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ABSTRACT

Problems on Non-Equilibrium Statistical Physics. (May 2010)
Moochan Kim, B.S., Postech;
M.S., Postech

Chair of Advisory Committee: Dr. Marlan O. Scully

Four problems in non-equilibrium statistical physics are investigated: 1. The
thermodynamics of single-photon gas; 2. Energy of the ground state in Multi-electron
atoms; 3. Energy state of the Hy molecule; and 4. The Condensation behavior in N
weakly interacting Boson gas.

In the single-photon heat engine, we have derived the equation of state similar
to that in classical ideal gas and applied it to construct the Carnot cycle with a single
photon, and showed the Carnot efficiency in this single-photon heat engine.

The energies of the ground state of multi-electron atoms are calculated using the
modified Bohr model with a shell structure of the bound electrons. The differential
Schrodinger equation is simplified into the minimization problem of a simple energy
functional, similar to the problem in dimensional scaling in the H-atom. For the
C-atom, we got the ground state energy —37.82 eV with a relative error less than 6
%.

The simplest molecular ion, Hj, has been investigated by the quasi-classical
method and two-center molecular orbit. Using the two-center molecular orbit derived
from the exact treatment of the Hy molecular ion problem, we can reduce the number
of terms in wavefunction to get the binding energy of the Hy molecule, without using
the conventional wavefunction with over-thousand terms. We get the binding energy
for the Hy with Hylleraas correlation factor 1 + krio as 4.7eV, which is comparable

to the experimental value of 4.74 eV.
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Condensation in the ground state of a weakly interacting Bose gas in equilibrium
is investigated using a partial partition function in canonical ensemble. The recursive
relation for the partition function developed for an ideal gas has been modified to
be applicable in the interacting case, and the statistics of the occupation number in
condensate states was examined. The well-known behavior of the Bose-Einstein Con-
densate for a weakly interacting Bose Gas are shown: Depletion of the condensate
state, even at zero temperature, and a maximum fluctuation near transition temper-
ature. Furthermore, the use of the partition function in canonical ensemble leads to
the smooth cross-over between low temperatures and higher temperatures, which has
enlarged the applicable range of the Bogoliubov transformation. During the calcula-
tion, we also developed the formula to calculate the correlations among the excited

states.
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CHAPTER I

INTRODUCTION
Quantum mechanics developed in last century has revealed the underlying mechanism
of the nature in very detail: from microscopic scale such as atoms and molecules to
macroscopic scale such as the structure of black hole and the galaxies.

Here, we will investigate the application of the quantum mechanics to simple four
systems: a single-photon heat engine, multi-electron atoms in dimensional scaling,
binding energy in hydrogen molecule, and a weakly interacting Bose gas with N
particles. Even though we will use some semi-quantum methods to describe the
multi-electron atoms and hydrogen molecule, quantum mechanics still provides the
basic tools to treat these problems.

In Chapter II, the equation of states of a single-photon is derived and the Carnot
engine with single photon is considered. In Chapter III, the dimensional scaling has
been applied to the multi-electron atoms to get the energy of the ground states. In
Chapter IV, the two-center molecular orbit was considered and applied to calculate the
binding energy of a hydrogen molecule. In Chapter V, the condensation behavior of
the weakly interacting Bose gas was calculated using the Bogoliubov transformation.

Finally, summary of this dissertation is in the last chapter.

The journal model is Physical Review A.



CHAPTER II

EQUATION OF STATE OF A SINGLE PHOTON GAS

A. Introduction

The laws of thermodynamics were formulated in the nineteenth century through the
epoch making work of Carnot, Classius, Joule and others. The theoretical predictions
concerning the behavior of the physical systems based on these laws were found to be
in complete agreement with the experimental observations. An important step in the
development of thermodynamics was the formulation of the kinetic theory of gases
[1] that describes the macroscopic behavior of the gases. For example, it was shown
that the pressure of a gas arises due to the molecular motion and the collision of these
molecules with the walls of the container. The relationship between the temperature,
pressure, volume and the number of particles were formulated. These earlier studies
treated atom and molecules to be classical particles.

More recently, the foundations of thermodynamics are being reexamined within
the framework of quantum mechanics with the inclusion of the internal quantum
states of the working molecules. These studies have shed new light on the classical
formulation of the laws of thermodynamics. A classical example of such a system is a
laser where atoms or molecules are prepared in an inverted state, a state corresponding
to “negative temperature” [2].

Another area where a reevaluation of the laws of thermodynamics is taking place
is in the study of the operating limits of ideal heat engines in light of recent devel-
opments in quantum optics, such as cavity QED [3], the micromaser [4], and the
quantum coherence effects [5, 6]. For example it is shown that it is possible to obtain

laser action in the hot exhaust gases of the heat engine and the Otto cycle engine



efficiency can be improved beyond that of the “ideal” Otto heat engine via such a
“quantum afterburner” [7].

Motivated by the role of the quantum properties of the radiation field in such
considerations, we discuss the quantum thermodynamics of a “photon” gas in this
paper, taking the lead from well known classical thermodynamics results.

In Section B, we review the thermodynamics of an ideal mono-atomic gas and
derive the equation of state. In Section C, we derive the corresponding equation
of state for a single-mode photon gas. In Section D, the Stefan-Boltzmann law is
derived for a multi-mode photon gas. Finally, in Section E, we construct a single-

photon Carnot cycle and calculate the efficiency of this cycle.

B. Ideal Gas Inside a Cavity

An ideal gas of N atoms inside a cavity of volume V in thermal equilibrium at

temperature T is described by the equation of state [1]
PV = NkgT, (2.1)

where P is the pressure of the gas and kg is the Boltzmann constant. Although this
relation can be considered as a phenomenological relation, we derive here from first
principles with a simple argument.

We consider a single atom of mass m confined inside a cube of length L. This
single atom is considered as the quantum ideal gas in the classical limit. The Hamil-

tonian is

2 h2 k’2 ]{?2 k’2
g 2 Mk Ry R (2.2)
2m 2m

Due to the periodic boundary conditions, the possible values of k., k,, and k. are



quantized, i.e.,

2T 2 2
ky = Nyp—. k, = nyf, and k, = nzf, (2.3)

where n,, n,, and n, are integers. The total energy of the ideal gas with NV atoms is

k2+k2+k2 9m2h?
) _ ;LQ ST (2 +nd+nd). (2.4)

ka,ky k2 N, Ny, Nz

It is clear that E is related to the volume V = L? via E = f(N)/V?/? where
f(N) is a function that depends only on the number of atoms. The pressure of the

ideal gas is therefore given by

oF 2F
(av)N 3V (2.5)

Next we calculate the average energy (FE) using the probability of the occupancy
of the state, which is given by the Boltzmann factor. By changing the summation

into the integration over k,

Z A2 (k2+k2+k2) R2g2
Ee — 2mkpT BR o~ amkpT rk2dk 3
kzzkyykz m
(E) = e Z = §kBT. (2.6)
Zk - e 2mRpT fe 2m’WBT 4rk2dk
The pressure P is simply given by
2F N
P=—-—==kgT— 2.7
3V PV 27)

where we used E = N (E). This completes the derivation of the equation of state,
Eq. (2.1).



C. Single-mode Photon Gas

We now consider a single-mode radiation field inside of a cavity at temperature T’
instead of an ideal gas. Such a field distribution can be obtained in cavity QED
systems by, for example, passing a beam of two-level atoms that is initially prepared
in a thermal distribution of the two levels through a cavity that is resonant with the
atomic transition [4].

We assume that the cavity of length L, and cross-section A can support only a

single-mode of the field at frequency

0=Q, = (2.8)

where n is an integer. In equilibrium, the density matrix of the field is given by the

thermal distribution [5, 6]
Py = €M (1 — 7P RBT)S (2.9)

i.e., the density matrix is diagonal with vanishing off-diagonal elements. The mean

number of photons 7 in the mode is

R 1
=D mom = Gar T (2.10)
n=0

and the internal energy U of the photon gas is given by

U = nhs). (2.11)

Our goal is to derive an equation of state for the photon gas of the form Eq. (2.1).



For this purpose, we first note that the entropy of the photon gas Sy, is given by [§]
Sph = —kgTrplnp = —kBme In pp,. (2.12)
On substituting from Eq. (9) for p,,, we obtain
_hQ)

Spn = o = kpln (1 — e "¥/ksT) (2.13)

where we note the diagonalization condition ) pn,, = 1. Next we consider the

Helmholtz free energy, which by definition is given by
F=U-TS =kgTln (1 — e "ksT) (2.14)

and where we have used Eq. (2.11). Now we show that the pressure of the photon

gas P is given by
P=- <g—‘};)T (2.15)
It follows from the definition of the Helmholtz free energy F' that
dFF =dU —TdS — SdT. (2.16)
We recall that, according to the first law of thermodynamics,
dU =1TdS — PdV, (2.17)
yielding
dF = —PdV — SdT. (2.18)

Eq. (2.14) now follows in a straightforward manner.

We consider the change of volume only along z-direction so that P = —(0F/AJL,)r.



Recalling Eq. (2.8), the pressure P is given by

1 (OF <)
p—_ L _ 2.1
A, <8Lx>T vV (2.19)

and the equation of state for a single-mode photon gas is
PV = nhf. (2.20)

This equation has a similar form as Eq. (2.1) for an ideal gas. In an ideal gas the
number of atoms N is well defined and kgT is the average energy of each atom. Here
the energy of each photon A{2 is well defined and 7 is the average number of photons.

These basic ideas for a photon gas developed in this section provide a founda-
tion for treating more complicated problems relating to quantum heat engines. For
example, we shall discuss a Carnot cycle (Fig. 1) engine in which the operating gas

is composed of light quanta instead of a collection of atoms or molecules.

D. Multi-mode Photon Gas

So far we considered only a single mode of the cavity. We now consider the general
case of multi-mode photon field in thermal equilibrium at temperature 7" inside the
cavity.

Each mode of the radiation field is statistically independent. Therefore the equa-

tion of state for each mode (say in the z-direction) is
P,V =ny, hQ,, . (2.21)

The total pressure P is the sum of the partial pressures of each mode. For simplicity,

we consider the cavity to be a simple cubic with side L. The relations among modes



(Qn,, Qp,, Q) and wave vector k is
Q,. = kgc, Q,, =kyc and Q,, =k.c. (2.22)

The total pressure is

1 _
1 Z _
= W 2 thanz

We now change the summation into an integral in phase space, so that

1 [ 1 ) _
P = 2 / (%)3(47#@ dk) hQ (k) (k)

h 03
T 3523 /dQ hUksT _ |

ko [(kgT\"' [ 2%z
- 3m2e <T) /0 et —1
171'2 (k‘BT)4

315 (he)?

4o, _,

= T 2.24
22T, (224)

where o = 72k}, /60h*c? is the Stefan-Boltzmann constant. We introduced a factor of
2 in the first line to account for the two possible states of polarization. Eq. (2.24) is

the Stefan-Boltzmann law of blackbody radiation.

E. Application to the Carnot Cycle with One Photon

The Szilard had suggested that the quantum engine can be operated by a sinlge atom
[9]. Similarly, we may construct the quantum engine operated by a single photon.
To construct the Carnot cycle engine, let’s compare both equations of states: one

for the ideal gas and the other for the single photon. In the equation of state of the



single photon
PV = nhf, (2.25)

the dependence on temperature is not shown explicitly. However, the average number
of photons n has dependence on the temperature T, and on the volume V. The
volume dependency is imposed by the boundary condition to the available frequency
Q implicitly.

Furthermore, the total internal energy U for the single photon is
U = nhfl. (2.26)

It means that internal energy is dependent on volume V' and this is also the difference

from the usual ideal gas.

F. Quantum Carnot Cycle

Carnot cycle consists of two processes : the isothermal process (constant temperature)
and the adiabatic process (constant entropy). The corresponding diagram in T-S
plane is just a rectangular, shown in Fig. (1) : The horizontal lines correspond to the
isothermal process, and the vertical lines to the adiabatic process.

Let’s explicitly see the processes for the system which is confined in a cylinder

with one movable side as like in a usual piston.

1. During 1 — 2 (or 3 — 4) : (Isothermal Process)

Since the entropy of the single photon is

hQ
Spn = A = kpln (1 — e m¥/ksT) (2.27)
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the heat transfer in this process is

147
Qin:TAS:Uz—U1+kBTln<1+n2> ) (2.28)

ny
The change of internal energy is NOT vanished since it depends on the volume through

the frequency 2. We can get the transferred heat into the system.

Since

1
L Yo (2.29)

O —
L, L,

we can calculate the average number of photons for the given volume V5 at stage 2

ng = (2.30)

and the pressure

noh§2 h$2 1
P, = n2v = . (2.31)

2 X"V <1 I ﬁ_ll ) X _q

with the volume expansion factor y = % == Q—; (cavity length expansion factor).
2. During 2 — 3 (or 4 — 1) (Adiabatic Process)

Since

_ 1

n = ehﬂ/kB—T_l, (232)

we may rewrite the entropy in terms of 7.

hQ
SQ = ’fLQTQ + ]CB In (1 + ﬁg) . (233)
2
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By equating the entropy at 2 and 3,

hQ hQ)
Ay + kpIn (1 +fp) = fig—— + kpIn (1 + 7). (2.34)
TQ TS

It’s nontrivial equation for the adiabatic process. However, there’s a trivial solution.

Qy L
e T = Tia. 2.
T2 T3 N9 ns ( 35)
RV, PV
= = 2.36
"TR, T RO (2.36)
or
PV? = const. (2.37)

Refer the exponent is g for the classical monatomic ideal gas.

The work done during these process will be

3. Model System for Carnot Cycle

Let’s assume a system of a single photon, and set the processes in Carnot cycle as

following :
1. (Stage 1 — 2) isothermal process with double expansion of the cavity
2. (Stage 2 — 3) adiabatic process with decrease of the temperature by two-third
3. (Stage 3 — 4) isothermal compression of the cavity

4. (Stage 4 — 1) adiabatic process with increase of the temperature
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The above processes are shown in the Table I. The processes are controlled by
the change of the volume by moving the movable wall of the cylinder. In isothermal
process the contact with temperature reservoir is sustained, and in adiabatic process
the system was disconnected from the reservoir.

All the above processes are summarized in the P-V diagram which is shown in

Fig. 2.

4. The Efficiency

One of the controversies in quantum system is that the possibilities for the overcome
of the efficiency of the usual Carnot cycle [1]. The efficiency of this Quantum Carnot

engine with single-photon gas is

AW Tu(Sy— 1) — Ti(Ss — Sy) T
— — =1-—= 2.39
On (S5 = 51) T (2:39)

n

and has the same efficiency as the usual Carnot cycle.
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CHAPTER III

H-ATOM IN D-SCALING AND MULTI-ELECTRON ATOMS IN BOHR MODEL
One of the important question in quantum mechanics is that to calculate the energy
spectrum in any given quantum system. Since we can easily identify the kinetic
energy and interactions among the entities in the system, we might construct the
corresponding Schrodinger equation, even a relativistic one. Anyway, to solve the
problem in analytic or numerical way is not simple problem, even if only 3 particles
are in the system, like He-atom. Historically, for He-atom we can calculate the energy
spectrum using the several methods using a large number of variational parameters
[10]. Here, we introduce another approach to this problem in more practical sense :
to search an easy method to calculate the energy in a complicate system. One of the
way is that Dimensional scaling (D-Scaling) which will be shown in this chapter, and

the application to multi-electron atoms.

A. H-atom in D-scaling

To describe the D-Scaling method, let’s try to solve the Schrédinger equation for the
H-atom in atomic unit to get the physics about the system.

The Schrodinger equation is

2
p A 1, Z

H=—+4+—=—-V —. 3.1
2+T 2 +T ( )

The energy eigenvalues [8] are

E,= -2 (3.2)
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1. Transformation of the Hamiltonian in D-scaling

Since the potentials for any multi-electron systems are well-described by the Coulomb
potential, or the electrostatic interaction, the operators in Hamiltonian are only in
the kinetic energy. To generalize the system into large dimension, and finally to
infinite dimension, let’s generalize the problem into arbitrary large D-dimension. For

simplicity, with vector notation the distance is transformed as

3 D
r? = Zx? — = ZJZZQ (3-3)

Similarly the Laplacian in kinetic energy,
3 D
82 02
i=1 i=1

Since the potential terms has only r-dependence, we simply assume the same form as

Sho
S

in 3-D. Because we only concern the lower states of the system with more symmetries,

let’s use the hyper-spherical coordinate for simplicity. The transformation rule for



D-dimensional space is [11]

x1 =1cosfsinfysinfs---sinfp_q,
Ty =1rsinfsinfysinfs---sinfp_q,
T3 =1 cosbysinfzsind, ---sinfp_q,

x4 =1rcosbfzsinfysinfy---sinfp_q,

xj =rcost_1sinf;sind;---sinbp_q,

Tp_1 =rcoslp_osinfp_q,

rp =rcosfp_q,

where

0<6, <27, 0<0;<7m forj=23,---,D—1,

and D is a positive integer and D > 3.

Then, the Laplacian becomes

0? L
Vb =2 g = Kol - =5
i=1 ?
where
1 90 (4,0
Kpa(r) rP=10r (T 37“) ’
1 0 0 L?
L _ 7 k—1 0, — k—1
(1) sin®~1 6, 00y, S Y00, | sin%0,’

15

(3.6)
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and

82

7 J——
T

(3.10)

The proof for (3.7) is in Appendix A. If we only consider the state with spherical

symmetry, then the hyper-angular part satisfy that
Ly Y(Qpo1)=1l(1+D-2Y(Qp_1), (3.11)

and the Hamiltonian is simplified into

1 I(l+D -2
H:——KD,l(r)%—M

5 5o T V(). (3.12)

After generalizing the dimension of the system, let’s rescaling the wavefunction.

By the following transformation

U=e 2 O (3.13)
the rescaled Schrédinger equation is
102 AA+1)
HV = EV —_—— b =FEP 14
- 20r? + 2r2 V() (3.14)

with A = [+ (D — 3), resembling the usual angular momentum quantum number !
in 3-D.
Then, with the rescaled distance and energy,

4

mr, (3.15)

Ty =

(3.16)
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the Schrodinger equation is

. +__——————1¢:E@. (3.17)

1 4 & (D=3 Z
2(D—-1)20r2  2(D—-1)r2 ry

In the limit D — oo, the final form is

1 Z
— —— | ®=FE,0. 3.18
[2r§ rj (3.18)
The differential equation reduces into a simple algebraic equation. Since our interest

is on the lowest energy, that is the energy of the ground state, the minimum position

for 74 and the corresponding energy is given by a differentiation with r;.

Ts = =, (3.19)

o — (3.20)

B. Quantization Rule and Shell Structure

The dimensional scaling which is introduced in earlier section can easily handle the
ground-state for H-atom. And the result is same for the original Bohr model. To
extend these concept to multi-electron atoms, we need one result from quantum me-
chanics : shell structure of the electrons in the atoms. Fermionic property of the elec-
trons and their angular momenta construct the shell structure of the atoms. Here,
we simply introduce this shell structure by the quantization rule. The acceptable

momentum is

r;p; =n; with positive integer n;. (3.21)
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By the analogy with Eq. (3.18), the kinetic energy in the Bohr model is transformed

into a simple polynomial function of radius r;.

N p? N 2 1 M2
3 o= Z Vi -3 > — (3.22)
i=1 i=1 i=1

C. Multi-electron Atoms in D-scaling

By replacing the Laplacian ’;—22, the Hamiltonian is reduced into a simple polynomial

function.

H = Z(_Eﬁ) ZZTJZJ (3.23)

The problem is simplified from to solve the eigenvalue problem of a differential equa-
tion into to get the minimum of a polynomial function.

Due to the Pauli exclusion principle, each electron should occupy different state
because it is fermion. And the quantization of the eigen-energies in H-atom shows
the shell structure which is well-known since the early Quantum mechanics. From the
shell structure of the multi-electron atoms, let’s assume that the quantum number n;
is shown in Table. (IT). For example, the 3p-state has maximally 6 electrons in the
state and the corresponding quantum number is n; = 3 with two-fold spin degeneracy.

For the ground state of the multi-electron atoms, the Hamiltonian can be con-
structed by assigning proper quantum number n; for each electron in the atoms. Since
the number of variables in multi-electron atoms with N-electrons are 3N, we will use
the Downhill Simplex Method (DSM) as minimization for the Hamiltonian function
[12].

The results are shown for several atoms. Especially, for the carbon atom with
6-electrons, its configuration of the ground state is in Fig. 7, which shows the (sp?)-

hybridization similar to the result of quantum mechanics.
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The results for the energy of the multi-electron atoms are summarized in Table
(III). The C-atom has the minimum relative error, and the atoms has the relative

errors less than 6 %.
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CHAPTER IV

BINDING ENERGY IN HYDROGEN MOLECULE
After solving the hydrogen atom problem in quantum mechanics, the next stage might
be the system with a few constituents : for example, He-atom or Hy molecule [13]. In
this chapter, we might go to the molecular problem : Hs molecule. Even though we
can write the corresponding Schrodinger equation for molecules, it’s almost impossible
to solve the problem analytically to get the energy eigenstate, and difficult even in
numerical methods.

Here, we will introduce two different method to solve this simplest molecular
problem: One is the quasiclassical method and the other is quantum mechanical
method.

Usually, the classical method fails to describe the quantum system. In the first
part of this chapter, we will describe how to treat the electron’s trajectory in Hj
molecular ion, and calculate the lowest energy of this molecular ion. In the second
part, we will to construct the Molecular orbit for the system with two centers in
quantum mechanics. After getting the two-center molecular orbit, we will apply it
to get the energy of ground state in Hy molecule. Just using only one ground state
molecular orbital, modified by a simple electronic correlation factor and without any
free (variational) fitting and find a binding energy of 4.5 eV. With the same form (the
exact solution for Hy ), but with a couple of the constants interpreted as variational
parameters, the binding energy is found to be 4.7 eV [13]. The present results are
obtained (and strengthened) by independent numerical and analytical calculations,

with different choices for the representation of the exact Hy solution.
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A. System with Two Centers

Let’s consider a simple system with two nuclei and one-electron. Then, the Hamilto-
nian is

P2 P? 2z et Z,7e?
= b P 20Ty Zetbm (4.1)
2M 2Mb 2m Tal b1 R

Since the mass ratio between the nuclei (that is, proton in Hj ion) and electron is
M, /m = M,/m ~ 1836, we might neglect the motion of nuclei and consider as a fixed
particle with infinite mass, that is the Born-Oppenheimer approximation [14]. Then,

the Hamiltonian is reduced into

2 7. Zpe®  ZaZpe
=P A%  25C | ZAZBC (4.2)

2m A1 'B1 R

In coordinate representation,

K2 Zae2  Zpe:  ZiZpe?
H— g2 2% 2BC | 2A25C (4.3)

2m T A1 Bl R

For simplicity, let’s use the atomic unit for the system. That the distance is measured

47reoh

by the Bohr radius ag = = 0.529A and the energy is measured by the twice of

Rydberg energy Fryq = 2755~ me’

S = = 27.21eV = 2Ry. In fact, 1 Ry is the energy of the

ground state of the Hydrogen atom. Then, the rescaled Hamiltonian with redefined

variables is

(4.4)

Here, 741 (rp1) is the distance from Nucleus A (B) shown in Fig. 9. In the above
form, there’s only dimensionless parameters to simplify the arithmetics of the energy
calculation. The final form is also gotten by replacing A = m = e = 1. The detail

explanation for the atomic unit is found in Englert’s book [15].
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B. Hamiltonian in Two-center Coordinate

Since there’s two centers given by two nuclei, the proper coordinate is also that with
two centers.
Here, we might use the spheroidal coordinate that is defined through following

definition.

(4.5)

(4.6)

with azimuthal angle ¢ which is in usual 3-D cylindrical coordinate. Fig. 10 clearly
shows the meaning of (A, u, ¢).
Then, the above Hamiltonian can be written in terms of (A, p, ¢) gives the cor-

responding Schrodinger equation for Hf molecular ion as

o] -] e ]

) x| ou X1 1— 42| 8¢?
2L (g Yoo oy Lol =
+2R [4 (E R)()\ u)+RAM_o. (4.7)

C. Quasiclassical Description of Chemical Bonding of Hj Molecular Ton

If electron motion is in the plane passing through the molecular axis then the action

is given by

A K
1 B+ 2mR\ 1 B
— B+ [ ()omreE+ 2 EmR2E — 4.
S t /\/2mR VR d\ /\/2mR 1_M2d,u, (4.8)
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where m is the electron mass, E is the electron energy and f is a constant of motion.

For finite motion £ < 0, § < 0. In dimensionless units
R — aoR, E— EQE, t— t/Eo, (49)

where ay = h? /me? is the Bohr radius, Ey = €2 /ag is one Hartree, the action reads

A H
1 G+ 2R\ 1 I}
=—FEt+h —R2E+~"—"—""d\+h —R2E — dj. 4.1
S + /\/2}% + SV + /\/2}% 1_M2u (4.10)

Canonical momenta associated with A and p are

oS 1 B+ 2R\
—_ — —_— 2 —
P= gy h\/QR E+ =5 (4.11)
S 1 3
S pu— —_— 2 —

If electron moves in a plane then its motion is determined by four initial conditions:
initial values of A, i, px and p,. We are interested in trajectories which correspond
to periodic motion. For the planar electron motion the periodic trajectories exist if,
e.g., the electron at some point moves with zero velocity. This point is determined

by the condition py = 0 and p, = 0, which yields

2 | E R2E\ |

Mg = ——— (141 == (5= , 4.1
RE +\/ > (5 2 ) (4.13)
2 | E R2E\ |

Ay = ——— (1= J1=2 (5= , 4.14
RE \/ 2 (ﬁ 9 ) (4.14)

2

fmae = —1/1 — B (4.15)

R2E"
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At initial moment of time the electron starts to move with zero velocity from a
point with coordinates Apax, fimax- During the motion p changes from pip., to —1
and then back to piac. The electron trajectory can be obtained from the equations
0S/OE = Cy, 0S/08 = Cy, where constants C; and Cy are given by the initial

conditions. The second equation yields

e dA s d
22— T/ (nax — N (A — )\mm) V1= p? \/MM — 2. (4.16)
while the first one leads to
ﬁd’\ Ly (4.17)

+ [ ===
\/_hR \/ max )\ - /\min) \V H'Z - N?nax
I

Eq. (4.16) can be solved in theorems of Jacobi elliptic functions. After some

algebra we obtain the following formula for the trajectory

A+1=
1 + )\max

1 - 2 \[\/ Amax—Amin : (I—pmax) (Pmax—#)  14pmax (Amax—1)( m1n+1)
1 + Z(Amax 1>Sn |: 1— Mmax F (arCSIH (1+Nmax)( MHmax — H)’ 1- —Mmax 2(Amax mm

(4.18)

where F(p,k) = [} \/ﬁ%n—% is the elliptic integral of the first kind, sn(p, k) is the
elliptic sinus.

The electron motion is completely specified by two constants: the initial coordi-
nates Apax, fmax O equivalently by the energy E and the constant 5. However, the

motion is periodic only if periods of A(t) and p(t) are commensurate. For the ground

state this suggests that when p = —1 it should be A = Ay.. Then from Eq. (4.18)
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we obtain a constraint for possible values of . and fipax:

1 + Arﬂa}(
1 + %()\max _ 1)8112 |:\/§\/ )\max_)\minF <E 1+Hmax> , \/()\maxfl)()\min+1)J .

17,Ulmax 27 1*Hmax 2()\max*)\min)

)\max =—-1+

(4.19)

As a result, only one free parameter, e.g. the electron energy E, remains unknown.
Figure 11 shows a periodic electron trajectory. The spacing between nuclei is
R = 2 a.u.. Electron starts to move from a point A = 1.82, u = —0.12. The trajectory
crosses the molecular axis twice at A =1, p = —0.33 and A = 1.82, p = —1. At the
second crossing point the trajectory is perpendicular to the molecular axis. The total
energy is Fiota = F 4+ 1/R = —0.60 a.u.
To find the potential energy curve F(R) we need an additional equation that

constrains F (or (3). A possible way is to use the force equation:

_9E(R)
oR

F.(E.R) = (4.20)

where F,.(E, R) is the average force of interaction between a nucleus and the electron,
E(R) is the electron energy. The average force on the nucleus 1 due to the interaction

with electron points along the molecular axis and is given by

F.(E,R) = % /0 Cis%(et()t)dt, (4.21)

where T is the period of electron motion, # is the angle between r; and molecular

axis. The force can be written as

Hmax cos @ dp

F(E,R)=—_1*

(4.22)
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From Egs. (4.16) and (4.17) we obtain

RV e v e
[t X N . (4.23)

Then using cos€ = (1 + Ap)/(A+ p) and 1 = (A + p)R/2 Eq. (4.22) yields

f;u'max (1“1‘)\/.1;)()\—#)
4 —1

2 2 2 2 dl/[/
FAE.R) = = SRV (4.24)

2 Hmax ()\2—}12) d
fil \/1_/1‘2 \/#2_/‘1211&( //L

In this equation A is given by Eq. (4.18). Egs. (4.20) and (4.24) provide the additional
constraint equation. However since Eq. (4.20) is differential we have to specify one
point in the potential curve (initial condition). As soon as this point is specified the
whole potential curve is obtained by solving the differential equation. However the
initial point remains arbitrary and has to be determined by additional arguments.

Another way to obtain a constraint equation is to use an adiabatic invariant

fpds = 2mhn, (4.25)

where

2 (1 1
= V2 |E+ = 4.26
Y f\/ +R<>\+M+)\—M> (4.26)

is the electron momentum and the integral is taken along the electron trajectory.

Taking into account

R A du?
ds = /3 — 122 4.27
T M\/A2—1+1—u2 (4.27)

and

AN (2 = D (Amax = VA = Auin)
(du> N 1 — ) (2 — 12,.) ) (4.28)
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we obtain the constraint equation

e R

Hmax 1 1 (/\max B /\)()‘ — /\min) 1
ER2+2R( + )x/AQ— 2 + d
/_1 \/ At A—p M\/(l—/ﬂ)( 8
m

= 5" (4.29)

The “quantum number” n (not necessarily integer or half integer) in the right side of
the equation remains a free parameter.

The adiabatic invariant constraint and the force equation constraint are equiv-
alent to each other. Both these equations contain a free parameter that has to be
specified. The parameter can be determined if we know, e.g., one point in the poten-
tial energy curve.

Fig. 12 compares potential energy curves of Hj molecule obtained using the
present technique (solid lines) with “exact” quantum mechanical dots. We plot two
curves calculated using the force equation for two choices of the initial point. For the
lower curve we chose the initial point by matching F(R) with the quantum mechanical
answer at R = 2 a.u., while for the upper curve we make a match at R =1 a.u. We
also plot the Bohr model result obtained using quantization relative to both nuclei

(dashed line) and molecular axis (dot line).

1. oo-like Trajectory

Another class of periodic trajectories corresponds to motion of the electron from one
nucleus to another. For oo-like motion the electron passes through the molecular

center A = 1, u = 0. Equation of the trajectory is

A 7
/ d\ _/ du
R R S Y N N N

(4.30)
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It can be expressed in terms of elliptic functions as

)\ - >\min
1— )\min

_ (Amax_l) 2 vV )\maxf)\min 3 1_/1’%1ax 1 (Amax—l)()‘min""l)
1 o Ll by i F | arcsin p b’ T ) 2(Amax —Amin)

(4.31)

For the oo-like orbit 2, < 0. The motion is periodic if at the point u = —1, where
the electron crosses molecular axis, A = Ay.. This yields the following constraint

1— )\min

1 _ (/\maxfl) Sn2 vV Amax —Amin F ™ 1 (/\maxfl)()‘min‘i’l)
()\max*)\min) ﬁ\/I_Mrznax 29 /1_N;2na-x ’ 2(/\max*/\min)

AInax - /\min +

(4.32)

Figure 13 shows oo-like trajectory. The spacing between nuclei is R = 2 a.u. The
trajectory crosses the molecular axis three times at A = 1, p = 0 and A = 1.646,
i = +1. At the outer crossing points the trajectory is perpendicular to the molecular
axis. The total energy is Fiota = E 4+ 1/R = —0.6025 a.u.

To find the ground state potential energy curve of Hf molecule we use the quan-

tization conditions

1

1
fpydu = 27h (nu + 5) , (4.34)

where 1/2 appears because the coordinates are bound between two turning points.
We assume that electron motion remains periodic (co-like) under change in the

internuclear spacing R. This imposes constraint (4.32) on F and 3. To find E we need
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only one additional equation which comes from the quantization conditions. Since
only one equation is necessary the conditions (4.33) and (4.34) can not be satisfied
simultaneously. Instead we assume that a linear combination of Eqs. (4.33) and (4.34)
remains invariant. We found that for the ground state of HJ the proper invariant

combination is

5
3j§p,\d)\ + le{pudu = 27h (371)\ +2n, + 5) (4.35)

with ny, = 0 and n, = 1. In terms of elliptic integrals one can write Eq. (4.35) as

Amax
3 V Qmax — A) (A = Ain) 2 i 1
~ V2R E d\+ /2R E|\/1 — 12 F | =, ———
m | |/ A2 —1 +7r\/ BV = i 27 /1 -2,
1
5
= 3ny+2n, + 2 (4.36)

where E(p, k) = f 1 — k2 sin? pdy is the elliptic integral of the second kind. Egs. (4.32)
and (4.36) deterrgine the potential energy curve.

Fig. 14 compares potential energy curve of H molecule obtained by solving
Egs. (4.32) and (4.36) with n)y = 0 and n, = 1 (solid line) and “exact” quantum
mechanical dots. At R > 4.72 a.u. the periodic oo-like trajectory ceases to exist.
Near the bond length and large R our result yields accuracy comparable with those
obtained in [17] using a uniform quantization method. However at small R the present
approach works better. For example, at R = 0.5 a.u. the uniform quantization result
deviates from the “exact” dot by 0.07 Hartree, while our answer has the accuracy of
0.03 Hartree.

Fig. 15 compares our result (solid line) with those of Ref. [17] obtained using

primitive (dash-dot) and uniform quantization (dashed line).
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D. Two-center Molecular Orbit

Now, let’s change the two-center molecular orbit to solve the Schrodinger problem for
H, molecule problem.

With the separation of variables,
(A, @) = LA)M (@)e™?, m=0,£1,+2,--- . (4.37)

The detailed procedure is shown in Appendix B. The separated equations for the A

and p are

d m?
—1)—= A4+ 2R\ —p* A\ — A=0
d)\{ d)\} { tefuA-p >\2—1} ’

RZ,+ 7
R = + b (4.38)
d m?2
. _2 2.2 M:
du{ ) u} { Bap+ 0y 1—u2} "
RZ
R, = = 4.39
2= 5 2 (4.39)

Note that A and p? are unknown and must be solved from (4.38) and (4.39) as
eigenvalues of the coupled system. Once A and p are solved, then the energy F can

be obtained from (B.12).

1. Two Useful Types of Eigenfunction of A(\) for Hy Molecular Ton

To solve the differential equations, it is important to understand the asymptotics of

the solution. Rewrite (4.38) as

(A2 — DA (2)20A (z) + (A + 2R\ — p*A\* — )\2m_2 1) Alz) = 0. (4.40)
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First, consider the case A > 1; we have

2\ A+2R A A2 m?
0=A" A —p’ — A 4.41
)+ N+ [ - S A
~ N'(x) — p*A(N), for A > 1. (4.42)
This gives
A(z) ~ are P 4 age?, for A > 1, where p > 0. (4.43)

The term aseP* has exponential growth for large A, which is physically inappropriate

and must be discarded. Thus
Az) ~ aje ™, for A > 1. (4.44)

Next, we consider the case A > 1 but A &~ 1. In such a limit we have

o

AN~ (A= DM2Y "o (A = 1", (4.45)

k=0
The proof is in Appendix C.

Our results in (4.44) and (4.45) suggest that the form
AN = e PN =1)M2NFF(N), for some function f(\), (4.46)

would contain the right asymptotics for both A > 1 and A ~ 1.

Here, there’s two kinds of useful solutions which have different function forms.
One is called as Jaffé’s type and the other is the simple series solution with Laguerre
function.

The form known as Jaffé’s type is

As(A) = e PN =DM+ 1)7) g, (i—ﬁ)n (4.47)
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and
R
o=——|m|—1. (4.48)
p
This leads to a 3-term recurrence relation
nGn-1— Bnn + Yngns1 = 0, n=0,1,2,...; g_1 =0, (4.49)
where
ap,=Mn—-1-0)n—1—0—m), (4.50)
By =20+ (4p — 20)n — A+ p* — 2po — (m + 1)(m + o), (4.51)
T =(Mm+1)(n+m+1), (4.52)
and, consequently, the continued fraction
(€51
bo _ (4.53)
o 7102
B —
3 Y23
2 By — -

for A and p.

The other form is known as Hylleraas’ solution and the form is

Ar(N) = e PR (N2 - 1)lml/2 7 ﬁmﬂ(m), r=2p(\—1), (4.54)

where L) is the associated Laguerre polynomial and ¢, satisfy the 3-term recurrence

relation

pCr_1 — BnCn + YnCny1 = 0, n=20,1,2,...; c_1 =0, (4.55)
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where

ap =(n—m)(n—m—1-o0), (4.56a)
Bo =2(n—m)*+2(n—m)(2p—0) —[A—p* +2po + (m+1)(m+0)], (4.56b)

Yo =(n+1)(n —2m — o), (4.56¢)
and the same form of continued fractions (4.53).

2. Solution of the M-function

Eq. (4.39) has close resemblance in form with (4.38) and, thus, it can almost be
expected that the way to solve (4.39) will be similar to that of (4.38). First, we make

the following substitution
M(p) = P M(p),  —1>p>1, (4.57)
in order to eliminate the p?u? term in (4.38). We obtain

(1= p®) M) +2p(1 = p*) M’ + | (=2Ry F 2p)pu + (p* — A) —

(4.58)

To simplify notation, let us just consider the case M (u) = e P*M (1), but note that

for M = eP#M (1), we need only make the changes of p — —p in (4.61) below. Write

M) =€) filPra(p), (4.59)
k=0
where P, () is the associated Legendre polynomials, and the 3-term recurrence

relation for fj is

Oénfn—l_ﬁnfn—i_r)/nfn—l—l :07 n:071727"’; f—l EO: (460)
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where

1

= —F|-2 2 4.61
ap, 2(m—|—n)—1[ nRy + 2pn(m + n), (4.61a)
Bo=A—p*+(m-+n)(m+n+1), (4.61b)

2m+n+1

= ——{—2Ry — 2 1 4.61

and, consequently, again the continued fractions of the same form as (4.53). The
continued fractions obtained here should be coupled with the continued fraction (4.53)
for the variable u to solve A and p.

In the homonuclear case, Ry = R(Z, — Z;)/2 = 0, (4.39) reduces to

(1 — p®)M'] + (—A +pPu? — : T/ﬂ) M =0. (4.62)

Even several different optional representations of M might be used, we will choose

M(p) = (1= i)™ " Py (), (4.63)
M(p) = (1= p?)™2N " P o (), (4.64)
M(p) =Y B.Pro (). (4.65)

where L,,(x) is the Laguerre function and z = 2a(A — 1).
The wavefunction for the ground state in Hf has two different, equivalent func-

tion forms. The symmetry of the ground state sets that m = 0, and we will get two



types of function forms.

iy Os) = Noe™ (3 + 1

X [1+ b2 Po(p) + baPy(pr) + -+ -],

#%QwﬂzA@{m{L+Aﬂﬂ@+J%Lﬁm+”}

X 1+ B Po(p) +---1,

35

A—1 A—1\?
Praliy)tehm) T

(4.66)

(4.67)

where P(11) is the Legendre Polynomial and coefficients a; and b; are determined by

a recursion relation.

E. Wavefunction for the Ground State of Hy Molecule

From the exact wavefunction for the Hy molecular ion, we can simply construct the

trial wavefunction of the Hy molecule since two electrons occupy same spatial state

with different spin state. Without the electronic repulsion between the electrons, the

simplest wavefunction for Hy molecule is

“I’J(L 2) = <Z5J()\17 M1)¢J(/\2>/L2)7

‘I’H(L 2) = ¢H()\17 M1)¢H()\27,U2)-

The Hamiltonian for Hy, molecule is

1 Za Z 1 Z, Z 1
H=(--Vi-2t -2 )4 (—ovi-22 -2 [ —+
2 Ta1 p1 2 T'a2 T'p2 T12

1. Correlation Factor

(4.68)

(4.69)

When we construct the wave-function of the Hy molecule, we have neglected the

repulsion between two electrons due to both same electric charges of them. This

repulsion tends to prefer the farther presence between two electrons, so that it reduce
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the probability for the occupation in near distance. Though it is difficult to consider
this effect analytically, we might use a simple function to produce similar behavior.

The well-known factor is the Hylleraas Correlation factor [16] such as
f(].,2) = ]_+:‘i7’12 (471)

where k is the parameter to shows the qualitative degree of repulsive correlation.

Usually, the cusp condition sets that
(4.72)

which is explained in Appendix D.

In our calculation, the variational methods determines the value for .

F. Binding Energy of Hy Molecule

Binding energy is defined as the energy difference between the energy of the molecule
and the total energy of each atom at infinity. For the Hy molecule, the binding energy

is defined as

EBE — (EHgmolcculc - 2EWH atom) (473)

~ (<H>H2molecu]e - 2EH atom) (474)

where (H) is the expectation value of the Hamiltonian gotten from the trial

Homolecule
function Eq. (4.68) and Eq. (4.69) with or without Eq. (4.71).
With full variational parameters, we obtain a binding energy of 4.7 eV, which is

comparable to the experimental value of 4.74 eV.
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CHAPTER V

CONDENSATION IN A WEAKLY INTERACTING BOSON GAS WITH THE
PARTTIAL CANONICAL ENSEMBLE

A. Introduction

After liquefying the Helium-4 by Kamerlingh Onnes in 1908, new area in physics
has been opened: very low temperature physics, or cryogenics. After observing the
superconductivity of the mercury at 1911, new physical phenomena have been inves-
tigated: superconductivity, superfluidity, etc. [18, 19] One of the great achievement
in low temperature physics is the manifestation of the macroscopic quantum states,
eps. the condensation phenomenon in Boson system, which was predicted by Bose
in 1924 and Einstein in 1925. [20, 21] After seventy years later, the Bose-Einstein
Condensation (BEC) has clearly realized in dilute atomic system by Eric Cornell and
Carl Wieman in Rubidium gas at 1995. [22]

Even though the theoretical research had begun about the properties of BEC,
the progress was very slow. After Uhlenbeck pointed out that the cusp in transition
temperature is unusual thing [23], many different aspects on BEC was studied.

The usual method to calculate the thermodynamic properties in equilibrium for
many-body system is using the Grand Canonical Ensemble (GCE). In BEC prob-
lem, the calculation for the condensation behavior done by the GCE seems good :
seemingly clear behavior of the condensation.

However, for the fluctuation in GCE the results are worse : Since the variance in
GCE is ((dng)?) = (ng) (1+ (ng)), the fluctuation seems to show a divergent behavior
as temperature goes below the transition temperature, since almost particles are

in ground state in lower temperature and ((dng)?) — ng with macroscopic number
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of particles ng in condensate state. However, intuitively in very low temperature
there’re few excited particles to participate in fluctuation, that is, small fluctuation
is expected. Furthermore, the number fluctuation is related to the compressibility as

following :

=y \op). "IN N

2

1 (8V) vV ((AN)) 5.1)
T

which can be measured in experiment.[24] So, the divergence of the number fluctuation

in GCE should be solved when we deal the BEC problem.

And this suggests that we abandon the GCE and choose another ones : Canon-
ical Ensemble (CE) or Microcanonical Ensemble (MCE). Here, we choose CE to
investigate the BEC phenomena for finite N boson system. [24, 25, 26, 27, 28]

The correlation function in a physical system is the general measure of correlation
between two quantities, and is used in broad areas of physics. Here, we will treat a
different type of correlation, which is existed in a system with a finite total number
N of particles. Since the available number of particles in one state is restricted by
that in another state by the finite total number of particles, the mutual correlations
of the occupation numbers between them may be nonzero. Even though two states
is statistically independent in thermodynamic limit where N — oo, they might have
a nonzero mutual correlation in finite N. For example, in two-level system with

two boson particles in equilibrium, the mutual correlation of the occupation numbers

(0n10m2) = (N1ng) — (R1)(Ng) can be easily calculated to show negative.

B. Ideal Bose Gas in Canonical Ensemble

Before treating the condensation in the boson system with interaction, let’s consider

the system with N ideal boson particles for simplicity. The model system is contained
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in 3-D cubic box with length L. The Schrédinger equation gives the energy spectrum
for this ideal gas.
2

P
HU = —V = EU. 5.2
o (5.2)

The periodic boundary condition gives

h’k?
E = 5.3
5 (5.3)
where the spatial quantization gives
2m
k = (kg ky, k,) = f(ngc,ny,nz) (5.4)

where n,, n, and n, are integers. [1, §]

1. Density Operator for an Ideal Bose Gas

At thermal equilibrium, we can construct the density operator for an ideal bose gas
in diagonal form with the occupation number in each state. The density operator can

be represented as

prasa = Y P({n,} IN) {n.}) ({n, 3, (5.5)
{nu}

where {n,} denotes the accessible configuration and the corresponding probability
P({n,}|N). Since the total number of particles is fixed, we specify total number N
in the probability.

In the canonical ensemble (CE) which conserves the total number of particles,
we can calculate the explicit form of the probability for P({n,}|N) for n-state, as

shown in Appendix F.
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2. Construction of the Partition Function in Canonical Ensemble

In CE, the restriction of the total number of particles is not easy to handle in analytic
form since the construction of the partition function is non-trivial when we compare
to the same problem in GCE. The partition function in CE is
0 oo
Iy =YY e PRumamg(N =) "n,) (5.6)
n1=07n2=0 {u}
where index p runs over each state and n,,, the number of particles in u-th state, runs
from 0 to infinity and 3 = (kgT)~!. The d-function is the Kronecker-6 which is one
when the argument is zero or zero otherwise. This makes sure that there’'re only N
particles in the system.
From the definition of the partition function, we can derive the probability of
occupation in each state and the recursion relation which can evaluate the N-particle

partition function.

P(n, =n|N) = {d(n, —n))
= (O(ny —n)) — (O(ny — (n+ 1))

= P(n, >n|N)— P(n, >n+1|N)

_ e*nﬂﬁu ZN-n _ e*(”*’”ﬂ%ﬂ (57)
N ZN
and
1 N

The proofs for Eq. (5.7) and Eq. (5.8) are in Appendix F.
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3. Probability Distribution for the Condensate State for Ideal Bose Gas

The occupation probability for the ground state is given by Eq. (5.7).

Zang ZN*TLQ*I

p(no) = P(no|N) = Zn Zn

(5.9)

We can derive p(ng) from the density operator p;spg. Since the ideal Bose par-
ticles are non-interacting and the discrete quantum state is statistically independent,
the occupation probability for the ground state can be given by the projection of the

density operator into the ground state eliminating all higher excited state.

p(no) = 3 Pno,n} IN) = 3 (o, s} [prascl no, {n,}) - (5.10)
{”u} {nu}

where ’ means that the sum goes over all states except the ground state.
From the above probability distribution, we can construct the reduced density

operator for the condensate state.

N
/
Preduced = Ty (prasa) = § P(ng,{n,}|N) no) (no| = E p(no) [no) (nol, (5.11)
{nu} no=0

where ng denotes the number of particles in condensate state, and the distribution

from the reduced density operator is

P(no) = (N0 | Preduced| m0) = P(no|N). (5.12)
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4. Average, Variance and 3rd Moment

From the probability distribution for the occupation number of the ground state, all

moments can be calculated. The explicit forms for the lowest 4 moments are

= nop(no), (5.13)

{(610)*) = ((no — (no))*) = (ng) — ) (5.14)
((6n0)*) = (ng) — 3 (ng) (no) + 2 (ng)® (5.15)

with
(ng) = Z nk p(ng). (5.16)
no=0

Fig. (16) shows the condensation of the ground state with a system with different
number particles. At T = 0, all the particles stay at the condensate state and
become agitated to the excited states as temperature increases. Over the transition
temperature T, = % (%) / , which is defined in thermodynamic limit as N —
00, the occupation number of particles in the ground state doesn’t vanish and shows a
long tail in the condensation. The qualitative behavior of the condensation is clearly
shown for moderate number of particles, in N = 200 and N = 1000, which we will
select this value for NV in the interacting Boson gas, also.

For the fluctuation of the occupation number, at T" = 0 zero-fluctuation is pre-
dicted by physical intuition due to the perfect condensation in ideal Bose gas. As
temperature increases, the particles in condensate states are excited by thermal ag-
itation, and it will be shown as fluctuation, or the nonzero variance. However, as
temperature goes over T, = 2nh? (%) /3, the bosonic property of the system can

m

be ignored and goes to the usual classical ideal gas and should be exponentially van-
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ished since we only consider the fluctuation of the single quantum state. To connect
these behavior smoothly, there should be a maximum near 7' = T,. For N > 50, the
maximum lies near T, and for N < 50 the maximum lies at T > T,.. For N = 200,
the maximum variance is near 7" = T,. Furthermore, as /N increases, the normalized
maximum of variance is also increased, and seems to diverge at thermodynamic limit
where N — 00, and this may be related to the cusp behavior of condensation at that
limit.

Finally, the third-moment of the occupation number is nonvanishing, which shows
that the fluctuation is non-Gaussian. And there’s sign change from negative to posi-
tive near 1" ~ T..

When the results are compared to them in CNB3 [27] and CNB5 [28], this par-
tition function method is better to describe the condensation behavior of the ideal
boson gas. In fact, the results from CNB5 are exactly same to the method described

by the partition function in the ideal boson gas.

C. Model System for Interacting Bose Gas

Now, let’s try to investigate the interacting Bose gas. Let’s consider a dilute homo-
geneous Bose gas with a weak interaction of an interatomic scattering. The system

is described by the well-known Hamiltonian [27]

h’k? 1
H =Y Salat 53 (kaka U] kiks) al, ol ana (5.17)
K {ii}

where V' = L3 is a volume of cubic box containing the gas with periodic boundary
conditions, which is given by Eq. (5.4).

The number operator ny from the creation and annihilation operators constructs
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the many-body Fock space, i.e.

K = agar, (5.18)
m o) = i) (5.19)

al [p7) = VT [utY). (5.20)

The finiteness of the total number N of Boson, or ng + >, nx = N, enables us to
choose a subspace in the Fock space.

At extremely low temperatures where the condensation occurs, the occupation
number of the ground state is enormously large, and the expected occupation ng
is comparable to N, so that we might describe the kinetics of the system by the
interactions between the condensate state and excited states. To describe this type

of interactions, we can use the quasi-particle description.

B = Blax,  BL=alb (5.21)

with By = (1 + no)_l/ 2a9. Then, the commutation relations are satisfied for k # 0

states.

[5}0 5k'] = Ok’ (5.22)

The proof is in Appendix G. Furthermore, this quasi-particle operator fi gives the
same statistics for the occupation number as that of particle operator ay for nonzero

k state.

Nk = a;r(ak = ﬁlﬁk (523)
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D. Energy Spectrum of the Quasi-particle System

With the quasi-particle operator [y, we can rewrite the atom-number-conserving

Bogoliubov Hamiltonian. ( Eq. (62) in CNB3[27] )

o 21,2 ~ A
HB:M+Z(hk +(”0+1/2)Uk) B /h

2V = IM vV
! A — At At
Tor kgo (UkV(l +70)(2 + 70) BBy + H.C.) . (5.24)

To get the diagonalized Hamiltonian, let’s make approximation that the operator
T into the c-number ng in Eq. (5.24). Here, we choose this c-number ng as the average

number 7y of occupation in condensate state.

N(N — 1)U, k2 (Mo + 1/2)Ux \ 4+ ~
k#£0

1

+ 5 D (Uk\/(l +720) (2 + 7o) 8T + H.C.) . (5.25)
kA0

Then, with the following Bogoliubov transformation,

e = by + vid! (5.26a)

Bl = web, + vich_i (5.26b)
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with
Ly
Uk
21,2 T 212 T 2 — — 2
_ (ﬁm“; + °+1V/2)Uk> - \/(";A‘; + °+1V/2)U"> —4 (5—;\/(1 + 7o) (2 +n0)>
B 20 /(1 +70) (2 + o) ’
(5.27a)
1
- (5.27b)
- A2
A
v = ik (5.27c)

we will get the diagonalized form of the atom-number-conserving Hamiltonian is

Hpn = Ey+ ) B+ Y e, (5.28)
k#£0 k#£0
where
N(N —= 1)U,
Eo=—=y"— 2
° oV (5.29)
Rk (Mo + 1/2)U 1 _ _
Fie = ( o0 - V/ i k) vie + VUk\/(l + 70) (2 + 7o uxc v, (5.30)
Rk (o +1/2)U 2
e = (2M + (no+v/ ) k> (u +0) + 70/ (1 +70) 2 + To)unctie.— (5:31)

Ex means the shift of the ground states and depends on the number of condensate
particles 7, and €y gives the relative energy of the each excited states. Here, it should
be noticed that all parameters and the energy spectrum of the excited states depend
on the average number of condensate particles ny.

Before going to the next section, let’s simply review CNB3 paper, which has cal-
culated moments through the characteristic function. From the characteristic function
O1x(u) (Eq. (68) in CNB3), the statistics of the occupation number can be calculated,

and many properties of the system has shown. The derivation of this characteristic
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function can be simplified using the Wigner function. [29, 30, 31] We will show the

derivation in Appendix E.

E. Quasi-Particle Canonical Ensemble

Since we know the energy spectrum for all the excited states of the quasi-particles,
we can calculate the thermodynamic quantities using the partition function method
in the canonical ensemble, for example the occupation probability for each state.
However, the absence of the ground state in quasi-particle basis gives another
difficulty in canonical ensemble, that is, physical quantities related to the condensate

state should be calculated indirectly through the excited states.

1. Construction of the Thermal Density-operator for Quasi-particles in Canonical

Ensemble

Since we include the interaction which can be diagonalized by Bogoliubov transfor-
mation, we can construct the corresponding density operator in equilibrium at the
quasi-particle system easily. The main difference between ideal and interacting case
is the exclusion of the ground state in interacting case.

The most general form of the density operator in particle basis is

poe= Y P} Am N ) (fm,}, (5.32)

{ru}{mu}
with n, = dL&“. Since the Hamiltonian is diagonal in Bogoliubov transformed opera-
tor IBH basis, the density operator for the quasi-particle at equilibrium can be written
as

pn = 3 Plng = N = MIN) 37 P({n, 3o M)]{m}) ({1 (5.33)

{nu}p
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with {n,},, for the configuration of Bogoliubov-transformed quasi-particles in excited
states, and 0 My = M. The sum for all states covers only for the excited states,

not the ground state. The explicit form of the probabilities are given in Appendix,and

Z
P(ng = N — M|N) = e—<N—M>ﬂ€OZ—M — e WMo\ 7 (5.34)
N
_Zm—Zu-1 _ Ziy (5.35)
Iy Iy '

2. Canonical Ensemble as Sum of Partial Canonical Ensemble

The omission of the ground state in quasi-particle basis prohibits the direct access to
the ground state of the particle, but through the statics of the excited states. So, the
partition function of the quasi-particles should be constructed without the ground
state.

For the partition function of the single particle, we can define the partition

function without the ground state as
Zr =17, —e P (5.36)
where the usual single particle partition function

Zi(8) =Y e P (5.37)

and 8 = (kgT)™ "
Similarly, we can construct the partial partition function Zj, without the ground
state.
Zyp=> Y e PRimanmg(M = "ny), (5.38)
na=0nz=0 =2
where M is the total number of quasi-particles in the excited states.

Furthermore, this partial partition function also satisfies the recursion relation
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in CE because the omission of one specific state doesn’t affect to the structure of the

partition function in CE. The relation between 2}, and Zy is

N
Zn(B) =) e NP0z (), (5.39)
M=0

or that the summation of the partial partition function Z}, gives the usual partition
function Zy. The derivation of the above identity is in Appendix I.

For example, let’s consider the 3 bosonic particles distributed in 3-level system.
Fig. (19) shows all the possible configuration. Since the partition function is summa-
tion of the Boltzmann factor of all accessible configuration, we can simply rewrite the

total partition function as sum of the partial partition function in this example.
Z3(B) = e 0 Z5(B) + e PO ZY(B) + e P Z5(B) + Z3 (). (5.40)

3. Moments of Occupation Number in Condensate State of the Weakly Interacting
Bose Gas

Since the partition function has been constructed on quasi-particles, not particles,
the moments of the particles should derive from them of quasi-particles. More ex-
plicitly, moments of particles in condensate state will be calculated from them of
quasi-particles in excited states.
The only one connecting relation between ground state and excited states is the
number conserving relation, that is
ny = agao =N — Z alT(ak =N — Zﬁ;&ﬁk (5.41)
Kk£0 Kk£0
where [y = ﬂgak. On this section, we will use k and k’ notation instead of u for

specifying the state for clarity.
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a. Average

The expectation value for the occupation number of the condensate state is

(no) = (ahao) = N =D (afar) = N = (BLA). (5.42)

k#0 k#£0

Since the density operator is represented in terms of the Bogoliubov-transformed
quasi-particle operators, the operator also should be represented in the quasi-particle
basis bL and by to get the thermodynamic average. Furthermore, by Bogoliubov trans-
formation k and —k states are correlated and should be considered simultaneously
for the calculation.

The expectation value for the occupation number in quasi-particle basis is

(BL) = (uii + o) + v, (5.43)
where
al Z
- —nfe N—n
Nk = 321 e k—ZN . (5.44)

Here, we used the equal average of the occupation number for the energy-degenerate
state. The derivation are shown in Appendix in detail.
The usual way to calculate the occupation number in canonical ensemble in BEC

is that <nk> i as the approximate value in canonical ensemble, because in

grand canonical ensemble it is well-known that the chemical potential is almost zero
at lower temperature. [24]

In Eq. (5.43), the second term v in right side is independent of the occupation
number of the quasi-particle, which is considered as quantum effect [32], which shows

the depletion in the condensate state even at T" = (0. Since the interactions in the

system gives some excitation, and the excited states are occupied even at T' = 0.
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Near T' =~ 0.4 — 0.67, the interacting Bose gas has larger condensation than that
of ideal Bose gas. It suggests that the interacting Bose gas is more ordered system,
which is known as “attraction in momentum space” [33].

The average number in condensate states in interacting Bose Gas shows the usual
predicted behavior: non-vanishing fluctuation in zero temperature and slightly higher
condensation in intermediate temperature compared with that in ideal Bose gas, and
smoothly transition into the higher temperature over the critical temperature. The
reason to show good behavior over extended into the higher temperature is that taking
the average for the number operator in strict way from the probability which can be

calculated from the partition function.

b. Variance

Similar way we can apply this probability to higher moments, especially to variance.
Since the quantum mechanics requires the four-point probability in calculation of the
variance, let’s try extend the concept to cover these things.

Let’s start with the explicit definition of the variance. The number operator for

the condensate state is

fig = b = N = _ afan, (5.45)

oo = alio — (abto ) = > ({afan) — alan) (5.46)
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The variance is

(0na) = 5 { (o) o) () )

k,k'£0

= Y {{afaa i) - (alan) (afin) } (5.47)

k,k/£0

In the quasi-particle basis BIT( and Bk
(10 = 3 { (i) — () (o)}
k,k/#£0

The explicit evaluation in quasi-particle basis is shown in Appendix J.

Especially, when k # k’ and k # —k’, the cross correlation <Blﬁk[?l,ﬁk/> is not
vanished, which was neglected in other papers since the cross correlation between two
different states was considered vanished due to the statistical independence. This ex-
pectation values play a significant role to reduce the fluctuation at larger temperature.
(34, 35]

The results for the variance show the explicit depletion at 7' = 0. At low inter-
action an'/? = 0.05, the result is very similar to that of CNB5, only slightly different

near maximum of the variance.

c. 3rd Moment

The usual mean field theory cannot calculate any higher moment since the correlation
effects are averaged out. However, the partition function method makes it possible
to calculate the 3rd moment. The explicit forms are shown in the appendix.

The nonzero value of 3rd moment means that the fluctuation inside the BEC

phenomena is non-Gaussian type. [27]
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4. Comments for the Canonical Ensemble

In these calculations, we specify the condition of the fixed total number of particles
using the canonical ensemble, and use the operator form of moments in occupation
number explicitly to calculate all the statistics. Usually, the quasi-particle description
seems to be applicable for the very low temperature, where the occupation number
of condensate state is comparable to the total number of particles, and it is believed
to give divergent result for higher temperature. However, the shortcoming of the
divergence doesn’t come from this quasi-particle transformation. It is the usual grand
canonical ensemble which is used for simple formalism and calculation. If we apply the
canonical ensemble in this system, we can get the finite result whose values converges

into that of ideal bose gas in higher temperature, even in 3rd moment.
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CHAPTER VI

SUMMARY
In Chapter II, a single-photon confined in a volume V satisfies a simple equation of
states PV = nh{2, and the heat engine with a single-photon has the Carnot efficiency
like the classical ideal gas.

In Chapter III, the complex Schrodinger equation for the multi-electron atoms is
simplified into the algebraic equation by the application of the dimensional scaling.
Furthermore, the electron configuration was calculated and showed similar structure
that were predicted by quantum mechanics. Especially, the atomic structure for the
ground state of the Carbon atom is shown to the tetrahedral structure with (sp?)-
hybridization.

In Chapter IV, the hydrogen molecule, the simplest neutral molecule, has treated
by the two-center molecular orbit, and calculated the binding energy of hydrogen
molecule as 4.7eV, which is comparable to the experimental value 4.74eV.

In Chapter V, a weakly interacting Bose gas with N particles was considered
using the application of the partition function. Within Bogoliubov transformation,
we’ve calculated all possible correlation function for 2nd or 3rd centered moment of the
occupation numberto investigate the fluctuation of the condensate state. Depletion of
the condensate state, cross-over from low temperatures into high temperatures, and
non-gaussian feature of the residing fluctuation.

Here, we’ve used un-traditional method such as dimensional scaling to traditional
method such as quantum field theory. Though we’'ve only considered the physical
properties of the simple systems, the applicable ranges of these methods will be

expanded.
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APPENDIX A

LAPLACIAN IN HYPER-SPHERICAL COORDINATES

o8

Here we show the explicit form of the Laplacian in the hyper-spherical coordi-

nates. From the definition of hyper-spherical coordinate (3.5), let’s try to calculate

the scaling factors. The definitions for them are

and

Explicitly,

AN
, or )’

>

N
[

]

j=
D 2
ox;
2 _ 3
e = Z (ae,)
7j=1
D-1
§=0

ho =1,
hy =rsinfysinfs---sinfp_q,

ho = rsinf3sinf, ---sinfp_q,

hk = rsin Qk—i-l sin 0k+2 -+ -8in 0D—17

hD_Q = rsin 0D—17

hp_1 =r,

h=rP lsinfysin?6;8in®0, - - -sin* 16, - - -sin” 1 0p_.

(A.3)

(A4)
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The D-dimensional Laplacian now becomes

0 0
2 _ 9,019
Vb= 1 0r or
D2
1 1 1 J . x4, O }
+ = — 0, —
; sin 9k+1 sin? Oy, o - - -sin?Op_; {sink1 0. 00y S k89k
1 0 . poo 0
— Op_ ) A.
2{ b= 20D 100p_ 1Sln P 1590—1} (A4.5)

Define the generalized orbital angular momentum operators by

92
2 _ [
L= 003’
1 0 0 L2
Ly = 0 ——
2 sin 0, 862 sin 2892 + sin? 6,
1 0 0 L?
2= ——— — sin* !¢ Rl A.6
b sin®~1 9, 00y, sin "0, 00, + sin? 6, (A.6)

Then we have (3.7) with
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APPENDIX B

SEPARATION OF VARIABLES FOR THE Hj-LIKE SCHRODINGER
EQUATION

Let us consider (4.4). Here we show how to separate the variables through the

use of the ellipsoidal (or, prolate spheroidal) coordinates.

v = 20 ) coso,

y= o/ OF 0~ )sing,
z= g)\u. (B.1)

Note the coordinates A, u and ¢ are orthogonal, and we have the first fundamental

form
ds? = da? + dy® + dz® = h3d\* + hi,dp® 4+ h3d¢?, (B.2)
where
x> oy \ > 02\> R*1—p2
2
_ (0= 9y oz\ _ A7 B.
" (ax) +<8)\) +<8)\) I —1 (B-3)
ox\° oY\’ 02\° R2X—1
pr= (2 gy Fy AT o B.4
! (%) i <3u) i (&z) 41—p (B4)

hl = <%>2+ (%)2+ (2—2)2:%2()\2—1)(1—“2). (B.5)
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Thus

82
TR0 >a¢2}‘1’ (B6)

Note that through the coordinate transformation (B.1), we have

A= letie =E\+
R equivalently, 2 (A 4) (B.7)
po= gt =5\ —p).
Also, we have A <1, —1 > u > 1. Write
U= AN M () ®(9). (B.8)
®(¢) must be periodic with period 27. Therefore
d(p) = ™, m=0,+1,+2,.... (B.9)
Substitute (B.6), (B.8) and (B.9) into (4.4), and then divide by e™™¢
1 4 0 0 0 0
— -1 AN M+ —|(1- M| A
2 R?(N? 2){ {( o 1 " on {< )8u }
()\2 12)ym? 2> 7, 2 7 7o
- = AM — AM AM
TR =) RA—n Rarpn TR
— EAM. (B.10)

Further multiplying every term by —%2()\2 — u?), we obtain

9
)

L R A (Pl L o

2
RZaZb R E) ()\2 — /“Lz):| AM = 0. (Bll)

+[RZG()\+M)+RZ,)()\—N)—( -
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Set
1
pt= 5(—RQE + RZ,Z) > 0. (B.12)

We have p? > 0 here due to the fact that we are mainly interested in the electronic
states that are bound states, i.e., not ionized.
Let the constant of separation of variables be A. Then from (B.11) and (B.12)

we obtain (4.38) and (4.39).
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APPENDIX C

ASYMPTOTIC EXPANSION AS A — 1

The proof of (4.45) is given in this appendix. Multiply (4.40) by (A —1)/(A+1)

and rewrite it as

0=(\—1)%A"(\) + AQ—jl(A — 1N (V)
(A+ 2R\ — p?\?) m?
v O e AW
~ (A=1)°A" N+ (A =DAN () - mTQA(A), for A = 1. (C.1)

A differential equation set in the form

(z = 1)%"(z) + (= = Dg(x)y'(x) + r(x)y(z) = 0. (C.2)

near x = 1, where ¢(x) and r(z) are analytic functions at = = 1, is said to have a
reqular singular point at x = 1. The solution’s behavior near x = 1 hinges largely on

the roots v of the indicial equation
viv—1)+q1)v+r(1)=0 (C.3)

because the solution y(x) of (C.2) is expressible as

o0

y(x) = x—l’“zckx—l ) 4 bo(z — 1)~ dex—l (co=dy =1),
k=0

where 14 and v, are the two roots of the indicial equation (C.3), under the assumptions

that

vy > Vs, vy — s 18 not a positive integer. (C.4)
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However, if (C.4) is violated, then there are two possibilities and two different forms
of solutions arise:

(a) v; = vy. Then

y(x) = biyi(x) + baya(), (C.5)
where

y1<x>:(x_1>mk§;ck<x_1>k (=1, (o)
and

le) = (= 1 gdm S - D) @G=1).  (©1)

Solution y, in (C.7) should be discarded because it becomes unbounded at = = 1.
(b) v1 — vy = a positive integer. Then case (a) holds except with the modification
that

ya(2) = (x = 1) Y di(x — 1)* + e[ln(e — D]y ()

k=0
(dp = 1, c is a fixed constant but may be0). (C.8)
Applying the above and (C.3) to (C.1):
m2
(A —=1)2A"(\) + (A= 1A' (N) — TA(A) ~ 0, (C.9)

we obtain the indicial equation

vy —1)+v— "2 =, (C.10)
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with roots

= vy = (m is non-zero integer). (C.11)
Thus either
v = Uy ( when m = 0)
or
vy — s = |m| = a positive integer ,  where m # 0.

Again, we see that solution y, in (C.8) must be discarded because it becomes un-

bounded at = 1. Thus, from (C.6) and (C.9), we have

o

AN~ (A= DM2Y "o (A = 1", (C.12)

k=0
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APPENDIX D
HYLLERAAS CORRELATION FACTOR IN CUSP CONDITION

Hylleraas correlation function Eqn. (4.71) was considered first when Hylleraas
tried to construct a good wave function to get better energy eigenvalue. Since the
situation in Hs molecule is similar, let’s try to calculate the coefficient k = % with
the cusp condition when r15 — 0.

Let’s consider the behavior of the Hamiltonian (4.70) and the corresponding
wavefunction . As ri; — 0, the dominant term in potential is the interaction
between both electrons, that is %, and we may expand the wavefunction v as series
of r19 with slowly varying coefficients which are functions of 7,1, 7p1, re2 and 7.

Furthermore, V%t will be equal to V3¢ and to V3,.

The Hamiltonian (4.70) for the Hy molecule is reduced in the limit 75 — 0.

(-vt+ =) v=Bv (1)
712

with £ = E+ i—al + rZTi - % + % — %. Eqn. (D.1) seems a hydrogen-like Schrodinger
equation with repulsive potential, and has the solution as the increasing exponential
function is e™2/2.

1 1
(Wt L)oo Lo 02

T12

By expanding this exponential function, the correlation factor to the first order should

be

1
1+ 57"12 (D3)

in exact solution of the Schrodinger equation with this correlation repulsion between

two electrons.
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APPENDIX E

DERIVATION OF CHARACTERISTIC FUNCTION USING WINGER
FUNCTION

In this appendix, we will show how to derive the characteristic function in CNB3
[27] using Wigner function|[30].

In the interacting Bose gas which is described in CNB3, two modes k and —k
are intermixed to make dressed modes, so that these two modes are simultaneously

treated in the density operator and the characteristic function. The definitions are
Pl = (1— e e thbettiud (E1)
from Eq. (66) in CNB3, and
O (u) =Tr [ew(ﬁlﬁﬁﬂikﬁ_k)Pﬁ (E.2)

from Eq. (68) in CNB3.
First, we will calculate the Wigner functions for the density operator and for the

iuata

Kernel e in characteristic function for single mode. And, we will calculate them
in two mode +k. Finally, we will prove the identity in the Wigner function with

Bogoliubov transformation, which simplifies the whole calculation in two mode.

Wigner function of density operator in single mode

In canonical ensemble the definition for the density operator is

o—H/kpT
P = _Tr[e—H/kBT] :
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The Hamiltonian for the single mode oscillator is
H=nhv(a'a+3), (E.4)
and the corresponding density operator is

1
(1) —ne
Pe” = Zj e_je ;6 |n><n’

=(1=e) Y e n)(n]

n

=(1- e’e)e’“ﬁa (E.5)
with € = J;”T The density operator will be diagonalized and normalizable.
(n ‘,09! my=1-e)(n|mye ™ =(1—-e e b (E.6)
and
Y [P, = 1. (E.7)
n=0

The corresponding Wigner function is

M P8 or—pramp. f srapat (1)
PV, = e Tr {e Pe } (E.8)
d2 * * *
=(1—-e / —6@&“ oy {eﬁ a_ﬁaTe_mT“} ) (E.9)
T

When we take A = —fal and B = 3*a,

[A,B] = —8p" [al,a] = |8]*. (E.10)
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The Tr-part in Eq.(E.9) is

e ol e
d2gd§ et e - € e (€)" e

-3 J[ =5 oIk
_ 67@ / / dzfj § = BC" B —|CP+EC €2 gemece" (E.11)

) lelm e

Here, we use the following identities.
B = omABI2eAB if [[A B], Al = [[A, B],B] = 0.

The integration over & is

d2 * * 2 —€ ek * —€ ex
/_56ﬁ € 6T —IE? pemece :/ % e (5 e reece
T

L& o (5 ki cky (o—e VK2
ZZ/ f e +/§1)£ (e C)k2!(§)

kl 0 k2=0
_ Z (8" + C;)'(B‘EC))’“ _ BN, (E.12)
k=0 ’

Then,
2
Ty foralgmata} o / &€ —pe e 54N e0)
m

2
_ / 4°C (e )g-perpree

T
2 _ 2_ J¢] * e €
:e_ﬁ;/(ldz)elzl \/1*Z+\/1eEZ
—e 9
2 e —€
B e*‘ﬁT —181" 1 1 . 2((11+667€))|m
(1- e—f) (1 —e°)
1 _ 1 2
— =~ g (E.13)
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The Wigner function for the single-mode is

1 2
(1) —— d2 Ba*—pB*a  2tanh o)
P - / Be e
= 2tanh e 23" (E.14)
The normalization can be easily checked.
(1) d*a (1)
Tri{p} =1= [ —[o]yy (E.15)

by changing o = z + iy and o* = = — iy with d*« = dzdy.
For the Kernel ei““Ta, the corresponding Wigner function can be calculate by
replacing € into —iu in Eq. (E.9).

juat 1 —iu_—2tanh o
[e”“ “} = —2tanh —e “tNR T @
w 1 — efu 2

1 . u 2itan 2a*a
=1 62.u(—2z) tan Le* "2
— s sec(u/Q)eQitan%o‘*a (E.16)

with tanh(iz) = i tan(z).

Wigner function in two mode

In interacting system, the density operator in two (quasi)-mode +k is
P2 = (1 — e)2ebibttlid), (E.17)

with € = Eyx/kT. And, we will generalize the characteristic function by taking two
parameters u and v for each mode. The generalized characteristic function © 4y (u,v)

1S

@:tk(ua U) — Ty eiuﬁlﬁk-i-ivﬁikﬁ—kpgi)(] _ <6iuﬁlﬁk+ivﬁikﬁ—k>’ (E.18)
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Both operators ik and by are connected by the Bogoliubov transformation.

ﬁk = ukbk — Uka_k, ﬁlt = ukblT( — Ukb,k, (Elg)

ﬁ,k = Ukb,k - Ukb;r(, ﬁT_k = uka_k — Ukbk. (E20)

with u —ovf = 1.

The two-mode characteristic function [31] is

o [dP6; 414 1t
_ iuB) Br+ivs! | B (2)
@ik(u,v)—/ - / - [e i « k]W[pik}V[ﬂ (E.21)
with

ota ot _u dier e tan Yy ¢ _q¥ 9i3% 5 tam &
[eluﬂkﬁk+zvﬂ—kﬁ—k]w _ (6 i3 gec %6 ia atan2) (6 i3 sec %6 i3 Btan2)

—i(ut0)/2 go0 U gac Ve

. U . v
2ia* = 49i8* Y
—e : 12; ia* o tan 2+ i6* 3 tan 2. (E22)

Eq. (E.21) will be derived below.

Since the density operator is defined in terms of by, we need following identity
for Wigner function: if G(AT, A) = F(ua'+va,ca+7al), then their Wigner functions
satisfy Gw (o*, ) = Fy (uo* + vo, oo+ 7a*), which will be also proved. The Wigner
function for two-mode density operator is

£

|:p£|:21)(:| . — 4 tanh2 (%) 672 tanh 5 [(a*uk — Bk ) (auy —B* vk )+ (B* ux —avy ) (Bux —a* vy )]

> e—?[(a*a—i—ﬁ*ﬁ) (ud +v2)—(a*B*+Ba)(2ukvk)] tanh 5 )
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The characteristic function is

@ik(u, U)

2
. € ..
4671(u+v)/2 sec % gec ¥ tanh2 E / d 5672[(ui+vi) tanh 5 —itan 5”5\2
2 2
™

2
> / d a€f2[(ui+vi)tanh§7itan %}|a|2+2(aﬁ+a*ﬁ*)(2ukvk)tanh%
™

2
. € .. v
4672(u+v)/2 sec ¥ sec ¥ tanh2 E / d ﬂ€—2[(ui+vi) tanh 5 —itan 5“5\2
2 2
™

8up vy tanh? p)

|67

(u2 +o2 ) tanh £ —itan 5]
k' 'k 2 2

[
e
2[(ug + vip) tanh § — 7 tan 5]

Qe utv)/2 goc Lsecy tanh? £

2| (uj +vg) tanh § — i tan %] [2[(1@2( + vg) tanh § — itan ¢

] _ Suivi tanh? %
2 [(uf +v) tanh §fi tan %]

e~ utv)/2 goc Ysecy tanh? <

[(u + vZ) tanh § — i tan %][(u? + v2) tanh £ — i tan 2] — 4ufv? tanh? £

e Hut)/2 goc Ysecy tanh? < (£.23)
 tanh® § —i(tan ¥ + tan ¥)(uf + v2) tanh & — tan % tan 2 '

With the following two identities,

€/2 _ _—€/2 €_1
€ (& (& (&
¢ h(-) _ _ , E.24
an 2 65/2 + 6—6/2 €€ + 1 ( )

and,

. U et —1
itan g = tanh(z—) = — ,
e+ 1

5 (E.25)



we will get the characteristic function

@ik(u, U)

e~ utv)/2 goc g sec

S — 1)
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(¢ —1)2 —i(tan ¥ + tan 3)(up + vg)(ec — 1)(e + 1) — tan § tan 5 (e + 1)2

sec § sec § (e — 1)2(e™/? 4 emiu/2)

(eiv/2 + 6—1'11/2)

r (66 o 1)2(€z‘u + 1)(6“’ + 1) _ 2<€iu+iv _
1)(e™ —1)(e* +1)?
4(e —1)?

L +(e™ —

D) (ui + vig) (e* — 1)

B (66 o 1)2(€iu + 1)(eiv + 1) o 2(€iu+iv o

1) (uge + vig) (e* — 1)

L +(e™ —1)(e™ —1)(e + 1)?
If we define
Y, = uget + Uk’
Uy = vges
we will get
vy - (%}626 —vd)

(up — vie)’

(ure + vi) (ux — vie®) + (uke® — vk ) (ux + viee)

2e€

Y, +Y. = -
+ (ux + vie®) (ux — viee) (uf — vie*)
v _1_ukeeivk_ :ukeeivk—ukIkaeG:(66—1)(ukIka)
* Uk £ vges Uk + vges Uy + vges

(E.26)

(E.27)

(E.28)
, (E.29)

(E.30)

(E.31)
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Using Yy, we can simplify Eq. (E.26) furthermore.

2(ef — 1)2

@ik(u, U) = 4 '
{(e* + 1)+ (u + v)(e* — 1)} — 2e(e™ + e™)
+{<€25 4 1) _ (ui 4 U}Q{)(e% _ 1)}€iu+iv
B (66 _ 1)2
- (’LL12<€2E _ U12<) _ ee(eiu + 62"0) + (ui _ ’U12<€26)6m+iv
) (V. - (Y- 1)
Y+Y7 _ %(Y+ + Y7)<eiu + eiv) + eiquiv
2V, — 1)(Y. — 1)

N (Y, —e) (Yo —e) + (Y. — e)(Y, —e®) (E.32)

Trace for two multiplied operators in terms of Wigner function

Let’s begin with the definition of the Wigner function. In one degree of freedom
system with the rescaled position ¢ and the conjugate momentum p with [q, p] =1,

the Wigner function for operator F'(q,p) is [31]

Fuld,p) = / dy (¢ — LIF(g, p)ld + L)e™. (E33)

The equivalence of above equation to Eq. (E.8) is easily shown by comparing with

Eq. (3.3.14) and Eq. (3.4.12) in [5].

/

By the identity [dq”|¢")(¢"| = [dp”[p")(p"| =1 and (¢'|p') = \/Lz?eip/q,
F(d#) = [ dudddy" (¢ = $1a")d"IFla.p)lo") 01 + §e”
- / dq"dp" (¢"|F(a, p)[p") (0”24 — ¢")e> =1
_ /dq//dp// <q//‘F<q’p)‘p//><p//|q/l>2€i2(p’fp")(q’fq”). (E34)

Similarly,

FW(QI,p/) _ /dq//dp// <p/l’F(q,p)lq//><q//‘p//>267i2(p’7p”)(q’fq")' (E35)



By introducing the Schwinger’s notation,

[ee]

1
A;B __ n RN
et = g _n!A B",
n=0

the exponential terms simplifies into
<p/’|q’/>ei2(p’fp”)(q’fq”) — <p”|62i(pfp’);(qfq’) |q”>
and
(¢"|p")e 2P =PI =) — () g=2ia=a)i(P=P)| )
We can rewrite the Wigner function.

Fw(d,p) = Tr[F(q, p)2e¥P—P)ila=da)]

— Tr[F(q, p)ge—%(q—q’);(p—p’)].
And, we can conclude that

92i(p—p")i(4=d") — 9,—2i(a—q");(p—P)

5

(E.36)

(E.37)

(E.38)

(E.39)

(E.40)

(E.41)

Furthermore, by inversion we can write the operator F(q,p) in terms of Wigner

function.

dqg'dp’ o

dg'dp’ (") (p—p

(E.42)

(E.43)
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From Eq. (E.43), the trace of multiplication of two operators is

Tr[F(q,p)G(q, p)]

d/d/ . . , d//d Vi ' N ,
= Tr[/ qﬂp Fw(q’7p’)e—2l(q—q)7(p—p)/ qﬂp G (¢, p")e2ia=a)i=p")]

dg'dp’ [ dqg"dp” YN N
:/ qﬁp/ qﬁp Fw(q’,p’)GW(q”,p”)Tr[e_QZ(q_q)’(p_p)e_zz(q_q )i(p—p )]

dg'dp’
— [ L Rld )G ld ), (B.44)

where

Tr [6*2i(qfq’);(pfp’) €*2i(qfq’/);(pfp”)]

7 /11
:/dq dp e—Qi(q”’—q’)(p”’—p’)€2i(p"’—p”)(q”’—q")

21
_ / dq///dp”/ egi(q'"(p'—p")+p"’(q'—qH)—p'Q'-f-p”q/')
27
= z(5(10’ —p")o(qd —q"). (E.45)

2

So, the trace of two operators can be written in terms of each Wigner function.

Wigner function of function with Bogoliubov-transformed operators
For the single-mode,
Fy(a* a) = /#eﬁa*_ﬁ*“Tr{eﬁ*“_ﬁ"TF(aT,a)}
- /dQ_ﬁTr {eﬁ*(a—a)—ﬁ(aT—a*)FmT’a)}
™
— /dz—ﬁTr {ea“T’a*“eﬁ*“’ﬁ“Tea*“’a“TF(aT, a)}

™

= 2Tr {ea“T_a*aSea*“_a“TF(aT, a)} (E.46)



with the reflection operator

S:/dz_ﬁeﬁ*“ﬁ‘”.
2

Here, we used the following identities.

f_a* *a—aal
aa aaafeaa aa

e =a' — o,

T_a* *qg—aal
et —ata, afa—oaa = a—q.

The proof for above identities are simple. For any nonnegative integer n,

- (o) (o) !
ale®® = qf Z oy a’ = Z o (a"a’ —na"1) = e (a’ — o),
n=0 n=0
and
ae™ = ¢! (a — a).

The properties of the reflection operator S are :
St=8=2571

since

St = / dﬁg*dﬁ‘eﬂatﬂ*“ — 51
s

2T

_ /wew*a —S  (B——B, B ——p)

And, the name of S is from the following property.

Stals = —al, S~ 1aS = —a.

7

(E.A7)

(E.48)

(E.49)

(E.50)

(E.51)

(E.52)

(E.53)

(E.54)

(E.55)
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The proof is

4’8 4
aS = a/—ﬁeﬁ a—pal

27

2
_ / d°B 162 /2,6%0 ot

27

d? . d?
:/—ﬁeWQ/QeB “a/—oz|oz><oé\eﬁaT

2 T

d’g [ d? ) .
:/—ﬁ & X laP 2 0% g 0B la) (|

2 s

_d2 _d2 2 * .
— / QWﬁ/ — ae—|5| /265 a(_a)e—ﬁa Oé><0(| (6* R _6*&05 . _a)

d? d? 2 . \
:/—ﬁ 2 & -18P/2,—a a){ale? (—a)

2 T

2
:/MQ—IBIQ/%—B&TQﬁ*a(_a)
27
= —Sa. (E.56)

The Bogoliubov transformed operator G(af,a) can be written in terms of the

linear similarity operator V.
G(a',a) = F(pa' +va,oa + 7a") = V"' F(a',a)V, (E.57)
with

V = ez(@)malagm 30, (E.58)



The form of V' can easily verified by

n!

and

Q
=
I
g
N
ol

N———
3

n!

. —Inp)"
— ema(@)? (Z o) ::!'u) (a'a+1)"a + uaT“TaT) e 2w
T v 1
— e ymalaem it (L 4 7 (aT + Za))
u u
= V(oa + ra').

. . 2
in nsi a'”, a'a, and a
Since V consists of a'”, a'a, and a2,

((a’r>2na + Qn(aT)Qn—l)M—aTaefia

—In )™ .
= ezu(a*)Q(a + ZGT) Z &(aTa)ne—ﬁa
7

2

v

STlVS=V — VS=8V — VIsv=2¢.
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(E.59)

(E.60)

(E.61)
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The Wigner function for G(a', a) is

Gw(a*, a) =2Tr {ea“La*aSeo‘*a’a“TG(aT, a)}
— 9Ty {ew*—a*av—lsvea*a—aa*V—lF(aﬁ, a)V}
— Ty {Veaa*—a*“v—lsvea*a—aa*V—IF(aT, a)}

— 2Ty {67(#a*+lja)(l+(0a+7a*)a‘r Se(,uo/‘Jrl/oz)(zf(UchrToz*)aﬂLFw<a’[7 (l)}
= Fw(pa™ + va,oca + 1a’™). (E.62)
So, the Wigner function of Bogoliubov transformed operator is given by the Wigner

function with transformed argument.

For the general n-dimensional cases, we can define the operator and correspond-

ing complex c-numbers.

oy
I
—~~
o
5
o
S
jw)
N —+-
S
g
)
3
o
3
SN—

a = (aof,a1, a3, ag, - Q0 Q). (E.63)

The n-dimensional displacement and reflection operators are

n a*ap—agal aKar dQHB FKaT
[T}, ek =kt — @R S:/Wem( : (E.64)
with the 2n x 2n block matrix K.
0 —1
1 0
K= =K'= K, (E.65)
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since
0O —1/0 O 0O 1] 0 O 1 0/0 O
1 00 O -1 0] 0 O 0 1]0 O
KKt :K(—K) = = |
0O 0|0 —1 0O 0] 0 1 0 0|1 O
0O 0|1 O 0O 0|—-1 0 0 0]0 1

Wigner function in n-dimension is
Fiw (&) = 2"t {e—&KﬁTse&KﬁTF(a)} . (E.66)
Let’s consider the linear similarity transformation in n dimension.
Vlav =av, Vav—t =avt, (E.67)
where V is a 2n x 2n matrix restricted by
VKV = K (E.68)

which is the analog of uo — v7 = 1. V is also the exponential of a bilinear form of a.

Then,
G(@) =V 'F@V = F(aV) (E.69)
and its corresponding Winger function is

G (@) = 2"t {ve—@KﬁTV—lsve&K@’Tv—lF(a)}
_ ong; {6—&VK5TS€&VK&‘TF(&»)}

= Fy(av). (E.70)

The relation is also valid for n-dimensional case.
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APPENDIX F

PARTICLE STATISTICS FROM THE PARTITION FUNCTION FORMALISM
IN CANONICAL ENSEMBLE

One-state Probability

In quantum statistical theory with second quantization formalism, the system can
be described by the distribution of the occupation number in all accessible quantum
states. And, this distribution is described by the proper probability function.

Let’s start with the simplest probability function for the occupation number in

single quantum state. The probability of m particle in the pu-th state is

P(n,, = m) = (3(n,, — m)) (F.1)

= (O(n, —m)) = (O, — (m +1))).

The J-function is the Kronecker-delta, which has one when the argument is zero and
zero otherwise, and © is the step-function, which has one for a non-negative argument
and zero for negative.

In the system which we want to describe, since the total number of particles is
fixed, we will use the canonical ensemble to evaluate the thermal quantities. And, the
probability function is also considered as a conditional probability with fixed total

number
P(n,=m) — P(n,=m|N). (F.2)

This probability function P(n, = m|N) can evaluated through the partition function

Zy in equilibrium state.
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The partition function for the canonical ensemble with N-particle is

n1=0n2=0

_BZ{V} 61/”1/5

)

v}

(F.3)

where index v covers all accessible states and n,, the occupation number of particles

in v-th state, runs from 0 to infinity for bosons, and 3 =

(kgT)~t. Here, d-function

makes sure that there’re only N particles in the system. And, let’s take Z; = 1 for

convenience.

The probability that the system has over m particle in p-th state is

P(nu2m|N)=<@(n —m))
N E

By replacing n, — m + n,,

7mﬁeu
Py zmi =3y
n1=0ngy=0 n,=0
_ —mPBeu Zme ‘
Zn
Finally, we will get
P(n, =m|N) = P(n, > m|N) —
Zme

— e—mﬁeu

ZN

7ﬁ2{u} 61/”1/6

. 6_(m+1)65u ZN*m*1 )

-2 m).

{v}

(F.4)

e P (N —m — Z ny,)
{v}

(F.5)

P(n, >m+1|N)

ZN
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Average for the Occupation Number and the Recursion Relation

The average for the function f(n,) of the occupation number n,, is

— + f(0), (F.7)

with the convention Z_; = 0.
For the average of the occupation number in p-state, f(n,) =n, and
e ZNem
(my = 3 e, (F.8)

m=1
Since the fixed total number of particles is just the summation of the occupation
number in each state,
mBe 1 o
N = 2 (nu) = mz1 g W INom n mZ:1 Z1(mB)ZN—m. (F.9)
The final recursion relation is

= =" Zi(mB) Zn-m(B). (F.10)

m=1
For the convenience in the recursive relation, let’s take Z,, = 0 for negative integer

m.
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Two-state Probability and 2nd Moment

Similar to the one-state probability, we can define the two-state probability function.

P(n, = m,n, = n|N)
= (5(n, — m)d(ny, —n))
= (B, — m) — O(n,, — m —1))d(n, — )
= (O(n, — m)d(n, — n)) — (O(n, —m — 1))d(n, — n))
— (©(n, —m)(O(n, —n) = O(n, —n - 1)))

— (O(n, —m —1)(O(n, —n) — O(n, —n — 1))
= (©(n, — m)O(n, — n)) — (O(n, — m)O(n, —n — 1)))

—(O(n, —m—1)0(n, —n)) + (B(n, —m —1)0(n, —n—1))).  (F.11)

The expression for the probability that p-state has more than m and v-state has

more than n is
P(n, >m,n, >n|N) = (0(n, —m)O(n, —n))
—,BZ €en
D IS SED SINPECIE ha po)

n1=0mn9=0 ny=m ny=n {6}

(F.12)

By replacing n, — m +n, and n, — n+mn,,

P(n, >m,n, >n|N)

_ mﬁeue nBey Z Z i i e_ﬁz{f}eﬁnf(S(N—m—n—an)
n1=0n2=0 n,=0 n,=0 {&}
— efmﬂe;rnﬁ@M' (F.13)

Zn
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The two-state probability with fixed n particles in the v-th state is

P(n, >m,n, =n|N) = (0(n, —m)d(n, —n))

= (8(n, —m)O(n, —n)) — (B(n, —m)O(n, —n —1)))

IN—m— IN-m—n—
_ —mBeu—nfe, N-m—n  _—mpBe,—(n+1)Be, “N—m—n—1 F.14
‘ 7 Zy - (F)

Finally, the two-state probability of m particles in the u-th state and n particles

in the v-th state is

P(n, =m,n, =n|N) = (6(n, —m)d(n, —n))
= P(n, >m,n, =n|N)—P(n, >m+1,n, =n|N)
= [P(n, > m,n, >n|N)— P(n, >m,n, >n+1|N)]

—[P(n, > m+1,m, > n|N) = P(n, > m+1,n, > n+ 1|N)]

—mBeu—nfe, EN-m-n _ o~ mBeu—(n+1)Bey ZN—m-n-1

ZN ZN

(A1) —nfey EN=mon=1 | (mt1)eu(nt1)fe EN-m-n=2 (F.15)
ZN ZN

=€

— e
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From this two-state probability, the following average can be calculated.

(f(nu)g(ny))
N N
=35 fm)g(n) Pl = m,n, = nIN) (F.16)
m1:0 n;()
_ = —mfey
=7 ;0 f(m)
N
A g (e 2y - Sz
I N (m+1)
o —(m+1)Beu
7 ; f(m)e
N
X {Z g(n) <€_nﬁ€VZN—m—n—1 e~ (e ZN—m—n—2>}
n=0

’ {i(gm) = g(n =)™ Inporn + 9(0>}
- iﬁ;(f (m) — f(m —1))(g(n) — g(n — 1))e e ZNZ_;M
- f(0) iv;(g(n) — g(n —1))emPer ZzZan
—9(0) i:l(f (m) = f(m — 1))e P Zg}—vm
+ £(0)9(0) - o
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Reduction into Single Summation

Usually, a double summation is needed for the expectation value of the correlation
function between two states, because the occupation numbers for both states are
counted. However, for the correlation function of the above types, given in Eq. (F.16),
we can reduce that into single summation.

By simplification of the polynomial function (f(m)— f(m—1))(g(n) —g(n—1))
in Eq. (F.17), the the general form can be written as the sum of the following terms
with proper z, and z,.

N N 7
§ /‘ 2 mee nazyefmﬂeufnﬂey N—m—n
ZN

m=1 n=1
o \" R R ZNm
— _ﬁQL —Bey _mﬂfu_nﬁﬂf N-—m—n F1
<e 8(6_5%) ) <e 6(6_551/) > mzl ; ¢ ZN ( 8)

with nonnegative integers z, and x,. And,

=

—1N—-m

Z Zefmﬁeufnﬁey NZ—;Z—’“ _ Z nXZ: efmﬂeufnﬁey NZ—:;—TI

m=1 n=1 =1

al ZN T
E E —mpBeu—(T—m)Bey
. ) ZN

T=2m=1
N
T=2 e B

Since the double summation is reduced into the single summation, the actual
calculation time is also reduced from N? order to N order.

In degenerate case (e, = €,),

N

ANgE

mu —mﬁeu—nﬂey ZN—m—n
=1

=1

3
3

Mz

T-1
A
[ mH ) ] ¢~ Then 20T (F.20)

m=1

!

=2
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In the simplest degenerate case with x, =0 and z, = 0,

N N N 7
“mBep—nBe, LN-m-n _ T — 1)e TBen ZN=T F.21

When z, =1 and z, = 0,

N N 7
—mfBey—nPe, ZN—m—n N—m—n — —PBen —mPBey—nfe, ZN—_mM—n N m—n
3 et 2 ( iy ) 3 S

m=1 n=1 m=1 n=1
N —BeNT— B AT
— o Beu,—Bev T(e ﬁ“) B (e ﬁ“) — () | Zy_r F.22
€ € e*ﬁeu _efﬁel, ~Be —Be 2 VA ’ ( : )
T=2 (6 H—€ ") N
and for the degenerate case
N N 7 T-1
—mfBe,—nPe, “N—m—n —TBey T
I ”")6 T
N
Zn_
=Y 3T - )T (F.23)

Zn

T=2

When z, =2 and z, = 0,

N Z 2 N N Z
2_—mfBeu—nBe, UN-m—n _ —m —mBey—nBe, ZN—m—n
m-e = (&

m=1 n=1
— T+1

i ey

= _5€u — e—ﬁﬁu (G_BEH _ 6—[36,,)2

et (e g e {( ) - ()

(6_[36“ — e—BED)S

Mz

In

3
I

+

and for the degenerate case

N N 7 N T-1 7
Z Z m2e—mﬁeu—nﬁey N—m—n — Z m2 e—TﬁeN N-T
ZN ZN

m=1 n=1 T=2

=> YT -nT@er- e X ( 5)
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When z, =1 and z, = 1,

al Z
E mne—mﬂeu—nﬂey N—m—n

WE

m=1n=1 Zn
a 8 N N g
= R — —Bew 7 —mPBey—nBe, “N—m—n
(5059 () B2
_ €_B€H6_IBEV ZN: |iT{ (effjeu)T + (efﬁﬁu)T}
(e — e_ﬂe”)Q T=2
i Zn_
N z—ﬁeu — Z—ﬁeu {(eiﬁ&M)T o (egey)T}:| gNT> (F26)

and for the degenerate case

N N 7
ZN

m=1 n=1
! —TBe, ZN-T

E(T —)T(T+1)e P (F.27)
Cross Correlation Between Two States

The simplest form for the 2nd-order moment is cross correlation between two different

states, or f(n,) =n, and g(n,) =n,.

NN N N
(nuny> = Z ZmnP(n =m,n, = n|N — Z Ze mfBe,—nPey NZm—n
N
m=0 n=0 m=1n=1
B N e—ﬁeu (e—ﬁeu)T - 6_’86” (e—ﬁey) A o
= Z e_ﬁeu . 6_561/ ZN . ( . )
T=2
For the degenerate case (¢, = €,),
N N NN p
() = 30 S mnP(n, = m,m, = n|N) = 37 3" - non Dnen
N
m=0 n=0 m=1n=1
N T-1 N
ZN- In_
D I N = 2

N
M}
i

1 T=2
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n-state probability

Similar to the one-state probability,

P({n, =1,}IN) = <H5 > . (F.30)

By replacing the d-function into substraction of two ©-function, the n-state probabil-
ity can be written as linear combination of probability which has occupation number

ny > 1.
P({n, = 1,}|N) = <(@(nu — 1) = O(n, — (1, +1)) [Jon > . (F.31)

VEW

After replacing the d-function into ©-function, we will get the following probability.
P({n, = l,}|N) = <H@ >
RS D DRI SIS TR SRR

n1=ly na=ls nu=l, {¢}
By replacing n, — n, + 1,
525 1 & 13 ° /@Z en
P({n, > [,}IN) = ———— Z Z ¢ PLOG(N =) (ne+1e))
n1=0mn2=0 n,=0 {¢}
B el IN-Y g le
— e (e} leee ) (F.33)
ZN

The probability with fixed [, particles in the v-th state is calculated through the

difference between probability with more P(n, >1,) and P(n, > 1, + 1).
Pn,=1,,--)=Pn, >, ) =P, >1,+1,---). (F.34)

For n-state probability, the explicit form is the sum of these differences with proper
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signs. For 3-state probability, the explicit form is

P(ni =li,ng =lp,n3 = l3)
=P(ny =l,ny =lo,ng > 13) — P(n1 = by, = ly,mg > I3+ 1)
=P(ni =li,na > lo,n3 > 13) — P(ng =l,n0 > o+ 1,n5 > 13)
—P(ni=l,ny > lo,n3 > l3+1) + P(ny =l,ny > o+ 1,n3 > I3+ 1)
=P(n1 > li,no > lo,ng > 13) — P(ny > 1+ 1,np > lo,ng > 13)
—P(ni > l,na >l+1,n3>13) +P(ny >l +1,n2 > s+ 1,n3 > 13)
—P(ni > l,ne > lo,ng > U5+ 1) + P(ng > b+ 1,0 > lp,ng > I3+ 1)
+ P >l,ne>b+1ng>l3+1) =Py >l +1ny>lb+1,n3>13+1).

(F.35)

The expectation value for the general polynomial-type function of the occupation
number is

) ) =305 AW R [ Pn = 1} IN)

11=012=0

S A ] (P > b = hin =231

11=012=0

— P(ny > 1+ 1,{n, =1, ;,u:2,3---}|N)>

ZZ |:f1l1f2(l2) ](n1le,{nﬂzl#w:z,g...}w)

11=0

P il = Dfalle) - [P 2 = = 2,3} IN)

- Z{ﬁ(m Al =] [foll)- | Pl = b {ny = i =23, }IN)
O [fl) | Pl = 1y = L = 2.3, V), (F.36)
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After repeating similar procedure for other states, the final form will be

<f1(nu1)f2(n,u2) o >

= f:{fl(ll) — filli = 1)} i{ﬁ(b) — fally — 1)} - P({n, >1,}|N) (F.37)
=1 lo=1

when f;(l; = 0) = 0. Since every summation starts from 1 and the total sum of ; is

N, the ranges for the summation should be shifted. For n-state expectation value,

1 2

(fr(n,) fo(ng,)---) = Z{fl(ll) = fillh = 1)} Z{f2(lz) — falla = 1)}

> {falla) = folla = D)} -+ Pl{n, 2 L} IN) - (F.39)

l3=1
whereri =N—-n+1,r,=N-n+2—-1;,r3=N—n+3—1; — 5, and etc.
Now, we can rearrange the terms to make single summation.

() falige) ) = 3P e, ) L (F.39)

T=n
Since the reduction into single summation depends on the actual form of the function
and degeneracy, the procedure for each case should be evaluated case by case. Anyway,
the reduction into single summation means the reduction of calculation time. Let’s

show the example explicitly by starting in 3-state expectation.
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—1-li N—l;—

N—
n#lnﬂznus Z Z Z ﬂel 562)12( /563)13ZN gle I3

1:1 lo=1 3=
N— e 563( 7/862)’111 o 6*662 (6*663)711 ZN—ll—Tl

=
N}

— 561 Z
6_552 — 6_563 ZN
l1=]_ 1=2
B T2 ey €0 (e,ﬂm)ml _ e Pe (6fﬁes)T*ll T
a ( ) e—Be2 _ o—Pes N

1
e—Beap—Bes  g—Pe (efﬂq)T—l — e Ba (e—ﬁez)T—l

N
=
Il

M= 1M

6_562 — e—ﬁég e_ﬁel o 6_’662
T=3
e G M e i P2
_ 6_652 — 6_/863 6—561 _ 6_'863 ZN
_ i e Pe2ehes (e_ﬁel)T N e—Bes o—Per (e—ﬁe2)T
T=3 <6_ﬁ€1 — 6_5€2> <€—ﬂ61 — 6-5&3) <e—,362 _ G_ﬁe?’) (6_562 _ 6_551>
—Be1 ,—PBe2 —Bes T
(& € € AN
+ ) —. (F.40)
(6_653 — 6—551> (6_'663 — e—,@ez) ZN

For degenerate case where €; = €3 = €3,

N—-2N-1-Il1 N—-l1— . l 7
ﬂel —Bez\!2 ( —Be3\ls8 ZN-li—la—l3
() = D Z ) (e79) " =
=1 =1 I3= N

T-2 —l1

T—1—
PN CR a =
lo=1 N

e e (R
N s P

I
w



Or, for € # €3 = €3,

(Mg Ty i)

N—2N-1-1; N—I;—

Zl Z Z ﬁel
]\1712 l N—l3 Th—
— 561 1
_ N-2 s L N*ll - e
(e=) Z (Ty — 1) (e™72)
=1 T
— 6—562

)N 2N— l1
1T1=2
N T-2

— | e Pe 1
(9(6 562 ) TZP)hZ
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ﬁﬁg)l2+13 ZN l1—lo—I3

N

ﬂ52 Ty ZN =Ty

N
T ZN—ll—Tl
ZN
561 ,Geg T ZN h—T1
ZN
,361 ll ,352 T-l ZN T

Iy

(P ) e ) 2

1
8 N
_ —Bea .
= le () 1)2

T=3

e—be (e—ﬁez)T

:Z (T —

() )

e—Ber _ g—PBe2 In

—Ber (6_/662)T+1 ZN_T

— e—Pe2 — p—Pea (6_/861 B e—5€2>2 I
(F.42)
Similarly, for €; = €5 # €3,
<”u1nu2nu3>
N e—Pes (e—ﬂel)T (6_561)2 (€_ﬂ63)T _ o Pes (6—561)T+1 Inr
— T _ =
; ( efa —e e Zx

2
(6_563 — €—ﬂ€1)
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OCCUPATION NUMBER IN QUASI-PARTICLE BASIS AND COMMUTATION

RELATION

The number operator in quasi-particle basis is

Bl =

.

= Nk-.

aLﬁoﬁSak
aL(l + no)_l/anag(l + no)_1/2ak

al (14 n0)"Y2(1 4 no) (1 + no) ~?ay,

(G.1)

So, the distribution of the occupation number in quasi-particle basis is same to that

in particle basis.

The commutation relation is

[ﬁka ﬁk/] [ﬂo Ak, Gy 60]

20,0l (1 + no)_l/QaO]

B ag(l +n0) "2 aral, (1 +10) " ?ag — afy (14 no) ™ 2agal (1 + no)

= a} (1 + no) tagaxal, —

-1
= agaono akaL

= Ok K-

aL(l + no)_1/2(1 +no)(1 4+ no)_l/Qak

(G.2)



97

However, for the ground state

[0, 58] = 8085 — 8150
=(1+ no)_l/anag(l + no)_l/2 — ag(l + no)_l/2(1 + no)_1/2a0
= 0. (G.3)
So, the commutation relation for the quasi-particle basis is same to that of the

particle basis except the ground state. And, we cannot construct the number state

for the ground state of the quasi-particle.
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APPENDIX H

REPRESENTATION OF THE DENSITY OPERATOR IN A WEAKLY
INTERACTING BOSE GAS

In the interacting bose gas with finite number of particles, the density opera-
tor in Fock space F, spanned by ny = &Ldk can be represented with all possible

combinations of occupation number of particles in bra and ket state.

poe= Y Py Am N ) (fmy} ], (H.1)

{nu},{mu}
where {n,} and {m,} are the distribution of particles in each state. Here, n,(m,,) is

the occupation number of particles in u ket(bra)-state, and
fncl{n,}) = afanl{n,}) = nul{n.}), (H.2)
({myriue = ({my}|agan = my, ({my} . (H.3)

The condition for the finite total number of particles is

S =S m, = . (H.4)

Following the second quantization notation, we can rewrite the ket state with

creation operator aL.

) 1] ( ﬁ(&;)"ﬂ) o). (w5)

When we replace the a-operator in terms of Bk and BIT(,

G, = PoBy  with By = (1+ o) aq, (H.6)

af, = B;Bg with G = af (1 4 ng) /2, (H.7)
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the ground state should be considered separately.

1 AL —1/2\ "
|mm=g{ﬁm@MMM+m/)}mmwm, (H.8)

where {0}y is all the excited states. Because EL(TJ (&5&0 + 1)_1/ 2 operator with BL

creates one more particle in the ground state,

_ 1

the form of the ket-state becomes

{n.}) = |no = N, {n,}). (H.10)

where

A

n,

nu> = Blﬁ/\ﬂ

n,) = n#‘nu> (H.11)

for the excited state, and
> n, =M (H.12)
p#0

By separating the ground state and rewriting the ket-state in terms of B;ﬂ oper-

ator,

Hmsz{J%Q%WbszWMJ (H.13)

p#0

= H { \/% <uki);f( + Uki),k> ”u} ‘no =N, {O}exc>' (H'14)

p#0
Eq. (H.14) is the ket-state which is represented in Fock space F;, which is spanned by
e = ELbk state. Here, the maximum number of quasi-particles which are created in

the configuration is same to total number of particles in excited state, even though



100

the states with less number of quasi-particles are created. For each state in F,, the
corresponding state in JF, will have that the maximum number of quasi-particle is
N — no(N — my) for ket(bra)-state.

Since the approximate Hamiltonian in by and bL basis is in diagonal form, that is
similar to the non-interacting boson, all excited state in Fy is statistically independent.
And the possible configuration in the density operator in this basis should be diagonal
in equilibrium : the ket-state and the corresponding bra-state should be dual to each

other. Finally, we can write the density operator as

= ) Plng =N —M|N) > P({n,}o|M)|{n,}s) ({n,}s]. (H.15)
M=0 {np}e

Eq. (H.15) is the density operator in terms of the number of condensate particle ng
and the occupation number {n,}, of Bogoliubov transformed bk and bL operator.
Here, n, is the number of Bogoliubov transformed quasi-particle in p-state, and its
sum ZHN should be M to make sure that the total number of quasi-particle is

u#0
M = N—?’Lo.
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APPENDIX I
SUMMATION OF PARTIAL PARTITION FUNCTION

This appendix is about the proof of the Eq. (5.39).

The total configurations seem to be divided into distinguishable set of configu-
rations according to the proper parameter, for example, the occupation number of
one-state. However, the division of the partition function in CE for boson is not
trivial.

Let’s assume that v-state with energy €, is in-accessible. Since we can divide the
total configuration as the occupation number in that state, we might write down the

partition function as sum of partial partition function.

N

Zy(B) = e Nmie ze () (L1)

n=0
where Zy is the partition function for the whole states with N particles and Z7 is
the partial partition function with the states except v-state.

Since the definition for Z*() is

Z;:ii f: f: ---exp{—ﬁZeMnu}(S(n— Znu>, (1.2)

n1=0 na=0 ny—1=0mn,4+1=0 {p#v} {u#v}

the recursive relation for Zy (/) is also applicable to Z* () :

20 = 13" ziwo) 23 0. (13)

Now, let’s prove the relation between Zx(3) and Z*(3) explicitly with the math-
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ematical induction. For the system with a single particle,

Z(B) = e, (1.4)
{n#v}

Zi(B) = > e = Z(B) — e (1.5)
{u#v}

To simplify the proof, let’s choose v-state as ground state with ¢y = 0. Then, for

the single particle case,

Z(0) = 1+ Z(9). (16)
For two-particle case,
8) = H(ZOZ(B) + L2 Z(9) = 3 {1+ 2B’ + (1+ Z3(26)}
%{2+ZZ* +(Z(8)" + 220}
=1+ 210 + 5{ (7)) + Z20)}
— 14 Zi(8) + Z(5). (17)
If we assume that
Zn() = 3 7(6), (18)

n=0
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then
ZNJrl(ﬁ)
N+1 N+1
= N;H > Z(nB) Zniaa(B) = N;%—l > A1+ Z5(nB)} Zs1-n(B)
_ ]' : .
CN+1
{1 +Z7(0)} {Z5(B) +Zy(B) +--- +Z5(8) +Z5(0)
+Z(6) +1}
+{1 +2720)} {Zx 1(B) +Z3 ,(8) +-- +Z3(8) +Z7(B) +1}
x| +{1 +Z730)} {Zn_o(B) +Z5_5(B) +--- +Zi(B) +1}
+{1 +Zy (N -1)p)} {Z;(8)  +Z;(B)  +1}
+{1 +Z7(NB)} {Zy(B)  +1}
_+{1 +Z7 (N +1)8)}
:N ZN+1—k)Zk +—Zkzk (L9)
N+1
=Y Z:(P). (Q.E.D.) (1.10)
k=0

The first term 1 in Z;(nf) = 1+ Z7(nB) gives the first term in Eq. (1.9), and

the second term Z7(nf3) gives the second term in Eq. (1.9).
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APPENDIX J

STATISTICS IN INTERACTING BOSE GAS

Average

The occupation number in quasi-particle basis is

<31T<Bk> = <(Uki)L + Uké—k)(uki?k + Ukl;T_k)>
= () + won (BB ) + v (i) + 02 (b,
= UIQ(TI" (pIntBTkBk) + UkUkTI' (plntlA)Li?T_k) + ’UkUkTI' (pIntlA)_ki?k) + UﬁTI" (pIntlA)_kBT_k)

= uiTr (pIntlA)LlA)k) -+ vﬁTr (PIntgfkl;T_k)

N M
= uj P(ng = N—M|N)ZP(nk = n|M)(ni :n|bLbk|nk:n>
M=0 n=0
N M o
+ vp Z P(ng =N — M|N) ZP(n_k =n|M){n_x = n|b_ib | |n_x = n)
M=0 n=0

P(ny= N — MIN)S_ P(ny =n | M) (nui +(n+ mi)

n=0

I
I-

+ vp) T + vp (J.1)

)

:(u

with
N M
=Y Plng=N—M[N)) nP(m=n]|M). (J.2)
M=0 n=0

Here, we used P(n_y = n|M) = P(ny = n|M).
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Similar to the case of ideal gas, we can simplify Eq. (J.2).

nP(nx =n| M)

SI
I
i]=
b
g
I
=
|
=
2
NE

N M * *
AT (en@eu Ziton e, ZM_n_l)
M= 2 0 Zy Iy

n=1 M=n
N
ZN-n
e Z 6_7156” N (J 3)
n=1 ZN

The final form seems to be same in ideal case.

Variance

After applying the Bogoliubov transformation, the average for the 4-operator is

<B;L5Akﬁli,ﬁk/> = <(ukl;L + vih_) (uxcbi + Ukl;ik)(uk/i)f(, + b ) (b + Uk’l;T_k/)>
= g, (bl b ) + dunovie (bbbt )
+ e (B sehie ) + wi (Bhd ey )
+ ey (BB b ) + e (WL BB )
+ UK VK U Uy <I;Ll;ikl;_kllsk/> + ukvkvi, <I;LBikl;_k/l;ik,>
+ Ukukui, <l;_klA)klA)L,?A)k/> + VU Uk Vg <ZA)_klA)kZA)1T{,lA)T7k,>
+ U UK Ui U <Z;,k13k13,k/1;k/> + vkukvi, <5,k3ki),k/l§ik,>
v, (bl B ) + v (bt B )

+ Ui’l)k/uk/ <Z)_ki7T_klA)_k/i)k/> + U12<’UI2(/ <ZA)_ki)T_klA)_k/lA)ik/> . (J4)
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When the number of the creation operators is equal to that of the annihilation ones,
the average of the 4-operators are contributed to the variance. The terms which have

equal number of operators are
(Bl ) = iy (bl ) + iy (Bl )
+ U VK Vi U <1A)LIA)T_klA),k/lA)k/> + U UK Uy’ Vi <I;,klgk13;f(,l;T_k,>
wotud, (ot Bbe ) + i (bt ). (1.5)
To evaluate each term explicitly, we need the 2-state probability P(n,,n,|M) with

pu(v) = £k, £k’. For simplicity, let’s use the following convention for the occupation

number of particles in each state.
l=m, m=n_y, p=nw, and ¢=n_y. (J.6)
Then, the corresponding 1-state and 2-state probabilities are

P(IM) = P(me = I|M),
P(m|M) = P(n_yx = m|M),
P(l,m|M) = P(nx =l,n_yx = m|M), (J.7)

P(l,p|M) = P(ny = l,ne = p|M),

Since the total number in excited state is M, the summation for the 2-state is re-

stricted. For example, the ranges are restricted to [ +m < M in P(l,m|M).
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Let’s evaluate the expectation value explicitly. When k' = k,

(BB )

_|_
S
o
M=
S
NE
)
|
El
=
_l’_
S
N
Mz
o
M=
i
=
=
£
_l’_
~
El
=

(1.8)

The average value from the 2-state probability also can be simplified.

N
Py Y > ImP(l,m|M) =) iM > P(ny, >1,n, > m|M)

m=

N M-I
Zy SO etenmie ZM—tom _ 3 o 1Be—mBe, LM —t-m
ZN

N x
= E e~ Ben—mPey M

A
I=1 m=1 M—=I+m N
!

ZN-1-m
~1Bey—mPBe, ZN-l-m (J.9)

Similar to 1-state probability, the final form is also same to that in ideal Bose gas.
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When k' = -k,
(B )
- ukuk/ <b bkb b > + UIQ(’UI%/ <B1l;l;kl;k61l—{>
+ UV Ve Uy <6Tki)iki)k[;_k> + VU Uk Vg <6—k[;kgikl;£>

+ Uﬁui/ <B_kl;T_ [;JL ZA)_k> + UIQ{UIQ{/ <l;_k6Jf_ l;ki)T>

M M-l M
= ukZPMZZlmle|M +uv12<ZPM L+ 1)P(IIM)
1=0 m=0 1=0
N M M-l N M M-l
tugvp Y Pu > Y ImP(Lm| M)+ vgug > Py Y Y (L4 1)(m+ 1)P(1,m|M)
M=0 =0 m=0 M=0 =0 m=0
M N M M-l
+vkuiZPMZm P(m|M)+vg > Py Y > (I+1)(m+1)P(l,m|M).
m= M=0 =0 m=0
(J.10)
Otherwise, that is k' # £k,
(BLAALBe)
_ 2,2 [ptp ot g 2.2 /it7 7 7t
— ukuk/ bkbkbk/bk/ + ukvk/ bkbkbfk/b_k/
_|_ Ulz(ui/ <B_k6i Z;l-‘—(/z\)k/> + UIQ(’UIQ(/ <B_kl;1; B_klz\)-‘—_k/>
M M-l M M-l
= upuy Z PMZ Z IpP(l, p| M) + ujvy, Z PMZ l(q P(l,q|M)
=0 p=0 =0 ¢=0
N M M-m
+ vt Z Py Z Z (m + 1)pP(l,p|M)
M=0 m=0 p=0
N M M-m
+ogup Y Py > (m+1)(qg+ 1)P(m, q|M). (J.11)
M=0 m=0 ¢q=0
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Third Moment
For the 3rd moment, we need the expectation value for the 6-operator.
(LBl B
:<(Ukl;1l; + ’Uki)_k)(lbki)k + Uki)ik)(uk/ Z;Tk, + vk/l;_k/)(uk/ Bk’ —+ Uy l;-r_k,)
(Uk" [A)L// + Uk//i)_k//) (uku l;k” + Uk// l;-i;k” ) > . (J 12)

The terms which have equal number of creation operators and of annihilation

operators can only be contributed to the 3rd moment. So, the remaining terms are
at g At 4 At A3
6kﬁkﬁk/ ﬁk’ ﬂk// ﬁk”
= uiui,ui,, <[;Lékl;;r<, [A)k/lA)L,,i)kN> + uiui,vi,, <[;Llskl;;r<,l;k/l;_k// l;ik”>
: BB b s ) + bbb bbbt
+Ukuk/Uk'Uk”Uk" k k KOy —_ k! Ok —|—Uk’(}kluk/uku1}k// k kO_k/ Ok’ KOy
+ Uivi/Ui// <6L8k87k/ l;‘i-_k/l;L//I;k//> + uivﬁlvi// <I;I{I;ki)7k/81‘_k/87k”81k”>

+ ukvkui,vkuukn <[A)Tkl;iki)Tk,bk/ B_k// Bk//> + ukvkvk/uk/uiu <bLBtkb—k’bk’ BTk,,bk//>

>

+ ukvkvk/ukfvﬁ,, <6L6T_kb—k’6k’l;—k”i)iku> + ukvkvi,vkuuku <Z)L[A)T_kl;_k/i)ik,i)_kui)ku>
; b sl bbbt 2, (bl bty bld
+Ukukuk/uk”vk” —kOk Oy Ok Oy rn O_y s +UkUkUklvk/Uku —kOkOy/O_ 1 Oprr Ok
2, (bbbl b bt ; s 1oy B!

+ VU Uk Vi Vierr { 0,00y 0100y )+ VUi Vg U Vyerr { 010601011 04,0_ 4 10
+ vﬁui,ui,, <[A)_ki)ikl;;r{,i)k/i)1{,,i)ku> + viui,vﬁ,, <[A)_kl;tki);i)k/i)_k//i)ik,,>

2 b_xcb'  blbY b g 2 b_ycb' b sobieb),bf
—|—’Ukuk/UkI’Uk//uk// —kVU_1 0104/ Ok Ok +Ukvk’uk’uk"vk” —kV9_ 10—k’ Ok’ 0y 1Oy rr

2vg gy { Db’ b_wbl bLb 202080 (b_ycb' b _gobl | b b J13
+'Uk'Uk/'U/k// —kU_O—k'0O_ 1/ 0y Ok +Ukvk/vk// kU _ OO 1/ 0_k"0_yr1 /- ( . )

In 3rd moment calculation, there’re 11 different types of terms, which are shown

in Table. VI.



For simplicity, let’s use the following conventions.

Nk = l, N_x =m,nNx =pP,N_x =4, Nkgr =T, N_xr = S.

Here, we will use an over-line to denote the proper average.

N . N N
l_zziMZleP(nk:l,nk/:p]M).

Case 1. non-degenerate case where k # +k’ £ +k”

(B

= upupupllpr + upugvealp(s + 1)

+ upvpugnl(q + D)1 + ugvgvgnl(qg + 1) (s + 1)

+ Vet g (m + 1)pr + vieugsvigy (m + 1)p(s + 1)

+ veviugn (m 4 1)(q + Dr + vgvgvin(m + 1) (g + 1)(s + 1).

Case 2. k = k' # +K”

AAAAA

2,2 .2 2,2 2
= ukuk/ukHZQT + ukuklvk//l2<8 + ].)

+ ugvg gl (m + )r + upvgvgdl(m + 1) (s + 1)
+ ukvkvk/uk/uiuW

+ ukvkvk/uk/viulm(s + 1)

+ Vet Ve iy (1 + 1) (m 4 1)r

+ vkukuk/vk/vﬁ,,(l + 1)(m + 1)(8 + 1)

+ viupugal(m + 1)r + viug v d(m 4+ 1)(s + 1)

+ Uivi/ui// (m + 1)27" + /012(/012{/1)12(// (m + 1)2(3 + 1)
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(J.14)

(1.15)

(J.16)

(J.17)
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Case 3. k = —k' # £k”

(LA ol )

= wpuiup.dmr +uiudvi.dm(s + 1)

+ugvg gl (L + 1)r + ugvgvgal (I + 1) (s + 1)
+ ukvkvk/uk/ui/,w

+ UV Vi U Vg lm (s + 1)

+ Vet Vi (1 + 1) (m 4 1)r

+ vkukuk/vk/viu(l + 1)(m + 1)(8 + 1)

+ vpupupem(m + 1)1 + viugvgem(m + 1)(s + 1)

+ vpvp g (L 4+ 1) (m + 1)1 + vivgvgs (I + 1) (m + 1) (s + 1). (J.18)
Case 4. k = k" # +K
CIETE TN

= wiudud,Pp +uiudod,d(m + 1)p

+ upvgupsl2(q + 1) + ugvgvgsl(m + 1) (g + 1)
+ ukvkui,vknukulmp

+ ukvkvﬁ,vkuukulm(q + 1)

+ vt e vier (L4 1) (m + 1)p

+ vkukvi,ukuvku(l + 1)(m + 1)((] + 1)

+ vpupupsl(m + 1)p + vpug,vps (m + 1)2p

+vgvg g d(m +1)(g + 1) + vivgvgs(m + 1)2(q + 1). (J.19)
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Case 5. k = —k" # £k’

(Bl e

= upuiui.dmp + upug v (L4 1)p

+ upvpupnlm(q + 1) + upvpgvpnl(L+ 1) (g + 1)
+ ukvkui,vknukulmp

+ wO U Ve g lm(q 4 1)

+ vt e i (L4 1) (m + 1)p

+ vVt vier (I + 1) (m + 1) (g + 1)

+ veupupem(m + 1)p + vpugves (I + 1) (m + 1)p

+ vpvpugem(m + 1) (g + 1) + vpvpvg, (L4 1) (m + 1)(g + 1). (J.20)
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Case 6. k=k' =K"

(BBl Bl

= w$B 4 upril2(m + 1)

+ uiuk/vk/vknuklem + uivk/uk/uknvkul(l + 1)(m + 1)
+ upvp g2 (m + 1) + ugvg vgel(m + 1)2

2 2 72
+ U U Ui Vi g L (L — 1)m + ug Uy U U i 12m

+ U VKVl Ut Ve lm(m 4+ 1) + gy U Vi tiger I

+ vkukui,ukuvku(l + 1)2(m + 1) + Ukukukrvk/ui//l(l + 1)(m + 1)

+ vkukuk/vk/vi//(l + 1)(m + 1)2 + vkukvi,ukuvku(l + 1)(m + 1)<m + 2)

+ viugupal2(m + 1) + viudvf,l(m + 1)2

-+ vﬁuk,vk/vkuukulm(m + 1) + vivk/uk/ukuvku(l + 1)(m + 1)2

+ oo ud d(m 4 1)2 + vl vd, (m + 1)3. (J.21)
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Case 7. k=k' = —K”

A A

(LAl i)

upu ug.2m + upug, v 2(1 + 1)

+ uiuk/vk/vknuk//W + uivk/uk/uknvkul(l + 1)(m + 1)

+ upvi gl (m + 1)m + ugvgvgel(m + 1)(1 + 1)
+ weOi Ui Vi g L (L — 1)m + ukvkvk/uk/ui,,m

+ UV e Ve (14 1)m 4 v Vg Vet lm?2

+ vkukui/ukuvku(l + 1)2(m + 1) + Ukukukrvk/ui”(l + 1)m(m + 1)

+ Ukukukka/vi//(l + 1)2(m + 1) + vkukvi,ukuvku(l + 1)(m + 1)<m + 2)

+ veupupdm(m + 1) + viupvgel (I + 1)(m + 1)

—+ Uﬁuk/kavkuukulm(m + ].) + vivk/uk/ukuvku(l + 1)(m + 1)2

+ v ud, (m 4 1)2m + oo, (m + 1)2(1+ 1). (J.22)



115

Case 8. k= —-k' =K”

(A o)

upu ud, Pm + uiug v dm(m 4 1)

+ uiuklvk/vkuukum + uivk/uk/ukuvkul(l + 1)(m + 1)

+ upvpups 21+ 1) + upvgvpal (I + 1) (m + 1)
+ U VUi Ve Uger I (m — 1) + ukvkvk/uk/ui,/m

+ UV Ve Ut Vanlm(m 4+ 1) 4 uo g Vpen g 12m

+ vkukui,ukuvku(l + 1)(m + 1)2 + Ukukuk/vk/ui,,l(l + 1)(m + 1)

+ vkukuk/vk/vﬁ”(l + 1)(m + 1)2 + Ukukvi,ukuvku(l + 1)(l + 2)(m + 1)

+ vpup g dm(m + 1) + veug, vgem(m + 1)2

+ viukmk,vkuukulm(m + 1) + Uﬁ’l}k/ukluk//’l}k//(l + 1)(m + 1)2

+ v ugal(l+ 1) (m + 1) +vivdvd, (1 +1)(m + 1)2. (J.23)
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Case 9. k= k' = —K”

CLER I NI

= upupui.lm? + upug v (L4 1)m

+ uiuklvk/vkuukum + uivk/uk/ukuvkul(l + 1)(m + 1)
+ upvpups (1 + D)m + upvgvpsl(1 + 1)2
+ U VUi Ve g I (m — 1) + ukvkvk/uk/ui,/lm_Q

+ UV Ve Ui Van L (1 + 1)m 4 ueovp Oien g 12m

+ vkukui,ukuvku(l + 1)(m + 1)2 + Ukukuk/vk/ui//(l + 1)m(m + 1)

+ vkukuk/vk/vﬁ”(l + 1)2(m + 1) + Ukukvi,ukuvku(l + 1)(l + 2)(m + 1)

+ vpupupem2(m + 1) + vpugves (I + Dm(m + 1)

+ viukmk,vkuukulm(m + 1) + Uﬁ’l}k/ukluk//’l}k//(l + 1)(m + 1)2

+vivd g, (I + Dm(m + 1) +vdvdvd, (1 +1)2(m + 1). (J.24)
Case 10. £tk # k' =k”

(LBl e

= ’u,iui/’u,iuw + uiui/vi//lp(q + 1)

+ uiuk/vk/vkuuku@ + uivk/uk/ukuvkul(p + 1)((] + 1)

+ upvp g lp(q + 1) + upvgvpnl(q + 1)2

+ Vg tign (m + 1)p? + viuig v (m + 1)p(g + 1)

+ viukmk/vkuuku (m + ]_)pq + Uivk/uk/ukuvku(m =+ 1)(]? + 1)(q + ].)

+ vivdugs(m 4+ 1)p(g + 1) +vivdvd,(m + 1)(qg + 1)2. (J.25)



Case 11. £k # k' = -k’

(bl e

upu uialpg + upupvilp(p + 1)

+ uiuklvklvk//Ukl/@ + uivk/uk/ukuvknl(p + 1)((] + 1)

+ upvpupnlq(q + 1) + upvpvpal(p 4+ 1)(g + 1)

+ v ud, (m+ 1)pg + viugvd,(m + Dp(p + 1)

+ viuklvk/vkuuku (m + 1)])(] + Uﬁkauk/ukuvku (m + 1)(]7 + 1)(q + 1)

+ vivgugs(m +1)(q + 1)q + vivgvpg,(m + 1) (g + D(p + 1).
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(J.26)



Table I. Processes in Carnot cycle with a single photon

L |V=LA| T =% n P
Stage | (mm) | (mm?®) | (K) | (x10" Hz) (x107'? N/m? = Pa)
1 1 1 300 9.42 6.15 3.84
2 2 2 300 4.72 12.78 2.00
3 3 3 200 3.14 12.78 0.89
4 | 3/2 | 3/2 |200] 628 6.15 1.71
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Table II. Table for the shell structure of the multi-electron atoms

notation for state

maximum number of electrons

in the state

quantum number

1s 2 n;, =1
2s 2 n; =2
2p 6 n; = 2
3s 2 n, =3
3p 6 n;, =3
4s 2 n; =4
3d 10 n;, =3
4p 6 n; =4
5s 2 n; =25
4d 10 n;, =3
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Atomic Number

E(Experiment)

E(Bohr Model)

2(He)

24(Cr)
25(Mn)

-2.903
-7.478
-14.667
-24.652
-37.842
-54.584
-75.059
-99.719
-128.919
-162.233
-200.026
-242.315
-289.322
-341.208
-398.601
-460.102
-527.494
-599.924
-677.558
-760.575
-849.285
-943.804
-1044.315
-1150.866

-3.06250
-7.69046
-14.84035
-24.79358
-37.81680
-54.16099
-74.17799
-98.05818
-126.05298
-158.42380
-195.29550
-236.53440
-282.23095
-332.55240
-387.58611
-447.39648
-512.25169
-582.12325
-657.12386
-737.47984
-823.40219
-914.80980
-1011.84586
-1114.54139
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Table III. Table for the ground state energy of multi-electron atoms until Z = 25
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Table IV. Table for the variational parameters in the wavefunction (The only varia-

tional parameter here is the nuclear charge Z*, and all other parameters
are calculated by solving the H, eigenvalue problem for a variationally best

effective charge.)

Parameter | U/(1,2) W/(1,2)f(r) Parameter | W7 (1,2) | UH(1,2)f(ry)
z* 0.7786 0.9370 z* 0.7806 0.9407
p 0.9152 1.0647 p 0.9171 1.0680
ai 0.0072 0.0096 Ay -0.0376 -0.0412
as 0.0004 0.0004 As -0.0045 -0.0043
by 0.0955 0.1303 By 0.0959 0.1312
by 0.0014 0.0026 By 0.0014 0.0026
BE(eV) | 3.44 4.60 BE(eV) 3.46 4.62
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Table V. Comparisons among different descriptions to the BEC problem

ON ON SOX SOX 9)e)S 9)BSTUOPUOD 0} SSIIY
SOX ON SOX UOI)oUN,| UOTHIIRJ
SOx ON SOX 10yeI0d () AYSUS(] JO ULIO] [RUOSRI(]
SOx ON SOX URTUO)[TUIR]] POZI[eUOTeI(]
0 0 | e | e oyesadg
pourIojsueI) Aoquijodog | oprred-iseng) | opI)IRJ apo1MIR ] AYIYUA] JO Spuryf

ser) 9s0¢ SUI)ORIIU] AT ROAN

ser) 9sog] Teap]




Table VI. 11 different types of terms in the 3rd moment of evaluation

non-degenerate case where k # +k’ # +k”

k = k' £ £k”

k = —k' # £k’

k =k’ # £k’

k=K' # k'

k=k =k’

k=k = —K"

k = -k = K"

k= -k = —K"

10

tk £ k' = k"

11

+k #k = K’
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S1(4) S2(3) S

Fig. 1. Carnot cycle diagram in T-S plane : 1 — 2 and 3 — 4 are isothermal process
with constant temperature. 2 — 3 and 4 — 1 are adiabatic process with

constant entropy.
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4 —
1
3.5
isothermal process with T = 300 K
3 -
D“f 250 adiabatic process
5 2
= 2
X 2
o
adiabatic process
4
151
W 3
isothermal process with TI =200 K
05 | | | J
0 0.5 1 15 2 25 3 35
V (%107 m®)

Fig. 2. Diagram in P-V plane for the Carnot cycle with single-photon.
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__—_.._---
- -
-~

r=0.57143 A

o i
He(Z = 2) i

=-3.0625 /

-
-

Fig. 3. Diagram for the He atom in Bohr model. Two electrons have same distance

from the nucleus and are located at the opposite ends of the diameter, which

has the maximum distance from each electron.
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® (2s)

r = 3.8490
r=0.36381
(1) /
o—21' 4s)
0=176

Fig. 4. Diagram for the Li atom in Bohr model. The other electrons in 1s are located
slightly off from the straight line adjoining the nucleus and the electron. All

three electrons are on the same plain.
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o1

r =0.26690

(53) r =0.63439 (53)

°(s)

Fig. 5. Diagram for the Be atom in Bohr model. All four electrons are on the same

plain.

(2sp)
r=2.8021

(2sp)

r=0.21081

E =-24.79358

(2sp)

Fig. 6. Diagram for the B atom in Bohr model. (sp)-hybridization. All three electrons
in (2sp) are on the same plain and the joining line between two (1s) electrons

is prependicular.
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(2sp)

(2sp)

(1s)

(2sp)
(2sp)

Fig. 7. Diagram for the C atom in Bohr model.  Four outer-electrons make

(sp?)-hybridization and tetrahedral structure.
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0.05-

0.04-

0.03-

Relative Error (%)
o

-0.01+-

-0.02-

-0.031-

L L L L L L L L L L L L L L L L L L L
01 2 3 45 6 7 8 9 101112 13 14 1516 17 18 19 2
Atomic Number

.0.04 T [ L
0 21 22 23 24 25 26 27 28 29 30

Fig. 8. Relative error of the ground-state energy of the multi-electron atoms compared
to the experiments until Z = 30. Notice that the carbon atom (Z = 6) has the

smallest relative error in absolute value.



131

A O B
< R -

Fig. 9. Electronic distances in diatomic molecule. A and B are the positions of the
nuclei with nuclear charges Z, and Z,, respectively. The nuclei are fixed and
the distance between them is taken to be the equilibrium bond length for the
given molecule, R = Ry. The positions of the electrons are denoted by 1 and
2.
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Fig. 10. (a) Elliptical coordinates (A, u). (b) Prolate spheroidal coordinates (A, u, ¢)
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Fig. 11. Trajectory of a periodic electron motion in H. The electron moves in a plane

that passes through the molecular axis.
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Fig. 12. Ground state potential energy curve of HJ molecule.
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Trajectory of oo-like electron motion in Hy. The electron moves in a plane

that passes through the molecular axis.
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Ground state potential energy curve of HJ molecule obtained for oo-like elec-

tron trajectory (solid line), “exact” quantum mechanical dots and curves from

Ref. [17] obtained using primitive quantization (dash-dot line) and uniform

quantization (dashed line).
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Fig. 16. Average occupation number in condensate state of an ideal Bose gas.
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Fig. 17. Variance of the occupation number in condensate state of an ideal Bose gas
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gas.
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Fig. 20. Average number of particles in condensate state : N = 200.
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Fluctuation of the number of particles in condensate state : N = 200.
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