1 =

∣∣∣∣∣
n∑
i=0

κ1i[cos(φi), sin(φi)]

∣∣∣∣∣ κ̃2 =

∣∣∣∣∣
n∑
i=0

κ2i[cos(ψi), sin(ψi)]

∣∣∣∣∣ . (A.1)

Ã =
n∑
i=0

λi

 sin(φi − µ̃) sin(ψi − ν̃) − sin(φi − µ̃) cos(ψi − ν̃)

− cos(φi − µ̃) sin(ψi − ν̃) cos(φi − µ̃) cos(ψi − ν̃)


where C is the appropriate constant of integration and the prior mean parameters (µ0, ν0)

are treated as an additional observation (φ0, ψ0) from a bivariate von Mises sine model with

parameters µ, ν, κ10, κ20, and λ0.

Now consider a prior distribution of the form:

π(µ, ν) =
K∑
k=1

pkCk exp{κ10k cos(µ0k − µ) + κ20k cos(ν0k − ν)

+ λ0k sin(µ0k − µ) sin(ν0k − ν)},

where Ck is the constant of integration for a von Mises sine model with parameters κ10k,

κ20k, and λ0k given in equation (3.2), pk ≥ 0 for k = 1, ...K, and
∑K

k=1 pk = 1. The full
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conditional distribution is proportional to this distribution times the likelihood, giving:

π(µ, ν|φ,ψ) ∝ L(µ, ν|φ,ψ)
K∑
k=1

pkCk exp{κ10k cos(µ0k − µ) + κ20k cos(ν0k − ν)

+ λ0k sin(µ0k − µ) sin(ν0k − ν)}

=
K∑
k=1

pkL(µ, ν|φ,ψ)Ck exp{κ10k cos(µ0k − µ) + κ20k cos(ν0k − ν)

+ λ0k sin(µ0k − µ) sin(ν0k − ν)},

where L(µ, ν|φ,ψ) is the likelihood excluding the constant of integration.

Each term in the sum depends on the unknown parameters only through the product

of the likelihood and a single von Mises sine distribution. This product is proportional to

an eight parameter bivariate von Mises distribution with parameters given by (A.1). Call

the resulting posterior parameters µ̃i, ν̃i, and so on. Then the full conditional distribution is

proportional to:
K∑
k=1

pkCk exp{κ̃1k cos(µ−µ̃k)+κ̃2k cos(ν−ν̃k)+[cos(µ−µ̃), sin(µ−µ̃)]Ãk[cos(µ−µ̃), sin(ν−ν̃)]T ,

which integrates to:
K∑
k=1

pkCkC̃
−1
k ,

where C̃k is the constant of integration for an eight parameter bivariate von Mises distribu-

tion with parameters µ̃k, ν̃k, κ̃1k, κ̃2k, and λ̃k. Therefore, the full conditional distribution

takes the form:

π(µ, ν|φ,ψ) =
K∑
k=1

p∗kf(µ, ν|µ̃k, ν̃k, κ̃1k, κ̃2k, Ãk),

where f is an eight parameter bivariate von Mises distribution and

p∗k = (pkCkC̃
−1
k )/(

∑K
j=1 pjCjC̃

−1
j ). Note that p∗k ≥ 0 for k = 1, ..., K, and

∑K
k=1 p

∗
k = 1.

Unfortunately computational formulas for the constant of integration of a bivariate

von Mises distribution do not exist in the general case. Therefore we do not sample di-

rectly from this full conditional distribution, but rather use an independence sampler which
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replaces each full conditional eight parameter distribution with a five parameter sine model,

and uses the corresponding constant of integration from (3.2). For this sine model based

proposal distribution we keep the true full conditional mean and precision parameters, and

take λ̃ = (
∑n

i=0 λi cos(φi − ψi)) {cos(µ̃− ν̃)}−1. This method is a direct extension of the

single sine model prior case presented in Chapter II.
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