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ABSTRACT

An Efficient Nonlinear Structural Dynamics Solver

for Use in Computational Aeroelastic Analysis. (May 2010)

Brian Andrew Freno, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Paul G. A. Cizmas

Aerospace structures with large aspect ratio, such as airplane wings, rotorcraft

blades, wind turbine blades, and jet engine fan and compressor blades, are particularly

susceptible to aeroelastic phenomena. Finite element analysis provides an effective

and generalized method to model these structures; however, it is computationally

expensive. Fortunately, these structures have a length appreciably larger than the

largest cross-sectional diameter. This characteristic is exploitable as these potential

aeroelastically unstable structures can be modeled as cantilevered beams, drastically

reducing computational time.

In this thesis, the nonlinear equations of motion are derived for an inextensional,

non-uniform cantilevered beam with a straight elastic axis. Along the elastic axis, the

cross-sectional center of mass can be offset in both dimensions, and the principal bend-

ing and centroidal axes can each be rotated uniquely. The Galerkin method is used,

permitting arbitrary and abrupt variations along the length that require no knowledge

of the spatial derivatives of the beam properties. Additionally, these equations consis-

tently retain all third-order nonlinearities that account for flexural-flexural-torsional

coupling and extend the validity of the equations for large deformations.

Furthermore, linearly independent shape functions are substituted into these

equations, providing an efficient method to determine the natural frequencies and
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mode shapes of the beam and to solve for time-varying deformation.

This method is validated using finite element analysis and is extended to swept

wings. The importance of retaining cubic terms, in addition to quadratic terms, for

nonlinear analysis is demonstrated for several examples. Ultimately, these equations

are coupled with a fluid dynamics solver to provide a structurally efficient aeroelastic

program.
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CHAPTER I

INTRODUCTION

A. Motivation

Aeroelasticity is generally considered to be the field of study that accounts for the

interaction of aerodynamic, elastic, and inertial forces on an aerospace structure [1,

pp. 1-2],[2, pp. 1-2]. Static and dynamic aeroelastic instabilities are typically the phe-

nomena of concern in aeroelastic analysis. These instabilities are introduced when the

aerodynamic forces exceed the elastic restoring forces. Divergence is a static aeroe-

lastic instability in which inertial forces are negligible, whereas flutter is a dynamic

aeroelastic instability occurring when inertial forces are significant [3, p. 1].

Aerospace structures with large aspect ratio, such as airplane wings, rotorcraft

blades, wind turbine blades, and jet engine fan and compressor blades, are particularly

susceptible to aeroelastic phenomena. Finite element analysis provides an effective

and generalized method to model these structures; however, it is computationally

expensive. Fortunately, these structures have a length appreciably larger than the

largest cross-sectional diameter. This characteristic is exploitable as these potential

aeroelastically unstable structures can be modeled as cantilevered beams, drastically

reducing computational time.

B. Literature Review

This observation has led to the use of beam models to approximate the aeroelastic

response of wings for several decades. Earlier implementations, however, largely fo-

This thesis follows the style of the Journal of Computational Physics.
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cused on the planar bending of uniform beams and only provided for linear coupling

between bending and torsional motion [1, pp. 67-129], [3, pp. 193-198].

In 1978, Crespo da Silva and Glynn [4] derived the nonlinear flexural-flexural-

torsional equations of motion for an inextensional uniform beam, consistently retain-

ing third-order nonlinearities. A decade later, Crespo da Silva removed the inexten-

sionality and uniformity constraints and demonstrated the validity of the inexten-

sional assumption [5]. Additionally, around this time, Hodges formulated multiple

nonlinear inextensional beam equations, accounting for second-order nonlinearities to

model helicopter blades [6, 7].

The use of uncoupled mode shapes satisfying the boundary conditions and linear

equations of motion for a uniform cantilevered beam is a classical method used in

vibrational analysis that expedites calculation of the deformed shape by reducing

the partial differential equations in time and space into a set of ordinary differential

equations in time [1, pp. 114-164], [2, pp. 30-70]. In 2005, Strganac et al. [8] used

the uncoupled mode shapes to evaluate the deformation of a wing approximated

by a uniform beam. The beam model retained a majority of the nonlinear terms

accounted for by Crespo da Silva as well as the linear contribution of mass-offset

from the elastic axis along the chord-wise principal axis [9]. Integration was done

explicitly, and several of the nonlinear structural terms were grouped into a forcing

vector that lagged by a time step.

C. Objective and Scope

In this thesis, the nonlinear equations of motion are derived for an inextensional,

non-uniform cantilevered beam with a straight elastic axis. Along the elastic axis, the

cross-sectional center of mass can be offset in both dimensions, and the principal bend-
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ing and centroidal axes can each be rotated uniquely. The Galerkin method is used,

permitting arbitrary and abrupt variations along the length that require no knowledge

of the spatial derivatives of the beam properties. Additionally, these equations consis-

tently retain all third-order nonlinearities that account for flexural-flexural-torsional

coupling and extend the validity of the equations for large deformations.

Furthermore, linearly independent shape functions are substituted into these

equations, providing an efficient method to determine the natural frequencies and

mode shapes of the beam and to solve for time-varying deformation.

This method is validated using finite element analysis and is extended to swept

wings. The importance of retaining cubic terms, in addition to quadratic terms, for

nonlinear analysis is demonstrated for several examples. Ultimately, these equations

are coupled with a fluid dynamics solver to provide a structurally efficient aeroelastic

program.

D. Novel Aspects of this Thesis

Though some facets of the method and model presented herein have been used pre-

viously, there are several features worth noting that distinguish this work.

Compared to Crespo da Silva and Glynn [4], this method offers improvement by

accounting for a non-uniform beam with the center of mass of each cross section offset

from the elastic axis. Relative to Crespo da Silva’s later work [5], this approach ad-

ditionally permits rotation of the centroidal axes along the length of the undeformed

beam and uses the Galerkin method to numerically address abrupt lengthwise varia-

tions.

This work improves upon that of Hodges [6, 7] by extending the order of the

nonlinear terms retained to the third order. Additionally, comparisons are made



4

between the results of linear, quadratic, and cubic beam models.

Compared to Strganac et al. [8] and Kim [9], the method presented herein yields

several additional features. The improved features are: (1) beam non-uniformity, (2)

the ability to account for the nonlinear contribution of mass-offset, (3) mass-offset in

both dimensions, (4) principal bending and stiffness axes that vary mutually and along

the length of the beam, (5) abrupt lengthwise property changes, (6) the consistent

retention of all third-order nonlinearities, and (7) a reduction of the explicitness of

the time integration of nonlinear terms.
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CHAPTER II

DERIVATION OF THE NONLINEAR EQUATIONS OF MOTION

A. Preliminaries

In this chapter, the third-order nonlinear flexural-flexural-torsional equations of mo-

tion are derived for a beam with a straight elastic axis, along which the cross sections

can vary arbitrarily and abruptly. The cross sections of the undeformed beam can

have a center of mass offset from the elastic axis and the principal centroidal and

bending axes variably and uniquely rotated about the elastic axis. Finally, due to the

consistent retention of nonlinear terms, the equations are valid for large deformations,

provided the elasticity limit is not exceeded.

B. Definition of Parameters

The beam is assumed to have an elastic axis that is straight when undeformed. The

inertial reference coordinate system, N (x, y, z), is located at the fixed end of the

beam, where the x-axis is coincident with the undeformed elastic axis and positive

in the direction of the free end. The cross-sectional coordinate system, B (ξ, η, ζ), is

fixed to each cross section during deformation, and the origin is located where the

elastic axis intersects the cross section. When the beam is undeformed, the cross-

sectional coordinate system is parallel to the reference coordinate system, and the

ξ-axis is collinear with the x-axis. Figure 1 illustrates the two coordinate systems.

To describe the orientation of the cross-sectional coordinate system relative to

the reference coordinate system, three Euler angle rotations are invoked as shown in

Figure 2. The inertial frame is rotated an angle ψ about the z-axis, θ about the first
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Figure 2. The three successive Euler angle rotations.
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intermediate y-axis, and φ about the second intermediate x-axis, which is in turn the

ξ-axis. The Euler angle rotations are expressed by the following matrices:

E3(ψ) =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 ,

E2(θ) =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 ,

E1(φ) =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 ,
leading to 

ξ

η

ζ


B

= E1(φ)E2(θ)E3(ψ)


x

y

z


N

or 
ξ

η

ζ


B

=


cψcθ cθsψ −sθ

−cφsψ + cψsφsθ cφcψ + sφsψsθ cθsφ

sφsψ + cφcψsθ −cψsφ+ cφsψsθ cφcθ




x

y

z


N

. (2.1)

Each of these angles is a function of time, t, and position, s, along the deformed

elastic axis. These coordinate systems and transformations are similar to those used

by Crespo da Silva and Glynn [4], the main difference arising from B (ξ, η, ζ) being

located at the intersection of the cross section with the elastic axis instead of with

the centroidal axis.
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To characterize the beam, the following parameters are used [5]:

m(s) =

∫∫
A

ρ dη dζ, (2.2a)

jξ(s) =

∫∫
A

ρ
(
η2 + ζ2

)
dη dζ, (2.2b)

jη(s) =

∫∫
A

ρ ζ2dη dζ, (2.2c)

jζ(s) =

∫∫
A

ρ η2dη dζ, (2.2d)

jηζ(s) = −
∫∫

A

ρ η ζ dη dζ, (2.2e)

Dξ(s) = GK, (2.2f)

Dη(s) =

∫∫
A

E ζ2 dη dζ, (2.2g)

Dζ(s) =

∫∫
A

E η2 dη dζ, (2.2h)

Dηζ(s) = −
∫∫

A

E η ζ dη dζ. (2.2i)

Additionally, eη and eζ respectively describe the distance between the center of mass

and the elastic axis along the η and ζ axes. The sign of eη and eζ is positive when

the center of mass has η and ζ coordinates exceeding those of the elastic axis.

The torsion constant K in (2.2f) satisfies

φ =
τL

GK
,

where τ is the twisting moment and φ is expressed in radians. For circular cross

sections, K is exactly the polar moment of inertia, while for other cross sections, K

is obtained through approximation and is less than the polar moment of inertia as a

result of warping [10, pp. 382-383].

In this thesis, nonlinearities are described by an order that indicates the number

of factors of the displacements v, w, and φ that comprise a term. These factors may

include spatial and/or time derivatives of the displacements. As an example, jζv
′2v̈′
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is a cubic term.

C. The Lagrangian

The equations of motion in this chapter are derived using Lagrangian mechanics.

Therefore, an expression for the Lagrangian, which is the difference between the

kinetic and potential energy of the beam, is required to describe the beam dynamics.

1. Kinetic Energy

The kinetic energy of each cross section of the beam is given by

T =
1

2

∫∫
A

ρ V·V dη dζ. (2.3)

One of the fundamental assumptions of the beam model is that planar cross sections

perpendicular to the elastic axis remain planar and perpendicular to the elastic axis

without deforming. The inertial velocity of each point on a cross section of the

beam can be decomposed into the sum of the inertial velocity of the cross-sectional

coordinate system, relative to the inertial coordinate system, and the inertial velocity

of a point on the cross section, relative to the origin of the cross-sectional coordinate

system. The velocity of each point on the beam is then

V =


u̇

v̇

ẇ


N

+ ω ×


0

η

ζ


B

. (2.4)

The angular velocity of the cross-sectional frame relative to the inertial frame is

ω = φ̇ ξ̂ + θ̇ ŷ1 + ψ̇ ẑ,
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which, when expressed in the cross-sectional frame, leads to

ω =


φ̇− ψ̇ sin θ

ψ̇ cos θ sinφ+ θ̇ cosφ

ψ̇ cos θ cosφ− θ̇ sinφ)


B

=


ωξ

ωη

ωζ


B

.

Resolving (2.4) into the inertial frame provides

V =


(ζωη − ηωζ) cψcθ + ηωξ (sφsψ + cφcψsθ) + ζωξ (cφsψ − cψsφsθ) + u̇

(ζωη − ηωζ) sψcθ − ηωξ (sφcψ − cφsψsθ)− ζωξ (cφcψ + sψsφsθ) + v̇

− (ζωη − ηωζ) sθ + ηωξcφcθ − ζωξsφcθ + ẇ


N

.

(2.5)

Substituting (2.5) into (2.3) yields

T =
1

2
m
(
u̇2 + v̇2 + ẇ2

)
+

1

2

(
jξω

2
ξ + jηω

2
η + jζω

2
ζ

)
+ jηζωηωζ

+meζωξ [(cφsψ − sφcψsθ) u̇− (sφsψsθ + cφcψ) v̇ − sφcθẇ]

+meζωη [cψcθu̇+ cθsψv̇ − sθẇ]

+meηωξ [(sφsψ + cφcψsθ) u̇+ (cφsψsθ − sφcψ) v̇ + cφcθẇ]

−meηωζ [cψcθu̇+ cθsψv̇ − sθẇ] .

2. Potential Energy

Assuming infinitesimal strain, the potential energy of each cross section is the strain

energy [4]:

V =
1

2

(
Dξρ

2
ξ +Dηρ

2
η +Dζρ

2
ζ

)
+Dηζρηρζ .

In his analogy, Love [11, pp. 51-53] shows that the curvature vector can be calcu-

lated in a manner similar to that of the angular velocity vector, replacing temporal
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differentiation with spatial differentiation:

ρ(s, t) =


φ′ − ψ′ sin θ

ψ′ cos θ sinφ+ θ′ cosφ)

ψ′ cos θ cosφ− θ′ sinφ)


B

=


ρξ

ρη

ρζ


B

.

With the kinetic and potential energy for each cross section known, the cross-

sectional Lagrangian is simply

l = T − V.

D. Inextensionality Constraint and Dependent Euler Angles

It is assumed that the length of the beam, specifically the length of the elastic

axis, remains constant during deformation. For an infinitesimal segment of the

elastic axis of length ds, the coordinates of the endpoints in the inertial frame are

(s+ u(s), v(s), w(s)) and (s+ ds+ u(s+ ds), v(s+ ds), w(s+ ds)). Letting

du = u(s+ ds)− u(s),

dv = v(s+ ds)− v(s),

dw = w(s+ ds)− w(s),

and requiring that the distance between the endpoints remains ds, the Pythagorean

theorem yields

(ds)2 = (dv)2 + (dw)2 + (ds+ du)2 . (2.6)

Taking the limit as ds→ 0, the inextensionality constraint (2.6) becomes

1 = v′
2

+ w′
2

+ (1 + u′)
2
. (2.7)
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Additionally, from (2.1), the relationship between the infinitesimal segment of

length ds, which is tangent to the ξ-axis, and the distance between coordinates of the

endpoints in the inertial frame is
ds

0

0


B

=


cψcθ cθsψ −sθ

−cφsψ + cψsφsθ cφcψ + sφsψsθ cθsφ

sφsψ + cφcψsθ −cψsφ+ cφsψsθ cφcθ



ds+ du

dv

dw


N

. (2.8)

Multiplying both sides of (2.8) by the inverse of the transformation matrix and taking

the limit as ds→ 0 leads to

cosψ cos θ = 1 + u′,

cos θ sinψ = v′,

sin θ = −w′,

permitting ψ and θ to be expressed in terms of the derivatives of the displacements:

ψ = tan−1
v′

1 + u′
,

θ = tan−1
−w′√

(1 + u′)2 + v′2
.

As a result, for each cross section, there are three independent degrees of freedom: v,

w, and φ.

E. Hamilton’s Principle

With the Lagrangian known for each cross section and multiplying the inextension-

ality constraint by a Lagrange multiplier, the extended form of Hamilton’s principle

provides the governing equations of motion associated with the variations δu, δv, δw,
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and δφ [4],[12, pp. 42-46]. These are derived in Appendix A and result in

G′u =

[
Aψ

∂ψ

∂u′
+ Aθ

∂θ

∂u′
+ λ (1 + u′)

]′
=

∂2l

∂t∂u̇
−Qu, (2.9)

G′v =

[
Aψ

∂ψ

∂v′
+ Aθ

∂θ

∂v′
+ λv′

]′
=

∂2l

∂t∂v̇
−Qv, (2.10)

G′w =

[
Aθ

∂θ

∂w′
+ λw′

]′
=

∂2l

∂t∂ẇ
−Qw, (2.11)

Aφ = Qφ, (2.12)

where

Aα =
∂2l

∂t∂α̇
+

∂2l

∂s∂α′
− ∂l

∂α
(α = ψ, θ, φ).

Equations (2.9)-(2.12) are simplified using the following Taylor series expansions

that are derived in Appendix B:

ψ ≈ v′
(

1 +
v′2

6
+
w′2

2

)
,

∂ψ

∂u′
≈ −v′,

∂ψ

∂v′
≈ 1− v′2

2
+
w′2

2
,

θ ≈ −w′
(

1 +
w′2

6

)
,

∂θ

∂u′
≈ w′,

∂θ

∂v′
≈ v′w′,

∂θ

∂w′
≈ −1 +

w′2

2
,

u′ ≈ −1

2

(
v′

2
+ w′

2
)
,
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u ≈ −1

2

∫ s

0

(
v′

2
+ w′

2
)
dŝ.

The terms in the extensional equation (2.9) are expanded in Taylor series to quadratic

order, and the terms in the bending and torsional equations (2.10)-(2.12) are expanded

to cubic order. The extensional equation only requires quadratic order as it is used

to determine λ, which only appears when multiplied by a spatial derivative of a

displacement in the bending equations.

F. Application of the Galerkin Method

Invoking the Galerkin method facilitates discretization of the beam, particularly with

regard to abrupt property changes along the length. The method consists of multi-

plying the equations of motion by a set of test functions and integrating the product

over the length of the beam. These test functions satisfy the homogeneous boundary

conditions of the equation of interest [13, pp. 267-268]. Furthermore, by invoking

integration by parts, the spatial derivatives of the parameters are eliminated by dis-

tributing the differentiation into the test function.

1. Bending Equations of Motion

For a cantilevered beam, the boundary conditions of the variables describing trans-

verse displacement, v and w, are [2, pp. 46-51]

v(0, t) = w(0, t) = 0, (2.13)

v′(0, t) = w′(0, t) = 0, (2.14)

v′′(L, t) = w′′(L, t) = 0, (2.15)

v′′′(L, t) = w′′′(L, t) = 0. (2.16)
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Equations (2.13) and (2.14) are a consequence of the geometric, fixed-end boundary

condition, which provides for no deflection and no slope. Equations (2.15) and (2.16)

are associated with the natural, free-end boundary condition and indicate that there

is no bending moment and no shear.

Given these boundary conditions, a set of test functions, Wi(s), where i ∈ N1, is

selected that satisfy Wi(0) = W ′
i (0) = W ′′

i (L) = W ′′′
i (L) = 0. Multiplying (2.10) and

(2.11) by Wi, expanding the rightmost side, integrating over the length of the beam,

and performing integration by parts yields

Wi(L)

[
Aψ

∂ψ

∂v′
+ Aθ

∂θ

∂v′

]
s=L

−
∫ L

0

W ′
i

(
Aψ

∂ψ

∂v′
+ Aθ

∂θ

∂v′

)
ds+

∫ L

0

Wi (λv
′)
′
ds

=

∫ L

0

Wi

[
mv̈ −meη

(
φ̇2 + φφ̈+ φ̈v′w′ + 2φ̇w′v̇′ + v̇′2 + 2φ̇v′ẇ′ + 2φv̇′ẇ′

)
−meη (v′v̈′ + φw′v̈′ + φv′ẅ′) +meζ

(
φφ̇2 − φ̈+

1

2
φ2φ̈+

1

2
φ̈v′

2
+ 2φ̇v′v̇′

)
+meζ

(
φv̇′2 − 2v̇′ẇ′ + φv′v̈′ − w′v̈′ − v′ẅ′

)
−Qv

]
ds (2.17)

and

Wi(L)

[
Aθ

∂θ

∂w′

]
s=L

−
∫ L

0

W ′
i

(
Aθ

∂θ

∂w′

)
ds+

∫ L

0

Wi (λw
′)
′
ds

=

∫ L

0

Wi

[
mẅ −meη

(
φφ̇2 − φ̈+

1

2
φ2φ̈+

1

2
φ̈w′

2
+ 2φ̇w′ẇ′

)
−meη

(
φẇ′2 + φw′ẅ′

)
−meζ

(
φ̇2 + φφ̈+ ẇ′2 + w′ẅ′

)
−Qw

]
ds. (2.18)

2. Torsional Equation of Motion

A cantilevered beam experiencing torsional motion cannot rotate at the fixed end and

does not undergo a twisting moment at the free end. As a result, a set of functions,

Φi, is chosen such that Φi(0) = Φ′i(L) = 0.

Analogous to the bending equations, (2.12) is multiplied by Φi and integrated
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over the length of the beam, providing∫ L

0

AφΦids =

∫ L

0

QφΦids.

G. The Lagrange Multiplier

In (2.17) and (2.18), the terms containing the Lagrange multiplier,

∫ L

0

Wi (λv
′)
′
ds

and

∫ L

0

Wi (λw
′)
′
ds, must be determined. The Lagrange multiplier is calculated from

the extensional equation (2.9), which can be written as

G′u = [Au + λ (1 + u′)]
′
=

∂2l

∂t∂u̇
−Qu, (2.19)

where

Au(s, t) = Aψ
∂ψ

∂u′
+ Aθ

∂θ

∂u′
.

Equation (2.19) is integrated from the free end of the beam to s:∫ s

L

G′udŝ =

∫ s

L

[Au + λ (1 + u′)]
′
dŝ =

∫ s

L

[
∂2l

∂t∂u̇
−Qu

]
dŝ.

Knowing that Gu(L, t) = 0 [5, 14],

λ(s, t) =
1

1 + u′(s, t)

[
−Au(s, t) +

∫ s

L

[
∂2l

∂t∂u̇
−Qu

]
dŝ

]
.
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The quadratic expansions of Au(s, t) and
∂2l

∂t∂u̇
are

Au(s, t) = jηζ (v̈′w′ + v′ẅ′)− jζv′v̈′ − jηw′ẅ′

+D′ζv
′v′′ +D′ηw

′w′′ +Dζv
′v′′′ +Dηw

′w′′′

−D′ηζ (w′v′′ + v′w′′)−Dηζ (w′v′′′ + v′w′′′) , (2.20)

∂2l

∂t∂u̇
=−m

∫ s

0

(
v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′

)
dŝ

+meη

(
−φ̈w′ − 2φ̇ẇ′ − v̈′ − φẅ′

)
+meζ

(
φ̈v′ + 2φ̇v̇′ + φv̈′ − ẅ′

)
. (2.21)

Equations (2.20) and (2.21) contain no zero-order terms. Additionally, Qu must

be small for the inextensionality constraint to be valid [5]. Therefore, (1 + u′)−1 is

expanded using a first-order Taylor series:

1

1 + u′
=

1√
1− v′2 − w′2

≈ 1.

This leads to the quadratic expression for λ:

λ(s, t) = −Au(s, t) +

∫ s

L

[
−m

∫ ŝ

0

(
v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′

)
ds̃

+meη

(
−φ̈w′ − 2φ̇ẇ′ − v̈′ − φẅ′

)
+meζ

(
φ̈v′ + 2φ̇v̇′ + φv̈′ − ẅ′

)
−Qu

]
dŝ,

and at L,

λ(L, t) = [−jηζ (v̈′w′ + v′ẅ′) + jζv
′v̈′ + jηw

′ẅ′]s=L .
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With λ known,

∫ L

0

Wi (λv
′)
′
ds and

∫ L

0

Wi (λw
′)
′
ds are determinable. Integration by

parts of the former yields∫ L

0

Wi (λv
′)
′
ds =−

∫ L

0

W ′
iv
′λds+Wi(L, t)λ(L, t)v′(L, t),

which is expanded as∫ L

0

Wi (λv
′)
′
ds =

∫ L

0

W ′
iv
′Au(s, t)ds

−
∫ L

0

W ′
iv
′
∫ s

L

{
−m

∫ ŝ

0

(
v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′

)
ds̃

+meη

(
−φ̈w′ − 2φ̇ẇ′ − v̈′ − φẅ′

)
+meζ

(
φ̈v′ + 2φ̇v̇′ + φv̈′ − ẅ′

)
−Qu

}
dŝds

+Wi(L, t)λ(L, t)v′(L, t).
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Au contains derivatives of the spatially dependent parameters, which are eliminated

by further integrating by parts, ultimately resulting in∫ L

0

Wi (λv
′)
′
ds =−

∫ L

0

{
Dζ

(
v′v′′

2
W ′
i + v′

2
v′′′W ′

i + v′
2
v′′W ′′

i + v′v′′
2
W ′
i

)
+Dη

(
v′w′′

2
W ′
i + v′w′w′′′W ′

i + v′w′w′′W ′′
i + v′′w′w′′W ′

i

)
−Dηζ

(
v′′

2
w′W ′

i + v′v′′′w′W ′
i + v′v′′w′W ′′

i

)
−Dηζ

(
3v′v′′w′′W ′

i + v′
2
w′′′W ′

i + v′
2
w′′W ′′

i

)}
ds

+

∫ L

0

W ′
iv
′
{
jηζ (v̈′w′ + v′ẅ′)− jζv′v̈′ − jηw′ẅ′

+Dζv
′v′′′ +Dηw

′w′′′ −Dηζ (w′v′′′ + v′w′′′)
}
ds

−
∫ L

0

W ′
iv
′
∫ s

L

{
−m

∫ ŝ

0

(
v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′

)
ds̃

+meη

(
−φ̈w′ − 2φ̇ẇ′ − v̈′ − φẅ′

)
+meζ

(
φ̈v′ + 2φ̇v̇′ + φv̈′ − ẅ′

)
−Qu

}
dŝds

+Wi

[
−jηζ

(
v′v̈′w′ + v′

2
ẅ′
)

+ jζv
′2v̈′ + jηv

′w′ẅ′
]
s=L
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and similarly∫ L

0

Wi (λw
′)
′
ds =−

∫ L

0

{
Dζ

(
w′v′′

2
W ′
i + w′v′v′′′W ′

i + w′v′v′′W ′′
i + v′v′′w′′W ′

i

)
+Dη

(
w′w′′

2
W ′
i + w′

2
w′′′W ′

i + w′
2
w′′W ′′

i + w′w′′
2
W ′
i

)
−Dηζ

(
v′w′′

2
W ′
i + v′w′w′′′W ′

i + v′w′w′′W ′′
i

)
−Dηζ

(
3v′′w′w′′W ′

i + v′′′w′
2
W ′
i + w′

2
v′′W ′′

i

)}
ds

+

∫ L

0

W ′
iw
′
{
jηζ (v̈′w′ + v′ẅ′)− jζv′v̈′ − jηw′ẅ′

+Dζv
′v′′′ +Dηw

′w′′′ −Dηζ (w′v′′′ + v′w′′′)
}
ds

−
∫ L

0

W ′
iw
′
∫ s

L

{
−m

∫ ŝ

0

(
v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′

)
ds̃

+meη

(
−φ̈w′ − 2φ̇ẇ′ − v̈′ − φẅ′

)
+meζ

(
φ̈v′ + 2φ̇v̇′ + φv̈′ − ẅ′

)
−Qu

}
dŝds

+Wi

[
−jηζ

(
v̈′w′

2
+ v′w′ẅ′

)
+ jζv

′v̈′w′ + jηw
′2ẅ′

]
s=L

.

H. The Equations of Motion

At this point, everything can be determined. Remaining terms containing deriva-

tives of the spatially dependent parameters are integrated by parts to distribute the

derivative into the cofactors.

Consequently, the equation of motion in the y-direction for each ith test function

is
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Wi(L)

[
(meη −meζφ)

∫ s

0

(
v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′

)
dŝ+meη (−v̈v′ − φv̈w′)

+meζ (φv̈v′ − v̈w′) + jξ

(
φ̈w′ + φ̇ẇ′ + 2w′v̇′ẇ′ + w′

2
v̈′
)

+ jη

(
−φ̇ẇ′ + φ2v̈′

)
+jη

(
−φẅ′ + 2φφ̇v̇′

)
+ jζ

(
−2φφ̇v̇′ + v′v̇′2 + φ̇ẇ′ + v′ẇ′2 + v̈′ − φ2v̈′

)
+jζ

(
v′

2
v̈′ + φẅ′ + v′w′ẅ′

)
+ jηζ

(
2φ̇v̇′ + 4φφ̇ẇ′ + 2φv̈′ − ẅ′ + 2φ2ẅ′

)
−1

2
jηζ

(
v′

2
ẅ′ + w′

2
ẅ′
)
−Dξw

′φ′′
]
s=L

−
∫ L

0

{
W ′
i

[
(meη −meζφ)

∫ s

0

(
v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′

)
dŝ

+meη (−v̈v′ − φv̈w′) +meζ (φv̈v′ − v̈w′) + jξ

(
φ̈w′ + φ̇ẇ′ + 2w′v̇′ẇ′ + w′

2
v̈′
)

+jη

(
−φ̇ẇ′ + φ2v̈′ − φẅ′ + 2φφ̇v̇′

)
+ jζ

(
−2φφ̇v̇′ + v′v̇′2 + φ̇ẇ′ + v′ẇ′2 + v̈′

)
+jζ

(
−φ2v̈′ + v′

2
v̈′ + φẅ′ + v′w′ẅ′

)
+ jηζ

(
2φ̇v̇′ + 4φφ̇ẇ′ + 2φv̈′ − ẅ′

)
+jηζ

(
2φ2ẅ′ − 1

2
v′

2
ẅ′ − 1

2
w′

2
ẅ′
)

+Dζ

(
v′v′′

2
+ v′′w′w′′

)
+Dηζ

(
−v′v′′w′′ + w′w′′

2
)

+ v′
∫ s

L

−m
∫ ŝ

0

(
v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′

)
ds̃

+meη

(
−φ̈w′ − 2φ̇ẇ′ − v̈′ − φẅ′

)
+meζ

(
φ̈v′ + 2φ̇v̇′ + φv̈′ − ẅ′

)
−Qudŝ

]
+W ′′

i

[
Dξ

(
φ′w′ + w′

2
v′′
)

+Dη

(
φ2v′′ − φw′′

)
+Dζ

(
v′′ − φ2v′′ + v′

2
v′′
)

+Dζ (φw′′ + v′w′w′′) +Dηζ

(
2φv′′ − w′′ + 2φ2w′′ − 1

2
v′

2
w′′ − 1

2
w′

2
w′′
)]}

ds

=

∫ L

0

Wi

(
mv̈ −meη

(
φ̇2 + φφ̈+ φ̈v′w′ + 2φ̇w′v̇′ + v̇′2 + 2φ̇v′ẇ′ + 2φv̇′ẇ′

)
−meη (+v′v̈′ + φw′v̈′ + φv′ẅ′) +meζ

(
φφ̇2 − φ̈+

1

2
φ2φ̈+

1

2
φ̈v′

2

)
+meζ

(
2φ̇v′v̇′ + φv̇′2 − 2v̇′ẇ′ + φv′v̈′ − w′v̈′ − v′ẅ′

)
−Qv

)
ds. (2.22)
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Additionally, the equation of motion in the z-direction is

Wi(L)

[
(meηφ+meζ)

∫ s

0

(
v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′

)
dŝ−meη (φv̈v′ + φẅw′)

+meζ (−v̈v′ − ẅw′)− jξ
(
φ̇v̇′ + w′v̇′2

)
+ jη

(
−φ̇v̇′ − 2φφ̇ẇ′ − φv̈′ + ẅ′

)
+jη

(
−φ2ẅ′ + w′ẇ′2 + w′

2
ẅ′
)

+ jζ

(
φ̇v̇′ + w′v̇′2 + 2φφ̇ẇ′ + φv̈′ + φ2ẅ′

)
+jζv

′w′v̈′ − jηζ
(
−4φφ̇v̇′ + v′v̇′2 + 2φ̇ẇ′ + 2w′v̇′ẇ′ + v′ẇ′2 + v̈′ − 2φ2v̈′

)
−jηζ

(
1

2
v′

2
v̈′ +

1

2
w′

2
v̈′ + 2φẅ′ + 2v′w′ẅ′

)]
s=L

−
∫ L

0

{
W ′
i

[
(meηφ+meζ)

∫ s

0

(
v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′

)
dŝ

−meη (φv̈v′ + φẅw′) +meζ (−v̈v′ − ẅw′)− jξ
(
φ̇v̇′ + w′v̇′2

)
− jηφ̇v̇′

+jη

(
−2φφ̇ẇ′ − φv̈′ + ẅ′ − φ2ẅ′ + w′

2
ẅ′ + w′ẇ′2

)
+ jζ

(
φ̇v̇′ + w′v̇′2

)
+jζ

(
2φφ̇ẇ′ + φv̈′ + φ2ẅ′ + v′v̈′w′

)
− jηζ

(
−4φφ̇v̇′ + v′v̇′2 + 2φ̇ẇ′

)
−jηζ

(
2w′v̇′ẇ′ + v′ẇ′2 + v̈′ − 2φ2v̈′ +

1

2
v′

2
v̈′ +

1

2
w′

2
v̈′ + 2φẅ′ + 2v′w′ẅ′

)
+Dξ

(
φ′v′′ + w′v′′

2
)

+Dηw
′w′′

2
+Dζv

′v′′w′′ −Dηζ

(
v′′w′w′′ + v′w′′

2
)

+w′
∫ s

L

−m
∫ ŝ

0

(
v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′

)
ds̃−meηφ̈w′

+meη

(
−2φ̇ẇ′ − v̈′ − φẅ′

)
+meζ

(
φ̈v′ + 2φ̇v̇′ + φv̈′ − ẅ′

)
−Qudŝ

]
+W ′′

i

[
Dη

(
−φv′′ + w′′ − φ2w′′ + w′

2
w′′
)

+Dζ

(
φv′′ + φ2w′′ + v′v′′w′

)
+Dηζ

(
−v′′ + 2φ2v′′ − 1

2
v′

2
v′′ − 1

2
w′

2
v′′ − 2φw′′ − 2v′w′w′′

)]}
ds

=

∫ L

0

Wi

(
mẅ −meη

(
φφ̇2 − φ̈+

1

2
φ2φ̈+

1

2
φ̈w′

2
+ 2φ̇w′ẇ′

)
−meη

(
φẇ′2 + φw′ẅ′

)
−meζ

(
φ̇2 + φφ̈+ ẇ′2 + w′ẅ′

)
−Qw

)
ds. (2.23)
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Finally, the torsional equation of motion is∫ L

0

{
Φi

[
(meηw

′ −meζv′)
∫ s

0

(
v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′

)
dŝ

+meη

(
−φv̈ + ẅ − 1

2
φ2ẅ − v̈v′w′ − 1

2
ẅw′

2

)
+meζ

(
−v̈ +

1

2
φ2v̈ − φẅ +

1

2
v̈v′

2

)
+jξ

(
φ̈+ v̇′ẇ′ + w′v̈′

)
+ jη

(
−φv̇′2 + v̇′ẇ′ + φẇ′2

)
+jζ

(
φv̇′2 − φẇ′2 − v̇′ẇ′

)
− jηζ

(
v̇′2 − ẇ′2 + 4φv̇′ẇ′

)
+Dη

(
φv′′

2 − v′′w′′ − φw′′2
)

+Dζ

(
−φv′′2 + v′′w′′ + φw′′

2
)

+Dηζ

(
v′′

2
+ 4φv′′w′′ − w′′2

)]
+ Φ′iDξ (φ′ + v′′w′)

}
ds =

∫ L

0

QφΦids. (2.24)

With the equations of motion known, a method is needed to provide an efficient and

accurate solution.
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CHAPTER III

THE USE OF SHAPE FUNCTIONS IN THE SOLUTION TO THE

EQUATIONS OF MOTION

A. Introduction

The equations of motion (2.22)-(2.24) are nonlinear, coupled partial differential equa-

tions in time and space. As mentioned previously, the boundary conditions are known.

Therefore, it is possible to represent the deformations as an infinite sum of the prod-

uct of spatially dependent, linearly independent shape functions and time-dependent

coefficients.

B. Shape Function Selection

1. Bending Motion

For the case of a uniform beam undergoing planar bending along the x-z plane, the

simplified linear equation of motion in which the mass moment of inertia and mass

offset are neglected is

Dηw
′′′′ +mẅ = 0. (3.1)

The boundary conditions are given in (2.13)-(2.16). Assuming this partial differential

equation is separable in time and space, w is expressed as

w(s, t) = w(t)W (s). (3.2)
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Substituting (3.2) into (3.1) results in

W ′′′′(s)

W (s)
= − m

Dζ

ẅ(t)

w(t)
= λ,

where λ is a constant. The spatial contribution to the equation is therefore

W ′′′′(s)− λW (s) = 0, (3.3)

and (2.13)-(2.16) lead to W (0) = W ′(0) = W ′′(L) = W ′′′(L) = 0. The sign of λ is

determined by applying the Galerkin method to the spatial equation (3.3), integrating

by parts, and applying the boundary conditions:∫ L

0

W ′′′′(s)W (s)ds = λ

∫ L

0

W 2(s)ds,∫ L

0

W ′′(s)W ′′(s)ds = λ

∫ L

0

W 2(s)ds.

This confirms that λ must be positive for a nontrivial solution to exist. The solution

to (3.3) is of the form

W (s) = A cosh
(

4
√
λ s
)

+B sinh
(

4
√
λ s
)

+ C cos
(

4
√
λ s
)

+D sin
(

4
√
λ s
)
.

Since W (0) = W ′(0) = 0,

W (s) = A
[
cosh

(
4
√
λ s
)
− cos

(
4
√
λ s
)]

+B
[
sinh

(
4
√
λ s
)
− sin

(
4
√
λ s
)]
.

A and B are determined from the remaining two boundary conditions, which require

that

W ′′(L) = A
√
λ
[
cosh

(
4
√
λL
)

+ cos
(

4
√
λL
)]

+B
√
λ
[
sinh

(
4
√
λL
)

+ sin
(

4
√
λL
)]

= 0
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and

W ′′′(L) = Aλ3/4
[
sinh

(
4
√
λL
)
− sin

(
4
√
λL
)]

+Bλ3/4
[
cosh

(
4
√
λL
)

+ cos
(

4
√
λL
)]

= 0,

or equivalently:cosh
(

4
√
λL
)

+ cos
(

4
√
λL
)

sinh
(

4
√
λL
)

+ sin
(

4
√
λL
)

sinh
(

4
√
λL
)
− sin

(
4
√
λL
)

cosh
(

4
√
λL
)

+ cos
(

4
√
λL
)

AB

 =

0

0

 . (3.4)

For a nontrivial solution to A and B, the determinant of the coefficient matrix in

(3.4) must be zero, which, when simplified, yields

cosh
(

4
√
λL
)

cos
(

4
√
λL
)

+ 1 = 0.

Letting β = 4
√
λL, the spatial contribution to (3.1) is

Wi(s) = cosh

(
βis

L

)
− cos

(
βis

L

)
− σi

[
sinh

(
βis

L

)
− sin

(
βis

L

)]
,

where

σi =
cosh βi + cos βi
sinh βi + sin βi

,

cosh βi cos βi + 1 = 0.

Table I lists the first five values of β and σ.

The functions Wi(s) are the mode shapes of the simple beam described at the

beginning of the section and are only approximate mode shapes for beams of greater

complexity. Nonetheless, this set of functions provides a systematic method of gener-

ating linearly independent functions that satisfy the boundary conditions for trans-

verse displacements. Therefore, these functions are used as shape functions to be
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Table I. Values of the parameters in the bending shape function.

i βi σi

1 1.87510 0.734096

2 4.69409 1.01847

3 7.85476 0.999224

4 10.9955 1.00003

5 14.1372 0.999999

multiplied by time coefficients and summed to provide the displacement. The fidelity

of the solution is preserved by using a sufficient amount of functions to accurately

model the solution. These shape functions are additionally used to comprise the as-

sociated set of test functions used for the Galerkin method in the previous chapter.

Figure 3 contains a plot of the first five bending shape functions.

2. Torsional Motion

For the case of a uniform beam undergoing pure torsional motion about the x-axis,

the simplified linear equation of motion in which the mass offset is neglected is

Dξφ
′′ = jξφ̈. (3.5)

As explained in the previous chapter, the boundary conditions are φ(0, t) = φ′(L, t) =

0. Assuming this partial differential equation is also separable in time and space, φ

is expressed as

φ(s, t) = φ(t)Φ(s). (3.6)
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Figure 3. The first five bending shape functions.

Substituting (3.6) into (3.5) results in

Φ′′(s)

Φ(s)
=

jξ
Dξ

φ̈(t)

φ(t)
= −λ,

where λ is a constant. The spatial contribution to the equation is therefore

Φ′′(s) + λΦ(s) = 0, (3.7)

and the boundary conditions lead to Φ(0) = Φ′(L) = 0. The sign of λ is determined

by applying the Galerkin method to the spatial equation (3.7), integrating by parts,
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and applying the boundary conditions:∫ L

0

Φ′′(s)Φ(s)ds = −λ
∫ L

0

Φ2(s)ds,∫ L

0

Φ′(s)Φ′(s)ds = λ

∫ L

0

Φ2(s)ds.

This confirms that λ must be positive for a nontrivial solution to exist. The solution

to (3.7) is of the form

Φ(s) = A cos
(√

λ s
)

+B sin
(√

λ s
)
.

Since Φ(0) = 0,

Φ(s) = B sin
(√

λ s
)
.

B is determined from Φ′(L) = 0:

Φ′(L) = B
√
λ cos

(√
λL
)

= 0.

For a nontrivial solution, B cannot be zero; therefore,

cos
(√

λL
)

= 0,

or

√
λi L =

(2i− 1) π

2
for i ∈ N1.

Letting γi =
√
λi L, the spatial contribution to (3.5) can be written as

Φi(s) =
√

2 sin
γis

L
,
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where

γi =
(2i− 1)π

2
.

As with the bending shape functions, this set of functions provides a systematic

method of generating linearly independent functions that satisfy the boundary condi-

tions for torsional motion. Analogously, these functions are used as shape functions

for the solution of the torsional displacement in the nonlinear, non-uniform equations.

The fidelity of the solution is preserved by using a sufficient amount of shape func-

tions, and these functions also comprise the corresponding test functions used in the

Galerkin method. The first three torsional shape functions are plotted in Figure 4.

0.0 0.2 0.4 0.6 0.8 1.0
-1.5
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Shape 1
Shape 2
Shape 3
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Figure 4. The first three torsional shape functions.
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C. Ordinary Differential Equation Form

Using these shape functions, the displacements can be approximated by

w =
l∑

i=1

wi(t)Wi(s), v =
m∑
i=1

vi(t)Wi(s), φ =
n∑
i=1

φi(t)Φi(s).

Upon invoking this representation, the partial differential equations reduce to a sys-

tem of ordinary differential equations in time, for which the time coefficients are the

unknown quantities. Therefore, the equations of motion are written in the following

manner using linear and non-linear arrays:

[ML +MNL]


ẅ

v̈

φ̈

+ [CL + CNL]


ẇ

v̇

φ̇

+ [KL +KNL]


w

v

φ

 = FL + FNL, (3.8)

where w, v, and φ each represent vectors containing the time coefficients: {w1, ..., wl}T ,

{v1, ..., vm}T , and {φ1, ..., φn}T .

Each of the matrices is (l +m+ n) × (l +m+ n) and can be expressed as the

concatenation of 9 submatrices with the following dimensions:
[l × l] [l ×m] [l × n]

[m× l] [m×m] [m× n]

[n× l] [n×m] [n× n]

 .
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D. Linear Matrices

1. Linear Mass Matrix

The submatrices of the linear mass matrix are defined as follows:

[ML]i,j =

∫ L

0

(
WimWj +W ′

i jηW
′
j

)
ds−

[
WijηW

′
j

]
s=L

,

[ML]i,l+j = −
∫ L

0

W ′
i jηζW

′
jds+

[
WijηζW

′
j

]
s=L

,

[ML]i,l+m+j =

∫ L

0

WimeηΦjds,

[ML]l+i,j = −
∫ L

0

W ′
i jηζW

′
jds+

[
WijηζW

′
j

]
s=L

,

[ML]l+i,l+j =

∫ L

0

(
WimWj +W ′

i jζW
′
j

)
ds−

[
WijζW

′
j

]
s=L

,

[ML]l+i,l+m+j = −
∫ L

0

WimeζΦjds,

[ML]l+m+i,j =

∫ L

0

ΦimeηWjds,

[ML]l+m+i,l+j = −
∫ L

0

ΦimeζWjds,

[ML]l+m+i,l+m+j =

∫ L

0

ΦijξΦjds.

2. Linear Damping Matrix

In the equations of motion, there are no linear occurrences of the first time derivative

of any of the deformations as there is no energy dissipation. Therefore, the linear

damping matrix is zero:

[CL] = 0.
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3. Linear Stiffness Matrix

The nonzero submatrices of the linear stiffness matrix are

[KL]i,j =

∫ L

0

W ′′
i DηW

′′
j ds,

[KL]i,l+j = −
∫ L

0

W ′′
i DηζW

′′
j ds,

[KL]l+i,j = −
∫ L

0

W ′′
i DηζW

′′
j ds,

[KL]l+i,l+j =

∫ L

0

W ′′
i DζW

′′
j ds,

[KL]l+m+i,l+m+j =

∫ L

0

Φ′iDξΦ
′
jds.

E. Nonlinear Matrices

In determining the nonlinear matrices, there are several possibilities concerning where

to assign terms from the equations of motion. This decision is done systematically

such that terms containing second-order time derivatives are assigned to the mass

matrix, remaining terms that contain first-order time derivatives are assigned to the

damping matrix, and terms containing no time derivatives are assigned to the stiffness

matrix. Furthermore, for terms containing factors that have the same-order time

derivative, placement within the matrix is done such that the term with the lowest-

order spatial derivative is the unknown. Finally, for instances in which the temporal

and spatial derivatives of the factors are both of the same order, the spatial derivative

of v is taken to be the unknown.
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1. Nonlinear Mass Matrix

The nonzero submatrices of the nonlinear mass matrix are:

[MNL]i,j =

∫ L

0

{
W ′
i (meηφ+meζ)

∫ s

0

w′W ′
jdŝ+W ′

i [−meηφw′ −meζw′]Wj

+W ′
iw
′
∫ s

L

(−meηφ−meζ)W ′
jdŝ

+W ′
i

(
−2jηζφ− 2jηζv

′w′ − jηφ2 + jηw
′2 + jζφ

2
)
W ′
j

−W ′
iw
′
∫ s

L

m

∫ ŝ

0

w′W ′
jds̃dŝ+Wi [−meηφw′ −meζw′]W ′

j

}
ds

−
[
Wi (meηφ+meζ)

∫ s

0

w′W ′
jdŝ+Wi [−meηφw′ −meζw′]Wj

+Wi

(
−2jηζφ− 2jηζv

′w′ + jηw
′2 − jηφ2 + jζφ

2
)
W ′
j

]
s=L

,

[MNL]i,l+j =

∫ L

0

{
W ′
i (meηφ+meζ)

∫ s

0

v′W ′
jdŝ+W ′

i [−meηφv′ −meζv′]Wj

+W ′
iw
′
∫ s

L

(−meη +meζφ)W ′
jdŝ

+W ′
i

(
2jηζφ

2 − 1

2
jηζv

′2 − 1

2
jηζw

′2 − jηφ+ jζφ+ jζv
′w′
)
W ′
j

−W ′
iw
′
∫ s

L

m

∫ ŝ

0

v′W ′
jds̃dŝ

}
ds

−
[
Wi (meηφ+meζ)

∫ s

0

v′W ′
jdŝ+Wi [−meηφv′ −meζv′]Wj

+Wi

(
2jηζφ

2 − 1

2
jηζv

′2 − 1

2
jηζw

′2 − jηφ+ jζφ+ jζv
′w′
)
W ′
j

]
s=L

,

[MNL]i,l+m+j =

∫ L

0

{
W ′
iw
′
∫ s

L

(−meηw′ +meζv
′) Φjdŝ

+Wi

[
−meη

(
1

2
φ2 +

1

2
w′

2

)
−meζφ

]
Φj

}
ds,
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[MNL]l+i,j =

∫ L

0

{
W ′
i (meη −meζφ)

∫ s

0

w′W ′
jdŝ

+W ′
iv
′
∫ s

L

(−meηφ−meζ)W ′
jdŝ

+Wi [−meηφv′ −meζv′]W ′
j −W ′

iv
′
∫ s

L

m

∫ ŝ

0

w′W ′
jds̃dŝ

+W ′
i

(
2jηζφ

2 − 1

2
jηζv

′2 − 1

2
jηζw

′2 − jηφ+ jζφ+ jζv
′w′
)
W ′
j

}
ds

−
[
Wi (meη −meζφ)

∫ s

0

w′W ′
jdŝ+Wi [−meηφv′ −meζv′]Wj

+Wi

(
2jηζφ

2 − 1

2
jηζv

′2 − 1

2
jηζw

′2 − jηφ+ jζφ+ jζv
′w′
)
W ′
j

]
s=L

,

[MNL]l+i,l+j =

∫ L

0

{
W ′
i (meη −meζφ)

∫ s

0

v′W ′
jdŝ

+W ′
i [−meη (v′ + φw′) +meζ (φv′ − w′)]Wj

+W ′
iv
′
∫ s

L

(−meη +meζφ)W ′
jdŝ

+Wi [−meη (v′ + φw′) +meζ (φv′ − w′)]W ′
j

+W ′
i

(
2jηζφ+ jξw

′2 + jηφ
2 − jζφ2 + jζv

′2
)
W ′
j

−W ′
iv
′
∫ s

L

m

∫ ŝ

0

v′W ′
jds̃dŝ

}
ds−

[
Wi (meη −meζφ)

∫ s

0

v′W ′
jdŝ

+Wi [−meη (v′ + φw′) +meζ (φv′ − w′)]Wj

+Wi

(
2jηζφ+ jξw

′2 + jηφ
2 − jζφ2 + jζv

′2
)
W ′
j

]
s=L

,

[MNL]l+i,l+m+j =

∫ L

0

{
W ′
iv
′
∫ s

L

(−meηw′ +meζv
′) Φjdŝ+W ′

i jξw
′Φj

+Wi

[
−meη (φ+ v′w′) +meζ

(
1

2
φ2 +

1

2
v′

2

)]
Φj

}
ds

− [Wijξw
′Φj]s=L ,
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[MNL]l+m+i,j =

∫ L

0

Φi

{
(meηw

′ −meζv′)
∫ s

0

w′W ′
jdŝ

+

[
−meη

(
1

2
φ2 +

1

2
w′

2

)
−meζφ

]
Wj

}
ds,

[MNL]l+m+i,l+j =

∫ L

0

Φi

{
(meηw

′ −meζv′)
∫ s

0

v′W ′
jdŝ+ jξw

′W ′
j

+

[
−meη (φ+ v′w′) +meζ

(
1

2
φ2 +

1

2
v′

2

)]
Wj

}
ds. (3.9)

2. Nonlinear Damping Matrix

The nonzero submatrices of the nonlinear damping matrix are

[CNL]i,j =

∫ L

0

{
W ′
i (meηφ+meζ)

∫ s

0

ẇ′W ′
jdŝ+Wi (−meηφẇ′ −meζẇ′)W ′

j

+W ′
i (−jηζv′ẇ′ + jηw

′ẇ′)W ′
j −W ′

iw
′
∫ s

L

m

∫ ŝ

0

ẇ′W ′
jds̃dŝ

}
ds

−
[
Wi (meηφ+meζ)

∫ s

0

ẇ′W ′
jdŝ+Wi (−jηζv′ẇ′ + jηw

′ẇ′)W ′
j

]
s=L

,

[CNL]i,l+j =

∫ L

0

{
W ′
i (meηφ+meζ)

∫ s

0

v̇′W ′
jdŝ

+W ′
i (−jηζv′v̇′ − 2jηζw

′ẇ′ − jξw′v̇′ + jζ v̇
′w′)W ′

j

−W ′
iw
′
∫ s

L

m

∫ ŝ

0

v̇′W ′
jds̃dŝ

}
ds

−
[
Wi (meηφ+meζ)

∫ s

0

v̇′W ′
jdŝ

+Wi (−jηζv′v̇′ − 2jηζw
′ẇ′ − jξw′v̇′ + jζ v̇

′w′)W ′
j

]
s=L

,
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[CNL]i,l+m+j =

∫ L

0

{
W ′
iw
′
∫ s

L

(−2meηẇ
′ + 2meζ v̇

′) Φjdŝ

+Wi

[
−meη

(
φφ̇+ 2w′ẇ′

)
−meζ φ̇

]
Φj +W ′

i (4jηζφv̇
′ − 2jηζẇ

′) Φj

+W ′
i (−jξv̇′ − jηv̇′ − 2jηφẇ

′ + jζ v̇
′ + 2jζφẇ

′) Φj

}
ds

− [Wi (4jηζφv̇
′ − 2jηζẇ

′ − jξv̇′ − jηv̇′ − 2jηφẇ
′ + jζ v̇

′) Φj]s=L

− 2 [Wijζφẇ
′Φj]s=L ,

[CNL]l+i,j =

∫ L

0

{
W ′
i (meη −meζφ)

∫ s

0

ẇ′W ′
jdŝ+W ′

i jζv
′ẇ′W ′

j

−W ′
iv
′
∫ s

L

m

∫ ŝ

0

ẇ′W ′
jds̃dŝ

}
ds

−
[
Wi (meη −meζφ)

∫ s

0

ẇ′W ′
jdŝ+Wijζv

′ẇ′W ′
j

]
s=L

,

[CNL]l+i,l+j =

∫ L

0

{
W ′
i (meη −meζφ)

∫ s

0

v̇′W ′
jdŝ

+Wi [−meη (v̇′ + 2φẇ′) +meζ (φv̇′ − 2ẇ′)]W ′
j

+W ′
i (2jξw

′ẇ′ + jζv
′v̇′)W ′

j −W ′
iv
′
∫ s

L

m

∫ ŝ

0

v̇′W ′
jds̃dŝ

}
ds

−
[
Wi (meη −meζφ)

∫ s

0

v̇′W ′
jdŝ+Wi (2jξw

′ẇ′ + jζv
′v̇′)W ′

j

]
s=L

,

[CNL]l+i,l+m+j =

∫ L

0

{
W ′
iv
′
∫ s

L

(−2meηẇ
′ + 2meζ v̇

′) Φjdŝ

+Wi

[
−meη

(
φ̇+ 2w′v̇′ + 2v′ẇ′

)
+meζ

(
φφ̇+ 2v′v̇′

)]
Φj

+W ′
i (2jηζ v̇

′ + 4jηζφẇ
′ + jξẇ

′ − jηẇ′ + 2jηφv̇
′ + jζẇ

′) Φj

− 2W ′
i jζφv̇

′Φj

}
ds− [Wi (2jηζ v̇

′ + 4jηζφẇ
′ + jξẇ

′ − jηẇ′) Φj]s=L

− [Wi (2jηφv̇
′ + jζẇ

′ − 2jζφv̇
′) Φj]s=L ,
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[CNL]l+m+i,j =

∫ L

0

{
Φi (meηw

′ −meζv′)
∫ s

0

ẇ′W ′
jdŝ

+ Φi (jηζẇ
′ + jηφẇ

′ − jζφẇ′)W ′
j

}
ds,

[CNL]l+m+i,l+j =

∫ L

0

{
Φi (meηw

′ −meζv′)
∫ s

0

v̇′W ′
jdŝ+ Φi (−jηζ v̇′ − 4jηζφẇ

′)W ′
j

+ Φi (jξẇ
′ − jηφv̇′ + jηẇ

′ + jζ v̇
′φ− jζẇ′)W ′

j

}
ds. (3.10)

3. Nonlinear Stiffness Matrix

The submatrices of the nonlinear stiffness matrix are

[KNL]i,j =

∫ L

0

{
W ′
i

(
Dξv

′′2 +Dηw
′′2 −Dηζv

′′w′′
)
W ′
j

+W ′′
i

(
Dηw

′w′′ − 1

2
Dηζv

′′w′
)
W ′
j

}
ds,

[KNL]i,l+j =

∫ L

0

{
W ′
i

(
Dζv

′′w′′ −Dηζw
′′2
)
W ′
j

+W ′′
i

(
Dζv

′′w′ − 1

2
Dηζv

′v′′ − 2Dηζw
′w′′
)
W ′
j

}
ds,

[KNL]i,l+m+j =

∫ L

0

{
W ′
iDξv

′′Φ′j +W ′′
i (−Dηv

′′ −Dηφw
′′ +Dζv

′′ +Dζφw
′′) Φj

+W ′′
i (2Dηζφv

′′ − 2Dηζw
′′) Φj

}
ds,
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[KNL]l+i,j =

∫ L

0

{
W ′
i

(
Dζv

′′w′′ +Dηζw
′′2
)
W ′
j

+W ′′
i

(
Dξw

′v′′ − 1

2
Dηζw

′w′′
)
W ′
j

}
ds,

[KNL]l+i,l+j =

∫ L

0

{
W ′
i

(
Dζv

′′2 −Dηζv
′′w′′
)
W ′
j

+W ′′
i

(
Dζv

′v′′ +Dζw
′w′′ − 1

2
Dηζv

′w′′
)
W ′
j

}
ds,

[KNL]l+i,l+m+j =

∫ L

0

{
W ′′
i (Dηφv

′′ −Dηw
′′ −Dζφv

′′ +Dζw
′′ + 2Dηζv

′′) Φj

+ 2W ′′
i Dηζφw

′′Φj +W ′′
i Dξw

′Φ′j

}
ds+

[
WiDξw

′Φ′′j
]
s=L

,

[KNL]l+m+i,j =

∫ L

0

{
−ΦiDηζw

′′W ′′
j + Φ′iDξv

′′W ′
j

}
ds,

[KNL]l+m+i,l+j =

∫ L

0

Φi (−Dηw
′′ +Dζw

′′ +Dηζv
′′)W ′′

j ds,

[KNL]l+m+i,l+m+j =

∫ L

0

Φi

(
Dηv

′′2 −Dηw
′′2 −Dζv

′′2 +Dζw
′′2 + 4Dηζv

′′w′′
)

Φjds.

(3.11)
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F. Forcing Vectors

1. Linear Forcing Vector

The subvectors of the linear forcing vector are

{FL}i =

∫ L

0

WiQwds,

{FL}l+i =

∫ L

0

WiQvds,

{FL}l+m+i =

∫ L

0

ΦiQφds.

2. Nonlinear Forcing Vector

The nonzero subvectors of the nonlinear forcing vector are

{FNL}i = −
∫ L

0

W ′
iw
′
∫ L

s

Qudŝds,

{FNL}l+i = −
∫ L

0

W ′
iv
′
∫ L

s

Qudŝds.
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CHAPTER IV

NUMERICAL IMPLEMENTATION

A. Overview

The shape-function based ordinary differential equation of motion (3.8) is evaluated

numerically in Fortran 90 using explicit integration. Essentially, this process consists

of calculating the mass, damping, and stiffness matrices and the force vectors at each

time step.

B. Matrices

The time-invariant linear matrices are calculated once using Simpson’s 1
3

rule. The

forcing vectors and nonlinear matrices are dependent upon time and consequently

calculated for every time step.

From a computational perspective, the triple integrals in the nonlinear mass

and damping matrices are particularly expensive. However, since the deformations

are expressed in terms of separable variables, the time-dependent contribution can

be extracted, enabling the spatial integrals to be computed once and accordingly

multiplied by the corresponding time coefficients and summed subsequently.

For example, in the triple integral

−
∫ L

0

W ′
i (s)w

′(s, t)

∫ s

L

m(ŝ)

∫ ŝ

0

v̇′(s̃, t)W ′
j(s̃)ds̃dŝds,

the deformations are expanded in terms of shape functions and time coefficients:∫ L

0

W ′
i (s)

{
l∑

a=1

wa(t)W
′
a(s)

}∫ L

s

m(ŝ)

∫ ŝ

0

{
m∑
b=1

v̇b(t)W
′
b(s̃)

}
W ′
j(s̃)ds̃dŝds.
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The time coefficients and summations are rearranged to yield

l∑
a=1

m∑
b=1

{
wa(t)v̇b(t)

∫ L

0

W ′
i (s)W

′
a(s)

∫ L

s

m(ŝ)

∫ ŝ

0

W ′
b(s̃)W

′
j(s̃)ds̃dŝds

}
.

Furthermore, ∫ ŝ

0

W ′
b(s̃)W

′
j(s̃)ds̃

has a closed-form solution, ultimately reducing the calculation of the triple integral at

every time step to a once-computed double integral that undergoes double summation

at subsequent time steps. The remaining integrals in the nonlinear matrices are

calculated in a similar manner, reducing the integrals to double summations.

C. Forcing Vectors

The forcing vectors are computed at every time step using Simpson’s 1
3

rule. For the

case of p point loads, Fi(t), expressed in the inertial frame,

Q =


Qu

Qv

Qw

 =

p∑
i=1

δ(s− si)Fi,

where δ(s) is the Dirac delta function [13, pp. 391-392]. This is done similarly for Qφ

with the moment about the ξ-axis, leading to

{FL}i =

∫ L

0

WiQwds =

p∑
j=1

Wi(sj)Fzj(t),

{FL}l+i =

∫ L

0

WiQvds =

p∑
j=1

Wi(sj)Fyj(t),

{FL}l+m+i =

∫ L

0

ΦiQφds =

q∑
k=1

Φi(sk)Mξk(t),
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and

{FNL}i = −
∫ L

0

W ′
iw
′
∫ L

s

Quds = −
p∑
j=1

Fxj(t)

∫ sj

0

W ′
i (s)w

′(s, t)ds,

{FNL}l+i = −
∫ L

0

W ′
iv
′
∫ L

s

Quds = −
p∑
j=1

Fxj(t)

∫ sj

0

W ′
i (s)v

′(s, t)ds,

or

{FNL}i = −
p∑
j=1

l∑
a=1

Fxj(t)wa(t)

∫ sj

0

W ′
i (s)W

′
a(s)ds,

{FNL}l+i = −
p∑
j=1

m∑
a=1

Fxj(t)va(t)

∫ sj

0

W ′
i (s)W

′
a(s)ds,

where the integral has a closed-form solution.

D. Solution

Letting the time coefficients be represented by

X = {w1, . . . , wl, v1, . . . , vm, φ1, . . . , φn} ,

equation (3.8) is rewritten such that

d

dt

X

Ẋ

 =


Ẋ

[ML +MNL]−1
{

FL + FNL − [KL +KNL] X− [CNL] Ẋ

}
 , (4.1)

or in shorthand as

Ẏ = F(Y, t).
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At each point in time, (4.1) is integrated using a fourth-order Runge-Kutta method

[15, pp. 340-343]:

Yn+1 = Yn +
1

6
∆t (k1 + 2k2 + 2k3 + k4) ,

where

tn+1 = tn + ∆t,

k1 = F (Yn, tn) ,

k2 = F

(
Yn +

1

2
∆tk1, tn +

1

2
∆t

)
,

k3 = F

(
Yn +

1

2
∆tk2, tn +

1

2
∆t

)
,

k4 = F (Yn + ∆tk3, tn + ∆t) .

This provides the time coefficients and the first derivatives of the time coefficients for

each time step. Consequently, the deformation of the elastic axis can be calculated

with respect to time by summing the product of the time coefficients and the shape

functions at the position of interest. Knowing the deformed position of each point

along the elastic axis as well as φ, the angle about ξ that the cross section coordi-

nate system is rotated, enables the displacement of any point on the structure to be

calculated.
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CHAPTER V

VALIDATION

A. Method

The structural solver is validated by comparing results with those generated by

Abaqus, a commercial finite element software package. Validation consists of compar-

ing natural frequencies and displacements arising from a time-varying force applied

to the beam.

B. Natural Frequencies

Three beams are used as test cases for matching natural frequencies obtained by

Abaqus. In Abaqus, the natural frequencies are calculated using a linear perturba-

tion method [16]. Each of the beams is modeled in Abaqus using quadratic three-

dimensional continuum elements. Furthermore, for each case, the mesh is refined

twice. The five frequencies corresponding to the first five vibrational modes are com-

pared with those obtained by the linear contribution to the beam model.

For these comparisons, the beam model uses five shape functions for each of the

three independent degrees of freedom. The linear contribution to the beam model

provides a system of 15 coupled linear second-order differential equations:

ML


ẅ

v̈

φ̈

+KL


w

v

φ

 = 0.

An analytical solution is obtainable for the shape function time coefficients, and the

natural frequencies are calculated by solving the characteristic equation [17, pp. 478-
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483]:

∣∣M−1
L KL − (2πf)2 I

∣∣ = 0.

To calculate the mode shape for each frequency, each of the shape functions is

relatively weighed using the corresponding element of the eigenvector and summed.

Letting X denote the matrix consisting of the eigenvectors, in which each eigenvector

is a row, the shapes of the independent degrees of freedom of the ith mode shape are

given by

wi(s) =
l∑

j=1

Xi,jWj(s), vi(s) =
m∑
j=1

Xi,l+jWj(s), φi(s) =
n∑
j=1

Xi,l+m+jΦj(s).

1. Case 1: A Tapered Beam

The first beam used for frequency comparison is a linearly tapered, homogeneous

beam composed of aluminum alloy 6061-T6. This beam choice provides a simple

example of a non-uniform beam. 6061-T6 has a density of 2710 kg/m3, a Young’s

modulus of 70 GPa, and a modulus of rigidity of 26 GPa [18, p. 747].

The beam is shown in Figure 5. It is 20-cm long and consists of a 2 cm × 1 cm

cross section at the fixed end and a 1 cm × 1 cm cross section at the free end. The

properties of the tapered beam are listed in Table II. For a rectangular cross section

with dimensions a × b, where a is the greater of the two, the torsion constant can be

approximated as follows [10, p. 401]:

K = ab3
[

1

3
− 0.21

b

a

(
1− b4

12a4

)]
. (5.1)

Table III shows the mesh sizes for the three finite element meshes. For each of

the three meshes, the first five frequencies are tabulated in Table IV. The error is

measured by taking the absolute value of the difference between the frequencies of
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X

Y

Z

Figure 5. Tapered beam with 100×5×6 mesh.

Table II. Properties of tapered beam.

Parameter Value

m(s) 0.542− 1.355s kg/m

jξ(s) (0.22583− 1.4679s+ 3.3875s2 − 2.8229s3)× 10−4 kg m2/m

jη(s) (0.18067− 1.3550s+ 3.3875s2 − 2.8229s3)× 10−4 kg m2/m

jζ(s) (0.045167− 0.11292s)× 10−4 kg m2/m

Dξ(s) 173.33 + 9.1×10−10

(0.02−0.05s)5 −
1.092

(0.02−0.05s)

−433.33s− (2.275×10−9s)
(0.02−0.05s)5 + (2.73s)

(0.02−0.05s) N m2

Dη(s) 466.67− 3500s+ 8750s2 − 7291.7s3 N m2

Dζ(s) 116.67− 291.67s N m2
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the finest finite element mesh and the beam solution and dividing by that obtained

from the finite element analysis.

Table III. Finite element mesh sizes of tapered beam.

Mesh Number Elements Along x, y, z Total Elements

1 50× 3× 3 450

2 67× 3× 5 1005

3 100× 5× 6 3000

Table IV. First five frequencies of tapered beam.

Mode Mesh 1 [Hz] Mesh 2 [Hz] Mesh 3 [Hz] Beam [Hz] % Error

1 252.75 252.71 252.64 251.89 0.297

2 445.46 445.38 445.30 446.20 0.202

3 1362.1 1361.8 1361.4 1370.8 0.686

4 2081.4 2080.8 2080.4 2130.5 2.41

5 3594.1 3593.4 3592.1 3671.3 2.16

The beam solution favorably agrees with the finite element solution, providing

an error of less than 2.5%.
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2. Case 2: A Twisted Beam

A twisted, homogeneous beam composed of aluminum alloy 6061-T6 is the second

beam used for frequency comparison. This beam is chosen as it provides an example

of a non-uniform beam for which the orientation of the principal mass and bending

axes varies along the length of the beam with respect to the reference coordinate

system.

The beam is shown in Figure 6. It is 10-m long and consists of a 1 m × 0.5 m

cross section that is unrotated at the fixed end and linearly rotated such that it is at

a 45◦ angle about the elastic axis at the free end. The properties of the twisted beam

are presented in Table V. For a rectangular cross section with an aspect ratio of 2,

the torsion constant, K, is 0.229ab3, where a and b are respectively the lengths of the

longer and shorter sides [19, p. 173].

Y

Z X

Figure 6. Twisted beam with 100×5×10 mesh.
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Table V. Properties of twisted beam.

Parameter Value

m(s) 1355 kg/m

jξ(s) 141.15 kg m2/m

jη(s) 70.573 + 42.344 cos πs
20

kg m2/m

jζ(s) 70.573− 42.344 cos πs
20

kg m2/m

jηζ(s) 42.344 sin πs
20

kg m2/m

Dξ(s) 7.4425× 108 N m2

Dη(s) (1.8229 + 1.0938 cos πs
20

)× 109 N m2

Dζ(s) (1.8229− 1.0938 cos πs
20

)× 109 N m2

Dηζ(s) 1.0938 sin πs
20
× 109 N m2

As with the tapered beam, Table VI provides the mesh sizes for the three finite

element meshes. For each of the three meshes, the first five frequencies and the error

are tabulated in Table VII.

Table VI. Finite element mesh sizes of twisted beam.

Mesh Number Elements Along x, y, z Total Elements

1 50× 2× 5 500

2 67× 3× 7 1407

3 100× 5× 10 5000

Once more, the beam representation agrees nicely with the finite element solu-

tion, providing an error of less than 3.7%.
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Table VII. First five frequencies of twisted beam.

Mode Mesh 1 [Hz] Mesh 2 [Hz] Mesh 3 [Hz] Beam [Hz] % Error

1 4.1440 4.1423 4.1410 4.1291 0.288

2 8.0006 7.9981 7.9961 8.0229 0.335

3 26.265 26.253 26.245 26.483 0.907

4 46.756 46.737 46.723 48.425 3.64

5 58.102 58.041 58.024 57.407 1.06

3. Case 3: A Composite Beam

The final beam used for frequency analysis is a uniform composite beam consisting

of aluminum alloy 6061-T6 and steel. Steel has a density of 7860 kg/m3, a Young’s

modulus of 200 GPa, and a modulus of rigidity of 77.2 GPa [18, p. 747]. Three

quarters of the beam are aluminum, while the remaining quarter is steel. The beam

is shown in Figure 7.

This beam is selected because it provides an example of a beam for which the mass

and elastic centers of each cross section are offset in both dimensions. Furthermore,

the principal bending and mass axes are oriented differently with respect to each

other and to the reference coordinate system.

The beam is 1-m long with a 5 cm × 3 cm cross section. The properties of the

composite beam are presented in Table VIII. The torsional stiffness is approximated

by multiplying an area-weighted average of the modulus of rigidity by the result of

(5.1) for this cross section.

Table IX tabulates the mesh sizes for the three finite element meshes, and Table

X lists the first five frequencies and the error.
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Figure 7. Aluminum-steel composite beam.
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Table VIII. Properties of composite beam.

Parameter Value

eη(s) 3.7524× 10−5 m

eζ(s) −6.2539× 10−5 m

m(s) 5.9963 kg/m

jξ(s) 1.5668× 10−3 kg m2/m

jη(s) 1.1521× 10−3 kg m2/m

jζ(s) 0.41474× 10−3 kg m2/m

jηζ(s) 0.12276× 10−3 kg m2/m

Dξ(s) 1.0931× 104 N m2

Dη(s) 2.9616× 104 N m2

Dζ(s) 1.0662× 104 N m2

Dηζ(s) 0.31212× 104 N m2

Table IX. Finite element mesh sizes of composite beam.

Mesh Number Elements Along x, y, z Total Elements

1 77× 2× 4 616

2 100× 4× 6 2400

3 143× 4× 8 4576
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Table X. First five frequencies of composite beam.

Mode Mesh 1 [Hz] Mesh 2 [Hz] Mesh 3 [Hz] Beam [Hz] % Error

1 23.099 23.091 23.089 23.036 0.230

2 39.675 39.668 39.665 39.662 0.00756

3 144.18 144.13 144.12 144.30 0.125

4 245.73 245.68 245.66 248.21 1.04

5 401.19 401.01 400.98 403.61 0.656

The frequencies calculated by the beam model have an error of less than 1.1%,

continuing to provide an accurate result that is computationally efficient.
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C. Forced Response

To test the nonlinear beam model, three beams are used. At the free end of the elastic

axis, a time-dependent force is applied, and the displacement is measured. For each

beam, the displacement at four points along the elastic axis is compared using the

linear and nonlinear versions of both Abaqus and the beam model [16].

The beam model is executed using one core of an eight-core Intel Xeon 2.26 GHz

Mac Pro with 24 GB of RAM running Mac OS X Server 10.5.8. Abaqus is executed

on a Windows XP Professional SP3 virtual machine running on the Mac Pro. The

Abaqus simulation uses one core and has access to 2.5 GB of RAM.

1. Case 1: A Tapered Beam

The first beam used for forced-response testing is the same as that used for the first

frequency comparison. This beam is discretized in Abaqus using 1920 (80×4×6)

quadratic elements and is shown in Figure 8. The time-dependent force plotted in

Figure 9 is applied to the node at the intersection of the elastic axis and the free end.

In Abaqus, this simulation spans 0.5 seconds with 10−4-second time steps.

The beam model uses five shape functions for each of the three degrees of freedom.

The time step is 10−5 seconds, and the beam is discretized with 200 elements.

Figures 10, 11, 12, and 13 respectively plot the time history of the displacement

in the y-direction of the nodes along the elastic axis at the free end, three quarters

of the length, half of the length, and one quarter of the length. These plots show the

results obtained from Abaqus using linear and nonlinear geometric models as well as

the linear and nonlinear versions of the beam model.

In Figure 10, there is a clear difference between the amplitude of the linear and

nonlinear models. This difference is due to the effect of the relatively large deforma-
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Figure 9. Force applied to tapered beam.
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Figure 10. Tapered beam elastic axis displacement along y-axis at s = L.
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Figure 11. Tapered beam elastic axis displacement along y-axis at s = 3
4
L.
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Figure 12. Tapered beam elastic axis displacement along y-axis at s = 1
2
L.
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Figure 13. Tapered beam elastic axis displacement along y-axis at s = 1
4
L.
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tion induced by the force and the consequent relevance of curvature. The frequency

of the nonlinear beam model is slightly different from that of the nonlinear Abaqus

simulation, resulting in a phase difference that increases in time. Nonetheless, the

linear and nonlinear beam models compare favorably and distinctly with the Abaqus

counterparts, especially given the computational time, which is listed in Table XI.

Table XI. Tapered beam computational time.

Method Time

Abaqus - Linear 385 min

Abaqus - Nonlinear 437 min

Beam - Linear 8 min

Beam - Nonlinear 16 min

2. Case 2: A Twisted Beam

For the second forced-response test case, the beam is the same as that used for

the second frequency comparison. This beam is discretized in Abaqus using 2688

(84×4×8) quadratic elements and is shown in Figure 14. Figure 15 shows the time-

dependent force applied to the node at the intersection of the elastic axis and the free

end. In Abaqus, this simulation spans 5 seconds with 5× 10−3-second time steps.

The beam model uses five shape functions for each of the three degrees of freedom.

The time step is 10−4 seconds, and the beam is discretized with 200 elements.

Figures 16, 17, 18, and 19 respectively plot the time history of the displacement

in the y-direction of the nodes along the elastic axis at the free end, three quarters

of the length, half of the length, and one quarter of the length. These plots show the
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Figure 14. Twisted beam with 84×4×8 mesh.

results of Abaqus using linear and nonlinear geometric models as well as the linear

and nonlinear versions of the beam model.

Similarly, Figures 20, 21, 22, and 23 respectively plot the time history of the

displacement in the z-direction.

In Figures 16-23, the amplitudes of the four simulations are similar; however,

there is a distinct difference between the frequencies of the linear and nonlinear models

that is emphasized with the progression of time. The angle about the deformed elastic

axis the cross section rotates at the free end is shown in Figure 24. Once more, the

beam models compare favorably with the corresponding Abaqus simulations, and the

computational time is shown in Table XII.
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Figure 15. Force applied to twisted beam.
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Figure 16. Twisted beam elastic axis displacement along y-axis at s = L.
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Figure 17. Twisted beam elastic axis displacement along y-axis at s = 3
4
L.
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Figure 18. Twisted beam elastic axis displacement along y-axis at s = 1
2
L.
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Figure 19. Twisted beam elastic axis displacement along y-axis at s = 1
4
L.
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Figure 20. Twisted beam elastic axis displacement along z-axis at s = L.
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Figure 21. Twisted beam elastic axis displacement along z-axis at s = 3
4
L.
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Figure 22. Twisted beam elastic axis displacement along z-axis at s = 1
2
L.
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Figure 23. Twisted beam elastic axis displacement along z-axis at s = 1
4
L.
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Figure 24. Twisted beam rotation about ξ-axis at s = L.
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Table XII. Twisted beam computational time.

Method Time

Abaqus - Linear 77 min

Abaqus - Nonlinear 299 min

Beam - Linear 10 min

Beam - Nonlinear 16 min

3. Case 3: A Composite Beam

The final beam used as a forced-response test case is a lengthwise-uniform composite

beam. The beam consists of aluminum alloy 6061-T6 and a fabricated material that

has the same Young’s modulus and modulus of rigidity as the aluminum alloy but

with half the density. Three quarters of the beam are the fabricated material, while

the remaining quarter is aluminum. The beam is shown in Figure 25.

This beam is selected because it provides an example of a beam for which the

mass and elastic centers of each cross section are offset in both dimensions. Further-

more, the principal bending and mass axes are orientated differently with respect to

each other and to the reference coordinate system. Additionally, the constant Young’s

modulus and Poisson’s ratio across the cross section facilitates calculation of an ac-

curate value for the torsional stiffness. The beam is 100-m long with a 6 m × 4 m

cross section. The properties of the composite beam are presented in Table XIII.
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Table XIII. Properties of fabricated composite beam.

Parameter Value

eη(s) 0.2 m

eζ(s) −0.3 m

m(s) 4.0650× 104 kg/m

jξ(s) 1.76150× 105 kg m2/m

jη(s) 1.21950× 105 kg m2/m

jζ(s) 0.54200× 105 kg m2/m

jηζ(s) 0.12195× 105 kg m2/m

Dξ(s) 1.95686× 1012 N m2

Dη(s) 5.04× 1012 N m2

Dζ(s) 2.24× 1012 N m2

Dηζ(s) 0 N m2
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Figure 25. Fabricated composite beam.
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Figure 26. Force applied to composite beam.
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This beam is discretized in Abaqus using 2400 (100×4×6) quadratic elements,

and the time-dependent force plotted in Figure 26 is applied to the node at the

intersection of the elastic axis and the free end. In Abaqus, this simulation spans 50

seconds with 5× 10−2-second time steps.

The beam model uses five shape functions for each of the three degrees of freedom.

The time step is 10−3 seconds, and the beam is discretized with 200 elements.

Figures 27, 28, 29, and 30 respectively plot the time history of the displacement

in the y-direction of the nodes along the elastic axis at the free end, three quarters of

the length, half of the length, and one quarter of the length. Additionally, the angle

about the deformed elastic axis the cross section rotates at the free end is shown

in Figure 31. These plots show the results from Abaqus using linear and nonlinear

geometric models as well as those from the linear and nonlinear versions of the beam

model.

In Figures 27-31, the difference between the linear and nonlinear models is evi-

dent in both the amplitudes and the frequencies. The beam models continue to com-

pare favorably with the Abaqus counterparts, and the computation time is shown in

Table XIV.
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Figure 27. Composite beam elastic axis displacement along y-axis at s = L.
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Figure 28. Composite beam elastic axis displacement along y-axis at s = 3
4
L.



71

0 10 20 30 40 50
-8

-6

-4

-2

0

2

4

6

8

Abaqus - Linear
Abaqus - Nonlinear
Beam - Linear
Beam - Nonlinear

Time, t [s]

D
isp

la
ce

m
en

t 
al

on
g 
y-

ax
is,

 v
 [m

]

Figure 29. Composite beam elastic axis displacement along y-axis at s = 1
2
L.
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Figure 30. Composite beam elastic axis displacement along y-axis at s = 1
4
L.



72

Table XIV. Composite beam computational time.

Method Time

Abaqus - Linear 66 min

Abaqus - Nonlinear 237 min

Beam - Linear 9 min

Beam - Nonlinear 17 min
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Figure 31. Composite beam rotation about ξ-axis at s = L.
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CHAPTER VI

APPLICABILITY TO SWEPT WINGS

A. Introduction

The nonlinear beam model can also be extended to wings with moderate sweep for

which the elastic axes are straight when undeformed [1, pp. 604-613]. For this ap-

proximation to yield meaningful results, the wing cannot be heavily swept or of a

low aspect ratio as warping at the fixed end would invalidate the rigid cross section

assumption.

B. Definition of Parameters

For the case of the swept wing, the fixed end of the structural model is located at

the fixed end of the elastic axis and is normal to the elastic axis as seen in Figure 32.

Likewise, the free end is located at the free end of the elastic axis and is normal to

the elastic axis. The beam reference axes are rotated about the aerodynamic y-axis

by −Λea. Correspondingly, beam properties are given in the beam reference frame

instead of the aerodynamic reference frame.

C. Validity

To demonstrate the effect of sweep on the fidelity of the beam model, the first eight

frequencies of two swept cases are compared with the unswept representation. Both

cases consider an aluminum alloy 6061-T6 structure for which the length of the elastic

axis is 10 m. The unswept representation for each case is a 10-m long beam with a

1 m × 0.2 m rectangular cross section and is depicted in Figure 33. The first case
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Figure 32. Beam representation of swept wing.

features an elastic axis with a sweep angle of 20◦. For the second case, the sweep

angle is increased to 45◦.

The two swept cases are modeled in Abaqus, while the unswept representation

is modeled using both Abaqus and the beam model. The finite element model of the

unswept representation uses 13,104 quadratic three-dimensional continuum elements

(182 × 4 × 18), and the beam model uses five shape functions for each of the three

independent degrees of freedom.

����
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Figure 33. Unswept representation of swept structures.



75

1. Case 1: 20◦ Swept Structure

The first case consists of a 20◦ swept structure as shown in Figure 34. This structure is

discretized in Abaqus using 13,832 quadratic three-dimensional continuum elements

(182× 4× 19), and the first eight natural frequencies are calculated.

��������

����	
��

Figure 34. 20◦ swept structure.

Table XV lists the frequencies of the 20◦ swept structure calculated by Abaqus.

Additionally, the frequencies of the unswept structure calculated by Abaqus and the

beam model are included as well as the error relative to the frequencies of the 20◦

swept structure.

Though the error associated with the beam model of the unswept representation

is greater than that of the finite element model of the unswept representation, the

results remain reasonable within 4% of the finite element model of the 20◦ swept

structure.
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Table XV. First eight frequencies of 20◦ swept structure.

Mode Swept FEM Unswept FEM FEM Error Unswept Beam Beam Error

[Hz] [Hz] [%] [Hz] [%]

1 1.6671 1.6524 0.882 1.6420 1.50

2 8.2207 8.1645 0.684 8.2130 0.0941

3 10.410 10.335 0.720 10.288 1.17

4 29.014 28.869 0.500 28.395 2.13

5 29.340 29.221 0.406 28.791 1.87

6 49.244 48.941 0.615 51.168 3.91

7 56.751 56.397 0.624 56.369 0.673

8 87.420 88.056 0.728 85.186 2.56

2. Case 2: 45◦ Swept Structure

The second case extends the sweep angle of the structure to 45◦ and is shown in

Figure 35. This structure is discretized in Abaqus using 17,500 quadratic three-

dimensional continuum elements (175×4×25), and the first eight natural frequencies

are calculated once more.

The frequencies of the 45◦ swept structure calculated by Abaqus are tabulated

in Table XVI. Additionally, the frequencies of the unswept structure calculated by

Abaqus and the beam model are included as well as the error relative to the frequencies

of the 45◦ swept structure. The error has increased significantly compared to the 20◦

case; however, the values remain reasonable considering the amount of sweep, and

the error associated with the beam model is less than 6%.
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Figure 35. 45◦ swept structure.
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Table XVI. First eight frequencies of 45◦ swept structure.

Mode Swept FEM Unswept FEM FEM Error Unswept Beam Beam Error

[Hz] [Hz] [%] [Hz] [%]

1 1.7413 1.6524 5.11 1.6420 5.70

2 8.5252 8.1645 4.23 8.2130 3.66

3 10.781 10.335 4.14 10.288 4.57

4 29.410 28.869 1.84 28.395 3.45

5 30.408 29.221 3.90 28.791 5.32

6 50.801 48.941 3.66 51.168 0.723

7 58.390 56.397 3.41 56.369 3.46

8 86.613 88.056 1.67 85.186 1.65
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CHAPTER VII

RESULTS

A. A Comparison between Quadratic and Cubic Nonlinearities

In deriving the nonlinear equations of motion, the order must be consistently selected

so as to accurately model the motion of the beam while avoiding an unnecessary

computational burden. Therefore, quadratic and cubic models are generally the can-

didates of choice. In this section, the difference between the two orders is shown,

confirming the importance of retaining cubic nonlinearities.

1. Quadratic Nonlinear Matrices

Neglecting the cubic terms of the nonlinear matrices presented in equations (3.9)-

(3.11) results in the following nonzero contributions to the nonlinear matrices.

The nonzero submatrices of the nonlinear mass matrix are

[MNL]i,j =

∫ L

0

{
W ′
imeζ

∫ s

0

w′W ′
jdŝ−W ′

imeζw
′Wj

−W ′
iw
′
∫ s

L

meζW
′
jdŝ− 2W ′

i jηζφW
′
j −Wimeζw

′W ′
j

}
ds

−
[
Wimeζ

∫ s

0

w′W ′
jdŝ−Wimeζw

′Wj − 2WijηζφW
′
j

]
s=L

,

[MNL]i,l+j =

∫ L

0

{
W ′
imeζ

∫ s

0

v′W ′
jdŝ−W ′

imeζv
′Wj

−W ′
iw
′
∫ s

L

meηW
′
jdŝ+W ′

i (−jηφ+ jζφ)W ′
j

}
ds

−
[
Wimeζ

∫ s

0

v′W ′
jdŝ−Wimeζv

′Wj +Wi (−jηφ+ jζφ)W ′
j

]
s=L

,



80

[MNL]i,l+m+j =−
∫ L

0

WimeζφΦjds,

[MNL]l+i,j =
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−W ′
iv
′
∫ s

L

meηW
′
jdŝ−Wi [meηv

′ +meζw
′]W ′

j

+ 2W ′
i jηζφW

′
j

}
ds−

[
Wimeη

∫ s

0

v′W ′
jdŝ

−Wi [meηv
′ +meζw

′]Wj + 2WijηζφW
′
j

]
s=L

,

[MNL]l+i,l+m+j =

∫ L

0

{
W ′
i jξw

′Φj −WimeηφΦj

}
ds− [Wijξw

′Φj]s=L ,

[MNL]l+m+i,j =−
∫ L

0

ΦimeζφWjds,

[MNL]l+m+i,l+j =

∫ L

0

Φi

{
jξw

′W ′
j −meηφWj

}
ds.
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The nonzero submatrices of the nonlinear damping matrix are

[CNL]i,j =

∫ L

0

{
W ′
imeζ

∫ s

0

ẇ′W ′
jdŝ−Wimeζẇ

′W ′
j

}
ds

−
[
Wimeζ

∫ s

0

ẇ′W ′
jdŝ

]
s=L

,

[CNL]i,l+j =

∫ L

0

{
W ′
imeζ

∫ s

0

v̇′W ′
jdŝ

}
ds−

[
Wimeζ

∫ s

0

v̇′W ′
jdŝ

]
s=L

,

[CNL]i,l+m+j =

∫ L

0

{
−Wimeζ φ̇Φj +W ′

i (−2jηζẇ
′ − jξv̇′ − jηv̇′ + jζ v̇

′) Φj

}
ds

− [Wi (−2jηζẇ
′ − jξv̇′ − jηv̇′ + jζ v̇

′) Φj]s=L ,

[CNL]l+i,j =

∫ L

0

{
W ′
imeη

∫ s

0

ẇ′W ′
jdŝ

}
ds−

[
Wimeη

∫ s

0

ẇ′W ′
jdŝ

]
s=L

,

[CNL]l+i,l+j =

∫ L

0

{
W ′
imeη

∫ s

0

v̇′W ′
jdŝ−Wi [meηv̇

′ + 2meζẇ
′]W ′

j

}
ds

−
[
Wimeη

∫ s

0

v̇′W ′
jdŝ

]
s=L

,

[CNL]l+i,l+m+j =

∫ L

0

{
−Wimeηφ̇Φj +W ′

i (2jηζ v̇
′ + jξẇ

′ − jηẇ′ + jζẇ
′) Φj

}
ds

− [Wi (2jηζ v̇
′ + jξẇ

′ − jηẇ′ + jζẇ
′) Φj]s=L ,

[CNL]l+m+i,j =

∫ L

0

Φijηζẇ
′W ′

jds,

[CNL]l+m+i,l+j =

∫ L

0

{
− Φijηζ v̇

′W ′
j + Φi (jξẇ

′ + jηẇ
′ − jζẇ′)W ′

j

}
ds.
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The nonzero submatrices of the nonlinear stiffness matrix are

[KNL]i,l+m+j =

∫ L

0

{
W ′
iDξv

′′Φ′j +W ′′
i (−Dηv

′′ +Dζv
′′) Φj − 2W ′′

i Dηζw
′′Φj

}
ds,

[KNL]l+i,l+m+j =

∫ L

0

{
W ′′
i (−Dηw

′′ +Dζw
′′ + 2Dηζv

′′) Φj +W ′′
i Dξw

′Φ′j

}
ds

+
[
WiDξw

′Φ′′j
]
s=L

,

[KNL]l+m+i,j =

∫ L

0

{
−ΦiDηζw

′′W ′′
j + Φ′iDξv

′′W ′
j

}
ds,

[KNL]l+m+i,l+j =

∫ L

0

Φi (−Dηw
′′ +Dζw

′′ +Dηζv
′′)W ′′

j ds.

One of the most significant differences between the quadratic and cubic models

is the removal of the diagonal submatrices from the nonlinear stiffness matrix. The

implications of the order reduction are seen in the displacement history of the three

forced cases used for validation.

2. Quadratic and Cubic Model Response History

As shown in Chapter V, the cubic nonlinear beam model performs well for the forced-

response test cases compared to the nonlinear version of Abaqus. In this section, the

three forced cases are presented once more to show the difference between the linear-,

quadratic-, and cubic-order models.

Figures 36 and 37 show the response of the beam model for the tapered beam

when linear, quadratic, and cubic terms are retained. The first- and second-order

models are virtually indistinguishable, while the cubic model is noticeably different.
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Figure 36. Tapered beam elastic axis displacement along y-axis at s = L for first three
orders of beam model.
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Figure 37. Detailed tapered beam elastic axis displacement along y-axis at s = L for
first three orders of beam model.
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The response of the twisted beam is presented in Figures 38-42. As with the ta-

pered beam, the quadratic-order beam model is considerably closer to the linear model

than to the cubic model for the transverse displacements. However, the quadratic

model yields a rotation noticeably greater than that provided by the cubic model.

Additionally, there is a slight difference in the frequency of the rotation, resulting in

a phase difference that increases in time.

The response of the composite beam is shown in Figures 43-45. The displacement

in the y-direction is analogous to that for the previous two cases. Unlike the previous

case, the rotational displacement of the quadratic model is much closer to the linear

model.

Table XVII lists the computational time of the three orders of the beam model

for each of the three beam cases. The additional computational cost that arises

in the nonlinear analysis is largely due to the calculation of the time-dependent,

nonlinear matrices. Though the quadratic model requires fewer computations than

the cubic model, the nonlinear computational burden is disproportional to the increase

in fidelity. These results confirm the importance of retaining cubic terms in nonlinear

analysis.
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Figure 38. Twisted beam elastic axis displacement along y-axis at s = L for first three
orders of beam model.
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Figure 39. Detailed twisted beam elastic axis displacement along y-axis at s = L for
first three orders of beam model.
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Figure 40. Twisted beam elastic axis displacement along z-axis at s = L for first three
orders of beam model.
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Figure 41. Detailed twisted beam elastic axis displacement along z-axis at s = L for
first three orders of beam model.
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Figure 42. Twisted beam rotation about ξ-axis at s = L for first three orders of beam
model.



88

0 10 20 30 40 50
-30

-20

-10

0

10

20

30

Linear
Quadratic Nonlinearities
Cubic Nonlinearities

Time, t [s]

D
isp

la
ce

m
en

t 
al

on
g 
y-

ax
is,

 v
 [m

]

Figure 43. Composite beam elastic axis displacement along y-axis at s = L for first
three orders of beam model.
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Figure 44. Detailed composite beam elastic axis displacement along y-axis at s = L
for first three orders of beam model.
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Table XVII. Computational time for first three orders of beam model.

Beam Case Linear Quadratic Cubic

Tapered 8 min 13 min 16 min

Twisted 10 min 15 min 16 min

Composite 9 min 15 min 17 min
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Figure 45. Composite beam rotation about ξ-axis at s = L for first three orders of
beam model.
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B. General Transport Wing

The beam model can additionally be extended to wings that are more appropriately

modeled as plates. The general transport wing, described in Edwards et al. [20], is

such an example.

1. Description

The general transport wing is composed of a stepped aluminum plate, which varies

in thickness from 0.701 cm at the root to 0.269 cm at the tip. The upper and lower

surfaces of the plate are covered in end-grain balsa wood. The elastic axis is located

at 40% of the chord aft of the leading edge. A planform view is shown in Figure 46.

2. Beam Representation

The general transport wing is modeled as a homogeneous aluminum beam with a

length of 1.409 m. The unswept representation is shown in Figure 47. Due to the

material homogeneity, the elastic axis and center of mass axis are collinear. The

material homogeneity is not rigorously enforced, however, as the position of the elastic

axis relative to the planform is maintained, and this position is not at the geometric

center. Additionally, the thickness linearly tapers symmetrically about the elastic

axis, varying from a thickness of 0.627 cm at the fixed end to 0.204 cm at the free

end.

The remaining properties of the beam are given in Table XVIII. With the ex-

ception of the torsional stiffness, Dξ, all of the properties are consistent with the

geometry. Because of the large aspect ratio of the cross section, Dξ is calculated by

taking the product of the modulus of rigidity and the polar moment of inertia and

applying a constant reduction factor to account for warping.
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Figure 46. Planform view of general transport wing.

��������

��	�
��

����		��

Figure 47. Unswept representation of general transport wing.
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Table XVIII. Properties of general transport wing beam model.

Parameter Value

m(s) 9.4159− 9.3305s+ 2.3087s2 kg/m

jξ(s) 0.29250− 0.58964s+ 0.44560s2

−0.14962s3 + 0.018835s4 kg m2/m

jη(s) 0.29247− 0.58958s+ 0.44556s2

−0.14961s3 + 0.018834s4 kg m2/m

jζ(s) (3.0847− 6.0086s+ 4.3877s2

−1.4236s3 + 0.17316s4)× 10−5 kg m2/m

Dξ(s) 2220.0− 4475.2s+ 3382.0s2

−1135.6s3 + 142.95s4 N m2

Dη(s) (7.4742− 15.067s+ 11.387s2

−3.8234s3 + 0.48128s4)× 106 N m2

Dζ(s) 788.32− 1535.5s+ 1121.3s2

−363.80s3 + 44.251s4 N m2
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3. Natural Frequencies

The natural frequencies of the beam model are calculated and compared with those

obtained through experiment by Edwards et al. [20] at the NASA Langley Research

Center. In the beam model, 3 shape functions are used for bending along the plane of

the planform, 7 shape functions are used for bending out of the plane of the planform,

and 5 shape functions are used for torsional motion. These frequencies are listed in

Table XIX, in which B refers to out-of-plane bending and T refers to torsional motion.

Table XIX. First eight frequencies of general transport wing.

Mode Experimental [Hz] Beam Representation [Hz] % Error

1 (1B) 4.072 4.074 0.0498

2 (2B) 14.043 13.953 0.643

3 (1T) 31.757 31.837 0.252

4 (3B) 32.591 32.221 1.13

5 (2T) 57.791 57.203 1.02

6 (4B) 61.887 59.438 3.96

7 (3T) 90.871 85.027 6.43

8 (5B) 97.57 97.26 0.311

The frequencies of the beam model compare favorably with those obtained through

experiment, considering the large cross-sectional aspect ratio that is better addressed

through a plate model.
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C. Goland Wing

The Goland wing was conceived in 1945 by Martin Goland as a benchmark for flutter

analysis [21]. The semi-span is 20 ft, the chord is 6 ft, and the elastic and mass axes

are respectively located at 33% and 43% of the chord aft of the leading edge. The

planform of the Goland wing is shown in Figure 48, and the properties are listed

in Table XX. The contribution of the other mass moments of inertia are assumed

negligible by Goland [21], as is the ability for the wing to bend out of the x-z plane.

Therefore, only the linear contribution to the beam model is used.

�������
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Figure 48. Planform view of Goland wing.

With these simplifying assumptions, the linear equations of motion become:

mẅ −meζ φ̈+Dζw
′′′′ = LA, (7.1)

jξφ̈−meζẅ −Dξφ
′′ = MA. (7.2)
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Table XX. Properties of Goland wing.

Parameter Value

L 6.096 m

c 1.829 m

eζ(s) 0.1829 m

m(s) 35.72 kg/m

jξ(s) 8.643 kg m2/m

Dξ(s) 9.876× 105 N m2

Dζ(s) 9.773× 106 N m2

1. Classical Flutter Analysis with Theodorsen Aerodynamics

To gain initial insight, the flutter condition is calculated using the two-degree-of-

freedom flutter analysis presented in Bisplinghoff et al. [1, pp. 532-545] and Hodges

and Pierce [2, pp. 124-130] that models one translational and one rotational degree

of freedom for a rigid section.

The two degrees of freedom are assumed simply harmonic at the flutter condition

with the same frequency, though not necessarily in phase. The determinant of the

two underlying equations of motion is set to zero to ensure a nontrivial solution. The

flutter speed and frequency are varied to satisfy the characteristic equation, while

maintaining real values [1, pp. 532-545], [2, pp. 124-130].

Compressibility effects as well as those due to the finite length of the wing are

neglected. The unsteady aerodynamic model used is that devised by Theodorsen
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[22], [1, pp. 251-281]:

LA = 2πρ∞V∞bC(k)

[
−ẇ + V∞ (α + φ) + b

(
1

2
− a
)
φ̇

]
+ πρ∞b

2
[
−ẅ + V∞φ̇− baφ̈

]
, (7.3)

MA = 2πρ∞V∞b
2

(
a+

1

2

)
C(k)

[
−ẇ + V∞ (α + φ) + b

(
1

2
− a
)
φ̇

]
+ πρ∞b

2

[
−baẅ − V∞b

(
1

2
− a
)
φ̇− b2

(
1

8
+ a2

)
φ̈

]
. (7.4)

In equations (7.3) and (7.4), k is the reduced frequency, bω
V∞

, b is the semichord, ab is

the distance of the elastic axis aft of the semichord, and α is the angle between the

freestream and the undeformed chord.

C(k) is Theodorsen’s function, a complex-valued function that accounts for lift

deficiency and phase offset. Consequently, the terms in (7.3) and (7.4) multiplied by

Theodorsen’s function are the unsteady circulatory contribution, while the remaining

terms are the inertial contribution of the effective mass, with the exception of the term

containing the velocity, V∞, which is circulatory [3, p. 210]. Theodorsen’s function is

defined by

C(k) = F (k) + iG(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

.

The Hankel functions of the second kind, H
(2)
n , are expressed in terms of Bessel

functions of the first and second kind [1, pp. 271-272], [23, pp. 358-428]:

H(2)
n = Jn − iYn.

Theodorsen’s function is plotted in Figure 49.
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Figure 49. Theodorsen’s function, C(k) = F (k) + iG(k).

Classical flutter analysis yields a flutter speed of 131 m/s and a flutter frequency

of 71.8 rad/s.

2. The Use of Wagner’s Function

Theodorsen’s function is adequate when performing analysis in the frequency domain;

however, a time domain-based model for unsteady aerodynamics is required for the

beam model.

The lift and moment due to an airfoil that undergoes an impulsively initiated
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motion is [3, pp. 206-210]

LA(t) = 2πρ∞V
2
∞bαΦ (τ)

+ 2πρ∞V∞b

∫ t

0

Φ (τ − τ0)
[
V∞φ̇− ẅ + b

(
1

2
− a
)
φ̈

]
dt0

+ πρ∞b
2
[
−ẅ + V∞φ̇− baφ̈

]
,

MA(t) = 2πρ∞V
2
∞b

2

(
a+

1

2

)
αΦ (τ)

+ 2πρ∞V∞b
2

(
a+

1

2

)∫ t

0

Φ (τ − τ0)
[
V∞φ̇− ẅ + b

(
1

2
− a
)
φ̈

]
dt0

+ πρ∞b
2

[
−baẅ − V∞b

(
1

2
− a
)
φ̇− b2

(
1

8
+ a2

)
φ̈

]
,

where τ is the distance traveled in semichords:

τ =
V∞t

b
.

Φ(τ) is Wagner’s function, for which the exact definition is

Φ(τ) = 1−
∫ ∞
0

1(
x2exτ [K0(x)−K1(x)]2 + π2 [I0(x) + I1(x)]2

)dx.
In and Kn are, respectively, modified Bessel functions of the first and second kind [23,

pp. 358-428]. Wagner’s function is shown in Figure 50.

Jones’s approximation to Wagner’s function is used [3, pp. 207-208]:

Φ(τ) ≈ 1− 0.165e−0.041τ − 0.335e−0.32τ .

As α is assumed infinitesimal, the unsteady circulatory contribution to the force
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Figure 50. Wagner’s function, Φ(τ).

vector is

{FL}l+i =

∫ L

0

WiLcds,

{FL}l+m+i =

∫ L

0

ΦiMcds,
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or

{FL}l+i = 2πρ∞V
2
∞bα

∫ L

0

Wids

+ 2πρ∞V
2
∞b

∫ t

0

Φ (τ − τ0)
n∑
a=1

φ̇a

∫ L

0

Wi(s)Φa(s)ds dt0

+ 2πρ∞V∞b

∫ t

0

Φ (τ − τ0)
m∑
a=1

ẅa

∫ L

0

Wi(s)Wa(s)ds dt0

+ 2πρ∞V∞b
2

(
1

2
− a
)∫ t

0

Φ (τ − τ0)
n∑
a=1

φ̈a

∫ L

0

Wi(s)Φa(s)ds dt0,

{FL}l+m+i = 2πρ∞V
2
∞b

2

(
1

2
+ a

)
α

∫ L

0

Φids

+ 2πρ∞V
2
∞b

2

(
1

2
+ a

)∫ t

0

Φ (τ − τ0)
n∑
a=1

φ̇a

∫ L

0

Φi(s)Φa(s)ds dt0

+ 2πρ∞V∞b
2

(
1

2
+ a

)∫ t

0

Φ (τ − τ0)
m∑
a=1

ẅa

∫ L

0

Φi(s)Wa(s)ds dt0

+ 2πρ∞V∞b
3

(
1

4
− a2

)∫ t

0

Φ (τ − τ0)
n∑
a=1

φ̈a

∫ L

0

Φi(s)Φa(s)ds dt0.

The spatial integrals only need to be computed once. Additionally the non-circulatory,

inertial contribution is distributed into a linear mass matrix, while the remaining cir-

culatory terms are placed in a linear damping matrix. The nonzero submatrices of

which are

[MA]l+i,l+j = πρ∞b
2

∫ L

0

WiWjds,

[MA]l+i,l+m+j = πρ∞b
3a

∫ L

0

WiΦjds,

[MA]l+m+i,l+j = πρ∞b
3a

∫ L

0

ΦiWjds,

[MA]l+m+i,l+m+j = πρ∞b
4

(
1

8
+ a2

)∫ L

0

ΦiΦjds,
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and

[CA]l+i,l+m+j = −πρ∞V∞b2
∫ L

0

WiΦjds,

[CA]l+m+i,l+m+j = πρ∞V∞b
3

(
1

2
− a
)∫ L

0

ΦiΦjds.

Three cases are examined using the Wagner aerodynamic model. For each of

these cases, the linear beam model is used with five shape functions for each of the

three independent degrees of freedom. Additionally, the angle of attack is 0.1◦, the

time step is 10−4 seconds, and 200 elements are used for discretization.

a. Limit Cycle Oscillation Case

The flutter speed and frequency are found to be 136.5 m/s and 69.4 rad/s. These are

within 2% of the exact solution to (7.1) and (7.2) calculated by Goland [21, 24], using

Theodorsen aerodynamics, to be 137.2 m/s and 70.7 rad/s. The transverse displace-

ment and rotation about the elastic axis are shown in Figures 51 and 52, respectively.

A phase plane plot is included in Figure 53, confirming cycler convergence with time,

which increases in a clockwise manner.

b. Unstable Case

When the speed is increased beyond the flutter speed to 150 m/s, the oscillations

become divergent. Figures 54 and 55 show an exponential growth in the amplitude of

the oscillations, which is illustrated by the phase plane plot in Figure 56 that grows

with respect to time.
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Figure 51. Goland wing elastic axis tip displacement along y-axis for V∞ = 136.5 m/s.
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Figure 52. Goland wing rotation about ξ-axis at s = L for V∞ = 136.5 m/s.
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Figure 53. Goland wing phase plane plot for V∞ = 136.5 m/s.
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Figure 54. Goland wing elastic axis tip displacement along y-axis for V∞ = 150 m/s.
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Figure 55. Goland wing rotation about ξ-axis at s = L for V∞ = 150 m/s.
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Figure 56. Goland wing phase plane plot for V∞ = 150 m/s.
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c. Stable Case

Below the flutter speed at 120 m/s, the oscillations dampen. Figures 57 and 58 show

an exponential decay in the amplitude of the oscillations, which is confirmed by the

phase plane plot in Figure 59 that converges with respect to time.
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Figure 57. Goland wing elastic axis tip displacement along y-axis for V∞ = 120 m/s.
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Figure 58. Goland wing rotation about ξ-axis at s = L for V∞ = 120 m/s.
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Figure 59. Goland wing phase plane plot for V∞ = 120 m/s.
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CHAPTER VIII

CONCLUSIONS

A. Summary

Aerospace structures with large aspect ratio, such as airplane wings, rotorcraft blades,

wind turbine blades, and jet engine fan and compressor blades, are particularly sus-

ceptible to aeroelastic instabilities. Fortunately, this large aspect ratio permits these

structures to be modeled accurately and efficiently as cantilevered beams.

In this thesis, the nonlinear equations of motion are derived for an inextensional,

non-uniform cantilevered beam with a straight elastic axis. Along the elastic axis, the

cross-sectional center of mass can be offset in both dimensions, and the principal bend-

ing and centroidal axes can each be rotated uniquely. The Galerkin method is used,

permitting arbitrary and abrupt variations along the length that require no knowledge

of the spatial derivatives of the beam properties. Additionally, these equations consis-

tently retain all third-order nonlinearities that account for flexural-flexural-torsional

coupling and extend the validity of the equations for large deformations.

Solution to the arising partial differential equations of motion is expedited through

the use of shape functions that reduce the system to a set of ordinary differential equa-

tions in time. Fidelity is preserved by using an ample amount of shape functions to

reflect the shape of the structure at any instant.

The method and implementation are validated through comparison with finite

element analysis, and extension to swept wings is discussed.

Finally, a comparison is made between different orders of the beam model, rang-

ing from linear to cubic, and aeroelastic results are shown and compared with those
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in the literature.

B. Concluding Remarks

The beam model accurately calculates natural frequencies and linear and nonlinear

responses that agree favorably with those obtained through finite element analysis,

while taking one to two orders of magnitude less time.

When performing nonlinear beam analysis, the advantage of retaining cubic

terms, in addition to quadratic terms, is clear. Generally, the quadratic model pro-

vides results similar to the linear model while requiring a disproportionate computa-

tional burden.

The beam model can be extended to swept wings; however, one must exercise

discretion so as to not underestimate the effects of warping. Nonetheless, the beam

model can provide efficient and reasonable results for swept wings.

The aeroelastic applications of the beam model yield a structurally efficient and

accurate model in which the bulk of the cost lies in the aerodynamic computations.
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APPENDIX A

HAMILTON’S PRINCIPLE

The extended form of Hamilton’s principle is

δI = δ

∫ t2

t1

(T +W) dt = 0.

Noting that

L = T − V ,

W = Wc +Wnc,

δV =− δWc,

Hamilton’s principle can be rewritten as [12]

δI = δ

∫ t2

t1

(L+Wnc) dt = 0,

where

δWnc = δWB +

∫ L

0

(Quδu+Qvδv +Qwδw +Qφδφ) ds.

This leads to

δI =

∫ t2

t1

{
δL+ δWB +

∫ L

0

(Quδu+Qvδv +Qwδw +Qφδφ) ds

}
dt = 0, (A.1)

which, upon accounting for the inextensionality constraint, becomes

δI =

∫ t2

t1

{∫ L

0

(
δl + δ

[
1

2
λ
(

1− (1 + u′)
2

+ v′
2

+ w′
2
)])

ds

+ δWB +

∫ L

0

(Quδu+Qvδv +Qwδw +Qφδφ) ds

}
dt = 0. (A.2)
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The variations of l, θ, and ψ are

δl =
∂l

∂u̇
δu̇+

∂l

∂v̇
δv̇ +

∂l

∂ẇ
δẇ +

∂l

∂ψ
δψ +

∂l

∂ψ̇
δψ̇ +

∂l

∂ψ′
δψ′

+
∂l

∂θ
δθ +

∂l

∂θ̇
δθ̇ +

∂l

∂θ′
δθ′ +

∂l

∂φ
δφ+

∂l

∂φ̇
δφ̇+

∂l

∂φ′
δφ′,

δθ =
∂θ

∂u′
δu′ +

∂θ

∂v′
δv′ +

∂θ

∂w′
δw′,

δψ =
∂ψ

∂u′
δu′ +

∂ψ

∂v′
δv′.

The variation of the cross-sectional Lagrangian is then written as

δl =
∂l

∂u̇
δu̇+

∂l

∂v̇
δv̇ +

∂l

∂ẇ
δẇ +

∂l

∂ψ

(
∂ψ

∂u′
δu′ +

∂ψ

∂v′
δv′
)

+
∂l

∂ψ̇

(
∂2ψ

∂t∂u′
δu′ +

∂ψ

∂u′
δu̇′ +

∂2ψ

∂t∂v′
δv′ +

∂ψ

∂v′
δv̇′
)

+
∂l

∂ψ′

(
∂2ψ

∂s∂u′
δu′ +

∂ψ

∂u′
δu′′ +

∂2ψ

∂s∂v′
δv′ +

∂ψ

∂v′
δv′′
)

+
∂l

∂θ

(
∂θ

∂u′
δu′ +

∂θ

∂v′
δv′ +

∂θ

∂w′
δw′
)
δθ

+
∂l

∂θ̇

(
∂2θ

∂t∂u′
δu′ +

∂θ

∂u′
δu̇′ +

∂2θ

∂t∂v′
δv′ +

∂θ

∂v′
δv̇′ +

∂2θ

∂t∂w′
δw′ +

∂θ

∂w′
δẇ′
)

+
∂l

∂θ′

(
∂2θ

∂s∂u′
δu′ +

∂θ

∂u′
δu′′ +

∂2θ

∂s∂v′
δv′ +

∂θ

∂v′
δv′′ +

∂2θ

∂s∂w′
δw′ +

∂θ

∂w′
δw′′

)
+
∂l

∂φ
δφ+

∂l

∂φ̇
δφ̇+

∂l

∂φ′
δφ′.

Expanding (A.2) and performing integration by parts to express the integrand in

terms of the variations δu, δv, δw, and δφ yields
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δI =

∫ t2

t1

∫ L

0

{[
− ∂2l

∂s∂ψ

∂ψ

∂u′
− ∂l

∂ψ

∂2ψ

∂s∂u′
+

∂3l

∂t∂s∂ψ̇

∂ψ

∂u′
+

∂2l

∂t∂ψ̇

∂2ψ

∂s∂u′

]
δu

+

[
∂3l

∂s2∂ψ′
∂ψ

∂u′
+

∂2l

∂s∂ψ′
∂2ψ

∂s∂u′
− ∂2l

∂s∂θ

∂θ

∂u′
− ∂l

∂θ

∂2θ

∂s∂u′

]
δu

+

[
∂3l

∂t∂s∂θ̇

∂θ

∂u′
+

∂2l

∂t∂θ̇

∂2θ

∂s∂u′
+

∂3l

∂s2∂θ′
∂θ

∂u′
+

∂2l

∂s∂θ′
∂2θ

∂s∂u′

]
δu

+

[
− ∂2l

∂s∂ψ

∂ψ

∂v′
− ∂l

∂ψ

∂2ψ

∂s∂v′
+

∂3l

∂t∂s∂ψ̇

∂ψ

∂v′
+

∂2l

∂t∂ψ̇

∂2ψ

∂s∂v′

]
δv

+

[
∂3l

∂s2∂ψ′
∂ψ

∂v′
+

∂2l

∂s∂ψ′
∂2ψ

∂s∂v′
− ∂2l

∂s∂θ

∂θ

∂v′
− ∂l

∂θ

∂2θ

∂s∂v′

]
δv

+

[
∂3l

∂t∂s∂θ̇

∂θ

∂v′
+

∂2l

∂t∂θ̇

∂2θ

∂s∂v′
+

∂3l

∂s2∂θ′
∂θ

∂v′
+

∂2l

∂s∂θ′
∂2θ

∂s∂v′

]
δv

+

[
− ∂2l

∂s∂θ

∂θ

∂w′
− ∂l

∂θ

∂2θ

∂s∂w′
+

∂3l

∂t∂s∂θ̇

∂θ

∂w′

]
δw

+

[
∂2l

∂t∂θ̇

∂2θ

∂s∂w′
+

∂3l

∂s2∂θ′
∂θ

∂w′
+

∂2l

∂s∂θ′
∂2θ

∂s∂w′

]
δw

+

[
∂l

∂φ
− ∂2l

∂t∂φ̇
− ∂2l

∂s∂φ′

]
δφ− ∂2l

∂t∂u̇
δu− ∂2l

∂t∂v̇
δv − ∂2l

∂t∂ẇ
δw

+ [λ′ (1 + u′) + λu′′] δu+ [λ′v′ + λv′′] δv + [λ′w′ + λw′′] δw

+Quδu+Qvδv +Qwδw +Qφδφ

}
ds+

[
∂l

∂φ′
δφ

−
([

∂2l

∂t∂ψ̇
+

∂2l

∂s∂ψ′
− ∂l

∂ψ

]
∂ψ

∂u′
+

[
∂2l

∂t∂θ̇
+

∂2l

∂s∂θ′
− ∂l

∂θ

]
∂θ

∂u′
+ λ [1 + u′]

)
δu

−
([

∂2l

∂t∂ψ̇
+

∂2l

∂s∂ψ′
− ∂l

∂ψ

]
∂ψ

∂v′
+

[
∂2l

∂t∂θ̇
+

∂2l

∂s∂θ′
− ∂l

∂θ

]
∂θ

∂v′
+ λv′

)
δv

−
([

∂2l

∂t∂θ̇
+

∂2l

∂s∂θ′
− ∂l

∂θ

]
∂θ

∂w′
+ λw′

)
δw + δWB

+

(
∂l

∂ψ′
∂ψ

∂v′
+

∂l

∂θ′
∂θ

∂v′
−
[
∂l

∂ψ′
∂ψ

∂u′
+

∂l

∂θ′
∂θ

∂u′

]
v′

1 + u′

)
δv′

+

(
∂l

∂ψ′
∂ψ

∂w′
+

∂l

∂θ′
∂θ

∂w′
−
[
∂l

∂ψ′
∂ψ

∂u′
+

∂l

∂θ′
∂θ

∂u′

]
w′

1 + u′

)
δw′
]s=L
s=0

dt = 0. (A.3)
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Using the notation

Aα :=
∂2l

∂t∂α̇
+

∂2l

∂s∂α′
− ∂l

∂α
(α = ψ, θ, φ),

Hα :=
∂l

∂ψ′
∂ψ

∂α′
+

∂l

∂θ′
∂θ

∂α′
(α = u, v, w),

(A.3) can be written as

δI =

∫ t2

t1

∫ L

0

{[
Aψ

∂ψ

∂u′
+ Aθ

∂θ

∂u′
+ λ (1 + u′)

]′
δu+

[
Aψ

∂ψ

∂v′
+ Aθ

∂θ

∂v′
+ λv′

]′
δv

+

[
Aθ

∂θ

∂w′
+ λw′

]′
δw − Aφδφ−

∂2l

∂t∂u̇
δu− ∂2l

∂t∂v̇
δv − ∂2l

∂t∂ẇ
δw

+Quδu+Qvδv +Qwδw +Qφδφ

}
ds

+

[
∂l

∂φ′
δφ−

(
Aψ

∂ψ

∂u′
+ Aθ

∂θ

∂u′
+ λ [1 + u′]

)
δu−

(
Aψ

∂ψ

∂v′
+ Aθ

∂θ

∂v′
+ λv′

)
δv

−
(
Aθ

∂θ

∂w′
+ λw′

)
δw + δWB +

(
Hv −Hu

v′

1 + u′

)
δv′

+

(
Hw −Hu

w′

1 + u′

)
δw′
]s=L
s=0

dt = 0. (A.4)

Equation (A.4) must remain valid for arbitrary values of t1 and t2, requiring that[
Aψ

∂ψ

∂u′
+ Aθ

∂θ

∂u′
+ λ (1 + u′)

]′
=

∂2l

∂t∂u̇
−Qu,[

Aψ
∂ψ

∂v′
+ Aθ

∂θ

∂v′
+ λv′

]′
=

∂2l

∂t∂v̇
−Qv,[

Aθ
∂θ

∂w′
+ λw′

]′
=

∂2l

∂t∂ẇ
−Qw,

Aφ = Qφ.

These are the equations of motion.
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APPENDIX B

TAYLOR SERIES EXPANSIONS

In the following approximations, the inextensionality constraint (2.7) is used to ex-

press u′ in terms of v′ and w′, and the result is approximated through a Taylor series

expansion.

ψ = tan−1
v′

1 + u′
= tan−1

v′√
1− v′2 − w′2

≈ v′
(

1 +
v′2

6
+
w′2

2

)
∂ψ

∂u′
=

∂

∂u′
tan−1

v′

1 + u′
=

−v′

(1 + u′)2 + v′2
=
−v′

1− w′2
≈ −v′

∂ψ

∂v′
=

∂

∂v′
tan−1

v′

1 + u′
=

(1 + u′)

(1 + u′)2 + v′2
=

√
1− v′2 − w′2

1− w′2
≈ 1− v′2

2
+
w′2

2

θ = tan−1
−w′√

(1 + u′)2 + v′2
= tan−1

−w′√
1− w′2

≈ −w′
(

1 +
w′2

6

)

∂θ

∂u′
=

∂

∂u′
tan−1

−w′√
(1 + u′)2 + v′2

=
w′ (1 + u′)√

(1 + u′)2 + v′2
=
w′
√

1− v′2 − w′2√
1− w′2

≈ w′

∂θ

∂v′
=

∂

∂v′
tan−1

−w′√
(1 + u′)2 + v′2

=
v′w′√

(1 + u′)2 + v′2
=

v′w′√
1− w′2

≈ v′w′

∂θ

∂w′
=

∂

∂w′
tan−1

−w′√
(1 + u′)2 + v′2

= −
√

(1 + u′)2 + v′2 = −
√

1− w′2 ≈ −1 +
w′2

2

u′ =
√

1− v′2 − w′2 − 1 ≈ −1

2

(
v′

2
+ w′

2
)

u ≈ −1

2

∫ s

0

(
v′

2
+ w′

2
)
dŝ
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