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ABSTRACT 

 

Effect of Load Path on Mode of Failure at the Brittle-Ductile Transition 

in Well-sorted Aggregates of St. Peter Sand. (August 2010) 

Gokturk Mehmet Dilci, B.S., University of Ankara 

Chair of Advisory Committee: Dr. Frederick M. Chester 

 

Granular aggregates of quartz subjected to triaxial compression under constant 

effective pressures (Pe) undergo macroscopic failure at critical stress states that depend 

on the effective mean stress. Although the mode of failure and mechanical response vary 

systematically with mean stress at failure, prefailure loading at subcritical stress states 

may induce yielding, and subcritical load paths may influence behavior at failure.  Here, 

I investigate how the failure of quartz aggregates at conditions favoring compaction 

depends on consolidation history and load path in the transitional and ductile 

deformation regimes in terms of strain localization and microfracture fabric. Three 

distinct non-standard triaxial compression load paths were employed; the paths involve 

different preconsolidation of the aggregates at subcritical isotropic stress followed by 

differential loading with increasing or decreasing confining pressure.  Deformed 

aggregates were injected with epoxy and studied using optical microscopy techniques to 

determine microscopic damage evolution for the different load paths. Microfracture data 

show that preconsolidation at subcritical isotropic loads facilitates formation of 

campaction bands during subsequent triaxial compression in the transitional regime.  
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The preferred orientation of intragranular cracks evolves from near random fabrics for 

isotropic loading to strongly preferred orientations parallel to the maximum principal 

compression direction for differential loading, with the strongest preferred orientation 

within the compaction bands. Aside from the preconsolidation, different load paths have 

only a minor effect on the mechanical response during macroscopic failure.   
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1. INTRODUCTION 

Compaction bands are narrow, tabular zones of reduced porosity and 

permeability that often form during deformation of granular geologic materials 

[Mollema and Antonellini, 1996; Olsson & Holcomb, 2000; Olsson, 1999]. In nature, 

compaction bands are oriented perpendicular to the maximum compressive stress. 

Compaction bands have formed during burial of large grain size (0.3-0.8 mm), granular 

sediments having high porosity (20-25%) or in the compressional quadrants at the tips of 

small faults that occur in finer grained (0.05-0.25), and less porous (<20%) sediments 

[Mollema and Antonellini, 1996]. In terms of geometry, compaction bands may be 

classified as thick (and straight) bands typically 0.5-1.5 cm thick and 5-10 m length, and 

thin (and crooked) bands typically 0.1-0.5 cm thick and 2 m length [Mollema and 

Antonellini, 1996]. The favorable stress state for compaction band formation is near the 

brittle-ductile transition, which is at intermediate effective mean stress levels in the 

vicinity of a transition between dilatant shear failure and compacting cataclastic flow 

type failure. When the loading paths intersect the failure envelope at much higher mean 

stresses than the brittle ductile transition, the compactional damage distributes 

homogeneously rather than concentrating in localized bands. 

Compaction bands are characterized by particle size, porosity and permeability 

reduction, and thus can act as barriers within permeable, granular formations [Olsson  
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& Holcomb 2000; Olsson et al., 2002]. They can severely compartmentalize subsurface 

reservoirs and significantly affect the fluid flow characteristics and production feasibility 

in petroleum and aquifer systems [Holcomb et al., 2007].  If compaction occurs 

uniformly, it can be beneficial in some cases for the extraction of the pore fluid [Olsson 

& Holcomb 2000]. Accordingly, a better understanding of the mechanics and 

mechanisms of compaction band formation can improve our ability to predict occurrence 

of band formation and contribute to developing comprehensive models of fluid flow 

through reservoir and aquifer systems. Knowledge about compactional behavior of 

granular materials is also useful for some other applications such as nuclear waste 

isolation and tunnel settlement [Jeng et al., 2002].  

Load path during burial and exhumation history plays a critical role in the mode 

of failure of natural and laboratory samples of sand aggregates, particularly at the brittle 

ductile transition. Granular rocks, which had previously undergone an inelastic porosity 

reduction by exceeding critical stress levels, demonstrate an expanded failure envelope 

in stress space during subsequent differential loading. This phenomenon is referred to as 

embrittlement [Wong et.al., 1992]. On the other hand, initial sub-critical triaxial 

compressive loading at high mean stresses leads the granular materials to yield at lower 

differential stress levels during successive triaxial compression loadings in the dilatants 

shear and transition regimes [Choens and Chester, 2009].  

The purpose of this study is to test the hypothesis that different load paths induce 

different modes of failure in terms of localization and microfabrics, even if the load 
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paths intersect at stress states that are equivalent at the macroscopic failure envelope. 

Wong et.al, [1992] and Choens and Chester [2009] held the confining pressure values at 

fixed magnitudes during differential loading. However, for this study, the load paths 

involve regularly increasing or decreasing confining pressure in harmony with 

increasing differential stress during the triaxial compression tests, and intersection of the 

failure envelope at the same stress state. This provides the opportunity to compare 

evolution of damage for different load paths. I investigated how the distribution of 

microfractures and the microfracture fabrics change as a reflection of loading path. The 

load paths employed simulate natural loading during burial and tectonic uplift.  

Compaction bands are more readily formed in high porosity granular materials 

such as loose sands, poorly cemented and well sorted granular rocks or any granular 

rocks that have coarse or intermediate size grains [Olsson, 1999]. For that reason, 

aggregates of St. Peter sand composed solely of quartz grains were employed for the 

experiments. The aggregates were comprised of a particle size fraction 250-350 µm 

diameter. The use of a well sorted, monomineralic aggregate helps avoid significant 

variations in the starting structure of the samples.   

The onset of localization of strain and the initiation of deformation band 

formation occur as the macroscopic failure strength of a soil or rock is exceeded. At low 

mean stress conditions, the macroscopic failure strength of granular rocks and loose 

sands may be described by a Mohr-Coulomb failure relation in which failure strength 

increases with effective mean stress.  At high effective mean stress, failure strength 
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associated with compactional flow decreases with effective mean stress [Wong et al., 

1997; Baud et al. 2000]. The stress conditions at failure may be described in terms of the 

differential stress, Q, and the effective mean stress, P, and illustrated graphically in a Q-

P diagram (Figure 1). For high mean stress conditions that favor compactional failure, 

the failure strength depends strongly on particle size distributions and porosity. The 

failure relation may be expressed as,  

Q = (ζ1 - Pc) = P* [δ sin ϴ]; and   Eqn. 1 

P = P* [ξ + (1-ξ) cos ϴ]    Eqn. 2  

where P is effective mean stress, ζ1 is the highest compressive stress, P* is grain 

crushing pressure, which depends on the strengths of individual grains and grain forming 

minerals, and ξ and δ are normalization constants that vary as a function of the particle 

size distribution in the aggregate. According to this formulation, P* acts as a scaling 

parameter for the magnitude of the failure stress [Wong et al., 1997]. Accordingly, it can 

be inferred that the rocks or soils which have different particle size ranges and/or various 

mineralogical compositions, have different compactional failure strengths. Karner et al. 

[2005a] report that the relations above adequately describe failure strength of St. Peter 

Sand aggregates determined by triaxial rock deformation experiments (Figure 1). 
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Figure 1. Failure conditions investigated in this research. Condition I is the transitional 
deformation regime, and the Condition II is the ductile deformation regime. The figure 
was modified from Karner et al. [2005a]. 
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2. METHOD 

2.1.    Experiment Sample and Preparation 

Well-sorted, unconsolidated, Ordovician–age St. Peter quartz sand, which was 

collected from Battle Creek in St. Paul, Minnesota [Karner et. al., 2005a], sieved to 

achieve a 250-350 µm grain size fraction, was cleaned in an acid bath (5% HCl), washed 

with distilled water, and air-blown to remove fines (following the procedure of He, 

2001). The sand was encapsulated by a cylindrically formed silver foil surrounded by 

two heat-shrink polyolefin tubes (jackets). Thin Berea sandstone spacers (2.5 mm thick) 

were placed at the end of the sample in contact with the pore fluid access port to avoid 

loss of sand grains. During the sample preparation, the sand underwent ultrasonic 

vibration to produce reproducible initial packing and low starting porosity. The 

polyolefin jackets were sealed by tie wires along grooves cut in the steel end-cap and 

piston. The target length and diameter of the cylindrical sand sample were 3.94 cm and 

1.9 cm respectively. The mass of sand, and the mass of the sample assembly before and 

after saturation with water, was measured for each experiment on a digital balance to 

calculate starting porosity of the samples.  The samples were saturated with distilled 

water using a vacuum system before insertion into the apparatus for testing [He, 2001; 

Karner et. al., 2003, 2005a]. 
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Figure 2. Cross sectional rendering of the pressure vessel of the modified variable 
strain rate (MVSR) triaxial apparatus designed by H. Heard and modified by F. Chester 
[Heard, 1963; Chester, 1988]. The cross sectional rendering of the vessel is taken from 
Lenz [2002].  
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2.2.    Experiment Procedure 

Triaxial compression experiments were conducted on the modified variable strain 

rate (MVSR) triaxial apparatus in the John Handin Rock Mechanics Laboratory at Texas 

A&M University to perform hydrostatic and triaxial compression experiments (Figure 

2). The MVSR is a liquid confining media, gear driven device ideally suited for testing 

weak materials. 

Ten experiments were conducted to explore the effects of different load paths.  

The load paths employed different stages and sequencing of isostatic confining pressure, 

Pc, and non-standard triaxial compression loading (Figure 3). In all experiments, we 

adopt the convention that compressive stresses and compactional strains (i.e., shortening 

and porosity decrease) are positive, and we denote the maximum and minimum 

(compressive) principal stresses by ζ1 and ζ3, respectively. The pore pressure will be 

denoted by Pp, and the difference between the   Pc and Pp will be referred to as the 

effective pressure, Pe. Pp was maintained at 10 MPa (+- 2 MPa) during each test. Each 

sample was subjected to 12 MPa Pc and 10 MPa Pp at the beginning of each test in order 

to establish the initial porosity at about 2 MPa effective pressures (Pe=Pc-Pp=2 MPa), 

which is sufficient for the jackets to tightly wrap around the samples. Each experiment 

involved initial loading to a prescribed Pe= 32, 59, 86 and 103 MPa. Subsequently, 

triaxial compressive loading of the samples was imposed by one of two triaxial load 

paths following a constant ratio for the change in Q and P. The triaxial compression load 

paths are characterized by either an increase or decrease in mean stress while increasing 
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differential stress (Table 1). After completion of triaxial compressive loading, each 

sample was unloaded, following a reversal of the loading path.  

Two suites of experiments were conducted using different Pe and load path 

sequencing to investigate failure at an intermediate mean stress very near the brittle 

ductile transition (Q=40 MPa, P=59 MPa), and at higher mean stress, well within the 

compactional cataclastic flow field (Q=35 MPa, P=80 MPa). Pe sequencing and two 

triaxial load paths are described in more detail below.   

 

Figure 3. The load paths intercepting the compactional failure envelope near the B-D 
transition field and the ductile field. Load paths with low and intermediate prior isotropic 
pressurizations and successive triaxial compressions with increasing Pc are shown as 
blue, the load paths with a high prior isotropic pressurization and successive triaxial 
compression with decreasing Pc are shown as red, and the load paths that comprise a 
prior high magnitude isotropic pressurization, a partial isotropic unloading down to the 
intermediate magnitudes, and differential load starting with those intermediate 
magnitudes are shown as green. 
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Table 1. Experiment matrix 

Triaxial Compression Load Path Transitional Regime Ductile Regime 

Increasing P 

Through Yield (Exp. 8) 

Beyond Failure (Exp. 1, 2) 

Beyond Failure ( Exp 5) 

Increasing P after 

Preconsolidation 

Through Yield (Exp. 10) 

Beyond Failure (Exp.4 ) 

Beyond Failure (Exp 7) 

Decreasing P 

Through Yield (Exp. 9) 

Beyond Failure (Exp. 3) 

Beyond Failure (Exp. 6) 

 

2.3.    Triaxial Compression Load Paths  

The standard triaxial compression test is at constant Pe. In such cases, each 

incremental increase in the Q corresponds to an increase in the P in the ratio of 1 to 3. 

However, here we designed load paths that have more dramatic changes in the P values 

such that the increases in the Q correspond to increases in P in the ratio of 2 to 3 in order 

to be more similar to the natural burial load path. Also, we designed load paths with 

decreasing Pe either to create more dramatic initial pressurization difference among load 

paths or to simulate the load paths of extensional tectonics regions with no sedimentation 
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or with concurrent erosion. In addition, the load paths with increasing and decreasing Pe 

were designed to intercept the failure envelope at two target stress states in transitional 

and ductile regimes. 

2.3.1.   Triaxial Compression Tests with Increasing Confining Pressure  

The triaxial compression load paths characterized by increasing P with increasing 

Q according to  

d (Q) = 3/2 d (P)      eqn 3. 

were achieved by continuously varying Pc with Q and ζ1 according to 

d (Q) = 3*d (Pc)      eqn 4. 

d (ζ1) = 4*d (Pc)      eqn 5. 

This ratio is quite close to the ratio of vertical and horizontal load increases over 

natural burial which is reckoned as  

d (ζv) ≈ 3*d (ζh)      eqn 6. 

An analogous load path may be encountered in nature within extensional 

tectonics regions with overburden load increasing by sedimentation in rift valleys or 

graben basins, such that horizontal extensional stresses reduce the horizontal stresses 

which occur depending on Poisson ratio. The suites of experiments having this particular 

triaxial compression load path are shown in Q-P space in figure 3. 
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2.3.2.  Triaxial Compression Tests with Decreasing Confining Pressure 

The triaxial compression load paths characterized by decreasing P with 

increasing Q according to 

d (Q) = -3/2 d (P)      eqn 7. 

 were achieved by continuously varying Pc with Q and ζ1 according to 

d (Q) = - d (Pc) and      eqn 8.  

d (ζ1) = 0; and d (Pc) < 0     eqn 9. 

An analogous load path may be encountered in nature within extensional 

tectonics regions with no increase in overburden by sedimentation or with concurrent 

erosion. Such stress states can form by extension of strata overlying rising plutonic 

domes or salt diapers. 

The suites of experiments with this particular triaxial compression load path are 

shown in Q-P space in figure 3. 

2.3.3.   Load Path Sequencing 

Three isostatic differential pressure load paths were used prior to implementing 

the triaxial compression stage as shown in figure 3.   

A. For the samples that underwent the triaxial load paths with decreasing P (eqn 

7), the samples were first loaded to high Pe magnitudes of 103.3 MPa and 86 MPa such 
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that subsequent triaxial load paths would intersect the failure envelope at the two target 

values.  

B. For samples that underwent the triaxial load paths with increasing P (eqn 3), 

the samples were first loaded to lower Pe magnitudes of 59 MPa and 32 MPa, such that 

subsequent triaxial load paths would intersect the failure envelope at the two target 

values. 

C. An additional isostatic pressurization sequence was employed for the samples 

that underwent the triaxial load paths with increasing P (eqn 3). In this case the isostatic 

loading began with pressurization to 103.3 MPa and 86 MPa as described in section A 

above, and then held at those effective pressures for 3.5 hours. Subsequently, the 

effective pressures were reduced to the magnitudes that were achieved in pressurization 

sequence B above, i.e., isostatic effective pressure levels of 59 MPa and 32 MPa. After 

these pressures were achieved, triaxial loading was imposed 

2.4. Mechanical Data Analysis 

Applied differential axial force (F), confining and pore fluid pressures (Pc, Pp), 

pore volume change (dV), axial displacement (d), and elapsed time (t) data were 

collected by an internal force gauge, volumometers, displacement transducer and system 

timer during the experiments. The raw mechanical data were used to calculate 

differential stress (Q), effective mean stress (P), volumetric strain (β) and axial strain (ε) 

during and after the experiments. Measurement accuracies are ±0.3 MPa for Q and P, 

±0.5 MPa for Pc, ±0.025 MPa for Pp, ±0.03 % for β and ±0.02 % for ε [based on personal 
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conversation with F.M. Chester]. Data recording increment was set at 1 Hertz. The 

desired load paths were achieved by maintaining Pp constant and by simultaneously 

adjusting the confining pressure to target levels calculated in real time by the computer 

according to relations presented above (eqn 3, 4, 5, 7, 8, and 9). Initial and post 

experiment pore volumes of specimens were determined making mass measurements for 

dry-undeformed, saturated-undeformed, and saturated-compacted-deformed states of the 

specimens. For each sample, the final porosity, Фf, was determined by mass 

measurements, and used as a reference together with the dV (cm3) data collected from 

the volumometers to determine porosity values for the starting condition of each 

experiments, Фo, at the time of differential loading, ФL, at the peak differential load, 

ФQmax, and when differential unload was removed, Фu (Table 2).  We also adopted the 

slope of the Q vs. ε curves as “apparent stiffness” (E').  Because of abnormal permanent 

axial strain that occurred during early stages of the differential loading stages of some 

experiments, I calculated E' values from the slope of differential unloading curves (Table 

2). The second derivative of the stress (P and Q) versus strain (ε and β) curve was used 

as an objective approach to determine yield and failure strengths for all experiments.  

To determine the accumulation of permanent (plastic) volume strain during 

loading, the elastic volumetric strain was subtracted from the total volume strain. Elastic 

volume strain is determined from the unloading portion of each test at the end of each 

experiment. There is little permanent strain accumulation during unloading. The elastic 

volume strain vs. mean stress during unloading for all tests can be fit by a master curve 

(Figure 4). 
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Figure 4. Observations and models of poroelastic behavior of sand aggregates in a 
volumetric strain versus effective mean stress plot. The unloading curves from several 
different experiments are shown. The black curve is the best fit using a simple 
polynomial equation. The best fit polynomial is used as master elastic curve to 
determine plastic volume strain from the experiments (see text). The purple curve shows 
the fit using the result of theoretical model of a porous granular aggregate of simple 
spheres and Hertzian-type contacts [Karner et al., 2003] This relation was not employed 
as it did not fit the observations adequately.   
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2.5. Post-Experiment Sample Preparation 

The compacted, saturated samples were weighted after unloading at the end of 

the experiments to determine mass of water in the samples, and thus determine the 

volume of pore space in the deformed samples. The final porosities were determined 

from total volume calculations including sand volumes determined from sand mass 

measurements and density of quartz. I combined the volume change data gathered from 

the volumometers during tests with the final porosity values that I take as a reference to 

determine the evolution of porosity changes (and thus volumetric strain) from the end of 

the experiments to the starting conditions.   

After each experiment, the sample was dried in a laboratory oven and saturated 

with blue-dyed epoxy. Epoxy filled samples were cut in half parallel to the cylinder axis 

using a precision low speed diamond saw to avoid generating new cracks, and to prepare 

doubly polished petrographic sections. Cut surfaces were prepared by sequential 

grinding with 400-600-1000 grit silicon carbide powders, and then polishing with 3 and 

0.3 micron alumina powders. Thin sections (10-20 µm thickness) were studied using 

optical techniques to characterize microstructure. 

2.6. Microscopic Studies 

Petrographic sections of samples were analyzed using optical microscopy to 

determine the orientation distribution and the spatial density distribution of 

microfractures. Orientations of 77 and more (112 the most) intragranular cracks 
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throughout the thin sections were measured on a flat microscope stage and analyzed 

assuming axial symmetry.  

 

Figure 5. Preferred orientation, density distribution and linear crack density data were 
collected within the indicated region of the thin sections. 
 

The density distribution of cracks within samples was determined following the 

method of Menendez et al. [1996]. Using the thin sections and thin section photographs, 

I established orthogonal gridded scan lines spaced 3 mm over the undisturbed part of the 

samples (Figure 5). The grid lines are perpendicular and parallel to the shortening 

direction. The linear crack density, defined as the number of crack intercepts per unit 

length was determined on each 3mm scan line segment. Linear crack densities along 

scan lines that are perpendicular and parallel to the shortening direction were denoted as 

L1 and L2 respectively.  
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I also measured the quantity and angular orientation of cracks within whole 

samples, in concentrated deformation regions, and in host domains to determine 

preferred orientation of the cracks.  
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3. RESULTS 

3.1.  Microstructure   

Consolidation of the sand samples appears homogeneous at the macroscopic 

scale, but petrographic observations indicate many grains are fractured and displaced at 

the microscopic scale throughout the sample. Samples deformed in the transitional field 

have localized zones of concentrated deformation, whereas samples deformed in the 

ductile field exhibit distributed, homogeneous deformation. Accordingly, the 

microscopic deformation characteristics are quantified for all the samples deformed in 

the transitional field with either increasing P or decreasing P load paths. 

3.1.1.   Microfracture Density Distribution  

The density distribution of microfractures, as illustrated by local mean densities, 

PL, of the counted cracks, are shown in contour maps of the six specimens deformed in 

the transitional regime. Distinct zones of localized compaction indicated by high 

microfracture density are evident in samples deformed beyond failure under increasing P 

after preconsolidation (#7) and under decreasing P (#6) (Figure 6). Some evidence of 

incipient localization of compaction is apparent in samples deformed through yield (#8) 

and beyond failure (#5) under increasing P. On the other hand, compactional damage is 

distributed in samples deformed through yield under increasing P after preconsolidation 

(#10) and under decreasing P (#9). The local mean densities of the cracks counted on the 

3 mm scan lines are increased in the lower quarters of the samples deformed beyond 

failure under decreasing P (#6), or increasing P after preconsolidation (#7). At the scale 
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of the 3 mm grid maps, zones of concentrated deformation appear as parallel elongate in 

directions at high angle to load axis (Figure 7).  

 

Figure 6. Photomicrographs of the representative parts of samples deformed with 
increasing P with an initial high magnitude isotropic pressurization (#7) and under 
decreasing P (#6). The samples #6 and #7 best developed localized compactional 
deformation zones. 
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Figure 7. Shaded contour maps of the distribution of microfracture damage in six of the 
deformed specimens. The linear fracture (#/mm) density is contoured in maps of the 
petrographic sections cut through the center of the samples parallel to the cylinder axis. 
Borders of mapped region shown in Figure 5. 
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Microfracture densities in samples are generally greater in samples deformed 

beyond failure than those loaded only through yield. For samples containing 

compactional deformation bands, the average PL inside the band is generally about twice 

that in the surrounding host aggregates in all samples, the average linear fracture density 

determined from traverses perpendicular to the load axis, L1, and parallel to the load 

axis, L2, are similar  (Table 3). L1/L2 ratios range between 0.88 and 1.4, consistent with 

an anisotropic fracture orientation distribution. The L1/L2 ratios in compactional 

deformation bands are generally greater than in the neighbor host aggregate, suggesting 

greater fracture anisotropy inside bands (Table 3).  

The greatest increase in the L1/L2 ratios from the neighboring aggregates to 

within the compactional bands appear in the sample deformed to beyond failure under 

increasing P after preconsolidation (#7). In contrast, the increase in L1/L2 ratio from host 

aggregate to the compactional band is least for the specimen deformed under increasing 

P without preconsolidation. 
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Table 3. Microfracture density of samples deformed in the transitional regime. 

Exp. # Portion of Sample L1* #/mm-1 L2* #/mm-1 L1/L2 PL #/mm-1  β (%) 

5 Host Aggregate 0.803 0.888 1.107 0.845 ־ 
5 Compactional Zone 1.185 1.063 1.114 1.124 ־ 
5 Whole specimen 0.969 0.881 1.100 0.925 0.85 
6 Host Aggregate 1.617 1.91 0.846 1.763 ־ 
6 Compactional Zone 3.805 3.857 0.986 3.831 ־ 
6 Whole specimen 2.015 2.300 0.876 2.157 2.09 
7 Host Aggregate 1.622 1.589 1.020 1.605 ־ 
7 Compactional Zone 3.888 3.095 1.256 3.491 ־ 
7 Whole specimen 1.828 1.890 0.967 1.859 2.02 
8 Host Aggregate 1.259 1.270 0.991 1.264 ־ 
8 Compactional Zone 2.528 2.214 1.142 2.371 ־ 
8 Whole specimen 1.489 1.404 1.061 1.446 0.97 
9 Whole specimen 1.065 1.052 1.013 1.058 1.31 
10 Whole specimen 1.626 1.157 1.405 1.391 1.81 

LSP01 Whole specimen 2.13 1.870 ־ ־ ־ 
LSP03 Whole specimen 1.05 0.590 ־ ־ ־ 

       

* L1 and L2 is linear fracture density in traverses perpendicular and parallel to load axis, 
respectively 

 

On the other hand, the preferred orientations of the cracks within the zones of 

relatively higher PL are sub-parallel to the load axis in the samples deformed beyond 

failure under increasing P after preconsolidation (#7) and under decreasing P (#6) 

(Figures 8 and 9). 
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Figure 8. Preferred orientation of microfractures in samples deformed in the 
transitional regime as a function of load path and magnitude of deformation. 
Orientations determined from petrographic sections cut through center of the specimen 
and parallel to the maximum principal compressive axis. Outer perimeters of the rose 
diagram are the same frequency, 30%, in all diagrams. Number of measurements is 
indicated.  
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Figure 9. Preferred orientation of microfractures in the compactional deformation zones 
and in surrounding host aggregate of the samples, which show evident localization, 
deformed in the transitional regime as a function of load path and magnitude of 
deformation. Orientations determined from petrographic sections cut through center of 
the specimen and parallel to the maximum principal compressive axis. Outer perimeters 
of the rose diagram are the same frequency, 30%, in all diagrams. Number of 
measurements is indicated.  
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3.1.2.   Microfracture Orientation Distribution 

The microfracture fabric of the sample deformed in the transitional regime 

generally shows a preferred orientation of microfracture, with cracks aligned parallel to 

the maximum compressive stress direction. Samples deformed through yield show the 

lowest preferred orientations, where the sample deformed under decreasing P (#9) 

displays the microfracture fabrics. The sample deformed under increasing P (#8) 

displays the strongest preferred orientation among the three samples deformed to failure 

in the transitional regime with different load paths. Samples deformed beyond failure, 

the load path of increasing P (#5) leads to the strongest preferred orientation of 

microcracks parallel to the maximum compressive axis. However, the other two load 

paths display similar, anisotropic fabrics as well. 

In general, the strongest microfracture anisotropy is seen in the localized 

compactional zones. The preferred orientations of the microfractures within localized 

compactional zones are most obvious for the samples loaded with increasing P after 

preconsolidation (#7) and with decreasing P (#6). The preferred orientation of the 

microfractures is almost perfectly parallel to the maximum principal stress axis.   

3.2.     Mechanical Results 

3.2.1.   Ductile Regime 

The mechanical response of samples deformed in the ductile regime is similar to 

each other overall, but there are important differences in behavior for the different load 
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paths incorporating preconsolidation and either increasing or decreasing P during 

differential loading.  In the granular aggregates tested, significant elastic and plastic 

strain develops during the isostatic stressing as the effective confining pressure is 

increased prior to differential loading.  During the increase in effective pressure, total 

volumetric strains of approximately 3.5 to 5% are achieved (Figure 10). Including the 

isostatic and differential loading portion of the tests, total volumetric strains of 5 and 6% 

are achieved.   

 

Figure 10. Effective mean stress, P, versus total (elastic & plastic) volumetric strain for 
samples loaded beyond failure in the ductile regime. Load paths shown are increasing 
mean stress (#1, blue curve), increasing mean stress after preconsolidation (#4, green 
curve), and decreasing mean stress (#3, red curve). Black dots show the initiation of 
differential loading. 

 

As expected for porous granular aggregates under isostatic stressing, the P versus 

total volumetric strain curves display concave upward shapes for both loading and 

unloading paths (Figure 10). The similar shapes of curves for loading and unloading 

suggest strain is dominantly, though not necessarily completely, poroelastic during these 
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stages of the tests.  Under differential loading the curves display concave downward 

shapes in plots of Q versus total axial strain, consistent with an increase in plastic strain 

with increase in Q (Figure 11). 

 

 

Figure 11. Differential stress, Q, versus total axial strain for samples loaded beyond 
failure in the ductile regime. Load paths shown are increasing mean stress (#1, blue 
curve), increasing mean stress after preconsolidation (#4, green curve), and decreasing 
mean stress (#3, red curve). 
 

Although the total volume strain and total axial strain at the onset of differential 

loading differ for the three load paths, the change in the axial strain for differential 

loading through yield is similar, approximately 1% axial strain, for all three (#1, #3 and 

#4) load paths (Table 4).  However, the volume strains during differential loading vary 

dramatically, from 0.9% for the increasing P (#1) load path, and -0.2% for the 

decreasing P (#3) load path (Table 4).  Furthermore, the partitioning between elastic and 

plastic strain is different for the three load paths. Additional detail in the accumulation 
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and partitioning of elastic and plastic strain can be obtained from the plots of P and Q 

versus plastic volume strain (Figure 12).  

Table 4. Strain differences from the beginning of differential loads to the 
failure stress (C*) for the samples deformed in the ductile regime. 

Triaxial Compression Load 

Path 
∆β (%) ∆βp (%) ∆βe (%) ∆ε (%) 

Increasing P (#1) +0.9 +0.5 +0.4 +1.05 

Increasing P after 
Preconsolidation (#4) 

+0.6 +0.25 +0.35 +0.90 

Decreasing P (#3) -0.2 +0.15 -0.35 +0.95 

 

 

Figure 12. Effective mean stress, P, versus plastic volumetric strain for samples loaded 
beyond failure in the ductile regime. Load paths shown are increasing mean stress (#1, 
blue curve), increasing mean stress after preconsolidation (#4, green curve), and 
decreasing mean stress (#3, red curve).  
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In the ductile regime, significant plastic strain accumulates during the initial 

isotropic loading at P greater than approximately 55 MPa and during creep under high-

magnitude isostatic stress in the preconsolidation portion of the increasing P test (#4) 

and before initiating differential loading in the decreasing P tests (#3) (Figure 12). 

Plastic strain also occurs during differential loading regardless of load path, where 

significant plastic strain begins to accumulate at differential stress of approximately 30 

MPa (Figure 13). For both increasing P load paths (#1, and #4), regardless of whether a 

preconsolidation stage is employed, plastic strain accumulates only during increasing Q. 

In contrast, for the decreasing P load path (#3), plastic strain accumulates during both 

increasing and decreasing Q (Figure 13).  The behaviors reflect the dependence of 

compactional strain on both P and Q in the ductile regime.   

 

Figure 13. Differential stress, Q, versus plastic volumetric strain for samples loaded 
beyond failure in the ductile regime. Load paths shown are increasing mean stress (#1, 
blue curve), increasing mean stress after preconsolidation (#4, green curve), and 
decreasing mean stress (#3, red curve). 
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All the samples deformed in ductile regime exhibit strain hardening after failure; 

however the slopes of the stress-strain curves show that the sample deformed under a 

decreasing P load path (#3) showed the greatest hardening after the failure, and the 

greatest apparent stiffness during the differential loading stage, relative to the other two 

samples deformed under increase P load paths (Figure 11).  

3.2.2.   Transitional Regime 

Although samples were deformed to two stages (i.e., through yield and beyond 

failure), the mechanical behavior is reproducible and therefore only the mechanical 

results of tests taken beyond failure are presented (Exp 5, 6, and 8).   

The mechanical response of samples deformed in the transitional regime is 

similar overall, but there are some important differences in behavior for the different 

load paths.  As was seen in the experiments in the ductile regime, significant elastic and 

plastic strain develops during the isostatic stressing as the effective confining pressure is 

increased prior to differential loading.  During the increase in effective pressure, total 

volumetric strains of approximately 1.8 to 4.2% are achieved prior to differential loading 

(Figure 14). Total volumetric strains between 4 and 6% are achieved including the 

isostatic and differential loading portion of the tests,.  The total volumetric strains are 

similar to those achieved in the ductile regime experiments due to the contribution of 

post failure compaction localization in the transitional regime. 
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Figure 14. Effective mean stress, P, versus total (elastic & plastic) volumetric strain for 
samples loaded beyond failure in the transitional regime. Load paths shown are 
increasing mean stress (#5, blue curve), increasing mean stress after preconsolidation 
(#7, green curve), and decreasing mean stress (#6, red curve). 
 

As expected for porous granular aggregates under isostatic stressing, the P versus 

total volumetric strain curves display concave upward shapes for both loading and 

unloading paths (Figure 14). The observed strain is dominantly, though not completely, 

poroelastic during these stages of the tests.  Under differential loading the curves display 

concave downward shapes in plots of Q versus total axial strain, consistent with an 

increase in plastic strain except for concave upward shaped of curves in the early stages 

of differential loading (increasing Q; Figure 15). 

The total volume strain and total axial strain at the onset of differential loading 

differ for the three load paths, and the change in the ε for the differential loading through 

yield also varies from approximately 0.9% to 2.4% , which contrasts with the behavior 

seen in the ductile regime experiments (Table 4). Likewise, the β’s during differential 
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loading through yield vary dramatically, from 1.9% for the increasing P, and -0.35% for 

the decreasing P load paths (Table 5). The partitioning between βe and βp is different for 

the three load paths. Additional detail in the accumulation and partitioning of βe and βp 

can be obtained from the plots of P and Q versus plastic volume strain (Figures 16 and 

17).  

 

Figure 15. Differential stress, Q, versus total axial strain for samples loaded beyond 
failure in the transitional regime. Load paths shown are increasing mean stress (#5, blue 
curve), increasing mean stress after preconsolidation (#7, green curve), and decreasing 
mean stress (#6, red curve). 
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Figure 16. Effective mean stress, P, plastic volumetric strain for samples loaded beyond 
failure in the transitional regime. Load paths shown are increasing mean stress (#5, blue 
curve), increasing mean stress after preconsolidation (#7, green curve), and decreasing 
mean stress (#6, red curve). 

 

 

Figure 17. Differential stress, Q, plastic volumetric strain for samples loaded beyond 
failure in the transitional regime. Load paths shown are increasing mean stress (#5, blue 
curve), increasing mean stress after preconsolidation (#7, green curve), and decreasing 
mean stress (#6, red curve). 
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Table 5. Strain differences from the beginning of differential loads to the  
failure stress (C*) for the samples deformed in the transitional regime. 

Triaxial Compression Load Path ∆β (%) ∆βp (%) ∆βe (%) ∆ε (%) 

Increasing P (#5) +1.9 +0.25 +1.65 +2.38 

Increasing P after 
Preconsolidation (#7) +1 +0.1 +0.9 +1.47 

Decreasing P (#6) -0.35 +0.03 -0.38 +0.88 

 

In the transitional regime, significant βp accumulates during creep under high-

magnitude isostatic stress in the preconsolidation portion of the increasing P test (#7) 

and before initiating differential loading in the decreasing P (#6) tests (Figure 16). 

However, the βp of the sample deformed under increasing P (#5), without 

preconsolidation is not significant prior to differential loading. During differential 

loading, significant βp begins to accumulate at a Q of approximately 40 MPa (Figure 17). 

The accumulation of βp during increasing Q prior to the failure is significant for only the 

sample deformed under increasing P with no preconsolidation (#5). For the load paths 

with a high magnitude initial pressurization (#6) and with a high magnitude 

preconsolidation (#7), βp significantly accumulates after the failure (Figures 16 and 17).  

To a lesser degree than that seen in the ductile regime, the sample deformed under 

decreasing P exhibits a significant βp during decreasing Q (Figures 16 and 17) reflecting 

a smaller dependence of compactional strain on both P and Q in the transitional regime. 

Samples deformed in the transitional regime exhibit little strain hardening after failure 

except for the increasing P load path without preconsolidation (#5). The greatest 
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apparent stiffness during the differential loading stage, relative to the other two samples, 

is seen in the decreasing P (#6) load path (Figure 15).  

All samples deformed in the transitional regime exhibit lower apparent stiffness 

than those deformed in ductile regime in analogous load paths. Also, the post-failure 

hardening is greater for the samples deformed in the ductile regime than the samples 

deformed in the transitional regime as generally expected.In both the transitional and 

ductile regimes, samples deformed with increasing P and no preconsolidation (#5)  show 

the greatest amount of volumetric strain during increasing Q prior to the failure (Table 4, 

5). Samples deformed with increasing P after preconsolidation show medium apparent 

stiffness, compared with the other two samples deformed beyond failure in the 

transitional regime, likely due to the denser packing configuration achieved during 

preconsolidation.   
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     4. DISCUSSION 

4.1. Subcritical Deformation Mechanisms and Fabric Development 

The failure envelope for loose granular sand, as defined by Karner et al. [2005a] 

and employed herein, identifies the critical stress conditions for macroscopic failure. In 

this case macroscopic failure is defined by a significant increase in the rate of plastic 

deformation with progressive increase in mean or deviatoric stress, whether it be in the 

dilatant, low P regime, or in the compactional, high P regime.  Such failure may be 

identified by a number of criteria, e.g., axial and volume plastic strain and rate of 

acoustic emissions, but in terms of micromechanism, it is distinguished by onset of 

pervasive distributed or localized grain fracture, crushing and rearrangement.  As found 

in previous work [e.g., Chester et al., 2004; Karner et al., 2005a] and demonstrated by 

the present experiments, yielding occurs at stress levels below that for macroscopic 

failure at the critical stress, (i.e., during progressive loading plastic strain accumulates at 

subcritical stress states), for both isostatic and differential stress conditions.   

The subcritical yielding in loose, granular, aggregates occurs by several different 

mechanisms during progressive increase in P and Q. Initially, at low stress levels, some 

compaction and shortening occurs by rigid body translation, rolling, and frictional 

sliding between intact grains [Borg et al., 1960; Lee and Farhoomand, 1967, p.85]. As 

the grains achieve a more efficient, dense packing arrangement, the grain movements 

diminish and the aggregate may achieve a metastable equilibrium configuration 

[Gallagher et al., 1974]. However, with continued loading, grain-to-grain contact stress 
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magnitudes increase and, for the most critically loaded contacts, become sufficient to 

induce intragranular fracture with associated separation and movement of particle 

fragments [Karner et al., 2003]. Intragranular fracture can occur in an unstable fashion, 

or grow slowly through subcritical, chemically assisted crack propagation [e.g., Chester 

et al., 2004]. During constant, unchanging subcritical isostatic or differential stress 

conditions, as in a creep test, plastic strains accumulate with time through subcritical 

fracture processes. This is demonstrated in the present work by the accumulation of 

strain during the preconsolidation portion of some of the load paths where plastic strain 

increases while P is constant (e.g., Figures 12 and 16). 

The orientations of the grain scale microfractures are related to the orientation 

and relative magnitudes of the applied macroscopic stresses [Gallagher et. al., 1974]. At 

various mean stress levels, when differential stress is large, intragranular cracks 

preferentially form parallel to maximum compressive stress axis [e.g., Menendez et al., 

1996].  In contrast, at elevated mean stress with low differential stress, intragranular 

fracture orientations are expected to display less preferred orientation, and fracture 

fabrics are likely random under isostatic loading.  Although samples deformed only by 

isostatic loading were not produced in this study, fracture orientations were determined 

in samples from previous consolidation experiments on sand aggregates. Chester et al. 

[2004] describe deformation of the same type of sand (St Peter Sand) aggregates 

subjected to creep compaction at effective pressures (Pe) of 34.5 and 70 MPa at 

temperatures of 22 °C. The durations of the creep tests were of the order of 2 x 10³ s and 

plastic strain and fracturing occurred during creep.  These experiments are quite 
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analogous to the isostatic loading portions of the present experiments, and thus can 

provide information on the fracture fabric in samples prior to differential loading. 

Measurements of fracture orientation from photomicrographs of deformed samples of 

the study of Chester et al. [2004], are consistent with relatively random fabrics as 

expected for isotropic stressing (Figure 18).  

The progressive change in fracture fabric documented here, from relatively 

random orientations at early stages of isostatic loading to strongly preferred orientations 

after macroscopic failure (Figure 18) is consistent with models in which fracture fabric 

strongly correlates with the macroscopic stress conditions at the time of fracture 

formation.  Thus, fracture fabrics produced in the transitional regime from increasing P 

load path through failure and those produced during the preconsolidation stage of other 

load paths (prior to differential loading) will be much different (Figure 16) even though 

fracture densities are similar (e.g., samples 5 and 8 versus sample 9, Table 3) for these 

two loading conditions.  
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Figure 18. Evolution of preferred orientation of microfractures in samples deformed 
under isotropic load, deformed through yield, and deformed beyond failure in the 
transitional regime for different load paths and magnitudes of deformation. LSP03 and 
LSP01 samples are from the study by Chester et al [2005]. Orientations determined 
from petrographic sections cut through center of the specimen and perpendicular to the 
maximum principal compressive axis (see text). Outer perimeters of the rose diagram 
are the same frequency, 30%, in all diagrams. The number of measurements is indicated 
for each.  
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The steps taken to produce the sand aggregates, including the ultrasonic 

vibration, produced samples with average starting porosities within about 5% of the 

average porosity of all samples (about 34%, Table 2).  However, it is likely that the local 

porosity varies much more within the samples where packing arrangements could vary 

between cubic type with porosity up to 47% and rhombohedral type packing with 

porosity down to 26%. We consider that the distribution of the initial packing 

configuration types throughout the samples is a critical factor for the magnitude of grain-

to-grain contact stresses and thus the location of local porosity collapse and volume 

strain concentration. In the sand aggregate tests, the high porosity regions should 

consolidate first. Thus the plastic volume strain achieved during isostatic loading (e.g., 

the precompaction stage) will lead to more homogeneous porosity and packing 

distributions overall and thus will tend to reduce the initial heterogeneity of samples. At 

the beginning of the differential loading stage of each load path tested, the sample 

subjected to the increasing P load path should have the greatest variation in local 

packing configuration and porosity during differential loading. This could help explain 

the variation in the degree of localized deformation observed in the two samples 

subjected to the increasing P load path, and the fact that the sample loaded through yield 

has a greater degree of localization than the sample deformed past macroscopic failure 

(Figure 7).  
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4.2.   Load Path Effects   

The stress state at failure of a porous granular material has a profound effect on 

the macroscopic mode of failure.  At high mean stress in the ductile compactional 

deformation regime, failure mode is generally distributed, whereas at low mean stress in 

the dilational regime, deformation is generally localized in the form of deformation 

bands [e.g., Wong et al., 1997].  However, there is some debate concerning the effect of 

load path at subcritical stresses on macroscopic failure.  

Issen and Challa [2003, 2008] analyze the effect of the intermediate principal 

stress, ζ2, on strain localization and mode of deformation in the transitional regime, 

using a bifurcation approach [Rudnicki and Rice, 1975], to predict band formation for 

two different constitutive models. They conclude that the orientation and type 

(compactional or dilational) of deformation bands vary significantly with change in ζ2. 

Cases of ζ2 close in magnitude to the maximum principal compressive stress favors 

dilational bands, and the cases of ζ2 close in magnitude to the minimum principal 

compressive stress favor compactional bands. Thus, for triaxial deformation 

experiments, triaxial compression is expected to favor compactional bands and triaxial 

extension is expected to favor dilational bands, provided the load path intersects the 

failure envelope in an appropriate failure regime.  This would suggest that load path may 

be particularly important to mode of failure in the transitional regime where both 

localization and compactional deformation is possible. Experimental support for these 

conclusions is provided by standard triaxial compression and extension experiments that 
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intersect the failure envelope at the same stress conditions, e.g., Besuelle et al. [2000, 

2003]. However, direct testing of load path effects are relatively rare. 

Load paths in Q-P stress space may be denoted by the ratio of change in Q to 

change in P, α = ∆Q/∆P. For standard triaxial testing, in which Pc is held constant during 

differential loading, the standard triaxial (axisymmetric) compression, ASC, load path is 

defined as αASC= 3; where the increasing axial stress, ζ1, is more compressive than the 

constant confining pressure, Pc=ζ2=ζ3. The standard axisymmetric extension, ASE, load 

path is defined by αASE = -3; where the decreasing axial stress, ζ3, is always less 

compressive than the constant confining pressure, Pc=ζ1=ζ2. A variety of nonstandard 

triaxial load paths are possible by changing Pc during compression or extension, as done 

by Zhu et al. [1997].  

Zhu et al. [1997] employed a nontraditional axisymmetric extension load path 

where αNon-ASE=1.5 and the confining pressure, Pc=ζ1=ζ2, was increased while the axial 

stress, ζ3, was held constant. The triaxial load path with increasing P employed in the 

present study also has α equal to 1.5, but in this case the experiments are conducted in 

triaxial compression, (i.e. Pc=ζ2=ζ3), and the Pc is synchronously increased at 4 times 

that of the increase in the axial stress, (i.e. dζ1=4ζ3). Thus the ratio of α = ∆Q/∆P for the 

ASE tests of Zhu et al. [1997] and the ASC increasing P tests are not the same because 

ζ2 differs. 

Zhu et al. [1997] employed both standard triaxial compression load paths and the 

non-standard ASE load path described above to investigate possible load path effects on 
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the deformation, permeability, and failure mode of quartz-rich sandstones in the ductile, 

compactional regime. They conclude that the critical stress values for failure in the non-

standard ASE and standard ASC tests are consistent, suggesting that critical 

compactional strength, C*, is not sensitive to load path. The experiments on the sand 

aggregates, reported here represent a similar deformation regime as the experiments of 

Zhu et al. [1997]. The results for critical strength for failure of sand aggregates are 

approximately the same for the three different load paths.  In particular, the differential 

stress versus plastic volumetric strain plots for the load paths of increasing P with 

preconsolidation and decreasing P are very similar (Figure 14). However, results of tests 

at increasing P (without preconsolidation, #5) are slightly different from those of the 

other two tests, displaying a lower yield stress, somewhat more plastic yielding prior to 

macroscopic failure, and slightly lower failure strength (Figure 13).  

The experiments on the sand aggregates in the transitional regime indicate that 

the failure strength is fairly similar for each load path.  The failure strength indicated in 

the P and Q versus plastic volumetric strain plots is essentially the same for the load 

paths of increasing P with preconsolidation and decreasing P.  In addition, post failure 

strengths are similar for both these load paths.  Results of the test with increasing P 

(without preconsolidation) exhibit similar failure strength, but stress-strain data show 

greater work hardening and ultimately greater post-failure strength, compared with 

results of the other two load paths.  For both the ductile and transitional regimes, the 

mechanical response of sand aggregates at increasing P (without a preconsolidation 
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stage) is most dissimilar from the others. The behavior of samples subjected to 

increasing P (with preconsolidation) and decreasing P are generally the same.   

The microstructural evolution and production of localized zones of compaction 

in the transitional regime appear to be similar for load paths of increasing P (with 

preconsolidation) and decreasing P.  Microstructures of the samples that experienced 

increasing P without preconsolidation stage are different from microfractures of the 

other samples.  Thus, on the basis of both mechanical response and microstructure, it 

appears that load path has relatively small effect on deformation response.  However, the 

initial stage of consolidation at relatively high isostatic stress at subcritical stresses may 

have a significant effect of deformation response.  

Karner et.al, [2005] showed porosity evolution contours plot in the Q-P space 

using the results of standard ASC tests on the same sand employed herein. The contours 

generally are aligned parallel to differential stress, Q, axis, i.e., demonstrate a strong P 

dependence. A similarly constructed contour plots based on the mechanical data of the 

increasing P-ASC load path employed within present study is quite similar to those 

presented by Karner et.al, [2005], whereas the contours pattern based on the mechanical 

data of the decreasing P-ASC load path tests employed within present study show a 

different P and Q dependence (Figures 19, 20 and 21). 
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Figure 19. Porosity evolution contours plotted depending on mechanical results of the 
standard ASC tests on St. Peter Sand samples employed by Karner et.al. [2005].  
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Figure 20. Porosity evolution contours plotted in the Q-P space depending on 
mechanical results of increasing P-ASC load path tests employed in the present study. 

 

 

Figure 21. Porosity evolution contours plotted in the Q-P space depending on 
mechanical results of decreasing P-ASC load path tests employed in the present study. 
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4.3.   Comparison with Natural Examples of Compaction Bands 

 Lenticular and thin (a few grain thick) geometric features of the localized 

compactional deformation bands produced in the present study may be likened to the 

crooked compaction bands encountered in nature as described by Mollema and 

Antonellini [1996]. However, the small sample size and the incohesive nature of our 

samples compared with natural buried sediments could influence the localization and 

extent of the compactional deformation bands within experiements. Also, estimating 

possible extent of the band plane-parallel elongation of the compaction bands in our 

samples is difficult due to the limited scale of our samples. 
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5. SUMMARY AND CONCLUSIONS 

Macroscopic failure of well-sorted, porous, quartz sand aggregates under non-

standard triaxial compression load paths occurs at stress states consistent with the critical 

stress envelope for failure determined through standard triaxial compression loading. 

These results indicate that, to first order, critical stress for macroscopic failure has little 

dependence on load path.   

In contrast to the load path effects, preconsolidation of the sand aggregates by 

isotropic loading at levels below the critical stress for macroscopic failure has a 

significant effect on mechanical behavior and character of deformation at failure.  For 

similar differential load paths, preconsolidation at subcritical isotopic stress favors less 

yielding prior to failure and less hardening post failure for both the transitional and 

ductile deformation regimes.   

In the transitional deformation regime, preconsolidation favors the formation of 

localized compactional deformation zones oriented perpendicular to the maximum 

principal compression direction by fracture, grain crushing and porosity collapse.   

Microfracture fabrics generally reflect the stress conditions at the time of plastic 

strain where isotopic stress favors random fabrics and differential stress favors 

anisotropic fabrics with a preferred orientation of microfractures parallel to the 

maximum compressive stress direction.  Microfracture orientation within compactional 

deformation bands display strong preferred orientation parallel to the maximum 

principal compression direction.   
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