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ABSTRACT 

 

Characterization of PP2A Regulatory B Subunits in Fusarium verticillioides. 

(May 2010)  

Joonhee Shin, B.S., Korea Advanced Institute of Science and Technology  

Chair of Advisory Committee: Dr. Won-Bo Shim 

 

 Fusarium verticillioides is a pathogen of maize causing ear rot and stalk rot. The 

fungus also produces fumonisins, a group of mycotoxins linked to disorders in animals 

and humans.  A cluster of genes, designated FUM genes, plays a key role in the 

synthesis of fumonisins.  However, our understanding of the regulatory mechanism of 

fumonisin biosynthesis is limited.  It was previously demonstrated that Cpp1, a protein 

phosphatase type 2A (PP2A) catalytic subunit, negatively regulates fumonisin 

production and is involved in cell shape maintenance. Typically, a structural A subunit, a 

catalytic C subunit, and a regulatory B subunit form PP2A heterotrimer complex. 

Significantly, there are two PP2A regulatory subunits in F. verticillioides genome, Ppr1 

and Ppr2, which are homologous to Saccharomyces cerevisiae Cdc55 and Rts1, 

respectively. Based on preliminary data, I hypothesized that Ppr1 and Ppr2 are 

independently involved in the regulation of fumonisin biosynthesis and/or cell 

development, and to test this hypothesis I generated gene-deletion mutants of PPR1 and 

PPR2. The ppr1 deletion strain (∆ppr1) resulted in drastic growth defect, but with 

increased microconidia production. The ppr2 deletion mutant strain (∆ppr2) showed 



 iv 

elevated fumonisin production similar to the ∆cpp1 strain. Germinating ∆ppr1 conidia 

formed abnormally swollen cells with central septation. ∆ppr2 showed early hyphal 

branching during conidia germination. Results from this study suggest that two PP2A 

regulatory subunits in F. verticillioides carry out unique roles in regulating fumonisin 

biosynthesis and fungal development. 
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NOMENCLATURE 

 

PP2A Protein Phosphatase type 2A 

FB1 Fumonisin B1 

PDA Potato Dextrose Agar 

PDB Potato Dextrose Broth 

YEPD Yeast Extract Peptone Dextrose 

kb kilo base pair 

ABC1 An example of how wild-type genes are written in the thesis 

abc1 An example of how mutated genes are written in the thesis 

Δabc1 An example of how gene-deletion mutant strains are written in the 

 thesis: ∆ symbolizes ‘deletion’ 

Abc1 An example of how wild-type proteins are written in the thesis: 

first letter is uppercase, second and third letters are lowercase, and 

a number. 
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1. INTRODUCTION 

 

1.1 Fusarium verticillioides and maize diseases: Significance of the problem 

 

Fusarium verticillioides (Sacc.) Nirenburg (teleomorph Gibberella moniliformis 

Wineland) is a fungal pathogen of maize which is found worldwide (Munkvold and 

Desjardins, 1997; Species Descriptions, 2007). F. verticillioides is known to cause maize 

stalk rot and ear rot (Munkvold and Desjardins, 1997; Sparks, 2009; Species 

Descriptions, 2007), but there are also reports demonstrating that the fungus is 

associated with corn seedling blight and root rot (Bacon et al., 1994; Soonthornpoct et 

al., 2001). These diseases will ultimately result in yield loss and in lower grain quality 

(El-Meleigi et al., 1983; Sparks, 2009). Furthermore, F. verticillioides is considered an 

important pathogen of maize because the fungus produces mycotoxins, notably 

fumonisins, fusaric acids, and fusarins, which are toxic to livestocks and humans 

(Marasas, 2001; McKean et al., 2006; Rheeder et al., 1992). Among these mycotoxins, 

fumonisins have been under the spotlight in recent years due to their high toxicity. F. 

verticillioides is also recognized as a systemic endophyte in pre-harvest maize and is 

known to compete on maize ears with Aspergillus flavus, the fungus responsible for 

aflatoxin contamination (Wicklow et al., 1988). 

Kernel rot and ear rot often occur on individual kernels or group of kernels. The  

__________ 
This thesis follows the style of Fungal Genetics and Biology. 
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occurrence of F. verticillioides increases when kernels become mature near the end of 

the growing season. Multiple factors, such as drought stress or host resistance, may 

contribute to incidence and severity of corn diseases caused by F. verticillioides 

(Chotena et al., 1980; Headrick and Pataky, 1989). Another difficulty associated with 

managing Fusarium kernel/ear rot and mycotoxin in maize is that F. verticillioides-

infected corn may be symptomless (Vincelli and Parker, 2002). Thus, developing and 

implementing appropriate postharvest management is critical to minimizing the 

occurrence of ear rot and fumonisin contamination in stored maize.  

 

1.2 F. verticillioides reproduction and vegetative growth 

 

F. verticillioides is an ascomycetous filamentous fungus with asexual and sexual 

means of reproduction (Species Descriptions, 2007). The septated sexual spores, 

ascospores (Fig. 1A), are generally oval to diamond-shaped, two-celled that are 

produced in perithecia (Fig. 1B), sexual fruiting bodies that develops when two F. 

veticillioides of opposite mating types converge. Two types of asexual conidia are 

produced in F. verticillioides: microconidia and macroconidia. Microconidia (Fig. 1C) 

are small, single, non-septated and oval to club shaped spores. When aerial mycelia are 

formed, microconidia often form chains or small aggregates on monophialides (Fig. 1E 

and F), specialized structures on hyphae. Macroconidia (Fig. 1D), produced on slender 

phialides, are long and canoe-shaped cells, and are generally curved and tapered to a 

point with 3 to 5 septa. Typically, F. verticillioides macroconidia are difficult to generate 
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under laboratory conditions whereas microconidia are easy to generate on a variety of 

synthetic media. 

 

 

 

 

Figure 1. Sexual and asexual reproduction of F. verticillioides. (A) ascospores, 
bar=10μm; (B) perithecia, bar=500 μm; (C) microconidia, bar=25 μm; (D) 
macroconidia, bar=25 μm; (E -F) microconidial chains formed on monophialides, 
bar=50 μm. B-D were obtained from Fusarium Laboratory Manual (Species 
Descriptions, 2007). 
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In early developmental stages, F. verticillioides produces white mycelia on PDA, 

a commonly used laboratory medium for filamentous fungi, but violet pigmentation can  

often be observed in aged cultures (Species Descriptions, 2007). Significantly, 

pigmentation varies with media. On V8 agar, which is another conventional medium 

used for Fusarium species, F. verticillioides wild-type strain generates abundant aerial 

mycelia, but not extensive pigmentation. However, we can often observe a number of 

blue or blue-black sclerotia under the mycelia mat on agar media. 

 

1.3 Fumonisins: A key group of mycotoxins produced by F. verticillioides 

 

As described earlier, F. verticillioides produces a variety of secondary 

metabolites, namely mycotoxins. Mycotoxins are toxins produced by fungi that have 

detrimental health effects on humans and animals. One of the key mycotoxins produced 

by F. verticillioides is fumonisins. Fumonisins are a group of mycotoxins produced 

primarily by F. verticillioides and F. proliferatum in maize (Frisvad et al., 2006). 

Fumonisins are polyketide-derived mycotoxins which are structurally similar to 

sphingolipid intermediates (Wang et al., 1991). Fumonisins are known to inhibit 

ceramide synthase resulting in disruption of sphingolipid metabolism (Marasas et al., 

2004). This can lead to various cellular malfunctions resulting in defective growth and in 

the blocking of cell-to-cell communications. Fumonisins are produced in maize kernels 

or maize-based products, and when consumed by humans or animals can cause harmful 

health effects. Equine leukoencephalomalacia (ELEM) is a well-known neurotoxic 
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disease in horses, donkeys, or mules caused by fumonisins. Numerous cases of ELEM 

were reported in the corn-growing regions in the United States in the early 20th century, 

and it was later determined that ELEM was directly linked to fumonisin-contaminated 

feeds (Marasas et al., 1984). Fumonisins are also associated with liver damage in pigs 

and rodents, abnormal development of bone in poultry, and neural tube defects in 

humans. Moreover, the link between fumonisins and human cancer has been intensively 

studied since the reports describing the association of human esophageal cancer to 

fumonisin-contaminated corn (Marasas et al., 2004; Rheeder et al., 1992). 

F. verticillioides produces several types of fumonisins including fumonisins B1, 

B2, B3, and B4 (FB1, FB2, FB3, and FB4 respectively) (Munkvold and Desjardins, 1997). 

These fumonisins share a 19 or 20 carbon backbone with an amine, one to three 

hydroxyl, two methyl, and two tricarboxylic acid groups attached to the backbone (Fig. 

2) (Munkvold and Desjardins, 1997). FB1 is the major form of fumonisin found in 

nature, and it contains two hydroxyl groups at the C-5 and C-10 positions. The genes 

encoding fumonisin B1 are clustered, which is a similar genetic mechanism when 

compared to other mycotoxins and secondary metabolites, such as aflatoxin, paxilline, 

and trichothecenes (Proctor et al., 2003). To date, we know the FUM gene cluster 

contains a series of fumonisin biosynthetic (FUM) genes in a 46-kb region on 

chromosome 1 (Brown et al., 2007). Proctor and colleagues (2003) were able to 

demonstrate that at least 15 genes in the FUM cluster are co-expressed. Among those 

genes, expression of FUM1, encoding a polyketide synthase (PKS), is critical to FB1 
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synthesis. Fum1 PKS belongs to one of 15 or more PKSs in F. verticillioides (Brown et 

al., 2008). Other genes 

 

 

 

 

 

 

 

 

 

Figure 2. Chemical structure of B-series fumonisins (Proctor et al., 2003). 
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 are predicted to be involved in the modification of the linear polyketide backbone into 

fumonisins (Proctor et al., 2003). However, we still do not have a clear understanding of 

how FB1 biosynthesis is regulated in F. verticillioides, particularly how ambient 

nutritional conditions and host environment impact genetic regulation of FUM genes. 

 

1.4 Regulation of fumonisin biosynthesis 

 

To date, we know the fungus can produce fumonisins under certain 

environmental conditions, such as limited nitrogen, acidic pH, and select carbon sources 

(Bluhm and Woloshuk, 2005; Keller et al., 1997; Shim et al., 2003). Nitrogen limitation 

is known to affect FB1 biosynthesis in a positive manner while higher concentrations of 

ammonium in synthetic media actually can repress FB1 synthesis in F. verticillioides 

(Shim and Woloshuk, 1999). Published reports also indicate that low pH is a prerequisite 

for fumonisin biosynthesis (Keller et al., 1997). The optimal pH favoring FB1 production 

turned out to be between pH 3.0 to 4.0 (Keller et al., 1997). In addition to these 

conditions, it seems biochemical changes inside corn kernels that occur during the 

development and maturation process have impact on FB1 production: the fungus favors 

corn kernels that are in the latter stages of development for FB1 production (Warfield 

and Gilchrist, 1999). Significantly, Blum and Woloshuck (2005) discovered that among 

the components of mature corn kernels, amylopectin and dextrin, the product of 

amylopectin hydrolysis, were key factors triggering FB1 production when compared to 

other carbon sources.  
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We also know a number of genes identified as putative FB1 regulatory genes. 

FCC1, which encodes a C-type cyclin in F. verticillioides was identified as the first 

regulatory gene associated with fumonisin biosynthesis (Shim and Woloshuk, 2001). 

FUM1 expression was abolished and FB1 was not detected when an FCC1 knockout 

mutant was tested for FB1 production. In addition, drastic reduction in asexual 

conidiation was observed in the mutant strain on corn kernels and defined liquid culture, 

suggesting that FCC1 plays a role in FB1 biosynthesis and asexual development. 

Subsequently, Bluhm and Woloshuk (2006) isolated FCK1, encoding a C-type cyclin 

dependent kinase, and demonstrated that the protein physically interacts with Fcc1 

(Bluhm and Woloshuk, 2006). Deletion of FCK1 resulted in phenotypes very similar to 

fcc1 mutant suggesting that Fcc1 and Fck1 form the cyclin-cyclin dependent kinase 

complex that regulate FB1 biosynthesis (Bluhm and Woloshuk, 2006).  Interestingly, an 

Fck1 homolog in budding yeast controls cellular functions in response to nitrogen 

limitation, and thus we can hypothesize that the Fcc1/Fck1 complex is involved in 

nitrogen repression regulatory pathways which in turn can impact FUM gene expression.  

ZFR1, which encodes a transcription factor with a Zn(II)2Cys6 DNA-binding 

motif , is another notable regulatory gene involved in fumonisin biosynthesis (Flaherty 

and Woloshuk, 2004). Like FCC1, ZFR1 deletion resulted in severe reduction of FB1 

production. Both ZFR1and  FCC1 are required to FUM gene activation since 

constitutively expressed ZFR1 does not restore FUM1 expression in fcc1deletion strain 

(Flaherty and Woloshuk, 2004). Another important regulatory gene is PAC1, a gene 

encoding transcriptional regulator responsive to pH (Flaherty et al., 2003). As described 
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earlier, acidic pH is an important factor affecting fumonisin biosynthesis. However, in 

the pac1 deletion mutant fumonisin biosynthesis was up-regulated in alkaline pH, which 

is a condition unfavorable to FB1 biosynthesis in the wild type, suggesting that PAC1 

serves as a regulator of fumonisin biosynthesis (Flaherty et al., 2003). In addition to 

these major regulators, several additional genes, such as GBP1 (Sagaram et al., 2006a), 

GBB1 (Sagaram and Shim, 2007), FUM21 (Brown et al., 2007), recently identified as a 

regulator of fumonisin biosynthesis. However, our understanding of fumonisin 

regulation is still limited, and it is reasonable to presume that there are many more, and 

complex, molecular genetic mechanisms yet to be determined (Sagaram et al., 2006b).  

 

1.5 Role of protein phosphatase 2A (PP2A) in F. verticillioides 

 

CPP1, which encodes the catalytic subunit of protein phosphatase type 2 A 

(PP2A) in F. verticillioides, was studied in an effort to understand the role of PP2A 

complex in the regulation of fumonisin biosynthesis. One of the key reasons that CPP1 

was chosen for molecular characterization was the fact that CPP1 expression was up 

regulated in fumonisin suppression (Pirttilä et al., 2004).  When Choi and Shim (2008b) 

investigated the phenotype of cpp1 deletion mutant, they found that the mutant produced 

significantly higher level of FB1 on corn. This result indicated that CPP1 is a negative 

regulator of FB1 biosynthesis. Furthermore, other possible functions of PP2A in F. 

verticillioides were suggested based on cpp1 mutant phenotypes, such as macroconidia 
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production and multinucleated swollen cells as well as growth defects (Choi and Shim, 

2008b). 

PP2A is one of the major Ser/Thr protein phosphatase families with a broad 

substrate specificity and diverse cellular functions that are conserved throughout 

eukaryotes (Goldberg, 1999; Mumby and Walter, 1993). Since phosphatases are 

responsible for reversible dephosphorylation of proteins, PP2A plays an essential for 

role in signal transduction pathways associated with a wide range of cellular processes 

(Mayer-Jaekel and Hemmings, 1994). Particularly,  PP2A is known to be involved in 

MAPK (mitogen-activated protein kinase) pathways (Janssens and Goris, 2001). PP2A 

is a heterotrimer which consists of a scaffolding A subunit, a catalytic C subunit, and a 

regulatory B subunit (Lechward et al., 2001; Mayer-Jaekel and Hemmings, 1994) (Fig. 

3). Generally, A and C subunits, which are structurally conserved, form a stable complex 

(AC dimer) while the regulatory B subunit binds to this complex transiently to form 

PP2A heterotrimer (Fig. 4). Since studies in PP2A subunits in yeast and mammalian 

systems have shown evidence that the heterotrimeric PP2A forms in certain 

developmental stages (Goldberg, 1999; Virshup, 2000), the role of each subunit has been 

investigated intensively.  

In Sacharromyces cerevisiae, there are two PP2A catalytic subunits, encoded by 

PPH21 and PPH22, which perform redundant functions (Sneddon et al., 1990). 

Disrupting both genes resulted in a very small colony with a low survival rate. Deletion 

of a third related gene, PPH3, in the double-deletion mutant was determined to be lethal 

(Ronne et al., 1991). Double deletion of two PP2A genes in Schizosaccharomyces 
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pombe, fission yeast, resulted in lethality (Kinoshita et al., 1990). In Neurospora crassa, 

disturbing the activity of PP2A catalytic subunit by silencing gene expression or by 

pharmacological inhibition resulted in reduction of hyphal growth and abnormal hyphal 

tip formation (Yatzkan et al., 1998) . 

 

 

 

 

 

Figure 3. Structure of heterotrimeric PP2A. Red: a scaffolding A subunit, Blue: a 
catalytic C subunit, Yellow: a regulatory subunit. This image was obtained from Protein 
Bank Database Japan (Fujita). 
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Figure 4. Proposed working model of heterotrimer PP2A holoenzyme. A: scaffolding 
subunit, B: regulatory subunit, C: catalytic subunit, S: substrate, P: phosphate 
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1.6 Role of PP2A regulatory B subunits in F. verticillioides 

 

As described earlier, PP2A functions as a heterotrimer. Regulatory subunits lead 

the holoenzyme to specific substrates while the catalytic subunit takes action on the 

substrate. Therefore, it is reasonable to question how the regulatory subunits perform 

specific functions involved in fumonisin biosynthesis and other cellular processes in F. 

verticillioides. There are several groups of regulatory B subunits that do not share 

structural similarity (Janssens and Goris, 2001). But thanks to this diversity in regulatory 

B subunits, PP2A heterotrimer can perhaps show phosphatase activity with specific 

substrates (Virshup, 2000; Xu et al., 2006). In mammalian system, four major groups of 

PP2A regulatory subunits, which are designated B, B’, B”, and B”’, are recognized 

(Lechward et al., 2001; Van Kanegan et al., 2005). In S. cerevisiae, two regulatory 

subunits of PP2A were identified: CDC 55 encoding the regulatory B subunit of 55kDa 

(Healy et al., 1991) and RTS1 encoding the regulatory B’ subunit of 53 to 74kDa 

(McCright and Virshup, 1995; Shu et al., 1997).  Gene deletion mutant strains of cdc55 

and rts1 exhibited cold sensitivity and abnormal bud formation. What is more intriguing 

is that Cdc55p and Rts1p showed differential localization, indicating that different 

regulatory subunits could regulate specific PP2A holoenzyme functions by working with 

proteins located in different cellular organelles (Gentry et al., 2005). Two different 

regulatory subunits were also identified in S. pombe. When the gene encoding the PP2A 

regulatory B subunit pab1+ was deleted, the mutant showed  multiple abnormalities 

including increased temperature sensitivity, growth defect, and abnormal cytokinesis and 
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reproduction (Kinoshita et al., 1996). In addition, two genes encoding PP2A regulatory 

B’ subunits in S. pombe were also identified and determined to play roles in mitotic cell 

division and interaction with calcinuerin (Tanabe et al., 2001).  

One of the PP2A regulatory subunits in filamentous fungi was also characterized. 

PP2A regulatory subunit B in N. crassa, encoded by RGB-1, plays a role in hyphal 

growth and conidiation, which are essential for survival in filamentous fungi (Yatzkan 

and Yarden, 1999). PP2A regulatory subunit was also required for normal hyphal growth 

in Sclerotinia sclerotiorum; a study demonstrated that the PP2A regulatory subunit 

played an important role in sclerotial development and pathogenesis of S. sclerotiorum 

(Erental et al., 2007). However, once again we have very limited understanding of PP2A 

regulatory subunits in filamentous fungi and F. verticillioides is no exception. 

Two regulatory subunits, which are designated as PPR1 and PPR2 (probable protein 

phosphatase regulatory subunit 1 and 2) were identified in the F. verticillioides genome 

database. In this study, I hypothesize that these two regulatory subunits in F. 

verticillioides play different cellular roles. To test the hypothesis, I generated gene-

deletion mutants of PPR1 and PPR2, designated ∆ppr1strain and ∆ppr2 strain, 

respectively, and investigated FB1 production, conidiation, hyphal growth and cell 

morphology in ∆ppr1 and ∆ppr2. 
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2. MATERIALS AND METHODS 

 

2.1 Fungal strain and culture media, conidiation, and growth assay 

 

 The wild-type F. verticillioides strain 7600 (also designated M-3125, Fungal 

Genetics Stock Center, Kansas City, KS) was stored in 30% glycerol at -80˚C. Strain 

7598 (also designated m-3120) was used as the opposite mating type of strain 7600 in 

sexual cross experiment. F. verticillioides mutant strain SF41 (Choi and Shim, 2008a) 

which is a FvKU70 knockout strain was used for transformation of PPR2 deletion. 

Conidial suspensions for inoculum were produced by growing the fungus on V8 juice 

agar (200ml/L V8 juice, 3g/L CaCO3, and 20g/L agar) at 25̊ C.  

  For genomic DNA extraction, mycelia samples were prepared by growing fungal 

strains in 100ml of YEPD medium (Difco, Sparks, MD) in a 250ml glass flask on a 

rotary shaker (125 rpm). For RNA extraction, fungal strains were inoculated in YEPD 

medium for 5 days, and the mycelia were harvested though filter paper (90mm Ø, 

Whatman). Subsequently, collected mycelia samples (0.5g) were inoculated into defined 

media (DM) ( 1g/L NH4H2PO4 , 3g/L KH2PO4, 2g/L MgSO4·7H2O, 5g/L NaCl, and 

40g/L Sucrose), which is known to support FB1 production (Shim and Woloshuk, 1999).  

 For conidiation analysis, we prepared fungal strains grown on V8 agar medium 

(5mm diameter) and inoculated these on KCl agar plates (6g/L KCl and 15g/L agar). 

After 7 days, the conidia were harvested in 0.1% Triton X-100, and counted by using a 
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haemocytometer. The radius which mycelia expanded on the plate was measured to 

calculate the area (mm2) where each strain grew after 7 days. 

 For growth assay, V8 agar blocks (5mm diameter) were inoculated on the center 

of PDA, V8 agar, and DM agar plates. The radius (mm) of expanding mycelia on plate 

was measured from day 4 to 7 with three technical replications for each strain. 

 

2.2 F. verticillioides transformation 

  

 F. verticillioides protoplasts were generated following the protocol described by 

Shim and Woloshuk (2001) with modifications. Conidia (108) of wild type or SF41 

mutant strain were grown in YEPD liquid media for 14 to 18 h prior to collecting 

mycelia. Protoplasts were prepared by suspending mycelium (1 g wet weight) in an 

enzyme solution (20 ml) containing lysing enzyme (10mg/ml) (Sigma, St Louis, MO), β-

glucuronidase (5,200 U/ml) (Sigma), 10 mM NaH2PO4 (pH 5.8), 20 mM CaCl2., and 1.2 

M KCl. A gene disruption construct (10 μg) harboring a selectable marker, hygromycin 

B phosphotransferase (HPH) gene or geneticin resistance gene (GEN), was added to the 

protoplasts (100 μl) (Flaherty et al., 2003; Shim and Woloshuk, 2001). Transformation 

was performed with the aid of 40% polyethylene glycol 4000 (Sigma), and the 

protoplasts were regenerated in Fusarium regeneration agar medium, FRA, containing 1 

M sucrose, 0.02% yeast extract (Difco), and 1% agar. Hygromycin B (100 μg/ml) 

(Calbiochem, La Jolla, CA) (Shim and Woloshuk, 2001) or Geneticin (150 μg/ml) 

(G418 sulfate, Gllgro®) (Sagaram et al., 2006a). Colonies that grow on the regeneration 
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medium amended with appropriate antibiotic were selected 3 to 5 days of incubation at 

25°C. 

 

 

 

Table 1.  
Primers used in this study. 

 

  

Primer Primer sequence (5' → 3')
PPR1-5F AAA CTG TCT AGG CTG TCC TAT CCC
PPR1-5R GCC GTC GTT TTA CAA GAT GAT GGA AGC TAC AAC GGC A
PPR1-3F CAT AGC TGT TTC CTG ATG TGG CCG TTG AAG AGA CTG A
PPR1-3R GCC GAT TTA TTG GTG TTG CCC TTG
PPR1-probF GAC CAT ACC GGA AAC TAT CTC GCT
PPR1-probR GCT CGT GGA TCG GTA TCG TCT TTA
PPR1-scrF CAT AAT GGC CTG TTA GTG AGG CTG
PPR1-scrR CGT ATA TGC TCC GCA TTG GTC TTG
M13F TTG TAA AAC GAC GGC CAG TGA
M13R CAG GAA ACA GCT ATG ACC ATG
YG-R GAT GTA GGA GGG CGT GGA TAT GTC CT
HY-F GTA TTG ACC GAT TCC TTG CGG TCC GAA
PPR2-5F GCA TCC CTA GGG GAT CTG TTA GCG ACA
PPR2-5R TCA CTG GCC GTC GTT TTA CAA AAG CAA CAA TAT CGA TGA TTC
PPR2-3F CAT GGT CAT AGC TGT TTC CTG AAG CAT CGA ACT TGG ATA AGA
PPR2-3R GCC AGA TGA TGG GTG GCT GGA ATG T
PPR2-NF ATA ATC GAA GCG CGT TCC CTC CAA CTG GA
PPR2-NR GGT GGA TAT GAT CGA GGT CGA GGG TGG TAA GA
PPR2-wtF CTG CGC TTC ATT GAG AGT CAG
PPR2-scrF CGT CTG CTG CTC CAT ACA AGC
PPR2-scrR GTC ATA TAG CCC TGA TAA CGA TCG C
PPR2-probF TCA CGA TTC GAT ATC TCC GCT CAC
PPR2-probR CAA CTC GGC AAT ACC GTT GAA TCG
CPP1-probeF CAC ATA GAC CTT CCA TTG AAG G
CPP1-probeR TGA TCA ATC GTC CTA ATC TCA GG
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2.3 Nucleic acid isolation and manipulation 

 

 Fungal genomic DNA was extracted using the OmniPrep genomic DNA 

extraction kit (G Biosciences, Maryland Heights, MO). Total RNA was isolated with 

Trizol reagent (Invitrogen, Carlsbad, CA) by following the manufacturer’s suggested 

protocol. PCR amplification of DNA was performed in a 9700 thermocycler (PE 

Applied Biosystems). The primers used in this study are listed in Table 1. PCR 

amplification of DNA (except double-joint PCR) was performed in 25 or 50 μl total 

volumes with Taq DNA polymerase (Promega, Madison, WI) or Expand Long 

Polymerase (Roche, Indianapolis, IN). The PCR conditions were 2 min of pre-

denaturation at 94 °C followed by 30 cycles of 30 s of denaturation at 94 °C, 30 s of 

annealing at 55 to 57 °C, and 1to 2 minutes of extension at 72 °C for Taq DNA 

polymerase and 68 °C for Expand Long Polymerase. Double-joint PCR was performed 

using Expand Long Polymerase (Roche) using the manufacturer’s suggested protocol. 

 For Southern analysis, genomic DNA (10 μg) was digested with EcoRV for 

confirming PPR1 gene deletion and with NcoI for confirming PPR2 gene deletion. The 

digested DNA was subjected to electrophoresis on a 1% agarose gel and transferred onto 

a nylon membrane and probed with a 32P labeled DNA fragment. Probes were amplified 

from F. verticillioides genomic DNA: primers PPR1-5F and PPR1-5R for PPR1 and 

primers PPR2-5F and PPR2-5R for PPR2 (Table 1).  

 For northern analysis, total RNA was subjected to electrophoresis in a 1.2% 

denaturing agarose gel containing formaldehyde and MOPS, and transferred onto a 
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nylon membrane. It was hybridized with 32P-labelled gene-specific probes: primers 

PPR1-probe F and PPR1-probeR for PPR1, primers PPR2-probe F and PPR2 probe R 

for PPR2, and primers CPP1-probe F and CPP1-probe R for CPP1 (Table 1). The probes 

used in Southern and northern hybridization experiments were 32P-labelled with a Prime-

It Random Primer Labeling kit (Stratagene, La Jolla, CA). 

 

2.4 Fumonisin B1 (FB1) analysis 

 

 FB1 analysis was conducted as described previously (Shim and Woloshuk, 1999) 

with modifications. Fungal strains were grown on cracked corn medium (B73 line; 2 g 

dry weight) in a 20-mL glass vial (VWR, West Chester, PA) for 14 days at room 

temperature (22–23 °C). To extract FB1, we added 10 ml of acetonitrile–water (1 : 1, 

v/v) to each vial and stored in laboratory without agitation for 24 h. The crude extract (2 

ml) was passed over equilibrated PrepSep SPE C18 columns (Fisher Scientific, 

Pittsburgh, PA). FB1 concentration of samples was analyzed on a Shimatzu LC-20AT 

HPLC system (Shimatzu Scientific Instruments, Inc., Kyoto, Japan) equipped with an 

analytical Zorbax ODS column (4.6 × 150 mm) (Agilent Technologies, Santa Clara, CA) 

and a Shimatzu fluorescence detector (excitation 335 nm/emission 440nm). The HPLC 

system was operated following the protocol described by Shim and Woloshuk (1999). 

FB1 was quantified by comparing HPLC peak areas with FB1 standards (Sigma). The 

experiment was done with three biological replications. 
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2.5 Ergosterol analysis  

  

 Ergosterol was extracted from cracked corn medium (2g cracked corn kernel) 

incubated for 14 days after fungal inoculation. The extraction procedure was conducted 

following Kim and Woloshuk (2008). In detail, Fungus on cracked corn media was 

soaked in 10 ml of chloroform: methanol (2:1, v/v) overnight and the supernatant was 

collected after centrifugation. The supernatant was filtered through a Acrodisc® 13 mm 

syringe filter with 0.45 µm nylon membrane (Pall Life Sciences, Port Washington, NY), 

and directly injected into HPLC system with a 4.6 U ODS column (250 ± 4.6 mm; 

Alltech) and a UV detector (Shimadzu) set to monitor at 282 nm. In each sample, peak 

area was compared to standard curve area from HPLC-grade ergosterol (Sigma) for 

determining the quantities of ergosterol from each sample. The experiment was done 

with four biological replications. 

 

2.6 Microscopy 

 

 Microscopic imaging was performed on Olympus BX51 microscope (Olympus 

America) fitted with Uplanapo objectives and an Olympus DP70 cooled charge-coupled 

device (CCD) digital camera. A detailed description of features used for imaging from 

this microscope has been given (Shaw and Upadhyay, 2005). Images of hyphal growth 

phenotypes were acquired using an Olympus DP70 camera and DP70-BSW software 

(version 01.01) and Adobe Photoshop was used for preparing publication quality prints. 
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Figure 5. Protein sequence alignments. (A) Amino acid alignment of S. cerevisiae Cdc55 
and F. verticillioides Ppr1 via CLUSTALW. 65% sequence identity detected between 
CDC55 and PPR1 protein sequences by WU-BLAST algorism 
(http://www.yeastgenome.org). (B) Amino acid alignment of S. cerevisiae Rts1 and F. 
verticillioides Ppr2 via CLUSTALW. 63% of conserved B56 domain identity was 
detected between two protein sequences by WU-BLAST. 
 
 

A
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Figure 5. Continued.  

B
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3. RESULTS 

 

3.1 PPR1 and PPR2 encode PP2A regulatory B subunits in F. verticillioides 

I used protein sequences of two S. cerevisiae regulatory subunits, Cdc55 and 

Rts1 (Healy et al., 1991; Shu et al., 1997), to search the Fusarium group database (Broad 

Institute of Harvard and MIT, http://www.broad.mit.edu/annotation/fgi/), and identified 

the corresponding homolog of each regulatory subunit in F. verticillioides genome. The 

Cdc55 homolog was identified in supercontig 1 on chromosome 1, specifically from 

sequence 4599671 to 462020 (FVEG_01508). I designated this gene PPR1. The 

homolog of Rts1 was found in supercontig 5, specifically from sequence 665726 to 

667909 (FVEG_04543), and I designated this gene PPR2. Protein sequence identity 

between Cdc55 and Ppr1 was 65%, and the conserved B56 domain identity between 

Rts1 and Ppr2 was 63% when using WU-BLAST algorithm 

(http://www.yeastgenome.org) (Fig. 5A and 5B). 

 

3.2 F. verticillioides PPR1 and PPR2 knock-out mutants 

 

PPR1 and PPR2 deletion mutants were generated to determine the functions of 

genes encoding PP2A regulatory subunits in F. verticillioides. PPR1 gene disruption 

construct, with 5’ and 3’ flanking regions of the target gene and hygromycin-resistance 

gene (HPH; hygromycin phosphotransferase (Punt et al., 1987)) was created using split-

marker approach (You et al., 2009) (Fig. 6A). The construct was transformed into  

http://www.broad.mit.edu/annotation/fgi/�
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Figure 6. Targeted deletion of PPR1 in F. verticillioides. (A) schematic representation of 
homologous gene recombination strategy resulting in gene-deletion. The dotted line 
underneath PPR1 gene represents the genomic region used as a probe for northern blot. 
E represents the EcoRV restriction site. The dotted arrows indicate the size of digested 
DNA fragment which should appear on Southern blot; (B) Southern blots confirming 
PPR1 deletions. LF region fragment was used for the probe. The red circled strain was 
selected to be the ∆ppr1 strain; (C) Southern blot confirming re-knockout of PPR1 with 
the same disruption construct. The red circled strain was confirmed as PPR1 deletion 
strain. 
  



 25 

 
 
 

 
 
 
Figure 7. Targeted deletion of PPR2 in F. verticillioides. (A) schematic representation of 
homologous gene recombination strategy resulting in gene-deletion using HPH as a 
marker in SF41 strain; The dotted line underneath gene PPR2 represents the genomic 
region used as a probe for northern blot. N represents the NcoI restriction site. The 
dotted arrows indicate the size of digested DNA fragment which should appear on 
Southern blot; (B) Southern blots confirming PPR2 deletion; the red circled strain was 
selected as ∆ppr2 strain. LF region fragment was used as the Southern probe; (C) 
Schematic representation of homologous gene recombination strategy resulting in gene 
deletion using GEN as a marker in wild-type strain. Same PPR2 DNA fragment (Fig. 
7A) was used as the northern blot probe. N presents the NcoI restriction site. The dotted 
arrows indicate the size of digested DNA fragment which should appear on Southern 
blot; (D) Southern blot confirming re-knockout of PPR2. Two re-knockout strains were 
appointed with red circle. LF region fragment was used as the Southern probe. 
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protoplasts of wild-type M3125 strain. Through PCR, I identified putative ppr1 gene 

knockout mutants, and I further validated our screening with Southern analysis, using 

the left flanking region, LF, as the 32P-labeled probe (Fig. 6A). Genomic DNA samples 

were digested with EcoRV, and I anticipated bands at 1.4 kb and 3.2 kb which would 

indicate that PPR1 gene went through homologous recombination with split marker 

constructs, whereas wild type is expected to give bands at 1.4 kb and 0.6 kb (Fig. 6B). I 

isolated multiple putative mutant strains; b46 strain was designated as the ∆ppr1 strain 

and selected for further molecular characterization.  

PPR2 deletion was conducted by transforming Ku70 knockout strain, SF41 (Choi 

and Shim, 2008a), rather than the wild-type strain in an effort to increase homologous 

recombination efficiency. A disruption construct (Fig. 7A) containing HPH gene was 

created with the double-joint PCR approach (Yu et al., 2004), and transformed in to 

SF41 protoplasts. Multiple PPR2 deletion mutants were confirmed by Southern analysis, 

and these mutant strains shared identical phenotype on V8 agar (Fig. 8A). As 

anticipated, homologous recombination of PPR2 locus with the disruption construct 

generated a 3.3kb band when LF fragment was used as a probe when genomic DNA 

samples were digested with NcoI (Fig. 7B). Among these strains, p4 strain was selected 

for further characterization of ppr2 deletion, which was designated as the ∆ppr2 strain. 

To further confirm that the mutant phenotypes observed in ∆ppr1 and ∆ppr2 are 

due to gene deletion in PPR1 and PPR2, respectively, I conducted re-knockout 

experiments. The ∆ppr2 strain has two selectable markers, HPH and geneticin-resistance 

gene (GEN), since it was created in SF41, a strain that already has GEN. While 
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∆ppr1strain only has a HPH marker, I could not perform genetic complementation of the 

mutation due to the difficulties associated with generating protoplasts from ∆ppr1 strain. 

For PPR1 re-knockout, the disruption construct used earlier (Fig. 6A) was transformed 

into the wild-type strain. I confirmed one PPR1 deletion mutant by Southern analysis 

(Fig. 6C), and this mutant showed the identical phenotype on PDA and V8 agar plate 

when compared to the original ∆ppr1 strain (Fig. 8B and 8C). For PPR2, I created a 

disruption construct following the same procedure as described earlier but with GEN as 

the selectable marker (Fig. 7C). Furthermore, the transformation was done in the wild-

type M3125 strain instead of SF41 strain. Two PPR2 deleted mutant strains were 

confirmed by Southern analysis (Fig. 7D), and they exhibited identical phenotype on V8 

agar plate and in YEPD when compared to the ∆ppr2 (Fig. 8E). 

 

3.3 PPR2 and CPP1 reciprocally influence transcriptional expressions 

 

Northern analysis confirmed the deletion of genes. PPR1 and PPR2, as expected, 

transcripts were not detected ∆ppr1 and ∆ppr2 strains, respectively (Fig. 9A and 9B). I 

also tested the expression of CPP1 to see if mutations in PP2A regulatory subunits had 

any impact on CPP1 gene expression. Interestingly, I found that CPP1 expression in 

∆ppr2 was higher than in ∆ppr1 and the wild type (Fig. 9C). Moreover, higher 

expression of PPR2 in ∆cpp1 was also observed in the previous northern blot (Fig. 9B). 

This result suggests that PPR2 and CPP1 regulate each other in a reciprocal manner. 
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Figure 8. Confirmed ppr1 and ppr2 deletion mutants. (A) Growth of putative PPR2 
deletion mutant strains on V8 agar compared to growth of WT (wild-type); (B and C) 
∆ppr1 and rp160, PPR1 re-knock out strain, on PDA (B) and V8 agar(C) plates. (D) 
∆ppr2 and PPR2 re-knocked out strains, pg18 and pg108, on V8 agar plates; E, Y-
shaped germinating conidia from the pg108 strain.  
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Figure 9. Transcriptional analysis. Expressions of (A) PPR1, (B) PPR2, and (C) CPP1 
were examined in wild type (WT), and deletion mutants (∆ppr1, ∆ppr2, ∆cpp1). Total 
RNA (12 μg) extracted from fungal cultures grown in defined medium (DL) for 7 days 
was subjected to electrophoresis on a 1.2% denaturing agarose gel, transferred on to a 
nylon membrane and hybridized with 32P-labelled gene-specific probes. Target genes 
and transcript sizes are indicated with arrows on the left of each picture. Ribosomal 
RNA (rRNA) stained with ethidium bromide is shown to verify equal loading. 
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3.4 ∆ppr1 strain is severely defective in radial growth on solid media 

 

Both PPR1 and PPR2 gene deletions resulted in growth deficiency in F. 

verticillioides on V8 agar, PDA, and other solid defined media. ∆cpp1 was also 

inoculated on those solid media to compare the role of PP2A regulatory B subunits and 

catalytic C subunit on radial growth in F. verticillioides. While ∆cpp1 exhibited reduced 

growth rate when compare to the wild type, disruption of PP2A regulatory subunits, 

∆ppr1 and ∆ppr2, resulted in more drastic reduction in radial growth (Fig. 10A). The 

growth rate of ∆ppr1 drastically slowed to approximately 10 to 14% of that of the wild 

type (Fig. 10B). The ∆ppr1 strain also deposited unknown red-to-crimson pigment 

heavily into agar media during growth (Fig. 10A and 10C). The radial growth of ∆ppr2 

was approximately 50% of wild type overall in all media tested (Fig.10B). On complex 

agar media, such as PDA and V8 agar, growth rate of ∆ppr2 was similar to that of ∆cpp1 

(Fig. 10B). 

I tested the growth of these four strains (wild type, ∆ppr1, ∆ppr2, and ∆cpp1) in 

YEPD liquid medium by measuring total fresh weight of fungal mycelia after 7-day 

incubations. For comparison, I also grew these strains on YEPD agar medium, and 

observed similar growth trend seen in other solid media. In particular, I noticed that 

∆ppr1 strain grew extremely slow on YEPD agar (Fig. 11A). Significantly, fresh weight 

of ∆ppr1 collected from YEPD liquid culture showed no significant difference from that 

observed in the wild type (Fig. 11B). In liquid culture, ∆ppr1 developed highly compact 
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mycelial network throughout the culture which was quite a contract when compared to 

strains (Fig. 11C).  

 
 
 
 

 

 

Figure 10. Colony morphology and growth of the wild type and mutant strains on 
various solid media; PDA, V8 agar, and Defined Medium (DM). (A) Strains were point 
inoculated with an agar block (0.5 cm diameter), and incubated for 7 days at 25̊ C. Each 
strain was aligned vertically, as indicated. Media were indicated left of each row; (B) 
radial growth measured and presented as a bar graph. Results are means ± sd (standard 
deviation) of three biological replications. (C) Pigmentation in liquid media, PDB 
(potato dextrose broth) and Defined medium (DM). ∆ppr1 notably deposited heavy 
pigmentation in all media tested. 
  

A

0

10

20

30

40

PDA V8 agar DM with sucrose

Ra
di

al 
gr

ow
th

 (m
m

)

wt

∆ppr1

∆ppr2

∆cpp1

B C WT          Δppr1        Δppr2        Δcpp1

PDB       

DM



 32 

 
 
 
 

 
 
 
 
Figure 11. Growth and morphology of the wild type (wt) and mutant strains on YPED 
agar and in YEPD broth. (A) Growth on solid YEPD agar of wild-type (wt), ∆ppr1, 
∆ppr2, and ∆cpp1 (from the left); (B) filtered fresh weight measured and presented as a 
bar graph. 106 spores of each strain were collected and inoculated into YEPD broth, and 
incubated for 7 days. Results are means ± sd (standard deviation) of three biological 
replications; (C) microscopic observation of the wild type (wt), ∆ppr1, ∆ppr2, and ∆cpp1 
(from the left) after 7 days incubation. 
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3.5 ∆ppr2 strain produces higher level of FB1 similar to ∆cpp1 strain  

 

The level of FB1 produced on cracked corn medium (Shim and Woloshuk, 1999) 

was examined by HPLC in wild type, ∆ppr1, ∆ppr2, and ∆cpp1 to study how disruption 

of each subunit of PP2A affects  FB1 biosynthesis in F. verticillioides. As shown in 

previous study by Choi and Shim (2008b), ∆cpp1 produced about 10 times higher level 

of FB1 than the wild type (Fig. 12A). Here, I found that FB1 production in ∆ppr1 and 

∆ppr2 differ from that of wild type, but in opposite manner. ∆ppr2 showed significant 

up-regulation of FB1 synthesis compared to that of wild type (Fig. 12A) whereas ∆ppr1 

produced significantly less FB1 than the wild type. 

Subsequently, I performed ergosterol analysis to determine the growth of fungal 

strain in corn kernels, and this was performed as an effort to standardize FB1 production 

per fungal mass in cracked corn media. Figure 12B shows the mean ergosterol 

production with four replications, and ANOVA (Analysis Of Variance between groups) 

test confirmed that each mean value is statically different (P<0.001). Subsequently, the 

mean FB1 level of each strain was divided by the mean of ergosterol from each strain 

(Fig. 12B). I determined that the FB1/ ergosterol ratio in ∆ppr2 is 10 times greater than 

that of the wild type (Fig. 13) whereas ∆ppr1 produced approximately 50% level of FB1 

when compared to the wild type.  
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Figure 12. FB1 and ergosterol analyses by HPLC. Quantification of FB1 production (A) 
and ergosterol production (B) in the wild type (WT), ∆ppr1, ∆ppr2, and ∆cpp1 strain. 
105 spores of each strain were inoculated to sterile cracked corn (2g) and incubated for 
14 days. FB1 concentration was calculated as ppm (μg/ml). Results are means ± sd 
(standard deviation) of three biological replications (A) or four biological replications 
(B). 
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Figure 13. FB1 production per unit of fungal mass. In the wild type (WT), ∆ppr1, ∆ppr2, 
and ∆cpp1 strain, FB1 /ergosterol ratio (μg FB1 per μg ergosterol) is calculated as the 
mean FB1 production divided by the mean ergosterol in each strain.   
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3.6 ∆ppr1 strain produced more microconidia per unit hyphal growth than the 

wild-type progenitor  

 

I measured microconidia production in four strains to characterize the function of 

PP2A regulatory subunits on F. verticillioides asexual development. After growing the 

strains on KCl agar for 7 days, I harvested conidia with 0.1% Triton-X solution (2 

ml/plate). However, I recognized that due to differences in hyphal growth a more 

representative assessment approach was needed. Therefore, I calculated the number of 

conidia on each plate by adjusting the number of conidia with the radial growth area on 

the plate (Fig. 14). 

Surprisingly, ∆ppr1 produced approximately 3 to 4 times more conidia per unit 

area than the wild type. This is contradictory to its severe growth defect on solid media 

(Fig. 9A). On the other hand, ∆ppr2 produced significantly less conidia than the wild 

type. I also determined that there was no significant difference in the number of conidia 

per radial growth between ∆cpp1 and the wild type (Fig. 14). These data suggest that 

PP2A regulatory subunits Ppr1 and Ppr2 play negative and positive roles, respectively, 

in asexual development independent of the catalytic subunit in F. verticillioides. 

I also tested sexual reproduction in mutant strains. F. verticillioides 7598 (Fungal 

Genetic Stock Center) was used as the opposite mating-type wild-type strain in sexual 

crosses, and all mutant strains successfully produced perithecia and viable ascospores, 

suggesting PP2A subunits are not involved in F. verticillioides sexual reproduction. 
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Figure 14. Microconidia production with radial growth. Four strains, the wild type (WT), 
∆ppr1, ∆ppr2, and ∆cpp1, were point inoculated on KCl agar plates with an agar block 
(0.5 cm diameter), and incubated for 7 days at 25˚C. Conidia were harvested, and 
quantified with a haemocytometer. The area of radial growth were measured and 
converted to mm2. Since the mean area of all wild type and mutant strains were 
statistically different, the number of conidia were divided by the mean area (mm2) of 
radial growth. Three biological replications were performed to obtain standard 
deviations.  
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3.7 Disruption of PP2A regulatory subunits show distinct morphological 

characteristics during conidia germination 

 

Microconidia of F. verticillioides wild type strain are single-celled and oval 

shaped spores (Species Descriptions, 2007). Typically, a microconidium germinates 

from one tip, and the germ tube establishes hyphal polarity (Fig. 15A). In the PP2A 

regulatory subunits mutants, I frequently observed abnormal conidia germination (Fig. 

15D to 15G). About 20 to 30% of ∆ppr1 conidia became swollen, and while conidia 

maintained germ tube polarity, central septation in the cell was observed before 

germination (Fig. 15D and 15E). I also observed aberrant hyphal swelling when 

microconidia were germinated (Fig. 15E). This is not as drastic as what Choi and Shim 

(2008b) observed in ∆cpp1 strain, but it suggests that PPR1 and CPP1 may serve as 

regulators of proper hyphal development and structural maintenance.  In ∆ppr2 strain, 

approximately 10 to 20% of conidia showed Y-shaped early hyphal germination (Fig. 

15F and 15G). Typically, an F. verticillioides conidium germinates from one tip, and 

after establishment of the primary germ tube, a secondary germ tube emerges from the 

opposite tip. I asked whether this abnormal Y-shaped germination is due to simultaneous 

germination from one tip or early branching from the primary germ tube, and to answer 

this question I performed time-lapse microscopy to monitor spore germination with 20 

minute intervals. In Fig. 16, I observed branch formation in the primary germ tube 

shortly after germ tubes from each opposite ends, while stunted, were established. This 
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result suggests that PPR2 plays a key role in conidial germination preventing early 

hyphal branching in F. verticillioides. 

 
 
 

 
 
 
 
Figure 15. Abnormal morphologies in conidial germination. Germinating conidia of the 
wild type (WT), ∆cpp1, ∆ppr1, and ∆ppr2 grown in YEPD liquid media were observed. 
(A) germination of wild type microconidia; (B) microconidia of ∆cpp1; (C) 
macroconidia of ∆cpp1; (D) swollen and central septated ∆ppr1 microconidia; (E) 
further developed ∆ppr1 hypha showing short, swollen, and multi-septated morphology; 
(F) microconidia of ∆ppr2; (G) germinated ∆ppr2 microconidia clearly showing y-
shaped branch morphology. Each strain was incubated for 15hrs at 25 ˚C before 
observation under compound microscope. Scale bar = 10 μm (in A-B, D, F-G). Scale 
bar=50 μm (in C and E). 
 
 
  



 40 

 
 
 
 
 
 
 
 

 
 
 
Figure 16. Time-lapse monitoring of wild-type and Δppr2 conidial germination. The first 
panel demonstrates the first detectable emergence of the germ tube. Each subsequent 
panel represents exactly 20 min after the panel to its left. (A) Upper panel = wild-type 
(WT) (Sagaram and Shim, 2007). (B) Lower panel = Δppr2. Scale bar = 10 μm. 
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4. DISCUSSION 

 

4.1 PP2A catalytic and regulatory subunits in F. verticillioides 

 

I identified two PP2A regulatory genes, PPR1 and PPR2, in F. verticillioides. 

Two types of PP2A regulatory subunits, B and B’, have been characterized in budding 

yeast, Cdc55p and Rts1p, respectively. High percentages of protein sequence identities 

suggested that Ppr1and Ppr2 conform to Cdc55p and Rts1p, respectively. Holoenzyme 

formation of PP2A subunits is necessary for the multifunctional PP2A complex to 

perform precise and specific activities in certain developmental stages in eukaryotes 

(Goldberg, 1999; Mayer-Jaekel and Hemmings, 1994; Virshup, 2000). Therefore, 

identifying the role of each subunit can provide fundamental understanding of how 

PP2A regulates important cellular functions. B-type regulatory subunits have been 

characterized in N. crassa and S. sclerotiorum, however, generating a PPR2 deletion 

mutant in F. verticillioides is noteworthy because characterization of the regulatory B’ 

subunit has not been reported in filamentous fungi (Erental et al., 2007; Yatzkan and 

Yarden, 1999). In this study, I generated and compared three mutants, ∆cpp1, ∆ppr1, and 

∆ppr2, with the goal of elucidating the role of PP2A in regulation of cellular functions in 

F. verticillioides, and perhaps in filamentous fungi.  
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4.2 Growth regulation by PP2A in F. verticillioides 

 

Deletions of PP2A regulatory subunits and the catalytic subunit resulted in 

significantly diverse phenotypes, supporting the idea that each PP2A subunit is 

associated with different roles. Among those subunits, it is plausible that PPR1, which 

encodes the PP2A regulatory B subunit, plays a major role in hyphal growth in F. 

verticillioides, as deduced from severe radial growth defects observed in Δppr1 strain. A 

similar result was observed when RGB-1 was mutated in N. crassa – Ppr1 is homologous 

to Rgb-1(Yatzkan and Yarden, 1999). However, in addition to slow colony growth, I 

observed significantly stout cell compartments of the fungus throughout the Δppr1 

culture. Yellman and Burke (2006) showed that Cdc55, a homolog of Ppr1, was required 

for holding spindle checkpoint during mitosis in budding yeast. Thus, severe growth 

defect accompanied by stout cell compartments in ∆ppr1 lead us to hypothesize that 

Ppr1 plays an important role in cell cycle regulation in F. verticillioides.  

Interestingly, there was no statistically significant difference in the biomass of 

Δppr1 and wild-type strains when they were cultured in YEPD broth. This was 

unexpected when considering how Δppr1 grew on solid media. However, I did observe a 

number of compact hyphal clusters in Δppr1 culture, and it would be reasonable to argue 

that Δppr1 growth defect observed in solid agar did not hamper fungal mass production 

in shaking, liquid culture. 

In contrast to the Δppr1 growth, Δcpp1 has a less pronounced growth defect in all 

media tested. I can think of two hypotheses to explain how a regulatory subunit can have 
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more drastic impact on growth. First, there is a possibility that other putative proteins, 

perhaps different phosphatase complexes, can help the fungus bypass PP2A defect. For 

instance, in budding yeast, triple deletion of PPH genes was lethal, but the fact that the 

triple deletion mutant was viable in high glucose conditions suggests that alternative 

protein rescued the triple mutation (Hu and Ronne, 1994). In addition, this study showed 

that overexpression of PAM1, the PP2A multicopy suppressor, increased survival rate of 

the PPH triple deletion mutant in lower glucose concentration. However, if this were 

true, then it would be reasonable to predict that both ∆ppr1 and ∆cpp1 mutants showed 

share a similar phenotype, rather than the milder defect observed in ∆cpp1. Second, I can 

propose that there are alternative PP2A catalytic subunit(s) that can substitute for Cpp1 

and maintain a certain level of PP2A complex function. This could be a more likely 

possibility since in yeast and A. nidulans two genes encoding PP2A catalytic subunit 

were identified (Kosmidou et al., 2001; Sneddon et al., 1990). Furthermore, in 

mammalian systems, more than two isoforms of PP2A catalytic subunit can commonly 

be identified (Janssens and Goris, 2001).  

Growth defects observed in Δppr2 also implied that the regulatory B’ subunit is 

involved in hyphal growth in F. verticillioides. In yeast, slower and smaller cell growth 

in B’ subunit mutant strain was repeatedly observed, which led to the suggestion that 

PP2A regulatory B’ subunit is associated with stress-related response, regulation of cell 

cycle progression, septum positioning, and cell-size control (Shu et al., 1997; Tanabe et 

al., 2001). One other interesting aspect of the regulatory B’ subunit is that it can suppress 

the activity and substrate specificity of the AC dimer, which represents PP2A catalytic C 
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subunit with scaffolding A subunit (Usui et al., 1988). Therefore, the severe defective 

growth in Δppr1 could be a result of the loss of balance between B and B’ regulatory 

subunits. In fission yeast, the B subunit over-expression strain exhibited phenotypes that 

partially overlapped with B’ deletion strain, and B’ over-expression strain shared the 

abnormalities shown in the B deletion strain  (Kinoshita et al., 1996; Tanabe et al., 

2001). However, inhibitory activity of PP2A regulatory B’ subunit was not demonstrated 

in filamentous fungi. Investigation of how, or if, PPR1 and PPR2 over-expression 

influences the cell compartment may provide us a better understanding of how PP2A 

functions are controlled in F. verticillioides and perhaps in other filamentous fungi. 

 

4.3 PP2A regulation in FB1 and secondary metabolites 

 

The results suggest that Ppr2 is the regulatory subunit that influences the PP2A 

complex to regulate FB1 synthesis in F. verticillioides. In budding yeast, deletion of 

RTS1 resulted in constitutive expressions of amino acid permeases (AAPs) which are 

normally activated when uptake of amino acids is needed (Eckert-Boulet et al., 2006). 

Since FB1 production in F. verticillioides can be facilitated under nitrogen stress 

condition (Shim and Woloshuk, 1999), I can propose that the AB’C form of PP2A is 

involved in recognition of a nitrogen signal pathway in F. verticillioides whereas the 

ABC form functions in an opposite manner. Furthermore, as seen in Fig. 10, Δppr1 

produced heavy pigmentation, suggesting that PP2A negatively regulates a majority of 

secondary metabolites. Secondary metabolites are often produced by clustered genes, 
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like FUM gene cluster, and are activated by regulatory transcription factors (Yu and 

Keller, 2005). It can be presumed that Ppr1 activity may be required upstream of these 

transcription factors to prevent unnecessary production of secondary metabolites. 

However, since I did not identify the specific secondary metabolites in the pigment of 

Δppr1, it is difficult to further speculate how PP2A is involved in the regulation of 

various secondary metabolites in F. verticillioides. 

 

4.4 PP2A regulation in conidiation and germination in F. verticillioides  

 

While macroconidia production was one of the striking phenotypes in Δcpp1, 

which suggested that PP2A catalytic subunit is involved in the regulation of 

macroconidia-microconidia equilibrium (Choi and Shim, 2008b), macroconidia were not 

observed in Δppr1 or Δppr2 strains. Involvement of PP2A regulatory B subunit in 

macroconidia production has been previously discussed in rgb-1 mutation in N. crassa 

(Yatzkan and Yarden, 1999). However, our result suggests that the PP2A catalytic 

subunit is the key player in macroconidia-microconidia equilibrium in F. verticillioides. 

It is also important to note this result does not lead to a firm conclusion that Ppr1 and 

Ppr2 are not directly associated with sexual spore development. One of the difficulties 

associated with testing macroconidiation in F. verticillioides is that I do not have 

established protocols to consistently produce macroconidia under laboratory condition. 

 Microconidia morphology and germination pattern in the three mutant strains 

were significantly different. Overproduction of microconidia in Δppr1 resembles the 
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increased arthroconidia production in rgb-1 mutant. Rgb-1 is required for major 

constriction formation in N. crassa macroconidiation pathway (Yatzkan and Yarden, 

1999). Microconidia overproduction was also observed when FvVE1, the homolog VeA 

of A. nidulans, was deleted in F. verticillioides (Li et al., 2006). ΔFvve1 also produced 

microconidia, which is similar to one of the phenotypes of Δcpp1. Therefore, I can 

assume that Cpp1 and Ppr1 are downstream of Fvve1 but perform different functions. 

However, the genetic link between FvVE1 and CPP1 has not been determined to date 

(Choi and Shim, 2008b).  

About 10 to 20% of germinating conidia of Δppr1 exhibited abnormal 

morphology, notably central septation. Typically, septation is a product of cell division 

in filamentous fungi. In fission yeast, during mitotic cell division, Plo1 kinase 

accumulates, which leads to increased kinase activity (Tanaka et al., 2001). Considering 

the important role of PP2A regulatory B subunit in mitosis, I can anticipate Ppr1 

involved in the regulation in Plo1-like kinase activity. However, it is unclear whether the 

ABC heterotrimer of PP2A directly controls the factors inducing septation. Septation in 

germinating Δppr2 strain was normal, and this result disagrees with the multi-septation 

phenotype of the B’ subunit deletion mutant in fission yeast (Tanabe et al., 2001). 

Interestingly, conidia of Δppr2 developed a new hyphal branch just after germination. 

According to the review by Harris (2008), this branching pattern is similar to the lateral 

branching pattern which is generally associated with septation and/or newly formed 

spitzenkorper. In Δppr2, early-branching was observed only in the axillary of the 

primarily germinated tip, suggesting a certain orientation change in tip growth. Further 
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observations of microtubule network associated with generating a hyphal tip will be 

required to investigate the detailed role of Ppr2 in branching during early germination in 

F. verticillioides. 

 

4.5 Localization of three PP2A subunits 

 

In this study, I isolated three PP2A subunits in F. verticillioides, and functionally 

analyze them by independently generating deletion mutants. To figure out the detailed 

mechanisms of PP2A involvement in various cellular functions, further investigations of 

these three subunits at the protein level will be required. Particularly, determining the 

localization of two PP2A regulatory subunits could be the important first step. While the 

complete PP2A complex is essential for substrate specificity and proper function, 

localization of each regulatory subunit can help us understand how and where PP2A 

functions are performed. The dynamic localization pattern of each subunit was 

monitored in S. cerevisiae (Gentry and Hallberg, 2002), and interestingly, Cdc55p and 

Rts1p, two PP2A regulatory B subunits, localized to different sites during mitosis. 

Likewise, since I observed significantly different germinating phenotypes in Δppr1 and 

Δppr2, characterizing the localization of these PP2A subunits during germination will 

help us better understand how specific activities of PP2A regulatory subunits are 

achieved in F. verticillioides. 
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5. SUMMARY 

 

 Two PP2A regulatory subunits, Ppr1 and Ppr2, which are homologs of Cdc55p 

and Rts1p in S. cerevisiae, respectively, were identified in F. verticillioides.  The ppr1 

deletion mutant (∆ppr1) showed severe hyphal growth defect when growing on solid 

media and swollen and shorter cell compartment morphology under a microscope, 

suggesting that Ppr1 is involved in microtubule distribution and cell cycle control. Over-

production of microconidia and heavy pigment accumulation were also observed in 

∆ppr1 strain suggesting that Ppr1 negatively regulates signaling pathways triggering 

various secondary metabolites and asexual reproduction in F. verticillioides. 

Interestingly, ∆ppr2 strain showed up-regulation of fumonisin production whereas ∆ppr1 

produced lower level of fumonisin than the wild-type progenitor, suggesting unique, but 

contradictory, role of PP2A regulatory subunits in the regulation of fumonisin 

biosynthesis. Both deletion mutants exhibited distinct morphological abnormality during 

conidia germination: swelling and central septation during germination in ∆ppr1 and 

early branching in ∆ppr2. Results from this study suggest that two PP2A regulatory 

subunits carry out critical roles in regulating fumonisin biosynthesis and fungal 

development in F. verticillioides. 
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