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ABSTRACT 

 

 

Performance Analysis of a New Ultrasound Axial Strain Time Constant Estimation 

(May 2010) 

Sanjay Padmanabhan Nair, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Raffaella Righetti 

 

New elastographic techniques such as poroelastography and viscoelasticity 

imaging aim at imaging the temporal mechanical behavior of tissues. These techniques 

usually involve the use of curve fitting methods as applied to noisy data to estimate new 

elastographic parameters. As of today, however, image quality performance of these new 

elastographic imaging techniques is still largely unknown due to a paucity of data and 

the lack of systematic studies that analyze performance limitations of estimators suitable 

for these novel applications. Furthermore, current elastographic implementations of 

poroelasticity and viscoelasticity imaging methods are in general too slow and not 

optimized for clinical applications.  

In this paper, we propose a new elastographic time constant (TC) estimator, 

which is based on the use of the Least Square Error (LSE) curve-fitting method and the 

Levenberg-Marquardt (LM) optimization rule as applied to noisy elastographic data 

obtained from a tissue under creep compression. The estimator’s performance is 

analyzed using simulations and quantified in terms of accuracy, precision, sensitivity, 
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signal-to-noise ratio (SNR) and speed. Experiments are performed as a proof of principle 

of the technical applicability of the new estimator on real experimental data.  

The results of this study demonstrate that the new elastographic estimator 

described in this thesis can produce highly accurate, sensitive and precise time constant 

estimates in real-time and at high SNR. In the future, the use of this estimator could allow 

real-time imaging of the temporal behavior of complex tissues and provide advances in 

lymphedema and cancer imaging. 
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CHAPTER I 

INTRODUCTION AND BASIC CONCEPTS 
 
 
A. Introduction 

  

This chapter defines the objectives of this study, the hypothesis to be proven, and 

also discusses the break-down of the problem into several smaller aims. Essential 

mechanics and signal processing concepts are also discussed in this chapter. 

 

B. Objective and hypothesis 

  

 The main objective of this study is to analyze the reliability and feasibility of 

axial strain time constant imaging estimators. The hypothesis of this study is that axial 

strain time constant estimation can be done accurately and speedily using curve-fitting 

techniques. 

 

C. Problem breakdown 

 

 Three issues are addressed in this work: 

1. Design of a suitable time constant estimation algorithm 

2. Design of a simulation procedure to evaluate the performance of the algorithm 

 

 
This thesis follows the style of Ultrasound in Medicine and Biology. 
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3. Design of suitable experiments to corroborate simulation results 
 

D. Relevant mechanics concepts 

 

i.  Strain 

 

 All solid bodies experience a deformation or displacement when a force is 

exerted upon them. We define the strain across an axis as: 

 � = � − ��  (1.1) 

where S denotes strain and L and l denote the lengths across an axis before and after it is 

compressed respectively. It is worth noting that the strain S as defined above is a unitless 

quantity and can be viewed as a fraction or percentage. Furthermore, the definition of 

strain S under this equation suggests that a compression implies a positive strain and an 

elongation or stretching implies a negative strain. This is, in fact, the opposite of the 

definition of a strain used in several texts, but is a frequently used one in the 

elastography community. 

 

ii. Tissue’s time constant 

 

 This study emphasizes the study of the temporal mechanical properties of a 

tissue. When placed under a constant compressive force (i.e. a creep test), a poroelastic 

material experiences a time dependent strain which reaches an equilibrium value after a 
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period of time. This behavior is modeled by the following equation (Qiu et al. 2008, 

Sridhar et al. 2007, Righetti et al. 2005): 

 ���� = 	 + �∝ −	��
��  (1.2) 

where S(t) denotes the strain at time t, η denotes the equilibrium strain value reached 

when t = ∞, α denotes the strain at time t = 0, and τ denotes the axial strain time 

constant. Informally speaking, τ can be interpretted as a measure of how quickly the 

material reaches its equilibrium value η.  Note that both τ and η are in general unknown 

and need to be estimated. 

 

iii. Practically viable assumptions 

 

Equation 1.2, describing the temporal behavior of a tissue under a compressive 

force, shows that the equilibrium strain value is reached, strictly, only at time t = ∞. This 

would imply that to fully capture all the data pertaining to a creep curve for a tissue, one 

would have to record strain values for an indefinitely long period of time. This is, 

without a doubt, an impossible feat to achieve. 

Recollection of circuit theory shows that this creep curve behaves similarly to the 

transient response of a resistor-inductor (RL) circuit. An RL circuit reaches an 

equilibrium, strictly at time t = ∞ but at a rate that can be interpreted in terms of its time 

constant τ. An approximation frequently used in the circuit theory community is that the 

transient response of an RC circuit reaches equilibrium at 5 times the value of its time 

constant (Nilsson and Riedel, 2005). This implies that after a “long enough” period of 
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time all increases seen in the transient response can be considered to be negligible. 

Likewise, for the creep curve of a poroelastic tissue it should be possible to make an 

equivalent approximation. This approximation becomes a matter of significant relevance 

that is treated in the portions of this study pertaining to the methods with which axial 

strain time constants are estimated from experimental data.  

 

E. Relevant signal processing concepts 

 

i. Sampling 

 

 This creep curve can be seen as a signal. As with all experimental data 

acquisition involving a digital system, it is impossible to acquire this signal for all real t 

as an analog signal. The best that can be done is to acquire S(t) in terms of a series of 

samples S(ti) such that: 

 ����� = 	 + �∝ −	��
���  (1.3) 

 Fortunately, as shown by the Nyquist-Shannon sampling theorem, it is possible 

to completely reconstruct a signal if the sampling frequency is greater than twice the 

signal’s maximum frequency, then the signal is fully reconstructible from its samples 

using Fourier reconstruction (Shannon 1949). In a strict sense, the study concerning this 

thesis does not make heavy use of the Nyquist-Shannon sampling theorem and Fourier 

reconstruction. However, it is used in several occasions in this thesis to explain the effect 

that sampling has on the performance of several of the algorithms explored in this study. 
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ii. �oise 

  

The equation for S(ti) shows an unrealistically optimistic expression of what is 

truly acquirable by an experimental setup. In reality, all samples S(ti) are affected by 

noise �i(ti). Each sample is more accurately expressed by: 

 ������ = 	 + �∝ −	��
��� + ������ (1.4) 

where �i(ti) is a random variable which is assumed to have a 0-mean Gaussian 

distribution. The noise distributions assumed in all simulations in this study follow a 

constant SNR among the strains, implying a variable standard deviation across all �i(ti). 

The signal to noise ratio (SNR), in dB, for a stationary signal can be measured as: 

 ������� = 20���������� !"#��� !"� (1.5) 

 For a particular noisy strain S†(ti), µsignal = S(ti) as �i(ti) is zero-mean. 

Furthermore, σsignal = σ(�i(ti)), since �i(ti) is the only source of variation for the signal. 

Therefore, for a particular SNR, the expression for σ(�i(ti)) becomes: 

 #$������% = �����10'()�*+�,�  (1.6) 

 As discussed in chapter VI, the calculation of strains is done by an additive 

method. This additive method forces the condition that σ(�i+1(ti+1)) > σ(�i(ti)). Below, 

we provide a proof of this condition: 

 Let �(t,u) denote the noise for the strain estimate S(t,u). Thus: 

������ = �����
�� + �����
�, ��� 

������ = ����
�� + ����
�, ��� + ����
�� + ����
�, ��� 



 6

������ = ����, ��� + ����, ��� 

From this it is easy to see that: 

����� = ����
�� + ����
�, ��� = . ���/
�, �/��
/0�  

Assuming all �(tk-1,tk) to be 0 mean Gaussian distributed random variables that are 

independent of each other then it is possible to express each �(tk-1,tk) as a product of a 

Normally distributed random variable X with a mean of 0 and a standard deviation of 1, 

and σ(�(tk-1,tk)). Let σk-1,k = σ(�(tk-1,tk)), then 

����� = . #/
�,/1�
/0� = 2. #/
�,/

�
/0� 3 1 

Since σk-1,k > 0 then it follows that σ(�(ti)) > σ(�(ti-1)). Furthermore, it is relevant to note 

that all �(ti) also have a zero-mean Gaussian distribution. Q.E.D. 

 This proof allows for some convenient simplification on the noise model of the 

strain vs. time plots. All strain vs. time plots are assumed to have a constant SNR along 

the strains. As shown in equation 1.6, a constant SNR along all �i(ti)  suggests that 

σ(�i(ti)) is increasing as i increases. This assumption also accounts for the fact that 

smaller increases in S(ti) correspond to smaller increases in σ(�i(ti)), a notion that is 

consistent with the nature of axial strain elastography. Therefore, it is correct to say that 

a constant SNR along the strains is a reasonable assumption. 

 The discussion on noise models is very relevant to this study. Noise becomes an 

integral part when discussing time constant estimation. All estimation done from 
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experimental data must be done in a form consistent with the noise model assumed for 

the data. 
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CHAPTER II 

PRIOR ADVANCES IN ULTRASOUND AXIAL STRAIN TIME CONSTANT 

IMAGING 

 

A. Introduction 

 

 I have very rarely heard of research that provides progress in a field that does not 

base itself on advances that have been provided by others. This chapter provides the 

background behind the work discussed in this thesis. 

 

B. Ultrasonic elastography or strain imaging 

 

Ultrasound elastography is a well-established imaging modality, which can be 

used for detecting a variety of pathological conditions in tissues (Garra et al. 1997, Hall 

et al. 2003, Itoh et al. 2006, Thomas et al. 2006, Svensson et al. 2006, Emilianov et al. 

1995, D’hooge et al.  2002, Sandrin et al. 2003, Souchon et al. 2003). Standard 

elastography techniques generate what is usually referred to as an “axial strain 

elastogram”, which is an image of the strain tensor component along the axis of 

insonication (i.e. the axis along which ultrasound radiation is being emitted). Axial strain 

elastograms have been shown to be highly correlated with changes in the corresponding 
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underlying tissue stiffness distribution (Srinivasan et al. 2004). Elastography has opened 

up a new field in ultrasound imaging, and is becoming an important clinical tool for the 

diagnosis of a number of pathological conditions. 

 

C. Imaging the temporal mechanical behavior of tissues 

 

With axial strain elastography as a tool for imaging a tissue’s stiffness, several 

novel emerging elastographic techniques were proposed that may allow the imaging of 

additional mechanical properties of tissues related to their behavior under mechanical 

loads or stresses (Konofagou et al. 2001, Righetti et al. 2005). Amongst the latest 

advances in ultrasonic imaging were poroelastography and viscoelasticity imaging. 

Poroelastography is the application of elastography techniques for imaging the temporal 

behavior of materials that, because of their relatively high fluid content and mobility, can 

be modeled as poroelastic (Righetti et al. 2004, Berry et al. 2006). In a similar manner, 

viscoelasticity imaging methods apply elastography techniques to image the temporal 

behavior of materials that can be modeled as viscoelastic media (Sack et al. 2008, Liu 

and Ebbini 2008, Sridhar and Insana 2007). These elastographic techniques may be 

deployed using a number of experimental testing protocols, such as creep and stress 

relaxation tests (Konofagou et al. 2001, Ammann et al. 2006) or by applying low 

frequency vibrations to tissues (Krouskop et al. 1987).  
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Application of these techniques may allow generation of new types of 

elastograms that are related to the tissue poroelastic and viscoelastic behavior. These 

include: the effective Poisson’s ratio (EPR) elastogram (EPR is the ratio of transverse 

strin vs. axial strain); the axial strain time constant (TC) elastogram, tackled in this 

work; the effective Poisson’s ratio TC elastogram and the permeability elastogram 

(permeability measures the “ease” with which fluid flows in a poroelastic material) 

(Righetti et al. 2005, Righetti et al. 2007b). These new types of elastograms have the 

potential to convey new tissue information, which may prove clinically useful for the 

detection and staging of different tissue pathology, physiology and functional conditions. 

Medical areas where the application of these techniques could have a significant impact 

include cancer imaging and the detection and staging of lymphedema. While a number 

of studies have shown that elastic strain images of breast tissue can be effective at 

discriminating focal benign and malignant tumors (Thomas et al 2006, Thomas et al 

2007, Zhi et al 2007, Itoh et al 2006), Qiu et al. (2008) found that the characterization of 

nonpalpable breast lesions is improved by the addition of viscoelastic strain imaging 

parameters. Imaging the temporal behavior of tumors may provide information about the 

stage of a cancer, which is known to be related to the tumors’ fluid content and mobility. 

Similarly, preliminary poroelastographic experiments on lymphedema tissues in vivo 

have suggested that axial strain elastograms and effective Poisson’s ratio elastograms 

and their temporal evolution under load may convey important diagnostic information to 

distinguish between normal and lymphedematous tissues (Righetti et al. 2007a, Berry et 

al. 2008). 
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Elastographic imaging of poroelastic and viscoelastic materials has been 

accomplished by generating time-sequenced axial strain elastograms or EPR elastograms 

while subjecting the material to a constant axial strain (stress relaxation) or a constant 

axial stress (creep). Given a set of temporal elastograms as obtained from a poroelastic 

or viscoelastic material, it is possible to generate TC elastograms, which depict the 

temporal behavior of the elastographic parameter of interest (for example the axial 

strain). TC elastograms are generated by applying curve fitting techniques to 

experimental elastographic data to estimate the TC of the elastographic parameter of 

interest on a pixel-by-pixel basis (Righetti et al. 2005, Righetti et al. 2007b). While the 

theoretical model used in these techniques depends on assumptions about the tissue 

behavior (i.e., poroelastic, viscoelastic, etc.), elastographic TC imaging usually involves 

the use of curve fitting methods as applied to noisy elastographic data. The accuracy of 

the resulting TC estimates is expected to depend on the curve fitting method employed, the 

length of the window of observation, the sampling period at which the elastographic data 

are acquired and the level of noise on the elastographic data (Bendat and Piersol 1986). A 

complication that arises in the application of curve-fitting methods for poroelastography is 

that, in practical cases, the models usually contain multiple unknown parameters due to the 

biphasic nature of the poroelastic tissues. Therefore, more than 1 parameter needs to be 

estimated from the same curve. To my knowledge, image quality performance of 

poroelasticity and viscoelasticity elastographic imaging is still largely unknown due to a 

paucity of data and the lack of systematic studies that analyze performance limitations of 

estimators suitable for these novel applications.  
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CHAPTER III 

CURVE FITTING ARGUMENT SELECTION 

 

A. Introduction 

  

Elastographic time constant imaging can be summarized as a curve fitting 

problem, which itself usually involves comparing a theoretical noiseless test curve to the 

noisy experimental data and find the curve that best “fits” the data with respect to a 

goodness of fit measure. This chapter discusses the different goodness of fit arguments 

considered while developing tools for time constant estimation. 

 

B. Maximum correlation 

 

 The first goodness of fit measure considered was correlation. In this scheme, the 

best theoretical fit is assumed to be the noiseless curve that is the most correlated to the 

data. This was chosen as a candidate method because maximum correlation used to be 

considered the argument of choice (Righetti et al. 2005, Righetti et al. 2007b). This 

method was quickly discarded for this study because the calculation of this argument is 

computationally demanding and therefore not suitable for clinical applications. This 

problem was exacerbated by the fact that the optimization methods devised at that time 

were themselves slow. 
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C. Least square error approaches 

  

Least Squared Error curve-fitting is a popular family of methods for extracting 

parameters of a mathematical model from a given set of experimental data. In these 

curve-fitting schemes, the best fit is taken to be the one for which an error metric is seen 

to be the smallest. Thus, for a mathematical model corresponding to a function of time 

f(t) with two parameters, τ and η, and for a set of n data points S†(ti), least square error 

curve fitting returns η and τ that minimizes: 

 ��4�5��, 	, 6�� =  . 4�5��, 	, 6�, ������� 
�0�  (3.1) 

where E is an error metric function between S†(ti) and f(t,η,τ). Two Least Squared Errors 

approaches were considered in this study: General Least Squared Error (GLSE) curve-

fitting and also Standard Least Squared Errors (SLSE) fitting. 

 

D. General least squared error (graphical error minimization) 

 

 

 

 General least square error curve fitting involves minimization of the so-called 

geometric error: 

4 85��, 	, 6�, ������9 = :;<= �85��� − ������9, + �� − ���,� 

It is called the geometric error because it is the minimum Euclidean distance between the 

experimental data point and the plot of a given noiseless theoretical error. Notable in this 
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scheme is that times t and ti must be first made unitless. Since, t and ti are measured in 

units of time (e.g. seconds), the sum (f(t)-S†(ti))
2 + (t-ti)

2 cannot be computed “as is” 

because f(t) and S
†
(ti) are unitless quantities.  

 

E. Problems with GLSE 

  

 GLSE was implemented and tested yielding good results with respect to accuracy 

and precision. However, before further testing and optimization was done, several issues 

were discovered with this scheme. One issue was related to the scaling factor used to 

make t and ti dimensionless. In this case, as t is measured in seconds, this is done by 

dividing the value of t by multiplying by 1/s. However, it should be perfectly acceptable 

to have t measured in milliseconds, instead of seconds, in which case normalization 

could be done by multiplying by 1/ms. This can be seen as a modification in the scaling 

of the strain vs. time plot. The problem is that doing this will, in general, change the 

results of the best fit, making the use of this form of GLSE return a curve with a 

different τ and η than what it would return with a different plot scaling.  

 The biggest issue with using this form of GLSE estimation is that it does not 

match the noise model assumed. To be accurate and consistent, the noise model has to be 

such that the time measurements ti, as well as the strain measurements S†(ti)) have to be 

affected by additive noise with distributions that are jointly Gaussian and also identically 

distributed. It is true that the measurements do in fact have some degree of uncertainty 

(noise) with respect to ti measurements. However, the standard deviation of the noise of 
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ti is so small when compared to that of S†(ti) that this variation can be ignored. 

Furthermore, since the calculation of the error metric for each data point ti and S†(ti) 

involves the computation of a minimum, GLSE estimation can be a time taking process. 

For these reasons, the use of GLSE estimation was considered not suitable for our study 

and a standard least square error (SLSE) curve-fitting scheme was considered instead. 

 

F. Standard least squared error (algebraic error minimization) 

  

 After the use of GLSE estimation was concluded to be inappropriate, it was 

found that SLSE was the more correct means of time constant estimations. SLSE 

involves the minimization of the so-called algebraic error: 

 4 85��, 	, 6�, ������9 = 85��� − ������9,
 (3.2) 

 SLSE avoids the issue of the need for the time, t, measurements to be unitless. As 

well, plot scaling has no effect on the resulting estimation. Finally, since SLSE is best 

suited for scenarios in which the noise model for the data samples acquired is Gaussian, 

the error metric is appropriate for this application. 

 

G. SLSE shortcomings 

 

 SLSE returns a most likely fit when all the data samples are affected by additive 

noises that have independent and identically distributed Gaussian noise distributions. 

This implies that σ(N1(t1)) = σ(N2(t2)) = … = σ(Nn(tn)). However, it’s already proven that 
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the correct relationship for the standard deviations of the noise distributions is σ(N1(t1)) 

≤ σ(N2(t2)) ≤ … ≤ σ(Nn(tn)). Furthermore, since Ni(ti) = Ni-1(ti-1) + N(ti-1,ti) the noise 

distributions are independent of each other. These complications are not ignored in this 

study. In truth, SLSE will return a fit that is an estimate of the most likely fit. 

 It is worth noting that probably the best LSE approach to be used for this kind of 

estimation would be a weighted SLSE approach, in which the error metric would be 

given a different weight: 

4� 85��, 	, 6�, ������9 = >� 85��� − ������9,
 

where each wi would be inversely proportional to σ(Ni(ti)). However, establishment of 

what value to assign wi to requires accurate estimation of σ(Ni(ti)) which is a challenging 

task beyond the scope of this study.  
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CHAPTER IV 

CURVE FITTING OPTIMIZATION 

 

A. Introduction 

  

Curve-fitting usually involves a trial-and-error numerical process by which an 

argument function is either maximized or minimized. This process is a frequently 

tackled topic in the field of numerical analysis and optimization. This chapter discusses 

the different optimization methods tried in this study. 

 

B. Linear search optimization 

 

 A linear search optimization technique was the first algorithm implemented in 

this study in unison with the maximum correlation curve-fitting argument. In this 

optimization scheme, the value of η is considered to be the last strain value acquired for 

the sampled strain vs. time plot. 

Linear optimization finds the best fitting τ by: considering all candidate values of 

τ in a specified range, testing the goodness of fit with respect to an argument function, 

and then finding which one returns the best goodness of fit. This optimization technique 

was only used to process preliminary data results and was quickly substituted because of 

its exceedingly long runtime: on the order of days for a typical axial strain TC 

elastogram. Furthermore, since the value for η was not estimated, and simply assumed 
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from the last point of a given strain vs. time plot, the performance of the curve-fitting 

argument and optimization combination was data dependent, yielding lower accuracy 

and precision for time constant curves with higher τ values. 

 

C. Bisection method optimization 

 

 The bisection method follows a similar optimization process as linear search in 

that it assumes the value of η to be the last value of the sampled strain vs. time plot. 

However, it is a much faster algorithm that follows a search process similar to binary 

search in that at every step it discards half of the candidate values of τ still being 

considered. 

This optimization scheme was only tested for both GLSE and SLSE estimation 

techniques and was used to find the τ with a minimum LSE. Assuming T = [τ1, τ2,…,τm] 

to be an array of sorted τ values with τi < τi+1, bisection method optimization is 

implemented with the following algorithm: 

1. Set p = floor(length(T)/2) 

2. If LSE ( f ( t, η, τp) ) > LSE ( f ( t, η, τp+1) ), discard from T all elements τi such 

that i≤ p, otherwise discard from T all elements τi such that i>p 

3. Repeat steps 1 and 2 until there is only one element in T. 

4. Output the remaining element in T as the best time constant estimate. 
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This algorithm makes use of the fact that the function LSE ( f ( t, η, τ) ) with respect to τ 

has only one local minima and that its first derivative with respect to τ is always 

increasing. In a classical sense, the bisection method is a root finding algorithm, 

however, it has been adapted for the use of curve-fitting to find the root of the derivative 

with respect to τ of the function LSE( f ( t, η, τp) ). The only gain that the bisection 

method has over linear search optimization is that its runtime is much faster. While 

linear search optimization takes O(m) turns to return a time constant value, the bisection 

method takes O(log2m) turns, which is a significant cut down in runtime.  

 

D. Bisection method shortcomings 

 

 Since the bisection method assumes η in exactly the same way that linear search 

optimization does, it is susceptible to the same failures that linear optimization 

experiences. There is a significant drop in estimator accuracy and precision for sampled 

data with a sampling window that is not ‘long enough” to assure that the last sampled 

data point has a strain with a value close to η. The required observation window length is 

dictated by the value of τ, with longer windows of observation required for time constant 

curves with higher τ values. Simulations showed that appropriate estimation of η was 

required for more accurate time constant estimation. 
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E. Levenberg – Marquardt optimization 

 

  The Levenberg-Marquardt (LM) Optimization algorithm is an iterative 

algorithm based on gradient descent and the Newton method for finding equation roots. 

The algorithm is especially suited for SLSE minimization (Ranganathan 2004, 

Levenberg 1944, Marquardt 1963). It is the only optimization algorithm implemented in 

this study which estimates the best η and τ pair for a given set of noisy temporal strain 

samples. It was only implemented for the SLSE goodness of fit argument. 

 As shown earlier, in equation 3.1, LSE curve-fitting involves the minimization of 

the least square error: 

��4�6, 	� = ��4�5��, 	, 6�� =  . 4�5��, 	, 6�, ������� 
�0�  

In the case of SLSE estimation, as shown in equation 3.2 each error metric E is defined 

as: 

4 85��, 	, 6�, ������9 = 85��� − ������9,
 

As the point of LSE estimation is to minimize it, SLSE minimization is equivalent to 

minimization with respect to: 

��4�5��, 	̂, 6̂�� = 12 . @�,�6̂, 	̂� 
�0�  

where: 

@��6̂, 	̂� = ������ − �	̂ + �A − 	̂��
���  
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The parameters τ and η can be vectorized into x = [τ, η]T, where T denotes vector or 

matrix transpose. Also, allowing E(xk) = LSE(f(t,τ,η)), then, LM optimization follows an 

update rule of the form: 

B/C� = B/ − 8D + E�;F�$�;F��D�%9
� ∇4�B/� 

where xk = [τk,ηk] is the best guess at turn k, H is the Hessian of LSE(f,t,x), diag(diag(H)) 

denotes a diagonal matrix whose non-zero elements are the diagonal elements of matrix 

H. ∇4�B/� is the gradient of E(xk) and λ is a constantly changing step size. λ is picked at 

each step in the following manner: 

1. Evaluate xk+1. 

2. If LSE(f,t,xk+1)> LSE(f,t,x) 

reject xk+1, retract to xk and increase λ by a factor of 10 

otherwise, accept xk+1 and decrease λ by a factor of 10 

In truth, it is possible to increase or decrease λ by factors other than 10. This factor 

affects the rate of convergence of the algorithm and was set at 10 because this was the 

factor suggested by the literature (Ranganathan 2004). 

 

F. Challenges with Levenberg-Marquardt optimization 

 

The update rule for finding xk+1 shows a few of the issues present in Levenberg-

Marquardt optimization. The update involves the calculation of a Hessian matrix, a 

gradient vector and an inverse matrix. These can all be time-consuming calculations for 

multiple parameter mathematical models.  
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Calculation of inverse matrices is notorious for being a time consuming task. 

However, since this model is dictated mostly by just two parameters, the Hessian matrix 

H is only [2x2]. Therefore the matrix to be inverted is also 2x2. If its determinant is 

nonzero, then it has an inverse and an explicit formula for the inverse matrix is already 

well known. 

 The Hessian matrix: 

D =
HII
IJK,4�B/��6, K,4�B/��	K6K,4�B/��6K	 K,4�B/��	, LMM

MN
 

involves a lengthy calculation. However, using a quadratic approximation on E, H can 

be approximated to H = JT
J where J is the Jacobian matrix, whose ith row is: 

O� = P�@��B/��6 , �@��B/��	 Q 

The gradient vector: 

∇4�B/� =
HI
IJK4�B/�K6K4�B/�K	 LM

MN 
can be calculated as: 

K4�B/�K6 = . @� K@��B/�K6
 

�0�  

K4�B/�K	 = . @� K@��B/�K	
 

�0�  
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Since ri is already defined for this model, then 

K@��B/�K6 = −�A − 	�� ��6,��
���  

K4�B/�K	 = �
��� − 1 

After implementation, the LM optimization scheme along with the SLSE curve-

fitting argument were tested with simulations for accuracy, precision, sensitivity and 

runtime.  
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CHAPTER V 

SIMULATION METHODS AND RESULTS 

 

A. Introduction 

 

 All the estimators considered in this study were tested for accuracy, precision, 

sensitivity, and runtime. These tests were done by simulating sampled noisy time 

constant curves and using the simulated data as an input for the estimators. Though 

several algorithms were tested, only the SLSE argument with LM optimization is 

reported since it is theoretically the most relevant estimators discussed in this study. 

 

B. Simulations 

 

We performed a 1D simulation study to assess accuracy, precision, sensitivity 

and run-time error of the LM algorithm as a function of the true axial strain time-

constant and equilibrium values. Due to the importance of the noise model on the 

estimation process, selected simulations were repeated for different values of the noise 

SNR. All simulations were performed in MATLAB and using a desktop computer (Intel 

Core 2 Duo E4500 @ 2.20 GHz, RAM of 2 GB). The LM results were benchmarked 

against bisection search results.  

The 1D simulations were performed by creating a series of temporal axial strain 

curves following Eq. (2) with known theoretical  6 and η parameters. The maximum 



 

axial strain sampling frequency was fixed at 2 Hz

possible in practical elastography systems, which achieve typical frame r

frames/sec. It should be noted that l

performance, especially in the case of lower 

needs to be adjusted according to the true  

sampling theorem. Figure 1

and a corresponding estimated curve obtained using

shows the true time constant curve with 

samples R���� input into the LM algorith

constant curve. 

 

 

Figure 

axial strain sampling frequency was fixed at 2 Hz. Such sampling frequency is usually 

possible in practical elastography systems, which achieve typical frame rates of several 

It should be noted that low sampling adversely affects the estimators' 

performance, especially in the case of lower 6 values. This implies that the sampling rate 

adjusted according to the true  6 value as expected from the Nyquist 

Figure 1 shows an example of a simulation trial using noisy samples 

and a corresponding estimated curve obtained using the LM estimator. The 

shows the true time constant curve with 6 = 150 R and 	 = 0.1. The dots show the noisy 

into the LM algorithm and the solid line shows the estimated time 

Figure 1 Example of a simulation trial 
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. Such sampling frequency is usually 

ates of several 

adversely affects the estimators' 

values. This implies that the sampling rate 

as expected from the Nyquist 

using noisy samples 

the LM estimator. The dashed line 

The dots show the noisy 

line shows the estimated time 
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C. Evaluation of accuracy, precision and runtime 

 

Accuracy and precision were measured in terms of percent deviation and percent 

spread, respectively. For a given set of n trial estimates 6̂� , 1 ≤ ; ≤ < done on a set of 

noisy samples from a time constant curve of known 6, the bias is quantified as the 

difference between the mean of the measurements and the reference value (in 

percentage) and the spread is quantified as the standard deviation of the measurements 

(in percentage), i.e.,: 

�;FR �%� =  W|:�F< �6̂�� − 6|6 Y ∙ 100 

�[@�F� �%� =  \R�� �6̂��6 ] ∙ 100 

where std denotes the standard deviation. Runtime is calculated as the average 

processing time it takes to complete each trial.  

Accuracy, precision, and runtime were tested for true 6 values in the range of 1-

800 s and for true 	 values in the range of 1-20%. We considered two values of window 

of observations for this study, namely a window of observation of 240 s (i.e., < 0.5 

6^_`) and a window of observation of 600 s (i.e., > 0.5 6^_`). The choice of these 

windows of observation allowed practically evaluating the effect of the length of the 

window of observation (with respect to the true time constant values) on the resulting 

quality factors. The choice of these windows of observation was dictated by what we 

believe are practical ranges of window of observations for in vitro and in vivo 
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elastography applications. For statistical analysis, forty trials were run for each pair of 

true time constant and equilibrium value. 

 

D. Evaluation of sensitivity  

 

Sensitivity is an important quality factor for the elastographic time constant 

estimators, which has important implications for the applicability of these estimators in 

imaging changes in tissue’s viscoelastic and poroelastic properties. The sensitivity of the 

estimator with respect to 6 had the goal of determining which would be the smallest 

increment K, such that the series of estimates 6̂� and �6 + K�a � would have statistically 

different means (at a 95% confidence interval). Due to practical noise considerations and 

according to some of our preliminary experiments, the smallest increment of K 

considered was 1 s. We did not evaluate the estimator’s sensitivity with respect to η 

because we believe that its sensitivity should be very similar to that of the elastography 

algorithm itself. 

 

E. Evaluation of output signal-to-noise ratio (S2R) 

 

The SNR of the estimators with respect to 6  was evaluated using the following 

equation  ��� = 20 �������� 8bc!  ��d e���* ��d e� 9. The SNR of the estimators with respect to 

	 was evaluated in a similar manner but considering 	 in the above equation rather 
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than 6. The SNR of the estimator was evaluated for two values of input noise SNR (20 

dB and 50 dB).  

 

F. Accuracy, precision and runtime results 

 

Figure 2 shows the simulation results of the accuracy study for the LM estimator 

with respect to 6  (figures 2a-b) and 	 (figures 2c-d) for a window of observation of 240 

s (figures 2a-c) and a window of observation of 600 s (figures 2b-d). According to this 

analysis, the bias in the estimation of both 6  and 	 appears to be close to 1% except for 

very large values of 6 and values of 	 close to zero. In this difficult scenario, the strain 

estimates are all similar to each other and almost equal zero. Thus, estimation of the time 

constant becomes inaccurate regardless of the value of the window of observation used. 

For the 240 s window of observation, the accuracy appears to start deteriorating for time 

constants of about 500 s, suggesting that to maintain a bias< 1% the use of a window of 

observation at least half the time constant is suggested.  Note, however, that except for 

the special case described above, the accuracy of the LM in the estimation of 6 is in 

general below 2% for both values of window of observation. In general, a similar 

analysis is applicable also to the accuracy of the LM in the estimation of  	. Statistical 

comparison between the results obtained using the two values of window of observation 

indicates that there is no significant difference (at a 95% confidence level) between the 

two sets of accuracy results (both for  6 and for 	) for the range of values of time 

constant considered. 



 

     LM TC 

LM TC 

Figure 

 

LM TC Bias (%) – Window of Observation 240 s 

(a) 

LM TC Bias (%) – Window of Observation 600 s 

(b) 

Figure 2 Percent bias of the LM estimator 
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   LM Equilibrium Point 

LM Equilib

LM Equilibrium Point Bias (%) – Window of Observation 240 s 

(c) 

LM Equilibrium Point Bias (%) – Window of Observation 600 s 

(d) 

Figure 2 continued 
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Figure 3 shows the simulation results of the precision study for the LM estimator 

with respect to 6  (figures 3a-b) and 	 (figures 3c-d) for a window of observation of 240 

s (figures 3a-c) and a window of observation of 600 s (figures 3b-d). As for the accuracy 

case, we observe low precision for very large values of 6 and low values of 	. We also 

observe a deterioration of the precision for very low values of 6, presumably due to 

insufficient sampling. Overall, the results obtained for the higher window of observation 

are more precise than those obtained for the lower window of observation (although not 

statistically significant at a 95% confidence level). This is an expected result because as 

the window of observation increases, we gain more knowledge about the signal. In 

general, a similar analysis is applicable also to the precision of the LM in the estimation 

of  	. 

LM TC Spread(%) – Window of Observation 240 s 

 

(a) 

Figure 3 Percent spread of the LM estimator 
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LM TC Spread (%) – Window of Observation 600 s 

 

(b) 

LM Equilibrium Point Spread (%) – Window of Observation 240 s 

 

(c) 

Figure 3 continued 



 33

LM Equilibrium Point Spread (%) – Window of Observation 600 s 

 

(d) 

Figure 3 continued 

 

Figure 4 shows the simulation results of the runtime study for the LM estimator 

for a window of observation of 240 s (figure 4a) and a window of observation of 600 s 

(figures 4b). The average processing time per pixel is independent of the size of the 

window of observation (at a 95% confidence level). As expected, the average time per 

pixel is also independent with respect to the 	 value, while it shows an increasing trend 

with respect to the 6 value (although not statistically significant at a 95% confidence 

level).  Based on this simulation study, the LM algorithm can perform fast estimates of  

6  F<� 	 while maintaining high accuracy and precision. 
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LM Average Processing Time/Pixel – Window of Observation 240 s 

 

(a) 

LM Average Processing Time/Pixel – Window of Observation 600 s 

 

(b) 

Figure 4 Average runtime in seconds of the LM estimator  



 

G. Sensitivity 

 

Figure 5 shows the simulation results of the sensitivity study for

to sensitivity, this simulation results 

true 6 and appears to deteriorate as 

considered (i.e., sensitivity over to true time constant)

algorithm for 6 is at most 1% and actually improves at higher time co

 

Figure 5 Sensitivity map of the LM estimator for TC 

 

H. Output S2R  

 

Figure 6 shows the simulation results of the SNR study for

and 	 (figures 6b and d) and for two values of input noi

Figure 5 shows the simulation results of the sensitivity study for 6. 

simulation results show a sensitivity (absolute) that depends o

and appears to deteriorate as 6 increases. However, if percent sensitivity is 

(i.e., sensitivity over to true time constant), the percent sensitivity of the LM 

is at most 1% and actually improves at higher time constants.

Sensitivity map of the LM estimator for TC 

estimation 

Figure 6 shows the simulation results of the SNR study for 6 (figures 6a and c) 

and for two values of input noise SNR, 20dB (figures 6a and b) 
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. With respect 

sensitivity (absolute) that depends on the 

percent sensitivity is 

sensitivity of the LM 

nstants. 

 

(figures 6a and c) 

se SNR, 20dB (figures 6a and b) 



 36

and 50 dB (figures 6c and d). The results shown in figure 6 correspond to a window of 

observation of 600 s. Since we observed no statistically significant difference between 

the results obtained at 240 s and the results obtained at 600 s, the results corresponding 

to 240 s are not shown.  

 

 

LM TC S2R – Input 2oise S2R = 20 dB 

 

(a) 

 

Figure 6 Output S2R of the LM estimator 
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LM TC S2R – Input 2oise S2R = 50 dB 

 

(b) 

LM Equilibrium Point S2R – Input 2oise S2R = 20 dB 

 

(c) 

Figure 6 continued 
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LM Equilibrium Point S2R – Input 2oise S2R = 50 dB 

 

(d) 

Figure 6 Continued 

 

In all cases, we observed that the output SNR is affected by the true value of 6 

but does not depend on the true 	. With respect to 6 (figures 6a and b), the output SNR 

for 6 remains close to the input noise SNR. i.e., the output SNR is not statistically 

significantly different than the input SNR (at a 95% confidence level), according to these 

simulation results being consistently within ± 5 dB with respect to the input SNR. 

Interestingly, the situation is different in the case of the output SNR for 	. This, in fact, 

is found to be at least equal to and, in many cases, statistically significantly higher than 

the input noise SNR. These output SNR results can be intuitively explained by the fact 

that, technically, the LSE curve-fitting estimation behaves as a filter on the strain 

samples. Thus, as long as the window of observation and the sampling frequency are 
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sufficiently high, it is possible to produce estimates of 6 and 	 with at least the same 

input SNR and possibly higher SNR values. 
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CHAPTER VI 

EXPERIMENTAL CORROBORATION 

 

A. Introduction 

 

 This chapter discusses the experimental setup and data collection scheme used 

for this study. These experiments are used just as a proof of principle of the applicability 

of the axial strain TC estimator to real data. 

 

B. Equipment  

 

 Creep tests involve compressing a material under constant force while recording 

the strain experienced by the material at different points of time. The tissue phantoms 

used for the experiments were all 4 cm. thick blocks of tofu. Tofu has been shown to 

mimic the sound properties of tissue very well and is a particularly suitable tissue 

simulator for ultrasound elastography experiments (Righetti et al. 2004, Righetti et al. 

2005, Berry et al. 2006, Wu 2001). The following equipment was used: 

 

• Ultrasonix ultrasound machine 

• Custom built compressor to apply creep compression 

• Compressor plate 

• Water tub 
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The ultrasound machine is used to collect ultrasound RF data which will be used 

to create elastograms from which strain vs. time (i.e. creep plots) will be calculated. The 

exact transducer used is a 38 mm real-time linear array scanner Sonix RP (Ultrasonix, 

Richmond, BC, Canada) that has 128 elements, a bandwidth between 5-14 MHz, a 

center frequency of 6.6 MHz, 50% fractional bandwidth at -6 dB, sampling frequency 

of 40 MHz, and 1 mm beamwidth at the focus. 

The creep compressor was built so that an ultrasound transducer could be 

attached onto a sliding plate thus enabling the transducer to exert a constant force on a 

material while collecting data from it. The compressor plate is then attached to the 

transducer as a means to distribute evenly the force around the contact surface area of 

the tofu block. The use of a tank filled with water was necessary to couple the 

transducer to the tofu block.  

 

C. Experimental setup 

 

 Figure 7 shows a schematic of the experimental setup used to conduct the 

experiments relevant to this thesis. The schematic shows that the tofu block was 

submerged in a container filled with water. The sliding plate is part of the custom built 

compression system that is coupled to two guide rails with ball bearings. The 

combination of the weights of the transducer, compressor plate and sliding plate is what 

exerts a constant force on the tofu block. 



 

 

D. Data collection scheme

 

 The acquisition of  a strain vs. time plot involves the collection of ultrasound RF 

frames at specific intervals of time. 

constant estimation worked better when the strain vs. time plots were sample

frequencies. With this in mind, the data collection 

RF frames every 2 seconds for a period of 595 seconds with each batch consisting of 2 

frames collected sequentially. 

 

 

 

 

Figure 7 Experimental setup 

heme 

The acquisition of  a strain vs. time plot involves the collection of ultrasound RF 

frames at specific intervals of time. The simulations discussed earlier showed that time 

constant estimation worked better when the strain vs. time plots were sample

With this in mind, the data collection scheme was set to collect batches of 

RF frames every 2 seconds for a period of 595 seconds with each batch consisting of 2 

frames collected sequentially.  

42

 

The acquisition of  a strain vs. time plot involves the collection of ultrasound RF 

showed that time 

constant estimation worked better when the strain vs. time plots were sampled at high 

to collect batches of 

RF frames every 2 seconds for a period of 595 seconds with each batch consisting of 2 
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E. Data processing scheme 

 

 Since it is not possible to calculate S(t) for a large enough t by assigning the 

frame at 0 seconds as the pre-compressed frame and the frame at time t as the post-

compressed frame, it is necessary to calculate S(ti) by iterative additive means. Thus, 

S(ti) is calculated as: 

����� = ����
�� + ����
�, ��� 

with S(t1) = S(0,t1). This allows the elastography algorithm to be run on RF frames that 

are not so distant from each other with respect to time and minimization of decorrelation 

on noise (Varghese, T. and Ophir, J., 1997).  

 

F. Experimental results 

 

Figure 12 shows typical axial strain time constant elastograms (figures 12a and c) 

and axial strain equilibrium value elastograms (figures 12b and d) generated using the 

LM estimator as applied to strain data obtained from a creep experiment conducted on 

two different tofu phantoms (single realization, no averaging). The tofu phantoms were 

characterized by different water content. The results shown in figures 12a and b 

correspond to data obtained from a phantom fully hydrated. The results shown in figures 

12c and d correspond to data obtained from the same phantom after partial dehydration. 

Consistent results were obtained from all tofu phantoms used for this study.  The mean 

value of the axial strain time constant and the equilibrium point shown in figure 12 
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match well some of our previous results obtained on similar phantoms (Righetti et al. 

2007b). The non-uniformity of the spatial distribution of the estimated parameters is 

typical of the tofu material and consistent with previous experimental work (Righetti et 

al. 2005). These results show the technical feasibility of using the LM algorithm to 

generate time constant and equilibrium point elastograms on real, experimental data.  

  



 

(a) 

(c) 

Figure 8 Typical TC and equilibrium point elastograms

using the LM algorithm. (a) and (c) show results at full hydration and (b) and (d) show 

 

 

(b) 

 

(d) 

Typical TC and equilibrium point elastograms. Figures were calculated
(a) and (c) show results at full hydration and (b) and (d) show 

results after hydration. 
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Figures were calculated 
(a) and (c) show results at full hydration and (b) and (d) show 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 
 

 
 

A. Introduction 

  

Scientific work is rarely ever concluded as a final product, and is generally to be 

seen as a step in the correct direction towards progress in knowledge and technology. 

The study reported in this thesis is by no means an exception to this theory. This chapter 

discusses a summary of the progress completed in the field by this work and also shares 

thoughts as to what aspects of this field need further investigation to promote progress. 

 

B. Time constant estimation 

 

 The simulated experiments done in this study served the purpose of verifying that 

the time constant estimator developed for this study was in fact reliable. These 

experiments revealed that, in a practical sense, the estimators could be trusted to produce 

accurate and precise results while also being sensitive to changes in τ that were relatively 

small. This result, though positive, should be used with caution. 

 As mentioned, while discussing the theory behind standard least square errors 

curve-fitting (SLSE), the method only returns a probabilistically best estimate whenever 

each strain is afflicted by Gaussian noise and the distributions of each random variable 

defining the noise are independent of each other and identically distributed (IID). 
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However, also mentioned in the study, is the fact that, because of the way each strain 

value from the strain vs. time plot is calculated, it is impossible to conclude that the 

noise is in fact IID. Therefore, the SLSE estimators developed in this study return an 

estimate of the best probabilistically attainable time constant estimate. 

 This estimate could be improved by implementing a weighted SLSE model 

where the minimization of the algebraic error for the lower strain values in the strain vs. 

time plot is given more importance than for the higher values. This is because the 

standard deviation of the noise of the smaller strain values is smaller than that for higher 

strain values. Therefore, when considering a candidate time constant curve, a deviation 

for a small strain value from the candidate curve is less likely to have happened than the 

same deviation but for a higher strain value. 

 The biggest challenge with trying to develop a weighted SLSE model is defining 

the weight assigned to each strain’s deviation from a candidate fit. It is natural to 

conclude that each weight should be a function of the standard deviation of the noise 

affecting its corresponding strain sample. However, this would require an exact 

knowledge or an accurate estimate of the standard deviation of the noise distribution 

affecting each strain. This is in fact a very challenging task, which needs to be studied in 

future work. Development of accurate noise models of ultrasound strain estimators is an 

accomplishment that would not only benefit the goal pursued by this study but would 

also benefit the field of ultrasound elastography in general. 

 Designing weighted SLSE curve-fitting tools is not the only way with which to 

improve axial strain time constant imaging. Even if weighted SLSE tools were to be 
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fully developed, they still would not address the issue that the noise distributions at each 

strain sample are not independent of each other. 

 Knowledge of Bayesian theory reveals that when two random variables are 

independent of each other the situation is in fact undesirable. This is because knowledge 

of one random variable does not increase knowledge of the other. In this study, the 

random variable of the noise of a particular strain sample adds a bias to the noise of the 

next strain sample. The effect of this bias could be reduced by using Bayesian 

estimators. However, as with the challenge involved in creating weighted SLSE tools, 

accomplishment of this task is heavily dependent on the development of suitable noise 

models of the strain estimator itself. This further accentuates the need of an extensive 

study of the noise affecting each strain estimate. 

 

C. Using GPGPUs for faster processing 

  

 The use of General Purpose Graphics Processing Units (GPGPUs), could 

accelerate the calculation of a time constant image to achieve real-time figures. Yang et 

al. (2009) have used GPGPUs to successfully generate axial strain elastograms and 

effective Poisson’s ratio elastograms in much less time than traditional CPU-run cross-

correlation algorithms and with no loss in elastographic image quality. The reason why 

GPGPUs are so applicable to axial strain time constant imaging is because it plays to 

their forte: parallel processing. The creation of TC image involves running the LM 

algorithm once for each pixel. With GPGPUs it is possible to run this algorithm on 
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several pixels at once. As well there are several operations inside the LM algorithm, like 

matrix multiplications, that are also parallelizable. Thus, acceleration using graphics 

cards could easily turn time-constant imaging into a real-time clinical tool. 

  

D. Confidence metrics 

 

 Estimation tools, especially when applied for diagnostic purposes, should be used 

alongside a measurement of confidence in the estimation. In our group it’s common for 

us to see a correlation map alongside a strain image in order to assess the quality and 

accuracy of the image. Frequently, for curve-fitting the correlation, R2, between the 

determined best fit and the noisy data points is used as a measure of reliability. While it 

is true that R2 does give a measure of how ‘close’ the data points are to the fitted curve 

and it does actually give some notion of reliability, it suffers from a few downfalls. 

Firstly, R2 provides a very non-linear measure of reliability. While this problem could be 

tackled by correct training of the user or practitioner, the R2 metric also suffers from not 

taking into account the number or location of data points used for the estimation/fitting. 

As an exaggerated example, estimates derived out of three data points can have an R2 

very close to 1, but since only three data points are used, the estimate should not be 

relied upon for any diagnostic decisions. 

 The better measure of reliability involves the use of confidence intervals to find a 

confidence level. The confidence interval (CI) is defined as (Bendat and Piersol 1986): 

fg = �h�R� 5;� [F@F:���@ + �∗�@@�@, h�R� 5;� [F@F:���@ − �∗�@@�@� 
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where t* is the critical value of a the t-distribution at a particular confidence level for a 

given degree of freedom. The term “error” refers to a value related to the LSE of the best 

estimate and the shape of the time constant curve. The degree of freedom is defined as 

the number of data points minus the number of parameters being estimated. The 

confidence level is a percent value between 0 and 1 that defines the percent certainty 

with which it can be assured that the actual parameter value lies within the confidence 

interval. Therefore if the confidence interval is set to a range of acceptability, for 

example, ±5% of the best fit parameter, then it should be possible to find the confidence 

level using an inverse t-distribution lookup table. This confidence interval can then be 

used as a more intuitive measure of reliability. 

 

E. Creep versus stress relaxation 

 

 As of now there is some uncertainty as to how exactly experiments should be 

conducted for measuring time-dependent tissue mechanical parameters. In their study of 

breast cancer characterization using time-constant imaging, Qiu et al. (2008) created 

time constant images out of stress-relaxation (constant strain) tests. However, in our 

study we have been leaning towards the use of creep (constant force) tests. To my 

knowledge there is no conclusive study that asserts which one is more correct and 

convenient to use but I think it is necessary to reach a decision about this issue. 
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F. Clinical applications of TC imaging 

 

 It’s been mentioned before that time constant imaging could have several 

applications in lymphedema and cancer imaging. The discrimination between focal 

benign and malignant tumors by means of ultrasound imaging is an endeavor that has 

been pursued by several groups (Thomas et al 2006, Thomas et al 2007, Zhi et al 2007, 

Itoh et al 2006, Qiu et al. 2008). 

 It should be possible to improve benign-malignant discriminability if several 

features extractable by elasticity imaging, like EPR and permeability are used in 

conjunction. After conducting a study on several test subjects with both benign and 

malignant tumors, it would then be a matter of conducting pattern recognition study to 

see if in fact discriminability can be improved. The benefits of such a study could reduce 

the need for invasive biopsy procedures and could potentially also replace x-ray 

mammograms for ultrasound elastography as a screening tool. 

 Most of the advances that come to my mind are very application oriented. The 

tool developed in this study could have uses in sports medicine, cancer imaging, 

lymphedema tracking and the diagnosis of pathologies that have an effect on time 

dependent mechanical properties. It is up to the scientific community to explore the 

diagnostic boundaries that this tool may have. 
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