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ABSTRACT

Problems on Non-Equilibrium Statistical Physics. (May 2010)

Moochan Kim, B.S., Postech;

M.S., Postech

Chair of Advisory Committee: Dr. Marlan O. Scully

Four problems in non-equilibrium statistical physics are investigated: 1. The

thermodynamics of single-photon gas; 2. Energy of the ground state in Multi-electron

atoms; 3. Energy state of the H2 molecule; and 4. The Condensation behavior in N

weakly interacting Boson gas.

In the single-photon heat engine, we have derived the equation of state similar

to that in classical ideal gas and applied it to construct the Carnot cycle with a single

photon, and showed the Carnot efficiency in this single-photon heat engine.

The energies of the ground state of multi-electron atoms are calculated using the

modified Bohr model with a shell structure of the bound electrons. The differential

Schrödinger equation is simplified into the minimization problem of a simple energy

functional, similar to the problem in dimensional scaling in the H-atom. For the

C-atom, we got the ground state energy −37.82 eV with a relative error less than 6

%.

The simplest molecular ion, H+
2 , has been investigated by the quasi-classical

method and two-center molecular orbit. Using the two-center molecular orbit derived

from the exact treatment of the H+
2 molecular ion problem, we can reduce the number

of terms in wavefunction to get the binding energy of the H2 molecule, without using

the conventional wavefunction with over-thousand terms. We get the binding energy

for the H2 with Hylleraas correlation factor 1 + κr12 as 4.7eV, which is comparable

to the experimental value of 4.74 eV.
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Condensation in the ground state of a weakly interacting Bose gas in equilibrium

is investigated using a partial partition function in canonical ensemble. The recursive

relation for the partition function developed for an ideal gas has been modified to

be applicable in the interacting case, and the statistics of the occupation number in

condensate states was examined. The well-known behavior of the Bose-Einstein Con-

densate for a weakly interacting Bose Gas are shown: Depletion of the condensate

state, even at zero temperature, and a maximum fluctuation near transition temper-

ature. Furthermore, the use of the partition function in canonical ensemble leads to

the smooth cross-over between low temperatures and higher temperatures, which has

enlarged the applicable range of the Bogoliubov transformation. During the calcula-

tion, we also developed the formula to calculate the correlations among the excited

states.
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CHAPTER I

INTRODUCTION

Quantum mechanics developed in last century has revealed the underlying mechanism

of the nature in very detail: from microscopic scale such as atoms and molecules to

macroscopic scale such as the structure of black hole and the galaxies.

Here, we will investigate the application of the quantum mechanics to simple four

systems: a single-photon heat engine, multi-electron atoms in dimensional scaling,

binding energy in hydrogen molecule, and a weakly interacting Bose gas with N

particles. Even though we will use some semi-quantum methods to describe the

multi-electron atoms and hydrogen molecule, quantum mechanics still provides the

basic tools to treat these problems.

In Chapter II, the equation of states of a single-photon is derived and the Carnot

engine with single photon is considered. In Chapter III, the dimensional scaling has

been applied to the multi-electron atoms to get the energy of the ground states. In

Chapter IV, the two-center molecular orbit was considered and applied to calculate the

binding energy of a hydrogen molecule. In Chapter V, the condensation behavior of

the weakly interacting Bose gas was calculated using the Bogoliubov transformation.

Finally, summary of this dissertation is in the last chapter.

The journal model is Physical Review A.
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CHAPTER II

EQUATION OF STATE OF A SINGLE PHOTON GAS

A. Introduction

The laws of thermodynamics were formulated in the nineteenth century through the

epoch making work of Carnot, Classius, Joule and others. The theoretical predictions

concerning the behavior of the physical systems based on these laws were found to be

in complete agreement with the experimental observations. An important step in the

development of thermodynamics was the formulation of the kinetic theory of gases

[1] that describes the macroscopic behavior of the gases. For example, it was shown

that the pressure of a gas arises due to the molecular motion and the collision of these

molecules with the walls of the container. The relationship between the temperature,

pressure, volume and the number of particles were formulated. These earlier studies

treated atom and molecules to be classical particles.

More recently, the foundations of thermodynamics are being reexamined within

the framework of quantum mechanics with the inclusion of the internal quantum

states of the working molecules. These studies have shed new light on the classical

formulation of the laws of thermodynamics. A classical example of such a system is a

laser where atoms or molecules are prepared in an inverted state, a state corresponding

to “negative temperature” [2].

Another area where a reevaluation of the laws of thermodynamics is taking place

is in the study of the operating limits of ideal heat engines in light of recent devel-

opments in quantum optics, such as cavity QED [3], the micromaser [4], and the

quantum coherence effects [5, 6]. For example it is shown that it is possible to obtain

laser action in the hot exhaust gases of the heat engine and the Otto cycle engine
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efficiency can be improved beyond that of the “ideal” Otto heat engine via such a

“quantum afterburner” [7].

Motivated by the role of the quantum properties of the radiation field in such

considerations, we discuss the quantum thermodynamics of a “photon” gas in this

paper, taking the lead from well known classical thermodynamics results.

In Section B, we review the thermodynamics of an ideal mono-atomic gas and

derive the equation of state. In Section C, we derive the corresponding equation

of state for a single-mode photon gas. In Section D, the Stefan-Boltzmann law is

derived for a multi-mode photon gas. Finally, in Section E, we construct a single-

photon Carnot cycle and calculate the efficiency of this cycle.

B. Ideal Gas Inside a Cavity

An ideal gas of N atoms inside a cavity of volume V in thermal equilibrium at

temperature T is described by the equation of state [1]

PV = NkBT, (2.1)

where P is the pressure of the gas and kB is the Boltzmann constant. Although this

relation can be considered as a phenomenological relation, we derive here from first

principles with a simple argument.

We consider a single atom of mass m confined inside a cube of length L. This

single atom is considered as the quantum ideal gas in the classical limit. The Hamil-

tonian is

H =
p2

2m
=
h̄2(k2

x + k2
y + k2

z)

2m
. (2.2)

Due to the periodic boundary conditions, the possible values of kx, ky, and kz are
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quantized, i.e.,

kx = nx
2π

L
. ky = ny

2π

L
, and kz = nz

2π

L
, (2.3)

where nx, ny, and nz are integers. The total energy of the ideal gas with N atoms is

E =
∑

kx,ky ,kz

h̄2(k2
x + k2

y + k2
z)

2m
=

2π2h̄2

mL2

N∑
nx,ny ,nz

(n2
x + n2

y + n2
z). (2.4)

It is clear that E is related to the volume V = L3 via E = f(N)/V 2/3 where

f(N) is a function that depends only on the number of atoms. The pressure of the

ideal gas is therefore given by

P = −
(
∂E

∂V

)
N

=
2

3

E

V
. (2.5)

Next we calculate the average energy 〈E〉 using the probability of the occupancy

of the state, which is given by the Boltzmann factor. By changing the summation

into the integration over k,

〈E〉 =

∑
kx,ky ,kz

Ee
− h̄

2(k2
x+k2

y+k2
z)

2mkBT∑
kx,ky ,kz

e
− h̄

2(k2
x+k2

y+k2
z)

2mkBT

=

∫
h̄2k2

2m
e
− h̄2k2

2mkBT 4πk2dk∫
e
− h̄2k2

2mkBT 4πk2dk
=

3

2
kBT. (2.6)

The pressure P is simply given by

P =
2

3

E

V
= kBT

N

V
(2.7)

where we used E = N 〈E〉. This completes the derivation of the equation of state,

Eq. (2.1).
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C. Single-mode Photon Gas

We now consider a single-mode radiation field inside of a cavity at temperature T

instead of an ideal gas. Such a field distribution can be obtained in cavity QED

systems by, for example, passing a beam of two-level atoms that is initially prepared

in a thermal distribution of the two levels through a cavity that is resonant with the

atomic transition [4].

We assume that the cavity of length Lx and cross-section A can support only a

single-mode of the field at frequency

Ω = Ωn =
nπc

Lx
(2.8)

where n is an integer. In equilibrium, the density matrix of the field is given by the

thermal distribution [5, 6]

ρnn′ = e−nh̄Ω/kBT (1− e−h̄Ω/kBT )δnn′ , (2.9)

i.e., the density matrix is diagonal with vanishing off-diagonal elements. The mean

number of photons n̄ in the mode is

n̄ =
∞∑
n=0

nρnn =
1

eh̄Ω/kBT − 1
, (2.10)

and the internal energy U of the photon gas is given by

U = n̄h̄Ω. (2.11)

Our goal is to derive an equation of state for the photon gas of the form Eq. (2.1).
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For this purpose, we first note that the entropy of the photon gas Sph is given by [8]

Sph = −kBTr ρ ln ρ = −kB
∑
n

ρnn ln ρnn. (2.12)

On substituting from Eq. (9) for ρnn, we obtain

Sph = n̄
h̄Ω

T
− kB ln

(
1− e−h̄Ω/kBT

)
, (2.13)

where we note the diagonalization condition
∑

n ρnn = 1. Next we consider the

Helmholtz free energy, which by definition is given by

F ≡ U − TS = kBT ln
(
1− e−h̄Ω/kBT

)
(2.14)

and where we have used Eq. (2.11). Now we show that the pressure of the photon

gas P is given by

P = −
(
∂F

∂V

)
T

. (2.15)

It follows from the definition of the Helmholtz free energy F that

dF = dU − TdS − SdT. (2.16)

We recall that, according to the first law of thermodynamics,

dU = TdS − PdV, (2.17)

yielding

dF = −PdV − SdT. (2.18)

Eq. (2.14) now follows in a straightforward manner.

We consider the change of volume only along x-direction so that P = −(∂F/A∂Lx)T .
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Recalling Eq. (2.8), the pressure P is given by

P = − 1

Ax

(
∂F

∂Lx

)
T

=
n̄h̄Ω

V
, (2.19)

and the equation of state for a single-mode photon gas is

PV = n̄h̄Ω. (2.20)

This equation has a similar form as Eq. (2.1) for an ideal gas. In an ideal gas the

number of atoms N is well defined and kBT is the average energy of each atom. Here

the energy of each photon h̄Ω is well defined and n̄ is the average number of photons.

These basic ideas for a photon gas developed in this section provide a founda-

tion for treating more complicated problems relating to quantum heat engines. For

example, we shall discuss a Carnot cycle (Fig. 1) engine in which the operating gas

is composed of light quanta instead of a collection of atoms or molecules.

D. Multi-mode Photon Gas

So far we considered only a single mode of the cavity. We now consider the general

case of multi-mode photon field in thermal equilibrium at temperature T inside the

cavity.

Each mode of the radiation field is statistically independent. Therefore the equa-

tion of state for each mode (say in the x-direction) is

PnxV = n̄nxh̄Ωnx . (2.21)

The total pressure P is the sum of the partial pressures of each mode. For simplicity,

we consider the cavity to be a simple cubic with side L. The relations among modes
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(Ωnx , Ωny , Ωnz) and wave vector k is

Ωnx = kxc, Ωny = kyc and Ωnz = kzc. (2.22)

The total pressure is

P =
1

V

∑
nx

h̄Ωnxn̄nx (2.23)

=
1

3V

∑
ki(i=x,y,z)

h̄Ωkin̄ki .

We now change the summation into an integral in phase space, so that

P = 2
1

3

∫
1

(2π)3
(4πk2dk) h̄Ω(k)n̄(k)

=
h̄

3π2c3

∫
dΩ

Ω3

eh̄Ω/kBT − 1

=
h̄

3π2c3

(
kBT

h̄

)4 ∫ ∞
0

x3dx

ex − 1

=
1

3

π2

15

(kBT )4

(h̄c)3

=
4

3

σ

c
T 4, (2.24)

where σ = π2k4
B/60h̄3c2 is the Stefan-Boltzmann constant. We introduced a factor of

2 in the first line to account for the two possible states of polarization. Eq. (2.24) is

the Stefan-Boltzmann law of blackbody radiation.

E. Application to the Carnot Cycle with One Photon

The Szilard had suggested that the quantum engine can be operated by a sinlge atom

[9]. Similarly, we may construct the quantum engine operated by a single photon.

To construct the Carnot cycle engine, let’s compare both equations of states: one

for the ideal gas and the other for the single photon. In the equation of state of the
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single photon

PV = n̄h̄Ω, (2.25)

the dependence on temperature is not shown explicitly. However, the average number

of photons n̄ has dependence on the temperature T , and on the volume V . The

volume dependency is imposed by the boundary condition to the available frequency

Ω implicitly.

Furthermore, the total internal energy U for the single photon is

U = n̄h̄Ω. (2.26)

It means that internal energy is dependent on volume V and this is also the difference

from the usual ideal gas.

F. Quantum Carnot Cycle

Carnot cycle consists of two processes : the isothermal process (constant temperature)

and the adiabatic process (constant entropy). The corresponding diagram in T-S

plane is just a rectangular, shown in Fig. (1) : The horizontal lines correspond to the

isothermal process, and the vertical lines to the adiabatic process.

Let’s explicitly see the processes for the system which is confined in a cylinder

with one movable side as like in a usual piston.

1. During 1→ 2 ( or 3→ 4) : (Isothermal Process)

Since the entropy of the single photon is

Sph = n̄
h̄Ω

T
− kB ln

(
1− e−h̄Ω/kBT

)
, (2.27)
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the heat transfer in this process is

Qin = T∆S = U2 − U1 + kBT ln

(
1 + n̄2

1 + n̄1

)
. (2.28)

The change of internal energy is NOT vanished since it depends on the volume through

the frequency Ω. We can get the transferred heat into the system.

Since

Ω =
nπc

Lx
→ Ω ∝ 1

Lx
, (2.29)

we can calculate the average number of photons for the given volume V2 at stage 2

n̄2 =
1(

1 + 1
n̄1

) 1
χ − 1

(2.30)

and the pressure

P2 =
n̄2h̄Ω2

V2

=
h̄Ω1

χ2V1

1(
1 + 1

n̄1

) 1
χ − 1

(2.31)

with the volume expansion factor χ = V2

V1
= Lx2

Lx1
= Ω1

Ω2
(cavity length expansion factor).

2. During 2→ 3 ( or 4→ 1) (Adiabatic Process)

Since

n̄ =
1

eh̄Ω/kBT − 1
, (2.32)

we may rewrite the entropy in terms of n̄.

S2 = n̄2
h̄Ω2

T2

+ kB ln (1 + n̄2) . (2.33)
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By equating the entropy at 2 and 3,

n̄2
h̄Ω2

T2

+ kB ln (1 + n̄2) = n̄3
h̄Ω3

T3

+ kB ln (1 + n̄3) . (2.34)

It’s nontrivial equation for the adiabatic process. However, there’s a trivial solution.

Ω2

T2

=
Ω3

T3

→ n̄2 = n̄3. (2.35)

n̄ =
P2V2

h̄Ω2

=
P3V3

h̄Ω3

(2.36)

or

PV 2 = const. (2.37)

Refer the exponent is 5
3

for the classical monatomic ideal gas.

The work done during these process will be

∆W = ∆U = U2 − U3. (2.38)

3. Model System for Carnot Cycle

Let’s assume a system of a single photon, and set the processes in Carnot cycle as

following :

1. (Stage 1 → 2) isothermal process with double expansion of the cavity

2. (Stage 2 → 3) adiabatic process with decrease of the temperature by two-third

3. (Stage 3 → 4) isothermal compression of the cavity

4. (Stage 4 → 1) adiabatic process with increase of the temperature
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The above processes are shown in the Table I. The processes are controlled by

the change of the volume by moving the movable wall of the cylinder. In isothermal

process the contact with temperature reservoir is sustained, and in adiabatic process

the system was disconnected from the reservoir.

All the above processes are summarized in the P-V diagram which is shown in

Fig. 2.

4. The Efficiency

One of the controversies in quantum system is that the possibilities for the overcome

of the efficiency of the usual Carnot cycle [1]. The efficiency of this Quantum Carnot

engine with single-photon gas is

η =
∆W

Qin

=
Th(S2 − S1)− Tl(S2 − S1)

Th(S2 − S1)
= 1− Th

Tl
, (2.39)

and has the same efficiency as the usual Carnot cycle.
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CHAPTER III

H-ATOM IN D-SCALING AND MULTI-ELECTRON ATOMS IN BOHR MODEL

One of the important question in quantum mechanics is that to calculate the energy

spectrum in any given quantum system. Since we can easily identify the kinetic

energy and interactions among the entities in the system, we might construct the

corresponding Schrödinger equation, even a relativistic one. Anyway, to solve the

problem in analytic or numerical way is not simple problem, even if only 3 particles

are in the system, like He-atom. Historically, for He-atom we can calculate the energy

spectrum using the several methods using a large number of variational parameters

[10]. Here, we introduce another approach to this problem in more practical sense :

to search an easy method to calculate the energy in a complicate system. One of the

way is that Dimensional scaling (D-Scaling) which will be shown in this chapter, and

the application to multi-electron atoms.

A. H-atom in D-scaling

To describe the D-Scaling method, let’s try to solve the Schrödinger equation for the

H-atom in atomic unit to get the physics about the system.

The Schrödinger equation is

H =
p2

2
+
Z

r
= −1

2
∇2 +

Z

r
. (3.1)

The energy eigenvalues [8] are

En = − Z
2

2n2
. (3.2)
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1. Transformation of the Hamiltonian in D-scaling

Since the potentials for any multi-electron systems are well-described by the Coulomb

potential, or the electrostatic interaction, the operators in Hamiltonian are only in

the kinetic energy. To generalize the system into large dimension, and finally to

infinite dimension, let’s generalize the problem into arbitrary large D-dimension. For

simplicity, with vector notation the distance is transformed as

r2 =
3∑
i=1

x2
i → r2 =

D∑
i=1

x2
i . (3.3)

Similarly the Laplacian in kinetic energy,

3∑
i=1

∂2

∂x2
i

→
D∑
i=1

∂2

∂x2
i

. (3.4)

Since the potential terms has only r-dependence, we simply assume the same form as

in 3-D. Because we only concern the lower states of the system with more symmetries,

let’s use the hyper-spherical coordinate for simplicity. The transformation rule for
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D-dimensional space is [11]

x1 = r cos θ1 sin θ2 sin θ3 · · · sin θD−1, (3.5)

x2 = r sin θ1 sin θ2 sin θ3 · · · sin θD−1,

x3 = r cos θ2 sin θ3 sin θ4 · · · sin θD−1,

x4 = r cos θ3 sin θ4 sin θ5 · · · sin θD−1,

...

xj = r cos θj−1 sin θj sin θj+1 · · · sin θD−1,

...

xD−1 = r cos θD−2 sin θD−1,

xD = r cos θD−1,

where

0 ≤ θ1 ≤ 2π, 0 ≤ θj ≤ π for j = 2, 3, · · · , D − 1, (3.6)

and D is a positive integer and D ≥ 3.

Then, the Laplacian becomes

∇2
D =

D∑
i=1

∂2

∂x2
i

= KD−1(r)−
L2
D−1

r2
(3.7)

where

KD−1(r) =
1

rD−1

∂

∂r

(
rD−1 ∂

∂r

)
, (3.8)

Lk(r) = − 1

sink−1 θk

∂

∂θk
sink−1 θk

∂

∂θk
+

L2
k−1

sin2 θk
, (3.9)
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and

L2
1 = − ∂2

∂θ2
1

. (3.10)

The proof for (3.7) is in Appendix A. If we only consider the state with spherical

symmetry, then the hyper-angular part satisfy that

L2
D−1Y (ΩD−1) = l(l +D − 2)Y (ΩD−1), (3.11)

and the Hamiltonian is simplified into

H = −1

2
KD−1(r) +

l(l +D − 2)

2r2
+ V (r). (3.12)

After generalizing the dimension of the system, let’s rescaling the wavefunction.

By the following transformation

Ψ = e−
D−1

2 Φ, (3.13)

the rescaled Schrödinger equation is

HΨ = EΨ →
[
−1

2

∂2

∂r2
+

Λ(Λ + 1)

2r2
+ V (r)

]
Φ = EΦ (3.14)

with Λ = l + 1
2
(D − 3), resembling the usual angular momentum quantum number l

in 3-D.

Then, with the rescaled distance and energy,

rs =
4

(D − 1)2
r, (3.15)

Es =
(D − 1)2

4
E, (3.16)
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the Schrödinger equation is[
−1

2

4

(D − 1)2

∂2

∂r2
s

+
(D − 3)

2(D − 1)r2
s

− Z

rs

]
Φ = EsΦ. (3.17)

In the limit D →∞, the final form is[
1

2r2
s

− Z

rs

]
Φ = EsΦ. (3.18)

The differential equation reduces into a simple algebraic equation. Since our interest

is on the lowest energy, that is the energy of the ground state, the minimum position

for rs and the corresponding energy is given by a differentiation with rs.

rs =
1

Z
, (3.19)

Es = −Z
2

4
. (3.20)

B. Quantization Rule and Shell Structure

The dimensional scaling which is introduced in earlier section can easily handle the

ground-state for H-atom. And the result is same for the original Bohr model. To

extend these concept to multi-electron atoms, we need one result from quantum me-

chanics : shell structure of the electrons in the atoms. Fermionic property of the elec-

trons and their angular momenta construct the shell structure of the atoms. Here,

we simply introduce this shell structure by the quantization rule. The acceptable

momentum is

ripi = ni with positive integer ni. (3.21)
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By the analogy with Eq. (3.18), the kinetic energy in the Bohr model is transformed

into a simple polynomial function of radius ri.

N∑
i=1

p2
i

2
= −

N∑
i=1

∇2
i

2
→ −1

2

N∑
i=1

n2
i

r2
i

. (3.22)

C. Multi-electron Atoms in D-scaling

By replacing the Laplacian n2

r2 , the Hamiltonian is reduced into a simple polynomial

function.

H =
∑
i

(
−1

2

n2
i

r2

)
−
∑
i 6=j

ZiZj
rij

. (3.23)

The problem is simplified from to solve the eigenvalue problem of a differential equa-

tion into to get the minimum of a polynomial function.

Due to the Pauli exclusion principle, each electron should occupy different state

because it is fermion. And the quantization of the eigen-energies in H-atom shows

the shell structure which is well-known since the early Quantum mechanics. From the

shell structure of the multi-electron atoms, let’s assume that the quantum number ni

is shown in Table. (II). For example, the 3p-state has maximally 6 electrons in the

state and the corresponding quantum number is ni = 3 with two-fold spin degeneracy.

For the ground state of the multi-electron atoms, the Hamiltonian can be con-

structed by assigning proper quantum number ni for each electron in the atoms. Since

the number of variables in multi-electron atoms with N -electrons are 3N , we will use

the Downhill Simplex Method (DSM) as minimization for the Hamiltonian function

[12].

The results are shown for several atoms. Especially, for the carbon atom with

6-electrons, its configuration of the ground state is in Fig. 7, which shows the (sp2)-

hybridization similar to the result of quantum mechanics.
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The results for the energy of the multi-electron atoms are summarized in Table

(III). The C-atom has the minimum relative error, and the atoms has the relative

errors less than 6 %.
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CHAPTER IV

BINDING ENERGY IN HYDROGEN MOLECULE

After solving the hydrogen atom problem in quantum mechanics, the next stage might

be the system with a few constituents : for example, He-atom or H2 molecule [13]. In

this chapter, we might go to the molecular problem : H2 molecule. Even though we

can write the corresponding Schrödinger equation for molecules, it’s almost impossible

to solve the problem analytically to get the energy eigenstate, and difficult even in

numerical methods.

Here, we will introduce two different method to solve this simplest molecular

problem: One is the quasiclassical method and the other is quantum mechanical

method.

Usually, the classical method fails to describe the quantum system. In the first

part of this chapter, we will describe how to treat the electron’s trajectory in H+
2

molecular ion, and calculate the lowest energy of this molecular ion. In the second

part, we will to construct the Molecular orbit for the system with two centers in

quantum mechanics. After getting the two-center molecular orbit, we will apply it

to get the energy of ground state in H2 molecule. Just using only one ground state

molecular orbital, modified by a simple electronic correlation factor and without any

free (variational) fitting and find a binding energy of 4.5 eV. With the same form (the

exact solution for H+
2 ), but with a couple of the constants interpreted as variational

parameters, the binding energy is found to be 4.7 eV [13]. The present results are

obtained (and strengthened) by independent numerical and analytical calculations,

with different choices for the representation of the exact H+
2 solution.
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A. System with Two Centers

Let’s consider a simple system with two nuclei and one-electron. Then, the Hamilto-

nian is

H =
P2
a

2Ma

+
P2
b

2Mb

+
p2

2m
− Zae

2

ra1

− Zbe
2

rb1
+
ZaZbe

2

R
. (4.1)

Since the mass ratio between the nuclei (that is, proton in H+
2 ion) and electron is

Ma/m = Mb/m ∼ 1836, we might neglect the motion of nuclei and consider as a fixed

particle with infinite mass, that is the Born-Oppenheimer approximation [14]. Then,

the Hamiltonian is reduced into

H =
p2

2m
− ZAe

2

rA1

− ZBe
2

rB1

+
ZAZBe

2

R
. (4.2)

In coordinate representation,

H = − h̄2

2m
∇2 − ZAe

2

rA1

− ZBe
2

rB1

+
ZAZBe

2

R
. (4.3)

For simplicity, let’s use the atomic unit for the system. That the distance is measured

by the Bohr radius a0 = 4πε0h̄
2

me2
= 0.529Å and the energy is measured by the twice of

Rydberg energy ERyd = 2 me4

8ε20h̄
3c

= 27.21 eV = 2 Ry. In fact, 1 Ry is the energy of the

ground state of the Hydrogen atom. Then, the rescaled Hamiltonian with redefined

variables is

H = −1

2
∇2 − Za

ra1

− Zb
rb1

+
ZaZb
R

. (4.4)

Here, ra1 (rb1) is the distance from Nucleus A (B) shown in Fig. 9. In the above

form, there’s only dimensionless parameters to simplify the arithmetics of the energy

calculation. The final form is also gotten by replacing h̄ = m = e = 1. The detail

explanation for the atomic unit is found in Englert’s book [15].
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B. Hamiltonian in Two-center Coordinate

Since there’s two centers given by two nuclei, the proper coordinate is also that with

two centers.

Here, we might use the spheroidal coordinate that is defined through following

definition.

λ =
ra + rb
R

, (4.5)

µ =
ra − rb
R

. (4.6)

with azimuthal angle φ which is in usual 3-D cylindrical coordinate. Fig. 10 clearly

shows the meaning of (λ, µ, φ).

Then, the above Hamiltonian can be written in terms of (λ, µ, φ) gives the cor-

responding Schrödinger equation for H+
2 molecular ion as

∂

∂λ

[
(λ2 − 1)

∂ψ

∂λ

]
+

∂

∂µ

[
(1− µ2)

∂ψ

∂µ

]
+

[
1

λ2 − 1
+

1

1− µ2

]
∂2ψ

∂φ2

+ 2R2

[
1

4

(
E − 1

R

)
(λ2 − µ2) +

1

R
λ

]
ψ = 0. (4.7)

C. Quasiclassical Description of Chemical Bonding of H+
2 Molecular Ion

If electron motion is in the plane passing through the molecular axis then the action

is given by

S = −Et+

λ∫ √
1

2
mR2E +

β + 2mRλ

λ2 − 1
dλ+

µ∫ √
1

2
mR2E − β

1− µ2
dµ, (4.8)
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where m is the electron mass, E is the electron energy and β is a constant of motion.

For finite motion E < 0, β < 0. In dimensionless units

R→ a0R, E → E0E, t→ t/E0, (4.9)

where a0 = h̄2/me2 is the Bohr radius, E0 = e2/a0 is one Hartree, the action reads

S = −Et+ h̄

λ∫ √
1

2
R2E +

β + 2Rλ

λ2 − 1
dλ+ h̄

µ∫ √
1

2
R2E − β

1− µ2
dµ. (4.10)

Canonical momenta associated with λ and µ are

pλ =
∂S

∂λ
= h̄

√
1

2
R2E +

β + 2Rλ

λ2 − 1
, (4.11)

pµ =
∂S

∂µ
= h̄

√
1

2
R2E − β

1− µ2
. (4.12)

If electron moves in a plane then its motion is determined by four initial conditions:

initial values of λ, µ, pλ and pµ. We are interested in trajectories which correspond

to periodic motion. For the planar electron motion the periodic trajectories exist if,

e.g., the electron at some point moves with zero velocity. This point is determined

by the condition pλ = 0 and pµ = 0, which yields

λmax = − 2

RE

[
1 +

√
1− E

2

(
β − R2E

2

)]
, (4.13)

λmin = − 2

RE

[
1−

√
1− E

2

(
β − R2E

2

)]
, (4.14)

µmax = −
√

1− 2β

R2E
. (4.15)



24

At initial moment of time the electron starts to move with zero velocity from a

point with coordinates λmax, µmax. During the motion µ changes from µmax to −1

and then back to µmax. The electron trajectory can be obtained from the equations

∂S/∂E = C1, ∂S/∂β = C2, where constants C1 and C2 are given by the initial

conditions. The second equation yields

λmax∫
λ

dλ√
λ2 − 1

√
(λmax − λ)(λ− λmin)

=

µmax∫
µ

dµ√
1− µ2

√
µ2 − µ2

max

, (4.16)

while the first one leads to

−
√
|E|t√
2h̄R

=

λmax∫
λ

√
λ2 − 1dλ√

(λmax − λ)(λ− λmin)
+

µmax∫
µ

√
1− µ2dµ√
µ2 − µ2

max

. (4.17)

Eq. (4.16) can be solved in theorems of Jacobi elliptic functions. After some

algebra we obtain the following formula for the trajectory

λ+ 1 =

1 + λmax

1 + 1
2
(λmax − 1)sn2

[√
2
√
λmax−λmin

1−µmax
F
(

arcsin
√

(1−µmax)(µmax−µ)
(1+µmax)(−µmax−µ)

, 1+µmax

1−µmax

)
,
√

(λmax−1)(λmin+1)
2(λmax−λmin)

] ,

(4.18)

where F (ϕ, k) =
∫ ϕ

0
dϕ√

1−k2 sin2 ϕ
is the elliptic integral of the first kind, sn(ϕ, k) is the

elliptic sinus.

The electron motion is completely specified by two constants: the initial coordi-

nates λmax, µmax or equivalently by the energy E and the constant β. However, the

motion is periodic only if periods of λ(t) and µ(t) are commensurate. For the ground

state this suggests that when µ = −1 it should be λ = λmax. Then from Eq. (4.18)
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we obtain a constraint for possible values of λmax and µmax:

λmax = −1 +
1 + λmax

1 + 1
2
(λmax − 1)sn2

[√
2
√
λmax−λmin

1−µmax
F
(
π
2
, 1+µmax

1−µmax

)
,
√

(λmax−1)(λmin+1)
2(λmax−λmin)

] .

(4.19)

As a result, only one free parameter, e.g. the electron energy E, remains unknown.

Figure 11 shows a periodic electron trajectory. The spacing between nuclei is

R = 2 a.u.. Electron starts to move from a point λ = 1.82, µ = −0.12. The trajectory

crosses the molecular axis twice at λ = 1, µ = −0.33 and λ = 1.82, µ = −1. At the

second crossing point the trajectory is perpendicular to the molecular axis. The total

energy is Etotal = E + 1/R = −0.60 a.u.

To find the potential energy curve E(R) we need an additional equation that

constrains E (or β). A possible way is to use the force equation:

Fe(E,R) = −∂E(R)

∂R
, (4.20)

where Fe(E,R) is the average force of interaction between a nucleus and the electron,

E(R) is the electron energy. The average force on the nucleus 1 due to the interaction

with electron points along the molecular axis and is given by

Fe(E,R) =
1

T

∫ T

0

cos θ(t)

r2
1(t)

dt, (4.21)

where T is the period of electron motion, θ is the angle between r1 and molecular

axis. The force can be written as

Fe(E,R) =

∫ µmax

−1
cos θ
r2
1

dµ
µ̇∫ µmax

−1
dµ
µ̇

. (4.22)
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From Eqs. (4.16) and (4.17) we obtain

µ̇ ∝
√

1− µ2
√
µ2 − µ2

max

λ2 − µ2
. (4.23)

Then using cos θ = (1 + λµ)/(λ+ µ) and r1 = (λ+ µ)R/2 Eq. (4.22) yields

Fe(E,R) =
4

R2

∫ µmax

−1
(1+λµ)(λ−µ)

(λ+µ)2
√

1−µ2
√
µ2−µ2

max

dµ∫ µmax

−1
(λ2−µ2)√

1−µ2
√
µ2−µ2

max

dµ
. (4.24)

In this equation λ is given by Eq. (4.18). Eqs. (4.20) and (4.24) provide the additional

constraint equation. However since Eq. (4.20) is differential we have to specify one

point in the potential curve (initial condition). As soon as this point is specified the

whole potential curve is obtained by solving the differential equation. However the

initial point remains arbitrary and has to be determined by additional arguments.

Another way to obtain a constraint equation is to use an adiabatic invariant∮
pds = 2πh̄n, (4.25)

where

p =
√

2h̄

√
E +

2

R

(
1

λ+ µ
+

1

λ− µ

)
(4.26)

is the electron momentum and the integral is taken along the electron trajectory.

Taking into account

ds =
R

2

√
λ2 − µ2

√
dλ2

λ2 − 1
+

dµ2

1− µ2
(4.27)

and (
dλ

dµ

)2

=
(λ2 − 1)(λmax − λ)(λ− λmin)

(1− µ2)(µ2 − µ2
max)

, (4.28)
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we obtain the constraint equation∫ µmax

−1

√
ER2 + 2R

(
1

λ+ µ
+

1

λ− µ

)√
λ2 − µ2

√
(λmax − λ)(λ− λmin)

(1− µ2)(µ2 − µ2
max)

+
1

1− µ2
dµ

=
π√
2
n. (4.29)

The “quantum number” n (not necessarily integer or half integer) in the right side of

the equation remains a free parameter.

The adiabatic invariant constraint and the force equation constraint are equiv-

alent to each other. Both these equations contain a free parameter that has to be

specified. The parameter can be determined if we know, e.g., one point in the poten-

tial energy curve.

Fig. 12 compares potential energy curves of H+
2 molecule obtained using the

present technique (solid lines) with “exact” quantum mechanical dots. We plot two

curves calculated using the force equation for two choices of the initial point. For the

lower curve we chose the initial point by matching E(R) with the quantum mechanical

answer at R = 2 a.u., while for the upper curve we make a match at R = 1 a.u. We

also plot the Bohr model result obtained using quantization relative to both nuclei

(dashed line) and molecular axis (dot line).

1. ∞-like Trajectory

Another class of periodic trajectories corresponds to motion of the electron from one

nucleus to another. For ∞-like motion the electron passes through the molecular

center λ = 1, µ = 0. Equation of the trajectory is

λ∫
1

dλ√
λ2 − 1

√
(λmax − λ)(λ− λmin)

=

µ∫
0

dµ√
1− µ2

√
µ2 − µ2

max

. (4.30)
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It can be expressed in terms of elliptic functions as

λ− λmin

=
1− λmin

1− (λmax−1)
(λmax−λmin)

sn2

[√
λmax−λmin√
2
√

1−µ2
max

F

(
arcsinµ

√
1−µ2

max

µ2−µ2
max
, 1√

1−µ2
max

)
,
√

(λmax−1)(λmin+1)
2(λmax−λmin)

] .

(4.31)

For the ∞-like orbit µ2
max < 0. The motion is periodic if at the point µ = −1, where

the electron crosses molecular axis, λ = λmax. This yields the following constraint

λmax = λmin +
1− λmin

1− (λmax−1)
(λmax−λmin)

sn2

[√
λmax−λmin√
2
√

1−µ2
max

F

(
π
2
, 1√

1−µ2
max

)
,
√

(λmax−1)(λmin+1)
2(λmax−λmin)

] .

(4.32)

Figure 13 shows ∞-like trajectory. The spacing between nuclei is R = 2 a.u. The

trajectory crosses the molecular axis three times at λ = 1, µ = 0 and λ = 1.646,

µ = ±1. At the outer crossing points the trajectory is perpendicular to the molecular

axis. The total energy is Etotal = E + 1/R = −0.6025 a.u.

To find the ground state potential energy curve of H+
2 molecule we use the quan-

tization conditions

∮
pλdλ = 2πh̄

(
nλ +

1

2

)
, (4.33)

∮
pµdµ = 2πh̄

(
nµ +

1

2

)
, (4.34)

where 1/2 appears because the coordinates are bound between two turning points.

We assume that electron motion remains periodic (∞-like) under change in the

internuclear spacing R. This imposes constraint (4.32) on E and β. To find E we need
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only one additional equation which comes from the quantization conditions. Since

only one equation is necessary the conditions (4.33) and (4.34) can not be satisfied

simultaneously. Instead we assume that a linear combination of Eqs. (4.33) and (4.34)

remains invariant. We found that for the ground state of H+
2 the proper invariant

combination is

3

∮
pλdλ+ 2

∮
pµdµ = 2πh̄

(
3nλ + 2nµ +

5

2

)
(4.35)

with nλ = 0 and nµ = 1. In terms of elliptic integrals one can write Eq. (4.35) as

3

π

√
2R2|E|

λmax∫
1

√
(λmax − λ)(λ− λmin)√

λ2 − 1
dλ+

2

π

√
2R2|E|

√
1− µ2

maxE

(
π

2
,

1√
1− µ2

max

)

= 3nλ + 2nµ +
5

2
, (4.36)

where E(ϕ, k) =
ϕ∫
0

√
1− k2 sin2 ϕdϕ is the elliptic integral of the second kind. Eqs. (4.32)

and (4.36) determine the potential energy curve.

Fig. 14 compares potential energy curve of H+
2 molecule obtained by solving

Eqs. (4.32) and (4.36) with nλ = 0 and nµ = 1 (solid line) and “exact” quantum

mechanical dots. At R > 4.72 a.u. the periodic ∞-like trajectory ceases to exist.

Near the bond length and large R our result yields accuracy comparable with those

obtained in [17] using a uniform quantization method. However at small R the present

approach works better. For example, at R = 0.5 a.u. the uniform quantization result

deviates from the “exact” dot by 0.07 Hartree, while our answer has the accuracy of

0.03 Hartree.

Fig. 15 compares our result (solid line) with those of Ref. [17] obtained using

primitive (dash-dot) and uniform quantization (dashed line).
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D. Two-center Molecular Orbit

Now, let’s change the two-center molecular orbit to solve the Schrödinger problem for

H2 molecule problem.

With the separation of variables,

ψ(λ, µ, φ) = L(λ)M(µ)eimφ, m = 0,±1,±2, · · · . (4.37)

The detailed procedure is shown in Appendix B. The separated equations for the λ

and µ are

d

dλ

{
(λ2 − 1)

dΛ

dλ

}
+

{
A+ 2R1λ− p2λ2 − m2

λ2 − 1

}
Λ = 0,

R1 ≡
R

2

Za + Zb
2

, (4.38)

d

dµ

{
(1− µ2)

dM

dµ

}
+

{
−A− 2R2µ+ p2µ2 − m2

1− µ2

}
M = 0,

R2 ≡
R

2

Za − Zb
2

. (4.39)

Note that A and p2 are unknown and must be solved from (4.38) and (4.39) as

eigenvalues of the coupled system. Once A and p are solved, then the energy E can

be obtained from (B.12).

1. Two Useful Types of Eigenfunction of Λ(λ) for H+
2 Molecular Ion

To solve the differential equations, it is important to understand the asymptotics of

the solution. Rewrite (4.38) as

(λ2 − 1)Λ′′(x)2λΛ′(x) +

(
A+ 2R1λ− p2λ2 − m2

λ2 − 1

)
Λ(x) = 0. (4.40)
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First, consider the case λ� 1; we have

0 = Λ′′(x) +
2λ

λ2 − 1
Λ′(x) +

[
A+ 2R1λ

λ2 − 1
− p2 λ2

λ2 − 1
− m2

(λ2 − 1)2

)
Λ(x) (4.41)

≈ Λ′′(x)− p2Λ(λ), for λ� 1. (4.42)

This gives

Λ(x) ≈ a1e
−pλ + a2e

pλ, for λ� 1, where p > 0. (4.43)

The term a2e
pλ has exponential growth for large λ, which is physically inappropriate

and must be discarded. Thus

Λ(x) ≈ a1e
−pλ, for λ� 1. (4.44)

Next, we consider the case λ > 1 but λ ≈ 1. In such a limit we have

Λ(λ) ≈ (λ− 1)|m|/2
∞∑
k=0

ck(λ− 1)k. (4.45)

The proof is in Appendix C.

Our results in (4.44) and (4.45) suggest that the form

Λ(λ) = e−pλ(λ− 1)|m|/2λβf(λ), for some function f(λ), (4.46)

would contain the right asymptotics for both λ� 1 and λ ≈ 1.

Here, there’s two kinds of useful solutions which have different function forms.

One is called as Jaffé’s type and the other is the simple series solution with Laguerre

function.

The form known as Jaffé’s type is

ΛJ(λ) = e−pλ(λ2 − 1)|m|/2(λ+ 1)σ
∑
n

gn

(
λ− 1

λ+ 1

)n
, (4.47)
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and

σ ≡ R1

p
− |m| − 1. (4.48)

This leads to a 3-term recurrence relation

αngn−1 − βngn + γngn+1 = 0, n = 0, 1, 2, . . . ; g−1 = 0, (4.49)

where

αn = (n− 1− σ)(n− 1− σ −m), (4.50)

βn = 2n2 + (4p− 2σ)n− A+ p2 − 2pσ − (m+ 1)(m+ σ), (4.51)

γn = (n+ 1)(n+m+ 1), (4.52)

and, consequently, the continued fraction

β0

γ0

=
α1

β1 −
γ1α2

β2 −
γ2α3

β3 − · · ·

(4.53)

for A and p.

The other form is known as Hylleraas’ solution and the form is

ΛH(λ) = e−p(λ−1)(λ2 − 1)|m|/2
∑
n

cn
(m+ n)!

Lmm+n(x), x ≡ 2p(λ− 1), (4.54)

where Lmm+n is the associated Laguerre polynomial and cn satisfy the 3-term recurrence

relation

αncn−1 − βncn + γncn+1 = 0, n = 0, 1, 2, . . . ; c−1 ≡ 0, (4.55)
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where

αn =(n−m)(n−m− 1− σ), (4.56a)

βn =2(n−m)2 + 2(n−m)(2p− σ)− [A− p2 + 2pσ + (m+ 1)(m+ σ)], (4.56b)

γn =(n+ 1)(n− 2m− σ), (4.56c)

and the same form of continued fractions (4.53).

2. Solution of the M -function

Eq. (4.39) has close resemblance in form with (4.38) and, thus, it can almost be

expected that the way to solve (4.39) will be similar to that of (4.38). First, we make

the following substitution

M(µ) = e±pµM̃(µ), −1 ≥ µ ≥ 1, (4.57)

in order to eliminate the p2µ2 term in (4.38). We obtain

[(1− µ2)M̃ ′]′ ± 2p(1− µ2)M̃ ′ +

[
(−2R2 ∓ 2p)µ+ (p2 − A)− m2

1− µ2

]
M̃ = 0.

(4.58)

To simplify notation, let us just consider the case M(µ) = e−pµM̃(µ), but note that

for M = epµM̃(µ), we need only make the changes of p→ −p in (4.61) below. Write

M(λ) = e−pµ
∞∑
k=0

fkP
m
m+n(µ), (4.59)

where Pm
m+n(µ) is the associated Legendre polynomials, and the 3-term recurrence

relation for fk is

αnfn−1 − βnfn + γnfn+1 = 0, n = 0, 1, 2, . . . ; f−1 ≡ 0, (4.60)
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where

αn =
1

2(m+ n)− 1
[−2nR2 + 2pn(m+ n)], (4.61a)

βn = A− p2 + (m+ n)(m+ n+ 1), (4.61b)

γn =
2m+ n+ 1

2(m+ n) + 3
{−2R2 − 2p(m+ n+ 1)} , (4.61c)

and, consequently, again the continued fractions of the same form as (4.53). The

continued fractions obtained here should be coupled with the continued fraction (4.53)

for the variable µ to solve A and p.

In the homonuclear case, R2 = R(Za − Zb)/2 = 0, (4.39) reduces to

[(1− µ2)M ′]′ +

(
−A+ p2µ2 − m2

1− µ2

)
M = 0. (4.62)

Even several different optional representations of M might be used, we will choose

M(µ) = (1− µ2)|m|/2
∞∑
k=0

ckP
m
m+2k(µ), (4.63)

M(µ) = (1− µ2)|m|/2
∞∑
k=0

ckP
m
m+2k+1(µ), (4.64)

or

M(µ) =
∞∑
s=0

BsP
m
m+2s(µ). (4.65)

where Ln(x) is the Laguerre function and x = 2α(λ− 1).

The wavefunction for the ground state in H+
2 has two different, equivalent func-

tion forms. The symmetry of the ground state sets that m = 0, and we will get two
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types of function forms.

φJ
H+

2
(λ, µ) = NJe−αλ(λ+ 1)α1

[
1 + a1

(
λ− 1

λ+ 1

)
+ a2

(
λ− 1

λ+ 1

)2

+ · · ·

]

× [1 + b2P2(µ) + b4P4(µ) + · · · ] , (4.66)

φH
H+

2
(λ, µ) = NHe−αλ

[
1 + A1L1(x) +

A2

2
L2(x) + · · ·

]
× [1 +B2P2(µ) + · · · ] , (4.67)

where Pl(µ) is the Legendre Polynomial and coefficients ai and bi are determined by

a recursion relation.

E. Wavefunction for the Ground State of H2 Molecule

From the exact wavefunction for the H+
2 molecular ion, we can simply construct the

trial wavefunction of the H2 molecule since two electrons occupy same spatial state

with different spin state. Without the electronic repulsion between the electrons, the

simplest wavefunction for H2 molecule is

ΨJ(1, 2) = φJ(λ1, µ1)φJ(λ2, µ2), (4.68)

ΨH(1, 2) = φH(λ1, µ1)φH(λ2, µ2). (4.69)

The Hamiltonian for H2 molecule is

H =

(
−1

2
∇2

1 −
Za
ra1

− Zb
rb1

)
+

(
−1

2
∇2

2 −
Za
ra2

− Zb
rb2

)
+

(
1

r12

+
ZaZb
R

)
. (4.70)

1. Correlation Factor

When we construct the wave-function of the H2 molecule, we have neglected the

repulsion between two electrons due to both same electric charges of them. This

repulsion tends to prefer the farther presence between two electrons, so that it reduce
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the probability for the occupation in near distance. Though it is difficult to consider

this effect analytically, we might use a simple function to produce similar behavior.

The well-known factor is the Hylleraas Correlation factor [16] such as

f(1, 2) = 1 + κr12 (4.71)

where κ is the parameter to shows the qualitative degree of repulsive correlation.

Usually, the cusp condition sets that

κ =
1

2
, (4.72)

which is explained in Appendix D.

In our calculation, the variational methods determines the value for κ.

F. Binding Energy of H2 Molecule

Binding energy is defined as the energy difference between the energy of the molecule

and the total energy of each atom at infinity. For the H2 molecule, the binding energy

is defined as

EBE = (EH2molecule − 2EH atom) (4.73)

≈ (〈H〉H2molecule − 2EH atom) (4.74)

where 〈H〉H2molecule is the expectation value of the Hamiltonian gotten from the trial

function Eq. (4.68) and Eq. (4.69) with or without Eq. (4.71).

With full variational parameters, we obtain a binding energy of 4.7 eV, which is

comparable to the experimental value of 4.74 eV.
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CHAPTER V

CONDENSATION IN A WEAKLY INTERACTING BOSON GAS WITH THE

PARTIAL CANONICAL ENSEMBLE

A. Introduction

After liquefying the Helium-4 by Kamerlingh Onnes in 1908, new area in physics

has been opened: very low temperature physics, or cryogenics. After observing the

superconductivity of the mercury at 1911, new physical phenomena have been inves-

tigated: superconductivity, superfluidity, etc. [18, 19] One of the great achievement

in low temperature physics is the manifestation of the macroscopic quantum states,

eps. the condensation phenomenon in Boson system, which was predicted by Bose

in 1924 and Einstein in 1925. [20, 21] After seventy years later, the Bose-Einstein

Condensation (BEC) has clearly realized in dilute atomic system by Eric Cornell and

Carl Wieman in Rubidium gas at 1995. [22]

Even though the theoretical research had begun about the properties of BEC,

the progress was very slow. After Uhlenbeck pointed out that the cusp in transition

temperature is unusual thing [23], many different aspects on BEC was studied.

The usual method to calculate the thermodynamic properties in equilibrium for

many-body system is using the Grand Canonical Ensemble (GCE). In BEC prob-

lem, the calculation for the condensation behavior done by the GCE seems good :

seemingly clear behavior of the condensation.

However, for the fluctuation in GCE the results are worse : Since the variance in

GCE is 〈(δn0)2〉 = 〈n0〉 (1 + 〈n0〉), the fluctuation seems to show a divergent behavior

as temperature goes below the transition temperature, since almost particles are

in ground state in lower temperature and 〈(δn0)2〉 → n2
0 with macroscopic number
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of particles n0 in condensate state. However, intuitively in very low temperature

there’re few excited particles to participate in fluctuation, that is, small fluctuation

is expected. Furthermore, the number fluctuation is related to the compressibility as

following :

κT = − 1

V

(
∂V

∂P

)
T

=
V

TN

〈
(
∆N

)2〉
N

, (5.1)

which can be measured in experiment.[24] So, the divergence of the number fluctuation

in GCE should be solved when we deal the BEC problem.

And this suggests that we abandon the GCE and choose another ones : Canon-

ical Ensemble (CE) or Microcanonical Ensemble (MCE). Here, we choose CE to

investigate the BEC phenomena for finite N boson system. [24, 25, 26, 27, 28]

The correlation function in a physical system is the general measure of correlation

between two quantities, and is used in broad areas of physics. Here, we will treat a

different type of correlation, which is existed in a system with a finite total number

N of particles. Since the available number of particles in one state is restricted by

that in another state by the finite total number of particles, the mutual correlations

of the occupation numbers between them may be nonzero. Even though two states

is statistically independent in thermodynamic limit where N →∞, they might have

a nonzero mutual correlation in finite N . For example, in two-level system with

two boson particles in equilibrium, the mutual correlation of the occupation numbers

〈δn̂1δn̂2〉 = 〈n̂1n̂2〉 − 〈n̂1〉〈n̂2〉 can be easily calculated to show negative.

B. Ideal Bose Gas in Canonical Ensemble

Before treating the condensation in the boson system with interaction, let’s consider

the system with N ideal boson particles for simplicity. The model system is contained
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in 3-D cubic box with length L. The Schrödinger equation gives the energy spectrum

for this ideal gas.

HΨ =
p2

2m
Ψ = EΨ. (5.2)

The periodic boundary condition gives

E =
h̄2k2

2m
(5.3)

where the spatial quantization gives

k = (kx, ky, kz) =
2π

L
(nx, ny, nz) (5.4)

where nx, ny and nz are integers. [1, 8]

1. Density Operator for an Ideal Bose Gas

At thermal equilibrium, we can construct the density operator for an ideal bose gas

in diagonal form with the occupation number in each state. The density operator can

be represented as

ρIdBG =
∑
{nµ}

P ({nµ} |N) |{nµ}〉 〈{nµ}| , (5.5)

where {nµ} denotes the accessible configuration and the corresponding probability

P ({nµ} |N). Since the total number of particles is fixed, we specify total number N

in the probability.

In the canonical ensemble (CE) which conserves the total number of particles,

we can calculate the explicit form of the probability for P ({nµ} |N) for n-state, as

shown in Appendix F.
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2. Construction of the Partition Function in Canonical Ensemble

In CE, the restriction of the total number of particles is not easy to handle in analytic

form since the construction of the partition function is non-trivial when we compare

to the same problem in GCE. The partition function in CE is

ZN =
∞∑

n1=0

∞∑
n2=0

· · · e−β
∑
{µ} εµnµδ(N −

∑
{µ}

nµ) (5.6)

where index µ runs over each state and nµ, the number of particles in µ-th state, runs

from 0 to infinity and β = (kBT )−1. The δ-function is the Kronecker-δ which is one

when the argument is zero or zero otherwise. This makes sure that there’re only N

particles in the system.

From the definition of the partition function, we can derive the probability of

occupation in each state and the recursion relation which can evaluate the N -particle

partition function.

P (nµ = n|N) = 〈δ(nµ − n)〉

= 〈Θ(nµ − n)〉 − 〈Θ(nµ − (n+ 1))〉

= P (nµ ≥ n|N)− P (nµ ≥ n+ 1|N)

= e−nβεµ
ZN−n
ZN

− e−(n+1)βεµ
ZN−n−1

ZN
(5.7)

and

ZN(β) =
1

N

N∑
n=1

Z1(nβ)ZN−n(β). (5.8)

The proofs for Eq. (5.7) and Eq. (5.8) are in Appendix F.
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3. Probability Distribution for the Condensate State for Ideal Bose Gas

The occupation probability for the ground state is given by Eq. (5.7).

p(n0) = P (n0|N) =
ZN−n0

ZN
− ZN−n0−1

ZN
. (5.9)

We can derive p(n0) from the density operator ρIdBG. Since the ideal Bose par-

ticles are non-interacting and the discrete quantum state is statistically independent,

the occupation probability for the ground state can be given by the projection of the

density operator into the ground state eliminating all higher excited state.

p(n0) =
∑
{nµ}

′
P (n0, {nµ} |N) =

∑
{nµ}

′
〈n0, {nµ} |ρIdBG|n0, {nµ}〉 . (5.10)

where ′ means that the sum goes over all states except the ground state.

From the above probability distribution, we can construct the reduced density

operator for the condensate state.

ρreduced = Tr{µ}
(
ρIdBG

)
=
∑
{nµ}

′
P (n0, {nµ} |N) |n0〉 〈n0| =

N∑
n0=0

p(n0) |n0〉 〈n0| , (5.11)

where n0 denotes the number of particles in condensate state, and the distribution

from the reduced density operator is

p(n0) = 〈n0 |ρreduced|n0〉 = P (n0|N). (5.12)
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4. Average, Variance and 3rd Moment

From the probability distribution for the occupation number of the ground state, all

moments can be calculated. The explicit forms for the lowest 4 moments are

〈n0〉 =
N∑

n0=0

n0p(n0), (5.13)

〈
(δn0)2

〉
=
〈
(n0 − 〈n0〉)2

〉
=
〈
n2

0

〉
− 〈n0〉2 , (5.14)〈

(δn0)3
〉

=
〈
n3

0

〉
− 3

〈
n2

0

〉
〈n0〉+ 2 〈n0〉3 (5.15)

with

〈
nk0
〉

=
N∑

n0=0

nk0 p(n0). (5.16)

Fig. (16) shows the condensation of the ground state with a system with different

number particles. At T = 0, all the particles stay at the condensate state and

become agitated to the excited states as temperature increases. Over the transition

temperature Tc = 2πh̄2

m

(
N

V ζ(3/2)

)2/3

, which is defined in thermodynamic limit as N →

∞, the occupation number of particles in the ground state doesn’t vanish and shows a

long tail in the condensation. The qualitative behavior of the condensation is clearly

shown for moderate number of particles, in N = 200 and N = 1000, which we will

select this value for N in the interacting Boson gas, also.

For the fluctuation of the occupation number, at T = 0 zero-fluctuation is pre-

dicted by physical intuition due to the perfect condensation in ideal Bose gas. As

temperature increases, the particles in condensate states are excited by thermal ag-

itation, and it will be shown as fluctuation, or the nonzero variance. However, as

temperature goes over Tc = 2πh̄2

m

(
N

V ζ(3/2)

)2/3

, the bosonic property of the system can

be ignored and goes to the usual classical ideal gas and should be exponentially van-
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ished since we only consider the fluctuation of the single quantum state. To connect

these behavior smoothly, there should be a maximum near T = Tc. For N > 50, the

maximum lies near Tc, and for N < 50 the maximum lies at T > Tc. For N = 200,

the maximum variance is near T ≈ Tc. Furthermore, as N increases, the normalized

maximum of variance is also increased, and seems to diverge at thermodynamic limit

where N →∞, and this may be related to the cusp behavior of condensation at that

limit.

Finally, the third-moment of the occupation number is nonvanishing, which shows

that the fluctuation is non-Gaussian. And there’s sign change from negative to posi-

tive near T ' Tc.

When the results are compared to them in CNB3 [27] and CNB5 [28], this par-

tition function method is better to describe the condensation behavior of the ideal

boson gas. In fact, the results from CNB5 are exactly same to the method described

by the partition function in the ideal boson gas.

C. Model System for Interacting Bose Gas

Now, let’s try to investigate the interacting Bose gas. Let’s consider a dilute homo-

geneous Bose gas with a weak interaction of an interatomic scattering. The system

is described by the well-known Hamiltonian [27]

H =
∑
k

h̄2k2

2M
a†kak +

1

2V

∑
{ki}
〈k3k4 |U |k1k2〉 a†k4

a†k3
ak2ak1 (5.17)

where V = L3 is a volume of cubic box containing the gas with periodic boundary

conditions, which is given by Eq. (5.4).

The number operator nk from the creation and annihilation operators constructs
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the many-body Fock space, i.e.

nk = a†kak, (5.18)

nk

∣∣∣ψ(n)
k

〉
= n

∣∣∣ψ(n)
k

〉
, (5.19)

a†k

∣∣∣ψ(n)
k

〉
=
√
n+ 1

∣∣∣ψ(n+1)
k

〉
. (5.20)

The finiteness of the total number N of Boson, or n0 +
∑

k nk = N , enables us to

choose a subspace in the Fock space.

At extremely low temperatures where the condensation occurs, the occupation

number of the ground state is enormously large, and the expected occupation n0

is comparable to N , so that we might describe the kinetics of the system by the

interactions between the condensate state and excited states. To describe this type

of interactions, we can use the quasi-particle description.

βk = β†0ak, β†k = a†kβ0 (5.21)

with β0 = (1 + n0)−1/2a0. Then, the commutation relations are satisfied for k 6= 0

states.

[
β†k, βk′

]
= δkk′ . (5.22)

The proof is in Appendix G. Furthermore, this quasi-particle operator βk gives the

same statistics for the occupation number as that of particle operator ak for nonzero

k state.

nk = a†kak = β†kβk. (5.23)
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D. Energy Spectrum of the Quasi-particle System

With the quasi-particle operator βk, we can rewrite the atom-number-conserving

Bogoliubov Hamiltonian. ( Eq. (62) in CNB3[27] )

HB =
N(N − 1)U0

2V
+
∑
k 6=0

(
h̄2k2

2M
+

(n̂0 + 1/2)Uk

V

)
β̂†kβ̂k

+
1

2V

∑
k 6=0

(
Uk

√
(1 + n̂0)(2 + n̂0)β̂†kβ̂

†
−k +H.C.

)
. (5.24)

To get the diagonalized Hamiltonian, let’s make approximation that the operator

n̂0 into the c-number n0 in Eq. (5.24). Here, we choose this c-number n0 as the average

number n0 of occupation in condensate state.

HBn =
N(N − 1)U0

2V
+
∑
k 6=0

(
h̄2k2

2M
+

(n0 + 1/2)Uk

V

)
β̂†kβ̂k

+
1

2V

∑
k 6=0

(
Uk

√
(1 + n0)(2 + n0)β̂†kβ̂

†
−k +H.C.

)
. (5.25)

Then, with the following Bogoliubov transformation,

β̂k = ukb̂k + vkb̂
†
−k, (5.26a)

β̂†k = ukb̂
†
k + vkb̂−k (5.26b)
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with

vk
uk

= Ak

=
−
(
h̄2k2

2M
+ (n0+1/2)Uk

V

)
±
√(

h̄2k2

2M
+ (n0+1/2)Uk

V

)2

− 4
(
Uk

2V

√
(1 + n0)(2 + n0)

)2

2Uk

2V

√
(1 + n0)(2 + n0)

,

(5.27a)

uk =
1√

1− A2
k

, (5.27b)

vk =
Ak√

1− A2
k

, (5.27c)

we will get the diagonalized form of the atom-number-conserving Hamiltonian is

HBn = E0 +
∑
k 6=0

Ek +
∑
k6=0

εkb
†
kbk, (5.28)

where

E0 =
N(N − 1)U0

2V
, (5.29)

Ek =

(
h̄2k2

2M
+

(n0 + 1/2)Uk

V

)
v2
k +

1

V
Uk

√
(1 + n0)(2 + n0)ukvk, (5.30)

εk =

(
h̄2k2

2M
+

(n0 + 1/2)Uk

V

)
(u2

k + v2
k) +

2

V
Uk

√
(1 + n0)(2 + n0)ukvk. (5.31)

Ek means the shift of the ground states and depends on the number of condensate

particles n0, and εk gives the relative energy of the each excited states. Here, it should

be noticed that all parameters and the energy spectrum of the excited states depend

on the average number of condensate particles n0.

Before going to the next section, let’s simply review CNB3 paper, which has cal-

culated moments through the characteristic function. From the characteristic function

Θ±k(u) (Eq. (68) in CNB3), the statistics of the occupation number can be calculated,

and many properties of the system has shown. The derivation of this characteristic
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function can be simplified using the Wigner function. [29, 30, 31] We will show the

derivation in Appendix E.

E. Quasi-Particle Canonical Ensemble

Since we know the energy spectrum for all the excited states of the quasi-particles,

we can calculate the thermodynamic quantities using the partition function method

in the canonical ensemble, for example the occupation probability for each state.

However, the absence of the ground state in quasi-particle basis gives another

difficulty in canonical ensemble, that is, physical quantities related to the condensate

state should be calculated indirectly through the excited states.

1. Construction of the Thermal Density-operator for Quasi-particles in Canonical

Ensemble

Since we include the interaction which can be diagonalized by Bogoliubov transfor-

mation, we can construct the corresponding density operator in equilibrium at the

quasi-particle system easily. The main difference between ideal and interacting case

is the exclusion of the ground state in interacting case.

The most general form of the density operator in particle basis is

ρInt =
∑

{nµ},{mµ}
P ({nµ}, {mµ}|N)|{nµ}〉 〈{mµ}|, (5.32)

with n̂µ = â†µâµ. Since the Hamiltonian is diagonal in Bogoliubov transformed opera-

tor b̂µ basis, the density operator for the quasi-particle at equilibrium can be written

as

ρInt =
N∑

M=0

P (n0 = N −M |N)
∑
{nµ}b

P ({nµ}b|M)|{nµ}b〉〈{nµ}b| (5.33)
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with {nµ}M for the configuration of Bogoliubov-transformed quasi-particles in excited

states, and
∑

µ6=0 nµ = M . The sum for all states covers only for the excited states,

not the ground state. The explicit form of the probabilities are given in Appendix,and

P (n0 = N −M |N) = e−(N−M)βε0
ZM
ZN
− e−(N−M+1)βε0ZM−1ZN (5.34)

=
ZM − ZM−1

ZN
=
Z∗M
ZN

. (5.35)

2. Canonical Ensemble as Sum of Partial Canonical Ensemble

The omission of the ground state in quasi-particle basis prohibits the direct access to

the ground state of the particle, but through the statics of the excited states. So, the

partition function of the quasi-particles should be constructed without the ground

state.

For the partition function of the single particle, we can define the partition

function without the ground state as

Z∗1 = Z1 − e−βε0 (5.36)

where the usual single particle partition function

Z1(β) =
∞∑
µ=0

e−βεµ (5.37)

and β = (kBT )−1.

Similarly, we can construct the partial partition function Z∗M without the ground

state.

Z∗M =
∞∑

n2=0

∞∑
n3=0

· · · e−β
∑∞
µ=2 εµnµδ(M −

∞∑
µ=2

nµ), (5.38)

where M is the total number of quasi-particles in the excited states.

Furthermore, this partial partition function also satisfies the recursion relation
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in CE because the omission of one specific state doesn’t affect to the structure of the

partition function in CE. The relation between Z∗M and ZN is

ZN(β) =
N∑

M=0

e−(N−M)βε0Z∗M(β), (5.39)

or that the summation of the partial partition function Z∗M gives the usual partition

function ZN . The derivation of the above identity is in Appendix I.

For example, let’s consider the 3 bosonic particles distributed in 3-level system.

Fig. (19) shows all the possible configuration. Since the partition function is summa-

tion of the Boltzmann factor of all accessible configuration, we can simply rewrite the

total partition function as sum of the partial partition function in this example.

Z3(β) = e−3βε0Z∗0(β) + e−2βε0Z∗1(β) + e−βε0Z∗2(β) + Z∗3(β). (5.40)

3. Moments of Occupation Number in Condensate State of the Weakly Interacting

Bose Gas

Since the partition function has been constructed on quasi-particles, not particles,

the moments of the particles should derive from them of quasi-particles. More ex-

plicitly, moments of particles in condensate state will be calculated from them of

quasi-particles in excited states.

The only one connecting relation between ground state and excited states is the

number conserving relation, that is

n0 = a†0a0 = N −
∑
k 6=0

a†kak = N −
∑
k 6=0

β†kβk (5.41)

where βk = β†0ak. On this section, we will use k and k′ notation instead of µ for

specifying the state for clarity.
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a. Average

The expectation value for the occupation number of the condensate state is

〈n0〉 = 〈a†0a0〉 = N −
∑
k 6=0

〈a†kak〉 = N −
∑
k 6=0

〈β†kβk〉. (5.42)

Since the density operator is represented in terms of the Bogoliubov-transformed

quasi-particle operators, the operator also should be represented in the quasi-particle

basis b†k and bk to get the thermodynamic average. Furthermore, by Bogoliubov trans-

formation k and −k states are correlated and should be considered simultaneously

for the calculation.

The expectation value for the occupation number in quasi-particle basis is

〈β†kβk〉 = (u2
k + v2

k)nk + v2
k, (5.43)

where

nk =
N∑
n=1

e−nβεk
ZN−n
ZN

. (5.44)

Here, we used the equal average of the occupation number for the energy-degenerate

state. The derivation are shown in Appendix in detail.

The usual way to calculate the occupation number in canonical ensemble in BEC

is that
〈
nk

〉 ∼= 1
e−βεk−1

as the approximate value in canonical ensemble, because in

grand canonical ensemble it is well-known that the chemical potential is almost zero

at lower temperature. [24]

In Eq. (5.43), the second term v2
k in right side is independent of the occupation

number of the quasi-particle, which is considered as quantum effect [32], which shows

the depletion in the condensate state even at T = 0. Since the interactions in the

system gives some excitation, and the excited states are occupied even at T = 0.
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Near T ≈ 0.4−0.6Tc, the interacting Bose gas has larger condensation than that

of ideal Bose gas. It suggests that the interacting Bose gas is more ordered system,

which is known as “attraction in momentum space” [33].

The average number in condensate states in interacting Bose Gas shows the usual

predicted behavior: non-vanishing fluctuation in zero temperature and slightly higher

condensation in intermediate temperature compared with that in ideal Bose gas, and

smoothly transition into the higher temperature over the critical temperature. The

reason to show good behavior over extended into the higher temperature is that taking

the average for the number operator in strict way from the probability which can be

calculated from the partition function.

b. Variance

Similar way we can apply this probability to higher moments, especially to variance.

Since the quantum mechanics requires the four-point probability in calculation of the

variance, let’s try extend the concept to cover these things.

Let’s start with the explicit definition of the variance. The number operator for

the condensate state is

n̂0 = â†0â0 = N −
∑
k 6=0

â†kâk, (5.45)

and the difference is

δn̂0 = â†0â0 −
〈
â†0â0

〉
=
∑
k 6=0

(〈
â†kâk

〉
− â†kâk

)
. (5.46)
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The variance is

〈
(δn̂0)2〉 =

∑
k,k′ 6=0

〈(〈
â†kâk

〉
− â†kâk

)(〈
â†k′ âk′

〉
− â†k′ âk′

)〉
=
∑

k,k′ 6=0

{〈
â†kâkâ

†
k′ âk′

〉
−
〈
â†kâk

〉〈
â†k′ âk′

〉}
. (5.47)

In the quasi-particle basis β̂†k and β̂k

〈
(δn̂0)2〉 =

∑
k,k′ 6=0

{〈
β̂†kβ̂kβ̂

†
k′ β̂k′

〉
−
〈
β̂†kβ̂k

〉〈
β̂†k′ β̂k′

〉}
.

The explicit evaluation in quasi-particle basis is shown in Appendix J.

Especially, when k 6= k′ and k 6= −k′, the cross correlation
〈
β̂†kβ̂kβ̂

†
k′ β̂k′

〉
is not

vanished, which was neglected in other papers since the cross correlation between two

different states was considered vanished due to the statistical independence. This ex-

pectation values play a significant role to reduce the fluctuation at larger temperature.

[34, 35]

The results for the variance show the explicit depletion at T = 0. At low inter-

action an1/3 = 0.05, the result is very similar to that of CNB5, only slightly different

near maximum of the variance.

c. 3rd Moment

The usual mean field theory cannot calculate any higher moment since the correlation

effects are averaged out. However, the partition function method makes it possible

to calculate the 3rd moment. The explicit forms are shown in the appendix.

The nonzero value of 3rd moment means that the fluctuation inside the BEC

phenomena is non-Gaussian type. [27]
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4. Comments for the Canonical Ensemble

In these calculations, we specify the condition of the fixed total number of particles

using the canonical ensemble, and use the operator form of moments in occupation

number explicitly to calculate all the statistics. Usually, the quasi-particle description

seems to be applicable for the very low temperature, where the occupation number

of condensate state is comparable to the total number of particles, and it is believed

to give divergent result for higher temperature. However, the shortcoming of the

divergence doesn’t come from this quasi-particle transformation. It is the usual grand

canonical ensemble which is used for simple formalism and calculation. If we apply the

canonical ensemble in this system, we can get the finite result whose values converges

into that of ideal bose gas in higher temperature, even in 3rd moment.
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CHAPTER VI

SUMMARY

In Chapter II, a single-photon confined in a volume V satisfies a simple equation of

states PV = nh̄Ω, and the heat engine with a single-photon has the Carnot efficiency

like the classical ideal gas.

In Chapter III, the complex Schrödinger equation for the multi-electron atoms is

simplified into the algebraic equation by the application of the dimensional scaling.

Furthermore, the electron configuration was calculated and showed similar structure

that were predicted by quantum mechanics. Especially, the atomic structure for the

ground state of the Carbon atom is shown to the tetrahedral structure with (sp3)-

hybridization.

In Chapter IV, the hydrogen molecule, the simplest neutral molecule, has treated

by the two-center molecular orbit, and calculated the binding energy of hydrogen

molecule as 4.7eV, which is comparable to the experimental value 4.74eV.

In Chapter V, a weakly interacting Bose gas with N particles was considered

using the application of the partition function. Within Bogoliubov transformation,

we’ve calculated all possible correlation function for 2nd or 3rd centered moment of the

occupation numberto investigate the fluctuation of the condensate state. Depletion of

the condensate state, cross-over from low temperatures into high temperatures, and

non-gaussian feature of the residing fluctuation.

Here, we’ve used un-traditional method such as dimensional scaling to traditional

method such as quantum field theory. Though we’ve only considered the physical

properties of the simple systems, the applicable ranges of these methods will be

expanded.
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[34] Peshkin and Schröder, An Introduction To Quantum Field Theory (Perseus

Books, Readings, Massachusetts), Section 4.3.

[35] A. N. Jordan, C. H. Raymond Ooi, and A. A. Svidzinsky, Phys. Rev. A 74,

032506 (2006)

[36] H. Wind, J. Chem. Phys. 42, 2371 (1965).



58

APPENDIX A

LAPLACIAN IN HYPER-SPHERICAL COORDINATES

Here we show the explicit form of the Laplacian in the hyper-spherical coordi-

nates. From the definition of hyper-spherical coordinate (3.5), let’s try to calculate

the scaling factors. The definitions for them are

h2
0 =

D∑
j=1

(
∂xj
∂r

)2

, (A.1)

h2
k =

D∑
j=1

(
∂xj
∂θk

)2

(A.2)

and

h =
D−1∏
j=0

hj. (A.3)

Explicitly,

h0 = 1,

h1 = r sin θ2 sin θ3 · · · sin θD−1,

h2 = r sin θ3 sin θ4 · · · sin θD−1,

...

hk = r sin θk+1 sin θk+2 · · · sin θD−1,

...

hD−2 = r sin θD−1,

hD−1 = r,

h = rD−1 sin θ2 sin2 θ3 sin3 θ4 · · · sink−1 θk · · · sinD−1 θD−1. (A.4)
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The D-dimensional Laplacian now becomes

∇2
D =

1

rD−1

∂

∂r
rD−1 ∂

∂r

+
1

r2

D−2∑
k=1

1

sin2 θk+1 sin2 θk+2 · · · sin2 θD−1

{
1

sink−1 θk

∂

∂θk
sink−1 θk

∂

∂θk

}
+

1

r2

{
1

sinD−2 θD−1

∂

∂θD−1

sinD−2 θD−1
∂

∂θD−1

}
. (A.5)

Define the generalized orbital angular momentum operators by

L2
1 = − ∂2

∂θ2
1

,

L2
2 = − 1

sin θ2

∂

∂θ2

sin θ2
∂

∂θ2

+
L2

1

sin2 θ2

,

...

L2
k = − 1

sink−1 θk

∂

∂θk
sink−1 θk

∂

∂θk
+

L2
k−1

sin2 θk
. (A.6)

Then we have (3.7) with

KD−1(r) =
1

rD−1

∂

∂r

(
rD−1 ∂

∂r

)
. (A.7)
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APPENDIX B

SEPARATION OF VARIABLES FOR THE H+
2 -LIKE SCHRÖDINGER

EQUATION

Let us consider (4.4). Here we show how to separate the variables through the

use of the ellipsoidal (or, prolate spheroidal) coordinates.

x =
R

2

√
(λ2 − 1)(1− µ2) cosφ,

y =
R

2

√
(λ2 − 1)(1− µ2) sinφ,

z =
R

2
λµ. (B.1)

Note the coordinates λ, µ and φ are orthogonal, and we have the first fundamental

form

ds2 = dx2 + dy2 + dz2 = h2
λdλ

2 + h2
µdµ2 + h2

φdφ2, (B.2)

where

h2
λ =

(
∂x

∂λ

)2

+

(
∂y

∂λ

)2

+

(
∂z

∂λ

)2

=
R2

4

1− µ2

λ2 − 1
, (B.3)

h2
µ =

(
∂x

∂µ

)2

+

(
∂y

∂µ

)2

+

(
∂z

∂µ

)2

=
R2

4

λ2 − 1

1− µ2
, (B.4)

h2
φ =

(
∂x

∂φ

)2

+

(
∂y

∂φ

)2

+

(
∂z

∂φ

)2

=
R2

4
(λ2 − 1)(1− µ2). (B.5)
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Thus

∇2Ψ =
1

hλhµhφ

[
∂

∂λ

(
hµhφ
hλ

∂

∂λ
Ψ

)
+

∂

∂µ

(
hλhφ
hµ

∂

∂µ
Ψ

)
+

∂

∂φ

(
hλhµ
hφ

∂

∂φ
Ψ

)]
=

4

R2(λ2 − µ2)

{
∂

∂λ

[
(λ2 − 1)

∂

∂λ

]
+

∂

∂µ

[
(1− µ2)

∂

∂µ

]
+

λ2 − µ2

(λ2 − 1)(1− µ2)

∂2

∂φ2

}
Ψ. (B.6)

Note that through the coordinate transformation (B.1), we have λ = ra+rb
R

,

µ = ra−rb
R

,
equivalently,

 ra = R
2

(λ+ µ),

rb = R
2

(λ− µ).
(B.7)

Also, we have λ ≤ 1, −1 ≥ µ ≥ 1. Write

Ψ = Λ(λ)M(µ)Φ(φ). (B.8)

Φ(φ) must be periodic with period 2π. Therefore

Φ(φ) = eimφ, m = 0,±1,±2, . . . . (B.9)

Substitute (B.6), (B.8) and (B.9) into (4.4), and then divide by eimφ:

− 1

2

4

R2(λ2 − µ2)

{
∂

∂λ

[
(λ2 − 1)

∂

∂λ
Λ

]
M +

∂

∂µ

[
(1− µ2)

∂

∂µ
M

]
Λ

− (λ2 − µ2)m2

(λ2 − 1)(1− µ2)
ΛM

}
− 2

R

Za
λ− µ

ΛM − 2

R

Zb
λ+ µ

ΛM +
ZaZb
R

ΛM

= EΛM. (B.10)

Further multiplying every term by −R2

2
(λ2 − µ2), we obtain

∂

∂λ

[
(λ2 − 1)

∂

∂λ
Λ

]
M +

∂

∂µ

[
(1− µ2)

∂

∂µ
M

]
Λ− λ2 − µ2

(λ2 − 1)(1− µ2)
ΛM

+

[
RZa(λ+ µ) +RZb(λ− µ)−

(
RZaZb

2
− R2E

2

)
(λ2 − µ2)

]
ΛM = 0. (B.11)



62

Set

p2 =
1

2
(−R2E +RZaZb) > 0. (B.12)

We have p2 > 0 here due to the fact that we are mainly interested in the electronic

states that are bound states, i.e., not ionized.

Let the constant of separation of variables be A. Then from (B.11) and (B.12)

we obtain (4.38) and (4.39).
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APPENDIX C

ASYMPTOTIC EXPANSION AS λ→ 1

The proof of (4.45) is given in this appendix. Multiply (4.40) by (λ− 1)/(λ+ 1)

and rewrite it as

0 = (λ− 1)2Λ′′(λ) +
2λ

λ+ 1
(λ− 1)Λ′(λ)

+

[
(A+ 2R1λ− p2λ2)

λ+ 1
(λ− 1)− m2

(λ+ 1)2

]
Λ(λ)

≈ (λ− 1)2Λ′′(λ) + (λ− 1)Λ′(λ)− m2

4
Λ(λ), for λ ≈ 1. (C.1)

A differential equation set in the form

(x− 1)2y′′(x) + (x− 1)q(x)y′(x) + r(x)y(x) = 0. (C.2)

near x = 1, where q(x) and r(x) are analytic functions at x = 1, is said to have a

regular singular point at x = 1. The solution’s behavior near x = 1 hinges largely on

the roots ν of the indicial equation

ν(ν − 1) + q(1)ν + r(1) = 0 (C.3)

because the solution y(x) of (C.2) is expressible as

y(x) = b1(x− 1)ν1

∞∑
k=0

ck(x− 1)k + b2(x− 1)ν2

∞∑
k=0

dk(x− 1)k (c0 = d0 = 1),

where ν1 and ν2 are the two roots of the indicial equation (C.3), under the assumptions

that

ν1 > ν2, ν1 − ν2 is not a positive integer. (C.4)
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However, if (C.4) is violated, then there are two possibilities and two different forms

of solutions arise:

(a) ν1 = ν2. Then

y(x) = b1y1(x) + b2y2(x), (C.5)

where

y1(x) = (x− 1)ν1

∞∑
k=0

ck(x− 1)k (c0 = 1), (C.6)

and

y2(x) = (x− 1)ν1

∞∑
k=1

dk(x− 1)k + [ln(x− 1)]y1(x) (d1 = 1). (C.7)

Solution y2 in (C.7) should be discarded because it becomes unbounded at x = 1.

(b) ν1−ν2 = a positive integer. Then case (a) holds except with the modification

that

y2(x) = (x− 1)ν2

∞∑
k=0

dk(x− 1)k + c[ln(x− 1)]y1(x)

(d0 = 1, c is a fixed constant but may be0). (C.8)

Applying the above and (C.3) to (C.1):

(λ− 1)2Λ′′(λ) + (λ− 1)Λ′(λ)− m2

4
Λ(λ) ≈ 0, (C.9)

we obtain the indicial equation

ν(ν − 1) + ν − m2

4
= 0, (C.10)
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with roots

ν1 =
|m|
2
, ν2 = −|m|

2
(m is non-zero integer). (C.11)

Thus either

ν1 = ν2 ( when m = 0)

or

ν1 − ν2 = |m| = a positive integer , where m 6= 0.

Again, we see that solution y2 in (C.8) must be discarded because it becomes un-

bounded at x = 1. Thus, from (C.6) and (C.9), we have

Λ(λ) ≈ (λ− 1)|m|/2
∞∑
k=0

ck(λ− 1)k. (C.12)
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APPENDIX D

HYLLERAAS CORRELATION FACTOR IN CUSP CONDITION

Hylleraas correlation function Eqn. (4.71) was considered first when Hylleraas

tried to construct a good wave function to get better energy eigenvalue. Since the

situation in H2 molecule is similar, let’s try to calculate the coefficient κ = 1
2

with

the cusp condition when r12 → 0.

Let’s consider the behavior of the Hamiltonian (4.70) and the corresponding

wavefunction ψ. As r12 → 0, the dominant term in potential is the interaction

between both electrons, that is 1
r12

, and we may expand the wavefunction ψ as series

of r12 with slowly varying coefficients which are functions of ra1, rb1, ra2 and rb2.

Furthermore, ∇2
1ψ will be equal to ∇2

2ψ and to ∇2
12.

The Hamiltonian (4.70) for the H2 molecule is reduced in the limit r12 → 0.(
−∇2

12 +
1

r12

)
ψ = Ẽψ (D.1)

with Ẽ = E+ Za
ra1

+ Zb
rb1

+ Za
ra2

+ Zb
rb2
− ZaZb

R
. Eqn. (D.1) seems a hydrogen-like Schrödinger

equation with repulsive potential, and has the solution as the increasing exponential

function is er12/2. (
−∇2

12 +
1

r12

)
er12/2 = −1

4
er12/2. (D.2)

By expanding this exponential function, the correlation factor to the first order should

be

1 +
1

2
r12 (D.3)

in exact solution of the Schrödinger equation with this correlation repulsion between

two electrons.
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APPENDIX E

DERIVATION OF CHARACTERISTIC FUNCTION USING WINGER

FUNCTION

In this appendix, we will show how to derive the characteristic function in CNB3

[27] using Wigner function[30].

In the interacting Bose gas which is described in CNB3, two modes k and −k

are intermixed to make dressed modes, so that these two modes are simultaneously

treated in the density operator and the characteristic function. The definitions are

ρ
(2)
±k = (1− e−ε)2e−ε(b̂

†
kb̂k+b̂†−kb̂−k) (E.1)

from Eq. (66) in CNB3, and

Θ±k(u) = Tr
[
eiu(β†kβk+β†−kβ−k)ρ

(2)
±k

]
(E.2)

from Eq. (68) in CNB3.

First, we will calculate the Wigner functions for the density operator and for the

Kernel eiua
†a in characteristic function for single mode. And, we will calculate them

in two mode ±k. Finally, we will prove the identity in the Wigner function with

Bogoliubov transformation, which simplifies the whole calculation in two mode.

Wigner function of density operator in single mode

In canonical ensemble the definition for the density operator is

ρ =
e−H/kBT

Tr[e−H/kBT ]
. (E.3)
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The Hamiltonian for the single mode oscillator is

H = h̄ν(a†a+ 1
2
), (E.4)

and the corresponding density operator is

ρ(1)
ε =

1∑
j e
−jε

∑
n

e−nε|n〉〈n|

=
(
1− e−ε

)∑
n

e−εa
†a|n〉〈n|

=
(
1− e−ε

)
e−εa

†a (E.5)

with ε = h̄ν
kBT

. The density operator will be diagonalized and normalizable.

〈
n
∣∣ρ(1)
ε

∣∣m〉 = (1− e−ε) 〈n | m〉 e−nε = (1− e−ε)e−nεδnm (E.6)

and

∞∑
n=0

[
ρ(1)
ε

]
nn

= 1. (E.7)

The corresponding Wigner function is

[
ρ(1)
ε

]
W

=

∫
d2β

π
eβα

∗−β∗αTr
{
eβ
∗a−βa†ρ(1)

ε

}
(E.8)

= (1− e−ε)
∫
d2β

π
eβα

∗−β∗αTr
{
eβ
∗a−βa†e−εa

†a
}
. (E.9)

When we take A = −βa† and B = β∗a,

[A,B] = −ββ∗
[
a†, a

]
= |β|2 . (E.10)
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The Tr-part in Eq.(E.9) is

Tr
{
eβ
∗a−βa†e−εa

†a
}

=
∑
n

∫∫
d2ζd2ξ

π2
〈n | ζ〉

〈
ζ

∣∣∣∣e− |β|22 e−βa
†
eβ
∗a

∣∣∣∣ ξ〉 〈ξ | n〉 e−nε
=
∑
n

∫∫
d2ζd2ξ

π2
e−
|β|2

2 e−βζ
∗
eβ
∗ξe−

|ζ|2
2

ζn√
n!
e−
|ξ|2

2
(ξ∗)n√
n!
〈ζ | ξ〉 e−nε

= e−
|β|2

2

∫∫
d2ζd2ξ

π2
e−βζ

∗
eβ
∗ξe−|ζ|

2+ξζ∗−|ξ|2ee
−εζξ∗ . (E.11)

Here, we use the following identities.

eA+B = e−[A,B]/2eAeB if [[A,B] , A] = [[A,B] , B] = 0.

The integration over ξ is∫
d2ξ

π
eβ
∗ξeξζ

∗−|ξ|2ee
−εζξ∗ =

∫
d2ξ

π
e−|ξ|

2+(β∗+ζ∗)ξ+e−εζξ∗

=
∞∑
k1=0

∞∑
k2=0

∫
d2ξ

π
e−|ξ|

2 (β∗ + ζ∗)k1ξk1

k1!

(e−εζ)k2(ξ∗)k2

k2!

=
∞∑
k=0

((β∗ + ζ∗)(e−εζ))k

k!
= e(β∗+ζ∗)(e−εζ). (E.12)

Then,

Tr
{
eβ
∗a−βa†e−εa

†a
}

= e−
|β|2

2

∫
d2ζ

π
e−βζ

∗−|ζ|2e(β∗+ζ∗)(e−εζ)

= e−
|β|2

2

∫
d2ζ

π
e−(1−e−ε)|ζ|2−βζ∗+β∗e−εζ

= e−
|β|2

2

∫
d2Z

(1− e−ε)π
e
−|Z|2− β√

1−e−ε
Z∗+ β∗e−ε√

1−e−ε
Z

= e−
|β|2

2
e
−|β|2 e−ε

1−e−ε

(1− e−ε)
=

1

(1− e−ε)
e
− (1+e−ε)

2(1−e−ε) |β|
2

=
1

(1− e−ε)
e
− 1

2 tanh ε
2
|β|2
. (E.13)
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The Wigner function for the single-mode is

[
ρ(1)
ε

]
W

=
1

π

∫
d2β eβα

∗−β∗αe
− 1

2 tanh
ε
2

|β|2

= 2 tanh ε
2
e−2 tanh

ε
2
α∗α. (E.14)

The normalization can be easily checked.

Tr
{
ρ(1)
ε

}
= 1 =

∫
d2α

π

[
ρ(1)
ε

]
W

(E.15)

by changing α = x+ iy and α∗ = x− iy with d2α = dxdy.

For the Kernel eiua
†a, the corresponding Wigner function can be calculate by

replacing ε into −iu in Eq. (E.9).

[
eiua

†a
]
W

=
1

1− eiu
2 tanh −iu

2
e−2 tanh

−iu
2
α∗α

=
1

1− eiu
(−2i) tan u

2
e2i tan

u
2
α∗α

= e−i
u
2 sec(u/2)e2i tan

u
2
α∗α (E.16)

with tanh(iz) = i tan(z).

Wigner function in two mode

In interacting system, the density operator in two (quasi)-mode ±k is

ρ
(2)
±k = (1− e−ε)2e−ε(b̂

†
kb̂k+b̂†−kb̂−k), (E.17)

with ε = Ek/kT . And, we will generalize the characteristic function by taking two

parameters u and v for each mode. The generalized characteristic function Θ±k(u, v)

is

Θ±k(u, v) = Tr
[
eiuβ

†
kβk+ivβ†−kβ−kρ

(2)
±k

]
=
〈
eiuβ

†
kβk+ivβ†−kβ−k

〉
, (E.18)
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Both operators β±k and b±k are connected by the Bogoliubov transformation.

βk = ukbk − vkb†−k, β†k = ukb
†
k − vkb−k, (E.19)

β−k = ukb−k − vkb†k, β†−k = ukb
†
−k − vkbk. (E.20)

with u2
k − v2

k = 1.

The two-mode characteristic function [31] is

Θ±k(u, v) =

∫
d2α

π

∫
d2β

π

[
eiuβ

†
kβk+ivβ†−kβ−k

]
W

[
ρ

(2)
±k

]
W
, (E.21)

with

[
eiuβ

†
kβk+ivβ†−kβ−k

]
W

=
(
e−i

u
2 sec u

2
e2iα∗α tan

u
2
)(
e−i

v
2 sec v

2
e2iβ∗β tan

v
2
)

= e−i(u+v)/2 sec u
2

sec v
2
e2iα∗α tan

u
2

+2iβ∗β tan
v
2 . (E.22)

Eq. (E.21) will be derived below.

Since the density operator is defined in terms of b±k, we need following identity

for Wigner function: if G(A†, A) = F (µa†+νa, σa+τa†), then their Wigner functions

satisfy GW (α∗, α) = FW (µα∗+ να, σα+ τα∗), which will be also proved. The Wigner

function for two-mode density operator is

[
ρ

(2)
±k

]
W

= 4 tanh2
(
ε
2

)
e−2 tanh

ε
2

[(α∗uk−βvk)(αuk−β∗vk)+(β∗uk−αvk)(βuk−α∗vk)]

= 4 tanh2
(
ε
2

)
e−2[(α∗α+β∗β)(u2

k+v2
k)−(α∗β∗+βα)(2ukvk)] tanh

ε
2 .
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The characteristic function is

Θ±k(u, v)

= 4e−i(u+v)/2 sec u
2

sec v
2

tanh2 ε

2

∫
d2β

π
e−2[(u2

k+v2
k) tanh

ε
2
−i tan

v
2

]|β|2

×
∫

d2α

π
e−2[(u2

k+v2
k) tanh

ε
2
−i tan

u
2

]|α|2+2(αβ+α∗β∗)(2ukvk) tanh
ε
2

= 4e−i(u+v)/2 sec u
2

sec v
2

tanh2 ε

2

∫
d2β

π
e−2[(u2

k+v2
k) tanh

ε
2
−i tan

v
2

]|β|2

× e

8ukvk tanh2 ε
2

[(u2
k

+v2
k

) tanh
ε
2
−i tan

u
2

]
|β|2

2[(u2
k + v2

k) tanh ε
2
− i tan u

2
]

=
4e−i(u+v)/2 sec u

2
sec v

2
tanh2 ε

2

2
[
(u2

k + v2
k) tanh ε

2
− i tan u

2

][
2[(u2

k + v2
k) tanh ε

2
− i tan v

2
]− 8u2

kv
2
k tanh2 ε

2
[(u2

k+v2
k) tanh

ε
2
−i tan

u
2

]

]
=

e−i(u+v)/2 sec u
2

sec v
2

tanh2 ε
2

[(u2
k + v2

k) tanh ε
2
− i tan u

2
][(u2

k + v2
k) tanh ε

2
− i tan v

2
]− 4u2

kv
2
k tanh2 ε

2

=
e−i(u+v)/2 sec u

2
sec v

2
tanh2 ε

2

tanh2 ε
2
− i(tan u

2
+ tan v

2
)(u2

k + v2
k) tanh ε

2
− tan u

2
tan v

2

. (E.23)

With the following two identities,

tanh
( ε

2

)
=
eε/2 − e−ε/2

eε/2 + e−ε/2
=
eε − 1

eε + 1
, (E.24)

and,

i tan u
2

= tanh
(
i
u

2

)
=
eiu − 1

eiu + 1
, (E.25)
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we will get the characteristic function

Θ±k(u, v)

=
e−i(u+v)/2 sec u

2
sec v

2
(eε − 1)2

(eε − 1)2 − i(tan u
2

+ tan v
2
)(u2

k + v2
k)(eε − 1)(eε + 1)− tan u

2
tan v

2
(eε + 1)2

=
sec u

2
sec v

2
(eε − 1)2(eiu/2 + e−iu/2)(eiv/2 + e−iv/2)[

(eε − 1)2(eiu + 1)(eiv + 1)− 2(eiu+iv − 1)(u2
k + v2

k)(e2ε − 1)

+(eiu − 1)(eiv − 1)(eε + 1)2

]

=
4(eε − 1)2[

(eε − 1)2(eiu + 1)(eiv + 1)− 2(eiu+iv − 1)(u2
k + v2

k)(e2ε − 1)

+(eiu − 1)(eiv − 1)(eε + 1)2

] . (E.26)

If we define

Y± =
uke

ε ± vk
uk ± vkeε

, (E.27)

we will get

Y+Y− =
(u2

ke
2ε − v2

k)

(u2
k − v2

ke
2ε)
, (E.28)

Y+ + Y− =
(uke

ε + vk)(uk − vkeε) + (uke
ε − vk)(uk + vke

ε)

(uk + vkeε)(uk − vkeε)
=

2eε

(u2
k − v2

ke
2ε)
, (E.29)

Y± − 1 =
uke

ε ± vk
uk ± vkeε

− 1 =
uke

ε ± vk − uk ∓ vkeε

uk ± vkeε
=

(eε − 1)(uk ∓ vk)

uk ± vkeε
, (E.30)

(Y+ − 1)(Y− − 1) =
(eε − 1)2

u2
k − v2

ke
2ε
. (E.31)
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Using Y±, we can simplify Eq. (E.26) furthermore.

Θ±k(u, v) =
2(eε − 1)2[ {

(e2ε + 1) + (u2
k + v2

k)(e2ε − 1)
}
− 2eε(eiu + eiv)

+
{

(e2ε + 1)− (u2
k + v2

k)(e2ε − 1)
}
eiu+iv

]

=
(eε − 1)2

(u2
ke

2ε − v2
k)− eε(eiu + eiv) + (u2

k − v2
ke

2ε)eiu+iv

=
(Y+ − 1)(Y− − 1)

Y+Y− − 1
2
(Y+ + Y−)(eiu + eiv) + eiu+iv

=
2(Y+ − 1)(Y− − 1)

(Y+ − eiu)(Y− − eiv) + (Y− − eiu)(Y+ − eiv)
. (E.32)

Trace for two multiplied operators in terms of Wigner function

Let’s begin with the definition of the Wigner function. In one degree of freedom

system with the rescaled position q and the conjugate momentum p with
[
q, p
]

= i,

the Wigner function for operator F (q, p) is [31]

FW (q′, p′) ≡
∫

dy 〈q′ − y
2
|F (q, p)|q′ + y

2
〉eip′y. (E.33)

The equivalence of above equation to Eq. (E.8) is easily shown by comparing with

Eq. (3.3.14) and Eq. (3.4.12) in [5].

By the identity
∫

dq′′|q′′〉〈q′′| =
∫

dp′′|p′′〉〈p′′| = 1 and 〈q′|p′〉 = 1√
2π
eip
′q′ ,

FW (q′, p′) =

∫
dydq′′dp′′ 〈q′ − y

2
|q′′〉〈q′′|F (q, p)|p′′〉〈p′′|q′ + y

2
〉eip′y

= 2

∫
dq′′dp′′ 〈q′′|F (q, p)|p′′〉〈p′′|2q′ − q′′〉ei2p′(q′−q′′)

=

∫
dq′′dp′′ 〈q′′|F (q, p)|p′′〉〈p′′|q′′〉2ei2(p′−p′′)(q′−q′′). (E.34)

Similarly,

FW (q′, p′) =

∫
dq′′dp′′ 〈p′′|F (q, p)|q′′〉〈q′′|p′′〉2e−i2(p′−p′′)(q′−q′′). (E.35)
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By introducing the Schwinger’s notation,

eA;B =
∞∑
n=0

1

n!
AnBn, (E.36)

the exponential terms simplifies into

〈p′′|q′′〉ei2(p′−p′′)(q′−q′′) = 〈p′′|e2i(p−p′);(q−q′)|q′′〉 (E.37)

and

〈q′′|p′′〉e−i2(p′−p′′)(q′−q′′) = 〈q′′|e−2i(q−q′);(p−p′)|p′′〉. (E.38)

We can rewrite the Wigner function.

FW (q′, p′) = Tr[F (q, p)2e2i(p−p′);(q−q′)] (E.39)

= Tr[F (q, p)2e−2i(q−q′);(p−p′)]. (E.40)

And, we can conclude that

2e2i(p−p′);(q−q′) = 2e−2i(q−q′);(p−p′). (E.41)

Furthermore, by inversion we can write the operator F (q, p) in terms of Wigner

function.

F (q, p) =

∫
dq′dp′

2π
FW (q′, p′)2e2i(p−p′);(q−q′) (E.42)

=

∫
dq′dp′

2π
FW (q′, p′)2e−2i(q−q′);(p−p′). (E.43)
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From Eq. (E.43), the trace of multiplication of two operators is

Tr[F (q, p)G(q, p)]

= Tr[

∫
dq′dp′

π
FW (q′, p′)e−2i(q−q′);(p−p′)

∫
dq′′dp′′

π
GW (q′′, p′′)e−2i(q−q′′);(p−p′′)]

=

∫
dq′dp′

π

∫
dq′′dp′′

π
FW (q′, p′)GW (q′′, p′′)Tr[e−2i(q−q′);(p−p′)e−2i(q−q′′);(p−p′′)]

=

∫
dq′dp′

2π
FW (q′, p′)GW (q′, p′), (E.44)

where

Tr[e−2i(q−q′);(p−p′)e−2i(q−q′′);(p−p′′)]

=

∫
dq′′′dp′′′

2π
e−2i(q′′′−q′)(p′′′−p′)e2i(p′′′−p′′)(q′′′−q′′)

=

∫
dq′′′dp′′′

2π
e2i(q′′′(p′−p′′)+p′′′(q′−q′′)−p′q′+p′′q′′)

=
π

2
δ(p′ − p′′)δ(q′ − q′′). (E.45)

So, the trace of two operators can be written in terms of each Wigner function.

Wigner function of function with Bogoliubov-transformed operators

For the single-mode,

FW (α∗, α) =

∫
d2β

π
eβα

∗−β∗αTr
{
eβ
∗a−βa†F (a†, a)

}
=

∫
d2β

π
Tr
{
eβ
∗(a−α)−β(a†−α∗)F (a†, a)

}
=

∫
d2β

π
Tr
{
eαa

†−α∗aeβ
∗a−βa†eα

∗a−αa†F (a†, a)
}

= 2Tr
{
eαa

†−α∗aSeα
∗a−αa†F (a†, a)

}
(E.46)
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with the reflection operator

S =

∫
d2β

2π
eβ
∗a−βa† . (E.47)

Here, we used the following identities.

eαa
†−α∗aa†eα

∗a−αa† = a† − α∗, (E.48)

eαa
†−α∗aaeα

∗a−αa† = a− α. (E.49)

The proof for above identities are simple. For any nonnegative integer n,

a†an = ana† − nan−1, (E.50)

a(a†)n = (a†)na+ n(a†)n−1, (E.51)

a†eα
∗a = a†

∞∑
n=0

(α∗)n

n!
an =

∞∑
n=0

(α∗)n

n!
(ana† − nan−1) = eα

∗a(a† − α∗), (E.52)

and

ae−αa
†

= e−αa
†
(a− α). (E.53)

The properties of the reflection operator S are :

S† = S = S−1, (E.54)

since

S† =

∫
dβ∗dβ

2π
eβa

†−β∗a = S−1

=

∫
d(−β∗)d(−β)

2π
e−βa

†+β∗a = S (β → −β, β∗ → −β∗).

And, the name of S is from the following property.

S−1a†S = −a†, S−1aS = −a. (E.55)
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The proof is

aS = a

∫
d2β

2π
eβ
∗a−βa†

=

∫
d2β

2π
e|β|

2/2eβ
∗aae−βa

†

=

∫
d2β

2π
e|β|

2/2eβ
∗aa

∫
d2α

π
|α〉〈α|e−βa†

=

∫
d2β

2π

∫
d2α

π
e|β|

2/2eβ
∗ααe−βα

∗|α〉〈α|

=

∫
−d2β

2π

∫
−d2α

π
e−|β|

2/2eβ
∗α(−α)e−βα

∗|α〉〈α| (β∗ → −β∗&α→ −α)

=

∫
d2β

2π

∫
d2α

π
e−|β|

2/2e−βα
∗|α〉〈α|eβ∗α(−α)

=

∫
d2β

2π
e−|β|

2/2e−βa
†
eβ
∗a(−a)

= −Sa. (E.56)

The Bogoliubov transformed operator G(a†, a) can be written in terms of the

linear similarity operator V .

G(a†, a) = F (µa† + νa, σa+ τa†) = V −1F (a†, a)V, (E.57)

with

V = e
τ
2µ

(a†)2

µ−a
†ae−

ν
2µ
a2

. (E.58)
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The form of V can easily verified by

a†V = a†e
τ
2µ

(a†)2

µ−a
†ae−

ν
2µ
a2

= e
τ
2µ

(a†)2

a†
∑ (− lnµ)n

n!
(a†a)ne−

ν
2µ
a2

= e
τ
2µ

(a†)2 ∑ (− lnµ)n

n!
(a†a− 1)na†e−

ν
2µ
a2

= e
τ
2µ

(a†)2

e− lnµ(a†a−1)
∑(

− ν
2µ

)n
n!

(a2na† − 2na2n−1)

= V µ(a† − (−ν
µ

)a) = V (µa† + νa), (E.59)

and

aV =
∑(

τ
2µ

)n
n!

((a†)2na+ 2n(a†)2n−1)µ−a
†ae−

ν
2µ
a2

= e
τ
2µ

(a†)2

(a+
τ

µ
a†)
∑ (− lnµ)n

n!
(a†a)ne−

ν
2µ
a2

= e
τ
2µ

(a†)2

(∑ (− lnµ)n

n!
(a†a+ 1)na+ µ−a

†aτa†
)
e−

ν
2µ
a2

= e
τ
2µ

(a†)2

µ−a
†ae−

ν
2µ
a2

(
1

µ
a+ τ

(
a† +

ν

µ
a

)
)

= V (σa+ τa†). (E.60)

Since V consists of a†
2
, a†a, and a2,

S−1V S = V → V S = SV → V −1SV = S. (E.61)
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The Wigner function for G(a†, a) is

GW (α∗, α) = 2Tr
{
eαa

†−α∗aSeα
∗a−αa†G(a†, a)

}
= 2Tr

{
eαa

†−α∗aV −1SV eα
∗a−αa†V −1F (a†, a)V

}
= 2Tr

{
V eαa

†−α∗aV −1SV eα
∗a−αa†V −1F (a†, a)

}
= 2Tr

{
e−(µα∗+να)a+(σα+τα∗)a†Se(µα∗+να)a−(σα+τα∗)a†F (a†, a)

}
= FW (µα∗ + να, σα + τα∗). (E.62)

So, the Wigner function of Bogoliubov transformed operator is given by the Wigner

function with transformed argument.

For the general n-dimensional cases, we can define the operator and correspond-

ing complex c-numbers.

~a = (a†1, a1, a
†
2, a2, · · · · · · , a†n, an),

~α = (α∗1, α1, α
∗
2, α2, · · · · · · , α∗n, αn). (E.63)

The n-dimensional displacement and reflection operators are

Πn
k=1e

α∗kak−αka
†
k = e~αK~a

T

, S =

∫
d2nβ

(2π)n
e
~βK~aT , (E.64)

with the 2n× 2n block matrix K.

K =



0 −1

1 0

. . .

0 −1

1 0


= −KT = −K−1, (E.65)
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since

KK−1 = K(−K) =



0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0





0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

Wigner function in n-dimension is

FW (~α) = 2ntr
{
e−~αK~a

T

Se~αK~a
T

F (~a)
}
. (E.66)

Let’s consider the linear similarity transformation in n dimension.

V −1~aV = ~aV, V ~aV −1 = ~aV−1, (E.67)

where V is a 2n× 2n matrix restricted by

VKVT = K (E.68)

which is the analog of µσ − ντ = 1. V is also the exponential of a bilinear form of ~a.

Then,

G(~a) = V −1F (~a)V = F (~aV) (E.69)

and its corresponding Winger function is

GW (~α) = 2ntr
{
V e−~αK~a

T

V −1SV e~αK~a
T

V −1F (~a)
}

= 2ntr
{
e−~αVK~a

T

Se~αVK~a
T

F (~a)
}

= FW (~αV). (E.70)

The relation is also valid for n-dimensional case.
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APPENDIX F

PARTICLE STATISTICS FROM THE PARTITION FUNCTION FORMALISM

IN CANONICAL ENSEMBLE

One-state Probability

In quantum statistical theory with second quantization formalism, the system can

be described by the distribution of the occupation number in all accessible quantum

states. And, this distribution is described by the proper probability function.

Let’s start with the simplest probability function for the occupation number in

single quantum state. The probability of m particle in the µ-th state is

P (nµ = m) = 〈δ(nµ −m)〉 (F.1)

= 〈Θ(nµ −m)〉 − 〈Θ(nµ − (m+ 1))〉.

The δ-function is the Kronecker-delta, which has one when the argument is zero and

zero otherwise, and Θ is the step-function, which has one for a non-negative argument

and zero for negative.

In the system which we want to describe, since the total number of particles is

fixed, we will use the canonical ensemble to evaluate the thermal quantities. And, the

probability function is also considered as a conditional probability with fixed total

number

P (nµ = m) → P (nµ = m|N). (F.2)

This probability function P (nµ = m|N) can evaluated through the partition function

ZN in equilibrium state.
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The partition function for the canonical ensemble with N -particle is

ZN =
∞∑

n1=0

∞∑
n2=0

· · · e−β
∑
{ν} ενnνδ(N −

∑
{ν}

nν) (F.3)

where index ν covers all accessible states and nν , the occupation number of particles

in ν-th state, runs from 0 to infinity for bosons, and β = (kBT )−1. Here, δ-function

makes sure that there’re only N particles in the system. And, let’s take Z0 = 1 for

convenience.

The probability that the system has over m particle in µ-th state is

P (nµ ≥ m|N) = 〈Θ(nµ −m)〉

=
1

ZN

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑

nµ=n

· · · e−β
∑
{ν} ενnνδ(N −

∑
{ν}

nν). (F.4)

By replacing nµ → m+ nµ,

P (nµ ≥ m|N) =
e−mβεµ

ZN

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑

nµ=0

· · · e−β
∑
{ν} ενnνδ(N −m−

∑
{ν}

nν)

= e−mβεµ
ZN−m
ZN

. (F.5)

Finally, we will get

P (nµ = m|N) = P (nµ ≥ m|N)− P (nµ ≥ m+ 1|N)

= e−mβεµ
ZN−m
ZN

− e−(m+1)βεµ
ZN−m−1

ZN
. (F.6)
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Average for the Occupation Number and the Recursion Relation

The average for the function f(nµ) of the occupation number nµ is

〈f(nµ)〉 =
N∑
m=0

f(m)P (nµ = m|N)

=
1

ZN

N∑
m=0

{
f(m)e−mβεµZN−m − f(m)e−(m+1)βεµZN−m−1

}
=

1

ZN

{
N∑
m=0

f(m)e−mβεµZN−m −
N∑
m=1

f(m− 1)e−mβεµZN−m

}

=
N∑
m=1

{f(m)− f(m− 1)} e−mβεµZN−m
ZN

+ f(0), (F.7)

with the convention Z−1 = 0.

For the average of the occupation number in µ-state, f(nµ) = nµ and

〈nµ〉 =
N∑
m=1

e−mβεµ
ZN−m
ZN

. (F.8)

Since the fixed total number of particles is just the summation of the occupation

number in each state,

N =
∑
µ

〈nµ〉 =
N∑
m=1

∑
µ

e−mβεµ
ZN−m
ZN

=
1

ZN

N∑
m=1

Z1(mβ)ZN−m. (F.9)

The final recursion relation is

ZN(β) =
1

N

N∑
m=1

Z1(mβ)ZN−m(β). (F.10)

For the convenience in the recursive relation, let’s take Zm = 0 for negative integer

m.
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Two-state Probability and 2nd Moment

Similar to the one-state probability, we can define the two-state probability function.

P (nµ = m,nν = n|N)

= 〈δ(nµ −m)δ(nν − n)〉

= 〈
(
Θ(nµ −m)−Θ(nµ −m− 1)

)
δ(nν − n)〉

= 〈Θ(nµ −m)δ(nν − n)〉 − 〈Θ(nµ −m− 1)
)
δ(nν − n)〉

= 〈Θ(nµ −m)
(
Θ(nν − n)−Θ(nν − n− 1)

)
〉

− 〈Θ(nµ −m− 1)
(
Θ(nν − n)−Θ(nν − n− 1)

)
〉

= 〈Θ(nµ −m)Θ(nν − n)〉 − 〈Θ(nµ −m)Θ(nν − n− 1)
)
〉

− 〈Θ(nµ −m− 1)Θ(nν − n)〉+ 〈Θ(nµ −m− 1)Θ(nν − n− 1)
)
〉. (F.11)

The expression for the probability that µ-state has more than m and ν-state has

more than n is

P (nµ ≥ m,nν ≥ n|N) = 〈Θ(nµ −m)Θ(nν − n)〉

=
1

ZN

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑

nµ=m

· · ·
∞∑

nν=n

· · · e−β
∑
{ξ} εξnξδ(N −

∑
{ξ}

nξ).

(F.12)

By replacing nµ → m+ nµ and nν → n+ nν ,

P (nµ ≥ m,nν ≥ n|N)

=
e−mβεµe−nβεν

ZN

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑

nµ=0

· · ·
∞∑

nν=0

· · · e−β
∑
{ξ} εξnξδ(N −m− n−

∑
{ξ}

nξ)

= e−mβεµ−nβεν
ZN−m−n
ZN

. (F.13)
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The two-state probability with fixed n particles in the ν-th state is

P (nµ ≥ m,nν = n|N) = 〈Θ(nµ −m)δ(nν − n)〉

= 〈Θ(nµ −m)Θ(nν − n)〉 − 〈Θ(nµ −m)Θ(nν − n− 1)
)
〉

= e−mβεµ−nβεν
ZN−m−n
ZN

− e−mβεµ−(n+1)βεν
ZN−m−n−1

ZN
. (F.14)

Finally, the two-state probability of m particles in the µ-th state and n particles

in the ν-th state is

P (nµ = m,nν = n|N) = 〈δ(nµ −m)δ(nν − n)〉

= P (nµ ≥ m,nν = n|N)− P (nµ ≥ m+ 1, nν = n|N)

= [P (nµ ≥ m,nν ≥ n|N)− P (nµ ≥ m,nν ≥ n+ 1|N)]

− [P (nµ ≥ m+ 1, nν ≥ n|N)− P (nµ ≥ m+ 1, nν ≥ n+ 1|N)]

= e−mβεµ−nβεν
ZN−m−n
ZN

− e−mβεµ−(n+1)βεν
ZN−m−n−1

ZN

− e−(m+1)βεµ−nβεν ZN−m−n−1

ZN
+ e−(m+1)βεµ−(n+1)βεν

ZN−m−n−2

ZN
. (F.15)
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From this two-state probability, the following average can be calculated.

〈f(nµ)g(nν)〉

=
N∑
m=0

N∑
n=0

f(m)g(n)P (nµ = m,nν = n|N) (F.16)

=
1

ZN

N∑
m=0

f(m)e−mβεµ

×
{ N∑
n=0

g(n)
(
e−nβενZN−m−n − e−(n+1)βενZN−m−n−1

)}

− 1

ZN

N∑
m=0

f(m)e−(m+1)βεµ

×
{ N∑
n=0

g(n)
(
e−nβενZN−m−n−1 − e−(n+1)βενZN−m−n−2

)}

=
1

ZN

N∑
m=0

f(m)e−mβεµ

×

{
N∑
n=1

(
g(n)− g(n− 1)

)
e−nβενZN−m−n + g(0)

}

− 1

ZN

N∑
m=0

f(m)e−(m+1)βεµ

×

{
N∑
n=1

(
g(n)− g(n− 1)

)
e−nβενZN−m−1−n + g(0)

}

=
N∑
m=1

N∑
n=1

(
f(m)− f(m− 1)

)(
g(n)− g(n− 1)

)
e−mβεµ−nβεν

ZN−m−n
ZN

− f(0)
N∑
n=1

(
g(n)− g(n− 1)

)
e−nβεν

ZN−n
ZN

− g(0)
N∑
m=1

(
f(m)− f(m− 1)

)
e−mβεµ

ZN−m
ZN

+ f(0)g(0)
1

ZN
. (F.17)
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Reduction into Single Summation

Usually, a double summation is needed for the expectation value of the correlation

function between two states, because the occupation numbers for both states are

counted. However, for the correlation function of the above types, given in Eq. (F.16),

we can reduce that into single summation.

By simplification of the polynomial function (f(m)− f(m− 1))(g(n)− g(n− 1))

in Eq. (F.17), the the general form can be written as the sum of the following terms

with proper xµ and xν .

N∑
m=1

N∑
n=1

mxµnxνe−mβεµ−nβεν
ZN−m−n
ZN

=

(
e−βεµ

∂

∂
(
e−βεµ

))xµ (
e−βεν

∂

∂
(
e−βεν

))xν N∑
m=1

N∑
n=1

e−mβεµ−nβεν
ZN−m−n
ZN

(F.18)

with nonnegative integers xµ and xν . And,

N∑
m=1

N∑
n=1

e−mβεµ−nβεν
ZN−m−n
ZN

=
N−1∑
m=1

N−m∑
n=1

e−mβεµ−nβεν
ZN−m−n
ZN

=
N∑
T=2

T−1∑
m=1

e−mβεµ−(T−m)βεν
ZN−T
ZN

=
N∑
T=2

e−βεν
(
e−βεµ

)T − e−βεµ(e−βεν)T
e−βεµ − e−βεν

ZN−T
ZN

. (F.19)

Since the double summation is reduced into the single summation, the actual

calculation time is also reduced from N2 order to N order.

In degenerate case (εµ = εν),

N∑
m=1

N∑
n=1

mxµnxνe−mβεµ−nβεν
ZN−m−n
ZN

=
N∑
T=2

[
T−1∑
m=1

mxµ(T −m)xν

]
e−Tβεµ

ZN−T
ZN

. (F.20)
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In the simplest degenerate case with xµ = 0 and xν = 0,

N∑
m=1

N∑
n=1

e−mβεµ−nβεν
ZN−m−n
ZN

=
N∑
T=2

(T − 1)e−Tβεµ
ZN−T
ZN

. (F.21)

When xµ = 1 and xν = 0,

N∑
m=1

N∑
n=1

me−mβεµ−nβεν
ZN−m−n
ZN

=

(
e−βεµ

∂

∂
(
e−βεµ

)) N∑
m=1

N∑
n=1

e−mβεµ−nβεν
ZN−m−n
ZN

= e−βεµe−βεν
N∑
T=2

[
T
(
e−βεµ

)T−1

e−βεµ − e−βεν
−
(
e−βεµ

)T − (e−βεν)T(
e−βεµ − e−βεν

)2

]
ZN−T
ZN

, (F.22)

and for the degenerate case

N∑
m=1

N∑
n=1

me−mβεµ−nβεν
ZN−m−n
ZN

=
N∑
T=2

(
T−1∑
m=1

m

)
e−Tβεµ

ZN−T
ZN

=
N∑
T=2

1
2
(T − 1)Te−Tβεµ

ZN−T
ZN

. (F.23)

When xµ = 2 and xν = 0,

N∑
m=1

N∑
n=1

m2e−mβεµ−nβεν
ZN−m−n
ZN

=

(
e−βεµ

∂

∂
(
e−βεµ

))2 N∑
m=1

N∑
n=1

e−mβεµ−nβεν
ZN−m−n
ZN

=
N∑
T=2

[
T 2 e

−βεν
(
e−βεµ

)T
e−βεµ − e−βεν

− 2T
e−βεν

(
e−βεµ

)T+1

(e−βεµ − e−βεν )2

+
e−βεµe−βεν

(
e−βεµ + e−βεν

){(
e−βεµ

)T − (e−βεν)T}(
e−βεµ − e−βεν

)3

 ZN−T
ZN

, (F.24)

and for the degenerate case

N∑
m=1

N∑
n=1

m2e−mβεµ−nβεν
ZN−m−n
ZN

=
N∑
T=2

(
T−1∑
m=1

m2

)
e−Tβεµ

ZN−T
ZN

=
N∑
T=2

1
6
(T − 1)T (2T − 1)e−Tβεµ

ZN−T
ZN

. (F.25)
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When xµ = 1 and xν = 1,

N∑
m=1

N∑
n=1

mne−mβεµ−nβεν
ZN−m−n
ZN

=

(
e−βεµ

∂

∂
(
e−βεµ

))(e−βεν ∂

∂
(
e−βεν

)) N∑
m=1

N∑
n=1

e−mβεµ−nβεν
ZN−m−n
ZN

=
e−βεµe−βεν(

e−βεµ − e−βεν
)2

N∑
T=2

[
T
{(
e−βεµ

)T
+
(
e−βεν

)T}
− e−βεµ + e−βεµ

e−βεµ − e−βεν
{(
e−βεµ

)T − (e−βεν)T}]ZN−T
ZN

, (F.26)

and for the degenerate case

N∑
m=1

N∑
n=1

mne−mβεµ−nβεν
ZN−m−n
ZN

=
N∑
T=2

(
T−1∑
m=1

m(T −m)

)
e−Tβεµ

ZN−T
ZN

=
N∑
T=2

1
6
(T − 1)T (T + 1)e−Tβεµ

ZN−T
ZN

. (F.27)

Cross Correlation Between Two States

The simplest form for the 2nd-order moment is cross correlation between two different

states, or f(nµ) = nµ and g(nν) = nν .

〈nµnν〉 =
N∑
m=0

N∑
n=0

mnP (nµ = m,nν = n|N) =
N∑
m=1

N∑
n=1

e−mβεµ−nβεν
ZN−m−n
ZN

=
N∑
T=2

e−βεν
(
e−βεµ

)T − e−βεµ(e−βεν)T
e−βεµ − e−βεν

ZN−T
ZN

. (F.28)

For the degenerate case (εµ = εν),

〈nµnν〉 =
N∑
m=0

N∑
n=0

mnP (nµ = m,nν = n|N) =
N∑
m=1

N∑
n=1

e−mβεµ−nβεν
ZN−m−n
ZN

=
N∑
T=2

T−1∑
m=1

e−Tβεµ
ZN−T
ZN

=
N∑
T=2

(T − 1)e−Tβεµ
ZN−T
ZN

. (F.29)
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n-state probability

Similar to the one-state probability,

P ({nµ = lµ}|N) =

〈∏
µ

δ(nµ − lµ)

〉
. (F.30)

By replacing the δ-function into substraction of two Θ-function, the n-state probabil-

ity can be written as linear combination of probability which has occupation number

nµ ≥ lµ.

P ({nµ = lµ}|N) =

〈(
Θ(nµ − lµ)−Θ(nµ − (lµ + 1))

) ∏
ν 6=µ

δ(nν − lν)

〉
. (F.31)

After replacing the δ-function into Θ-function, we will get the following probability.

P ({nµ ≥ lµ}|N) =

〈∏
ν

Θ(nν − lν)

〉

=
1

ZN

∞∑
n1=l1

∞∑
n2=l2

· · ·
∞∑

nµ=lµ

· · · e−β
∑
{ξ} εξnξδ(N −

∑
{ξ}

nξ). (F.32)

By replacing nµ → nµ + lµ,

P ({nµ ≥ lµ}|N) =
e−β

∑∞
ξ=1 lξεξ

ZN

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑

nµ=0

e−β
∑
{ξ} εξnξδ(N −

∑
{ξ}

(nξ + lξ))

= e−β
∑
{ξ} lξεξ

ZN−∑{ξ} lξ
ZN

. (F.33)

The probability with fixed lν particles in the ν-th state is calculated through the

difference between probability with more P (nν ≥ lν) and P (nν ≥ lν + 1).

P
(
nν = lν , · · ·

)
= P

(
nν ≥ lν , · · ·

)
− P

(
nν ≥ lν + 1, · · ·

)
. (F.34)

For n-state probability, the explicit form is the sum of these differences with proper
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signs. For 3-state probability, the explicit form is

P
(
n1 = l1, n2 = l2, n3 = l3

)
=P
(
n1 = l1, n2 = l2, n3 ≥ l3

)
− P

(
n1 = l1, n2 = l2, n3 ≥ l3 + 1

)
=P
(
n1 = l1, n2 ≥ l2, n3 ≥ l3

)
− P

(
n1 = l1, n2 ≥ l2 + 1, n3 ≥ l3

)
− P

(
n1 = l1, n2 ≥ l2, n3 ≥ l3 + 1

)
+ P

(
n1 = l1, n2 ≥ l2 + 1, n3 ≥ l3 + 1

)
=P
(
n1 ≥ l1, n2 ≥ l2, n3 ≥ l3

)
− P

(
n1 ≥ l1 + 1, n2 ≥ l2, n3 ≥ l3

)
− P

(
n1 ≥ l1, n2 ≥ l2 + 1, n3 ≥ l3

)
+ P

(
n1 ≥ l1 + 1, n2 ≥ l2 + 1, n3 ≥ l3

)
− P

(
n1 ≥ l1, n2 ≥ l2, n3 ≥ l3 + 1

)
+ P

(
n1 ≥ l1 + 1, n2 ≥ l2, n3 ≥ l3 + 1

)
+ P

(
n1 ≥ l1, n2 ≥ l2 + 1, n3 ≥ l3 + 1

)
− P

(
n1 ≥ l1 + 1, n2 ≥ l2 + 1, n3 ≥ l3 + 1

)
.

(F.35)

The expectation value for the general polynomial-type function of the occupation

number is

〈f1(nµ1)f2(nµ2) · · · 〉 =
N∑
l1=0

N∑
l2=0

· · ·
[
f1(l1)f2(l2) · · ·

]
P ({nµ = lµ} |N)

=
N∑
l1=0

N∑
l2=0

· · ·
[
f1(l1)f2(l2) · · ·

](
P (n1 ≥ l1, {nµ = lµ;µ = 2, 3 · · · } |N)

− P (n1 ≥ l1 + 1, {nµ = lµ;µ = 2, 3 · · · } |N)
)

=
N∑
l1=0

N∑
l2=0

· · ·
[
f1(l1)f2(l2) · · ·

]
P (n1 ≥ l1, {nµ = lµ;µ = 2, 3 · · · } |N)

−
N∑
l1=1

N∑
l2=0

· · ·
[
f1(l1 − 1)f2(l2) · · ·

]
P (n1 ≥ l1, {nµ = lµ;µ = 2, 3 · · · } |N)

=
N∑
l1=1

{
f1(l1)− f1(l1 − 1)

} N∑
l2=0

· · ·
[
f2(l2) · · ·

]
P (nµ1 ≥ l1, {nµ = lµ;µ = 2, 3, · · · } |N)

+ f1(0)
N∑
l2=0

· · ·
[
f2(l2) · · ·

]
P (nµ1 ≥ l1, {nµ = lµ;µ = 2, 3, · · · } |N). (F.36)



93

After repeating similar procedure for other states, the final form will be

〈f1(nµ1)f2(nµ2) · · · 〉

=
N∑
l1=1

{
f1(l1)− f1(l1 − 1)

} N∑
l2=1

{
f2(l2)− f2(l2 − 1)

}
· · ·P ({nµ ≥ lµ} |N) (F.37)

when fi(li = 0) = 0. Since every summation starts from 1 and the total sum of li is

N , the ranges for the summation should be shifted. For n-state expectation value,

〈f1(nµ1)f2(nµ2) · · · 〉 =

r1∑
l1=1

{
f1(l1)− f1(l1 − 1)

} r2∑
l2=1

{
f2(l2)− f2(l2 − 1)

}
r3∑
l3=1

{
f2(l2)− f2(l2 − 1)

}
· · ·P ({nµ ≥ lµ} |N) (F.38)

where r1 = N − n+ 1, r2 = N − n+ 2− l1, r3 = N − n+ 3− l1 − l2, and etc.

Now, we can rearrange the terms to make single summation.

〈f1(nµ1)f2(nµ2) · · · 〉 =
N∑
T=n

F (e−µ1 , e−µ2 , · · · )ZN−T
ZN

. (F.39)

Since the reduction into single summation depends on the actual form of the function

and degeneracy, the procedure for each case should be evaluated case by case. Anyway,

the reduction into single summation means the reduction of calculation time. Let’s

show the example explicitly by starting in 3-state expectation.
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〈nµ1nµ2nµ3〉 =
N−2∑
l1=1

N−1−l1∑
l2=1

N−l1−l2∑
l3=1

(
e−βε1

)l1(e−βε2)l2(e−βε3)l3ZN−l1−l2−l3
ZN

=
N−2∑
l1=1

(
e−βε1

)l1 N−l1∑
T1=2

e−βε3
(
e−βε2

)T1 − e−βε2
(
e−βε3

)T1

e−βε2 − e−βε3
ZN−l1−T1

ZN

=
N∑
T=3

T−2∑
l1=1

(
e−βε1

)l1 e−βε3(e−βε2)T−l1 − e−βε2(e−βε3)T−l1
e−βε2 − e−βε3

ZN−T
ZN

=
N∑
T=3

[
e−βε2e−βε3

e−βε2 − e−βε3
e−βε2

(
e−βε1

)T−1 − e−βε1
(
e−βε2

)T−1

e−βε1 − e−βε2

− e−βε2e−βε3

e−βε2 − e−βε3
e−βε3

(
e−βε1

)T−1 − e−βε1
(
e−βε3

)T−1

e−βε1 − e−βε3

]
ZN−T
ZN

=
N∑
T=3

[
e−βε2e−βε3

(
e−βε1

)T(
e−βε1 − e−βε2

)(
e−βε1 − e−βε3

) +
e−βε3e−βε1

(
e−βε2

)T(
e−βε2 − e−βε3

)(
e−βε2 − e−βε1

)
+

e−βε1e−βε2
(
e−βε3

)T(
e−βε3 − e−βε1

)(
e−βε3 − e−βε2

)]ZN−T
ZN

. (F.40)

For degenerate case where ε1 = ε2 = ε3,

〈nµ1nµ2nµ3〉 =
N−2∑
l1=1

N−1−l1∑
l2=1

N−l1−l2∑
l3=1

(
e−βε1

)l1(e−βε2)l2(e−βε3)l3ZN−l1−l2−l3
ZN

=
N∑
T=3

T−2∑
l1=1

T−1−l1∑
l2=1

(
e−βε1

)T ZN−T
ZN

=
N∑
T=3

T−2∑
l1=1

(
T − 1− l1

)(
e−βε1

)T ZN−T
ZN

=
N∑
T=3

(
(T − 1)(T − 2)− 1

2
(T − 2)(T − 1)

)(
e−βε1

)T ZN−T
ZN

=
N∑
T=3

(T − 1)(T − 2)

2

(
e−βε1

)T ZN−T
ZN

. (F.41)
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Or, for ε1 6= ε2 = ε3,

〈nµ1nµ2nµ3〉

=
N−2∑
l1=1

N−1−l1∑
l2=1

N−l1−l2∑
l3=1

(
e−βε1

)l1(e−βε2)l2+l3ZN−l1−l2−l3
ZN

=
N−2∑
l1=1

(
e−βε1

)l1 N−l1∑
T1=2

T1−1∑
l2=1

(
e−βε2

)T1ZN−l1−T1

ZN

=
N−2∑
l1=1

(
e−βε1

)l1 N−l1∑
T1=2

(T1 − 1)
(
e−βε2

)T1ZN−l1−T1

ZN

=

(
e−βε2

∂

∂
(
e−βε2

) − 1

)
N−2∑
l1=1

N−l1∑
T1=2

(
e−βε1

)l1(e−βε2)T1ZN−l1−T1

ZN

=

(
e−βε2

∂

∂
(
e−βε2

) − 1

)
N∑
T=3

T−2∑
l1=1

(
e−βε1

)l1(e−βε2)T−l1ZN−T
ZN

=

(
e−βε2

∂

∂
(
e−βε2

) − 1

)
N∑
T=3

(
e−βε2

)2(
e−βε1

)T−1 − e−βε1
(
e−βε2

)T
e−βε1 − e−βε2

ZN−T
ZN

=
N∑
T=3

(T − 1)
e−βε1

(
e−βε2

)T
e−βε2 − e−βε1

+

(
e−βε2

)2(
e−βε1

)T − e−βε1(e−βε2)T+1(
e−βε1 − e−βε2

)2

 ZN−T
ZN

.

(F.42)

Similarly, for ε1 = ε2 6= ε3,

〈nµ1nµ2nµ3〉

=
N∑
T=3

(T − 1)
e−βε3

(
e−βε1

)T
e−βε1 − e−βε3

+

(
e−βε1

)2(
e−βε3

)T − e−βε3(e−βε1)T+1(
e−βε3 − e−βε1

)2

 ZN−T
ZN

.
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APPENDIX G

OCCUPATION NUMBER IN QUASI-PARTICLE BASIS AND COMMUTATION

RELATION

The number operator in quasi-particle basis is

β†kβk = a†kβ0β
†
0ak

= a†k(1 + n0)−1/2a0a
†
0(1 + n0)−1/2ak

= a†k(1 + n0)−1/2(1 + n0)(1 + n0)−1/2ak

= a†kak

= nk. (G.1)

So, the distribution of the occupation number in quasi-particle basis is same to that

in particle basis.

The commutation relation is

[
βk, β

†
k′

]
=
[
β†0ak, a

†
k′β0

]
=
[
a†0(1 + n0)−1/2ak, a

†
k′(1 + n0)−1/2a0

]
= a†0(1 + n0)−1/2aka

†
k′(1 + n0)−1/2a0 − a†k′(1 + n0)−1/2a0a

†
0(1 + n0)−1/2ak

= a†0(1 + n0)−1a0aka
†
k′ − a

†
k′(1 + n0)−1/2(1 + n0)(1 + n0)−1/2ak

= a†0a0n
−1
0 aka

†
k′ − a

†
k′ak

= δk,k′ . (G.2)
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However, for the ground state

[
β0, β

†
0

]
= β0β

†
0 − β

†
0β0

= (1 + n0)−1/2a0a
†
0(1 + n0)−1/2 − a†0(1 + n0)−1/2(1 + n0)−1/2a0

= 0. (G.3)

So, the commutation relation for the quasi-particle basis is same to that of the

particle basis except the ground state. And, we cannot construct the number state

for the ground state of the quasi-particle.
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APPENDIX H

REPRESENTATION OF THE DENSITY OPERATOR IN A WEAKLY

INTERACTING BOSE GAS

In the interacting bose gas with finite number of particles, the density opera-

tor in Fock space Fa spanned by n̂k = â†kâk can be represented with all possible

combinations of occupation number of particles in bra and ket state.

ρInt =
∑

{nµ},{mµ}
P ({nµ}, {mµ}|N)|{nµ}〉 〈{mµ}|, (H.1)

where {nµ} and {mµ} are the distribution of particles in each state. Here, nµ(mµ) is

the occupation number of particles in µ ket(bra)-state, and

n̂k|{nµ}〉 = â†kâk|{nµ}〉 = nµ|{nµ}〉, (H.2)

〈{mµ}|m̂k = 〈{mµ}|â†kâk = mµ〈{mµ}|. (H.3)

The condition for the finite total number of particles is

∑
µ

nµ =
∑
µ

mµ = N. (H.4)

Following the second quantization notation, we can rewrite the ket state with

creation operator a†k.

|{nµ}〉 =
∏
µ

(
1√
nµ!

(
â†µ
)nµ) |0〉. (H.5)

When we replace the a-operator in terms of β̂k and β̂†k,

âµ = β̂0β̂µ with β̂0 = (1 + n̂0)−1/2a0, (H.6)

â†µ = β̂†µβ̂
†
0 with β̂†0 = a†0(1 + n̂0)−1/2, (H.7)
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the ground state should be considered separately.

|{nµ}〉 =
∏
µ6=0

{
1√
nµ!

(
β̂†µâ

†
0

(
â†0â0 + 1

)−1/2
)nµ}

|n0, {0}exc〉, (H.8)

where {0}exc is all the excited states. Because â†0
(
â†0â0 + 1

)−1/2
operator with β̂†µ

creates one more particle in the ground state,

â†0
(
â†0â0 + 1

)−1/2∣∣n0 = n
〉

= â†0
1√
n+ 1

∣∣n0 = n
〉

=
∣∣n0 = n+ 1

〉
, (H.9)

the form of the ket-state becomes

|{nµ}〉 =
∣∣n0 = N, {nµ}

〉
. (H.10)

where

n̂µ
∣∣nµ〉 = β̂†µβ̂µ

∣∣nµ〉 = nµ
∣∣nµ〉 (H.11)

for the excited state, and

∑
µ 6=0

nµ = M. (H.12)

By separating the ground state and rewriting the ket-state in terms of β̂†µ oper-

ator,

|{nµ}〉 =
∏
µ6=0

{
1√
nµ!

(
β̂†µ

)nµ}∣∣n0 = N, {0}exc

〉
(H.13)

=
∏
µ6=0

{
1√
nµ!

(
ukb̂

†
k + vkb̂−k

)nµ}∣∣n0 = N, {0}exc

〉
. (H.14)

Eq. (H.14) is the ket-state which is represented in Fock space Fb which is spanned by

n̂k = b̂†kbk state. Here, the maximum number of quasi-particles which are created in

the configuration is same to total number of particles in excited state, even though
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the states with less number of quasi-particles are created. For each state in Fa, the

corresponding state in Fb will have that the maximum number of quasi-particle is

N − n0(N −m0) for ket(bra)-state.

Since the approximate Hamiltonian in bk and b†k basis is in diagonal form, that is

similar to the non-interacting boson, all excited state in Fb is statistically independent.

And the possible configuration in the density operator in this basis should be diagonal

in equilibrium : the ket-state and the corresponding bra-state should be dual to each

other. Finally, we can write the density operator as

ρInt =
N∑

M=0

P (n0 = N −M |N)
∑
{nµ}b

P ({nµ}b|M)|{nµ}b〉〈{nµ}b|. (H.15)

Eq. (H.15) is the density operator in terms of the number of condensate particle n0

and the occupation number {nµ}b of Bogoliubov transformed bk and b†k operator.

Here, nµ is the number of Bogoliubov transformed quasi-particle in µ-state, and its

sum
∑
µ6=0

nµ should be M to make sure that the total number of quasi-particle is

M = N − n0.
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APPENDIX I

SUMMATION OF PARTIAL PARTITION FUNCTION

This appendix is about the proof of the Eq. (5.39).

The total configurations seem to be divided into distinguishable set of configu-

rations according to the proper parameter, for example, the occupation number of

one-state. However, the division of the partition function in CE for boson is not

trivial.

Let’s assume that ν-state with energy εν is in-accessible. Since we can divide the

total configuration as the occupation number in that state, we might write down the

partition function as sum of partial partition function.

ZN(β) =
N∑
n=0

e−(N−n)βενZ∗n(β) (I.1)

where ZN is the partition function for the whole states with N particles and Z∗n is

the partial partition function with the states except ν-state.

Since the definition for Z∗n(β) is

Z∗n =
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nν−1=0

∞∑
nν+1=0

· · · exp
{
−β

∑
{µ 6=ν}

εµnµ

}
δ
(
n−

∑
{µ6=ν}

nµ

)
, (I.2)

the recursive relation for ZN(β) is also applicable to Z∗n(β) :

Z∗n(β) =
1

n

n∑
k=1

Z∗1(kβ)Z∗n−k(β). (I.3)

Now, let’s prove the relation between ZN(β) and Z∗n(β) explicitly with the math-
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ematical induction. For the system with a single particle,

Z1(β) =
∑
{µ6=ν}

e−βεµ , (I.4)

Z∗1(β) =
∑
{µ6=ν}

e−βεµ = Z1(β)− e−βεν . (I.5)

To simplify the proof, let’s choose ν-state as ground state with ε0 = 0. Then, for

the single particle case,

Z1(β) = 1 + Z∗1(β). (I.6)

For two-particle case,

Z2(β) =
1

2

(
Z1(β)Z1(β) + Z1(2β)Z0(β)

)
=

1

2

{(
1 + Z∗1(β)

)2
+
(
1 + Z∗1(2β)

)}
=

1

2

{
2 + 2Z∗1(β) +

(
Z∗1(β)

)2
+ Z∗1(2β)

}
= 1 + Z∗1(β) +

1

2

{(
Z∗1(β)

)2
+ Z∗1(2β)

}
= 1 + Z∗1(β) + Z∗2(β). (I.7)

If we assume that

ZN(β) =
N∑
n=0

Z∗n(β), (I.8)
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then

ZN+1(β)

=
1

N + 1

N+1∑
n=1

Z1(nβ)ZN+1−n(β) =
1

N + 1

N+1∑
n=1

{1 + Z∗1(nβ)}ZN+1−n(β)

=
1

N + 1

×



{1 +Z∗1(β)} {Z∗N(β) +Z∗N−1(β) + · · · +Z∗3(β) +Z∗2(β)

+Z∗1(β) +1}

+ {1 +Z∗1(2β)}
{
Z∗N−1(β) +Z∗N−2(β) + · · · +Z∗2(β) +Z∗1(β) +1}

+ {1 +Z∗1(3β)}
{
Z∗N−2(β) +Z∗N−3(β) + · · · +Z∗1(β) +1}

· · ·

+ {1 +Z∗1((N − 1)β)} {Z∗2(β) +Z∗1(β) +1}

+ {1 +Z∗1(Nβ)} {Z∗1(β) +1}

+ {1 +Z∗1((N + 1)β)}


=

1

N + 1

N∑
k=0

(N + 1− k)Z∗k(β) +
1

N + 1

N+1∑
k=1

kZ∗k(β) (I.9)

=
N+1∑
k=0

Z∗k(β). (Q.E.D.) (I.10)

The first term 1 in Z1(nβ) = 1 + Z∗1(nβ) gives the first term in Eq. (I.9), and

the second term Z∗1(nβ) gives the second term in Eq. (I.9).
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APPENDIX J

STATISTICS IN INTERACTING BOSE GAS

Average

The occupation number in quasi-particle basis is

〈β̂†kβ̂k〉 =
〈

(ukb̂
†
k + vkb̂−k)(ukb̂k + vkb̂

†
−k)
〉

= u2
k

〈
b̂†kb̂k

〉
+ ukvk

〈
b̂†kb̂
†
−k

〉
+ vkuk

〈
b̂−kb̂k

〉
+ v2

k

〈
b̂−kb̂

†
−k

〉
= u2

kTr
(
ρIntb̂

†
kb̂k
)

+ ukvkTr
(
ρIntb̂

†
kb̂
†
−k

)
+ vkukTr

(
ρIntb̂−kb̂k

)
+ v2

kTr
(
ρIntb̂−kb̂

†
−k

)
= u2

kTr
(
ρIntb̂

†
kb̂k
)

+ v2
kTr
(
ρIntb̂−kb̂

†
−k

)
= u2

k

N∑
M=0

P (n0 = N −M |N)
M∑
n=0

P (nk = n|M)
〈
nk = n|b̂†kb̂k|nk = n

〉
+ v2

k

N∑
M=0

P (n0 = N −M |N)
M∑
n=0

P (n−k = n|M)
〈
n−k = n|b̂−kb̂

†
−k|n−k = n

〉
=

N∑
M=0

P (n0 = N −M |N)
M∑
n=0

P (nk = n |M)
(
nu2

k + (n+ 1)v2
k

)
= (u2

k + v2
k)nk + v2

k (J.1)

with

nk =
N∑

M=0

P (n0 = N −M |N)
M∑
n=0

nP (nk = n |M). (J.2)

Here, we used P (n−k = n|M) = P (nk = n|M).
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Similar to the case of ideal gas, we can simplify Eq. (J.2).

nk =
N∑

M=0

P (n0 = N −M |N)
M∑
n=0

nP (nk = n |M)

=
N∑

M=0

ZM − ZM−1

ZN

M∑
n=0

n

(
e−nβεµ

Z∗M−n
Z∗M

− e−(n+1)βεµ
Z∗M−n−1

Z∗M

)

=
N∑

M=0

Z∗M
ZN

M∑
n=1

e−nβεµ
Z∗M−n
Z∗M

=
N∑
n=1

N∑
M=n

e−nβεµ
Z∗M−n
ZN

=
N∑
n=1

e−nβεµ
ZN−n
ZN

. (J.3)

The final form seems to be same in ideal case.

Variance

After applying the Bogoliubov transformation, the average for the 4-operator is

〈
β̂†kβ̂kβ̂

†
k′ β̂k′

〉
=
〈

(ukb̂
†
k + vkb̂−k)(ukb̂k + vkb̂

†
−k)(uk′ b̂

†
k′ + vk′ b̂−k′)(uk′ b̂k′ + vk′ b̂

†
−k′)

〉
= u2

ku
2
k′

〈
b̂†kb̂kb̂

†
k′ b̂k′

〉
+ u2

kuk′vk′
〈
b̂†kb̂kb̂

†
k′ b̂
†
−k′

〉
+ u2

kvk′uk′

〈
b̂†kb̂kb̂−k′ b̂k′

〉
+ u2

kv
2
k′

〈
b̂†kb̂kb̂−k′ b̂

†
−k′

〉
+ ukvku

2
k′

〈
b̂†kb̂
†
−kb̂

†
k′ b̂k′

〉
+ ukvkuk′vk′

〈
b̂†kb̂
†
−kb̂

†
k′ b̂
†
−k′

〉
+ ukvkvk′uk′

〈
b̂†kb̂
†
−kb̂−k′ b̂k′

〉
+ ukvkv

2
k′

〈
b̂†kb̂
†
−kb̂−k′ b̂

†
−k′

〉
+ vkuku

2
k′

〈
b̂−kb̂kb̂

†
k′ b̂k′

〉
+ vkukuk′vk′

〈
b̂−kb̂kb̂

†
k′ b̂
†
−k′

〉
+ vkukvk′uk′

〈
b̂−kb̂kb̂−k′ b̂k′

〉
+ vkukv

2
k′

〈
b̂−kb̂kb̂−k′ b̂

†
−k′

〉
+ v2

ku
2
k′

〈
b̂−kb̂

†
−kb̂

†
k′ b̂k′

〉
+ v2

kuk′vk′
〈
b̂−kb̂

†
−kb̂

†
k′ b̂
†
−k′

〉
+ v2

kvk′uk′

〈
b̂−kb̂

†
−kb̂−k′ b̂k′

〉
+ v2

kv
2
k′

〈
b̂−kb̂

†
−kb̂−k′ b̂

†
−k′

〉
. (J.4)
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When the number of the creation operators is equal to that of the annihilation ones,

the average of the 4-operators are contributed to the variance. The terms which have

equal number of operators are

〈
β̂†kβ̂kβ̂

†
k′ β̂k′

〉
= u2

ku
2
k′

〈
b̂†kb̂kb̂

†
k′ b̂k′

〉
+ u2

kv
2
k′

〈
b̂†kb̂kb̂−k′ b̂

†
−k′

〉
+ ukvkvk′uk′

〈
b̂†kb̂
†
−kb̂−k′ b̂k′

〉
+ vkukuk′vk′

〈
b̂−kb̂kb̂

†
k′ b̂
†
−k′

〉
+ v2

ku
2
k′

〈
b̂−kb̂

†
−kb̂

†
k′ b̂k′

〉
+ v2

kv
2
k′

〈
b̂−kb̂

†
−kb̂−k′ b̂

†
−k′

〉
. (J.5)

To evaluate each term explicitly, we need the 2-state probability P (nµ, nν |M) with

µ(ν) = ±k,±k′. For simplicity, let’s use the following convention for the occupation

number of particles in each state.

l = nk, m = n−k, p = nk′ , and q = n−k′ . (J.6)

Then, the corresponding 1-state and 2-state probabilities are

P (l|M) = P (nk = l|M),

P (m|M) = P (n−k = m|M),

P (l,m|M) = P (nk = l, n−k = m|M), (J.7)

P (l, p|M) = P (nk = l, nk′ = p|M),

...

Since the total number in excited state is M , the summation for the 2-state is re-

stricted. For example, the ranges are restricted to l +m ≤M in P (l,m|M).
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Let’s evaluate the expectation value explicitly. When k′ = k,

〈
β̂†kβ̂kβ̂

†
kβ̂k

〉
= u4

k

〈
b̂†kb̂kb̂

†
kb̂k

〉
+ u2

kv
2
k

〈
b̂†kb̂kb̂−kb̂

†
−k

〉
+ u2

kv
2
k

〈
b̂†kb̂
†
−kb̂−kb̂k

〉
+ v2

ku
2
k

〈
b̂−kb̂kb̂

†
kb̂
†
−k

〉
+ v2

ku
2
k

〈
b̂−kb̂

†
−kb̂

†
kb̂k

〉
+ v4

k

〈
b̂−kb̂

†
−kb̂−kb̂

†
−k

〉
= u4

k

N∑
M=0

PM

M∑
l=0

l2P (l|M) + u2
kv

2
k

N∑
M=0

PM

M∑
l=0

M−l∑
m=0

l(m+ 1)P (l,m|M)

+ u2
kv

2
k

N∑
M=0

PM

M∑
l=0

M−l∑
m=0

lmP (l,m|M) + v2
ku

2
k

N∑
M=0

PM

M∑
l=0

M−l∑
m=0

(l + 1)(m+ 1)P (l,m|M)

+ v2
ku

2
k

N∑
M=0

PM

M∑
l=0

M−l∑
m=0

l(m+ 1)P (l,m|M) + v4
k

N∑
M=0

PM

M∑
m=0

(m+ 1)2P (m|M).

(J.8)

The average value from the 2-state probability also can be simplified.

lm =
N∑

M=0

PM

M∑
l=0

M−l∑
m=0

lmP (l,m|M) =
N∑

M=0

Z∗M
ZN

M−1∑
l=1

M−l∑
m=1

P (nµ ≥ l, nν ≥ m|M)

=
N∑

M=0

Z∗M
ZN

M−1∑
l=1

M−l∑
m=1

e−lβεµ−mβεν
Z∗M−l−m
Z∗M

=
N−1∑
l=1

N∑
M=l+1

M−l∑
m=1

e−lβεµ−mβεν
Z∗M−l−m
ZN

=
N−1∑
l=1

N−l∑
m=1

N∑
M=l+m

e−lβεµ−mβεν
Z∗M−l−m
ZN

=
N−1∑
l=1

N−l∑
m=1

e−lβεµ−mβεν
ZN−l−m
ZN

. (J.9)

Similar to 1-state probability, the final form is also same to that in ideal Bose gas.
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When k′ = −k,

〈
β̂†kβ̂kβ̂

†
−kβ̂−k

〉
= u2

ku
2
k′

〈
b̂†kb̂kb̂

†
−kb̂−k

〉
+ u2

kv
2
k′

〈
b̂†kb̂kb̂kb̂

†
k

〉
+ ukvkvk′uk′

〈
b̂†kb̂
†
−kb̂kb̂−k

〉
+ vkukuk′vk′

〈
b̂−kb̂kb̂

†
−kb̂

†
k

〉
+ v2

ku
2
k′

〈
b̂−kb̂

†
−kb̂

†
−kb̂−k

〉
+ v2

kv
2
k′

〈
b̂−kb̂

†
−kb̂kb̂

†
k

〉
= u4

k

N∑
M=0

PM

M∑
l=0

M−l∑
m=0

lmP (l,m|M) + u2
kv

2
k

N∑
M=0

PM

M∑
l=0

l(l + 1)P (l|M)

+ u2
kv

2
k

N∑
M=0

PM

M∑
l=0

M−l∑
m=0

lmP (l,m|M) + v2
ku

2
k

N∑
M=0

PM

M∑
l=0

M−l∑
m=0

(l + 1)(m+ 1)P (l,m|M)

+ v2
ku

2
k

N∑
M=0

PM

M∑
m=0

m(m+ 1)P (m|M) + v4
k

N∑
M=0

PM

M∑
l=0

M−l∑
m=0

(l + 1)(m+ 1)P (l,m|M).

(J.10)

Otherwise, that is k′ 6= ±k,

〈
β̂†kβ̂kβ̂

†
k′ β̂k′

〉
= u2

ku
2
k′

〈
b̂†kb̂kb̂

†
k′ b̂k′

〉
+ u2

kv
2
k′

〈
b̂†kb̂kb̂−k′ b̂

†
−k′

〉
+ v2

ku
2
k′

〈
b̂−kb̂

†
−kb̂

†
k′ b̂k′

〉
+ v2

kv
2
k′

〈
b̂−kb̂

†
−kb̂−k′ b̂

†
−k′

〉
= u2

ku
2
k′

N∑
M=0

PM

M∑
l=0

M−l∑
p=0

lpP (l, p|M) + u2
kv

2
k′

N∑
M=0

PM

M∑
l=0

M−l∑
q=0

l(q + 1)P (l, q|M)

+ v2
ku

2
k′

N∑
M=0

PM

M∑
m=0

M−m∑
p=0

(m+ 1)pP (l, p|M)

+ v2
kv

2
k′

N∑
M=0

PM

M∑
m=0

M−m∑
q=0

(m+ 1)(q + 1)P (m, q|M). (J.11)
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Third Moment

For the 3rd moment, we need the expectation value for the 6-operator.

〈
β̂†kβ̂kβ̂

†
k′ β̂k′ β̂

†
k′′ β̂k′′

〉
=
〈

(ukb̂
†
k + vkb̂−k)(ukb̂k + vkb̂

†
−k)(uk′ b̂

†
k′ + vk′ b̂−k′)(uk′ b̂k′ + vk′ b̂

†
−k′)

(uk′′ b̂
†
k′′ + vk′′ b̂−k′′)(uk′′ b̂k′′ + vk′′ b̂

†
−k′′)

〉
. (J.12)

The terms which have equal number of creation operators and of annihilation

operators can only be contributed to the 3rd moment. So, the remaining terms are

〈
β̂†kβ̂kβ̂

†
k′ β̂k′ β̂

†
k′′ β̂k′′

〉
= u2

ku
2
k′u

2
k′′

〈
b̂†kb̂kb̂

†
k′ b̂k′ b̂

†
k′′ b̂k′′

〉
+ u2

ku
2
k′v

2
k′′

〈
b̂†kb̂kb̂

†
k′ b̂k′ b̂−k′′ b̂

†
−k′′

〉
+ u2

kuk′vk′vk′′uk′′

〈
b̂†kb̂kb̂

†
k′ b̂
†
−k′ b̂−k′′ b̂k′′

〉
+ u2

kvk′uk′uk′′vk′′
〈
b̂†kb̂kb̂−k′ b̂k′ b̂

†
k′′ b̂
†
−k′′

〉
+ u2

kv
2
k′u

2
k′′

〈
b̂†kb̂kb̂−k′ b̂

†
−k′ b̂

†
k′′ b̂k′′

〉
+ u2

kv
2
k′v

2
k′′

〈
b̂†kb̂kb̂−k′ b̂

†
−k′ b̂−k′′ b̂

†
−k′′

〉
+ ukvku

2
k′vk′′uk′′

〈
b̂†kb̂
†
−kb̂

†
k′ b̂k′ b̂−k′′ b̂k′′

〉
+ ukvkvk′uk′u

2
k′′

〈
b̂†kb̂
†
−kb̂−k′ b̂k′ b̂

†
k′′ b̂k′′

〉
+ ukvkvk′uk′v

2
k′′

〈
b̂†kb̂
†
−kb̂−k′ b̂k′ b̂−k′′ b̂

†
−k′′

〉
+ ukvkv

2
k′vk′′uk′′

〈
b̂†kb̂
†
−kb̂−k′ b̂

†
−k′ b̂−k′′ b̂k′′

〉
+ vkuku

2
k′uk′′vk′′

〈
b̂−kb̂kb̂

†
k′ b̂k′ b̂

†
k′′ b̂
†
−k′′

〉
+ vkukuk′vk′u

2
k′′

〈
b̂−kb̂kb̂

†
k′ b̂
†
−k′ b̂

†
k′′ b̂k′′

〉
+ vkukuk′vk′v

2
k′′

〈
b̂−kb̂kb̂

†
k′ b̂
†
−k′ b̂−k′′ b̂

†
−k′′

〉
+ vkukv

2
k′uk′′vk′′

〈
b̂−kb̂kb̂−k′ b̂

†
−k′ b̂

†
k′′ b̂
†
−k′′

〉
+ v2

ku
2
k′u

2
k′′

〈
b̂−kb̂

†
−kb̂

†
k′ b̂k′ b̂

†
k′′ b̂k′′

〉
+ v2

ku
2
k′v

2
k′′

〈
b̂−kb̂

†
−kb̂

†
k′ b̂k′ b̂−k′′ b̂

†
−k′′

〉
+ v2

kuk′vk′vk′′uk′′

〈
b̂−kb̂

†
−kb̂

†
k′ b̂
†
−k′ b̂−k′′ b̂k′′

〉
+ v2

kvk′uk′uk′′vk′′
〈
b̂−kb̂

†
−kb̂−k′ b̂k′ b̂

†
k′′ b̂
†
−k′′

〉
+ v2

kv
2
k′u

2
k′′

〈
b̂−kb̂

†
−kb̂−k′ b̂

†
−k′ b̂

†
k′′ b̂k′′

〉
+ v2

kv
2
k′v

2
k′′

〈
b̂−kb̂

†
−kb̂−k′ b̂

†
−k′ b̂−k′′ b̂

†
−k′′

〉
. (J.13)

In 3rd moment calculation, there’re 11 different types of terms, which are shown

in Table. VI.
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For simplicity, let’s use the following conventions.

nk = l, n−k = m,nk′ = p, n−k′ = q, nk′′ = r, n−k′′ = s. (J.14)

Here, we will use an over-line to denote the proper average.

lp =
N∑

M=0

Z∗M
ZN

N∑
l=0

N∑
p=0

lpP (nk = l, nk′ = p |M). (J.15)

Case 1. non-degenerate case where k 6= ±k′ 6= ±k′′

〈
β̂†kβ̂kβ̂

†
k′ β̂k′ β̂

†
k′′ β̂k′′

〉
= u2

ku
2
k′u

2
k′′lpr + u2

ku
2
k′v

2
k′′lp(s+ 1)

+ u2
kv

2
k′u

2
k′′l(q + 1)r + u2

kv
2
k′v

2
k′′l(q + 1)(s+ 1)

+ v2
ku

2
k′u

2
k′′(m+ 1)pr + v2

ku
2
k′v

2
k′′(m+ 1)p(s+ 1)

+ v2
kv

2
k′u

2
k′′(m+ 1)(q + 1)r + v2

kv
2
k′v

2
k′′(m+ 1)(q + 1)(s+ 1). (J.16)

Case 2. k = k′ 6= ±k′′

〈
β̂†kβ̂kβ̂

†
kβ̂kβ̂

†
k′′ β̂k′′

〉
= u2

ku
2
k′u

2
k′′l

2r + u2
ku

2
k′v

2
k′′l

2(s+ 1)

+ u2
kv

2
k′u

2
k′′l(m+ 1)r + u2

kv
2
k′v

2
k′′l(m+ 1)(s+ 1)

+ ukvkvk′uk′u
2
k′′lmr

+ ukvkvk′uk′v
2
k′′lm(s+ 1)

+ vkukuk′vk′u
2
k′′(l + 1)(m+ 1)r

+ vkukuk′vk′v
2
k′′(l + 1)(m+ 1)(s+ 1)

+ v2
ku

2
k′u

2
k′′l(m+ 1)r + v2

ku
2
k′v

2
k′′l(m+ 1)(s+ 1)

+ v2
kv

2
k′u

2
k′′(m+ 1)2r + v2

kv
2
k′v

2
k′′(m+ 1)2(s+ 1). (J.17)
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Case 3. k = −k′ 6= ±k′′

〈
β̂†kβ̂kβ̂

†
−kβ̂−kβ̂

†
k′′ β̂k′′

〉
= u2

ku
2
k′u

2
k′′lmr + u2

ku
2
k′v

2
k′′lm(s+ 1)

+ u2
kv

2
k′u

2
k′′l(l + 1)r + u2

kv
2
k′v

2
k′′l(l + 1)(s+ 1)

+ ukvkvk′uk′u
2
k′′lmr

+ ukvkvk′uk′v
2
k′′lm(s+ 1)

+ vkukuk′vk′u
2
k′′(l + 1)(m+ 1)r

+ vkukuk′vk′v
2
k′′(l + 1)(m+ 1)(s+ 1)

+ v2
ku

2
k′u

2
k′′m(m+ 1)r + v2

ku
2
k′v

2
k′′m(m+ 1)(s+ 1)

+ v2
kv

2
k′u

2
k′′(l + 1)(m+ 1)r + v2

kv
2
k′v

2
k′′(l + 1)(m+ 1)(s+ 1). (J.18)

Case 4. k = k′′ 6= ±k′

〈
β̂†kβ̂kβ̂

†
k′ β̂k′ β̂

†
kβ̂k

〉
= u2

ku
2
k′u

2
k′′l

2p + u2
ku

2
k′v

2
k′′l(m+ 1)p

+ u2
kv

2
k′u

2
k′′l

2(q + 1) + u2
kv

2
k′v

2
k′′l(m+ 1)(q + 1)

+ ukvku
2
k′vk′′uk′′lmp

+ ukvkv
2
k′vk′′uk′′lm(q + 1)

+ vkuku
2
k′uk′′vk′′(l + 1)(m+ 1)p

+ vkukv
2
k′uk′′vk′′(l + 1)(m+ 1)(q + 1)

+ v2
ku

2
k′u

2
k′′l(m+ 1)p + v2

ku
2
k′v

2
k′′(m+ 1)2p

+ v2
kv

2
k′u

2
k′′l(m+ 1)(q + 1) + v2

kv
2
k′v

2
k′′(m+ 1)2(q + 1). (J.19)
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Case 5. k = −k′′ 6= ±k′

〈
β̂†kβ̂kβ̂

†
k′ β̂k′ β̂

†
−kβ̂−k

〉
= u2

ku
2
k′u

2
k′′lmp + u2

ku
2
k′v

2
k′′l(l + 1)p

+ u2
kv

2
k′u

2
k′′lm(q + 1) + u2

kv
2
k′v

2
k′′l(l + 1)(q + 1)

+ ukvku
2
k′vk′′uk′′lmp

+ ukvkv
2
k′vk′′uk′′lm(q + 1)

+ vkuku
2
k′uk′′vk′′(l + 1)(m+ 1)p

+ vkukv
2
k′uk′′vk′′(l + 1)(m+ 1)(q + 1)

+ v2
ku

2
k′u

2
k′′m(m+ 1)p + v2

ku
2
k′v

2
k′′(l + 1)(m+ 1)p

+ v2
kv

2
k′u

2
k′′m(m+ 1)(q + 1) + v2

kv
2
k′v

2
k′′(l + 1)(m+ 1)(q + 1). (J.20)
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Case 6. k = k′ = k′′

〈
β̂†kβ̂kβ̂

†
k′ β̂k′ β̂

†
k′′ β̂k′′

〉
= u6

kl
3 + u4

kv
2
kl

2(m+ 1)

+ u2
kuk′vk′vk′′uk′′l2m+ u2

kvk′uk′uk′′vk′′l(l + 1)(m+ 1)

+ u2
kv

2
k′u

2
k′′l

2(m+ 1) + u2
kv

2
k′v

2
k′′l(m+ 1)2

+ ukvku
2
k′vk′′uk′′l(l − 1)m+ ukvkvk′uk′u

2
k′′l

2m

+ ukvkvk′uk′v
2
k′′lm(m+ 1) + ukvkv

2
k′vk′′uk′′lm2

+ vkuku
2
k′uk′′vk′′(l + 1)2(m+ 1) + vkukuk′vk′u

2
k′′l(l + 1)(m+ 1)

+ vkukuk′vk′v
2
k′′(l + 1)(m+ 1)2 + vkukv

2
k′uk′′vk′′(l + 1)(m+ 1)(m+ 2)

+ v2
ku

2
k′u

2
k′′l

2(m+ 1) + v2
ku

2
k′v

2
k′′l(m+ 1)2

+ v2
kuk′vk′vk′′uk′′lm(m+ 1) + v2

kvk′uk′uk′′vk′′(l + 1)(m+ 1)2

+ v2
kv

2
k′u

2
k′′l(m+ 1)2 + v2

kv
2
k′v

2
k′′(m+ 1)3. (J.21)
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Case 7. k = k′ = −k′′

〈
β̂†kβ̂kβ̂

†
kβ̂kβ̂

†
−kβ̂−k

〉
= u2

ku
2
k′u

2
k′′l

2m + u2
ku

2
k′v

2
k′′l

2(l + 1)

+ u2
kuk′vk′vk′′uk′′l2m + u2

kvk′uk′uk′′vk′′l(l + 1)(m+ 1)

+ u2
kv

2
k′u

2
k′′l(m+ 1)m + u2

kv
2
k′v

2
k′′l(m+ 1)(l + 1)

+ ukvku
2
k′vk′′uk′′l(l − 1)m + ukvkvk′uk′u

2
k′′lm

2

+ ukvkvk′uk′v
2
k′′l(l + 1)m + ukvkv

2
k′vk′′uk′′lm2

+ vkuku
2
k′uk′′vk′′(l + 1)2(m+ 1) + vkukuk′vk′u

2
k′′(l + 1)m(m+ 1)

+ vkukuk′vk′v
2
k′′(l + 1)2(m+ 1) + vkukv

2
k′uk′′vk′′(l + 1)(m+ 1)(m+ 2)

+ v2
ku

2
k′u

2
k′′lm(m+ 1) + v2

ku
2
k′v

2
k′′l(l + 1)(m+ 1)

+ v2
kuk′vk′vk′′uk′′lm(m+ 1) + v2

kvk′uk′uk′′vk′′(l + 1)(m+ 1)2

+ v2
kv

2
k′u

2
k′′(m+ 1)2m + v2

kv
2
k′v

2
k′′(m+ 1)2(l + 1). (J.22)
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Case 8. k = −k′ = k′′

〈
β̂†kβ̂kβ̂

†
−kβ̂−kβ̂

†
kβ̂k

〉
= u2

ku
2
k′u

2
k′′l

2m + u2
ku

2
k′v

2
k′′lm(m+ 1)

+ u2
kuk′vk′vk′′uk′′l2m + u2

kvk′uk′uk′′vk′′l(l + 1)(m+ 1)

+ u2
kv

2
k′u

2
k′′l

2(l + 1) + u2
kv

2
k′v

2
k′′l(l + 1)(m+ 1)

+ ukvku
2
k′vk′′uk′′lm(m− 1) + ukvkvk′uk′u

2
k′′l

2m

+ ukvkvk′uk′v
2
k′′lm(m+ 1) + ukvkv

2
k′vk′′uk′′l2m

+ vkuku
2
k′uk′′vk′′(l + 1)(m+ 1)2 + vkukuk′vk′u

2
k′′l(l + 1)(m+ 1)

+ vkukuk′vk′v
2
k′′(l + 1)(m+ 1)2 + vkukv

2
k′uk′′vk′′(l + 1)(l + 2)(m+ 1)

+ v2
ku

2
k′u

2
k′′lm(m+ 1) + v2

ku
2
k′v

2
k′′m(m+ 1)2

+ v2
kuk′vk′vk′′uk′′lm(m+ 1) + v2

kvk′uk′uk′′vk′′(l + 1)(m+ 1)2

+ v2
kv

2
k′u

2
k′′l(l + 1)(m+ 1) + v2

kv
2
k′v

2
k′′(l + 1)(m+ 1)2. (J.23)
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Case 9. k = −k′ = −k′′

〈
β̂†kβ̂kβ̂

†
−kβ̂−kβ̂

†
−kβ̂−k

〉
= u2

ku
2
k′u

2
k′′lm

2 + u2
ku

2
k′v

2
k′′l(l + 1)m

+ u2
kuk′vk′vk′′uk′′l2m + u2

kvk′uk′uk′′vk′′l(l + 1)(m+ 1)

+ u2
kv

2
k′u

2
k′′l(l + 1)m + u2

kv
2
k′v

2
k′′l(l + 1)2

+ ukvku
2
k′vk′′uk′′lm(m− 1) + ukvkvk′uk′u

2
k′′lm

2

+ ukvkvk′uk′v
2
k′′l(l + 1)m + ukvkv

2
k′vk′′uk′′l2m

+ vkuku
2
k′uk′′vk′′(l + 1)(m+ 1)2 + vkukuk′vk′u

2
k′′(l + 1)m(m+ 1)

+ vkukuk′vk′v
2
k′′(l + 1)2(m+ 1) + vkukv

2
k′uk′′vk′′(l + 1)(l + 2)(m+ 1)

+ v2
ku

2
k′u

2
k′′m

2(m+ 1) + v2
ku

2
k′v

2
k′′(l + 1)m(m+ 1)

+ v2
kuk′vk′vk′′uk′′lm(m+ 1) + v2

kvk′uk′uk′′vk′′(l + 1)(m+ 1)2

+ v2
kv

2
k′u

2
k′′(l + 1)m(m+ 1) + v2

kv
2
k′v

2
k′′(l + 1)2(m+ 1). (J.24)

Case 10. ±k 6= k′ = k′′

〈
β̂†kβ̂kβ̂

†
k′ β̂k′ β̂

†
k′ β̂k′

〉
= u2

ku
2
k′u

2
k′′lp

2 + u2
ku

2
k′v

2
k′′lp(q + 1)

+ u2
kuk′vk′vk′′uk′′lpq + u2

kvk′uk′uk′′vk′′l(p+ 1)(q + 1)

+ u2
kv

2
k′u

2
k′′lp(q + 1) + u2

kv
2
k′v

2
k′′l(q + 1)2

+ v2
ku

2
k′u

2
k′′(m+ 1)p2 + v2

ku
2
k′v

2
k′′(m+ 1)p(q + 1)

+ v2
kuk′vk′vk′′uk′′(m+ 1)pq + v2

kvk′uk′uk′′vk′′(m+ 1)(p+ 1)(q + 1)

+ v2
kv

2
k′u

2
k′′(m+ 1)p(q + 1) + v2

kv
2
k′v

2
k′′(m+ 1)(q + 1)2. (J.25)
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Case 11. ±k 6= k′ = −k′′

〈
β̂†kβ̂kβ̂

†
k′ β̂k′ β̂

†
−k′ β̂−k′

〉
= u2

ku
2
k′u

2
k′′lpq + u2

ku
2
k′v

2
k′′lp(p+ 1)

+ u2
kuk′vk′vk′′uk′′lpq + u2

kvk′uk′uk′′vk′′l(p+ 1)(q + 1)

+ u2
kv

2
k′u

2
k′′lq(q + 1) + u2

kv
2
k′v

2
k′′l(p+ 1)(q + 1)

+ v2
ku

2
k′u

2
k′′(m+ 1)pq + v2

ku
2
k′v

2
k′′(m+ 1)p(p+ 1)

+ v2
kuk′vk′vk′′uk′′(m+ 1)pq + v2

kvk′uk′uk′′vk′′(m+ 1)(p+ 1)(q + 1)

+ v2
kv

2
k′u

2
k′′(m+ 1)(q + 1)q + v2

kv
2
k′v

2
k′′(m+ 1)(q + 1)(p+ 1). (J.26)
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Table I. Processes in Carnot cycle with a single photon

L V = LA T Ω = πc
L

n̄ P

Stage (mm) (mm3) (K) (×1011 Hz) (×10−12 N/m2 = Pa)

1 1 1 300 9.42 6.15 3.84

2 2 2 300 4.72 12.78 2.00

3 3 3 200 3.14 12.78 0.89

4 3/2 3/2 200 6.28 6.15 1.71
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Table II. Table for the shell structure of the multi-electron atoms

notation for state maximum number of electrons quantum number

in the state

1s 2 ni = 1

2s 2 ni = 2

2p 6 ni = 2

3s 2 ni = 3

3p 6 ni = 3

4s 2 ni = 4

3d 10 ni = 3

4p 6 ni = 4

5s 2 ni = 5

4d 10 ni = 3

...
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Table III. Table for the ground state energy of multi-electron atoms until Z = 25

Atomic Number E(Experiment) E(Bohr Model)

2(He) -2.903 -3.06250

3(Li) -7.478 -7.69046

4(Be) -14.667 -14.84035

5(B) -24.652 -24.79358

6(C) -37.842 -37.81680

7(N) -54.584 -54.16099

8(O) -75.059 -74.17799

9(F) -99.719 -98.05818

10(Ne) -128.919 -126.05298

11(Na) -162.233 -158.42380

12(Mg) -200.026 -195.29550

13(Al) -242.315 -236.53440

14(Si) -289.322 -282.23095

15(P) -341.208 -332.55240

16(S) -398.601 -387.58611

17(Cl) -460.102 -447.39648

18(Ar) -527.494 -512.25169

19(K) -599.924 -582.12325

20(Ca) -677.558 -657.12386

21(Sc) -760.575 -737.47984

22(Ti) -849.285 -823.40219

23(V) -943.804 -914.80980

24(Cr) -1044.315 -1011.84586

25(Mn) -1150.866 -1114.54139



121

Table IV. Table for the variational parameters in the wavefunction (The only varia-

tional parameter here is the nuclear charge Z∗, and all other parameters

are calculated by solving the H+
2 eigenvalue problem for a variationally best

effective charge.)

Parameter ΨJ(1, 2) ΨJ(1, 2)f(r12)

Z∗ 0.7786 0.9370

p 0.9152 1.0647

a1 0.0072 0.0096

a2 0.0004 0.0004

b2 0.0955 0.1303

b4 0.0014 0.0026

BE(eV) 3.44 4.60

Parameter ΨH(1, 2) ΨH(1, 2)f(r12)

Z∗ 0.7806 0.9407

p 0.9171 1.0680

A1 -0.0376 -0.0412

A2 -0.0045 -0.0043

B2 0.0959 0.1312

B4 0.0014 0.0026

BE(eV) 3.46 4.62
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Table V. Comparisons among different descriptions to the BEC problem
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Table VI. 11 different types of terms in the 3rd moment of evaluation

1 non-degenerate case where k 6= ±k′ 6= ±k′′

2 k = k′ 6= ±k′′

3 k = −k′ 6= ±k′′

4 k = k′′ 6= ±k′

5 k = −k′′ 6= ±k′

6 k = k′ = k′′

7 k = k′ = −k′′

8 k = −k′ = k′′

9 k = −k′ = −k′′

10 ±k 6= k′ = k′′

11 ±k 6= k′ = −k′′



124

T

S

1(2)T

3(4)T

1(4)S 2(3)S

1 2

34

Fig. 1. Carnot cycle diagram in T-S plane : 1 → 2 and 3 → 4 are isothermal process

with constant temperature. 2 → 3 and 4 → 1 are adiabatic process with

constant entropy.
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2  P
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isothermal process with T
h
 = 300 K

isothermal process with T
l
 = 200 K

adiabatic process

adiabatic process

1

2

3

4

Fig. 2. Diagram in P-V plane for the Carnot cycle with single-photon.
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r = 0.57143

He(Z = 2) 

E = -3.0625

Fig. 3. Diagram for the He atom in Bohr model. Two electrons have same distance

from the nucleus and are located at the opposite ends of the diameter, which

has the maximum distance from each electron.
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θ = 176

r = 0.36381

r = 3.8490 

(2s) 

(1s) 
(1s) 

Fig. 4. Diagram for the Li atom in Bohr model. The other electrons in 1s are located

slightly off from the straight line adjoining the nucleus and the electron. All

three electrons are on the same plain.
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r = 0.26690

r = 0.63439

(1s) 

(1s) 

(2s) (2s) 

Fig. 5. Diagram for the Be atom in Bohr model. All four electrons are on the same

plain.

(2sp) 

(2sp) 

(2sp) 

(1s) 

(1s) 
E = -24.79358

r = 2.8021 

r = 0.21081

Fig. 6. Diagram for the B atom in Bohr model. (sp)-hybridization. All three electrons

in (2sp) are on the same plain and the joining line between two (1s) electrons

is prependicular.
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(2sp) 

(2sp) 

(2sp) 

(2sp) 

(1s) 

(1s) 

Fig. 7. Diagram for the C atom in Bohr model. Four outer-electrons make

(sp2)-hybridization and tetrahedral structure.
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Fig. 8. Relative error of the ground-state energy of the multi-electron atoms compared

to the experiments until Z = 30. Notice that the carbon atom (Z = 6) has the

smallest relative error in absolute value.
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screening effects due to the other bonding electrons. In

order to obtain better MO’s, higher lying atomic con-
figurations, e.g., 2s and 2p states, are added. Motivated

by such considerations, James and Coolidge [10] were

led to a trial wavefunction for H2 of the form

WðJ:C:Þ ¼ 1

2p

X
Cmnjkle

�aðk1þk2Þ

� ðkm1 k
n
2l

j
1l

k
2r

l
12 þ kn1k

m
2 l

k
1l

j
2r

l
12Þ; ð2Þ

where the notation is explained in Figs. 1 and 2, and the

coefficients Cmnjkl are variational parameters. Following

such an approach, they and others who improved on

this approach, for example, Kolos et al. [11], got a

binding energy 4.74 eV for H2 by taking 10–249 terms in

the series. This is an important result because it shows

that quantum mechanics can describe the chemical bond

quantitatively. However the physically appealing picture
of the bond has been lost. To quote Mulliken [12]:

[T]he more accurate the calculations become the more the con-

cepts tend to vanish into thin air.

We are thus motivated to search for a middle ground

between wavefunctions of the types represented by Eqs.

(1) and (2). In particular we note that H2 in the united

atom limit, i.e. He, is modeled quite well by the Hy-

lleraas wavefunction

WHeð1; 2Þ ¼ WH;1sð1ÞWH;1sð2Þv00ð1þ jr12Þ; ð3Þ

where WH;1sð1Þ is the H atom 1s orbital, and the effective

nuclear charge and j are variational parameters. The
singlet spin function v00 is given by v00 ¼ ½j "1#2i�
j #1"2i�=

ffiffiffi
2

p
and the Hylleraas correlation factor,

ð1þ jr12Þ, accounts for the electron–electron repulsion.

This yields a ground state energy which is accurate to

better than 1% [14].

We are therefore motivated to consider a separated

atom wavefunction for H2 of the form

WH2
ð1; 2Þ ¼ WHþ

2
;1rð1ÞWHþ

2
;1rð2Þv00ð1þ jr12Þ; ð4Þ

as indicated in Fig. 3, where now WHþ
2
;1r is the exact two-

center orbital obtained from solving the Schr€odinger
equation for the ground state of Hþ

2 in prolate-sphe-

roidal (ellipsoidal) coordinates. As is explained in the

discussion, j ¼ 1=2 in the Hylleraas correlation factor is

Fig. 2. (a) Elliptical coordinates (k, l). (b) Prolate spheroidal coordinates (k, l, /) with k ¼ ðra þ rbÞ=R and l ¼ ðra � rbÞ=R. The range of coordinates
is 16 k61, �16l6 1 and 06/6 2p.

Fig. 3. Schematic correlation diagram for He, the united-atom limit,

and H2, the separated-atom case.

Fig. 1. Electronic distances in diatomic molecule. A and B are the

positions of the nuclei with nuclear charges Za and Zb, respectively. The
nuclei are fixed and the distance between them is taken to be

the equilibrium bond length for the given molecule, R ¼ R0. The po-

sitions of the electrons are denoted by 1 and 2.

386 M.O. Scully et al. / Chemical Physics Letters 389 (2004) 385–392

Fig. 9. Electronic distances in diatomic molecule. A and B are the positions of the

nuclei with nuclear charges Za and Zb, respectively. The nuclei are fixed and

the distance between them is taken to be the equilibrium bond length for the

given molecule, R = R0. The positions of the electrons are denoted by 1 and

2.
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screening effects due to the other bonding electrons. In

order to obtain better MO’s, higher lying atomic con-
figurations, e.g., 2s and 2p states, are added. Motivated

by such considerations, James and Coolidge [10] were

led to a trial wavefunction for H2 of the form

WðJ:C:Þ ¼ 1

2p

X
Cmnjkle

�aðk1þk2Þ

� ðkm1 k
n
2l

j
1l

k
2r

l
12 þ kn1k

m
2 l

k
1l

j
2r

l
12Þ; ð2Þ

where the notation is explained in Figs. 1 and 2, and the

coefficients Cmnjkl are variational parameters. Following

such an approach, they and others who improved on

this approach, for example, Kolos et al. [11], got a

binding energy 4.74 eV for H2 by taking 10–249 terms in

the series. This is an important result because it shows

that quantum mechanics can describe the chemical bond

quantitatively. However the physically appealing picture
of the bond has been lost. To quote Mulliken [12]:

[T]he more accurate the calculations become the more the con-

cepts tend to vanish into thin air.

We are thus motivated to search for a middle ground

between wavefunctions of the types represented by Eqs.

(1) and (2). In particular we note that H2 in the united

atom limit, i.e. He, is modeled quite well by the Hy-

lleraas wavefunction

WHeð1; 2Þ ¼ WH;1sð1ÞWH;1sð2Þv00ð1þ jr12Þ; ð3Þ

where WH;1sð1Þ is the H atom 1s orbital, and the effective

nuclear charge and j are variational parameters. The
singlet spin function v00 is given by v00 ¼ ½j "1#2i�
j #1"2i�=

ffiffiffi
2

p
and the Hylleraas correlation factor,

ð1þ jr12Þ, accounts for the electron–electron repulsion.

This yields a ground state energy which is accurate to

better than 1% [14].

We are therefore motivated to consider a separated

atom wavefunction for H2 of the form

WH2
ð1; 2Þ ¼ WHþ

2
;1rð1ÞWHþ

2
;1rð2Þv00ð1þ jr12Þ; ð4Þ

as indicated in Fig. 3, where now WHþ
2
;1r is the exact two-

center orbital obtained from solving the Schr€odinger
equation for the ground state of Hþ

2 in prolate-sphe-

roidal (ellipsoidal) coordinates. As is explained in the

discussion, j ¼ 1=2 in the Hylleraas correlation factor is

Fig. 2. (a) Elliptical coordinates (k, l). (b) Prolate spheroidal coordinates (k, l, /) with k ¼ ðra þ rbÞ=R and l ¼ ðra � rbÞ=R. The range of coordinates
is 16 k61, �16l6 1 and 06/6 2p.

Fig. 3. Schematic correlation diagram for He, the united-atom limit,

and H2, the separated-atom case.

Fig. 1. Electronic distances in diatomic molecule. A and B are the

positions of the nuclei with nuclear charges Za and Zb, respectively. The
nuclei are fixed and the distance between them is taken to be

the equilibrium bond length for the given molecule, R ¼ R0. The po-

sitions of the electrons are denoted by 1 and 2.

386 M.O. Scully et al. / Chemical Physics Letters 389 (2004) 385–392

Fig. 10. (a) Elliptical coordinates (λ, µ). (b) Prolate spheroidal coordinates (λ, µ, φ)

with λ = (ra + rb)/R and µ = (ra − rb)/R. The range of coordinates is

1 ≤ λ ≤ ∞, −1 ≤ µ ≤ 1 and 0 ≤ φ ≤ 2π.

Fig. 11. Trajectory of a periodic electron motion in H+
2 . The electron moves in a plane

that passes through the molecular axis.
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Fig. 12. Ground state potential energy curve of H+
2 molecule.
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Fig. 13. Trajectory of ∞-like electron motion in H+
2 . The electron moves in a plane

that passes through the molecular axis.
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Fig. 14. Ground state potential energy curve of H+
2 molecule obtained for∞-like elec-

tron trajectory and “exact” quantum mechanical dots from Ref. [36].
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Fig. 15. Ground state potential energy curve of H+
2 molecule obtained for∞-like elec-

tron trajectory (solid line), “exact” quantum mechanical dots and curves from

Ref. [17] obtained using primitive quantization (dash-dot line) and uniform

quantization (dashed line).
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Fig. 16. Average occupation number in condensate state of an ideal Bose gas.



138

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

normalized T

<δ
 n

02 >/
N

 

 

N=10
N=20
N=50
N=200
N=1000

N : Total Number of Boson

Ideal Bose Gas
in a periodic cubic Box

Fig. 17. Variance of the occupation number in condensate state of an ideal Bose gas.
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Fig. 19. Distribution of 3 bosonic particles in 3 level system.
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Fig. 20. Average number of particles in condensate state : N = 200.
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Fig. 21. Fluctuation of the number of particles in condensate state : N = 200.
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Fig. 22. 3rd centered moment of the number of particles in condensate state : N = 200.
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