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ABSTRACT 

 

Functionalization of Poly(Ethylene Oxide)-based  

Diblock Copolymer Vesicles. (May 2010) 

Karym Grace Kinnibrugh García, B.S., Pontificia Universidad Católica del Perú 

Chair of Advisory Committee: Dr. Zhengdong Cheng 

 

The principal goal of this research is to achieve the chemical labeling and surface 

modification of block copolymer vesicles (polymersomes) made from amphiphilic 

diblock copolymer Poly(butadiene-b-ethylene oxide) (PBd120- PEO89, MW 10400 g/mol) 

with the aim of developing possible drug carrier vehicles for controlled release of 

molecules triggered by stimuli-responsive environments. 

The terminal hydroxyl group of poly(ethylene oxide) (PEO), or poly(ethylene 

glycol) is converted into its corresponding carboxylic acid by a novel one-pot two-phase 

oxidation reaction. This regioselective and catalytic reaction assures the preservation of 

important structural characteristic of the block copolymers. Vesicles formed by a 

mixture of the carboxylate and unmodified block copolymer exhibit an increment in the 

critical aggregation concentration (CAC) value while the averaged vesicle size decreases 

demonstrating that the negative charges in the modified diblock copolymer disrupt the 

vesicle formation process. 

The carboxylated reactive intermediates are subsequently subjected to a covalent 

coupling reaction in organic solvent to replace the terminal hydroxyl of the PEO block. 
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The obtained functionalized diblock copolymers are effectively incorporated into the 

vesicle bilayer. Also, surface density control in polymersomes of fluorescently modified 

diblock copolymers, synthesized by the amination reaction, is achieved. 

To demonstrate the ability of this polymersomes as carrier vehicles, a 

Noradrenaline functionalized vesicle is placed in closed contact with rat aortic smooth 

muscle cells (RASMC) using the micropipette aspiration technique. A distinctive 

increase in fluorescent intensity of cells is observed. It indicates that the drug molecule 

has been transported by the polymersome and internalized by the cell. In addition, 

diblock copolymers containing a disulfide moiety and a fluorophore are synthesized and 

studied through fluorescent microscopy. Vesicles are formed with this polymer and a 

decrease in fluorescent intensity is observed in the vesicle‟s bilayer after its exposure to 

a reductive environment. These results indicate that fluorophore molecules are 

successfully released into solution. 
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CHAPTER I 

 

INTRODUCTION 

 

1.1 Overview 

Over the years, many traditional drug therapies have failed to perform efficiently 

and in several cases the side effects of the administered drug caused more distress to the 

patience. In order to reduce the possibility of under and overdosing, among other 

possible life-threatening situations, polymeric vesicles arise as promising controlled-

release drug delivery vehicles (see Figure 1.1). 

Ideally, polymeric vesicles will help to keep constant the required drug level in 

the body, fewer doses will be required, effective retention of different encapsulates will 

be accomplish and specific triggered and controlled release of contents will be achieved. 

However, other design considerations are still complicated to incorporate into the 

vesicle‟s architecture such as biocompatibility, biodegradability over suitable periods of 

time, extended blood circulation, and non-toxic byproducts. In summary, this attractive 

devices need to be functionalized and tailored for specific uses and subjects. Thus, 

functionalization of polymeric vesicles is still of significant interest for the scientific 

community. 

 

 

____________ 
This dissertation follows the style of Biomaterials. 
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Figure 1.1 Schematic representation of drug levels in blood stream in (a) traditional drug 
administration and dosage and (b) controlled delivery dosage. (a) Drug dosing can fall below or 
above the required treatment level in between the multiple doses required which can produce life 
threatening situations for the patient. (b) Using controlled drug delivery, a single dose can keep 
steady levels of drug in blood. 
 

(b) 

(a) 
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1.2 Phospholipids and Cell Membrane Composition 

During the last century, it has been realized that all living matter is composed of 

cells, that cells are organized into compartments, and that cell walls are composed of 

bilayers of lipid molecules [1-4]. Natural phospholipid molecules found in cell 

membranes are amphiphilic molecules of molecular weight less than 1 kilodalton with 

one water-soluble end and one hydrophobic end. The water-soluble end is usually 

charged while the hydrophobic end is usually one or more hydrocarbon chains. The 

lipids found in cell membranes are mostly molecules with two hydrocarbon chains of 

about 10 carbons. 

When phospholipids are suspended in water they can form a variety of structures 

but in all cases the hydrophilic phosphate region interacts with water and the 

hydrophobic fatty acid regions are excluded to form hydrophobic interactions. This self-

directed assemble is possible because the charged ends of the phospholipids have lower 

free energy when in contact with the surrounding water while the opposite is true for the 

hydrocarbon tails. The latest ones eliminate most of their contact with water if they 

organize themselves into bilayers of about 5 nm and, when closed into “bubble type 

structures”, bilayers provide a barrier between inside and outside defining closed 

compartments. Large bubbles of this type with many microns in diameter are called 

vesicles or liposomes [5-14]. 
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1.3 Lipid Vesicles and Biological Membranes 

The discovery of liposomes is credited to A.D. Bangham while performing 

research on blood cloths in 1961 [15]. Bangham first observed that in aqueous solutions, 

phospholipids spheres were formed and he cited: “Liposomes are the smallest artificial 

vesicles of spherical shape that can be produced from natural nontoxic phospholipids 

and cholesterol. Liposomes are microscopic, fluid-filled pouches whose walls are made 

of layers of phospholipids identical to the phospholipids that make up cell membranes”. 

Since 1811, research reports described the binding of phosphorous molecules to fatty 

acid chains, presence of lipid-like substances in biological samples and, growth of 

cylindrical structures from lipids extracted from brain tissue. Still, it was not until the a 

hundred years later when the introduction of the electron microscope helped with the 

characterization of close packed lipid structures [16-18].  

However, it was not until the 1970‟s that the potential use of lipid vesicles as 

packaging agents and drug delivery systems was recognized [19-22]. During 1980‟s, 

distribution of injected liposomes formulations by the circulatory system was the main 

focus of this research area [23-31], and throughout 1990‟s, gene therapy and gene 

diagnosis applications of liposomes prevail [30, 32]. On the other hand, the relative 

success of lipid vesicles as drug delivery vehicles contrasts with the difficult control of 

lipid properties when long-standing use is required such as, lipid stability in biological 

fluids, long-term storage and cell targeting. Lipid vesicles play an important role in cell 

function as compartmentalizing structures, nutrient transport facilitators, DNA protective 

agents, and they can entrap dissolved substances as well as hydrophilic and hydrophobic 
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compounds inside the membrane cores. Due to the dynamic and soft character of lipids 

[33-35], when more than 100x103 amphiphiles aggregate into a membrane, properties 

such encapsulant retention ability, membrane stability and degradation become difficult 

to control [36-38]. For that reason, a polymer mimic of lipid ones emerged as an 

alternative since its structure resembles that of a living cell. Polymer vesicles will also 

help to take a closer look to the principles of natural design of biological membranes and 

membrane mediated events [39-42]. 

 

1.4 Polymersomes: A Polymer Mimic of Lipid Vesicles  

 Small amphiphilic molecules such as lipids have inspired the use of synthetic 

analogs of higher molecular weight defined as super amphiphiles, category that includes 

linear diblock copolymers. In the last decades, an increase interest in the use of artificial 

block copolymers to produce cell-like vesicles, also called polymersomes, was reported 

because of their unique properties. These artificial bilayer structures can be formed by 

self-assembly of synthetic diblock copolymers and the produced synthetic vesicles 

exhibit superior material characteristics making them tougher than lipid vesicles [43-44]. 

 Block copolymers have similar design as phospholipids and these are formed by 

covalent linking of two (diblock copolymers) or more polymer segments that usually are 

much larger than the lipid ones [45-47]. In the presence of a solvent, they will self 

assemble into different structure types determined by the hydrophilic-hydrophobic 

diblock ratio: membranes, micelles, rod-like or spherical vesicles (see Figure 1.2).  
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Figure 1.2 Schematic representation of natural phospholipids (a), microscopy image of 
PBd120PEO89 diblock copolymer vesicles (b), chemical structure of PBdmPEOn diblock 
copolymer (c), and self-assembly of phospholipids and diblock copolymers into vesicle 
structures (d). Natural phospholipids and synthetic diblock copolymers consist of hydrophobic 
and hydrophilic segments; both will self-assemble in aqueous solution to form vesicles. 
 

The mechanical properties of polymersomes have been studied by micropipette 

aspiration technique. Their elastic, determined by measurement of membrane tension (τ, 

mN/M) versus area expansion (α = ΔA/A0), behavior was proved to be superior to that of 

lipid vesicles (see Figure 1.3). Its increased chain length provides toughness (determined 

by membrane aspiration to the point of rupture) and reduces membrane permeability 

(considerable reduced transport rate) which enable polymersomes as new artificial and 

resistant delivery vehicles [48-50]. The chemistry of these novel structures can be 
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manipulated by controlling the diblock molecular weight, block ratio, and architecture of 

the block copolymer used [51-53]. 
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Figure 1.3 Schematic representation of increased mechanical resistance of diblock copolymer 
vesicles compared to lipid vesicles. Polymer vesicles can stand greater mechanical deformations 
(~0.20 %) before rupture than lipid vesicles (~0.05%). 
 

Formation of Polymersomes 

Polymersomes can be formed from diblock copolymers where the hydrophobic 

region has a high glass transition temperature (Tg) like polystyrene (PS) and the 

hydrophilic part is ionic (like poly-(acrylic acid), PAA) or when the overall molecular 

weight of the diblock copolymer is higher than the one for lipids (much greater than 10 

kD) [54]. The general procedure of polymersome preparation includes the dissolution of 

the diblock copolymer in an appropriate solvent for both blocks (dioxane for PS-PAA 

case), a drying step that allow a thin polymer film formation (micrometers thick), and 

α = ΔA/A0 
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addition of water to precipitate vesicles. Water promotes aggregation of PS and 

formation and increase of interfacial tension. This very last step, the rehydration of the 

polymer film, will introduce the key to the utilization of polymersomes as drug delivery 

vehicles (see Figure 1.4). Any water based solution containing drugs, proteins or any 

kind of molecule will be encapsulated inside the polymersome during the rehydrating 

step. Retention of captured molecules, such as dextrans, sucrose or physiological saline, 

have been proved to remain stable over periods of several months inside of 100 nm 

polymersomes and 10 m giant vesicles [55-56]. 

 

Polymer thin film

Polymer vesicles 

(1-50 μm)

Glass/Teflon

Aqueous 

solution
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Figure 1.4 Formation of diblock copolymer vesicles in aqueous solution at 60ºC. Polymeric 
vesicles will spontaneously self-assemble in order to minimize the system‟s surface tension 

energy. (a) A thin polymer film was formed over a glass or Teflon® surface after a drying 
process. (b) An aqueous solution was added and heated overnight at 60ºC. (c) Diblock 
copolymer vesicles suspended in solution. 

 

Formation of polymersomes in aqueous solvents can also be accomplished. 

Extensive research has been done using polyethylene-b-polybutadiene (PEOm-PBdn), as 

well as it hydrogenated homolog polyethylene-b-polyethylethylene (PEOm–PEEn), to 

form vesicles under different aqueous environments. Doxorubicin, an anti-neoplastic 
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agent, was encapsulated during rehydration by the polymer vesicle with liposomes 

similar efficiency increasing the potential of using polymersomes as artificial controlled-

release systems. Other approaches on the use of polymersomes as synthetic drug 

delivery devices are reviewed in the following sections [57]. 

 

Applications of Polymersomes 

Triblock copolymers can also form polymersomes with some useful differences 

with respect to membrane properties. Pluronic®, a large triblock copolymer (PEO5-

PPO68-PEO5) composed of a large poly-(propyleneoxide) (PPO) midblock, forms small 

vesicles in water media with thin membranes of 3-5 nm and a short life of hours only, 

which will suggest that this midblock weaken the polymeric structure. Another example 

of vesicle forming triblock is composed of a hydrophobic midblock of poly-

(dimethylsiloxane) (PDMS) and two polar blocks of poly-(2-methyloxazoline) 

(PMOXA) with crosslinkable methacrylate ending groups. 

Block copolymers with a bioinert block and a hydrophilic block that can undergo 

hydrolytic degradation have been extensively studied as a possibility for in vivo 

biodegradable drug delivery polymersomes [58-60]. However, a new amphiphilic 

diblock copolymer system of PEO and poly-(caprolactone) (PCL), both of them used in 

FDA–approved medical devices, promise to form completely bioresorbable vesicles with 

no toxic byproducts as a result of its degradation. Again, PEO [57] was chosen because 

of its biocompatibility and also because it gives to the vesicles longer blood circulation 

times [61-62]. PCL will form the hydrophobic membrane portion of the vesicle. It 
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degrades safely and completely by hydrolysis of its ester bond under physiological 

conditions which makes itself a suitable implantable biomaterial for drug delivery 

vehicles. Among the advantages of PCL are: elevated permeability to small molecules, 

pH of the media is preserved after degradation, it mixes well with other polymers, and its 

slow degradation (by erosion mechanism) makes it appropriate for long-term drug 

delivery. Vesicles of 10-20 m diameter, ideal size for in vivo applications, were formed 

and size was controlled either by sonication or freeze/thaw technique followed by 

extrusion above 65°C. A wide range of PEO-b-PCL block copolymers with different 

molecular weights were studied being only PEO(2K)–b–PCL(12K) the one to give a 

good yield of vesicle formation via spontaneous self assembly [63]. 

Doxorubicin was dissolved in the aqueous solution of dehydration of PEO(2K)-

b- PCL(12K) polymersomes in order to elucidate the mechanism by which a drug is 

released. Doxorubicin in situ released under physiological conditions such as pH 5.5 and 

7.4, and 37°C was monitored fluorometrically for 14 days. At both pH conditions at 

37°C, an instantaneous burst release was registered (20 % of vesicle filling, from 0 to 8 

hours), proceeded by controlled release. The drug releasing process can be cataloged 

into two different steps: First the drug was released mainly by its diffusion through PCL 

membrane and although hydrolytic degradation of the PCL membrane is observed, it is 

not of much importance. A second drug release occurred due to significant hydrolytic 

PCL membrane degradation. At ph 7.4 the first and second types of drug release were 

observed while at pH 5.4 only the second type predominates. Hence, in vivo drug release 

of PEO(2K)-b-PCL(12K) is both dependent on PCL matrix erosion and drug‟s specific 
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permeability through the vesicle membrane. In comparison with polymersomes that 

undergoes hydrolytic degradation over a small period of time (hours), PEO(2K)-b-

PCL(12K) exhibits slower rates of drug releasing (days). 

Other functionalized self-assembly polymersomes includes copolymers of PEO – 

PPS (poly-(propylenesulfide)) where the PPS groups are susceptible to undergo 

oxidative degradation. PEO-PLA (poly-(lactide)) kilodalton-size block copolymers form 

micelles that can be biodegraded by hydrolytic scission raising the possibility of its use 

for controlled drug release.  Therefore, biodegradable vesicles for controlled drug release 

of its contents are feasible. 

Also, PEO-PEE polymersomes were injected into blood stream of rats and it was 

shown that they behave as liposomes. They circulated for 15-20 hours before being 

captured by phagocytes of liver. In a parallel test tube study in cell–free blood plasma, it 

was shown that plasma proteins slowly accumulate over the polymersome membrane 

followed by cell attachment. This effective delay was provided by the brush surface of 

the PEO which acts like a biomembrane. These results emphasize polymersomes as 

biomedical a promise. 

Thus, synthetic polymer vesicles can also mimic many biological membrane 

processes, such as protein integration, fusion and DNA encapsulation [64]. Polymer 

versatility regarding molecular weight, polydispersity, reactivity, and synthetic diversity 

provide a broad spectrum of approaches to vesicle design for drug delivery. However, 

actual polymersomes still exhibit a structural stability that relays on several intrinsic and 

environmental parameters which commonly ended up affecting its efficacy as drug 
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delivery vehicles [65]. The degradation periods are still not long enough for controlled 

long-term in vivo drug release and small periods of circulation time are considered as 

important drawbacks of this polymersomes design. Also, the absorption of 

macromolecular drugs such as peptides and proteins to polymersome walls and protein 

configuration changes caused by polymer interactions are other disadvantages of 

polymersomes still to be solved. 

General considerations for future polymersome designs for in vivo controlled 

drug delivery will include the biocompatibility and biodegradability of the hydrophobic 

component, extended degradable periods and extended circulation times in blood stream, 

and non-toxic degradation products that can be metabolized and excreted by the human 

body [66-67]. Not only exerted control over chain length of the block copolymers and 

ratio of amphiphile components are important for polymersome design but also, the 

molecular weight and polymer structure (linear or branched) should be controlled to 

explore the possibility of size and surface modifications. 

 

1.5 Dissertation Outline 

Chapter II: Oxidation of Primary Alcohol end Group of PBd120PEO89 Diblock 

Copolymer 

 The free hydroxyl terminal end group of the block copolymer Poly(butadiene-b-

ethylene oxide) (PEO89PBd120, MW 10400 g/mol) is oxidized to its 

corresponding carboxylic acid (carboxylate PBd120PEO89) through a  selective 

two phase oxidation reaction while other oxidizable groups remain unaffected. 
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 The CAC values of vesicle solutions containing a mixture of carboxylate 

PBd120PEO89 and unmodified PBd120PEO89 increase when the percentage of 

carboxylate PBd120PEO89 is increased, while the average vesicle size decreases. 

No vesicle formation is observed at concentrations higher than 80% are reached.  

Chapter III: Covalent Coupling of Primary Amine to Carboxylate PBd120-PEO89 

Diblock Copolymer 

 Three different primary amines were covalently attached to the previously 

synthesized carboxylate block copolymer through a modified amination reaction 

performed in organic phase. 

 Polymersomes containing 90% of the unmodified block copolymer and 10% of 

one of the modified block copolymers (PBd120PEO89-6AF, PBd120PEO89-COU, 

and PBd120PEO89-NA) were prepared. 

 Two types of modified diblock copolymers (PBd120PEO89-6AF, PBd120PEO89-

COU) were also properly integrated into the same vesicle and, surface density 

control of the two fluorophores was achieved and confirmed through 

fluorescence microscopy. 
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Chapter IV: Cell Response to Hormone Functionalized PBd120-PEO89 Diblock 

Copolymer 

 Noradrenaline molecules were transported from the surface of functionalized 

vesicles to smooth muscle cell surfaces. 

 A cell response was produced (increase in fluorescent intensity) after 

noradrenaline molecules bound to surface cell receptors. 

Chapter V: Reduction-Responsive Functionalized PBd120PEO89 Diblock Copolymer 

Vesicles 

 The functionalized reductive-responsive diblock copolymer PBd120PEO89-

cystamine-5-tetramethylrhodamine (5-TAMRA) was synthesized using a one-pot 

two-step reaction and was incorporated into polymersomes in a 10% amount. 

 The reductive character of the diblock was given by the presence of a disulfide 

linkage between the PEO block and the 5-TAMRA fluorophore molecule. 

 The diblock copolymer disulfide bonds were selectively reduced when exposed 

to tris(2-carboxyethyl)phosphine hydrochloride (TCEP) and the fluorophore 5-

TAMRA was released into solution causing a decrease in the vesicle‟s bilayer 

fluorescent intensity of 44 %. 

Chapter VI: Conclusions and Future Directions 

In this dissertation research, the modification of polymersomes‟ surface by the 

introduction a functionalized diblock copolymer into the vesicle‟s bilayer was achieved. 
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Three functionalized PEO-PBd diblock copolymers were created using novel and simple 

synthetic pathways; they were effectively incorporated into the vesicle structure and 

characterized by microscopy techniques. Vesicle surface properties were studied and the 

polymersome‟s ability to deliver a drug molecule was tested using in vitro cell cultures. 

Hence, these studies contribute to the better understanding of functionalized diblock 

copolymer vesicles and its application as drug delivery devices. 

For future studies, biodegradable diblock copolymers may be used instead and 

apply to it the synthesis explored during this research. Investigate the cell internalization 

process and degradation time to elucidate the cell‟s response mechanism. Also, stimuli-

responsive functionalized polymersomes vulnerable to reducible atmospheres might be 

evaluated in contact with smooth muscle cell cultures to establish the reductive strength 

of the cytoplasmic environment over the disulfide moieties employed. 

A reductive destabilization mechanism involving a phase transition from vesicle 

to micelle of a PEO-PBd diblock copolymer linked to a second PEO block by a 

cystamine molecule can be synthesized and polymersomes containing this PEO-PBd-

cystamine-PEO amphiphillic polymer might be formed and studied. 
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CHAPTER II 

 

OXIDATION OF PRIMARY ALCOHOL END GROUP OF  

PBd120PEO89 DIBLOCK COPOLYMER 

 

2.1 Overview 

 The carboxylate derivative of the diblock copolymer polybutadiene-b-

poly(ethylene oxide) (PBd120PEO89, MW 10400 g/mol), (2), was prepared by a one pot 

two-phase oxidation reaction. This mild and regioselective catalytic reaction effectively 

oxidize only the primary alcohol end group of the polyethylene oxide block leaving 

unaffected any other susceptible groups, such as ether linkage of polyethylene oxide or 

C=C double bonds of the polybutadiene block. Vesicles containing the carboxylate 

derivatives were formed and the critical aggregation concentration (CAC) values of the 

vesicle solutions were measured. 

 

2.2 Introduction 

Due to PEO unique properties and applications the functionalization of PEO has 

been the focus of many researches [68-71]. However, the conversion of its free terminal 

hydroxyl group into an aldehyde or carboxylic acid has not been completely successful 

and many reaction procedures have been proposed. For example, the use of pyridine 

chlorochromate or dichlorochromate, suggested by Corey [72], affects other oxidizable 

groups of the polymer chain, such as carbon-carbon double bonds and ether linkages, 
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because a strong reaction condition was used and, hence only limited yields were 

obtained. A more selective and mild reaction was proposed by Kornblum [73] to use 

dimethyl sulfoxide as the oxidation reagent. Also, Mosbach [74-76] suggested the use of 

organic sulfonyl chlorides (tosyl and tresyl chloride), which formed good leaving groups 

that facilitates the formation of the respective carbonyl derivative. Nevertheless, the 

reaction conditions were still not easy to achieve and it was still not possible to 

discriminate between the oxidation of primary and secondary alcohol groups when 

present in the same molecule. Later on, Anelli [77-78] and coworkers suggested the use 

of 4-methoxy-2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPO), a nitroxyl radical 

catalyst, to regioselectively oxidize primary alcohol groups as a mild and 

environmentally friendly catalytic method. 

Herein, we propose a strategic synthesis to convert the primary hydroxyl end 

group of PBd120PEO89 diblock copolymer into its corresponding carboxylic acid using a 

modified version of the Anelli‟s protocol. This oxidation reaction was performed using a 

two phase (dichloromethane and water) system where TEMPO is continuously 

regenerated in the aqueous phase; in conjunction with a sodium hypochlorite (NaOCl) 

solution to regioselectively oxidize the free primary alcohol group of the block 

copolymer leaving intact any other groups. 
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Figure 2.1 Catalytic cycle of TEMPO during oxidation reaction of a primary alcohol (c) to the 
respective carboxylic acid (f). Figure 2.1.I shows that TEMPO (a) was first oxidized by NaClO 
to its respective N-oxoammonium salt (b); this oxidized the primary alcohol end group of the 
PEO block (c) to its aldehyde (d) in the organic phase while (b) is also regenerated. Figure 2.1.II 
shows that (d) returned to the catalytic cycle (aqueous phase) to further oxidize the aldehyde in 
its respective carboxylic acid (f). 
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Figue 2.1 shows the TEMPO catalytic cycle where it (a) was first oxidized by 

NaOCl to the respective N-oxoammonium salt (b), the primary alcohol end group of the 

PEO block (c) was oxidized to aldehyde (e) by the N-oxoammonium salt, and a 

molecule of the hydroxylamine (d) was produced. The aldehyde (e) was then oxidized 

by NaClO to carboxylic acid (f) and a molecule of NaOCl was regenerated [71, 79-83]. 

This formulation uses the oxidation agent NaOCl only, no addition of potassium 

bromide or quaternary ammonium salt (suggested by Anelli‟s protocol) was required, 

and it was performed at room temperature for 3-5 minutes. This constitutes an 

environmentally friendly catalytic method executed via mild conditions and less harmful 

chemicals. 

Figure 2.2 sketches the chemical structures of the diblock copolymer 

polybutadiene-b-poly(ethylene oxide) (PBd120PEO89) used as a starting material (1) and 

its oxidized derivative where the free hydroxyl end group is converted into the 

corresponding carboxylic acid, carboxylate PBd120PEO89 diblock copolymer (2). 

 

 

 

 

 

 

 

Figure 2.2 Oxidation reaction of primary alcohol end group of polybutadiene-b-poly(ethylene 
oxide) (PBd120PEO89) diblock copolymer. A carboxylate PBd120PEO89 diblock (2) is produced. 
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NaOCl,TEMPO
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Once the carboxylate block copolymer is obtained, the critical aggregation 

concentration (CAC) [84] of vesicles formed by a blend of  varying  ratios of unmodified 

PBd120PEO89 and carboxylate PBd120PEO89 will be measured in order confirm the 

presence of the carboxylate derivative and to physically characterize the new product. 

 

2.3 Materials 

Poly(butadiene-b-ethylene oxide) (PBd120-PEO89, MW 10400 g/mol) block 

copolymer and sucrose (ACS reagent) (C12H22O11, MW 342.3 g/mol) were purchased 

from Polymer Source Inc. (Canada) and Fisher Scientific (Pittsburgh, PA), respectively. 

Dichloromethane (anhydrous, 99.9%) (CH2Cl2, MW 84.93 g/mol), chloroform (99.8+% 

for analysis ACS, stabilized with ethanol) (CHCl3, MW 119.38 g/mol) and methanol 

(99.8+% for analysis ACS) (MeOH, MW 32.04 g/mol) were purchased from Acros 

Organics (Morris Plains, NJ). 4-methoxy-2,2,6,6-tetramethyl piperidine-1-oxyl 

(TEMPO, 156.25 MW g/mol); sodium hypochlorite (NaOCl, MW 74.44 g/mol); sodium 

bicarbonate (NaHCO3, MW  84.01 g/mol), potassium chloride (KCl, MW 74.55 g/mol)  

and sodium hydroxide (NaOH, MW 40.00 g/mol) were purchased from Sigma-Aldrich 

(St. Louis, MO). Regenerated cellulose dialysis tubing kit (MWCO 8000 g/mol) was 

purchased from Spectra/Por®Biotech. 
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2.4 Experimental Methods 

Diblock Copolymer Characterization 

IR Spectroscopy. IR spectra of neat liquids were performed using a Bruker FT-IR 

TENSOR™ spectrometer (Billerica, MA) equipped with OPUS™ measurement software. 

Potassium bromide salt plates (McCarthy Scientific Co., Fallbrook, CA) and CH2Cl2, or 

CHCl3, were used to evaluate the polymer samples. 

 

Vesicle Solution Characterization 

Conductivity Measurements. A series of 11 vesicle solutions were prepared by 

mixing PEO89-PBd120 and carboxylate PEO89-PBd120 in ratios from 0:1 to 1:0 

respectively. The conductivities of each original sample and its correspondent 

subsequent dilutions (12-15 dilutions) were recorded using a Mettler Toledo pH meter 

(S20 SevenEasyTM, Columbus, OH), with a calibrated cell constant, and a Mettler 

Toledo pH microelectrode (InLab® 423). Ultra pure water (18.2 M-cm) was used to 

prepare the vesicle solutions and to dilute them. Potential measurements (mV) for each 

sample, expressed as conductivity values (μS/cm), were plotted against the respective 

polymer concentration (μM) in order to find the critical aggregation concentration 

(CAC) value of the sample. 

Microscope Imaging. Vesicle solutions were imaged using a temporary closed 

sample chamber constructed using a microscope slide, microscope glass cover, a silicone 

rubber and vacuum grease. In order to provide adequate contrast for imaging, a 310 

mOsm/kg NaCl solution was placed into the temporary chamber followed by a smaller 
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amount of the vesicle solution under study (300 mOsm/kg). Phase contrast images of 

polymersomes were taken by a Carl Zeiss Axiovert 200M inverted microscope with 100 

W HBO Mercury vapor lamp coupled to a Zeiss AxioCam MRm camera and a 20X 

objective (numerical aperture of 0.5).  

 

2.5 Synthesis of Carboxylate PBd120PEO89 

 A 20 mL reaction flask was charged with 1 mL of a CH2Cl2 solution of 

PBd120PEO89 diblock copolymer (MW 10400 g/mol), 1.38 mL of a 0.016M CH2Cl2 

solution of TEMPO and 5.72 mL of a 0.35 M aqueous sodium hypochlorite (NaOCl) 

solution buffered with NaHCO3 at pH 8.6. The reaction mixture was magnetically stirred 

at 900 rpm using a Teflon-covered stir bar. Doses of 1 mL of 0.016 M CH2Cl2 solution 

of 4-methoxy-2,2,6,6-tetramethyl piperidine-1-oxyl (TEMPO) were added every 3-5 min 

at room temperature. Once the reaction was completed, pH was adjusted at ≥ 11 with 

aqueous 3N NaOH in order to breakdown the formed emulsion. The organic phase was 

separated from the mixture and dried out in a vacuum oven. After the cleaning 

procedure, the final product was dried out in a vacuum oven and redisolved in CH2Cl2. 

An aliquot of the reaction solution was evaporated on a NaCl plate and the IR spectrum 

was obtained. 

 

Synthesis of (2) 

PBd120-PEO89 (40.0 mg, 3.85x10-3 mmol), TEMPO (13.22 mg, 8.46x10-2 mmol), 

and NaOCl (97.46 mg, 1.31 mmol) were reacted in dichloromethane/water as described 
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above. In this manner, product 1 (30.4 mg, 76% yield) was obtained. IR (ν): 1725 (C=O) 

cm-1. 

 

Functionalized Diblock Copolymer Cleaning Procedure 

The desired product, contained in the organic phase, was redisolved in 2 mL of a 

1:1 MeOH:CHCl3 solution and cleaned using regenerated cellulose dialysis tubing 

(MWCO 8000 g/mol). The sample was dialyzed for 2 hours at room temperature against 

600 mL (300 times the volume of the sample) of 1:1 MeOH:CHCl3 solution, the dialysis 

buffer was changed and the sample dialyzed for another 2 hours. Finally, the dialysis 

buffer was changed for the second time and the sample dialyzed overnight. 

 

2.6 Vesicle Solution Preparation 

A polymer film containing 100 μg of the desired block copolymer or block 

copolymer mixture was formed by evaporation (8 hours) at the bottom of a 5 mL glass 

scintillation vial. Polymersomes were formed by rehydration of this polymer film during 

24 hours at 60ºC with 2 mL of the desired solution: ultrapure (for conductivity 

measurements only) water or 300 mOsm/kg sucrose solution (osmometer model 3320, 

Advanced Instruments, Inc., Norwood, MA). In the case of vesicles formed with a 

mixture of block copolymers, X% w/w of carboxylate PBd120-PEO89 block copolymer 

was ideally mixed with Y% w/w of unmodified PBd120-PEO89 block copolymer before 

the polymer film formation step. Vesicle solutions of the mixture compositions shown in 

Table 2.1 were formed. 
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Table 2.1 Vesicle solution compositions of unmodified PBd120PEO89 and carboxylate PBd120-
PEO89 mixtures used for CAC measurements. 

Vesicle 
% w/w 

unmodified 

% w/w 

carboxylate 

Solution
* 

PBd120PEO89 PBd120PEO89 

1 100 0 
2 90 10 
3 80 20 
4 70 30 
5 60 40 
6 50 50 
7 40 60 
8 30 70 
9 20 80 
10 10 90 
11 0 100 

*The final block copolymer concentration in a 2 mL vesicle solution is 4.8 μM. 

 

Measurement of CAC of Vesicle Solutions 

CAC values can be determined by measuring the surface tension, conductivity, 

surfactant ion exchange, or ultraviolet absorbance of a copolymer solution due to a 

drastic change in these physical properties at the CAC. We determined the CAC‟s of the 

mixtures by conductivity measurements to locate the concentration where the 

conductivity rapidly plateaus.  

The solution voltage was measured by a pH meter and Ohm‟s Law (V  IR) was 

used to convert voltage into resistance and afterward, resistance (R) into conductance 

(G). Conductivity differs from conductance by a proportional factor which is specific to 

the apparatus. This factor was determined by measuring experimental conductance 

values of KCl solutions that were plotted against literature conductivity values [85]. 
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Conductivity was plotted against diblock copolymer concentration values. As the 

concentration increased, the conductivity values increased rapidly and, when the critical 

aggregation concentration (CAC) was reached, the conductivity plateaus. This point was 

identified by the intersection of the best linear fit of the two data regions on the 

conductivity-concentration plot. The experimental CAC values obtained were plotted 

against carboxylate PBd120PEO89 concentration and, CAC values were also modeled by 

iterating equation 12 and substituting the resulting x1 values into equation 6 [43, 86-88]. 

 

2.7 Results and Discussion 

Synthesis of Carboxylate PBd120PEO89 

The two-phase regioselective oxidation reaction successfully produced and a 

76% yield was obtained. A distinctive C=O transmittance band was observed at 1725 

cm-1 in the respective IR spectra contrasting with the starting material one. 

 

Verification of Composition of Carboxylate PBd120PEO89 

One of the main concerns regarding this oxidation procedure is to preserve other 

groups that is present in the polymer chain, such as the C=C and C-H bonds of the 

butadiene block and the C-O bond of the polyethylene oxide block, since they are also 

susceptible to oxidation. Figure 2.3 shows the overlay IR spectra of the unmodified 

PBd120PEO89 and the carboxylate PBd120PEO89. The presence of a peak at around 1725 

cm-1 in the carboxylate PBd120PEO89 IR spectra corresponding to a carbonyl stretch 

demonstrates that the oxidation of the free terminal hydroxyl group of PBd120PEO89, first 
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to an aldehyde and then to a carboxylic acid. The original characteristic peaks are 

preserved (C-H, C=C and C-O stretches) meaning that other groups present in the 

original diblock copolymer were not oxidized. 
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Figure 2.3 Comparison between the IR spectra of the unmodified PBd120PEO89 (top) and the 
carboxylate PBd120PEO89 (bottom). The carbonyl stretch (1725 cm-1) demonstrates that block 
copolymer was effectively oxidized to its carboxylic acid. 
 

CAC Measurements and Microscope Imaging 

Figure 2.4 shows the CAC values corresponding to PBd120PEO89 vesicle 

solutions formed with 0 to 100 percent of carboxylate PBd120PEO89. As the carboxylate 

PBd120PEO89 amount is increased, the CAC values increases while the average vesicle 

size decreases.  
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Figure 2.4 CAC of carboxylate PBd120PEO89 and unmodified PBd120PEO89 mixture. As the 
carboxylate PBd120PEO89 content is increased, the CAC increases and the averaged size of 
vesicles formed decreases. The solid line represents the theoretical CACmix values while the open 
dots represent the experimental values obtained. These two sets of values match until an 
approximate 80% of carboxylate PBd120PEO89 is present in the mixture. The scale bar in all 
pictures represents 10μm. 
 

 When the composition exceeds 80%, the CAC trend is disrupted and in contrast 

to the theoretical predicted ideal case (solid curve), the experimental values drop down 

close to the corresponding values of the unmodified block copolymer. The phase 

contrast images insets of Figure 2.4 indicate the decrease of the corresponding average 

vesicle size as the percentage of carboxylate PBd120PEO89 increases. In the 100% case no 

vesicle formation was observed. 

For aggregate formation, the transition between a single amphiphilic block 

copolymer (monomer) and a micelle (n-mer) can be considered in equilibrium, which is 
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known as the mass action model or the pseudo-phase separation model. The chemical 

potential of component i can be calculated as following with i  for monomerically and 

ideally solubilized phase in solution and i
M for component i in a binary micelle [88-89]: 

 

Phase one (monomeric):  i  i
0  RT ln(Ci

m)           (1) 

 

Phase two (in micelle):  i
M  i

M0  RT ln( fi  xi )         (2) 

 

and,     i
M0  i

0  RT ln(Ci )           (3) 

 

where i
M0  is the chemical potential of component i in a homogenous aggregate, fi is the 

activity coefficient specifying the nonideality of the mixture, x i  is the mole fraction of 

copolymer i in the binary micelle, Ci
m  is the concentration of i in the solution, and Ci  is 

the critical micelle concentration of component i in solution. 

At phase equilibrium i  i
M

, which yields 

 

                                   xi 
Ci
m

fiCi
                                 (4) 

 

Since we have 

Ci
m iC

mix

      (5) 
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i.e., the CAC concentration of monomer i (Ci
m ) is equal to the mole fraction of polymer 

i in the mixture (i ) times the mixed CAC (Cmix ). This equation in combination with 

equation 4 and the relationship of mole fraction between components I =1,2 (1 x1  x2 ) 

yields 

 

1 
1C

mix 
f1C1


2C

mix 
f2C2

         (6) 

 

Since we are not dealing with an ideal binary mixture, the equations require the 

following activity coefficients: 

 
f1  exp (1 x1)

2             (7) 

 

f2  exp(x1
2 )            (8) 

 

where x1  carboxylate PBd120PEO89 and   is an empirical parameter that represents the 

intermolecular interaction between components 1 and 2. x i  can be found by 

minimization of the total Gibbs free energy for the micelle and the solutions are 

 
GN
M  Nx11

M  Nx22
M

          (9) 

 
GN  Nx11  Nx22           (10) 
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where N is the number of moles. Thus, the total change in free energy of the micelle 

during micellation is the potential difference between the micelle phase and the 

monomeric phase: 

 

GN
M  Nx1(1

M  1) Nx2(2
M  2)                          (11) 

 

After manipulation, the resulting equation 12 can be used to find the 

concentration of polymer 1 in the aggregate ( x1 ). 

 

ln
(1 x1)C2

x1C1









  (1 2x1) ln

11
1







       (12) 

 

After iterating equation 12 for x i , it is substituted into equation 6 to find the 

CACmix, which is plotted as a solid line in Figure 2.3. The β value [87] for carboxylated 

PBdPEO were adjusted until the calculated CAC values fit the data, β = -2.01. 

Below 80% of carboxylate PBd120PEO89 in the mixture, the experimental values 

confirm the theoretical prediction. After 80%, the CAC trend is disrupted and only very 

small vesicles are formed (unmodified polymer still present but in a very low 

concentration, less than 20%). This can be explained by the lower solubility of the 

carboxylate PBd120PEO89 which leads to their precipitation. 
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2.8 Conclusions 

The primary alcohol end group of a diblock copolymer is chemically modified 

and effectively combined with unmodified block copolymer to form stable 

functionalized polymeric vesicles.  The free hydroxyl terminal end group of the block 

copolymer Poly(butadiene-b-ethylene oxide) (PEO89PBd120, MW 10400 g/mol) is 

oxidized to its corresponding carboxylic acid (carboxylate PBd120PEO89) through a  

selective two phase oxidation reaction while other oxidizable groups remain unaffected. 

The CAC values of vesicle solutions containing a mixture of carboxylate 

PBd120PEO89 and unmodified PBd120PEO89 increase when the percentage of carboxylate 

PBd120PEO89 is increased, while the average vesicle size decreases. They are consistent 

with the observation that the carboxylic acid presence disrupts the vesicle formation 

process, hence not being able to be incorporated into an unmodified block copolymer 

membrane at concentrations higher than 80% are reached.  
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CHAPTER III 

 

COVALENT COUPLING OF PRIMARY AMINE TO CARBOXYLATE  

PBd120-PEO89 DIBLOCK COPOLYMER 

 

3.1 Overview 

 Three different primary amines were linked to the carboxylate derivative of the 

diblock copolymer polybutadiene-b-poly(ethylene oxide) (PBd120PEO89, MW 10400 

g/mol), (2), by developing an amination reaction that was carried out in an organic 

solvent. This straightforward reaction successfully formed a covalent bond (peptide 

linkage) between the carboxylic acid and the amines giving products (3), (4) and (5) (see 

Figure 3.3).  The location of the primary amine was determined, hence, it was 

corroborated that these amine are located at the vesicles surface. These functionalized 

derivatives were effectively incorporated into vesicles‟ bilayer and surface density 

control was achieved. 

 

3.2 Introduction 

 Chemical labeling and surface modification of diblock copolymer vesicles are of 

interest due to their potential use as drug delivery systems or mimics of living cells. 

EDC/NHS covalent coupling reaction [90-92] has been widely used to prepare amine-

reactive esters of carboxylate groups. Carboxylate groups (R-COOH) react with EDC (1-

Ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride) to form an amine 
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reactive O-acylisourea intermediate. In the presence of NHS (N-Hydroxysuccinimide) 

this intermediate can be stabilized being converted into an amine-reactive NHS ester 

and, if a primary amine is present (R‟-NH2), the semi-stable NHS ester will react with it 

to form a stable amide bond (R-CONH-R‟) [93-95]. This linking chemistry is commonly 

used in protein and cell studies and it is usually performed in an aqueous environment 

for that reason. 

 

                                

H2N-R 

 

  

Figure 3.1 Covalent coupling reaction of primary amine to carboxylate PBd120PEO89 diblock 
copolymer. The respective functionalized diblock copolymer is produced after a primary amine 
(R = 6AF, COU or NA) is linked to its carboxylate form. 
 

 However, due to the amphiphilic nature of the diblock copolymers used in this 

research, a different approach was necessary and an organic environment was chosen to 

perform this reaction. A number of organic solvents were evaluated, including methanol, 

ethanol, dichloromethane, tetrahydrofuran, toluene as well as mixtures of them but, a 1:1 

mixture of methanol:chloroform (MeOH:CHCl3) was the one that gave the best results. 

This adaptation will allow the diblock copolymer and other reactants to dissolve 

completely to form a homogeneous reaction mixture. 

After synthesizing product (2) as described in Chapter II, a subsequent amination 

reaction was conducted in the organic phase (1:1 MeOH:CHCl3). The free terminal 
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hydroxyl group of the carboxylated PBd120PEO89 diblock copolymer was covalently 

linked to a primary amine through the EDC/NHS coupling. Figure 3.1 shows the general 

structure of the obtained functionalized block polymer (PBd120PEO89-R). The following 

functionalized block copolymers were obtained: PBd120PEO89-6AF, PBd120PEO89-COU 

and PBd120PEO89-NA. The chemical structures of the three different primary amines 

used: 6-amino-fluorescein (6AF), 7-amino-4-(trifluoromethyl) coumarin (COU) and the 

hormone DL-Noradrenaline hydrochloride (NA) are shown in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Structure of the three different primary amines used for the functionalization of 
carboxylate PBd120PEO89 diblock copolymer. From left to right: 6-amino-fluorescein (6AF), 7-
amino-4-(trifluoromethyl) coumarin (COU) and DL-Noradrenaline (NA). 
 

  The covalent coupling was conducted at room temperature using the organic 

solvent, under an inert gas atmosphere to prevent degradation of susceptible reactants 

and under constant agitation. Figure 3.3 describes the synthetic pathway followed to 

produce three functionalized diblock copolymers. The carbodiimide EDC, NHS and the 

carboxylate diblock copolymer were first mixed in the organic solvent for 15 minutes 

prior to the addition of the primary amine. Then, the primary amine of interest was 

 

          

 

          

 

 

6AF NA COU 
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added to the reaction vessel under constant stirring at 900 rpm and reacted for 2 hours. 

The amine-reactive NHS ester (stable intermediate) reacted with the amine and formed a 

stable amide bond. Multiple additions of EDC/NHS (2 hours apart) were performed to 

increase the final product yield and the reaction was run overnight for 24 hours. 

After achieving the synthesis of the fluorophore (6AF and COU) and hormone 

(NA) functionalized diblock copolymers, they were successfully incorporated into 

vesicle‟s bilayer of unreacted PBd120PEO89 at a 1:9 ratio. The fluorescently labeled 

polymers were studied using fluorescent microscopy which led to confirm the efficacy 

of the linking chemistry proposed. Fluorescent spectroscopy helped to elucidate that the 

fluorophore molecule was actually located at the surface of the vesicle bilayer instead of 

any other possible sites such as the hydrophobic bilayer region or just dissolved in 

solution. The two fluorescently label diblock copolymers were also combined in the 

same vesicle structure. The concentration of each labeled polymer can be changed and it 

was shown that surface density can be controlled. 

The hormone labeled polymer (PBd120PEO89-NA) was characterized by UV-Vis 

spectroscopy and used with cultured cells to verify an intracellular response to the drug 

molecule transported to the surface of the functionalized vesicle later on (see Chapter 

IV). 
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Figure 3.3 Synthetic pathway for functionalized diblock copolymers: (3) PBd120PEO89-6AF, 
after amination reaction with 6AF; (4) PBd120PEO89-COU, after amination reaction with COU; 
(5) PBd120PEO89-NA, after amination reaction with NA. Products were obtained by EDC/NHS 
covalent coupling of carboxylate PBd120PEO89 diblock to the respective primary amine.  
 

3.3 Materials 

PBd120PEO89 (MW 10400 g/mol) diblock copolymer and sucrose (ACS reagent) 

(C12H22O11, MW 342.3 g/mol) were purchased from Polymer Source Inc. (Canada) and 

EDC/NHS 
RT, 24 h 

(3) 

(4) 

(5) 

EDC/NHS 
RT, 24 h 

EDC/NHS 
RT, 24 h 
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Fisher Scientific (Pittsburgh, PA), respectively. Dichloromethane (anhydrous, 99.9%) 

(CH2Cl2, MW 84.93 g/mol), chloroform (99.8+% for analysis ACS, stabilized with 

ethanol) (CHCl3, MW 119.38 g/mol) and methanol (99.8+% for analysis ACS) (MeOH, 

MW 32.04 g/mol) were purchased from Acros Organics (Morris Plains, NJ). 7-amino-4-

(trifluoromethyl) coumarin (COU, MW 229.16 g/mol) and tetrahydrofuran (≥ 99.0% 

ACS reagent) (THF, MW 72.11 g/mol) were purchased from Sigma-Aldrich (St. Louis, 

MO). 6-amino-fluorescein (6AF, MW 347.32 g/mol) and DL-Noradrenaline 

hydrochloride (NA, MW 205.64 g/mol) were purchased from Fluka (Switzerland). 1-

Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC, MW 191.70) and 

N-Hydroxysuccinimide (NHS, MW 115.09 g/mol) were purchased from Pierce 

(Rockford, IL). Regenerated cellulose dialysis tubing kit (MWCO 8000 g/mol) was 

purchased from Spectra/Por®Biotech and, the previously synthesized carboxylate 

PBd120-PEO89 diblock copolymer. 

 

3.4 Experimental Methods 

Diblock Copolymer Characterization 

IR Spectroscopy. IR spectra of neat liquids were performed using a Bruker FT-IR 

TENSOR™ spectrometer (Billerica, MA) equipped with OPUS™ measurement software. 

Potassium bromide salt plates (McCarthy Scientific Co., Fallbrook, CA) and CH2Cl2, or 

CHCl3, were used to evaluate the polymer samples. 
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UV-Vis Absorbance Measurements. Absorbance measurements of the obtained 

PEO89-PBd120-NA were performed using a Shimadzu UV-Mini 1240 spectrophotometer 

(Columbia, MD). Quartz cuvettes (1 cm pathlenght) and CHCl3 were used as sample 

holder and solvent respectively. Free PEO89-PBd120-NA dissolved in CHCl3 and the 

respective sets of controls were also analyzed by UV-Vis Spectroscopy. 

 

Vesicle Solution Characterization 

Cross-Polarizing Fluorescent Microscopy. Vesicle solutions were imaged using 

the temporary closed sample chamber described before. Phase contrast images of 

polymersomes were taken by a Carl Zeiss Axiovert 200M inverted microscope with 100 

W HBO Mercury vapor lamp coupled to a Zeiss AxioCam MRm camera and a 20X 

objective (numerical aperture of 0.5). Fluorescent microscope images were obtained 

using a FITC band-pass filter with an excitation wavelength of 475 nm (bandwidth of 40 

nm) and an emission wavelength of 530 nm (bandwidth of 50 nm); or a DAPI low-pass 

filter with an excitation wavelength of 365 nm, and an  emission wavelength of 445 nm 

(bandwidth of 50 nm). Vesicle solutions of controls and samples containing 10% w/w of 

PEO89PBd120-6AF or, PEO89PBd120-COU, and 90% of unmodified PEO89PBd120 were 

prepared and imaged under fluorescence microscopy. To facilitate comparison of 

samples to controls, all images were taken sequentially using the same instrumental 

parameters and the recorded images were processed and analyzed identically with the 

program ImageJ. 
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Confocal Microscopy. Confocal images of vesicles containing PEO89-PBd120-

6AF were recorded using a Leica TCS SP5 broad band confocal microscope 

(Bannockburn, IL). Pictures were taken at a scan rate of 400 Hz using a 63X oil 

objective. A 488 nm excitation laser and a 500-600 nm opening emission were used as 

well as a 700V photo multiplier tube power and a 100μm pinhole. 

Fluorescence Spectroscopy. Steady-state excitation and emission spectra were 

recorded on a Photon Technology International (PTI) (Birmingham, NJ) 

QuantaMaster™ UV VIS spectrofluorometer equipped with FeliX32™ software 

package. During vesicle sample measurements, one polarizer was placed before the 

sample and the analyzer placed before the emission collection compartment was rotated 

to a perpendicular angle with respect to the excitation polarizer to reduce intense 

scattering from the polydisperse vesicle sample.  This configuration allows the 

fluorescence of the vesicle system to be recorded. 

In order to determine the location of fluorophore molecules in a vesicle solution 

different environments were simulated by dissolving COU in different solvents: (A) 

aqueous 0.15M PBS solution and the respective excitation and emission spectra were 

recorded at 375 and 490 nm; (B) decane and the excitation and emission spectra were 

recorded at 350 and 400 nm respectively; (C) aqueous 15% w/w PEO (MW 2000 g/mol) 

solution and the excitation and emission spectra were recorded at 385 and 490 nm 

respectively, and finally (D) a vesicle solution containing 10% PBd120PEO89-COU is 

prepared in an aqueous 0.3M sucrose media and the same excitation and emission 

wavelengths used for case (A) were  applied here. 
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3.5 Synthesis of Functionalized Diblock Copolymer 

The reactions were conducted under an argon atmosphere and stirred at 900 rpm 

using a Teflon-covered stir bar. A 5 mL reaction flask was charged with 1 mL of 1:1 

MeOH:CHCl3 solution of 1x10-3 mmol carboxylate PBd120PEO89, 10x10-3 mmol of EDC 

(dissolved in CHCl3) and 5x10-3 mmol of NHS (dissolved in THF). The mixture was 

allowed to react for 15 minutes at room temperature. A primary amine (6AF, COU or 

NA) in a 5 fold excess was dissolved in 1:1 MeOH:CHCl3, added to the reaction flask 

and allowed it to react for 2 hours under constant magnetic stirring. Extra doses of EDC 

and NHS were added every two hours to increase amount of amine linked to carboxylate 

groups. After the cleaning procedure, the final product was dried out in a vacuum oven 

redisolved in CH2Cl2 and an aliquot of the reaction solution was evaporated on a NaCl 

plate and respective the IR spectrum was obtained. 

 

Synthesis of Diblock Copolymer Controls 

The modified diblock copolymers used in controls and samples were prepared 

using different components and were labeled as follow: Control 1: When PBd120PEO89, 

EDC, NHS and a primary amine (6AF, COU or NA) were combined; control 2: when 

carboxylate PBd120PEO89 and a primary amine (6AF, COU or NA) were combined; 

sample: when carboxylate PBd120PEO89, EDC, NHS and a primary amine (6AF, COU or 

NA) were combined. 

 

 



 41 

Synthesis of (3) 

Carboxylate PBd120PEO89 (30.40 mg, 2.92x10-3 mmol), EDC (5.60 mg, 

29.23x10-3 mmol), NHS (1.68 mg, 14.62 x10-3 mmol) and 6AF (5.08 mg, 14.62x10-3 

mmol) were reacted in methanol/chloroform as described above. In this manner, product 

3 (24.62 mg, 81% yield) was obtained. IR (ν): 1703 (C=O) cm-1, 1539 (N-H bend) cm-1. 

 

Synthesis of (4) 

Carboxylate PBd120PEO89 (30.40 mg, 2.92x10-3 mmol), EDC (5.60 mg, 

29.23x10-3 mmol), NHS (1.68 mg, 14.62 x10-3 mmol) and COU (3.35 mg, 14.62x10-3 

mmol) were reacted in methanol/chloroform as described above. In this manner, product 

4 (23.41 mg, 77% yield) was obtained. IR (ν): 1703 (C=O) cm-1, 1558 (N-H bend) cm-1. 

 

Synthesis of (5) 

Carboxylate PBd120PEO89 (30.40 mg, 2.92x10-3 mmol), EDC (5.60 mg, 

29.23x10-3 mmol), NHS (1.68 mg, 14.62 x10-3 mmol) and NA (3.01 mg, 14.62x10-3 

mmol) were reacted in methanol/chloroform as described above. In this manner, product 

5 (21.89 mg, 72% yield) was obtained. IR (ν): 1700 (C=O) cm-1, 1538 (N-H bend) cm-1. 

 

 

Functionalized Diblock Copolymer Cleaning Procedure 

The desired product, was redisolved in 2 mL of a 1:1 MeOH:CHCl3 solution and 

cleaned using regenerated cellulose dialysis tubing (MWCO 8000 g/mol). The sample 
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was dialyzed for 2 hours at room temperature against 600 mL (300 times the volume of 

the sample) of 1:1 MeOH:CHCl3 solution, the dialysis buffer was changed and the 

sample dialyzed for another 2 hours. Finally, the dialysis buffer was changed for the 

second time and the sample dialyzed overnight. 

 

3.6 Vesicle Solution Preparation 

A polymer film containing 100 μg of the desired block copolymer or block 

copolymer mixture was formed by evaporation (8 hours) at the bottom of a 5 mL glass 

scintillation vial. Polymersomes were formed by rehydration of this polymer film during 

24 hours at 60ºC with 2 mL of 300 mOsm/kg sucrose solution. In the case of vesicles 

formed with a mixture of block copolymers, X% w/w of functionalized PBd120PEO89 

block copolymer was ideally mixed with Y% w/w of unmodified PBd120PEO89 block 

copolymer before the polymer film formation step. Vesicle solutions of the following 

mixture compositions were formed: 10% w/w of PBd120PEO89-6AF and 90% w/w of 

unmodified PBd120PEO89, 10% w/w of PBd120PEO89-COU and 90% w/w of unmodified 

PBd120PEO89 and, 10% w/w of PBd120PEO89-NA and 90% w/w of unmodified 

PBd120PEO89. The final block copolymer concentration in a vesicle solution of 2 mL is 

4.8 μM. 

Similarly, vesicle solutions of the following mixture compositions (also using a 

300 mOsm/kg sucrose solution) were prepared for surface density control experiments: 

2.5% w/w of PBd120PEO89-COU and 90% w/w of unmodified PBd120PEO89, 5.0% w/w 

of PBd120PEO89-6AF, 5.0% w/w of PBd120PEO89-COU and 90% w/w of unmodified 
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PBd120PEO89 and, 2.5% w/w of PBd120PEO89-6AF, 7.5% w/w of PBd120PEO89-COU and 

90% w/w of unmodified PBd120PEO89. 

 

Vesicle Solution for Fluorescence Spectroscopy 

The vesicle solution used for fluorescence measurements was prepared using a 

300 mOsm/kg sucrose solution, 10% w/w of PBd120PEO89-COU and 90% w/w of 

unmodified PBd120PEO89. 

 

Vesicle Solution Controls 

Vesicle solutions of controls and samples were prepared by combining in a 9:1 

ratio the unreacted PBd120PEO89 and the functionalized diblock copolymer. 

 

3.7 Results and Discussion 

Synthesis of (3)-(5) 

 The EDC/NHS amination reactions effectively produced compounds (3), 

(4) and (5) and yields ≥ 70% were obtained in all cases.  

 

 

Verification of Product (3)-(5) Composition 

 Figure 3.4 compares the spectrum of the unmodified PBd120PEO89 to that of 

PEO89PBd120-6AF, PEO89PBd120-COU and PEO89PBd120-NA. The presence of a 

carbonyl stretch peaks (1730 cm-1) and N-H bend peaks (1540 cm-1) in each IR spectra 
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demonstrates the formation of a secondary amide linkage between the carboxylate 

PBd120PEO89 and the respective primary amine. 

 

Imaging of 6AF Functionalized Vesicles 

Figure 3.5 shows a set of images of polymersomes made up with 90% 

PBd120PEO89 and 10% PBd120PEO89-6AF following a standard vesicle formation 

procedure in a 310 mOsm/kg sucrose solution. Figure 3.5(A) shows a phase contrast 

microscopy image of a well defined vesicle and Figure 3.5(B) shows the same vesicle is 

observed under fluorescent light (FITC filter) where, the fluorescent vesicle membrane 

can be clearly seen as a bright ring after focusing in its middle plane. The confocal 

image shown in Figure 3.5(C) is a side view of a fluorescent vesicle sitting over a cover 

glass and it is evident that the fluidity of the polymer membrane is preserved. These 

images corroborate that the carboxylate PBd120PEO89 reacted with 6AF (fluorescent) to 

form the corresponding amide (PBd120PEO89-6AF) and that modified block copolymers 

were successfully incorporated into the vesicles without disrupting its original 

morphology and characteristics such as membrane fluidity. 
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Figure 3.4 Comparison between the IR spectra of the unmodified PBd120PEO89 and the covalent 
coupling reaction products from the respective carboxylate block copolymer, 6-amino-
fluorescein PBd120PEO89 (PBd120PEO89-6AF), 7-amino-4-(trifluoromethyl) coumarin PBd120-
PEO89 (PBd120PEO89-COU) and  DL-Noradrenaline PBd120PEO89 (PBd120PEO89-NA). Overlay of 
IR spectra showing:  (A) PBd120PEO89 (top) and PBd120PEO89-6AF product. (B) PBd120PEO89 
and PBd120PEO89-COU product. (C) PBd120PEO89 and PBd120PEO89-NA product. The presence 
of a carbonyl stretch (around 1700 cm-1) and a peak corresponding to a N-H bend (around 1530 
cm-1) indicates the formation of an amide bond between the block copolymer and the primary 
amines. 
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CBA CBA

 

 

Figure 3.5 Block copolymer vesicles of 10% PBd120PEO89-6AF and 90% PBd120PEO89. (A) 
Phase contrast image. (B) Fluorescent image taken using FITC filter. (C) Side view image 
obtained by confocal microscopy. 

 

Fluorescent Microscopy Analysis of Functionalized Vesicles 

 Figure 3.6 and Figure 3.7 demonstrate through a set of controls and samples the 

effectiveness of the covalent coupling reaction of primary amines to the carboxylate end 

groups of carboxylate PBd120PEO89. For 6AF, phase contrast images of three types of 

vesicles (control 1, control 2 and sample) are shown in Figure 3.6(A) while the 

respective fluorescent images, taken using a FITC filter, can be observed in Figure 

3.6(B). All the images were recorded consecutively and analyzed using the same 

microscope settings in order to minimize effects due to fluorescent lamp intensity or 

image processing. Table 3.1 shows the peak and average values of the vesicle‟s intensity 

profiles of controls and samples for the 6AF case. Three different vesicle sets were 

analyzed and in each case peak 1 and 2 correspond to both sides of the vesicle‟s bilayer 

observed on the transversal cut images obtained through fluorescent microscopy. 

Similarly, Table 3.2 shows the peak and average values of the vesicle‟s intensity profiles 

of controls and samples for the COU case. 
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Table 3.1 Intensity profile values of controls and samples of PBd120PEO89-6AF functionalized 
vesicles. 
 

 Control 1 (Intensity units) Control 2  (Intensity units) Sample  (Intensity units) 

 
Peak 1 Peak 2 Average Peak 1 Peak 2 Average Peak 1 Peak 2 Average 

 

Trial 1 6.9 6.3 6.6 45.9 46.0 45.9 118.6 132.0 125.3 

Trial 2 8.3 9.3 8.8 77.5 75.5 76.5 184.7 210.8 197.8 

Trial 3 8.2 7.1 7.6 71.1 68.8 69.9 137.7 172.8 155.3 

StDev   1.1   16.1   36.4 

  

Table 3.2 Intensity profile values of controls and samples of PBd120PEO89-COU functionalized 
vesicles. 
 

 Control 1 (Intensity units) Control 2  (Intensity units) Sample  (Intensity units) 

 
Peak 1 Peak 2 Average Peak 1 Peak 2 Average Peak 1 Peak 2 Average 

 

Trial 1 23.9 16.0 19.9 50.8 50.5 50.6 310.8 314.8 312.8 

Trial 2 26.0 24.0 25.0 47.0 46.0 46.5 306.0 302.0 304.0 

Trial 3 13.6 11.0 12.3 34.7 32.9 33.8 186.7 191.0 188.9 

StDev   6.4   8.8   69.1 

 

Control 1 lacks a carboxyl group at the end of the block copolymer chain. In the 

case of control 2, amide bonds could form due to the presence of a free primary amine 

(6AF) and the carboxylate PBd120PEO89. It can clearly be observed that the sample 

exhibits higher fluorescence intensity than both controls which indicates a higher percent 

of conversion for the coupling reaction product (PBd120PEO89-6AF). Figure 3.6(C) 

confirms the differences in fluorescent intensities for the two controls and the sample. 

In the COU case, the same types of block copolymer vesicles were prepared 

(control 1, control 2 and sample) and fluorescent images were recorder using a DAPI 

filter. Comparable results to the 6AF case are obtained and shown in Figure 3.7. Since 
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there is no carboxyl group present in control 1, and the slight fluorescence of control 2 

suggests the formation of only few amide bonds, the higher fluorescence intensity 

exhibited by the sample indicates a higher percent conversion for the coupling reaction 

between the carboxylate PBd120PEO89 and COU. 

 

 

 

Figure 3.6 Images of fluorescent block copolymer vesicles from PBd120PEO89 and PBd120PEO89-
6AF mixed at 9:1 ratio. The table above explains the reactants used for controls and the sample. 
(A) Phase contrast images. (B) Fluorescent images taken using FITC filter. (C) Intensity profiles 
corresponding to each fluorescent vesicle shown in (B). 
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Figure 3.7 Images of fluorescent block copolymer vesicles from PBd120PEO89 and PBd120PEO89-
COU mixed at 9:1 ratio. The table above explains the reactants used for controls and the sample. 
(A) Phase contrast images. (B) Fluorescent images taken using DAPI filter. (C) Intensity profiles 
corresponding to each fluorescent vesicle shown in (B). 
 

UV-Vis Spectroscopy Analysis of Hormone Functionalized Diblock Copolymer 

Figure 3.8 shows the concentration of PBd120PEO89-NA present in control 1, 

control 2 and sample determined by UV absorbance measurements of the respective free 

polymer dissolved in CHCl3. 
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Figure 3.8 UV absorbance of block copolymer PBd120PEO89-NA in CHCl3 taken at λ=380 nm. 
Control 1 has no modified polymer. Control 2 has no coupling reagents. Sample shows the final 
product (73% conversion). Polymer concentrations are 1.9 mM. 
  

 A 1.9 mM carboxylate PBd120PEO89 solution is used for these amination 

reactions and the PBd120PEO89-NA yields obtained for control 1, control 2 and sample 

by UV absorbance measurements are 22, 53, and 73% respectively. Due to the lack of a 

carboxyl group in the block copolymer chain of control 1 no further reaction can occur 

however, amide bonds can be formed in control 2 due to the presence of a primary amine 

(NA) and the carboxylate PBd120PEO89. Lastly, the higher fluorescence exhibited by the 

sample indicates again a higher percent of conversion for the linking reaction between 

the carboxylate PBd120PEO89 and NA. 

 



 51 

Fluorophore Localization Through Fluorescence Spectroscopy 

 In order to establish the actual location of the fluorescent primary amines used 

(6AF and COU) during the EDC/NHS coupling to the carboxylate PBd120PEO89, 

fluorescence measurements were conducted (Figure 3.9). The three possible locations 

where the fluorophores can be found are: (A) Free in aqueous solution, where no 

covalent coupling with the carboxylate PBd120PEO89 was achieved. (B) Free and 

solubilized in the hydrophobic region of the vesicle membrane, when no reaction has 

occurred and the free fluorophore is partially solubilized in the vesicle membrane. (C) 

Covalently attached to the carboxylate PBd120PEO89. With the aim of simulating these 

environments, COU was dissolved in three different solutions as described in the 

experimental section and compared to a vesicle solution containing 10% PBd120PEO89-

COU. 

 Figures 3.9 (A-C) shows the resultant fluorescence spectra of these simulated 

environments while Figure 3.9(D) shows the fluorescence spectra of a vesicle solution 

formed with the functionalized PBd120PEO89-COU. The vesicle solution spectra (Figure 

3.9(D)) does not match the results presented in Figures 3.9(A) or 3.9(B) while Figure 

3.9(C) shows very similar emission and absorption peaks. These results indicate that the 

fluorophore is not in the hydrophobic region or free in solution, but associated with the 

PEO block of the polymer. 
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Figure 3.9 Fluorescent measurements of dissolved COU in different media simulating various 
environments (A) COU dissolved in an aqueous 0.15 M PBS solution. Excitation (375 nm) and 
emission (490 nm) were used respectively. (B) COU dissolved in decane. Excitation (350 nm) 
and emission (400 nm). (C) COU dissolved in an aqueous 15% w/w PEO (MW ~2000) solution. 
Excitation (385 nm) and emission (490 nm). (D) Vesicle solution of 10% PBd120PEO89-COU in 
an aqueous 0.3 M sucrose solution. Same excitation and emission wavelength used as in (A). 
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Surface Density Control of Functionalized PBd120PEO89-6AF and PBd120PEO89-

COU in Diblock Copolymer Vesicles  

 Figure 3.10 shows the results of a surface density experiment were the amount 

and type of fluorescent PBd120PEO89, either linked to 6AF or COU, were controlled and 

deliberately modified. Block copolymer vesicles were formed using 90% PBd120PEO89 

and 10% of a mixture of PBd120PEO89-6AF and PBd120PEO89-COU, ranging from a 

minimum of 2.5% to a maximum of 7.5% of each component. 

 These fluorescent microscope images were taken using separate FITC/DAPI 

filters. Each column represents one set of images of the same vesicle. Rows 1 and 2 

show images taken with DAPI (to detect COU presence) and FITC (to detect 6AF 

presence) filter respectively and, while row 1 shows an increase in the PBd120PEO89-

COU concentration from left to right (2.5%, 5.0% and 7.5% respectively), row 2 shows 

an increase in the PBd120PEO89-6AF concentration from right to left (2.5%, 5.0% and 

7.5% respectively). Row 3 illustrates the superposition of the two previous images in the 

same column (actual image seen through the eye piece or microscope camera).  

 Images shown in column 1 correspond to a block copolymer vesicle made up 

with 7.5% PBd120PEO89-COU (Figure 3.10(A)) and 2.5% PBd120PEO89-6AF (Figure 

3.10(D)). Column 2 present the images of a vesicle made up with 5.0% PBd120PEO89-

COU (Figure 3.10(B)) and 5.0% PBd120PEO89-6AF (Figure 3.10(E)). Finally, column 3 

displays the images of a vesicle made up with 2.5% PBd120PEO89-COU (Figure 3.10(C)) 

and 7.5% PBd120PEO89-6AF (Figure 3.10(F)). 
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Figure 3.10 Surface density control of fluorescent block copolymer in polymersomes. 90% 
PBd120PEO89 and 10% of a mixture of PBd120PEO89-COU (A-C) and PBd120PEO89-6AF (D-F), 
ranging from a minimum of 2.5% to a maximum of 7.5% of each component. The combined or 
total fluorescence is shown in figures G-I. The amount and type of fluorescent PBd120PEO89 were 
tailored enabling us to exert surface density control of the vesicle components. 
  

 Figures 3.10(G-I) show the overlay of the respective upper images were the total 

fluorescence is constant while the blue and green vary with concentration. The overlay 

images of the COU and 6AF channels show the total fluorescence intensity of the three 

types of vesicles formed and demonstrate that the amount and type of functionalized 
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block copolymer incorporated into the vesicle can be tailored and that the surface density 

of a polymer vesicle can be accurately controlled. 

 

3.8 Conclusions 

 Different primary amines were covalently attached to the previously synthesized 

carboxylate block copolymer through a modified amination reaction performed in 

organic phase. The peptide bond formation was confirmed through FT-IR spectroscopy 

and fluorescent microscopy. This constitutes a singular synthetic approach of this widely 

used coupling reaction due to the amphiphilic nature of the diblock copolymers that 

enable us to apply it to other molecule types. 

 Polymersomes containing 90% of the unmodified block copolymer and 10% of 

one of the modified block copolymers (PBd120PEO89-6AF, PBd120PEO89-COU, and 

PBd120PEO89-NA) were prepared and the effective incorporation of the latest one was 

demonstrated through fluorescence microscopy and UV absorbance measurements. Two 

types of modified diblock copolymers (PBd120PEO89-6AF, PBd120PEO89-COU) were 

also properly integrated into the same vesicle and, surface density control of the two 

fluorophores was achieved and confirmed through fluorescence microscopy. 

 This type of synthesis opens the possibility to produce different functionalized 

diblocks, with diverse uses and applications, which can be incorporated into the 

polymersome bilayer with the aim of safe transportation and further targeted delivery of 

the desired molecule. 
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CHAPTER IV 

 

CELL RESPONSE TO HORMONE FUNCTIONALIZED  

PBd120PEO89 DIBLOCK COPOLYMER  VESICLES

 

4.1 Overview 

 After the successful synthesis of functionalized diblock copolymers that can be 

integrated into polymeric vesicles, as described in previous chapters shows that 

functionalized vesicles can interact with living cells to induce a cell response [96]. A 

series of control and samples were evaluated and compared. A functionalized vesicle 

with noradrenaline (NA) molecules attached to its surface was placed in close contact 

with a cell surface using micropipette aspiration technique. We observed that the 

delivered hormone was bound to the noradrenaline a-receptors located on the surface of 

smooth muscle cells (SMC) and produced the expected cell response confirmed by as an 

increase of fluorescence using fluorescent microscopy. 

 

4.2 Introduction 

Noradrenaline (NA), also called norepinephrine, is one of the principal hormones 

and neurotransmitters of the nervous system. The noradrenaline effects includes the 

activation of the sympathetic nervous system, which causes the raise of glucose 

concentration in blood, increase in blood pressure and heartbeat rate, and boost muscular 

power and resistance to fatigue [87, 97]. It may also cause exocytosis, adhesion of cells 
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to the extracellular matrix, dilation of pupils and dilation of air passages in the lungs, 

narrowing of blood vessels in non-essential organs, and even apoptosis. 

Noradrenaline is produced by the adrenal gland located on top of the kidneys and 

stored in small vesicles. In the occurrence of an impulse at a nerve terminal, the 

noradrenaline containing vesicles are released. After noradrenaline is used, the residual 

NA molecules are oxidized to inactive material or restored for later use. Noradrenaline 

interacts with two types of cell membrane receptors, named „a‟ and „b‟. The b-receptors 

cause relaxation, whereas the a-receptors cause contraction of smooth muscle cells when 

activated. The interaction between noradrenaline and the cell surface receptors [97-99] 

occurs via a cascade reaction involving a number of secondary messengers that amplify 

the strength of the transmitted signal. 

Due to the importance of well balanced presence of molecules of this hormone in 

human body, we developed here diblock copolymer vesicles capable of carrying 

noradrenaline molecules in their surfaces. These functionalize vesicles can bind to a-

receptors of smooth muscle cells to restore blood pressure to normal in life threatening 

situations when it has dropped dangerously low (known as acute hypotension). 

Currently, noradrenaline is administered in solution through injection. But, the outflow 

of it from veins can cause death of the tissue around therein. Hence, a controlled 

distribution of the drug using functionalized vesicles may be an alternative medical 

treatment. 

In company to smooth muscle cell contractions, there is a rise in serum calcium 

[22, 37] that enables us to monitor the cell response to the presence of noradrenaline. 
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Here, we chose to observe and image via fluorescent microscopy the intracellular 

increase of Ca2+ ions through their coupling to a fluorescent indicator, such as Fluo-4 

AM [100-102]. The increase in fluorescence intensity was caused by a series of controls 

and samples placed in closed contact with rat aortic smooth muscle cell cultures. The 

Fluo-4 AM ester is an uncharged molecule that is permeable to cell membranes. Once 

inside the cell, it binds to Ca2+ ions, and can be imaged due to the strong fluorescence 

intensity produced when excited at 488 nm [43, 98]. 

 

4.3 Materials 

Previously synthesized noradrenaline Poly(butadiene-b-ethylene oxide) (PBd120-

PEO89-NA) block copolymer and rat aortic smooth muscle cells (RASMC). Sucrose 

(ACS reagent) (C12H22O11, MW 342.3 g/mol) and DL-Noradrenaline hydrochloride 

(NA, MW 205.64 g/mol) were purchased from Fisher Scientific (Pittsburgh, PA) and 

Fluka (Switzerland), respectively. PBd120-PEO89 and Poly(butadiene-b-ethylene oxide) 

(PBd33PEO20, MW 2700 g/mol) block copolymers were purchased from Polymer Source 

Inc. (Canada). Carboxylate-modified polystyrene microspheres (red fluorescent, 2 μm in 

diameter) were purchased from Molecular Probes™, Invitrogen (Carlsbad, CA). High 

quality dimethylsulfoxyde (DMSO) ((CH3)2SO, MW 78.13 g.mol) and Pluronic® F-127 

were purchased from Sigma-Aldrich (St. Louis, MO).  Dulbecco‟s Modified Eagle‟s 

Medium (DMEM) (4.5 g/L glucose, L-glutamine, sodium pyruvate) and Antibiotic-

Antimycotic solution (10000 I.U./mL penicillin, 10000 μg/mL streptomycin, 25 μg/mL 

amphotericin B) were purchased from Cellgro®, Mediatech, Inc. (Herndon, VA). 
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Phosphate buffered saline 1X (PBS) and Bovine Calf Serum (BCS) were purchased from 

HyClone, Thermo Fisher Scientific, Inc. Fluo4 AM was purchased from Invitrogen 

(Carlsbad, CA). 

 

4.4 Experimental Methods 

Vesicle and Cell Characterization 

Micropipette Aspiration. A single vesicle was hold close to a cultured cell using 

a micropipette aspirator. In this technique, vesicles were aspirated into a pipette of small 

inner diameter (approximate 8 µm) by applying suction pressure causing changes of the 

vesicle‟s membrane tension. This highly specialized technique required custom 

laboratory fabrication of glass micropipettes by a micropipette puller and a micro forge 

equipped with a microscope.  

 

Microscope Imaging and Cross-Polarizing Fluorescent Microscopy. Cells and 

vesicles were imaged using an open Petri dish and a silicone rubber well as a vesicle 

chamber. Individual vesicles were hold using micropipette aspiration technique to place 

them in close contact with cell surface. Bright field images were taken via a 20X 

objective of a Carl Zeiss Axiovert 200M inverted microscope with 100 W HBO Mercury 

vapor lamp and recorded by a Zeiss AxioCam MRm camera. Fluorescent microscope 

images were obtained using a FITC band-pass filter with an excitation wavelength of 

475 nm (bandwidth of 40 nm) and an emission wavelength of 530 nm (bandwidth of 50 

nm). All images were recorded consecutively using the same microscope settings in 
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order to minimize effects due to fluorescent lamp intensity fluctuation or image 

processing. The recorded images were processed and analyzed with the program ImageJ. 

In all cases, consecutive fluorescent images (50 to 150 frames) of the same 

RASMC culture region are taken every 2 seconds. In each case, three smaller areas were 

numbered and marked by a square in each image and the fluorescence intensity of the 

cells contained in these areas was as a function of time before and after the addition of 

controls and functionalized beads or vesicles. 

 

Cell Seeding Procedure 

 RASMC were transferred into a 60x15 mm round Petri dish and a final volume 

of 5 mL was reached by adding DMEM. The cells were incubated at 37ºC for 2 days or 

until a confluent cell layer was obtained. The DMEM media was changed every 2 days 

and cells were reseeded every 4-5 days. 

 

Cell Staining Procedure 

 A 2.5 mM Fluo4 AM stock solution was prepared by dissolving 50 μg of Fluo4 

AM in 18 μL of a 20% Pluronic
® F-127 solution prepared in DMSO (0.4 g of Pluronic® 

F-127 in 2 mL of DMSO). The stock solution was then diluted to a 2.5 μM Fluo-4 AM 

solution by adding 18 mL of PBS. The Petri dish containing the seeded cells was 

charged with 1 mL of the 2.5 μM Fluo-4 AM solution and exposed to it for 40 minutes at 

room temperature. 
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4.5 Synthesis of Hormone Functionalized Diblock Copolymer 

 The reactions were conducted under an argon atmosphere and stirred using a 

Teflon-covered stir bar. 

 

Hormone Functionalized Polystyrene Microspheres 

A 5 mL reaction flask was charged with 1 mL aqueous solution of the 

carboxylate-modified polystyrene microspheres, 10x10-3 mmol of EDC and 5x10-3 mmol 

of NHS. The reaction mixture was allowed to react for 15 minutes at room temperature 

and under constant magnetic stirring. NA in excess (10x10-3 mmol) was added to the 

reaction flask and allowed it to react for 2 hours. Extra doses of EDC and NHS were 

added every two hours to increase amount of amine linked to carboxylate groups. The 

final clean product was resuspended in 1 mL of DMEM.  

 

Polystyrene Microspheres Control Suspension 

 A control bead solution was prepared at the same time but without addition of 

linking agents. A 5 mL reaction flask was charged with 1 mL aqueous solution of the 

carboxylate-modified polystyrene microspheres and magnetically stirred for 15 minutes 

at room temperature. NA (10x10-3 mmol) was added to the reaction flask and allowed it 

to react for 2 hours. The final clean product was resuspended in 1 mL of DMEM.  

 

 

 



 62 

Functionalized Microspheres Cleaning Procedure 

The reaction mixture was cleaned using microcentrifuge filtration tubes (0.22 μm 

pore size). The functionalized beads were resuspended in 1 mL aqueous solution using a 

vortex and then filtrated. This procedure was repeated 3 times per sample and blanks. 

 

4.6 Vesicle Solution Preparation 

A polymer film containing 100 μg of the desired block copolymer or block 

copolymer mixture was formed by evaporation (8 hours) at the bottom of a 5 mL glass 

scintillation vial. Polymersomes were formed by rehydration of this polymer film during 

24 hours at 60ºC with 2 mL sucrose solution. A 340 mOsm/kg sucrose solution was used 

during the rehydration step because of the higher osmolality of DMEM (350 mOsm/kg). 

A vesicle solution of the following mixture composition was formed: 10% w/w of 

PBd120PEO89-NA and 90% w/w of unmodified PBd33PEO20. The final block copolymer 

concentration in a vesicle solution of 2 mL is 4.8 μM. 

 

Vesicle Solution Controls 

Vesicle solutions of controls and samples are prepared by combining in a 9:1 

ratio the unreacted PBd33PEO20 and the functionalized diblock copolymer control 1 or 

control 2. 
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4.7 Results and Discussion 

 Six cell response experiments were performed and the fluorescence intensity 

increase caused by controls and samples was recorded (see Table 4.1). RASMC were 

directly exposed to: NA dissolved in sucrose solution (free NA); carboxylate-modified 

polystyrene microspheres (control A); carboxylate-modified polystyrene microspheres 

linked to NA (control B); vesicle made with 10% unreacted PBd120PEO89 and 90% 

unreacted PBd33PEO20 (control 1); vesicle made with 10% carboxylate PBd120PEO89 and 

90% unreacted PBd33PEO20 (control 2) and, vesicle made with 10% PBd120PEO89-NA 

and 90% unreacted PBd33PEO20 (sample).  

 

Table 4.1 Reactants used to prepare controls and sample products. In the case of vesicles, they 
were formed using a 9:1 ratio of PBd33PEO20 and functionalized polymer. 
 

Free NA 
Control A 

(Microsphere) 

Control B 

(Microsphere) 

Control 1 

(Vesicle) 

Control 2 

(Vesicle) 

Sample       

(Vesicle) 

NA NA NA NA NA NA 

  EDC EDC  EDC 

  NHS NHS  NHS 

 Microsphere Microsphere 
Unreacted 

PBd120PEO89 
Carboxylate 
PBd120PEO89 

Carboxylate 
PBd120PEO89 

NA Microsphere Microsphere-NA Unreacted 
PBd120PEO89 

Carboxylate 
PBd120PEO89 

PBd120PEO89-NA 

 

Cell Imaging Results of Free Noradrenaline Control 

Figure 4.1 shows the cell response to the addition of free NA solution to the cell 

media (final NA concentration of 1μM). Figure 4.1(A) shows the RASMC region of 
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study before the addition of free NA and three smaller isolated areas, which were 

analyzed and compared with the results obtained after the addition of free NA. 
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Figure 4.1 Images of RASMC cultures before and after addition of 1μM free NA. (A) Image 

taken using FITC filter before addition of free NA. (B) Image taken using FITC filter after 
addition of free NA. The scale bar represents 50 μm in both images. (C) Intensity profile of 
highlighted areas shown in A. (D) Intensity profile of highlighted areas shown in B.  
 

 Figure 4.1(B) shows the same region after the addition of free NA. Figure 4.1(C) 

shows the intensity profiles of the highlighted areas shown in Figure 4.1(A). During the 

evaluation period, where no NA was added, the fluorescence intensity stays constant 

without any substantial variation. Quite the opposite is shown by the intensity profiles 

presented in Figure 4.1(D) corresponding to Figure 4.1(B). A dramatic increase in the 

cell‟s fluorescence intensity was observed due to the presence of free NA molecules. 

Time (Frames) Time (Frames) 
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These images and profiles corroborate that cells react to the presence of NA and provide 

us with the type of response that should be expected from this cell-drug system. 

 

Cell Imaging Results of Carboxylate-Modified Polystyrene Control Beads 

Figure 4.2 shows the cell response to control beads when added to the cell 

culture. These control beads were exposed to all the reaction steps involved in the 

covalent linking procedure where NA was used as the primary amine but without the 

addition of linking agents. For this control beads, no linking reaction was expected to 

occur and, after the cleaning procedure, microspheres with no modification were 

obtained. Figure 4.2(A) shows the RASMC region of study before the addition of control 

beads with three smaller isolated areas. Figure 4.2(B) shows the same region after the 

addition of control beads. Figure 4.2(C) shows the intensity profiles of the highlighted 

areas shown in Figure 4.2(A) and it can be observed that during the evaluation period, 

where no control beads are added, the fluorescence intensity stay almost constant 

without any substantial variation. Figure 4.2(D) shows the intensity profiles 

corresponding to Figure 4.2(B) and no significant change in the intensity values with 

respect to Figure 4.2(C) is observed meaning that there is no NA present to cause cell 

response. This result support the fact that no NA was linked to the carboxylate beads 

because of the absence of a linking agent. 
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Figure 4.2 Images of RASMC cultures before and after addition of carboxylate-modified 
polystyrene microspheres control. (A) Fluorescent image taken using FITC filter before addition 
of control microspheres. (B)  Fluorescent image taken using FITC filter after addition of control 
microspheres. The scale bar represents 50 μm in both images. (C) Intensity profile of highlighted 
areas shown in A. D. Intensity profile of highlighted areas shown in B.  
 

Cell Imaging Results of Hormone Functionalized Polystyrene Beads 

Figure 4.3 shows the cell response to the addition of NA functionalized 

polystyrene microspheres to the cell culture. These NA functionalized beads are 

obtained as described in the experimental section. Figure 4.3(A) shows the RASMC 

region of study before the addition of functionalized beads with three smaller isolated 

areas. Figure 4.3(B) shows the same region after the addition of functionalized. Figure 

4.3(C) plots the intensity profiles of the highlighted areas shown in Figure 4.3(A) and 

Time (Frames) Time (Frames) 
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similar to the previous control experiment, the fluorescence intensity is kept stable 

during the evaluation time.  

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Images of RASMC cultures before and after addition of carboxylate-modified 
polystyrene microspheres covalently linked to NA. (A) Fluorescent image taken using FITC 
filter before addition of microspheres linked to NA. (B)  Fluorescent image taken using FITC 
filter after addition of microspheres linked to NA. The scale bar represents 50 μm in both 

images. (C) Intensity profile of highlighted areas shown in A. (D) Intensity profile of highlighted 
areas shown in B.  
 

 Figure 4.3(D) shows the intensity profiles of Figure 4.3(B) and in this case, there 

is a considerable change in the fluorescence intensity values in contrast to Figure 4.3(C), 

which means that NA is linked to the carboxylate-modified polystyrene beads through 
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the EDC/NHS linking chemistry and that the NA carried by these microspheres 

promotes a cell response. The fluorescence intensity is significantly increased at around 

frames 20 to 30 (40 seconds to 60 seconds) and increase slopes are observed in the 

intensity profiles. The smaller intensity increase experienced in this case is attributed to 

the reduced dose of NA transported by the beads in comparison with the free NA 

experiment. 

 

Cell Imaging Results of Hormone Functionalized Vesicles and Controls 

Figure 4.4 shows two views of a NA functionalized block copolymer vesicle 

being placed in close contact with the cells surface through micropipette aspiration 

technique. In the same manner, control vesicle 1 and 2 (previously described in the 

experimental methods) were evaluated but no significant increase in the cells‟ 

fluorescent intensity was observed. 

Figure 4.4(A) shows a bright field image where the non-fluorescent vesicle is at 

the tip of a glass micropipette after applying a small amount of suction while Figure 

4.4(B) shows a fluorescent image of the same field of view but neither the vesicle nor 

the micropipette can be observed. The functionalized vesicles are placed in a rubber 

chamber that isolate them from the cells until one of them is picked up using a 

micropipette. In this way, any cell response is ensured due to a single vesicle placed in 

contact with the cells. 
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Figure 4.4 Images of a block copolymer vesicle made up with 10% PBd120PEO89-NA being 
placed in close contact with RASMC using micropipette aspiration technique. (A) Bright field 
image taken using contrast microscopy. (B) Fluorescent image taken using FITC filter. The scale 
bar represents 50 μm in both images. 

 

Figure 4.5 shows the cell response when a single NA functionalized block 

copolymer vesicle was placed in contact with the cell‟s surface. The NA functionalized 

vesicles were obtained as described in the experimental methods by using 10% of the 

previously synthesized PBd120PEO89-NA block copolymer and 90% of a much shorter 

diblock copolymer (PBd33PEO20). The use of PBd33PEO20 allowed the NA 

functionalized polymer brushes to be more accessible at the vesicle‟s surface preventing 

them to be buried and entangled in the vesicle‟s bilayer region. Figure 4.5(A) shows the 

RASMC region of study before contact with the functionalized vesicle and three smaller 

isolated areas. Figure 4.5(B) shows the same region after contact with the functionalized 

vesicle.  
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Figure 4.5 Images before and after contact of RASMC culture with a single block copolymer 
vesicle made with unreacted PBd33PEO20 and PBd120PEO89-NA mixed in a 9:1 ratio. (A) 
Fluorescent image taken using FITC filter before putting the cells in contact with a NA 
functionalized block copolymer vesicle. (B)  Fluorescent image taken using FITC filter after 
putting the cells in contact with a NA functionalized block copolymer vesicle. The scale bar 
represents 50 μm in both images. (C) Intensity profile of highlighted areas shown in B. 
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Figure 4.5(C) shows the intensity profiles of the highlighted areas shown in 

Figure 4.5(B) and a significant increase in the fluorescence intensity values around 

frame 60 is observed right after the vesicle made contact with the cell surface. After an 

intensity peak is reached at around frame 75 (150 seconds), the signal decays 

progressively until the end of the experiment. The difference between the intensity 

values reached in each case can be explained by the limited NA molecules available at 

the vesicle‟s surface producing a low dose response. Also, due to the natural 

heterogeneity of cells, variant amount of surface receptors existed and different 

responses can be expected. Signal transmission between exposed and non exposed cells 

was also observed as well as smooth muscle cell contraction in regions far away from 

the original stimulus site. 

 

4.8 Conclusions 

These series of cell experiments provided us with information about the cell 

response expected from the RASCM/NA system. The free NA cell experiments showed 

us what type of cell response was produced when free NA binds to the RASMC surface 

receptors: An abrupt increase in the fluoresce intensity followed by a progressive 

intensity decay. The NA functionalized polystyrene microspheres verified that the 

surface immobilized NA was transported by these beads through simple contact between 

them and the cell surface.  

The use of micropipette aspiration technique provided a different experimental 

setup that allowed us to study, in a controlled manner, the interaction between a single 
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NA functionalized polymeric vesicle and the cell surface.  The intensity profile recorded 

during the functionalized vesicle experiment resembled the one of the free NA profile. 

This profile shape agreement corroborated the hypothesis of NA delivery by the 

functionalized vesicles. These results reconfirm that NA was transported through these 

functionalized vesicles and t produced a cell response. 
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CHAPTER V 

 

REDUCTION-RESPONSIVE FUNCTIONALIZED PBd120PEO89 

DIBLOCK COPOLYMER VESICLES 

 

5.1 Overview 

Due to the increased interest in the high effective of stimuli-responsive drug 

delivery vehicles, we designed and synthesized a functionalized diblock copolymer that 

contains a disulfide linkage, which acts as a potential reducible moiety, and a red 

fluorophore, which simulates a drug molecule. This reduction-responsive diblock 

copolymer was produced through a simple one-pot two-step reaction in organic solvent 

by linking cystamine to 5-TAMRA-succinimidyl (product 6) and then connecting it to 

carboxylate PBd120PEO89 (product 7 or PBd120PEO89-cystamine-5-TAMRA) and finally, 

it was successfully incorporated into a vesicle‟s bilayer. Exposure to tris(2-

carboxyethyl)phosphine hydrochloride (TCEP), which simulates a reductive cytoplasmic 

environment, caused the disulfide bonds to rupture and to release the drug molecule into 

solution. 

 

5.2 Introduction 

 One of the polymersome‟s applications that has caught great attention is its 

possibility as a drug delivery system. Various approaches have been carried out to fulfill 

this aim, and sophisticated designs have been attempted based on the variation and 
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control of different characteristics of the polymersomes‟ building blocks. Hammer et al. 

[63] used of bioresorbable polymeric vesicles of poly(ethylene oxide)-b-

polycaprolactone where the biodegradability of polycaprolactone was expected to cause 

a complete in vivo degradation of the vesicle to release its enclosed drug. Napoli et al. 

[103] suggested the use of ABA block copolymers, where polyethylene glycol was used 

as block A and poly(propylene sulphide), a polymer that contains sulphide moieties, as 

block B. Here, a mechanism of oxidative destabilization of the vesicles was used to 

release the contained drug. Sun et al. [104] demonstrated a reduction-responsive 

biodegradable PEG-SS-PCL micelles and its intracellular drug release capability 

triggered by a reducing environment. It showed the efficacy and advantages such type of 

controlled-release in comparison with the traditional drug delivery approach. 

 Herein, a functionalized block copolymer containing a disulfide moiety was 

synthesized using a similar amination procedure described in Chapter III. First, the 

fluorophore 5-TAMRA-succinimidyl was used as a fluorescent marker and linked to a 

cystamine molecule. No linking agents were required to form the 5-TAMRA-cystamine 

product due to the presence of an N-succinimidyl ester group which greatly enhances the 

coupling efficiency. Subsequently, an EDC/NHS reaction was performed to link 5-

TAMRA-cystamine to the carboxylate PBd120PEO89. The final product was a 

functionalized block copolymer containing the red fluorophore linked to PBd120PEO89 

with a cystamine molecule in between them (5-TAMRA-cystamine-PEO89-PBd120). 

Figure 5.1 shows this two-step synthetic pathway. 
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Figure 5.1 Two-step synthesis of functionalized diblock copolymers by covalent coupling of 
carboxylate PBd120PEO89 diblock copolymer to a cystamine and 5-TAMRA-succinimidyl: (6) 5-
TAMRA-cystamine, after amination reaction between them (7) PBd120PEO89-cystamine-5-
TAMRA, after amination reaction of (6) with carboxylate PBd120PEO89. 
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Figure 5.2 Schematic representation of the two-step synthesis of functionalized PBd120PEO89-
cystamine-5-TAMRA diblock copolymer and its purpose as a reducible surface element once 
incorporated into a polymersome. (A) Formation of product 7 by covalent coupling of 5-
TAMRA-cystamine (6) to carboxylate PBd120PEO89. (B) Successful incorporation of product 7 
into a polymersome and its further exposure to a reducible environment simulated by the 
presence of TCEP. The change in the polymersome surroundings caused the breakage of 
disulfide bonds present in product 7 and subsequent release of 5-TAMRA into solution.  

Reduction-responsive 
vesicle after TCEP 

Reduction-responsive 
vesicle 



 77 

 Polymersomes containing 10% of this functionalized polymer were formed and 

imaged under fluorescent microscopy before and after its exposure to a disulfide bond 

reducing agent such as TCEP. Here, a “selective” approach was attempted in order to 

stimulate the vesicle system to promote the release of a drug molecule in a reduction 

environment; the reducing agent was expected to selectively break down the disulfide 

bonds inside the functionalized polymer and release the attached fluorophore (which 

simulated a drug molecule) without disturbing the vesicle structure. Figure 5.2 shows a 

schematic description of the functionalized diblock copolymer synthesis and its 

reductive application once it was incorporated into vesicles. 

 

5.3 Materials 

PBd120PEO89 (MW 10400 g/mol) diblock copolymer and sucrose (ACS reagent) 

(C12H22O11, MW 342.3 g/mol) were purchased from Polymer Source Inc. (Canada) and 

Fisher Scientific (Pittsburgh, PA), respectively. Dichloromethane (anhydrous, 99.9%) 

(CH2Cl2, MW 84.93 g/mol), chloroform (99.8+% for analysis ACS, stabilized with 

ethanol) (CHCl3, MW 119.38 g/mol) and methanol (99.8+% for analysis ACS) (MeOH, 

MW 32.04 g/mol) were purchased from Acros Organics (Morris Plains, NJ). 

Tetrahydrofuran (≥ 99.0% ACS reagent) (THF, MW 72.11 g/mol), cystamine 

dihydrochloride (MW 225.20 g/mol) and tris(2-carboxyethyl)phosphine 

hydrochloride (TCEP, MW 286.65 g/mol) were purchased from Sigma-Aldrich (St. 

Louis, MO). 5-Carboxy-tetramethylrhodamine N-succinimidyl ester (5-TAMRA-

succinimidyl, MW 527.52 g/mol) was purchased from Fluka (Switzerland). 1-Ethyl-3-
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[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC, MW 191.70) and N-

Hydroxysuccinimide (NHS, MW 115.09 g/mol) were purchased from Pierce (Rockford, 

IL). Regenerated cellulose dialysis tubing kit (MWCO 8000 g/mol) was purchased from 

Spectra/Por®Biotech and, the previously synthesized carboxylate PBd120-PEO89 diblock 

copolymer. 

 

5.4 Experimental Methods 

Diblock Copolymer Characterization 

IR Spectroscopy. IR spectra of neat liquids were performed using a Bruker FT-IR 

TENSOR™ spectrometer (Billerica, MA) equipped with OPUS™ measurement software. 

Potassium bromide salt plates (McCarthy Scientific Co., Fallbrook, CA) and CH2Cl2, or 

CHCl3, were used to evaluate the polymer samples. 

 

Vesicle Solution Characterization 

Cross-Polarizing Fluorescent Microscopy. Vesicle solutions were imaged using 

the temporary closed sample chamber described in Chapter III. Phase contrast images of 

polymersomes were taken by a Carl Zeiss Axiovert 200M inverted microscope with 100 

W HBO Mercury vapor lamp coupled to a Zeiss AxioCam MRm camera and a 20X 

objective (numerical aperture of 0.5). Fluorescent microscope images were obtained 

using a rhodamine band-pass filter with an excitation wavelength of 545 nm (bandwidth 

of 25 nm) and an emission wavelength of 605 nm (bandwidth of 70 nm). To facilitate 

comparison of samples to controls, all images were taken sequentially using the same 
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instrumental parameters and the recorded images were processed and analyzed 

identically with the program ImageJ. 

 

Treatment of Functionalized Vesicles with TCEP 

 10 μL of an equimolar solution of TCEP was added to the vesicle solution to be 

observed by fluorescent microscopy. The vesicle solution containing TCEP was gently 

stirred and allowed to react for 30 minutes before taking the images. 

 

5.5 Synthesis of PBd120PEO89-cystamine-5-TAMRA 

The reactions were conducted under an argon atmosphere and stirred using a 

Teflon-covered stir bar. A 5 mL reaction flask was charged with 1 mL of 1:1 

MeOH:CHCl3 solution, 10x10-3 mmol of cystamine dihydrochloride and 1x10-3 mmol of 

5-TAMRA-succinimidyl. The mixture was allowed to react for 8 hours at room 

temperature under constant magnetic stirring (900 rpm). After completion, 5-TAMRA-

succinimidyl is linked to cystamine at one of its ends only since it was present in excess 

amount. 1 mL (1x10-3 mmol) of 1:1 MeOH:CHCl3 solution of carboxylate PEO89-

PBd120, 10x10-3 mmol of EDC and 10x10-3 mmol of NHS were added to the reaction 

flask and allowed to react for 24 hours at room temperature under constant magnetic 

stirring (900 rpm). Extra doses of EDC and NHS were added every two hours to increase 

the amount of cystamine-5-TAMRA linked to carboxylate groups. 
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Synthesis of (6) 

5-carboxy-tetramethylrhodamine N-succinimidyl ester (1.54 mg, 2.92x10-3 

mmol) and cystamine dihydrochloride (3.29 mg, 14.62x10-3 mmol) were reacted in 

methanol/chloroform as described above. Product 6 was obtained but not purified and 

used to continue with the synthesis of 7. 

 

Synthesis of (7) 

Carboxylate PBd120-PEO89 (30.40 mg, 2.92 103mmol), EDC (5.60 mg, 

29.23103mmol), NHS (1.68 mg, 14.62 103  mmol) and product 6 were reacted in 

methanol/chloroform as described above. In this manner, product 7 (22.80 mg, 75% 

yield) was obtained. IR (ν): 1695 (C=O) cm-1, 1539 (N-H bend) cm-1. 

 

Synthesis of Diblock Copolymer Controls 

The modified diblock copolymers used in controls were prepared using different 

components and were labeled as follow: Control 1: when cystamine, 5-TAMRA-

succinimidyl, PBd120PEO89, EDC and NHS were combined; control 2: when cystamine, 

5-TAMRA-succinimidyl and carboxylate PBd120PEO89 were combined; sample: when 

cystamine, 5-TAMRA-succinimidyl, carboxylate PBd120PEO89, EDC and NHS were 

combined (Figure 5.3). 
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Figure 5.3 Schematic representations of controls and sample synthesis of functionalized 
PBd120PEO89-cystamine-5-TAMRA diblock copolymer. (A) Control 1: cystamine-5-TAMRA, 
EDC, NHS and unmodified PBd120PEO89; control 2: cystamine-5-TAMRA and carboxylate 
PBd120PEO89 and, sample: cystamine-5-TAMRA, EDC, NHS and carboxylate PBd120PEO89. (B) 
Final control and sample products incorporated into a polymersome.  
 

Functionalized Polymer Cleaning Procedure 

The desired product, was redisolved in 2 mL of a 1:1 MeOH:CHCl3 solution and 

cleaned using regenerated cellulose dialysis tubing (MWCO 8000 g/mol). The sample 

was dialyzed for 2 hours at room temperature against 600 mL (300 times the volume of 

the sample) of 1:1 MeOH:CHCl3 solution, the dialysis buffer was changed and the 

sample dialyzed for another 2 hours. Finally, the dialysis buffer was changed for the 

second time and the sample dialyzed overnight. 
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5.6 Vesicle Solution Preparation 

A polymer film containing 100 μg of the desired block copolymer or block 

copolymer mixture was formed by evaporation (8 hours) at the bottom of a 5 mL glass 

scintillation vial. Polymersomes were formed by rehydration of this polymer film during 

24 hours at 60ºC with 2 mL of 300 mOsm/kg sucrose solution. A vesicle solution of the 

following mixture composition was formed: 10% w/w of PBd120PEO89-cystamine-5-

TAMRA and 90% w/w of unmodified PBd120PEO89. The final block copolymer 

concentration in a vesicle solution of 2 mL is 4.8 μM. 

 

Vesicle Solution Controls 

Two vesicle solutions of controls were prepared by combining in a 9:1 ratio the 

unreacted PBd120PEO89 and the functionalized diblock copolymer control 1 or control 2. 

 

5.7 Results and Discussion 

IR Results from Amination Reaction 

 Figure 5.4 shows the overlay IR spectra of the carboxylate PBd120PEO89 (top) 

and PBd120PEO89-cystamine-5-TAMRA-succinimidyl (bottom). The presence of a 

carbonyl stretch peak at around 1695 cm-1 and N-H bend peak at 1456 cm-1 demonstrates 

the formation of a peptide linkage between the primary amines (cystamine and 5-

TAMRA-succinimidyl) and the carboxylate PBd120PEO89. 
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Figure 5.4 Comparison between the IR spectra of the unmodified carboxylate PBd120PEO89 (top) 
and the covalent coupling reaction product, PBd120PEO89-cystamine-5-TAMRA (bottom). 
 

Imaging Results of Functionalized PBd120PEO89-cystamine-5-TAMRA Vesicles 

 Figure 5.5 and Figure 5.6 show three vesicle samples obtained by using 

unmodified PBd120PEO89 and PBd120PEO89-cystamine-5-TAMRA block copolymer 

previously synthesized in a 9:1 ratio. Figure 5.5(A) shows red fluorescent vesicles which 

confirm that 5-TAMRA-succinimidyl is linked to the carboxylate PEO89-PBd120 through 

the proposed amination reaction. Figure 5.5(B) shows their respective intensity profiles 

with an average peak intensity of 192.7 units (standard deviation of 30.6 units).  

 

 

Frequency (cm-1)

T
ra

n
sm

it
ta

n
ce



 84 

 

0

50

100

150

200

0 50 100 150
Distance (pixels)  

 

Figure 5.5 Images of fluorescent block copolymer vesicles made with unreacted PBd120PEO89 
and PBd120PEO89-cystamine-5-TAMRA mixed in a 9:1 ratio before exposure to TCEP. (A) 
Fluorescent images taken using a rhodamine filter. (B) Intensity profiles corresponding to each 
fluorescent vesicle shown in A.  
 

Table 5.1 Intensity profile values of PBd120PEO89-cystamine-5-TAMRA functionalized vesicles 
before and after exposure to TCEP. Average values of bilayer peak 1 and 2 of five different 
samples are shown and compared and in all cases, a decrease in the fluorescence intensity was 
registered after exposure to TCEP. 
 

 Functionalized Vesicle 
Functionalized Vesicle After 

Exposure to TCEP 

 (Intensity units) (Intensity units) 

 
Peak 1 Peak 2 Average Peak 1 Peak 2 Average 

  
Trial 1 190.2 207.5 198.9 72.9 92.8 82.8 

Trial 2 170.1 189.4 179.7 103.0 102.5 102.8 

Trial 3 203.5 212.8 208.2 120.5 139.6 130.1 

Trial 4 225.0 232.3 228.6 148.5 128.9 138.7 

Trial 5 146.7 149.0 147.8 82.0 89.7 85.9 

StDev     30.6     25.4 

Distance (pixels) 
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Figure 5.6(A) shows three different vesicle samples after addition of TCEP to the 

vesicle solution while Figure 5.6(B) shows their respective intensity profiles with an 

average peak intensity of 108.0 units (standard deviation of 25.4 units).  Individual 

vesicles exhibit lower fluorescence intensity after exposing the vesicle solution to TCEP. 

Tables 5.1 and 5.2 show the average intensity profile values of bilayer peaks 1 and 2 and 

the fluorescent intensity percentage decrease of five functionalized vesicles before and 

after addition of TCEP. 
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Figure 5.6 Images of fluorescent block copolymer vesicles made with unreacted PBd120PEO89 
and PBd120PEO89-cystamine-5-TAMRA mixed in a 9:1 ratio after exposure to TCEP. (A) 
Fluorescent images taken using a rhodamine filter. (B) Intensity profiles corresponding to each 
fluorescent vesicle shown in A.  
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Vesicles formed in a 9:1 ratio with unreacted PBd120PEO89 and PBd120PEO89-

cystamine-5-TAMRA polymers show a difference in the fluorescence intensities before 

and after treating the vesicle solutions with TCEP. A 44% decrease in fluorescence 

intensity was recorded after a change in the polymersome environment. This difference 

is attributed to the selective reduction of disulfide bonds present in the PBd120PEO89-

cystamine-5-TAMRA block copolymer. When the disulfide bonds are broken, 5-

TAMRA is released and lower fluorescent intensity was observed in the vesicle‟s 

bilayer. However, it is not determined if the fluorophore was released into the aqueous 

solution or if it was partially redisolved into the vesicle‟s bilayer. 

 

Table 5.2 Average intensity profile values of PBd120PEO89-cystamine-5-TAMRA functionalized 
vesicles before and after exposure to TCEP of 5 different samples. A 44% decrease in 
fluorescence intensity was recorded after a change in the polymersome environment was 
produced. 
 

 Functionalized 

Vesicle 

Functionalized Vesicle 

After Exposure to TCEP % Intensity 

decrease 

 

 

 (Intensity units) (Intensity units) 

Trial 1 198.9 82.8 58.3 
Trial 2 179.7 102.8 42.8 
Trial 3 208.2 130.1 37.5 
Trial 4 228.6 138.7 39.4 
Trial 5 147.8 85.9 41.9 

Average 192.7 108.0 43.9 

StDev 30.6 25.4 8.3 

 

5.8 Conclusions 

 The functionalized reductive-responsive diblock copolymer PBd120PEO89-

cystamine-5-TAMRA was synthesized using a one-pot two-step reaction and has been 
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incorporated into polymersomes with a 10% amount. A fluorophore was attached at the 

end of the diblock for imaging purposes but virtually any suitable drug molecule can 

replace it and be carried by a polymersome. 

 The reductive character of the diblock was given by the presence of a disulfide 

linkage between the PEO block and the fluorophore molecule. When PBd120PEO89-

cystamine-5-TAMRA functionalized polymersomes were formed, the reductive 

character of this new diblock was preserved in the vesicle‟s configuration.  

 Functionalized vesicles were exposed to a reducible environment by the addition 

of TCEP. The diblock copolymer disulfide bonds were selectively reduced and the 

fluorophore 5-TAMRA was released into solution. Fluorescent microscopy showed that 

the vesicle‟s bilayer fluorescent intensity decreased by 44 % and, we can infer from this 

result that about 44% of the attached 5-TAMRA was released. 

 These stimuli-responsive vesicles can be used as reliable drug delivery carriers 

that at the encounter of the cell‟s cytoplasm, which is characterized as a reductive 

environment, will break the susceptible bonds and release the transported drug 

molecules. 
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

6.1 Conclusions 

We proved that the primary alcohol end group of the PBd120PEO89 diblock 

copolymer can be chemically modified and effectively combined with unmodified 

PBd120PEO89 to form stable functionalized polymeric vesicles. The free hydroxyl 

terminal group of the PEO block was first oxidized to its corresponding carboxylic acid 

through a regioselective one-pot two-phase oxidation reaction while other oxidizable 

groups present in the diblock copolymer backbone remained unaffected. Subsequently, 

three primary amines (two fluorophores and a hormone molecule) were able to be 

covalently attached to the previously synthesized carboxylate diblock through a 

modified coupling reaction performed in organic phase (Chapter III). 

Polymersomes containing 90% of the unmodified PBd120PEO89 diblock 

copolymers and 10% of one of the modified diblock copolymers (PBd120PEO89-6AF, 

PBd120PEO89-COU and PBd120PEO89-NA) has been prepared. In addition, the two 

fluorescently modified diblock copolymers (PBd120PEO89-6AF and PBd120PEO89-COU) 

have been properly integrated into the same vesicle, and surface density control of the 

two fluorophores was achieved suggesting that these drug delivery prototypes can be 

tailored (Chapter IV). 
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The measured CAC values of vesicle solutions containing a mixture of 

carboxylate PBd120PEO89 and unmodified PBd120PEO89 were found to increase as the 

carboxylate PBd120PEO89 content increased, in the meantime the average vesicle size 

decreased. This observation suggests that the carboxylic acid group lowered the 

polymer‟s ability to be incorporated into a polymersome when present in concentrations 

higher than 80 percent. 

In Chapter IV, RASMC essays reveal that hormone functionalized polymeric 

vesicles (containing NA) were able to deliver the hormone molecules that are carried at 

the vesicle‟s surface. It was confirmed by the increase in the cells‟ fluorescent intensity 

after placing a functionalized vesicle in close contact with the cell‟s surface.  

As discussed in Chapter V, a rhodamine functionalized diblock copolymer 

containing a disulfide linkage between the PEO block and the fluorophore (PBd120-

PEO89-cystamine-5-TAMRA) has been synthesized. This reducible functionalized 

polymer, specifically designed to be susceptible to disulfide bond cleavage when 

exposed to a reducing environment, was effectively integrated into a polymersome. The 

disulfide moiety has show to be selectively reduced when exposed to a change in the 

surrounding conditions promoted by the addition of the reducing agent TCEP. The 

fluorophore was released into solution indicating that these polymersomes can be used 

as stimuli responsive drug delivery carriers. 
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6.2 Future Directions 

For future studies, the diblock copolymer used may be substituted by a 

biodegradable one and apply to it the synthesis explored during this research. 

Functionalized biodegradable polymersomes, their cell internalization and degradation 

time can be systematically investigated in order to elucidate their response mechanism. 

Hormone functionalized vesicles might be further studied to better understand 

the cell‟s response, drug internalization, drug release profiles and long distance 

intracellular communication. Also, stimuli-responsive functionalized polymersomes 

vulnerable to reducible atmospheres might be evaluated in contact with RASMC cultures 

to establish the reductive strength of the cytoplasmic environment over the disulfide 

moieties employed. 

Vesicle solutions containing 10% w/w PBd120PEO89-cystamine-5-TAMRA 

reducible functionalized diblock copolymer and 90% w/w PBd33PEO20 (a shorter 

diblock, MW 2700 g/mol) might be formed and evaluated in order to enhance the 

availability of the functionalized polymer to TCEP by preventing polymer 

entanglements.  

A reductive destabilization mechanism involving a phase transition from vesicle 

to micelle may also be investigated. A PEO-PBd diblock copolymer linked to a second 

PEO block by a cystamine molecule can be synthesized and polymersomes containing 

this PEO-PBd-cystamine-PEO amphiphillic polymer might be formed. The reduction of 

the disulfide moiety present in cystamine by TCEP may induce a morphological change 

from highly stable vesicles to micelles (Figure 6.1). This change in surface topology, in 
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response to a change in the environment character, may be useful to create a stimuli 

responsive drug delivery vehicle. 
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Figure 6.1 Schematic representation of the two-step synthesis of functionalized PBdmPEOn-
cystamine-PEO(m-n) block copolymer and its possible function as a stimuli responsive reducible 
component. (A) Formation functionalized diblock by covalent coupling reaction. (B) Exposure 
of functionalized polymersome to reducing agent might cause breakage of disulfide bonds. (C) 
Functionalized polymersome encapsulating drug molecules (represented by red stars) may 
experience a morphological change from vesicle to micelles causing control release of 
transported molecules when exposed to a reducing environment.  
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