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ABSTRACT 

 

Smaller Classes and Student Achievement:  

Three Papers Exploring the Class Size Effect. (May 2010) 

Courtney Amanda Collins, B.A., Rhodes College 

Chair of Advisory Committee: Dr. Li Gan 

 

 This dissertation analyzes the effect of smaller classes on student 

performance using student-level test score data from the state of Texas, focusing on 

three specific issues: heterogeneity in the returns to smaller classes across a score 

distribution of students, the relationship between class size and students’ moving 

decisions, and the connection between smaller classes and schools’ class division 

procedures.   

 I first examine evidence of heterogeneity in the returns to class size 

reductions across a score distribution of students.  I divide students into decile 

groups based on their previous year test scores, and I estimate the returns to 

smaller classes for each of the deciles.  The empirical evidence supports the 

hypothesis that there are significant differences in students’ responses to class size, 

based on their previous test scores. 

 I then model the class size effect simultaneously with students’ decisions to 

switch schools, which is important because movers compose a substantial fraction 

of the dataset, and because class size effects vary between movers and nonmovers.  



 iv 

Recognizing that students move for different reasons, only some of which are 

school-related, I present a two-type moving model in which students are 

categorized as endogenous movers or exogenous movers.  I estimate the model 

estimated using maximum likelihood.  The results reveal key biases in traditional 

estimates of the moving effect and suggest significant differences in the class size 

effect across mover types. 

 I also explore the class size effect in conjunction with schools’ decisions to 

sort students into different classes.  Using student-level data in which students are 

linked to specific classes, I disentangle the class size effect from the sorting effect.  

Including a variable indicating the sorting index of a school decreases the 

magnitude and significance of the class size effect.  I also examine different types of 

sorting.  The findings suggest that sorting students into more homogeneous groups 

is beneficial for both high and low scoring students.   
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CHAPTER I 

INTRODUCTION 

 

 The efficacy of school inputs has been a thoroughly studied topic, both in the 

economics literature and in other fields.  For decades, policymakers, researchers, 

and school administrators have attempted to understand the determinants of 

student achievement—to uncover the inputs that improve performance and those 

that have little or no effect at all.  The study of class size has been of particular 

interest, both in the academic literature and in statewide implementations.  Many 

have touted smaller class sizes as a key factor in raising the academic achievement 

of children, emphasizing that smaller classes allow for more individualized 

attention for each student and a more manageable classroom for teachers.  These 

factors may eventually lead to better performance on achievement tests, among 

other positive outcomes. 

 These potential benefits are associated with substantial costs, however.  

Smaller class sizes mean hiring new teachers and building additional classroom 

space.  Several states have poured millions of dollars into class size reduction 

policies.  In 1996, the state of California implemented statewide legislation that 

funneled $1 billion per year into class size reduction efforts.  In 2002, Florida 

passed an amendment that would require class size reduction efforts in excess of  

____________ 
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$16 billion.  Many other states have restrictions that govern maximum class sizes 

for some or all grades and students.   

 Because class size reduction policies are so costly, it is important to have a 

clear understanding of their benefits to students.  Although much research has been 

conducted relating to this topic, there are still several unaddressed issues which 

may affect the overall estimation of the class size effect.  This dissertation explores 

three specific questions regarding class size.   

First, I examine whether or not evidence exists of heterogeneity in the class 

size effect across a score distribution of students.  I assume that the marginal 

productivity of class size may vary across students, depending on their previous 

year testing score.  While I allow the marginal product of smaller classes to vary, I 

make no a priori assumption for its functional form.  It is possible that smaller 

classes are most beneficial to students at the top of the testing distribution; 

alternatively, students with very low previous year testing scores may gain the 

most from a reduction in class size.  It may also be the case that students near the 

middle of the distribution benefit most from smaller classes.   

In order to determine which of these assumptions best fits empirically, I 

examine student-level test score data from the Texas Assessment of Knowledge and 

Skills (TAKS) exam, the standardized test given to students in the Texas public 

school system each year.  I group students into deciles based on their previous year 

testing score and allow the returns to class size to vary across the score 

distribution.  I evidence supporting heterogeneity in the class size effect.  OLS and 
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2SLS estimates suggest that smaller classes are most effective for students whose 

scores fell in the lower end of the overall distribution in the previous year.  This 

result holds for both the math and the reading scores from the exam. 

The second question I examine relates the class size effect to students’ 

decisions to switch schools from one year to another.  A surprising number of 

students in the Texas dataset can be classified as a “mover,” or someone who 

transfers to a new school in the following year.  One third of students move at least 

once between grades 3 and 6, excluding any moves caused by a transition to middle 

school.  Fifteen percent of students in any given cohort are movers.  Because a 

substantial amount of mobility intrinsically affects school enrollment, and thus 

class size, it is important to model the moving effect simultaneously with the class 

size effect. 

I create a two-type mover model in which students are classified into two 

groups: endogenous movers, who move schools because of some school-related 

reason, and exogenous movers, who move schools because of a reason unrelated to 

school.  An endogenous mover might switch schools because his parents are 

unhappy with his current teacher, whereas an exogenous mover might switch 

schools because his father got a new job in a different city.   

The student-level TAKS data allows me to link a child to his school campus, 

his district, and his region of the state.  From this information, I create three groups 

of movers: campus movers, who switch schools but remain in the same district; 

district movers, who switch districts but remain in the same region; and region 
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movers, who move regions across the state of Texas.  I use these three transfer 

types to identify endogenous and exogenous movers.  My prior belief is that 

students who are more likely to be endogenous movers will be campus or district 

movers, while students who move regions will be more likely to be exogenous 

movers.  Using maximum likelihood estimation, I estimate the two-type moving 

effect simultaneously with the class size effect. 

The results suggest strong heterogeneity in the class size effect across 

moving types.  Most of the class size effect is driven by students who switch 

districts but remain in the same region of Texas, a result which is partially 

explained by the fact that district movers are more heavily composed of low scoring 

students.  I also find that simple OLS or 2SLS estimates of the moving effect are 

biased relative to the simultaneous MLE model. 

In the third paper, I attempt to disentangle the class size effect from schools’ 

ability to sort students into classes.  I assert that because schools with smaller 

classes necessarily have more classes, schools that use strategic sorting 

mechanisms will be able to sort more efficiently if they have smaller classes.  

Therefore, what is often labeled a class size effect may be confounded with schools’ 

sorting ability.   

In order to separate these two effects, I use a unique student-level data from 

Dallas ISD, which allows students to be tracked to their specific classes.  This is 

important because students can be linked to their classmates, and score 

distributions are available for individual classes, rather than at the grade level.  I 
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create a sorting index based on the difference in the standard deviations of scores 

of individual classes.  I then include this sorting index in a typical class size 

regression.  I find that adding the sorting variable significantly decreases the 

magnitude of the class size coefficient. 

I also explore different types of sorting and examine how they affect student 

test scores.  I find that sorting students into homogeneous groups based on test 

score is advantageous for all students—both high scoring students and low scoring 

students.  This mechanism appears to be significantly more beneficial than creating 

more heterogeneous groups with a balance of students from both the high and low 

end of the score distribution.   
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CHAPTER II 

CLASS SIZE AND STUDENT ACHIEVEMENT:  

EXPLORING HETEROGENEITY IN RETURNS TO CLASS SIZE REDUCTIONS 

 

II.1  Introduction 

The emphasis on student achievement as measured by test scores is 

becoming increasingly important in the United States, especially since the 

implementation of the No Child Left Behind (NCLB) Act of 2001.  Although most 

states had some form of standardized student assessment prior to the law, the 

legislation expanded statewide testing by mandating that each public school 

student in grades three through eight be tested in both reading and math every 

year.  The outcome of these tests play a major role not only in determining student 

promotion, but also in influencing schools’ federal funding and right to self-

administration.   

Although a few schools with exceptionally high-scoring student populations 

are largely unaffected by the new assessment standards, NCLB provides important 

incentives for most schools and districts.  For example, in 80 percent of Texas 

schools, at least half of all students in the seventh grade scored within 100 points of 

the passing threshold or below it.1 Similar statistics hold for other grades, 

indicating that a significant number of schools are strongly affected by incentives 

implemented by NCLB. 

                                                 
1 The mean of the test scores for the 7th graders is 2093 and the standard deviation is 246. 
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Such an emphasis on scores as a measure of achievement leads educators 

and policymakers to carefully evaluate how different measures of school inputs 

affect test scores.  If educators are able to examine school inputs (such as class size, 

teacher education, and spending) and evaluate which ones affect student 

performance the most, then they can use that information in a practical way to 

benefit actual achievement.  One of the most hotly-debated school input variables 

within both education circles and fields of economic analysis is class size.  Class size 

reduction has been touted by policymakers as a key component in raising measures 

of student achievement, and politicians and interest groups have advocated 

channeling funds toward programs that emphasize smaller classes, especially for 

disadvantaged students.  Currently, 40 states in the US have implemented programs 

or laws to limit class size or student/teacher ratios, at least for certain grades or 

groups of students.  Several states have funneled large amounts of money into 

statewide class size reduction programs.  The state of Florida, for example, is 

currently implementing a 2002 amendment that legislates class size maximums for 

every class in the state; to date, more than $16 billion have been spent to hire the 

additional teachers needed to comply with the law.   

However, despite the apparent popularity of this initiative, researchers have 

not come to a consensus on the merits and efficiency of smaller classes.  While 

some studies suggest class size reductions may increase student performance for 



 

 

8 

some grades2, others conclude that there is no solid evidence that smaller classes 

affect achievement in a meaningful way3.  I revisit the class size question in this 

paper by adding a key assumption to the typical model.  While most previous work 

has examined the average effect of class size (or any school input) on student 

achievement, I allow for the possibility of heterogeneity in returns to class size 

across a testing distribution of students.  I explore whether inputs that have little or 

no effect on average may have significant impacts for some parts of the distribution.  

I find evidence that class size returns do vary based on students’ previous score.  

 

II.2  Current Literature 

A large portion of the class size discussion centers around meta-analyses of 

the existing research.  Perhaps the most well-known of these studies is the work 

conducted by Hanushek (1986, 1997).  In the more recent study (1997), he 

analyzes 277 estimates from 59 studies that explore the effect of smaller classes on 

student achievement and that meet minimal quality requirements.  Giving equal 

weight to each estimate, he finds no evidence of a significant, systematic 

relationship between class size and student performance. 

 Krueger (2003) takes issue with Hanushek’s method of “vote counting” and 

contends that the proper procedure would be to give equal weight to each study 

rather than to each estimate.  He reevaluates Hanushek’s analysis and determines 

                                                 
2 Angrist and Lavy (1999), for example, find that smaller classes increase performance for 4th and 5th 
grade students, but not for 3rd graders. 
3 See Hoxby (2000) and Rivkin et al. (2005).  



 

 

9 

that if each published study were given equal weight, the results would support a 

significant relationship between smaller classes and student achievement.4 

Outside of the meta-analysis debate, there are several important studies 

whose methodologies produce interesting (and again, often conflicting) results.  

Angrist and Lavy (1999) address the potential endogeneity of class size by 

exploiting the discontinuity caused by maximum class size rules in Israel.  They 

create an instrument for class size based on the Israeli school system’s practice of 

limiting class size to 40 students (see section II.4.2 for a description of the 

instrument).  Their results indicate class size effects for some (but not all) students.  

They find, for example, that a one student reduction in class size is associated with 

an increase in average math score of 0.05 points (on a 100 point scale) and an 

increase in average reading score of 0.13 points.  They find significant effects for 

fourth and fifth graders, but not for third graders. 

 Hoxby (2000) uses maximum and minimum class size rules in Connecticut, 

combined with exogenous variation in the population of school-aged children, to 

identify the class size effect.  She finds no evidence that smaller classes increase 

student achievement, nor does she find that smaller classes are beneficial for 

schools with a higher proportion of minority or low-income students.   

 While much of the class size literature uses econometric techniques to deal 

with the endogeneity problems present in existing data, there are a few studies that 

                                                 
4 For a detailed description of both Hanushek and Krueger’s methodologies and arguments, see The 
Class Size Debate (Mishel and Rothstein, eds.). 
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are experimental in nature and involve random assignment.  The most important of 

these is the Tennessee Student Teacher Achievement Ratio (STAR) program, which 

marked the first large-scale study with an experimental design.5  Schools in 

Tennessee were given the option of participating in the program, which would 

randomly assign students to either small classes (13-17 students) or large classes 

(22-25 students).  These students were tracked from kindergarten through third 

grade and remained in either small or large classes.  Researchers found that 

students in small classes performed significantly better on a standardized test at 

the end of kindergarten and that the score gap continued, but did not widen, as 

those students continued through third grade.  

 The results of the study have been interpreted in several different ways.  

Many researchers point to the significant class size effect as strong evidence that 

smaller classes make a substantial difference in improving student performance.  In 

fact, this study was (and continues to be) one of the driving forces behind much of 

the state legislation aimed at reducing class size.  However, other researchers 

highlight the fact that while class size may be important for children in 

kindergarten, if the effect persisted in higher grades, the score gap should increase 

as children remained in small classes.   

 

 

 

                                                 
5
 See Word et al. (1990) for a complete description of the Tennessee STAR project. 
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II.3  A Model of Heterogeneity in the Class Size Effect Across a Score Distribution 

A typical model of the effect of school input, such as class size, on student 

achievement is given by the following equation: 

𝑠𝑖𝑗𝑡 = 𝜌𝑠𝑖𝑗𝑡 −1 + 𝜂𝐶𝑗𝑡 + 𝑋𝑖𝑗𝑡 𝛽 + 𝜀𝑖𝑗𝑡 , (II.1) 

 

where 𝑠𝑖𝑗𝑡   is the test score of student i in school j at time t, 𝑠𝑖𝑗𝑡 −1 is student i’s score  

 in the previous year, 𝐶𝑗𝑡  is the class size (or other school input) within a grade at 

school j, and 𝑋𝑖𝑗𝑡   is a vector of student-specific demographic variables.  The error 

term 𝜀𝑖𝑗𝑡   is assumed to be independent and identically distributed.  The parameter 

𝜂 estimates the returns to a change in class size, on average.  A common result in 

the literature is that school inputs like class size have no significant effect on score 

gains, after controlling for relevant demographic variables.    

The key contribution of this paper is that I allow for the possibility of 

heterogeneity in returns to class size across the score distribution.  I assume that 

the marginal productivity of a class size reduction varies across a distribution of 

students, allowing students in different percentile groups to experience differential 

gains from the same class size reduction.  Intuitively, a student scoring at the 10th 

percentile level responds differently to a smaller class size than a student scoring at 

the 50th percentile level, and they both respond differently than a student scoring at 

the 90th percentile level.   

Although I assume that the marginal productivity of a class size reduction 

varies across a testing distribution, I do not make any assumptions about how it 
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varies.  Several possibilities may arise.  The marginal productivity may be 

increasing in test score, so that students at the top of the score distribution respond 

the most to a reduction in class size.  The opposite may also be true; if the marginal 

productivity function is decreasing in test score, then low scoring students have the 

most to gain from a class size reduction.  However, it is not necessary for marginal 

productivity to be linear in score; it may be concave or convex so that students in 

the center or at the ends of the distribution respond the most.  For now, I will only 

allow that differences in returns to class size exist, rather than assuming a specific 

functional form for the marginal productivity.   

I incorporate this assumption into the model by dividing students into decile 

groups based on their previous year scores.  I add dummy variables for each group 

into a typical model like equation (II.1): 

𝑠𝑖𝑗𝑡 = 𝛽𝑠𝑖𝑗𝑡 −1 +  𝜂1𝑘

10

𝑘=1

𝐶𝑗𝑡 1 𝑝1𝑘 ≤ 𝑠𝑖𝑗𝑡 −1 ≤ 𝑝2𝑘 + 𝑋𝑖𝑗𝑡 𝜂2 + 𝜀𝑖𝑗𝑡  (II.2) 

 

where student i is sorted into group k if his score falls between two threshold 

scores,  𝑝1𝑘  and 𝑝2𝑘  .  Returns to class size are then allowed to vary by decile group.  

For the empirical results that follow, I divide students into ten groups, but it is also 

possible to analyze returns to fewer or more groups.   
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II.4  Texas Student-Level Data 

 I use student-level test score data obtained from the Student Assessment 

Division of the Texas Education Agency (TEA).  The dataset contains student 

mathematics and reading test scores from the Texas Assessment of Knowledge and 

Skills (TAKS) for grades three through eleven in 2004 and 2005.  Because Texas 

class size laws only apply to classes up to grade four, I use student test scores in 

grades three and four for the empirical analysis.  Each student in the dataset is 

assigned a unique student identification number, so that third graders’ individual 

scores in 2004 can be tracked to the corresponding fourth grade scores in 2005.  

Students’ grades, schools, and districts are known, although students cannot be 

linked to a specific class within a school.   

 I merge the TAKS score dataset by school with the Academic Excellence 

Indicator System (AEIS) report, also available from the TEA.  The AEIS report 

includes average class size for each grade in each Texas public school.  Although 

most classes are around 19 and 20, there is considerable variation across schools.  

The combined dataset also contains detailed demographic data at the student level, 

including gender, ethnicity, free or reduced lunch eligibility, migrant status, and 

ESL status.   

 Two scores for each student are reported in the dataset—a raw score and a 

scale score.  The raw score, which falls between 0 and 40, indicates the number of 

questions the student answered correctly on the exam.  The scale score is used to 

adjust for test difficulty across testing administrations and is calculated by the TEA 
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using a Rasch Partial-Credit Model (RPCM).  Scale scores fall between 1228 and 

2697 for the math exam and 1319 and 2614 for the reading exam.  Scale scores map 

one-to-one with the raw scores.  Although scales scores are meant to control for 

changes in difficulty across testing administrations, they are not meant to be 

vertically linked from one year to the next.  That is, a student’s third grade scale 

score in 2004 is not necessarily comparable to his fourth grade score in 2005.   

 Because neither of the provided scores can be vertically linked, I transform 

the scale scores into z-scores so that they can be compared from one year to the 

next.  The z-scores are defined in the following way: 

𝑍𝑖𝑗𝑡 =
𝑆𝑐𝑎𝑙𝑒𝑖𝑗𝑡 − 𝜇 𝑆𝑐𝑎𝑙𝑒𝑡 

𝜎 𝑆𝑐𝑎𝑙𝑒𝑡 
 (II.3) 

 

where 𝑍𝑖𝑗𝑡  is the z-score of student i at school j in year t, 𝑆𝑐𝑎𝑙𝑒𝑖𝑗𝑡  is the 

corresponding scale score, and 𝜇 and 𝜎 are the mean and standard deviation of the 

scale scores, calculated across the entire dataset.   

Summary statistics for all variables are reported in Table II.1.    
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Table II.1 
Summary statistics for TAKS test 

  Obs Mean St Dev Min Max 

Class Size 137389 19.7549 3.1857 3 48.4 
Math Score 131371 2263.45 187.15 1280 2684 
Previous Math Score 131371 2251.97 178.048 1228 2699 
Reading Score 139362 2241.47 170.467 1319 2614 
Previous Reading Score 139362 2294.18 154.169 1356 2588 
Female 139362 0.51239 0.49985 0 1 
Asian 139362 0.01447 0.1194 0 1 

Black 139362 0.1286 0.33476 0 1 
Hispanic 139362 0.37217 0.48339 0 1 
Free Lunch 139362 0.39368 0.48857 0 1 
ESL 139362 0.01651 0.12743 0 1 
Bilingual 139362 0.02611 0.15947 0 1 
GT 139362 0.03338 0.17963 0 1 
Special Ed 139362 0.00477 0.06891 0 1 
Average School Math 131371 2212.97 113.746 1324.81 2515.83 
Var School Math 131371 64829.8 46268 112.5 419740 
Average School Read 139362 2238 74.6046 1791 2519.33 
Var School Read 139360 24514.7 5999.54 0 225121 

Acc Rating 139362 2.54027 0.67914 1 4 
 

   

 

II.5  Potential Endogeneity of Class Size 

 There are at least two sources of potential endogeneity in the model 

described in equation (II.2)—measurement error and sorting error.  Endogeneity 

from measurement error may arise because the observed variable 𝐶𝑗𝑡  is average 

class size across the grades within a school, not actual class size for each student.  

(Even if actual class size data were available through the TEA, they would not be 
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useful because individual students cannot be linked to specific classes.)  

Endogeneity is present if actual class size varies systematically with student scores.  

 A second source of endogeneity stems from sorting based on test score.  For 

example, schools may sort low-ability students into smaller classes and high-ability 

students in larger classes, resulting in a positive correlation between ability and 

class size.  Since ability is positively correlated with score gain, the coefficient on 

class size in a typical OLS regression would be upward-biased.   The opposite result 

would transpire if schools sorted high-scoring students into smaller classes and 

low-scoring students into larger classes.   

 I propose two strategies to deal with potential endogeneity.  The first is to 

use maximum class size rules to develop an instrument for actual class size.  This 

instrument, proposed by Angrist and Lavy (1999), exploits the discontinuity in 

class size caused by maximum class size rules.  In the state of Texas, classes in 

kindergarten through grade 4 are allowed to have up to 22 students, but no more.  

When the number of students in a grade is equal to 22, then average class size is 22.  

However, one additional enrolled student triggers the maximum class size rule.  A 

school with 23 students in a grade is forced to add an additional class, and the 

average class size would be 11.5.  The actual instrument used in the analysis, 

predicted class size, is calculated as follows: 

𝑃𝐶𝑆𝑗𝑡 =
𝑒𝑛𝑟𝑜𝑙𝑙𝑗𝑡

int  
𝑒𝑛𝑟𝑜𝑙𝑙𝑗𝑡 − 1

22  + 1

 
(II.4) 
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where 𝑒𝑛𝑟𝑜𝑙𝑙𝑗𝑡  is equal to the total enrollment within a grade at school j in time t, 

and int(x) is the smallest integer greater than or equal to x.  Predicted class size is 

positively correlated with average class size, and there is no reason to believe that 

it should be correlated with the error term in equation (II.2).   

 I also include school-fixed effects as another method to try to reduce 

problems caused by endogeneity.  These fixed effects will account for any student-

invariant school-level heterogeneity, such as administrative style or overall school 

efficiency. 

 

II.6  Results 

II.6.1  Average Class Size Effects 

 The ultimate question to be examined is whether changes in class size affect 

students differently across the score distribution.  Before exploring any evidence of 

a differential impact on students, I first consider the average effect of a class size 

change.  Table II.2 shows the results of the regression of math score on class size.  

The OLS column represents the base regression, before including school fixed 

effects or instrumenting for class size.  In the absence of fixed effects, average 

school score and variance of school score are included to partially control for 

school quality.  Student demographic controls include race, gender, and economic 

disability.  



 

 

18 

Class Size -0.0004 (0.99) -0.0044 (1.97) **

Previous Score 0.4027 (237.83) *** 0.4027 (237.73) ***

Female -0.0149 (5.83) *** -0.0149 (5.83) ***

Asian 0.1527 (14.48) *** 0.1531 (14.51) ***

Black -0.0767 (16.68) *** -0.0747 (15.82) ***

Hispanic -0.0132 (3.87) *** -0.0124 (3.61) ***

Free Lunch -0.0522 (16.39) *** -0.0540 (16.21) ***

ESL 0.0853 (8.75) *** 0.0862 (8.83) ***

Bilingual -0.0195 (2.44) ** -0.0176 (2.19) **

Special Ed -0.1250 (7.43) *** -0.1238 (7.35) ***

GT 0.2576 (34.56) *** 0.2585 (34.59) ***

Average Score 0.0017 (90.54) *** 0.0017 (90.36) ***

Var Score 2.36E-06 (65.40) *** 2.35E-06 (64.30) ***

Acc Rating -0.0110 (4.53) *** -0.0108 (4.45) ***

R-squared 0.4941 0.4937

Obs 131371 131371

Table II.2

OLS 2SLS

Effect of class size on math score

  

 

 

Recall that the dependent variable is measured as a z-score.  The class size 

coefficient indicates that a one-student reduction in class size results in a 

statistically insignificant 0.0004 point increase in math z-score, on average.  In 

addition to being insignificant, the point estimate itself is very small.6  Most other 

coefficients have their expected signs.   

 Table II.2 also shows the results of the regression using predicted class size 

as an instrument for average class size.  The Donald-Cragg F-statistic for weak 

instruments is 4444.5, which is substantially higher than the critical value for a 
                                                 
6
 The mean scale score is 2231.72, and the standard deviation is 210.58.   
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weak instrument.  As predicted, the coefficient on class size is lower than the 

corresponding OLS coefficient, indicating that endogeneity causes an upward bias 

in the original estimate.  The 2SLS class size coefficient indicates that a one-student 

reduction in class size leads to a 0.0044 higher math z-score (.4 percent of a 

standard deviation) on average.    

 Table II.3 reports the same regressions for the reading exam.  The results 

are similar, except that reading scores seem to be even less responsive to class size 

reductions that math scores.  The baseline OLS results suggest that class size does 

not significant impact reading score.  (The point estimate itself is -0.00029, which is 

even smaller than the corresponding math effect.)  The magnitude of the coefficient 

increases as expected when predicted class size is used as an instrumental variable, 

but the estimate is still not significantly different from zero. 
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Class Size -0.0003 (0.47) -0.004 (1.08)

Previous Score 0.57588 (240.66) *** 0.57585 (240.60) ***

Female 0.06946 (15.84) *** 0.06945 (15.83) ***

Asian 0.18872 (10.23) *** 0.18915 (10.25) ***

Black -0.092 (11.70) *** -0.0906 (11.33) ***

Hispanic -0.0094 (1.61) -0.0085 (1.43)

Free Lunch -0.1177 (21.45) *** -0.1191 (21.02) ***

ESL -0.0428 (2.34) ** -0.0416 (2.27) **

Bilingual -0.0895 (5.86) *** -0.0879 (5.72) **

Special Ed -0.2475 (7.82) *** -0.2455 (7.75) ***

GT 0.48022 (38.52) *** 0.48134 (38.46) ***

Average Score 0.00322 (71.98) *** 0.00323 (71.30) ***

Var Score 8.51E-07 (2.29) ** 8.68E-07 (2.33) **

Acc Rating -0.0153 (3.60) *** -0.0151 (3.53) ***

R-squared 0.4599 0.4599

Obs 137389 137389

Table II.3

OLS 2SLS

Effect of class size on reading  score

 

  

 

The results from Tables II.2 and II.3 suggest that average class size effects 

are, at best, small in their impact on measures of students’ math achievement, and 

insignificant in their effect on reading scores.  This is consistent with evidence 

found in much of the literature (see Hoxby 2000 and Rivkin et al. 2005).  However, 

effects which are small or insignificant on average may be more important for 

certain groups of students.  Smaller classes may be beneficial for students who are 

performing particularly poorly or well in school, or they may be especially helpful 
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for students near the center of the distribution.  I now explore the data to test for 

these possibilities.  

 

II.6.2  Class Size Effects by Decile Group 

 I examine the effect of class size across a distribution of students by first 

dividing the students into decile groups based on their 2004 score.  I rank all third 

grade students within a campus based on their previous year scores, and then I 

divide students into ten decile groups based on those rankings.  (Note that because 

students’ scores tend to clump into groups, the deciles do not contain all contain 

exactly the same number of students.)  Decile 1 contains the bottom ten percent of 

students in every campus, decile 2 contains the next ten percent of students in 

every campus, and so on.  The deciles are included in the regression as dummy 

variables, so returns to class size are allowed to vary from group to group.  The 

additional controls included in the base regressions are included here as well.   

 Figure II.1 shows heterogeneity in class size returns by decile group for the 

math exam.  Each point on the table represents the coefficient estimate for returns 

to class size for each decile group.  Consider the OLS results first.  The largest (in 

magnitude) effects are for students in decile 1, or students at the low end of the 

previous year’s score distribution.  The effect decreases for the higher deciles, 

showing that the effect of smaller classes seems to be decreasing in previous test 

score.  The coefficient estimates are all significantly different from each other using 

an F test comparison, with the exception of groups 9 and 10.   
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Figure II.1.  Class size effect by decile groups (math score). 

 

 

 Figure II.1 also compares heterogeneity in class returns from the OLS 

regression with the corresponding IV estimates.   The IV estimates reflect the same 

shape illustrated in the OLS estimates; the main difference lies in the magnitude of 

the results.  Like the IV class size results without decile groups, these results are 

significantly larger in magnitude when compared with their OLS counterparts.   All 

of the estimates for the deciles groups are significantly different from each other.  

 Figure II.2 reports the returns to class size by decile groups for the 2SLS 

regression with fixed effects.  Because I am using school fixed effects in these 

regressions, I must exclude one of the decile groups to avoid perfect 

multicolinearity.  This means that the coefficients reflect the difference in class size 
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returns between deciles, but I cannot directly determine the level of returns.  In 

order to report actual returns for each group, I use the original 2SLS estimates from 

the base regressions (given in Table II.2) and add the estimated coefficients from 

the current regression.  That is, the shape of the returns in Figure II.2 is based on 

the fixed effects regression, but the level is only correct if we assume that adding 

the fixed effects does not change the base return.  The fixed effects estimates reveal 

a similar pattern to the previous results, although there do not seem to be 

pronounced differences for students in deciles 7-9.  These results also suggest that 

very high scoring students may benefit more than the OLS or 2SLS results indicate. 

 

 

 

Figure II.2.  Class size effect by decile groups with fixed effects (math score). 
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 Figures II.3 and II.4 report results for the class size heterogeneity 

estimations for the reading exam.  The conclusions are qualitatively similar to the 

math results.  Again, I find evidence of heterogeneity across the score distribution, 

with students in the lowest decile being the prime beneficiaries of smaller classes.  

All OLS decile estimates are statistically different from each other, except deciles 9 

and 10.   All 2SLS decile estimates are significantly different from each other, except 

deciles 8 and 9.  The fixed effect results reveal more of an inverse-U pattern, 

suggesting that smaller classes are most effective for students at the high end of the 

distribution, in addition to students at the very bottom of the distribution.    

 

 

 

Figure II.3.  Class size effect by decile groups (reading score). 
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Figure II.4.  Class size effect by decile groups with fixed effects (reading score). 

 

 

II.7  Conclusions and Future Work 

A clear analysis of the effects of class size reductions is necessary for 

researchers to be able to make policy recommendations regarding the allocation of 

school researchers.  While many states have implemented large-scale programs 

aimed at reducing class size, there is no strong consensus in the economics 

literature about the efficacy of such programs.  One reason may be that the 

marginal productivity of a class size reduction varies across students, or that 

smaller classes are more beneficial for certain groups of students than others.   

I propose a model that allows the returns to smaller classes to vary across a 

student score distribution.  Using student-level data from Texas and employing 

maximum class size rules as an instrument, I find strong evidence of heterogeneity 
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in the returns to smaller classes across the distribution.  I find that while the 

average effect of class size is small, students who are in the lowest previous score 

deciles are particularly responsive to decreases in class sizes.  This result holds for 

both the math and reading versions of the exam. 

This study provides evidence that the marginal productivity of a particular 

input (in this case, class size), is heterogeneous in its effect on different students.  

Future work will examine the possibility of heterogeneous effects for other school 

inputs, such as teacher education, teacher experience, or school expenditure. 
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CHAPTER III 

SWITCHING TO BETTER SCHOOLS:  

A MODEL OF CLASS SIZE AND MOVER ENDOGENEITY 

 

III.1  Introduction 

 In 2002, the Florida state legislature passed an amendment requiring 

schools across the state to reduce class sizes.  The new requirements, which created 

class size caps of 18 for kindergarten through third grade, 22 for fourth grade 

through eighth grade, and 25 for high school, were designed to be implemented in 

stages.  Since 2002, the state has spent $16 billion in an effort to reduce class sizes 

and will need to spend billions more if it intends to fully comply with the law by the 

2010-2011 school year.  

 The Florida legislation, while it is the largest statewide effort to reduce class 

size, is certainly not the first.  In 1996, the state of California voted to allocate $1 

billion per year to set a maximum class size of 20 for students in kindergarten 

through third grade.   Other states, such as Wisconsin and Tennessee, have 

participated in large-scale class size reduction efforts, and forty states currently 

have some type of policy limiting class size or student-teacher ratios for some or all 

grades.    

 Although extensive state and federal funds have been allocated for class size 

reduction policies, the economics literature identifying the benefits of these policies 

does not provide a strong basis of support for them.  Both the individual studies of 
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smaller classes and the meta-analyses of these studies yield contradictory results.   

Some of these contradictions are rooted in the endogeneity caused by students who 

switch from one school to another.  Because students and their families are able to 

transfer schools by choosing to locate in a different area, students are not randomly 

distributed across a region.  Moreover, movers account for a substantial subset of 

the population.  In Texas, almost 33 percent of students transfer schools at least 

once between third and sixth grades, excluding those who move because of a forced 

transition to middle school,7 and about 15 percent of students in any given grade 

are movers.  Given that such a large portion of the population engages in school 

transition and many of these moves may be driven by school characteristics, it is 

important to fully consider the moving decision when analyzing the class size effect, 

or the effect of any school input. 

In this paper, I propose a model that allows for two types of movers: 

endogenous movers who switch schools because of a desire to increase school 

quality, and exogenous movers who switch schools for some reason unrelated to 

school (such as a change in family structure or parents’ employment).  Different 

types of school changes—transfers within district, transfers across districts, and 

transfers across regions—are used to identify endogenous and exogenous movers.  

Using student-level standardized test data from Texas and school-level zip code 

characteristics, I implement a maximum likelihood model to simultaneously 

                                                 
7
 This statistic is based on Texas public school students who are third graders in 2003-2004 and 

sixth graders in 2006-2007.  It is consistent with Hanushek et al. (2004), who claim that one third of 
students switch schools at least once between fourth grade and seventh grade.   
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estimate the class size effect with the decision to switch from one school to another.  

This simultaneous estimation allows me to actually model the moving decision, 

rather than to simply control for movers, as previous studies have done.  I find that 

the endogeneity of the moving decision leads to a substantial bias in the estimation 

of the moving effect in a simple OLS model.  I also find that while the class size 

effect is small on average, it is heterogeneous in its effect on different types of 

movers.  Smaller classes are most beneficial for students who move across districts 

but within region.   

 

III.2  Current Literature 

III.2.1  Class Size Effects  

 A large portion of the class size discussion centers around meta-analyses of 

the existing research.  Perhaps the most well-known of these studies is the work 

conducted by Hanushek (1986, 1997).  In the more recent study (1997), he 

analyzes 277 estimates from 59 studies that explore the effect of smaller classes on 

student achievement and that meet minimal quality requirements.  Giving equal 

weight to each estimate, he finds no evidence of a significant, systematic 

relationship between class size and student performance. 

 Krueger (2003) takes issue with Hanushek’s method of “vote counting” and 

contends that the proper procedure would be to give equal weight to each study 

rather than to each estimate.  He reevaluates Hanushek’s analysis and determines 
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that if each published study were given equal weight, the results would support a 

significant relationship between smaller classes and student achievement.8 

Outside of the meta-analysis debate, there are several important studies 

whose methodologies produce interesting (and again, often conflicting) results.  

Angrist and Lavy (1999) address the potential endogeneity of class size by 

exploiting the discontinuity caused by maximum class size rules in Israel.  They 

create an instrument for class size based on the Israeli school system’s practice of 

limiting class size to 40 students (see section III.4.2 for a description of the 

instrument).  Their results indicate class size effects for some (but not all) students.  

They find, for example, that a one student reduction in class size is associated with 

an increase in average math score of 0.05 points (on a 100 point scale) and an 

increase in average reading score of 0.13 points.  They find significant effects for 

fourth and fifth graders, but not for third graders. 

 Hoxby (2000) uses maximum and minimum class size rules in Connecticut, 

combined with exogenous variation in the population of school-aged children, to 

identify the class size effect.  She finds no evidence that smaller classes increase 

student achievement, nor does she find that smaller classes are beneficial for 

schools with a higher proportion of minority or low-income students.   

 While much of the class size literature uses econometric techniques to deal 

with the endogeneity problems present in existing data, there are a few studies that 

                                                 
8 For a detailed description of both Hanushek and Krueger’s methodologies and arguments, see The 
Class Size Debate (Mishel and Rothstein, eds.). 
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are experimental in nature and involve random assignment.  The most important of 

these is the Tennessee Student Teacher Achievement Ratio (STAR) program, which 

marked the first large-scale study with an experimental design.  Schools in 

Tennessee were given the option of participating in the program, which would 

randomly assign students to either small classes (13-17 students) or large classes 

(22-25 students).  These students were tracked from kindergarten through third 

grade and remained in either small or large classes.  Researchers found that 

students in small classes performed significantly better on a standardized test at 

the end of kindergarten and that the score gap continued, but did not widen, as 

those students continued through third grade.  

 The results of the study have been interpreted in several different ways.  

Many researchers point to the significant class size effect as strong evidence that 

smaller classes make a substantial difference in improving student performance.  In 

fact, this study was (and continues to be) one of the driving forces behind much of 

the state legislation aimed at reducing class size.  However, other researchers 

highlight the fact that while class size may be important for children in 

kindergarten, if the effect persisted in higher grades, the score gap should increase 

as children remained in small classes.    

 

III.2.2  Moving Effects 

Much of the moving literature suggests that moving entails a substantial 

disruption cost for students and therefore has a negative effect on test score.  
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Ingersoll et al. (1989) find lower average achievement for movers when compared 

with nonmovers, especially for students in early grades.  They find that although 

the effect is mitigated by controls for socioeconomic status, substantial differences 

in achievement still exist between the two groups.  Kain and O’Brien (1999) 

estimate the effect of different types of moving on reading score using data from 

Texas.  They examine five types of moves (voluntary campus moves, structural 

campus moves, district moves, into sample state moves, and out of sample state 

moves), and find that most types of moves have a negative impact on score.  

Voluntary campus moves and state moves have the largest effects. 

Although many papers suggest a negative mobility effect, some research, 

particularly work on school choice, does report the opposite result.  For example, 

Cullen et al. (2005) explore the effects of mobility caused by the open enrollment 

system in Chicago Public Schools.  They find that high school students who move 

schools are more likely to graduate than their counterparts who remain in their 

previous schools.  However, the students who are more likely to switch schools 

appear to be systematically different from those who stay, leading to a spurious 

correlation.  (One exception is students who transfer to career academies; these 

students seem to genuinely benefit from the transfer choice.) 

Hanushek et al. (2004) consider students who transfer schools and attempt 

to disentangle the disruption cost of moving from the (presumably positive) effect 

of Tiebout movers, who move to better schools.  They use student-fixed effects and 

prior-year moves to identify the two effects.  They find that within-district movers 



 

 

33 

incur the highest disruption costs from moving, while students who move across 

districts but remain in the same region benefit from significantly higher school 

quality.  They also examine the negative externalities movers impose on other 

students, a problem which appears to be greater for minorities and economically 

disadvantaged students.  

 

III.3  A Two-Type Model of Moving 

A significant concern in modeling the class size effect arises because, to a 

large degree, students and their parents are able to choose which school they 

attend by choosing where they want to live.  According to the Tiebout choice model, 

individuals sort themselves into communities based on their preferences, and—at 

least for most families—schooling options are a significant component of the local 

community.  As a result, students are not randomly distributed across a region; 

instead, many choose to move to a particular area specifically because of the school 

characteristics it offers. 

This endogeneity problem is complicated by the fact that students move 

schools for many different reasons.  While some families locate in an area to allow 

their children to attend a preferred school, others move because of a change 

completely unrelated to schooling.  Students may switch schools because one of 

their parents gets a new job in a different part of the state or because of a change in 

family structure, such as a divorce.  Such moves are likely to be exogenous to school 

characteristics.  A complete model of class size should allow for different types of 
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movers in a simultaneous estimation of students’ decisions to switch schools, along 

with the class size effect.  

The following model allows students to belong to one of two types—the 

endogenous type, whose families move schools because of an unobserved school 

characteristic that may affect test score; and the exogenous type, whose families 

move schools because of a reason unrelated to school characteristics.  A picture of 

this two type model is shown in Figure III.1.  Student i belongs to the endogenous 

type (type N) and moves schools between periods t-1 and t if the following equation 

holds:  

𝑚𝑜𝑣𝑒𝑁𝑖𝑡 = 1 𝑍𝑖𝜂𝑁 + 𝜀𝑁𝑖 > 0 , (III.1) 

where 𝑍𝑖  is a vector of school and neighborhood characteristics that effect student 

i’s decision to move and 𝜀𝑁𝑖  is the error term.  A similar equation describes the 

moving decision of a student belonging to the exogenous type (type X):    

𝑚𝑜𝑣𝑒𝑋𝑖𝑡 = 1 𝑍𝑖𝜂𝑋 + 𝜀𝑋𝑖 > 0 , (III.2) 

The effect of class size cs of student i on his test score s in period t is given by 

𝑠𝑖𝑡 = 𝜌𝑠𝑖𝑡−1 + 𝑋𝑖𝑡𝛽 + 𝛾1𝑐𝑠𝑖 +  𝛾2𝑁𝑚𝑜𝑣𝑒𝑁𝑖𝑡 + 𝛾2𝑋𝑚𝑜𝑣𝑒𝑋𝑖𝑡  𝑐𝑠𝑖 + 𝑢𝑖 , (III.3) 

where 𝑠𝑖𝑡−1 is his score in the previous period,  𝑋𝑖𝑡  is a vector of student-specific 

characteristics affecting test score, and 𝑢𝑖  is the error term.  The class size effect is 

allowed to differ between movers and non-movers, and also between movers of the 

two types. 
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Figure III.1.  Two-type mover model. 
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 If type N movers switch schools based on unobserved schooling 

characteristics that affect test score, then the error from the moving equation 𝜀𝑁𝑖  

and the error from the score equation 𝑢𝑖  will be correlated; however, the 

correlation between the two error terms should be zero for type X movers: 

𝑐𝑜𝑣 𝜀𝑁𝑖 , 𝑢𝑖 ≠ 0 (III.4) 

𝑐𝑜𝑣 𝜀𝑋𝑖 , 𝑢𝑖 = 0 (III.5) 

The relationship between the two errors for the endogenous movers is given by 

𝜀𝑁 = 𝜆𝑁𝑢 + 𝑣𝑁 , (III.6) 

where 𝜐𝑁~𝑁(0, 𝜎𝜐𝑁
2 ) and the variance of the error is  

𝜎𝑣𝑁
2 = 1 − 𝜆𝑁

2 𝜎𝑢
2 (III.7) 

 Although I assume type X movers are exogenous, I test equation (III.5) 

empirically by allowing the errors to be correlated.  Therefore,   

𝜀𝑋 = 𝜆𝑋𝑢 + 𝑣𝑋 , (III.8) 

where 𝜐𝑋~𝑁(0, 𝜎𝜐𝑋
2 ) and the variance of the error is  

𝜎𝑣𝑋
2 = 1 − 𝜆𝑋

2 𝜎𝑢
2. (III.9) 

When type X movers are truly exogenous, 𝜆𝑋 = 0, and the model collapses to the 

original assumption in equation (III.5). 

As shown in equations (III.1) and (III.2), both of the two types of students 

can choose to either move schools or to remain in their current school.  Therefore, 

each student falls into one of four categories: endogenous movers, endogenous 

stayers, exogenous movers, and exogenous stayers.  The probability that a type N 
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student i chooses to switch schools conditional on his test score 𝑠𝑖𝑡  is given by the 

following equation: 

Pr(𝑚𝑜𝑣𝑒𝑁𝑖𝑡 = 1  𝑠𝑖𝑡 = Pr 𝑍𝑖𝜂𝑁 + 𝜀𝑁𝑖 > 0 𝑠𝑖𝑡 . (III.10) 

Substituting with equation (III.6) and assuming  is normally distributed as 

described above yields 

Pr(𝑚𝑜𝑣𝑒𝑁𝑖𝑡 = 1  𝑠𝑖𝑡 = Pr 𝑍𝑖𝜂𝑁 + 𝜆𝑁𝑢 + 𝑣𝑁 > 0 𝑠𝑖𝑡 

= Φ  
𝑍𝑖𝜂𝑁 + 𝜆𝑁𝑢

 1 − 𝜆𝑁
2 𝜎𝑢

2
 . 

(III.11) 

Finally, I substitute the error term 𝑢𝑖  from equation (III.3) to obtain: 

Pr(𝑚𝑜𝑣𝑒𝑁𝑖𝑡 = 1  𝑠𝑖𝑡 

= Φ  
𝑍𝑖𝜂𝑁 + 𝜆𝑁(𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾2𝑁𝑚𝑜𝑣𝑒𝑁𝑖𝑡  𝑐𝑠𝑖)

 1 − 𝜆𝑁
2 𝜎𝑢

2
 . 

(III.12) 

The probability that a type N student i chooses not to switch schools is 

Pr(𝑚𝑜𝑣𝑒𝑁𝑖𝑡 = 0  𝑠𝑖𝑡 

= 1 − Φ  
𝑍𝑖𝜂𝑁 + 𝜆𝑁(𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾2𝑁𝑚𝑜𝑣𝑒𝑁𝑖𝑡 𝑐𝑠𝑖)

 1 − 𝜆𝑁
2 𝜎𝑢

2
 . 

(III.13) 

The other two conditional probabilities can be found in the same way.  The 

probability that a type X student i switches schools is given by 

Pr(𝑚𝑜𝑣𝑒𝑋𝑖𝑡 = 1  𝑠𝑖𝑡 

= Φ  
𝑍𝑖𝜂𝑋 + 𝜆𝑋(𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾2𝑋𝑚𝑜𝑣𝑒𝑋𝑖𝑡  𝑐𝑠𝑖)

 1 − 𝜆𝑋
2 𝜎𝑢

2
 , 

(III.14) 

and the probability that a type X student i chooses to stay at his current school is  



 

 

38 

Pr(𝑚𝑜𝑣𝑒𝑋𝑖𝑡 = 0  𝑠𝑖𝑡 

= 1 − Φ  
𝑍𝑖𝜂𝑁 + 𝜆𝑁(𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾2𝑁𝑚𝑜𝑣𝑒𝑁𝑖𝑡 𝑐𝑠𝑖)

 1 − 𝜆𝑁
2 𝜎𝑢

2
 . 

(III.15) 

I can now multiply each of the conditional probabilities by the density of u to obtain 

each of the final densities: 

Case 1: 𝑓 𝑠𝑖𝑡 , 𝑚𝑜𝑣𝑒𝑁𝑖𝑡 = 1 

= 𝛷  
𝑍𝑖𝜂𝑁 + 𝜆𝑁 𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾2𝑁𝑚𝑜𝑣𝑒𝑁𝑖𝑡  𝑐𝑠𝑖 

 1 − 𝜆𝑁
2 𝜎𝑢

2
 

∗
1

𝜎𝑢
𝜙  

𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾2𝑁𝑚𝑜𝑣𝑒𝑁𝑖𝑡  𝑐𝑠𝑖

𝜎𝑢
  

(III.16) 

Case 2: 𝑓 𝑠𝑖𝑡 , 𝑚𝑜𝑣𝑒𝑁𝑖𝑡 = 0 

=  1 − Φ  
𝑍𝑖𝜂𝑁 + 𝜆𝑁 𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾2𝑁𝑚𝑜𝑣𝑒𝑁𝑖𝑡  𝑐𝑠𝑖 

 1 − 𝜆𝑁
2 𝜎𝑢

2
  

∗
1

𝜎𝑢
ϕ  

𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾2𝑁𝑚𝑜𝑣𝑒𝑁𝑖𝑡 𝑐𝑠𝑖

𝜎𝑢
  

(III.17) 

Case 3: 𝑓 𝑠𝑖𝑡 , 𝑚𝑜𝑣𝑒𝑋𝑖𝑡 = 1 

= Φ  
𝑍𝑖𝜂𝑋 + 𝜆𝑋(𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾2𝑋𝑚𝑜𝑣𝑒𝑋𝑖𝑡  𝑐𝑠𝑖)

 1 − 𝜆𝑋
2 𝜎𝑢

2
 

∗
1

𝜎𝑢
ϕ 

𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾2𝑋𝑚𝑜𝑣𝑒𝑋𝑖𝑡  𝑐𝑠𝑖

𝜎𝑢
  

(III.18) 
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Case 4: 𝑓 𝑠𝑖𝑡 , 𝑚𝑜𝑣𝑒𝑋𝑖𝑡 = 0 

=  1 − Φ  
𝑍𝑖𝜂𝑁 + 𝜆𝑁(𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾2𝑁𝑚𝑜𝑣𝑒𝑁𝑖𝑡 𝑐𝑠𝑖)

 1 − 𝜆𝑁
2 𝜎𝑢

2
  

∗
1

𝜎𝑢
ϕ  

𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾2𝑋𝑚𝑜𝑣𝑒𝑋𝑖𝑡  𝑐𝑠𝑖

𝜎𝑢
  

 

(III.19) 

 

Given equations (III.16)-(III.19), the log likelihood function for the 

maximum likelihood estimation is 

ℓ𝑖 =   log⁡(𝐶𝑎𝑠𝑒𝑘)

𝑁𝑘

𝑖=1

4

𝑘=1

. (III.20) 

 

III.4  Empirical Implementation of the Type-Specific Model 

III.4.1  Moving Model 

In order to empirically estimate this model, I must first identify which 

students belong to the endogenous type and which ones belong to the exogenous 

type.  My dataset, which is described in section III.5, allows me to link a student to 

his campus, district, and region in each period.  Using this information, I create 

three groups of students: campus movers (students who move schools within a 

district), district movers (students who move across districts but remain in the 

same region), and region movers (students who move across regions of the state).   
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Figure III.2.  Three-type mover model. 
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It is likely that students in these different groups move for different reasons.  

Endogenous movers, who switch schools because of school-related characteristics, 

are likely to be students who move within region.  A student who is unhappy with 

his current school will probably look first for a different option nearby; it is unlikely 

that he and his family will move across the state to find a suitable alternative.  

Exogenous movers who switch schools because of some reason unrelated to school, 

such as a parent’s new job or a change in family structure, are more likely to 

include those students who move across regions. 

Students who move within a district are probably endogenous movers, but 

as Hanushek et al. (2004) conclude, the effects of moving for these students are 

different than the effects for across-district, within-region movers.  This is because 

students who change schools but remain in the same district are still subject to the 

same common administration and financing they experienced prior to the move.   

In the empirical implementation, I alter the two-type model described above 

to include instead the three groups of students described above: campus movers 

(type 1), district movers (type 2), and region movers (type 3).9  A picture of this 

three-type model is shown in Figure III.2.  I simultaneously estimate students’ 

decisions to make these three different types of moves with the class size effect.  

The moving decisions are given by the following three equations: 

                                                 
9
 Note that the three types are mutually exclusive.  Although district movers obviously also move 

campuses, I define “campus mover” to mean students who move campuses within a district, “district 
mover” to mean students who move districts within a region, and “region mover” to mean students 
who move across regions. 
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Campus Mover:                                        𝑚𝑜𝑣𝑒1𝑖𝑡 = 1 𝑍𝑖𝜂1 + 𝜀1𝑖 > 0  (III.21) 

District Mover:                                        𝑚𝑜𝑣𝑒2𝑖𝑡 = 1 𝑍𝑖𝜂2 + 𝜀2𝑖 > 0  (III.22) 

Region Mover:                                          𝑚𝑜𝑣𝑒3𝑖𝑡 = 1 𝑍𝑖𝜂3 + 𝜀3𝑖 > 0   (III.23) 

The score equation is given by 

𝑠𝑖𝑡 = 𝜌𝑠𝑖𝑡−1 + 𝑋𝑖𝑡𝛽 + 𝛾1𝑐𝑠𝑖

+  𝛾21𝑚𝑜𝑣𝑒1𝑖𝑡 + 𝛾22𝑚𝑜𝑣𝑒2𝑖𝑡 + 𝛾23𝑚𝑜𝑣𝑒3𝑖𝑡 𝑐𝑠𝑖 + 𝑢𝑖 , 
(III.24) 

 

where returns to class size are allowed to vary across moving type.  The densities 

for the empirical estimation are derived as they are for the two type model above.  

Although I assume that region movers are exogenous, I allow for the correlation of 

the moving error and the score error for all three types so that I can test the 

exogeneity assumption empirically.  (See Appendix A for a complete description of 

the three type model.)  

 

III.4.2  Class Size  

 An additional concern in the estimation process is that the variable I use for 

class size is average class size within a grade, within a school.  This introduces 

measurement error, because a student’s actual class size is not equal to the average 

class size unless schools divide students into classes of exactly equal size.  Consider 

the true class size model, represented by 𝑐𝑠𝑖𝑗
∗ :  

𝑐𝑠𝑖𝑗
∗ = 𝑐𝑠𝑗    + 𝜀𝑖𝑗  (III.25) 
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Then the true score equation, simplified for convenience, is given by 

𝑠𝑖𝑗𝑡 = 𝜌𝑠𝑖𝑗𝑡 −1 + 𝑋𝑖𝑡𝛽 + 𝛾𝑐𝑠𝑖𝑗
∗ + 𝑢𝑖𝑗  

= 𝜌𝑠𝑖𝑗𝑡 −1 + 𝑋𝑖𝑡𝛽 + 𝛾(𝑐𝑠𝑗    + 𝜀𝑖𝑗 ) + 𝑢𝑖𝑗  

= 𝜌𝑠𝑖𝑗𝑡 −1 + 𝑋𝑖𝑡𝛽 + 𝛾𝑐𝑠𝑗    + 𝛾𝜀𝑖𝑗 + 𝑢𝑖𝑗  

(III.26) 

The measurement error will cause the typical attenuation effect if the following 

condition holds: 

𝑐𝑜𝑣 𝑐𝑠𝑗    , 𝜀𝑖𝑗  < 0 (III.27) 

The covariance between these terms would be negative if schools with higher 

average class sizes have less ability to create individual classes of different sizes.  

This is likely true because Texas has a maximum class size rule of 22 for all classes 

in kindergarten through grade 4.  A school with an average class size of 21 or 22 is 

constrained in the way it can move students between classes.  There is not much 

leeway to create any small classes within the grade because the extra students 

would push the larger classes over the maximum size.  However, a school with a 

smaller average class size of 17 or 18 would have more room to create relatively 

larger and smaller classes, causing a negative covariance between average class 

size and the error term.  Under this assumption, the class size coefficient will be 

biased towards zero.  

To mitigate the endogeneity caused by this problem, I create an instrument 

for class size based on maximum class size rules.  This type of instrument was first 

introduced by Angrist and Lavy (1999), who use Israel’s maximum class size rule of 
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40 to create a class size IV.  The maximum class size rule of 22 in Texas creates a 

discontinuity that can be exploited to create a predicted class size variable, based 

on school enrollment.  I define predicted class size in school j as 

𝑝𝑐𝑠𝑗 =
𝑒𝑗

int  
𝑒𝑗 − 1

22  + 1

, 
(III.28) 

where 𝑒𝑗  is the total enrollment of school j within a grade.  The expression 

int  
𝑒𝑗−1

22
  represents the largest integer that is less than or equal to the value in 

parentheses.   

Discontinuities arise in 𝑝𝑐𝑠𝑗  when enrollment increases to the point where 

the maximum class size rule is triggered and the school must create an additional 

class.  For example, if 𝑒𝑗  is equal to 44, then 𝑝𝑐𝑠𝑗  is equal to 22.  The students are 

divided into two classes, each with 22 students.  However, as soon as 𝑒𝑗  increases to 

45, the maximum class size rule is triggered, and a third class must be added.  Now 

𝑝𝑐𝑠𝑗  is equal to 15; the 45 students are divided into three classes, each with 15 

students.  This variable can be used as an instrument for class size; even if the 

maximum class size rules are not strictly enforced for every class,  𝑝𝑐𝑠𝑗  should be 

correlated with 𝑐𝑠𝑗 , yet there is no reason to believe it will be correlated with the 

error in the score equation.      

To simplify the model, I run the first stage of the 2SLS procedure first and 

obtain the predicted value of class size, 𝑐𝑠𝑗 .  I then use 𝑐𝑠𝑗  as the key variable of 

interest in the maximum likelihood estimation.  
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Table III.1 
Summary statistics of fourth grade students in 2004-2005 

  Mean St Dev Min Max Obs 

Class Size 18.612 4.44 1 48.4 131371 
Move 0.1490 0.3561 0 1 131371 
Move Campus 0.0744 0.2624 0 1 131371 
Move District 0.0543 0.2266 0 1 131371 
Move Region 0.0203 0.1411 0 1 131371 
Math Scale Score 2263.45 187.15 1280 2684 131371 
Previous Math Scale Score 2251.97 178.05 1228 2699 131371 

Female 0.5086 0.4999 0 1 131371 

Asian 0.0153 0.1229 0 1 131371 
Black 0.1317 0.3382 0 1 131371 
Hispanic 0.3599 0.4800 0 1 131371 
Free Lunch 0.3904 0.4879 0 1 131371 
Gifted/Talented 0.0320 0.1759 0 1 131371 
Special Ed 0.0058 0.0761 0 1 131371 
ESL 0.0186 0.1351 0 1 131371 
Bilingual 0.0282 0.1654 0 1 131371 
Average School Score 2212.97 113.746 1324.81 2515.83 131371 
Variance School Score 64829.78 46268 112.5 419740 131371 

Charter 0.0044 0.0660 0 1 131371 
Accountability Rating 2.5516 0.6797 1 4 131371 

  

 

III.5  Student-level Data from Texas 

III.5.1  Moving Data 

For the estimation, I use student-level data from the Texas Assessment of 

Knowledge and Skills (TAKS) obtained from the Texas Education Agency (TEA).  

Summary statistics for all variables are shown in Table III.1.  I use the universe of 

fourth grade students who attended public school in Texas during the 2004-2005 

school year and who also appear in the dataset during the previous school year. 
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The data allows a researcher to track a student to his grade, campus, district, 

and region (but not to his specific class).  I use the campus, district, and region 

identifiers from the 2003-2004 and 2004-2005 school years to construct the 

following moving variables:  

𝑚𝑜𝑣𝑒1𝑖𝑡 = 1 if 𝑐𝑎𝑚𝑝𝑢𝑠𝑖𝑡 ≠ 𝑐𝑎𝑚𝑝𝑢𝑠𝑖𝑡−1 and 𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑡 = 𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑡−1 (III.29) 

𝑚𝑜𝑣𝑒2𝑖𝑡 = 1 if 𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑡 ≠ 𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑡−1 and 𝑟𝑒𝑔𝑖𝑜𝑛𝑖𝑡 = 𝑟𝑒𝑔𝑖𝑜𝑛𝑖𝑡−1 (III.30) 

𝑚𝑜𝑣𝑒3𝑖𝑡 = 1 if 𝑟𝑒𝑔𝑖𝑜𝑛𝑖𝑡 ≠ 𝑟𝑒𝑔𝑖𝑜𝑛𝑖𝑡−1 (III.31) 

I exclude a student from the type 1 moving group (campus movers) if he is 

forced to move campuses due to a middle school transition and remains within his 

district; that is, if the highest grade in 𝑐𝑎𝑚𝑝𝑢𝑠𝑖𝑡−1was third grade.  I do not make 

this adjustment for the other two groups; if a student moves across districts or 

regions, he is considered a mover even if he was forced out of his previous campus. 

The region variable included in the dataset refers to a student’s Educational 

Service Center (ESC) region.  Each school district falls into one of the twenty ESC 

regions across the state.  It is important to note that although the twenty regions 

are general approximations of broad geographic areas across Texas, their specific 

boundaries are somewhat arbitrary and do not match exactly with more 

conventional measures of regions, such as MSAs.  An alternative method of division 

would be to link districts directly to MSAs, which might provide a more reasonable 
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approximation of regional labor markets.  In the current estimation, however, 

“region” refers to ESC region as provided in the dataset.       

 

III.5.2  Score Data 

 I use a student’s math score on the TAKS test as the dependent variable in 

the score regression.  The dataset includes a unique student identifier which allows 

students’ scores to be linked from one year to the next, so I also control for a 

student’s previous year test score.  By controlling for previous score, my 

specification becomes a “value added” model.   

 The TEA reports two types of scores for each student.  The first is the raw 

score, which simply reports the number of questions the student answered 

correctly.  The second score is the scale score, which is a transformation of the raw 

score used control for the difficulty of the exam across administrations so that 

scores can be compared across years.  For example, scale scores could be used to 

compare the scores of third graders who took the exam in 2004 with the scores of 

the next cohort of third graders who took the exam in 2005.   

Neither the raw score nor the scale score is meant to be vertically linked; 

that is, they should not be used to compare a third grader’s 2004 score with that 

same student’s fourth grade score in 2005.  Because that is exactly the comparison I 

want to make, I convert scale scores into z scores by subtracting the mean and 

dividing by the standard deviation.  Therefore, the dependent variable in the model 

is  
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𝑠𝑖𝑡 =
𝑠𝑐𝑎𝑙𝑒𝑖𝑡 − 𝜇𝑡

ςt
, (III.32) 

where 𝑠𝑐𝑎𝑙𝑒𝑖𝑡  is student i’s scale score in period t, and 𝜇𝑡  and ςt  represent the mean 

and standard deviation of the scale scores.  A student’s score is now a 

representation of where he lies along the distribution of scores.  I generate z scores 

for both the current year and the previous year.  

 

III.5.3  Class Size 

 As explained in section III.4.2, I use average class size within a grade, within 

a school to capture class size effects.  The TEA only reports average class size; 

actual class size for each student is not available.  Even if comprehensive data on 

actual class size were reported, I would not be able to identify a specific student’s 

actual class size because the TAKS data tracks a student to his grade and campus, 

but not to his specific class or teacher.  Therefore, I use average class size as 

reported in the Academic Excellence Indicator System (AEIS).  This data, which is 

reported by campus, is merged with the TAKS student-level data.  Enrollment data 

is also available through AEIS, which I use to generate an instrumental variable for 

class size, as described in section III.4.2.   

 Other student-level controls available through the TAKS data include a 

student’s gender, race, ESL status, and bilingual status.  There are also variables 

indicating whether a student is enrolled in a gifted and talented program or a 

special education program, and whether or not he is eligible for free or reduced 
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lunch.  Additional school-level controls, such as a school’s accountability rating, are 

available through the AEIS dataset.   In Texas, schools are divided into one of four 

categories: exemplary, recognized, academically acceptable, and academically 

unacceptable.  This rating, as well as average school score and variance of school 

score are included as campus-level controls in the score regressions. 

 

III.5.4  Neighborhood Characteristics 

 The moving decisions described in equations (III.21)-(III.23) create the need 

for information on neighborhood characteristics, in addition to school 

characteristics.  I use zip code data from the US census, and merge this data with 

the school characteristics by the zip code of the campus.  (One limitation of the 

study is that I do not have information on students’ addresses or zip codes, so I 

cannot link the zip code data to students and their families directly.  However, 

because most schools are neighborhood schools, I assume that characteristics of 

the school neighborhood will be similar to characteristics of the student’s own 

neighborhood, even if the zip codes differ.)   

The dataset includes demographic and economic variables such as total 

population, population broken down by race groups, median age, average housing 

value, and average income per household.   I merge these data to a student’s 

campus in both period t and period t-1, which allows me to explore which kinds of 

neighborhoods students leave and which kinds of neighborhoods students enter 

when they switch schools. 
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III.6  Results 

III.6.1  Differences Between Movers and Nonmovers 

 Before beginning the regression analysis, I first examine basic differences 

between movers and nonmovers.  Table III.2 reports selected summary statistics by 

moving type and shows mean comparison tests between movers and nonmovers.  

The full dataset includes 131,371 fourth graders whose scores can be matched 

between the 2003-2004 school year and the 2004-2005 school year.10  Of these 

students, about 85 percent remain in the same school both years (or switch to a 

different campus within their district because their 2003-2004 school only served 

students through the third grade).  Of the 15 percent of students who move schools, 

about 7.5 percent are classified as campus movers (who switch campuses within 

their district), 5.5 percent are classified as district movers (who switch districts 

within their region), and 2 percent are classified as region movers (who switch 

regions within the state of Texas).    

                                                 
10

 Students whose scores cannot be matched may have moved out of the state of Texas or entered a 
private school.  Alternatively, they may still be in Texas public schools but were absent for testing. 
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Table III.2 
Mean comparison tests between nonmovers and movers 

  Nonmovers Campus Movers District Movers Region Movers 

 
Mean Mean 

Difference from 
Nonmovers Mean 

Difference from 
Nonmovers Mean 

Difference from 
Nonmovers 

Score 2271.1 2224.7 -46.5 *** 2203.2 -68.0 *** 2244.0 -27.1 *** 

   
(23.61) 

  
(29.87) 

  
(7.43) 

 Female 0.507 0.515 0.008 
 

0.518 0.012 * 0.530 0.023 ** 

   
(1.52) 

  
(1.88) 

  
(2.39) 

 Asian 0.017 0.008 -0.009 *** 0.007 -0.010 *** 0.006 -0.010 *** 

   
(6.61) 

  
(6.60) 

  
(4.16) 

 Black 0.118 0.204 0.086 *** 0.247 0.129 *** 0.116 -0.003 
 

   
(24.64) 

  
(31.94) 

  
(0.41) 

 Hispanic 0.356 0.433 0.077 *** 0.347 -0.009 
 

0.305 -0.050 *** 

   
(15.27) 

  
(1.46) 

  
(5.35) 

 White 0.509 0.354 -0.155 *** 0.398 -0.112 *** 0.571 0.062 *** 

   
(29.43) 

  
(18.29) 

  
(6.35) 

 Free Lunch 0.373 0.513 0.139 *** 0.486 0.113 *** 0.414 0.041 *** 

   
(27.27) 

  
(19.06) 

  
(4.33) 

 ESL 0.019 0.023 0.004 *** 0.013 -0.006 *** 0.010 -0.008 *** 

   
(3.10) 

  
(3.65) 

  
(3.12) 

 Bilingual 0.029 0.036 0.008 *** 0.015 -0.013 *** 0.009 -0.020 *** 

   
(4.27) 

  
(6.68) 

  
(6.08) 

 Gifted/Talented 0.036 0.015 -0.021 *** 0.006 -0.030 *** 0.012 -0.024 *** 

   
(10.99) 

  
(13.41) 

  
(6.66) 

 Special Ed 0.006 0.005 -0.001 * 0.002 -0.004 *** 0.003 -0.003 ** 
      (1.73)     (4.69)     (2.11)   

Observations 111800 9772 7131 2668 
 Note: Absolute values of t-statistics appear in parentheses beneath the difference. 
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Table III.3  

Mean comparison tests (difference in school characteristics between current school and previous school) 

  Nonmovers Campus Movers District Movers Region Movers 

  
Current-
Previous 

Current-
Previous 

Difference 
from 
Nonmovers 

Current-
Previous 

Difference 
from 
Nonmovers 

Current-
Previous 

Difference from 
Nonmovers 

Class Size 0.5661 0.5549 -0.0112 
 

0.5296 -0.0365 
 

0.4478 -0.1183 * 

   
(0.3102) 

  
(0.8720) 

  
(1.8108) 

 Acc Rating -0.2666 -0.1860 0.0805 *** -0.2141 0.0524 *** -0.2235 0.0430 *** 

   
(10.9971) 

  
(6.0739) 

  
(3.1638) 

 Average Score -25.0487 -23.5163 1.5324 * -18.7330 6.3157 *** -18.5553 6.4934 *** 

   
(1.6819) 

  
(5.9093) 

  
(3.8617) 

 Per. Asian 0.0002 0.0003 0.00003 
 

0.0002 -0.0001 
 

-0.0012 -0.0014 *** 

   
(0.1449) 

  
(0.2281) 

  
(4.2892) 

 Per. Black -0.0003 -0.0033 -0.0030 *** -0.0290 -0.0287 *** -0.0100 -0.0097 *** 

   
(5.4592) 

  
(37.8927) 

  
(11.2458) 

 Per. Hispanic 0.0120 0.0056 -0.0065 *** -0.0113 -0.0233 *** -0.0102 -0.0222 *** 

   
(9.9246) 

  
(27.5166) 

  
(19.0056) 

 Per. Free Lunch 0.0173 0.0028 -0.0145 *** -0.0244 -0.0418 *** -0.0099 -0.0272 *** 

   
(16.5892) 

  
(33.8047) 

  
(17.0370) 

 Per. G/T 0.0125 0.0105 -0.0021 *** 0.0083 -0.0043 *** 0.0105 -0.0021 *** 

   
(5.1234) 

  
(8.7359) 

  
(2.8932) 

 Per. Special Ed 0.0032 0.0023 -0.0008 
 

0.0047 0.0015 ** 0.0049 0.0017 * 

    
 

(1.5854)   
 

(2.4976)   
 

(1.7808)   

Note:  This table examines the mean difference between the current school characteristic and its previous year value.  This value is then 
compared against the same change for nonmovers.  Absolute values of t-statistics appear in parentheses beneath the difference.   
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The mean comparison tests show that, on average, movers of all types have 

lower testing scores than nonmovers.  Campus movers are more likely to be black 

or Hispanic (when compared to nonmovers), district movers are more likely to be 

black, and region movers are more likely to be white.  Movers of all types are more 

likely to qualify for free or reduced lunch.    

In addition to exploring differences between movers and nonmovers, I also 

examine which types of schools movers are likely to choose as their destination 

campuses.  Table III.3 provides mean comparison tests for the differences in school 

characteristics across the two years between movers and nonmovers.  For example, 

change in average school score for campus movers is compared to change in 

average school score for nonmovers to explore whether students switch to schools 

that are relatively better or worse in terms of score than their nonmover 

counterparts.    

The data suggest that students move to schools with better accountability 

ratings and higher scores than their previous schools.  (Because average 

accountability ratings and average test scores both decrease across the period, this 

means that the destination schools have ratings and scores that are “less low” than 

they would be had the student stayed in the previous school.)  The gap in test score 

is largest for district and region movers, who move to schools with an average test 

score drop of only about 19 points, compared with nonmovers, whose schools 

sustain a 25 point drop on average.  Examining differences in race and economic 

composition is also interesting.  Across the period, there is an increase in the 
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percent of Hispanic students across schools, but a relatively smaller increase in the 

percent of Hispanic students at the destination schools of all types of movers 

(compared to their origin schools).  The percent of students who qualify for free 

lunch increases across all schools, but the increase is relatively smaller for movers’ 

destination schools.  In fact, for district movers, there is actually a net decrease in 

the percent of students who qualify for free lunch of 2.4 percentage points.        

Tables III.4A and III.4B show the results of a probit regression for the 

moving decision using student characteristics as regressors.  These more formal 

results support the generalities suggested by the comparison tests.  Table III.4A 

shows the moving decision in general, in addition to campus, district, and region 

moves.  Movers in general are more likely to have lower previous scores, be black 

or Hispanic, and qualify for free lunch.  Specifically, campus movers are more likely 

to be black or Hispanic, district movers are more likely to be black, and region 

movers are more likely to be white.  Table III.4B shows campus, district, and region 

move probit regressions conditional on moving to allow comparisons between 

moving types.  Table III.4B suggests that students who are more likely to move 

districts have particularly low previous scores, when compared to campus or 

region movers. 
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Table III.4A  

Probit of moving decision on student characteristics  (unconditional campus, district, and region moves) 

  Move Campus Move District Move Region Move 

Previous Score -0.1005 (18.11) *** -0.0530 (7.89) *** -0.1149 (15.41) *** -0.0628 (6.06) *** 
Female 0.0104 (1.21) 

 
0.0055 (0.53) 

 
0.0032 (0.28) 

 
0.0275 (1.71) 

 Asian -0.2453 (5.69) *** -0.1296 (2.48) ** -0.2069 (3.34) *** -0.3591 (3.98) *** 
Black 0.3029 (22.09) *** 0.3063 (18.30) *** 0.3173 (18.14) *** -0.2269 (8.15) *** 
Hispanic 0.0728 (6.66) *** 0.1778 (13.28) *** 0.0214 (1.45) 

 
-0.1880 (9.22) *** 

Free Lunch 0.1311 (12.99) *** 0.1193 (9.72) *** 0.0709 (5.28) *** 0.1124 (5.88) *** 
G/T -0.4095 (12.33) *** -0.2159 (5.64) *** -0.5519 (9.47) *** -0.3672 (5.53) *** 
Special Ed -0.2417 (3.74) *** 0.0036 (0.05) 

 
-0.4793 (4.27) *** -0.3146 (2.36) ** 

ESL -0.1862 (5.66) *** -0.0343 (0.93) 
 

-0.2834 (5.79) *** -0.2633 (3.55) *** 

Bilingual -0.1426 (5.24) *** 0.0482 (1.61)   -0.3185 (7.41) *** -0.4057 (5.46) *** 

Note: Absolute values of z-statistics are in parentheses.   
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Table III.4B 
Probit of moving decision on student characteristics (conditional campus, district, 
and region moves) 

  Campus Move District Move Region Move 

Previous Score 0.0670 (5.79) *** -0.0722 (6.12) *** 0.0041 (0.28) *** 
Female -0.0019 (0.11) 

 
-0.0117 (0.63) 

 
0.0257 (1.12) 

 Asian 0.2135 (2.00) ** -0.0310 (0.28) 
 

-0.3014 (2.19) ** 
Black 0.1445 (5.33) *** 0.1665 (6.09) *** -0.5821 (15.95) *** 
Hispanic 0.2752 (12.06) *** -0.0709 (3.05) *** -0.3532 (12.53) *** 
Free Lunch 0.0488 (2.37) ** -0.0617 (2.95) *** 0.0160 (0.61) 

 G/T 0.4707 (5.27) *** -0.4619 (4.69) *** -0.1372 (1.27) 
 Special Ed 0.5965 (3.72) *** -0.5330 (3.03) *** -0.2241 (1.13) 
 ESL 0.3283 (4.57) *** -0.2629 (3.50) *** -0.1963 (1.95) * 

Bilingual 0.5168 (8.23) *** -0.3795 (5.81) *** -0.4436 (4.51) *** 

Note: Absolute values of z-statistics are in parentheses.  Campus, district, and 
region moves are conditional on moving.   
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These regressions, along with the simple t-test comparisons, reveal stark 

differences between students who remain in their current schools and those who 

switch.  In addition, it appears that the schools to which they transfer are 

systematically different from their previous schools.  This suggests that rather than 

simply controlling for students who move, researchers should carefully model the 

moving decision in conjunction with any school input effects, such as class size. 

 

III.6.2  Class Size Effect: OLS and 2SLS 

 Before running the full MLE model where the moving decision is modeled, I 

first report results for the simple OLS and 2SLS using the predicted class size 

instrument.  The first column in Table III.5 reports the results from a simple 

regression of math score on average class size, controlling for student and school 

level variables.  (In this regression, and in all following specifications, score is 

measured as a z score, as described in section III.5.2.)  The class size effect is 

negative, small, and insignificant in this specification.  Other variables have their 

expected values.  The third column reports results for an identical regression with 

an added dummy variable equal to 1 if the student moves schools in the previous 

period.  Again, class size is insignificant.  The moving variable, however, is 

significant and negative, suggesting that, on average, movers’ scores are 0.0397 

standard deviations lower than non-movers.  
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Effect of class size on math score with and without move dummy

Class Size -0.0018 (0.99) -0.0212 (2.16) ** -0.0016 (0.90) -0.0229 (2.34) **

Move -0.0397 (10.99) *** -0.0394 (10.89) ***

Prev Score 0.4027 (237.84) *** 0.4027 (237.73) *** 0.4019 (237.20) *** 0.4019 (237.07) ***

Female -0.0149 (5.82) *** -0.0149 (5.82) *** -0.0148 (5.79) *** -0.0148 (5.79) ***

Asian 0.1530 (14.52) *** 0.1535 (14.55) *** 0.1516 (14.38) *** 0.1521 (14.42) ***

Black -0.0763 (16.58) *** -0.0742 (15.70) *** -0.0735 (15.95) *** -0.0711 (15.05) ***

Hispanic -0.0133 (3.88) *** -0.0124 (3.61) *** -0.0128 (3.77) *** -0.0119 (3.46) ***

Free Lunch -0.0523 (16.42) *** -0.0543 (16.30) *** -0.0512 (16.06) *** -0.0533 (16.01) ***

GT 0.2576 (34.55) *** 0.2585 (34.59) *** 0.2554 (34.26) *** 0.2564 (34.31) ***

Sp Ed -0.1251 (7.43) *** -0.1237 (7.34) *** -0.1268 (7.54) *** -0.1253 (7.44) ***

ESL 0.0853 (8.75) *** 0.0863 (8.84) *** 0.0835 (8.57) *** 0.0847 (8.68) ***

Bilingual -0.0195 (2.45) ** -0.0174 (2.17) ** -0.0209 (2.62) *** -0.0186 (2.31) **

Avg Score 0.3329 (90.43) *** 0.3335 (90.26) *** 0.3325 (90.34) *** 0.3331 (90.17) ***

Var Score 0.1460 (65.32) *** 0.1453 (64.23) *** 0.1456 (65.17) *** 0.1449 (64.05) ***

Charter -0.0331 (1.71) * -0.0321 (1.65) * -0.0278 (1.43) -0.0267 (1.38)

Acc Rating -0.0072 (4.55) *** -0.0071 (4.46) *** -0.0073 (4.59) *** -0.0071 (4.49) ***

Constant 0.1462 (17.34) *** 0.2324 (5.34) *** 0.1507 (17.87) *** 0.2450 (5.63) ***

R-squared 0.4941 0.4937 0.4945 0.4941

Cragg-Donald 4523.65 4531.04

N=131,371

Note : Absolute values of t-statistics are in parentheses.  All non-binary variables are measured in standard deviations from the 

mean.

Table III.5

OLS 2SLS OLS 2SLS
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 Because of the potential measurement error that develops when using 

average test score, I use Texas’ maximum class size rules to generate an instrument 

for class size, which should correct for the bias in the OLS estimates.  The second 

and fourth columns in Table III.5 report the results from a 2SLS regression of test 

score on class size, using the predicted class size instrument described in section 

III.4.2.  The fourth column includes an additional moving dummy.  As expected, the 

estimates reveal that OLS appears to be biased upward; estimation with the 

instrumental variable produces a class size effect that is substantially more 

negative than the OLS estimation.  While these effects are still small, they are both 

statistically significant and about 12-14 times larger in magnitude than the OLS 

results.  A one standard deviation in class size, or about a four student reduction, 

results in a score increase of 0.0229 standard deviations.11   

 I also examine class size effects using interactions with different types of 

movers.  Table III.6 reports OLS and 2SLS estimates for class size interacted with 

three different dummy variables—students who move within their own district 

(type 1), students who move across districts but within their own region (type 2), 

and students who move across regions (type 3).   

 

                                                 
11 The standard deviation of average class size in the sample is 3.18 students. 
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Class Size -0.0017 -0.87 -0.0125 -1.13

CS*MoveC -0.0017 -0.27 -0.0003 -0.01

CS*MoveD -0.0008 -0.1 -0.1277 -3.27 ***

CS*MoveR 0.0091 -0.69 -0.0456 -0.87

MoveC -0.0155 -0.54 -0.0215 -0.15

MoveD -0.0601 -1.72 * 0.502 -2.9 ***

MoveR -0.0776 -1.32 0.1618 -0.7

Prev Score 0.4017 -237.1 *** 0.4019 -236.69 ***

Female -0.0148 -5.8 *** -0.0149 -5.82 ***

Asian 0.1514 -14.37 *** 0.1521 -14.41 ***

Black -0.0733 -15.9 *** -0.0705 -14.85 ***

Hispanic -0.0132 -3.88 *** -0.0121 -3.52 ***

Free Lunch -0.0514 -16.11 *** -0.0533 -15.96 ***

GT 0.2551 -34.22 *** 0.2559 -34.19 ***

Sp Ed -0.1276 -7.58 *** -0.1261 -7.48 ***

ESL 0.083 -8.52 *** 0.0842 -8.61 ***

Bilingual -0.0217 -2.72 *** -0.0203 -2.51 ***

Avg Score 0.3323 -90.27 *** 0.3325 -89.25 ***

Var Score 0.1456 -65.16 *** 0.1447 -63.87 ***

Charter -0.0208 -1.07 -0.0068 -0.34

Acc Rating -0.0073 -4.6 *** -0.0073 -4.61 ***

Constant 0.1514 -16.6 *** 0.1991 -4.07 ***

R-squared 0.4947 0.4932

Cragg-Donald 1066.57

N=131,371

Table III.6

Effect of class size on math score (effects by moving types)

OLS 2SLS

Note: Absolute values of t-statistics are in parentheses.  All non-binary 

variables are measured in standard deviations from the mean.
 

 

 

Note again that, in most cases, the 2SLS estimates are larger in magnitude 

than the simple OLS estimates, suggesting that OLS is biased upward.  Both the OLS 

and the 2SLS regressions suggest that the class size effect for non-movers is not 

significantly different from zero, but that at least one type of movers benefit from 
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smaller classes.  The only significant effects are for district movers; a one standard 

deviation decrease in class size increases math score by 0.128 standard deviations 

for students who move across districts but remain in the same region.  These 

results suggest the presence of heterogeneity in the effects between movers and 

non-movers, but also among movers of different types.  

 

III.6.3  Move Effect: OLS and 2SLS 

In addition to the class size effect, I also examine the effect of moving on test 

score.  I include dummy variables for each type of move in these regressions to 

allow a different intercept for each type.  The district moving dummy is the only 

one that significantly affects score.  The total move effect, when evaluated at the 

average level of class size, is -0.036, suggesting that district movers have scores that 

are 0.036 standard deviations below average.  Effects for the other two mover types 

are similar, although they are not precisely estimated and are not significantly 

different from zero.  These results, which suggest that students incur a substantial 

cost from moving, are consistent with much of the current literature.12  However, 

this relationship may be confounded by the fact that movers are systematically 

different from nonmovers, as seen in Table III.2.  A class size model that 

incorporates the moving decision will not only provide a clearer picture of the class 

size effect; it will also allow further exploration into the consequences of the 

moving choice. 

                                                 
12

 See Kain and O’Brien (1998).  
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III.6.4  Type-Specific Mover Model  

 Because students are able to choose which schools they attend through their 

choice of neighborhood, it is important to model the moving decision along with the 

class size effect.  I allow there to be three types of movers—students who move 

schools within their district (type 1), students who move schools across districts 

but remain in the same region (type 2), and students who move schools across 

regions (type 3).  While I hypothesize that type 1 and type 2 students are likely to 

be endogenous, while type 3 students are likely to be exogenous, I allow for the 

possibility that all types are endogenous.   

 I use maximum likelihood estimation to model both the class size effect and 

the moving decision as described in section III.4.1.  The results from the regression 

are reported in Tables III.7 and III.8 (note that these tables include results from a 

single estimation, rather than two separate estimations).  I first use the predicted 

class size instrument to obtain  from the first stage regression.  I then use  as 

the key explanatory variable of interest in the MLE estimation.   



63 

 

  

Table III.7 
Effect of class size on math score  
(MLE with move dummies) 

Class Size -0.0151 (1.029) 
 CS*MoveC -0.0138 (0.382) 
 CS*MoveD -0.1029 (2.867) *** 

CS*MoveR -0.0397 (0.684) 
 MoveC 0.1480 (0.930) 
 MoveD 0.3498 (2.149) ** 

MoveR 0.1433 (0.558) 
 Sigma 0.4630 (454.252) *** 

Lambda 1 -0.3927 (8.071) *** 
Lambda 2 0.1708 (2.317) ** 
Lambda 3 2.0249 (0.323) 

 Previous Score 0.4021 (225.237) *** 
Female -0.0149 (5.667) *** 
Asian 0.1528 (14.216) *** 
Black -0.0737 (14.486) *** 
Hispanic -0.0147 (4.110) *** 
Free Lunch -0.0554 (14.996) *** 
Gifted/Talented 0.2568 (33.052) *** 
Special Ed -0.1276 (7.366) *** 

ESL 0.0837 (8.390) *** 
Bilingual -0.0220 (2.667) *** 
Average Score 0.3331 (84.656) *** 
Variance Score 0.1461 (63.147) *** 
Charter -0.0307 (1.566) 

 Acc Rating -0.0076 (4.572) *** 

Constant 0.2070 (3.190) *** 

N=131,371 
Note: This regression also contains neighborhood 
characteristics, shown in Table III.8.  Absolute values of t-
statistics are in parentheses.  All non-binary variables are 
measured in standard deviations from the mean. 
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Table III.8 
Moving decision with neighborhood characteristics (from MLE)   

  Campus Movers District Movers Region Movers 

Student Characteristics 
         Previous Score -0.0374 (3.436) *** -0.1125 (8.898) *** 2.4743 (0.705) 

 Female 0.0135 (0.873) 
 

0.0096 (0.487) 
 

-0.5705 (0.869) 
 Asian -0.2336 (3.243) *** -0.2466 (2.895) *** -25.4315 (0.636) 
 Black 0.3215 (8.059) *** 0.3159 (9.455) *** 8.3019 (0.676) 
 Hispanic 0.1627 (5.646) *** 0.0150 (0.563) 

 
5.9089 (0.622) 

 Free Lunch 0.1969 (9.340) *** 0.0499 (2.549) *** -2.4853 (0.654) 
 GT -0.2904 (5.792) *** -0.6743 (9.191) *** -4.0099 (0.409) 
 Special Education 0.0067 (0.066) 

 
-0.6115 (4.148) *** -11.0801 (0.648) 

 ESL -0.1787 (3.124) *** -0.4554 (6.320) *** -9.8134 (0.572) 
 Bilingual -0.0442 (0.844) 

 
-0.4543 (6.017) *** -6.2099 (0.747) 

 School Characteristics: Current 
         Average House Value 0.1509 (4.752) *** -0.1338 (6.195) *** -1.9376 (0.613) 

 Income Per Household 0.2400 (6.271) *** 0.4597 (15.188) *** -7.5867 (0.665) 
 Median Age -0.0330 (0.671) 

 
0.1709 (4.183) *** 5.3571 (0.672) 

 Percent Black (Zip) 1.1191 (11.641) *** -0.5038 (2.217) ** -32.6034 (0.621) 
 Percent Hispanic (Zip) 0.5538 (0.791) 

 
-0.0529 (0.405) 

 
18.3096 (0.778) 

 Percent Asian (Zip) -0.4788 (0.325) 
 

-2.5051 (6.022) *** 74.7939 (0.652) 
 Percent Other (Zip) 1.8751 (1.023) 

 
-0.4275 (2.387) ** -69.7933 (0.680) 

 Average Score 0.0371 (1.393) 
 

-0.1279 (4.799) *** -0.7013 (1.063) 
 Variance Score -0.0126 (0.868) 

 
-0.0744 (4.876) *** -0.3447 (0.348) 

 Accountability Rating 0.0043 (0.430) 
 

0.0097 (0.921) 
 

-0.6927 (0.509) 
 Class Size 0.1363 (2.876) *** 0.0029 (0.034) 

 
4.1436 (0.687) 
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Table III.8 (Continued) 

 
Campus Movers District Movers Region Movers 

School Characteristics: Previous 
        Average House Value -0.1854 (5.921) *** 0.1392 (7.008) *** -2.9800 (0.630) 

 Income Per Household -0.1386 (3.207) *** -0.5607 (19.917) *** 4.9065 (0.624) 
 Median Age -0.5067 (11.100) *** -0.4309 (10.525) *** -9.6879 (0.644) 
 Percent Black (Zip) -1.1290 (9.002) *** 0.1511 (0.848) 

 
3.3603 (0.383) 

 Percent Hispanic (Zip) -0.7650 (1.236) 
 

-0.6656 (3.450) *** -27.7386 (0.701) 
 Percent Asian (Zip) -0.4512 (0.290) 

 
2.6119 (8.577) *** -30.6996 (0.507) 

 Percent Other (Zip) -2.3662 (1.499) 
 

0.5550 (1.216) 
 

68.5499 (0.627) 
 Average Score -0.0348 (1.791) * -0.1396 (5.641) *** 0.0472 (0.028) 
 Variance Score 0.0185 (1.346) 

 
-0.0155 (1.065) 

 
-1.4400 (0.966) 

 Accountability Rating -0.1183 (11.950) *** -0.0197 (1.936) 
 

1.4152 (0.765) 
 Class Size 0.0222 (2.979) *** -0.0349 (4.897) *** 1.4287 (0.653)   

N=131,371                   
Note: These results are from the MLE estimation reported in Table III.7.  Absolute values of t-statistics are in parentheses.  All non-binary variables 
are measured in standard deviations. 
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III.6.4.1  Class Size Effect in the Type-Specific Model 

Table III.7 shows the heterogeneity in the effect of smaller classes that exists 

across different types of movers.  Like the 2SLS results, the MLE suggests that the 

only students for whom smaller classes are effective are district movers.  A one 

standard deviation decrease in class size increases expected score by 0.103 

standard deviations. 13 While the effects for nonmovers, campus movers, and 

district movers are all statistically insignificant, it is useful to examine the point 

estimates.  They are all negative and fairly small, suggesting a negative overall 

effect and slight additional effects for the other two mover types.   However, even if 

these effects were significant, they would still be dwarfed by the much larger effect 

of the district movers. 

This large class size effect for district movers is robust to specification; it is 

present in both the 2SLS and the MLE.  A natural question is why this should be 

true.  What is different about district movers that makes them any more sensitive 

to smaller classes than other types of students?  One possible explanation lies in the 

composition of these students.  Other research suggests that students along 

different points of the score distribution respond differently to school inputs, such 

as class size.  Previous work shows that students at the lowest end of the 

distribution gain the most from a decrease in class size.  If district movers are 

composed more heavily of students from the lower end of the distribution, then a 

greater response to class size should be expected.   

                                                 
13 Note that all variables (excluding dummy variables) are measured in deviations from the mean. 
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 To examine this type of distribution, I divide students into ten deciles of 

equal size based on their previous year score.  Figure III.3 shows the percent of 

each group (nonmovers, campus movers, district movers, and region movers) 

composed of students from the bottom three deciles.  This graph suggests that 

district movers include a disproportionate amount of these bottom decile students.  

For example, while 10.6 percent of the total population is in the first decile, 16.7 

percent of district movers are in this group.  (Only 11.9 percent of region movers 

and 14.2 percent of campus movers are in the first decile.)   

 

 

 

Figure III.3.  Percent of students in bottom deciles. 
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Table III.9  

Effect of class size on math score with decile groups (2SLS) 

  Without Groups With Groups 

Class Size -0.0125 -1.13 
 

0.1159 (5.54) *** 
CS*MoveC -0.0003 -0.01 

 
0.0004 (0.01) 

 CS*MoveD -0.1277 -3.27 *** -0.0878 (2.35) ** 
CS*MoveR -0.0456 -0.87 

 
-0.0442 (0.85) 

 CS*Group1 
   

-0.1838 (10.77) *** 
CS*Group2 

   
-0.1605 (9.29) *** 

CS*Group3 
   

-0.1414 (8.12) *** 

CS*Group4 
   

-0.1267 (7.22) *** 
CS*Group5 

   
-0.1148 (6.51) *** 

CS*Group6 
   

-0.1040 (5.84) *** 
CS*Group7 

   
-0.0943 (5.26) *** 

CS*Group8 
   

-0.0976 (5.37) *** 
CS*Group9 

   
-0.0871 (4.75) *** 

CS*Group10 
   

-0.1081 (5.70) *** 
MoveC -0.0215 (0.15) 

 
-0.0206 (0.15) 

 MoveD 0.5020 (2.90) *** 0.3297 (1.99) ** 
MoveR 0.1618 (0.70) 

 
0.1581 (0.69) 

 Prev Score 0.4019 (236.69) *** 0.3197 (37.28) *** 
Female -0.0149 (5.82) *** -0.0044 (1.79) * 

Asian 0.1521 (14.41) *** 0.1487 (14.60) *** 
Black -0.0705 (14.85) *** -0.0436 (9.47) *** 
Hispanic -0.0121 (3.52) *** 0.0014 (0.41) 

 Free Lunch -0.0533 (15.96) *** -0.0451 (13.94) *** 
GT 0.2559 (34.19) *** 0.2560 (35.32) *** 
Sp Ed -0.1261 (7.48) *** -0.1087 (6.67) *** 
ESL 0.0842 (8.61) *** -0.0172 (1.74) * 
Bilingual -0.0203 (2.51) *** -0.0204 (2.56) *** 
Avg Score 0.3325 (89.25) *** 0.3097 (85.67) *** 
Var Score 0.1447 (63.87) *** 0.1359 (61.96) *** 
Charter -0.0068 (0.34) 

 
-0.0133 (0.69) 

 Acc Rating -0.0073 (4.61) *** -0.0100 (6.50) *** 

R-squared 0.4932 
  

0.5322 
  Cragg-Donald 1066.57 

  
300.033 

  N=131,371             
Note:  Absolute values of t-statistics are in parentheses.  All non-binary 
variables are measured in standard deviations from the mean. 
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Table III.9 presents the 2SLS result from Table III.6, compared to the same 

regression with interaction effects between class size and the decile groups.  An 

examination of the group coefficients confirms that students in the lowest deciles 

do gain the most from smaller classes.  In addition, the class size coefficient for 

district movers has decreased in magnitude from -0.1277 to -0.0878, a reduction of 

almost one third.  This suggests that a substantial portion of the class size effect for 

district movers can be accounted for by the composition effect, although there is 

clearly still a separate district effect.  

 

III.6.4.2  Moving Effect in the Type-Specific Model 

The chief advantage of the type-specific model I propose is that it allows the 

moving decision to be estimated simultaneously with the class size effect while 

accounting for different types of moves.  I categorize students into endogenous and 

exogenous movers based on the types of transfers they make (campus moves, 

district moves, or region moves).  Recall that the original hypothesis is that type 1 

and type 2 movers should be endogenous, while type 3 movers should be 

exogenous.   While I make this assumption, I allow for the possibility that all types 

are endogenous.   

Table III.7 reports estimates for 𝜆1, 𝜆2 , and 𝜆3, which show how the errors of 

the score equation and the moving equation are correlated.  I find that estimate for 

𝜆1 is significant and negative, indicating endogeneity for type 1 movers.  This 

estimate suggests that students who are likely to mover campuses perform poorer 
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than expected on the standardized math test.  The estimate for 𝜆2 is significant and 

positive, suggesting that students who are likely to be district movers perform 

better than expected on the standardized test.  This is consistent with the findings 

in Hanushek et al. (2004), which suggest that district movers are Tiebout movers.  I 

find that 𝜆3 is not significantly different from zero, which suggests that type 3 

movers are likely to be exogenous.  This makes sense intuitively; families who move 

regions across the state of Texas are more likely to be motivated by some outside 

factor like a change in job or family structure, rather than because of schooling. 

 

 

Class Size -0.0125 (1.13) -0.0151 (1.03)

CS*MoveC -0.0003 (0.01) -0.0138 (0.38)

CS*MoveD -0.1277 (3.27) *** -0.1029 (2.87) *** 

CS*MoveR -0.0456 (0.87) -0.0397 (0.68)

MoveC -0.0215 (0.15) 0.148 (0.93)

MoveD 0.502 (2.90) *** 0.3498 (2.15) ** 

MoveR 0.1618 (0.70) 0.1433 (0.56)

MoveC -0.0228 0.0867

MoveD -0.0650 -0.1071

Comparison of the Move Effect

Overall Move Effect Evaluated at Average Class Size

Table III.10

2SLS MLE
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The endogeneity of campus and district movers causes the estimates of the 

moving effect to be biased in the previous OLS and 2SLS regressions.  Table III.10 

compares the overall moving effect as estimated in the 2SLS and the MLE models 

and shows substantial bias in the 2SLS results.  Consider first the district movers.  

Using the 2SLS estimates, the overall moving effect when evaluated at the average 

value of class size14 is -0.065.  Hanushek et al. (2004) find a similar negative effect 

of district move on current year score.15  However, simply controlling for students 

who move may yield a biased result.  The results from the MLE suggest that district 

movers are endogenous; students who are more likely to be district movers 

perform better than expected on the math exam.  Because of this endogeneity, the 

moving coefficient of -0.065 is overestimated compared to the MLE, which is -

0.1071.   

The opposite result occurs for the campus movers, although the overall 

effects in both the OLS/2SLS and MLE are not significantly different from zero.  

Campus movers are endogenous and negative; students who are more likely to be 

campus movers perform worse than expected on the math exam.  This endogeneity 

causes the overall moving effect in the 2SLS (-0.0228) to be underestimated 

relative to the MLE (0.0867), although both estimates are statistically insignificant. 

There is not a large difference in the results for the regional movers, whose 

moving decisions seem to be exogenous.  Both estimates are insignificant, but 

                                                 
14

 Class size here is measured in standard deviations.  The average value is 4.44. 
15

 Hanushek et al. (2004) find that district movers have scores that are 0.095 standard deviations 
lower than nonmovers. 
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similar in magnitude.  The 2SLS point estimate of moving is -0.0407, compared with 

an estimate of -0.033 in the MLE. 

 

III.6.4.3  Student and Neighborhood Characteristics in the Moving Decision 

Table III.8 includes the student and neighborhood characteristics from the 

moving decision, which I model simultaneously with the class size effect.  (Table 

III.7 and Table III.8 report results from the same estimation.)  A different moving 

equation is estimated for each of the three moving types.  In addition to student 

characteristics, the explanatory variables include the neighborhood characteristics 

described in section III.5.4 for both the current campus and the previous campus, as 

well as school characteristics (average score, accountability rating, and class size) 

from both campuses.    Column 1 reports results for campus movers.  Students who 

switch schools within their own districts are more likely to be low scoring, low 

income minority students.  District movers are similar; they are likely to be black, 

to qualify for free lunch, and to have low previous scores.   None of the 

characteristics are strong predictors for region movers, which provides further 

evidence that those students are exogenous movers.   

 

III.7  Conclusions and Future Work 

 Although movers constitute a large proportion of the student population and 

although the class size effect is heterogeneous in its impact on movers and 

nonmovers, previous class size studies have not carefully modeled the moving 
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decision simultaneously with the class size effect.  As a result, simple OLS models 

may result in biased estimates of the moving effect.  In this study, I propose a two-

type model that estimates students’ moving decisions as well as the class size effect.  

I assume that students may be exogenous or endogenous movers and allow the 

class size effect to vary across movers of different types.   

Using student-level test score and moving data from Texas, I identify three 

groups of movers—campus movers, district movers, and region movers.  I find that 

while the class size effect is small and insignificant on average, it is particularly 

important for district movers who switch to schools in another district but remain 

in the same region.  At least part of this explanation lies in the fact that district 

movers are composed more heavily of lower scoring students, who tend to respond 

more to smaller classes.  The maximum likelihood model which estimates the 

moving decision reveals that campus and district movers are likely to be 

endogenous, while students who move across regions are exogenous movers.  Most 

important, the model reveals that the endogeneity of the moving decision causes 

OLS models that simply control for moving to be biased.  The results suggest that 

the move effect for campus movers is typically underestimated in the OLS, while 

the effect is overestimated for district movers.    

 Creating a careful model of the moving decision is necessary not only in 

understanding school input effects, such as class size, but also in understanding the 

effect of moving itself on students’ academic performance.  This paper provides a 

first step in creating a model that incorporates both class size and the moving 
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decision.  Future work will model the endogeneity of movers in a more flexible way 

by allowing type of move (campus, district, or region) to serve as one of several 

identifying factors to determine the probability of endogeneity. 
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CHAPTER IV 

DOES SORTING STUDENTS IMPROVE SCORES?  

AN ANALYSIS OF CLASS SIZE AND CLASS COMPOSITION 

 

IV.1  Introduction 
 
 While several studies have found that smaller classes are an effective tool 

for improving student achievement16 and many states have implemented class size 

reduction legislation, a related but lesser-studied issue is how students are actually 

divided into classes.  Schools may use several different strategies to allocate 

students among different classrooms.  Some schools may choose to sort students by 

ability level and create classes of relatively homogeneous students.  Alternatively, 

schools may choose to sort students with varying abilities evenly across classes.  

Other schools may try to match students and teachers, while taking into account 

individual students’ learning styles.  In some situations, variables such as parents’ 

preferences or students’ behavior records may play a part in the class composition 

process.   

Many of these allocation strategies will more effective when schools have 

more classes into which they can divide students.  This is directly related to 

schools’ class size policies.  Holding enrollment constant, schools that choose to 

offer smaller classes must also offer more classes.  This may increase the 

                                                 
16

 See Hanushek (1997), Krueger (2003), and Mishel and Rothstein (2002) for a general analysis of 
the class size literature. 
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effectiveness of schools’ sorting strategies, if they choose to track students into 

groups based on ability or previous testing scores.  Therefore, what some studies 

have classified as a class size effect may be confounded by schools’ abilities to sort 

students into classes. 

The purpose of this study is twofold.  First, I examine the class size effect 

across different types of schools—some that appear to sort students into more 

homogeneous groups, and some who do not.  Using a unique dataset from Dallas 

Independent School District that allows a student to be tracked not only to his 

school and grade, but also to his actual classroom, I can precisely measure both 

actual class size and the student dispersion within a class.  I attempt to disentangle 

the class size effect from the sorting effect by constructing several sorting indices 

which measure the dispersion of students based on observable characteristics, such 

as previous score and Gifted and Talented (G/T) classification.  Second, I explore 

the basic impact of sorting on student performance.  I create a model that analyzes 

the effect of sorting for several different types of students in order to determine if 

sorting is beneficial, and, if so, for whom.  Using a different grade’s sorting index as 

an instrument for the sorting index within a given school-grade, I find that a higher 

degree of sorting significantly improves scores for all types of students. 
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IV.2  Empirical Model 
 
IV.2.1  Class Size and Sorting 
 
 With equal enrollments, a school that divides its students into smaller 

classes necessarily has more classes than a school that has larger classes.  Because 

schools that sort students into different group may be able to sort more efficiently 

with smaller classes, it is possible that what is typically identified as a class size 

effect is actually a sorting effect.  Consider the following equation: 

𝑠𝑖𝑗𝑡 = 𝜌𝑠𝑖𝑗𝑡 −1 + 𝑋𝑖𝑗𝑡 𝛽 + 𝜂𝑐𝑠𝑗𝑡 + 𝜀𝑖𝑗𝑡 , (IV.1) 

where 𝑠𝑖𝑗𝑡  represents the test score of student i in class j in time t, 𝑠𝑖𝑗𝑡 −1 represents 

the same student’s previous year score, 𝑐𝑠𝑗𝑡  represents the number of students in 

class j, and 𝑋𝑖𝑗𝑡  is a vector of student-level controls.  In this equation, the degree of 

sorting within class j is unobserved.  An endogeneity problem arises if sorting and 

class size are correlated and sorting affects student performance.  If an increased 

level of sorting, or the creation of more homogeneous classes, improves students’ 

test scores, and if class size and sorting are positively correlated, then the class size 

coefficient in equation (IV.1) will be biased downward.  Alternatively, if more 

heterogeneous classes benefit students, then the class size coefficient will be biased 

upward.    

 To control for the degree of sorting in a specific class, I consider the 

following equation: 

𝑠𝑖𝑗𝑡 = 𝜌𝑠𝑖𝑗𝑡 −1 + 𝑋𝑖𝑗𝑡 𝛽 + 𝜂𝑐𝑠𝑗𝑡 + 𝜙𝛾𝑗𝑡 + 𝜀𝑖𝑗𝑡 , (IV.2) 
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where 𝛾𝑗𝑡  is a sorting index for a class j, describing the dispersion of the students in 

the classroom based on observable characteristics, such as score.  In addition to 

disentangling the effect of class size and sorting, I am also interested in the sorting 

effect on its own.  In order to examine how sorting may affect different types of 

students, I allow 𝜙 to vary by students’ observable characteristics.  I used several 

different sorting indices in the analysis, each of which is described in the following 

section. 

 
IV.2.2  A Sorting Index 
 

A school’s decision to sort students, or to track them into different groups, 

may have different implications for different groups of students.  For example, 

sorting high-scoring students into one class and low-scoring students into another 

class may allow the classes to move at different paces, which may benefit both 

groups of students.  The teacher in the low-scoring class may be able to focus on 

foundational skills necessary to the improvement the students, while the teacher in 

the high-scoring class may have the opportunity to move on to new, more 

challenging material without the fear of losing the understanding of the class.   

However, this type of sorting may not necessarily benefit both groups.  An 

alternative hypothesis is that by creating evenly distributed groups, students with 

more understanding of the material may be able to help those with less 

understanding.  In this situation, low-scoring students might benefit without 



79 
 

  

causing a cost for high-scoring students.  (It may even be plausible that this 

situation could benefit both high scorers and low scorers.) 

 The same possibilities hold for sorting based on G/T classification.  Some 

schools may group all G/T students into a single class to allow them to move at 

their own pace, while other schools may divide them into several classes with other 

non-G/T students.17  Having G/T students included in a regular classroom could 

potentially help or hurt non-G/T students in the same ways that high-scoring 

students could affect low-scoring students. 

 To empirically determine the effects of both types of sorting, I first construct 

a measure defining how “sorted” a class is.  I define the following index for each 

class: 

𝛾𝑗 =  
𝜎𝑗−𝜎𝑘

𝜎𝑘
 , (IV.3) 

where 𝜎𝑗  is the standard deviation of the scores within class j, and 𝜎𝑘  is the 

standard deviation of the scores within school k, of which class j is a member.  In 

the extreme case in which a class is completely sorted, every student in the class 

has the same prior year score, so 𝜎𝑗  is equal to zero.  The parameter 𝜎𝑘  is a measure 

of the variation in the school as a whole.  As  𝜎𝑗  approaches zero, 𝛾𝑗  approaches 1.   

In the opposite case, in which students are not sorted at all, there should be 

no difference in the dispersion of scores within class j and the dispersion of scores 

                                                 
17

 Even if G/T students are divided into classrooms with many non-G/T students, they still may be 
“pulled out” for several hours during the school day or during the week.  Unfortunately, the Dallas 
ISD data contains only one classroom per student, so it is not possible to tell if the students 
participate in this type of program.  
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within school k.  In this situation, 𝜎𝑗  is equal to 𝜎𝑘  and 𝛾𝑗  is equal to zero.  Therefore, 

𝛾𝑗 𝜖[0, 1] measures the dispersion of scores within a given class while controlling for 

overall potential dispersion at the school level.   

I define a similar measure to gauge the measure of G/T sorting within a 

class.  I construct the following index: 

𝛾𝑗
𝐺𝑇 =  

𝜎𝑗
𝐺𝑇 − 𝜎𝑘

𝐺𝑇

𝜎𝑘
𝐺𝑇  , (IV.4) 

where 𝜎𝑗
𝐺𝑇  is the standard deviation within class j of the binary variable indicating 

G/T status, and 𝜎𝑘
𝐺𝑇  is the standard deviation of the same variable within school k.  

In the extreme case in which all the G/T students are placed into the same class, 

𝜎𝑗
𝐺𝑇  is equal to zero, and 𝛾𝑗

𝐺𝑇  becomes 1.   

 Alternatively, if G/T students are divided evenly among all classes, then the 

standard deviation of the G/T variable in each class will be equivalent to the 

standard deviation of the G/T variable in the school.  In this case,  𝛾𝑗
𝐺𝑇  becomes 

zero.  Therefore, 𝛾𝑗
𝐺𝑇𝜖[0, 1], where a higher number indicates more sorting. 

 
IV.2.3  Endogeneity of the Sorting Index 
 
 It is essential to consider not only the effect of sorting on students’ scores 

but also why they are sorted into their given classes at the outset.  Although the 

dataset allows identification of characteristics such as previous score and G/T 

status, teachers and principals observe many other variables which may be used to 

divide students into different classrooms.  Principals may attempt to “match” 
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certain students with certain teachers, or they may have policies whereby parents 

can request a certain teacher for their children.   

Unobserved variables like behavior may also play an important role in the 

classroom assignment process.  For example, if a principal observes that several 

students have had behavior problems in the past, he may try to divide those 

students evenly across the classes within a grade, or he may assign them to a 

particular teacher who has had success with behavioral problems in the past.  In 

this case, behavior is an unobserved variable that affects a school’s sorting index.  

However, a student’s behavior may also affect his test score, causing an 

endogeneity problem.   

In order to deal with this endogeneity, I create an instrument for the sorting 

index using other another grade’s sorting index.  If the administration at school k 

uses certain guidelines in assigning students to classes in grade g, it is likely that 

those guidelines are also used for other grades in school k.  Therefore, the sorting 

indices for classes in grade g should be correlated with the sorting indices for grade 

g-1.  However, there is no reason to believe that the way in which classes are sorted 

in grade g-1 should impact the scores of students in grade g.  Therefore, sorting 

indices in grade g-1 should provide valid instruments for sorting indices in grade g. 

The problem that arises when trying to match indices from individual 

classes across grades is that there is no way to map the classes from third grade to 

specific fourth grade classes.  Instead, I create a grade-specific sorting measure that 

can be used for all classes within a grade.  I define the following two parameters: 
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𝛼1𝑘 =  
1

𝑁
  𝑠𝑖𝑗𝑘 − 𝑠𝑘  

2
 (IV.5) 

and 

𝛼2𝑘 =  
1

𝐽
 

1

𝑁𝑗
  𝑠𝑖𝑗𝑘 − 𝑠𝑗  

2
 (IV.6) 

where 𝑠𝑘  is the score average in school k,  𝑠𝑗  is the score average in school j, 𝑁𝑗  

represents the total number of students in class j, N represents the total number of 

students in school k, and J represents the total number of classes in school k.  The 

parameter 𝛼1𝑘  is a measure of score dispersion in school k, while the parameter 𝛼2𝑘  

is a measure of score dispersion in classes j=1,…,J of school k.  I define the following 

variable as the sorting index for school k: 

𝑠𝑜𝑟𝑡𝑘 =
𝛼1𝑘

𝛼2𝑘
. (IV.7) 

Higher values of 𝑠𝑜𝑟𝑡𝑘  indicate less dispersion of scores within classes relative to 

score dispersion with the school, which means more sorting.  Lower values of 𝑠𝑜𝑟𝑡𝑘  

indicate more dispersion of scores within classes, which means less sorting.  In the 

empirical estimation, I use 𝑠𝑜𝑟𝑡𝑘  for the third grade to instrument for 𝑠𝑜𝑟𝑡𝑘  for the 

fourth grade. 

  
IV.3  TAKS Data from Dallas ISD 
 
 One drawback to many datasets used to explore the class size effect is that 

students cannot typically be linked to their actual classes.  For example, the Texas 

Education Agency (TEA) collects student-level testing data from the Texas 

Assessment of Knowledge and Skills (TAKS) for all public school students starting 
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in third grade.  However, while students’ schools and grade levels are available in 

the dataset, their specific classes are not.  Therefore, any measure of class size must 

be an average across all grades within a given school.  While class size effects may 

be identified from across-school variation, the structure of the data leaves little 

room to explore within-school class composition effects. 

 While students are not linked to specific classes in the statewide dataset, 

several school districts do collect student-level data that may be linked to a class 

variable.  I employ a unique dataset from Dallas Independent School District that 

contains both class and grade identifying information.  The dataset includes 

student-level math TAKS scores for two school years.  I examine all third grade 

students in the 2003-2004 school year who become fourth graders in 2004-2005, a 

total of 9,325 children from 138 different schools in Dallas ISD.  In addition to 

achievement scores for both years, the dataset contains race and gender variables 

and identifiers for students qualifying for programs such as free or reduced lunch, 

Gifted and Talented, Special Education, and Limited English Proficiency.  Because 

the data is available at the class level, I construct actual class size instead of using 

grade-level averages.  Summary statistics are shown in Table IV.1.   
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Table IV.1 

Summary statistics for Dallas ISD       

  Obs Mean St Dev Min Max 

Scale Score 9325 2191.02 192.84 1280 2684 

Previous Score 9325 2217.07 177.61 1708 2697 

Class Size 9325 19.45 3.08 3 27 

Black 9325 0.2894 0.4535 0 1 

Hispanic 9325 0.6446 0.4787 0 1 

Asian 9325 0.0119 0.1085 0 1 

Gifted/Talented 9325 0.2479 0.4318 0 1 

Free Lunch 9325 0.8571 0.3500 0 1 

Special Ed 9325 0.0432 0.2034 0 1 

Enrollment 9325 105.28 37.55 9 181 

Number of Classes 9325 5.38 1.87 1 12 

Gamma (Score) 9322 0.1437 0.1187 0 0.7579 

Gamma (G/T) 9264 0.1879 0.2256 0 1 
 

  

 

Texas reports students’ scores in two ways.  The first score is a student’s 

raw score, which corresponds to the number of questions he answered correctly on 

the exam.  For the 2004-2005 exam, the maximum raw score is 42 points.  The 

second score measure is a student’s scale score, which is scaled using the Rasch 

partial credit method to control for the difficulty of the exam across different 

administrations of the test.  Scale scores are used to compare two different cohorts’ 

scores.  For example, scale scores could be used to compare fourth graders in 2004 

with the following group of fourth graders, who took the exam in 2005.   
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Although the scores allow for direct comparison in this way, they are not 

meant to be vertically linked.  That is, a third grader’s 2004 score should not be 

directly compared to his fourth grade 2005 score in order to gauge improvement.  

Because that is precisely the comparison I want to make, I convert the scale scores 

into z scores, by subtracting out the mean score and dividing by the standard 

deviation in a given year.  A student’s z score is given by 

𝑠𝑖𝑡 =
𝑠𝑐𝑎𝑙𝑒𝑖𝑡 − 𝜇𝑡

ςt
, (IV.8) 

where 𝑠𝑐𝑎𝑙𝑒𝑖𝑡  is student i’s scale score in period t, and 𝜇𝑡  and ςt  represent the mean 

and standard deviation of the scale scores.  A student’s score is now a 

representation of where he lies along the distribution of scores.  I generate z scores 

for both the current year (2004-2005) and the previous year (2003-2004). 

  

IV.4  Empirical Results 
 
IV.4.1  Score Sorting 
 
 Before examining any effects of sorting or class size, it is first important to 

determine whether any schools appear to sort students based on observable 

characteristics and how prevalent this type of sorting is.  I explore potential sorting 

based on two observable characteristics: previous TAKS math score and a student’s 

Gifted/Talented status.  To investigate sorting based on students’ previous scores, I 

create dummy variables for each class and compare the mean scores by running the 

following regression: 
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𝑠𝑖𝑗𝑡 −1 = 𝛽1 +  𝛽𝑗

𝐽

𝑗 =2

𝐷𝑗 + 𝜀𝑖𝑗 , (IV.9) 

where 𝑠𝑖𝑗𝑡 −1  is student i’s test score in the previous year and 𝐷𝑗  is a dummy variable 

for class j.  Therefore, 𝛽1 gives the mean score for the first class and 𝛽2, 𝛽3, … , 𝛽𝐽  

show the differences in score relative to the first class.  If schools divide their 

students into classes randomly, then there should be no difference in the previous 

year score means for any of the classes.  That is, 𝛽2, 𝛽3, … , 𝛽𝐽  should not be 

significantly different from zero or from each other. 

Alternatively, if schools do divide students into classes based on their 

previous year scores, then there should be significant differences in the average 

scores.  Consider the case in which a school has three classes within a single grade.  

The administration may choose to sort students into three groups—low-scoring 

students who need additional math assistance to improve their grades, average-

scoring students who are achieving at grade-level, and high-scoring students who 

are ready to move on to more challenging material.  In this case, 𝛽2 and 𝛽3 would be 

significantly different from zero, as well as different from each other.   

I run regression (?) for each of the 138 schools in the district to determine 

which schools potentially sort by previous year score.  The results are reported in 

Tables B1.1-B1.14 of Appendix B.  Consider, for example, the results for school 186, 

which are given in Table B.1.7.  This school has four classes of fourth graders—two 

with lower average math scores and two with higher average math scores.  The 

average score for class 1, given by the constant, is 26.1 (the maximum raw score is 
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42 points).  The coefficient for class 2 is not significantly different from zero, and 

the point estimate is only 1.2 points, suggesting that there is no substantial score 

difference between the two classes.  However, the estimates for class 3 and 4 are 

both statistically significant and indicate a 4.9 point and 6.1 point difference in 

score from class 1.   At least one class dummy variable is significant in 44 of the 138 

schools (about 32 percent of schools).   

For the other 94 schools, there is no significant difference between the 

average previous scores.  School 109’s results, reported in Table B1.1, suggest that 

there is no statistical difference in the scores of the four classes.  The average score 

for class 1 is 28.8, and the score differences for the other classes range from .09 

points to 2.3 points.  None of these differences is statistically different from zero.  It 

is important to note that even if score averages are not significantly different, 

schools may still be considering score in a strategic division of students into classes.  

Some schools may be purposefully allocating students of different abilities equally 

among classes.  If administrators believe that an equal division of student ability is 

beneficial to some or all students, then there should be no significant score average 

score difference between classes, even if the school is acting strategically.   

 
IV.4.2  Gifted/Talented Sorting 
 
 In addition to sorting by previous test score, schools may also sort by other 

observable characteristics, such as whether a student qualifies for a Gifted and 

Talented (G/T) program.  Some schools may try to group all of their G/T students 
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together in a single class, while others may try to disperse them evenly among a 

number of classes.  In order to determine whether being in a certain class predicts 

the likelihood that a student qualifies as G/T, I run the following probit regression: 

𝐺𝑇𝑖𝑗 = 𝛽1 +  𝛽𝑗

𝐽

𝑗 =2

𝐷𝑗 + 𝜀𝑖𝑗 , (IV.10) 

where 𝐺𝑇𝑖𝑗  is a dummy variable equal to one if a student qualifies for a G/T 

program.  The right hand side of this equation is analogous to equation (IV.9), 

where 𝐷𝑗  is a dummy variable for class j.   

Consider the example of a school with three classes.  In an extreme case, the 

school may create a single class for only G/T students, in which case, that class 

dummy would predict G/T status with certainty.  However, even if there are some 

G/T students in all classes, sorting may still exist if they are grouped allocated more 

heavily in some classes.  

It should be noted that schools may face constraints related to which 

teachers are certified to teach G/T students.  For example, if a principal’s strategy 

included dispersing G/T students equally among all the classes within a grade, he 

would be forced to deviate from that strategy if some of the fourth grade teachers 

were not certified.  Ideally, teacher characteristics would be included in the analysis 

to reveal potential sorting constraints.  However, because the data allows linkage to 

a specific class but not to a teacher, this is not possible. 

The results from this analysis are reported in Tables B2.1-B2.14 of Appendix 

B.  Each column shows the results from an individual school.  Almost all of the 
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schools (134 of 138) serve at least one G/T student.  (Of the four schools for which 

there is no variation in G/T status, three have no G/T students, and one is 

composed only of G/T students.)  As in the previous section, I find that many 

schools appear to sort based on G/T status and many schools do not.  School 108, 

for example, appears to sort G/T students into different classes.  The results for this 

school are reported in Table B2.1.  The school has three classes of fourth graders, 

one of which does not contain any G/T students.  Being enrolled in class 3 reduces 

the likelihood that a child is classified as a G/T student by a statistically significant 

32 percent, when compared to the base outcome (class 1), suggesting that this 

school groups its G/T students more heavily into class 1.   

Other schools appear to divide their G/T students more evenly across 

classes.  School 163 (results reported in Table B2.6) also has three classes of fourth 

graders, each of which contain G/T students.  None of the class dummy variables is 

significant for this school, indicating that no class assignment significantly 

increases the likelihood that a student is classified as G/T over the base outcome.  

Again, lack of significance in this situation does not necessarily mean that schools 

do not consider G/T status when assigning students to classes.  Schools may be 

purposefully dividing students evenly across classes.   

Of the 134 schools that serve G/T students, 40 have at least one class 

dummy that significantly changes the likelihood of a student’s G/T classification.  In 

addition, 19 schools have at least one class with no G/T students at all.  (These 

classes are dropped from the regressions because they perfectly predict failure of 
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the dependent variable.)  When including these schools, the percentage of schools 

sorting by G/T status is about 44 percent.  

Figure IV.1 shows a summary of the results from sections IV.4.1 and IV.4.2.  

Of the 138 schools, 44 (about 32 percent of all schools) sort by previous score and 

59 (about 43 percent of all schools) sort by G/T status.  There are 68 schools that 

do not sort using either characteristic (or choose to create evenly distributed 

classes) and 33 schools that sort using both G/T status and previous score.   

 

 

 

Figure IV.1  Summary of sorting status by sorting type, based on regressions from 
Appendices B1 and B2. 

 

 

 

IV.4.3  Class Size Effects and Sorting 

 Because of the potential relationship between class size and sorting, I 

estimate the class size effect separately for “sorting schools” and “non-sorting 

schools.”  I define two different types of sorting schools.  A school is a score sorting 

school if it is as such in section IV.5.1.  This requires that at least one of its classes 

No Yes 
No 68 schools 11 schools Total G/T Non-Sort: 79 schools 

Yes 26 schools 33 schools Total G/T Sort: 59 schools 

Total Sc Non-Sort: Total Sc Sort: 
94 schools 44 schools 

G/T  
Sorting     

Score Sorting 



91 
 

  

has a statistically different previous score average than another.  A school is a G/T 

sorting school if it is identified as such in section IV.5.2, which requires that at least 

one of its classes is a significant predictor of a student’s G/T status.   

 

Table IV.2 

Class size effect on math score (all schools) 

Class size -0.00543 

 
(-1.300) 

Previous score 0.583*** 

 
(68.62) 

Black -0.405*** 

 
(-11.09) 

Hispanic -0.221*** 

 
(-6.285) 

Asian 0.0391 

 
(0.521) 

G/T 0.463*** 

 
(24.57) 

Free lunch -0.0722*** 

 
(-3.213) 

Special Ed -0.206*** 

 
(-5.631) 

Enroll 0.00158** 

 
(2.133) 

Number Classes -0.0466*** 

  (-3.240) 

Obs 9325 

R-sq 0.494 
 

  

Table IV.2 shows the baseline results for all schools.  I estimate the effect of 

class size on math score, controlling for student and school characteristics.  As 
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explained in section IV.4, the dependent variable in these estimations is a z score 

constructed from students’ scale scores from the math TAKS test.  The class size 

coefficient is negative, but small and not statistically significant.  The point estimate 

indicates that a one student class size reduction increases predicted score by .005 

standard deviations.   

Table IV.3 divides the sample into schools that use G/T sorting and schools 

that do not.  I estimate the same regression for both samples and find different class 

size effects for each group.  While the class size effect for non-sorting schools is 

small and completely insignificant, the effect for schools that divide students based 

on G/T status is larger and magnitude and statistically significant.  For sorting 

schools, a one student class size reduction is associated with a predicted score 

increase of .013 standard deviations.   
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Table IV.3 

Class size effect on math score by sorting type (G/T) 

  
Non-Sorting 

Schools Sorting Schools 

Class size 0.00401 -0.0132** 

 
(0.623) (-2.416) 

Previous score 0.572*** 0.598*** 

 
(46.62) (50.73) 

Black -0.453*** -0.334*** 

 
(-8.874) (-6.234) 

Hispanic -0.236*** -0.183*** 

 
(-4.900) (-3.504) 

Asian 0.0712 0.0267 

 
(0.669) (0.251) 

G/T 0.454*** 0.471*** 

 
(17.15) (17.59) 

Free lunch -0.0985*** -0.0381 

 
(-2.938) (-1.262) 

Special Ed -0.205*** -0.202*** 

 
(-3.863) (-4.023) 

Enroll 0.000593 0.00210** 

 
(0.482) (2.281) 

Number Classes -0.0273 -0.0647*** 

  (-1.169) (-3.507) 

Obs 4843 4482 

R-sq 0.464 0.530 
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Table IV.4 

Effect of class size on math score with sorting index 

  Full Sample Score Sorters Only G/T Sorters Only 

  (1) (2) (3) (4) (5) (6) (7) 

Gamma (Sc Sort) 
 

-0.255*** 
  

-0.389*** 
  

  
(-4.038) 

  
(-4.012) 

  Gamma (G/T Sort) 
  

-0.0358 
   

-0.108*** 

   
(-1.072) 

   
(-2.922) 

Class Size -0.00543 -0.00782* -0.00628 0.00738 0.00295 -0.0132** -0.0157*** 

 
(-1.300) (-1.846) (-1.480) (1.095) (0.430) (-2.416) (-2.850) 

Previous Score 0.583*** 0.582*** 0.584*** 0.607*** 0.608*** 0.598*** 0.597*** 

 
(68.62) (68.54) (68.51) (44.54) (44.66) (50.73) (50.64) 

Black -0.405*** -0.408*** -0.407*** -0.463*** -0.459*** -0.334*** -0.335*** 

 
(-11.09) (-11.20) (-10.99) (-8.184) (-8.139) (-6.234) (-6.258) 

Hispanic -0.221*** -0.225*** -0.224*** -0.298*** -0.297*** -0.183*** -0.178*** 

 
(-6.285) (-6.404) (-6.290) (-5.518) (-5.508) (-3.504) (-3.395) 

Asian 0.0391 0.0323 0.0263 0.154 0.148 0.0267 0.0281 

 
(0.521) (0.431) (0.349) (1.247) (1.202) (0.251) (0.265) 

G/T 0.463*** 0.462*** 0.459*** 0.453*** 0.455*** 0.471*** 0.461*** 

 
(24.57) (24.57) (24.18) (14.75) (14.86) (17.59) (17.12) 

Free Lunch -0.0722*** -0.0733*** -0.0731*** -0.0307 -0.0299 -0.0381 -0.0351 

 
(-3.213) (-3.263) (-3.233) (-0.902) (-0.879) (-1.262) (-1.165) 

Special Ed -0.206*** -0.206*** -0.207*** -0.272*** -0.267*** -0.202*** -0.202*** 

 
(-5.631) (-5.633) (-5.656) (-4.508) (-4.415) (-4.023) (-4.041) 

Enroll 0.00158** 0.00167** 0.00169** -0.00031 -9.75e-05 0.00210** 0.00236** 

 
(2.133) (2.245) (2.271) (-0.233) (-0.0727) (2.281) (2.556) 
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Table IV.4 (continued) 

Effect of class size on math score with sorting index 

  Full Sample Score Sorters Only G/T Sorters Only 

  (1) (2) (3) (4) (5) (6) (7) 

Number Classes -0.0466*** -0.0475*** -0.0484*** -0.0256 -0.0247 -0.0647*** -0.0691*** 

  (-3.240) (-3.287) (-3.341) (-1.047) (-1.003) (-3.507) (-3.736) 

Obs 9325 9322 9264 3546 3545 4482 4482 

R-sq 0.494 0.495 0.491 0.528 0.530 0.530 0.531 
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Such a striking difference in the class size effect based on whether or not a 

school sorts students by G/T classification indicates a relationship between the 

class size effect and schools’ sorting mechanisms.  Table IV.4 presents class size 

results with the sorting indices described in equations (IV.3) and (IV.4).  I include 

results for the full sample, only score sorters, and only G/T sorters.  Because sorting 

appears to have a negative effect on score, omitting the sorting index biases the 

class size effect upward, so that the true class size effect is actually more negative 

when the sorting index is included.18 

 

IV.4.4  Effect of Sorting on Score 
 
 It is not immediately clear whether sorting students will be beneficial for 

them or which types of sorting will be most beneficial for different types of 

students.  As described earlier, an intuitive argument can be made for the benefits 

of tracking students into homogenous classes, as well as for evenly dividing them 

into heterogeneous classes.  To explore this issue empirically, I create a sorting 

index for each class within a school measuring how dispersed its students are when 

compared to the overall school population at a single grade level.  Following the 

formulas described in equations (IV.3) and (IV.4), I construct two indices: 𝛾𝑗 , which 

measures sorting by previous math score, and 𝛾𝑗
𝐺𝑇 , which measures sorting by G/T 

status.  I include these variables in regressions for both types of sorting schools and 

                                                 
18

 It is important to note that the sorting index itself may be endogenous, which would change the 
results of the interaction between class size and class composition.  See section 4.5 for a discussion 
of the endogeneity of the sorting index.   
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measure their effects on all students, as well as on high and low scoring students 

and G/T and non-G/T students. 

 
 
 

Table IV.5 

Score sorting effect on math score 

  
Overall 
Effect 

Effect by Score 
Type 

Gamma  -0.389*** 
 

 
(-4.012) 

 Gamma*(High Scorers) 
 

-0.126 

  
(-1.011) 

Gamma*(Low Scorers) 
 

-0.626*** 

  
(-5.215) 

Class Size 0.00295 0.00390 

 
(0.430) (0.568) 

Previous Score 0.608*** 0.577*** 

 
(44.66) (35.37) 

Black -0.459*** -0.464*** 

 
(-8.139) (-8.232) 

Hispanic -0.297*** -0.298*** 

 
(-5.508) (-5.532) 

Asian 0.148 0.149 

 
(1.202) (1.207) 

G/T 0.455*** 0.447*** 

 
(14.86) (14.57) 

Free Lunch -0.0299 -0.0288 

 
(-0.879) (-0.848) 

Special Ed -0.267*** -0.263*** 

 
(-4.415) (-4.355) 

Enroll -9.75e-05 -0.000252 

 
(-0.0727) (-0.188) 

Number Classes -0.0247 -0.0227 

  (-1.003) (-0.924) 

Obs 3545 3545 

R-sq 0.530 0.531 
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Table IV.5 presents the results for the score sorting index.  The first column 

shows the overall sorting effect for all students in a score sorting school.  The 

overall effect is negative and significant, suggesting that students in classes with a 

higher degree of sorting score lower than those in classes with less sorting.  The 

point estimate shows that a 0.1 increase in the sorting index decreases predicted 

score by 0.038 standard deviations.  This might indicate that heterogeneous classes 

are more beneficial for students in terms of increasing test score, although the 

magnitude of the effect is fairly small. 

The second column divides the sorting effect between high scorers and low 

scorers.  The sample is divided roughly in half by previous year score; high scorers 

compose the top half of the distribution, and low scorers compose the bottom 

half.19  Interestingly, the negative overall effect of sorting is being driven the low 

scoring students.  The sorting coefficient for the low scorers is negative, significant, 

and about 1.6 times the magnitude of the overall coefficient.  The effect for high 

scoring students is negative but insignificant.  Intuitively, this suggests that a more 

even distribution of students within a class benefits students who typically perform 

poorly without hurting the scores of high performers.  

                                                 
19

 Low scorers have previous year scale scores between 1228 and 2198.  High scorers have previous 
year scale scores between 2224 and 2697.  
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Table IV.6 

G/T sorting effect on math score 

  Overall Effect Effect by G/T 

Gamma  -0.108*** 
 

 
(-2.922) 

 Gamma*(G/T) 
 

0.0195 

  
(0.172) 

Gamma*(Non-G/T) 
 

-0.122*** 

  
(-3.146) 

Class Size -0.0157*** -0.0155*** 

 
(-2.850) (-2.812) 

Previous Score 0.597*** 0.596*** 

 
(50.64) (50.53) 

Black -0.335*** -0.335*** 

 
(-6.258) (-6.258) 

Hispanic -0.178*** -0.177*** 

 
(-3.395) (-3.383) 

Asian 0.0281 0.0297 

 
(0.265) (0.280) 

G/T 0.461*** 0.432*** 

 
(17.12) (11.88) 

Free Lunch -0.0351 -0.0345 

 
(-1.165) (-1.144) 

Special Ed -0.202*** -0.203*** 

 
(-4.041) (-4.051) 

Enroll 0.00236** 0.00230** 

 
(2.556) (2.486) 

Number Classes -0.0691*** -0.0681*** 

  (-3.736) (-3.679) 

Obs 4482 4482 

R-sq 0.531 0.532 
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Table IV.6 presents the analogous results for the G/T sorting index.  I include 

the results for all students and then split the sample and examine the effect of 

sorting for G/T students and for non-G/T students.  Like the score sorting effect, the 

overall G/T sorting effect is negative and significant, revealing that a higher degree 

of sorting hurts students’ scores.  When I divide the effect between students of 

different G/T classifications, I find that this result is explained by the negative effect 

of sorting on non-G/T students.  While the sorting coefficient for non-G/T students 

is significant and negative, the coefficient for G/T students is actually positive, 

although it is insignificant.   

 
IV.4.5  Endogeneity of the Sorting Index 
 
 Schools choose how to divide students into classes, and it is likely that they 

make this determination using variables that are unobserved to the researcher.  As 

described in section IV.2.3, unobservable characteristics such as behavior may 

affect both schools’ sorting decisions and student performance.  To control for this, 

I create 𝑠𝑜𝑟𝑡𝑘  , a school-grade sorting index for each school and use the third grade 

index as an instrument for the fourth grade index.  The two indices should be 

correlated if schools’ sorting guidelines are similar across grades, but the third 

grade index should not directly impact the scores of fourth grade students. 
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Table IV.7 

Alpha score sorting effect on math score  

  OLS 2SLS 

Alpha Sort -0.255** 2.555** 

 
(-2.406) (2.300) 

Class Size 0.00786 -0.0104 

 
(1.165) (-1.003) 

Previous Score 0.623*** 0.614*** 

 
(44.98) (39.01) 

Black -0.374*** -0.418*** 

 
(-6.088) (-5.975) 

Hispanic -0.218*** -0.213*** 

 
(-3.643) (-3.216) 

Asian 0.214* 0.291** 

 
(1.739) (2.097) 

G/T 0.465*** 0.352*** 

 
(14.66) (6.227) 

Free Lunch -0.0689** -0.0174 

 
(-1.991) (-0.403) 

Special Ed -0.215*** -0.240*** 

 
(-3.449) (-3.446) 

Enroll -0.00281* 0.00350 

 
(-1.937) (1.184) 

Number Classes 0.0184 -0.127** 

  (0.709) (-1.985) 

Obs 3262 3262 

R-sq 0.549 0.451 

Cragg-Donald 
 

36.311 
 

 

Table IV.7 shows the effect of the 𝑠𝑜𝑟𝑡𝑘  on test score.  The first column 

reports estimates using OLS.  The coefficient on the sorting index is negative and 

significant, as it was in for the class sorting index in the previous table.  This 
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suggests that more sorting actually decreases students’ test scores.  However, when 

the third grade sorting index is used as an instrument, the 2SLS estimates reveal 

that a higher sorting index increases students’ scores.  The 2SLS results in the 

second column show that the sorting coefficient is positive, significant, and 

relatively large in magnitude.  An increase in the sorting index of a school of 0.1 

points is associated with a predicted score increase of 0.255 standard deviations. 

I also examine the difference in the sorting effect between high scorers and 

low scorers.  Table IV.8 presents OLS and 2SLS results by score type.  The OLS 

results are similar to the findings in Table IV.4, which show that a higher degree of 

sorting decreases scores for low scoring students but has no significant effect on 

high scoring students.  After using the instrument in the 2SLS results, however, it 

appears that more sorting significantly increases the test scores of both low scoring 

students and high scoring students.  An increase in the sorting index of 0.1 points 

increases predicted score for low scoring students by 0.268 standard deviations 

and increases predicted score for high scoring students by 0.243 standard 

deviations. 
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Table IV.8 

Alpha score sorting effect on math score by score type 

  OLS 2SLS 

Alpha Sort*(High Scorers) -0.131 2.681** 

 
(-1.229) (2.425) 

Alpha Sort*(Low Scorers) -0.372*** 2.431** 

 
(-3.493) (2.203) 

Class Size 0.00986 -0.00827 

 
(1.471) (-0.806) 

Previous Score 0.519*** 0.506*** 

 
(25.72) (22.00) 

Black -0.393*** -0.437*** 

 
(-6.434) (-6.283) 

Hispanic -0.230*** -0.225*** 

 
(-3.859) (-3.414) 

Asian 0.204* 0.281** 

 
(1.673) (2.038) 

G/T 0.445*** 0.331*** 

 
(14.07) (5.872) 

Free Lunch -0.0680** -0.0165 

 
(-1.979) (-0.385) 

Special Ed -0.214*** -0.238*** 

 
(-3.446) (-3.441) 

Enroll 
-

0.00320** 0.00308 

 
(-2.221) (1.052) 

Number Classes 0.0243 -0.120* 

  (0.942) (-1.900) 

Obs 3262 3262 

R-sq 0.555 0.458 

Cragg-Donald 
 

18.15 
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IV.5  Conclusions 
 
 While several studies have found that smaller class sizes significantly 

increase students’ test scores, one confounding factor may be the way in which 

schools sort students into classes.  Schools may sort specific types of students into 

larger or smaller classes, and schools that have smaller classes or more classes may 

be able to more effectively sort students into groups.  This study attempts to 

disentangle the class size effect from the sorting effect by creating a sorting index 

for schools, which captures how “sorted” its classes are.  I use a school’s previous 

grade sorting index as an instrument for the index of the grade of interest.   

While adding this sorting index does seem to affect the magnitude of the 

class size effect, it also presents several interesting implications of its own.  The OLS 

estimates of the effect of sorting indicate that more sorted schools actually hurt the 

scores of lower scoring students and that sorting G/T and non-G/T students into 

separate classes decreases the scores of non-G/T students.  However, after 

controlling the possible endogeneity of the sorting index caused by unobserved 

variables, I find that more sorting is actually helpful for all students, regardless of 

previous score or G/T classification.  

This study has valuable policy implications because unlike many school 

policy variables, the composition of classes can be changed with little need for 

increased funds.  A school with three classrooms and three teachers can increase 

efficiency by sorting students in such a way that they all benefit.  This study 

suggests that classes that are more sorted are beneficial for all students and that 
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schools may improve overall scores by sorting students into more homogeneous 

groups.     
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CHAPTER V 

CONCLUSIONS 

 

 This dissertation examines three issues related to the effect of smaller 

classes on student achievement.  Using student-level data from the Texas 

Assessment of Knowledge and Skills (TAKS), I explore heterogeneity in the effect of 

smaller classes across a score distribution of students, model class size effects 

simultaneously with moving effects, and disentangle the class size effect from 

schools’ decisions to divide students into classes.  The overall results from the 

paper emphasize the importance of carefully modeling these effects while 

simultaneously considering other potential confounding or related issues. 

 I find strong evidence of differences in the class size effect across different 

groups of students.  By dividing students into decile groups based on their previous 

testing performance and examining marginal effects for the different groups, I find 

that smaller classes are most helpful for student with low scores in the previous 

year.  While score gains for these students are significant, gains for higher scoring 

students are small or nonexistent.  Knowing how this effect varies across a score 

distribution is valuable information for teachers and school administrators who are 

faced with allocating students across classes.   

 In my analysis of moving decisions and class size, I also find differences in 

the class size effect between movers and nonmovers, and among movers of 

different types.  I find that movers respond more to class size reductions than 
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nonmovers, and that the strongest results exist for students who switch districts 

but remain in the same region of the state.   

 This simultaneous examination of the class size effect and the moving effect 

reveals a bias in the typical OLS or 2SLS estimates of the moving effect.  I create a 

two-type model that includes endogenous movers, who switch schools because of a 

school-related reason, and exogenous movers, who transfer schools because of a 

reason unrelated to school.  I find that students who are campus or district movers 

are more likely to be endogenous movers and that regional movers are more likely 

to be exogenous.  The endogenous campus movers perform worse than expected on 

the standardized exam, and the endogenous district movers perform better than 

expected on the exam.  This causes a bias in the overall moving effect for both 

campus and district movers.  These estimates show the importance of a 

simultaneous model of moving and class size. 

 My third paper is an analysis of the relationship between class size and class 

composition.  Using data from Dallas ISD, I estimate the class size effect along with 

the effect of sorting students into homogeneous groups.  The data is unique because 

it allows me to create the score distribution of an individual class, whereas most 

datasets only allow for the creation of a distribution of an entire grade within a 

school.   

I create a sorting index for each school, which is a measure of how similar or 

dissimilar the scores within the classes of the school are.  Because of potential 

endogeneity of the sorting index due to the fact that students are not divided into 
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classes randomly, I create an instrument for the fourth grade index using the third 

grade index.  It is reasonable to believe that the two indices are correlated if schools 

have common sorting guidelines across grades, but that the division of third grade 

students should not directly affect fourth grade scores.   

I include the sorting index in a typical class size regression and find that the 

magnitude of the class size coefficient decreases significantly, suggesting that what 

would have been labeled a class size effect is actually attributable to the sorting 

mechanism.  The coefficient of the sorting index itself suggests that students at 

schools with a more homogeneous sorting process have higher test scores.  This is 

true for both high scoring students and low scoring students; the results still hold 

when the effect is allowed to vary by previous test score.  This evidence indicates 

that students benefit from being divided into groups with classmates who are 

similar in academic achievement to themselves.   
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APPENDIX A 
 

THREE TYPE MOVING MODEL 
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In the full moving model, there are three types of movers—campus movers 

(type 1), district movers (type 2), and region movers (type 3).  I define the moving 

decision in the following way: 

 
Campus Move: 𝑚 = 1(𝑍𝑖𝜂1 + 𝜀1 > 0) 
District Move: 𝑚 = 1(𝑍𝑖𝜂2 + 𝜀2 > 0) 
Region Move:  𝑚 = 1(𝑍𝑖𝜂3 + 𝜀3 > 0) 
 
The score equation is given by   

𝑠𝑖𝑡 = 𝜌𝑠𝑖𝑡−1 + 𝛾1𝑐𝑠𝑖 +  𝛾21𝑚𝑜𝑣𝑒𝐶 + 𝛾22𝑚𝑜𝑣𝑒𝐷 + 𝛾23𝑚𝑜𝑣𝑒𝑅 𝑐𝑠𝑖 + 𝑢𝑖 . 
 
The covariances and errors of the three types of moves are described by the 

following equations:  

 
Campus Move: 𝑐𝑜𝑣(𝜀1, 𝑢𝑖) ≠ 0 𝜀1 = 𝜆1 + 𝑣1 and 𝜎𝑣1

2 = 1 − 𝜆1
2𝜎𝑢

2 
District Move: 𝑐𝑜𝑣 𝜀2, 𝑢𝑖 ≠ 0  𝜀2 = 𝜆2 + 𝑣2  and 𝜎𝑣2

2 = 1 − 𝜆2
2𝜎𝑢

2 
Region Move:  𝑐𝑜𝑣 𝜀3, 𝑢𝑖 ≠ 0  𝜀3 = 𝜆3 + 𝑣3  and 𝜎𝑣3

2 = 1 − 𝜆3
2𝜎𝑢

2 
 
Because potential movers of any type can move or stay, there are six possibilities: 

 
 Pr(moveC=1|𝑠𝑖𝑡) 

= Pr 𝑍𝑖𝜂1 + 𝜀1 > 0 𝑠𝑖𝑡 = Pr 𝑍𝑖𝜂1 + 𝜆1𝑢 + 𝑣1 > 0 𝑠𝑖𝑡 

= Φ  
𝑍𝑖𝜂1 + 𝜆1𝑢

 1 − 𝜆1
2𝜎𝑢

2
  

 

= Φ  
𝑍𝑖𝜂1 + 𝜆1(𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾21𝑚𝑜𝑣𝑒𝐶 𝑐𝑠𝑖)

 1 − 𝜆1
2𝜎𝑢

2
  

 
 Pr(moveC=0|𝑠𝑖𝑡) 

= 1 − Φ  
𝑍𝑖𝜂1 + 𝜆1(𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾21𝑚𝑜𝑣𝑒𝐶 𝑐𝑠𝑖)

 1 − 𝜆1
2𝜎𝑢

2
  

 
 Pr(moveD=1|𝑠𝑖𝑡) 
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= Pr 𝑍𝑖𝜂2 + 𝜀2 > 0 𝑠𝑖𝑡 = Pr 𝑍𝑖𝜂2 + 𝜆2𝑢 + 𝑣2 > 0 𝑠𝑖𝑡 

= Φ  
𝑍𝑖𝜂2 + 𝜆2𝑢

 1 − 𝜆2
2𝜎𝑢

2
  

= Φ  
𝑍𝑖𝜂2 + 𝜆2(𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾22𝑚𝑜𝑣𝑒𝐷 𝑐𝑠𝑖)

 1 − 𝜆2
2𝜎𝑢

2
  

 
 Pr(moveD=0|𝑠𝑖𝑡) 

= 1 − Φ  
𝑍𝑖𝜂2 + 𝜆2(𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾22𝑚𝑜𝑣𝑒𝐷 𝑐𝑠𝑖)

 1 − 𝜆2
2𝜎𝑢

2
  

 
 Pr(moveR=1|𝑠𝑖𝑡) 

= Pr 𝑍𝑖𝜂3 + 𝜀3 > 0 𝑠𝑖𝑡 = Pr 𝑍𝑖𝜂3 + 𝜆3𝑢 + 𝑣3 > 0 𝑠𝑖𝑡 

= Φ  
𝑍𝑖𝜂3 + 𝜆3𝑢

 1 − 𝜆3
2𝜎𝑢

2
 

= Φ  
𝑍𝑖𝜂3 + 𝜆3(𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾23𝑚𝑜𝑣𝑒𝑅 𝑐𝑠𝑖)

 1 − 𝜆3
2𝜎𝑢

2
  

 
 Pr(moveR=0|𝑠𝑖𝑡) 

= 1 − Φ  
𝑍𝑖𝜂3 + 𝜆3(𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾23𝑚𝑜𝑣𝑒𝑅 𝑐𝑠𝑖)

 1 − 𝜆3
2𝜎𝑢

2
  

 
 
While we can distinguish between potential movers who actually move, we cannot 

distinguish between stayer types.  Therefore, the density functions are as follows: 

 
 𝑓(𝑠𝑖𝑡 ,moveC=1)= 

 Φ  
𝑍𝑖𝜂1 + 𝜆1(𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾21𝑚𝑜𝑣𝑒𝐶 𝑐𝑠𝑖)

 1 − 𝜆1
2𝜎𝑢

2
 

∗
1

𝜎𝑢
ϕ 

𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾21𝑚𝑜𝑣𝑒𝐶 𝑐𝑠𝑖)

𝜎𝑢
  

 

 𝑓(𝑠𝑖𝑡 ,moveD=1)= 

 Φ  
𝑍𝑖𝜂2 + 𝜆2(𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾22𝑚𝑜𝑣𝑒𝐷 𝑐𝑠𝑖)

 1 − 𝜆0
2𝜎𝑢

2
 

∗
1

𝜎𝑢
ϕ 

𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾22𝑚𝑜𝑣𝑒𝐷 𝑐𝑠𝑖)

𝜎𝑢
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 𝑓(𝑠𝑖𝑡 ,moveR=1)= 

 Φ  
𝑍𝑖𝜂3 + 𝜆3(𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾23𝑚𝑜𝑣𝑒𝑅 𝑐𝑠𝑖)

 1 − 𝜆0
2𝜎𝑢

2
 

∗
1

𝜎𝑢
ϕ  

𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾23𝑚𝑜𝑣𝑒𝑅 𝑐𝑠𝑖)

𝜎𝑢
  

 

 𝑓(𝑠𝑖𝑡 ,move=0)= 

 1 − Φ  
𝑍𝑖𝜂1 + 𝜆1 𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾21𝑚𝑜𝑣𝑒𝐶 𝑐𝑠𝑖 

 1 − 𝜆1
2𝜎𝑢

2
 +  1

− Φ  
𝑍𝑖𝜂2 + 𝜆2(𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾22𝑚𝑜𝑣𝑒𝐷 𝑐𝑠𝑖)

 1 − 𝜆2
2𝜎𝑢

2
 + 1

− Φ  
𝑍𝑖𝜂3 + 𝜆3(𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾23𝑚𝑜𝑣𝑒𝑅 𝑐𝑠𝑖)

 1 − 𝜆3
2𝜎𝑢

2
   

∗
1

𝜎𝑢
ϕ 

𝑠𝑖𝑡 − 𝜌𝑠𝑖𝑡−1 − 𝛾1𝑐𝑠𝑖 −  𝛾21𝑚𝑜𝑣𝑒𝐶 + 𝛾22𝑚𝑜𝑣𝑒𝐷 + 𝛾23𝑚𝑜𝑣𝑒𝑅 𝑐𝑠𝑖)

𝜎𝑢
  

 

The log likelihood function for the maximum likelihood estimation is 

ℓ𝑖 =   log⁡(𝐶𝑎𝑠𝑒𝑘)

𝑁𝑘

𝑖=1

4

𝑘=1

. 
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APPENDIX B 

INDIVIDUAL SCHOOL REGRESSIONS FOR SCORE SORTING AND G/T SORTING



 

 

1
1

7
 

Table B1.1 

Score sorting for schools 101-113 

Dependent Variable: Raw Math Score (2004) 

School 101 103 104 105 106 108 109 110 112 113 

Constant 28.79*** 30.82*** 29.24*** 31.89*** 27.60*** 24.11*** 28.80*** 28.95*** 30.85*** 32.29*** 

 
(13.47) (24.01) (19.88) (23.34) (14.34) (11.16) (17.00) (20.11) (19.86) (28.06) 

Class 2 -3.119 -0.529 0.174 -2.332 4.733* 6.333** 1.200 -0.619 -0.179 0.614 

 
(-1.050) (-0.292) (0.0790) (-1.154) (1.816) (2.393) (0.535) (-0.278) (-0.088) (0.345) 

Class 3 -5.016 1.301 -0.683 -1.784 
 

4.278 0.0947 0.860 0.804 
 

 
(-1.629) (0.706) (-0.315) (-0.911) 

 
(1.616) (0.0418) (0.393) (0.403) 

 Class 4 -0.661 1.093 -1.888 
   

2.311 1.548 -1.199 
 

 
(-0.226) (0.548) (-0.897) 

   
(1.007) (0.707) (-0.581) 

 Class 5 -0.319 
 

0.429 
     

-0.146 
 

 
(-0.107) 

 
(0.198) 

     
(-0.073) 

 Class 6 -1.357 
       

-19.9*** 
   (-0.449)               (-4.666)   

Obs 87 62 94 53 22 45 72 68 90 24 

R-Sq 0.048 0.022 0.016 0.029 0.142 0.120 0.021 0.015 0.233 0.005 
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Table B1.2 

Score sorting for schools 114-125 

Dependent Variable: Raw Math Score (2004) 

School 114 115 116 117 118 119 120 121 124 125 

Constant 30.32*** 28.95*** 31.29*** 32.65*** 28.41*** 33.27*** 29.67*** 25.80*** 30.69*** 31.16*** 

 
(468.4) (19.43) (24.46) (23.03) (18.28) (26.09) (17.02) (17.31) (24.92) (25.71) 

Class 2 3.433** 1.850 1.888 -0.923 1.882 0.733 0.167 4.494** 2.719 1.136 

 
(2.236) (0.878) (0.925) (-0.471) (0.857) (0.413) (0.0706) (2.197) (1.662) (0.644) 

Class 3 1.183 2.828 -1 -2.706 
 

-2.443 1.649 3.700 2.367 0.898 

 
(0.731) (1.307) (-0.553) (-1.314) 

 
(-1.397) (0.707) (1.655) (1.446) (0.517) 

Class 4 
 

0.574 1.920 -5.496** 
 

-2.425 2.667 
  

2.564 

  
(0.276) (1.009) (-2.433) 

 
(-1.422) (1.082) 

  
(1.476) 

Class 5 
  

1.143 -1.826 
 

-0.642 
   

0.430 

   
(0.622) (-0.873) 

 
(-0.362) 

   
(0.244) 

Class 6 
  

0.143 -4.286** 
     

1.405 

   
(0.0780) (-2.188) 

     
(0.784) 

Class 7 
  

1.306 0.739 
      

   
(0.699) (0.359) 

      Class 8 
  

-0.937 
             (-0.492)               

Obs 11273 79 120 130 34 83 67 44 47 105 

R-Sq 0.000 0.027 0.043 0.096 0.022 0.068 0.026 0.114 0.067 0.025 
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Table B1.3 

Score sorting for schools 126-135 

Dependent Variable: Raw Math Score (2004) 

School 126 127 128 129 130 131 132 133 134 135 

Constant 32.69*** 30.50*** 33.55*** 32.83*** 28.31*** 28.73*** 34.27*** 32.82*** 34.60*** 32.59*** 

 
(22.90) (14.60) (19.56) (25.40) (15.82) (13.39) (31.20) (24.31) (14.82) (29.43) 

Class 2 -1.288 -1.500 0.330 -2.721 0.217 -1.894 -1.267 -0.350 0.567 2.412 

 
(-0.672) (-0.490) (0.148) (-1.416) (0.0870) (-0.638) (-0.841) (-0.188) (0.179) (1.562) 

Class 3 -1.158 
  

-1.445 1.500 -3.182 
 

-1.824 -4.933 1.471 

 
(-0.582) 

  
(-0.772) (0.593) (-1.049) 

 
(-0.908) (-1.294) (0.939) 

Class 4 0.312 
  

-
5.159*** -1.136 -1.035 

 
-1.297 -1.100 

 

 
(0.161) 

  
(-2.645) (-0.456) (-0.355) 

 
(-0.698) (-0.314) 

 Class 5 -2.902 
   

1.570 -5.427* 
 

-1.294 -2.200 
 

 
(-1.389) 

   
(0.630) (-1.745) 

 
(-0.678) (-0.666) 

 Class 6 -3.988* 
   

-0.0903 
   

-1.600 
 

 
(-1.733) 

   
(-0.037) 

   
(-0.485) 

 Class 7 -8.56*** 
   

1.621 
   

-2.00 
 

 
(-3.464) 

   
(0.630) 

   
(-0.606) 

 Class 8 0.786 
   

1.438 
   

0.733 
 

 
(0.406) 

   
(0.568) 

   
(0.192) 

 Class 9 
    

-1.839 
               (-0.757)           

Obs 123 15 27 75 151 57 32 86 36 52 

R-Sq 0.155 0.018 0.001 0.000 0.030 0.066 0.023 0.015 0.103 0.048 
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Table B1.4 

Score sorting for schools 136-148 

Dependent Variable: Raw Math Score (2004) 

School 136 137 139 140 141 142 144 145 147 148 

Constant 29.93*** 29.40*** 30.18*** 28.67*** 31.91*** 32.88*** 31.57*** 31.50*** 30.77*** 33.42*** 

 
(15.23) (16.81) (19.38) (16.60) (18.47) (15.85) (18.86) (20.80) (17.27) (21.85) 

Class 2 -1.823 2.306 0.718 0.256 -0.909 -0.952 0.929 0.857 1.842 -5.217* 

 
(-0.704) (0.961) (0.318) (0.107) (-0.353) (-0.361) (0.358) (0.432) (0.788) (-1.850) 

Class 3 -1.634 1.100 3.091 1 
 

-0.375 1.012 -0.375 0.168 -2.639 

 
(-0.616) (0.475) (1.404) (0.379) 

 
(-0.144) (0.411) (-0.165) (0.0701) (-1.130) 

Class 4 -4.693* 
 

2.068 
  

-0.625 -2.038 -2.300 -1.969 
 

 
(-1.769) 

 
(0.959) 

  
(-0.213) (-0.875) (-1.074) (-0.809) 

 Class 5 
       

0.750 2.159 
 

        
(0.366) (0.873) 

 Class 6 
       

1.643 0.0543 
 

        
(0.828) (0.0229) 

 Class 7 
       

2.233 -0.894 
 

        
(1.142) (-0.373) 

 Class 8 
       

1.794 
                  (0.940)     

Obs 67 52 44 34 20 43 51 100 109 26 

R-Sq 0.051 0.019 0.055 0.005 0.007 0.004 0.042 0.075 0.044 0.138 
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Table B1.5 

Score sorting for schools 149-161 

Dependent Variable: Raw Math Score (2004) 

School 149 150 152 153 156 157 158 159 160 161 

Constant 28.44*** 30.85*** 30.22*** 34.07*** 27.71*** 28.63*** 32.06*** 30.69*** 32*** 26.95*** 

 
(13.40) (19.90) (16.75) (27.64) (17.17) (20.37) (23.69) (21.35) (18.25) (16.30) 

Class 2 2.368 -0.275 -5.500** 0.656 2.571 2.563 0.938 2.912 1.273 0.598 

 
(0.892) (-0.128) (-2.155) (0.353) (1.126) (1.290) (0.473) (1.256) (0.513) (0.265) 

Class 3 3.006 
 

-0.500 -0.571 4.345* 1.508 -1.262 4.131* 
 

0.653 

 
(1.176) 

 
(-0.196) (-0.338) (1.993) (0.747) (-0.649) (1.834) 

 
(0.283) 

Class 4 3.079 
 

-2.294 -3.148* 2.286 
 

-0.562 0.236 
 

-1.241 

 
(1.214) 

 
(-0.841) (-1.772) (1.001) 

 
(-0.258) (0.110) 

 
(-0.516) 

Class 5 
  

-2.696 
 

4.050* 
 

1 1.812 
 

-0.526 

   
(-1.071) 

 
(1.858) 

 
(0.522) (0.825) 

 
(-0.225) 

Class 6 
  

-3.522 
   

2.622 0.812 
  

   
(-1.416) 

   
(1.427) (0.370) 

  Class 7 
      

2.838 
                 (1.563)       

Obs 66 27 107 54 76 47 110 74 22 97 

R-Sq 0.027 0.001 0.059 0.090 0.065 0.037 0.072 0.066 0.013 0.010 
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Table B1.6 

Score sorting for schools 162-173 

Dependent Variable: Raw Math Score (2004) 

School 162 163 164 166 167 168 169 170 171 173 

Constant 35.53*** 31.44*** 29.75*** 27.24*** 28.71*** 31.67*** 31.47*** 32.53*** 31.84*** 31.18*** 

 
(26.29) (21.74) (21.75) (20.76) (15.67) (13.88) (31.71) (21.04) (24.55) (27.67) 

Class 2 -0.304 0.614 2.250 -3.435 1.590 -5.167* 5.533*** 1.400 1.325 0.369 

 
(-0.157) (0.296) (1.148) (-1.593) (0.684) (-1.767) (3.943) (0.640) (0.712) (0.246) 

Class 3 -0.241 3.489 2.039 4.820*** 0.391 -1.917 1.950 -1.004 0.720 0.516 

 
(-0.129) (1.626) (1.040) (2.635) (0.162) (-0.672) (1.310) (-0.473) (0.375) (0.301) 

Class 4 
  

1.050 3.965** -0.714 -2 3.176** -0.800 -0.0421 0.0543 

   
(0.502) (2.222) (-0.302) (-0.620) (2.224) (-0.366) (-0.023) (0.0317) 

Class 5 
  

0.179 5.615*** 1.230 -1.792 4.033*** 
  

0.585 

   
(0.0838) (3.146) (0.504) (-0.628) (2.709) 

  
(0.386) 

Class 6 
  

0.309 4.065** 
 

-2.810 1.200 
  

4.118** 

   
(0.153) (2.278) 

 
(-0.961) (0.740) 

  
(2.584) 

Class 7 
         

3.706** 

          
(2.326) 

Class 8 
         

4.192*** 

                    (2.703) 

Obs 58 50 120 105 95 78 77 62 73 139 

R-Sq 0.001 0.059 0.024 0.217 0.017 0.049 0.211 0.026 0.011 0.138 
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Table B1.7 

Score sorting for schools 174-187 

Dependent Variable: Raw Math Score (2004) 

School 175 178 180 181 182 183 184 185 186 187 

Constant 29.71*** 31.18*** 29.49*** 30.85*** 29.54*** 29.38*** 33.25*** 34.19*** 26.10*** 30.69*** 

 
(17.35) (21.43) (29.96) (22.43) (17.65) (19.80) (27.20) (27.08) (13.18) (18.69) 

Class 2 -1.581 0.474 1.625 0.150 1.662 2.292 -0.558 -0.688 1.233 0.187 

 
(-0.643) (0.239) (0.944) (0.0630) (0.727) (1.124) (-0.305) (-0.372) (0.460) (0.0808) 

Class 3 -3.143 -0.176 2.980 -3.500* -0.681 -1.606 
  

4.900* 0.312 

 
(-1.278) (-0.087) (1.626) (-1.799) (-0.293) (-0.725) 

  
(1.890) (0.125) 

Class 4 
   

-1.203 0.395 0.692 
  

6.054** 1.455 

    
(-0.593) (0.173) (0.324) 

  
(2.298) (0.606) 

Class 5 
   

-0.750 -0.0679 
     

    
(-0.386) 

(-
0.0305) 

     Class 6 
    

1.873 
               (0.843)           

Obs 49 55 70 87 91 62 29 30 49 58 

R-Sq 0.034 0.002 0.041 0.048 0.025 0.055 0.003 0.005 0.143 0.008 
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Table B1.8 

Score sorting for schools 189-199 

Dependent Variable: Raw Math Score (2004) 

School 189 190 192 193 194 195 196 197 198 199 

Constant 32.86*** 29.58*** 27.94*** 31.63*** 26.09*** 31.27*** 28.67*** 26.36*** 33.87*** 32.60*** 

 
(24.92) (22.58) (17.99) (18.35) (24.45) (22.33) (23.51) (15.90) (21.93) (27.69) 

Class 2 -1.197 5.350*** -1.592 -3.807 0.0144 -1.267 4.500** 6.734*** -1.717 1.295 

 
(-0.578) (3.044) (-0.714) (-1.410) (0.00916) (-0.588) (2.609) (2.695) (-0.840) (0.822) 

Class 3 -2.564 5.512*** 2.371 -3.092 1.623 3.358* 1.905 2.643 -3.631* 0.0667 

 
(-1.341) (3.356) (1.094) (-1.248) (1.063) (1.723) (1.033) (1.083) (-1.714) (0.0377) 

Class 4 
 

4.226** 1.056 -8.125** 10.82*** -10.27** 
 

2.00 
 

-0.600 

  
(2.573) (0.466) (-2.462) (5.854) (-2.515) 

 
(0.853) 

 
(-0.366) 

Class 5 
    

11.65*** 5.633** 
    

     
(7.430) (2.545) 

    Class 6 
    

10.99*** 5.933*** 
              (6.275) (2.680)         

Obs 57 69 70 48 105 64 50 51 52 62 

R-Sq 0.032 0.166 0.050 0.128 0.542 0.318 0.127 0.137 0.057 0.027 
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Table B1.9 

Score sorting for schools 200-210 

Dependent Variable: Raw Math Score (2004) 

School 200 201 202 203 204 205 206 207 209 210 

Constant 31.57*** 37.21*** 28.83*** 32.92*** 30.39*** 27.50*** 30.93*** 26.20*** 30.61*** 33.06*** 

 
(11.59) (30.60) (15.18) (17.81) (15.77) (20.90) (19.76) (12.09) (17.34) (24.01) 

Class 2 -1.264 -2.481 -4.333 -4.462 -2.330 2.342 -0.227 1.752 -0.401 -1.184 

 
(-0.374) (-1.467) (-1.613) (-1.670) (-0.843) (1.275) (-0.106) (0.665) (-0.163) (-0.599) 

Class 3 2.429 -1.571 -0.611 0.0119 -3.222 2.111 0.844 6.326** 0.742 -0.614 

 
(0.719) (-0.914) (-0.211) (0.00473) (-1.182) (1.134) (0.398) (2.362) (0.293) (-0.320) 

Class 4 -5.143 0.695 0.917 0.0208 -2.514 1.600 
 

6.700** -2.842 -0.427 

 
(-1.335) (0.379) (0.341) (0.00852) (-0.895) (0.882) 

 
(2.523) (-1.042) (-0.225) 

Class 5 -1.446 -2.00 
 

-3.917 -0.0948 4.500** 
 

4.943* -1.361 -2.121 

 
(-0.443) (-1.163) 

 
(-1.060) (-0.034) (2.509) 

 
(1.741) (-0.428) (-1.073) 

Class 6 
 

-1.786 
 

-2.583 
 

2.833 
    

  
(-1.038) 

 
(-0.807) 

 
(1.580) 

    Class 7 
   

-7.917 
              (-1.619)             

Obs 56 82 45 65 86 117 50 84 75 103 

R-Sq 0.096 0.059 0.097 0.114 0.028 0.058 0.006 0.123 0.027 0.017 
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Table B1.10 

Score sorting for schools 211-220 

Dependent Variable: Raw Math Score (2004) 

School 211 212 213 214 215 216 217 218 219 220 

Constant 28.7*** 32.42*** 30.44*** 33.25*** 32.27*** 14.83*** 37.58*** 29*** 32.14*** 30.36*** 

 
(20.78) (23.33) (20.97) (17.91) (18.64) (6.286) (89.17) (18.43) (21.23) (23.31) 

Class 2 1.872 -2.417 -0.490 -0.712 -1.267 10.11*** 0.532 1.083 -4.078* 5.186*** 

 
(0.879) (-0.580) (-0.249) (-0.276) (-0.547) (3.319) (0.881) (0.459) (-1.779) (2.747) 

Class 3 1.800 -0.0167 1.096 -1.517 1.633 10.77*** 0.0526 2.00 -3.136 -2.056 

 
(0.880) (-0.0050) (0.525) (-0.609) (0.713) (3.401) (0.0883) (0.883) (-1.345) (-0.962) 

Class 4 -1.750 -1.560 2.125 -0.250 1.322 8.325*** 
 

0.125 -0.397 3.636* 

 
(-0.80) (-0.533) (1.035) (-0.095) (0.556) (2.762) 

 
(0.0571) (-0.188) (1.926) 

Class 5 1.863 0.0119 
 

-2.679 
 

8.778*** 
 

0.647 
 

-4.481** 

 
(0.941) (0.00407) 

 
(-1.059) 

 
(2.881) 

 
(0.300) 

 
(-2.271) 

Class 6 
   

-1.139 
 

12.54*** 
 

0.667 
  

    
(-0.402) 

 
(4.018) 

 
(0.313) 

  Class 7 
     

12.50*** 
 

0.118 
  

      
(4.103) 

 
(0.0545) 

  Class 8 
       

-0.0625 
                  (-0.029)     

Obs 75 46 66 75 71 116 56 125 78 92 

R-Sq 0.055 0.014 0.032 0.021 0.032 0.167 0.017 0.011 0.058 0.260 
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Table B1.11 

Score sorting for schools 222-233 

Dependent Variable: Raw Math Score (2004) 

School 222 223 224 225 226 228 229 230 232 233 

Constant 24.69*** 29.92*** 32*** 26.25*** 24.38*** 30.20*** 32.93*** 30.93*** 28.82*** 36.55*** 

 
(12.21) (20.33) (13.36) (14.14) (12.34) (22.32) (27.87) (21.02) (19.54) (30.00) 

Class 2 2.262 1.896 -2.263 1.295 2.615 
 

1.127 0.0667 1.353 -2.962* 

 
(0.834) (0.974) (-0.81) (0.445) (1.008) 

 
(0.715) (0.0302) (0.649) (-1.757) 

Class 3 0.963 
 

-1.789 -2.625 3.668 
 

1.601 -3.206 0.598 -1.084 

 
(0.355) 

 
(-0.64) (-1.000) (1.430) 

 
(1.003) (-1.417) (0.294) (-0.655) 

Class 4 1.523 
  

2.515 4.715* 
 

1.214 3.924* 0.248 -1.636 

 
(0.555) 

  
(0.972) (1.857) 

 
(0.727) (1.853) (0.113) (-0.950) 

Class 5 0.693 
  

-1.917 
  

2.134 
 

1.954 
 

 
(0.258) 

  
(-0.676) 

  
(1.319) 

 
(0.950) 

 Class 6 2.513 
     

1.302 
 

2.614 
   (0.926)           (0.765)   (1.234)   

Obs 116 28 45 72 70 15 92 52 101 47 

R-Sq 0.012 0.035 0.015 0.070 0.053 0.000 0.021 0.171 0.024 0.070 
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Table B1.12 

Score sorting for schools 235-263 

Dependent Variable: Raw Math Score (2004) 

School 235 236 237 241 250 251 256 259 262 263 

Constant 23.33*** 29.87*** 30.47*** 27** 29.17*** 33.38*** 29.77*** 26.11*** 33*** 32.13*** 

 
(13.22) (18.72) (16.63) (3.792) (16.33) (18.85) (17.92) (9.054) (23.67) (18.02) 

Class 2 3.167 -2.067 -1.538 -1.500 4.657* -0.108 -3.133 
 

-1.846 0.337 

 
(1.289) (-0.916) (-0.583) (-0.12) (1.996) (-0.043) (-1.277) 

 
(-0.96) (0.138) 

Class 3 0.881 1.210 -6.333** 
 

0.141 -3.480 
  

0.444 0.200 

 
(0.347) (0.517) (-2.444) 

 
(0.0569) (-1.448) 

  
(0.209) (0.0793) 

Class 4 
 

1.192 -2.967 
  

-8.45*** 
  

1.600 
 

  
(0.545) (-1.163) 

  
(-3.195) 

  
(0.774) 

 Class 5 
  

2.462 
  

-2.063 
  

-0.0909 
 

   
(0.934) 

  
(-0.823) 

  
(-0.05) 

 Class 6 
  

0.248 
  

-4.691* 
  

-1.455 
 

   
(0.0939) 

  
(-1.951) 

  
(-0.72) 

 Class 7 
  

-1.252 
       

   
(-0.475) 

       Class 8 
  

-3.114 
             (-1.239)               

Obs 45 60 119 7 42 98 24 9 66 47 

R-Sq 0.041 0.048 0.115 0.008 0.125 0.136 0.069 0.000 0.059 0.000 
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Table B1.13 

Score sorting for schools 264-274 

Dependent Variable: Raw Math Score (2004) 

School 264 265 267 268 269 270 271 272 273 274 

Constant 29.94*** 31.33*** 32.50*** 33.18*** 28.33*** 32.93*** 32.50*** 30.32*** 33.28*** 33.26*** 

 
(14.63) (18.65) (12.04) (39.12) (16.69) (24.19) (25.97) (21.51) (21.09) (25.60) 

Class 2 -0.854 -2.976 2.722 0.218 1.667 -0.670 -2.286 -3.649 -2.468 -0.311 

 
(-0.273) (-1.231) (0.839) (0.111) (0.655) (-0.368) (-1.208) (-1.611) (-1.148) (-0.173) 

Class 3 -1.028 -2.833 2.900 0.532 4.417* 2.008 0.676 -0.941 -0.178 -4.93*** 

 
(-0.321) (-1.172) (0.908) (0.233) (1.967) (1.075) (0.377) (-0.451) (-0.082) (-2.646) 

Class 4 -1.553 
 

-0.800 0.318 2.258 0.305 -0.618 1.474 -7.17*** -2.368 

 
(-0.508) 

 
(-0.251) (0.161) (1.026) (0.171) (-0.344) (0.739) (-3.258) (-1.289) 

Class 5 1.370 
 

5.125 -2.848 
 

-0.121 -1.437 1.906 -1.444 -1.541 

 
(0.448) 

 
(1.550) (-1.555) 

 
(-0.064) (-0.788) (0.944) (-0.647) (-0.827) 

Class 6 
  

-0.500 0.374 
 

-0.0510 0.250 1.518 -2.219 -1.541 

   
(-0.151) (0.182) 

 
(-0.027) (0.137) (0.751) (-0.980) (-0.827) 

Class 7 
  

-4.125 -4.455** 
 

1.178 -0.222 -1.907 
 

-1.854 

   
(-1.248) (-2.349) 

 
(0.639) (-0.126) (-0.991) 

 
(-1.045) 

Class 8 
   

-2.807 
 

0.773 0.0385 
   

    
(-1.298) 

 
(0.414) (0.0199) 

   Class 9 
   

-4.727** 
              (-2.493)             

Obs 65 43 57 122 69 140 129 124 113 135 

R-Sq 0.016 0.046 0.241 0.113 0.058 0.024 0.029 0.083 0.119 0.067 
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Table B1.14 

Score sorting for schools 275-284 

Dependent Variable: Raw Math Score (2004) 

School 275 276 277 280 281 283 284 

Constant 26.78*** 29.89*** 23.92*** 32*** 30.53*** 31.37*** 29.08*** 

 
(20.76) (20.01) (12.82) (25.73) (17.55) (20.89) (19.63) 

Class 2 6.022*** 4.817** 3.294 -0.400 1.217 0.520 1.506 

 
(3.387) (2.247) (1.382) (-0.21) (0.502) (0.255) (0.705) 

Class 3 7.139*** 0.0397 5.655** 3.444* 0.467 1.275 3.923* 

 
(4.183) (0.0176) (2.224) (1.771) (0.186) (0.633) (1.793) 

Class 4 5.813*** 2.040 5.672** 0.231 -0.533 1.272 4.559** 

 
(3.342) (0.903) (2.328) (0.131) (-0.217) (0.608) (2.084) 

Class 5 -1.232 4.799** 3.028 -1.714 -0.475 
  

 
(-0.588) (2.204) (1.257) (-0.99) (-0.199) 

  Class 6 
 

2.549 
 

1.889 1.400 
  

  
(1.170) 

 
(0.971) (0.569) 

  Class 7 
    

1.921 
            (0.718)     

Obs 95 95 80 69 103 72 47 

R-Sq 0.265 0.095 0.086 0.123 0.018 0.008 0.116 
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Table B2.1: Schools 101-113 

G/T sorting for schools 101-113 

Dependent Variable: Gifted/Talented (Probit Regression1) 

School 101 103 104 105 106 108† 109 110 112† 113 

Class 2 -0.0845 -0.075 0.0954 0.127 0.318** 
 

0.0300 -0.075 
 

-0.036 

 
(-0.942) (-0.63) (0.768) (0.952) (1.978) 

 
(0.209) (-0.63) 

 
(-0.23) 

Class 3 -0.0270 -0.025 0.146 0.105 
 

-0.32** 0.0300 0.225* -0.0038 
 

 
(-0.287) (-0.21) (1.159) (0.818) 

 
(-2.30) (0.209) (1.668) (-0.031) 

 Class 4 0.00646 -0.066 -0.028 
   

0.126 0.259* 0.0120 
 

 
(0.0683) (-0.55) (-0.23) 

   
(0.869) (1.932) (0.100) 

 Class 5 -0.0379 
 

0.195 
     

-0.147 
 

 
(-0.418) 

 
(1.518) 

     
(-1.276) 

 Class 6 -0.0327 
       

-0.154 
   (-0.354)               (-1.352)   

Obs 111 77 112 60 28 43 82 82 108 30 

1Reported with marginal effects 

       †These schools have at least one class with zero G/T students. 
    

‡These schools have at least one class with all G/T students. 
     



 

 

1
3
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Table B2.2 

G/T sorting for schools 114-125 

Dependent Variable: Gifted/Talented (Probit Regression1) 

School 114 115 116† 117† 118 119 120† 121 124 125 

Class 2 -0.083 0.0687 
  

0.0151 -0.0237 
 

0.216 0.0605 -0.0626 

 
(-0.71) (0.517) 

  
(0.160) (-0.19) 

 
(1.393) (0.362) (-0.64) 

Class 3 -0.083 0.175 -0.0487 -0.118 
 

-0.0368 0.269* 0.0596 0.225 -0.106 

 
(-0.71) (1.330) (-0.44) (-1.011) 

 
(-0.29) (1.762) (0.381) (1.398) (-1.11) 

Class 4 
 

0.0280 0.216* 0.00860 
 

-0.0368 0.336** 
  

-0.0562 

  
(0.208) (1.831) (0.0689) 

 
(-0.30) (2.163) 

  
(-0.57) 

Class 5 
  

0.121 0.0438 
 

-0.183 
   

-0.0143 

   
(1.017) (0.352) 

 
(-1.48) 

   
(-0.14) 

Class 6 
  

-0.0487 -0.0612 
     

-0.0494 

   
(-0.44) (-0.513) 

     
(-0.49) 

Class 7 
  

-0.0487 0.180 
      

   
(-0.44) (1.392) 

      Class 8 
  

-0.0554 
             (-0.52)               

Obs 67 91 144 136 49 97 62 57 56 124 

1Reported with marginal effects 

       †These schools have at least one class with zero G/T students. 
    ‡These schools have at least one class with all G/T students. 

     



 

 

1
3

3
 

Table B2.3 

G/T sorting for schools 126-135 

Dependent Variable: Gifted/Talented (Probit Regression1) 

School 126 127 128 129 130† 131 132 133 134† 135 

Class 2 0.0548 -0.222 0.175 -0.09 
 

-0.0212 0.0779 0.0224 
 

0.0780 

 
(0.603) (-1.36) (1.238) (-0.88) 

 
(-0.188) (0.710) (0.173) 

 
(0.547) 

Class 3 -0.026 
  

0.0309 
 

0.0582 
 

-0.194 0.263 -0.092 

 
(-0.32) 

  
(0.298) 

 
(0.483) 

 
(-1.43) (0.858) (-0.63) 

Class 4 0.0151 
  

-0.042 0.0159 0.0472 
 

0.0443 -0.101 
 

 
(0.176) 

  
(-0.41) (0.154) (0.401) 

 
(0.348) (-0.30) 

 Class 5 -0.073 
   

0.00486 0.00310 
 

0.176 -0.200 
 

 
(-0.95) 

   
(0.0488) (0.0258) 

 
(1.231) (-0.63) 

 Class 6 -0.065 
   

-0.0461 
   

0.00 
 

 
(-0.81) 

   
(-0.469) 

   
(-0.00) 

 Class 7 -0.071 
   

0.0223 
   

-0.404 
 

 
(-0.91) 

   
(0.211) 

   
(-1.28) 

 Class 8 0.0476 
   

0.159 
   

0.0693 
 

 
(0.535) 

   
(1.368) 

   
(0.189) 

 Class 9 
    

0.0101 
     

     
(0.100) 

     
Obs 171 27 37 89 139 89 47 98 33 67 

1Reported with marginal effects 

       †These schools have at least one class with zero G/T students. 
    ‡These schools have at least one class with all G/T students. 

     



 

 

1
3

4
 

Table B2.4 

G/T sorting for schools 136-148 

Dependent Variable: Gifted/Talented (Probit Regression1) 

School 136 137 139 140 141 142 144 145† 147† 148 

Class 2 0.103 0.402*** 0.173 0.430** 0.124 0.0850 0.0791 
  

-0.38** 

 
(0.769) (2.616) (0.865) (2.223) (0.970) (0.506) (0.625) 

  
(-2.50) 

Class 3 0.0611 0.104 0.00 0.293 
 

0.124 0.153 -0.091 0.201 -0.147 

 
(0.452) (0.662) (-0.00) (1.544) 

 
(0.745) (1.142) (-0.80) (1.398) (-1.04) 

Class 4 0.0486 
 

0.141 
  

0.00 -0.073 0.0388 0.0147 
 

 
(0.366) 

 
(0.721) 

  
(-0.00) (-0.60) (0.325) (0.111) 

 Class 5 
       

-0.028 0.0719 
 

        
(-0.25) (0.539) 

 Class 6 
       

0.123 -0.012 
 

        
(0.947) (-0.10) 

 Class 7 
       

0.149 0.171 
 

        
(1.171) (1.242) 

 Class 8 
       

0.0388 
  

        
(0.325) 

  Obs 80 58 49 43 35 63 67 130 117 45 

1Reported with marginal effects 

       †These schools have at least one class with zero G/T students. 
    ‡These schools have at least one class with all G/T students. 

     



 

 

1
3

5
 

Table B2.5 

G/T sorting for schools 149-161 

Dependent Variable: Gifted/Talented (Probit Regression1) 

School 149 150 152† 153 156 157 158 159† 160 161 

Class 2 0.0966 -0.143 
 

0.0344 0.0964 0.0711 0.164 
 

0.0523 0.0368 

 
(0.678) (-0.92) 

 
(0.332) (0.598) (0.479) (1.100) 

 
(0.551) (0.334) 

Class 3 0.292** 
 

0.0151 0.0872 0.0654 0.300** -0.00841 0.0421 
 

-0.051 

 
(2.031) 

 
(0.208) (0.810) (0.421) (1.983) (-0.061) (0.400) 

 
(-0.49) 

Class 4 0.247* 
 

0.0180 -0.120 0.143 
 

-0.0765 0.168 
 

-0.130 

 
(1.727) 

 
(0.243) (-1.12) (0.895) 

 
(-0.550) (1.483) 

 
(-1.23) 

Class 5 
  

0.0719 
 

0.126 
 

0.164 -0.051 
 

-0.036 

   
(0.887) 

 
(0.801) 

 
(1.100) (-0.52) 

 
(-0.34) 

Class 6 
  

0.0125 
   

0.108 0.0856 
  

   
(0.174) 

   
(0.747) (0.827) 

  Class 7 
      

0.0965 
                 (0.678)       

Obs 90 28 111 87 87 56 128 104 35 113 

1Reported with marginal effects 

       †These schools have at least one class with zero G/T students. 

     ‡These schools have at least one class with all G/T students. 

     



 

 

1
3

6
 

Table B2.6 

G/T sorting for schools 162-173 

Dependent Variable: Gifted/Talented (Probit Regression1) 

School 162 163 164 166† 167† 168 169 170† 171 173† 

Class 2 0.132 0.0652 0.0650 
  

-0.0062 0.500*** 
 

-0.083 
 

 
(0.930) (0.492) (0.474) 

  
(-0.058) (3.106) 

 
(-0.64) 

 Class 3 0.250* 0.0772 -0.0253 0.994*** 0.00682 0.0605 0.123 -0.094 -0.059 -0.0720 

 
(1.795) (0.572) (-0.189) (10.09) (0.0585) (0.572) (0.737) (-0.79) (-0.44) (-0.453) 

Class 4 
  

-0.131 0.994*** 0.0823 -0.0820 0.241 -0.054 -0.053 -0.211 

   
(-0.974) (10.09) (0.710) (-0.830) (1.466) (-0.46) (-0.41) (-1.297) 

Class 5 
  

-0.164 0.990*** 0.0560 -0.0286 0.413** 
  

-0.127 

   
(-1.273) (9.429) (0.475) (-0.287) (2.492) 

  
(-0.785) 

Class 6 
  

-0.0569 0.957 
 

-0.0771 
   

0.413** 

   
(-0.425) 

  
(-0.769) 

   
(2.517) 

Class 7 
  

0.00797 
      

0.447*** 

   
(0.0575) 

      
(2.809) 

          
0.640*** 

          
(4.014) 

Obs 71 57 145 105 91 108 61 91 141 53 

1Reported with marginal effects 

       †These schools have at least one class with zero G/T students. 
     ‡These schools have at least one class with all G/T students. 
     



 

 

1
3

7
 

Table B2.7 

G/T sorting for schools 174-186 

Dependent Variable: Gifted/Talented (Probit Regression1) 

School 174 175 178 180 181 182† 183 184 185 186 

Class 2 0.177 0.0409 -0.0573 0.0631 0.00 
 

-0.21** 0.00294 -0.204 0.177 

 
(1.060) (0.514) (-0.40) (0.560) (-0.00) 

 
(-2.16) (0.0187) (-1.64) (1.070) 

Class 3 0.231 0.00 0.114 0.241** -0.00362 
 

-0.21** 
  

0.104 

 
(1.388) (-0.00) (0.784) (2.018) (-0.034) 

 
(-2.23) 

  
(0.638) 

Class 4 
    

0.133 -0.177* -0.132 
  

0.177 

     
(1.089) (-1.74) (-1.38) 

  
(1.070) 

Class 5 
    

0.252* -0.088 
              (1.939) (-0.95)         

Obs 62 62 84 106 80 59 81 37 43 62 

1Reported with marginal effects 

       †These schools have at least one class with zero G/T students. 
     ‡These schools have at least one class with all G/T students. 

     



 

 

1
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Table B2.8 

G/T sorting for schools 187-198 

Dependent Variable: Gifted/Talented (Probit Regression1) 

School 187 189 190 192 193 194‡ 195† 196 197† 198 

Class 2 -0.044 0.0529 0.199 -0.0463 -0.0926 
  

0.500*** 
 

-0.0127 

 
(-0.42) (0.408) (1.145) (-0.469) (-0.96) 

  
(3.154) 

 
(-0.095) 

Class 3 -0.098 0.143 0.314* 0.103 -0.142 
  

0.00648 -0.039 -0.0354 

 
(-0.95) (1.171) (1.766) (1.002) (-1.51) 

  
(0.0393) (-0.41) (-0.258) 

Class 4 -0.051 
 

0.329* 0.00976 -0.21** -0.191 0.609*** 
 

-0.099 
 

 
(-0.49) 

 
(1.892) (0.100) (-2.10) (-1.255) (3.788) 

 
(-1.00) 

 Class 5 
     

0.151 0.628*** 
   

      
(1.112) (3.367) 

   Class 6 
     

0.679*** 0.372** 
   

      
(3.819) (2.049) 

   

           

           

           
Obs 78 70 87 81 70 81 72 57 52 63 

1Reported with marginal effects 
       †These schools have at least one class with zero G/T students. 

     ‡These schools have at least one class with all G/T students. 

     



 

 

1
3

9
 

Table B2.9: Schools 199-209 

G/T sorting for schools 199-209 

Dependent Variable: Gifted/Talented (Probit Regression1) 

School 199 200 201 202 203† 204† 205 206 207 209 

Class 2 -0.063 0.505** -0.114 0.0842 
  

0.0233 0.0471 0.0899 0.0297 

 

(-
0.88) (2.143) (-0.90) (0.657) 

  
(0.175) (0.343) (0.556) (0.232) 

Class 3 -0.085 0.631*** -0.044 0.0185 -0.095 -0.26** -0.024 0.125 0.193 -0.113 

 
(1.13) (2.856) (-0.33) (0.142) (-0.99) (-2.49) (-0.18) (0.883) (1.133) (-0.96) 

Class 4 -0.101 0.173 -0.031 0.148 -0.035 -0.149 -0.125 
 

0.567*** -0.059 

 
(1.35) (0.624) (-0.23) (1.117) (-0.35) (-1.51) (-0.97) 

 
(3.273) (-0.48) 

Class 5 
 

0.370 0.0308 
 

0.193* -0.023 0.0689 
 

0.261 -0.093 

  
(1.534) (0.221) 

 
(1.657) (-0.21) (0.513) 

 
(1.505) (-0.77) 

Class 6 
  

-0.105 
 

-0.100 -0.085 0.182 
  

-0.211* 

      (-0.82)   (-1.04) (-0.84) (1.334)     (-1.86) 

Obs 78 63 90 63 95 113 135 57 108 118 

1Reported with marginal effects 

       †These schools have at least one class with zero G/T 
students. 

     ‡These schools have at least one class with all G/T students. 

     



 

 

1
4
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Table B2.10 

G/T sorting for schools 210-219 

Dependent Variable: Gifted/Talented (Probit Regression1) 

School 210 211 212† 213† 214 215 216† 217 2‡ 218 219 

Class 2 0.0284 0.0458 
  

-0.067 0.0575 
  

0.178 0.0147 

 
(0.194) (0.486) 

  
(-0.40) (0.476) 

  
(1.162) (0.114) 

Class 3 0.00 -0.087 0.0808 -0.053 0.00 0.0500 -0.0794 
 

0.329** -0.0478 

 
(-0.00) (-0.99) (0.343) (-0.42) (-0.00) (0.420) (-0.952) 

 
(2.110) (-0.371) 

Class 4 0.0835 -0.083 -0.036 0.203 0.130 0.129 -0.121 
 

0.165 0.369*** 

 
(0.586) (-0.95) (-0.17) (1.612) (0.745) (1.013) (-1.467) 

 
(1.097) (2.766) 

Class 5 0.0363 0.0123 0.109 
 

-0.150 
 

-0.00736 
 

0.165 
 

 
(0.258) (0.133) (0.530) 

 
(-0.93) 

 
(-0.081) 

 
(1.097) 

 Class 6 -0.053 
   

0.0502 
 

-0.0874 
 

0.100 
 

 
(-0.38) 

   
(0.282) 

 
(-1.071) 

 
(0.678) 

 Class 7 
      

-0.0479 
 

0.238 
 

       
(-0.561) 

 
(1.537) 

 Class 8 
        

0.178 
                   (1.162)   

Obs 120 99 44 63 89 83 122   169 92 

1Reported with marginal effects 
       2No variation in G/T status 

        †These schools have at least one class with zero G/T 
students. 

     ‡These schools have at least one class with all G/T students. 
     



 

 

1
4
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Table B2.11 

G/T sorting for schools 220-232 

Dependent Variable: Gifted/Talented (Probit Regression1) 

School 220 222 223 224 225† 226† 
228 

2 229 230† 232 

Class 2 0.504*** 0.0660 0.00433 -0.089 
   

0.158 
 

0.199 

 
(3.238) (0.528) (0.0488) (-0.75) 

   
(1.046) 

 
(1.458) 

Class 3 0.00823 0.126 
 

-0.089 -0.067 0.00386 
 

0.156 0.201 0.248* 

 
(0.0558) (0.971) 

 
(-0.75) (-0.59) (0.0354) 

 
(0.972) (1.008) (1.799) 

Class 4 0.369** 0.161 
  

0.0590 0.192* 
 

0.370** 0.491*** 0.210 

 
(2.373) (1.242) 

  
(0.492) (1.718) 

 
(2.250) (2.609) (1.511) 

Class 5 0.0170 0.0209 
  

0.0590 
  

0.244 
 

0.128 

 
(0.114) (0.168) 

  
(0.492) 

  
(1.488) 

 
(0.974) 

Class 6 
 

0.0752 
     

0.193 
 

0.136 

    (0.592)           (1.160)   (1.020) 

Obs 109 137 43 63 80 85   110 44 130 

1Reported with marginal effects 
       2No variation in G/T status 

        †These schools have at least one class with zero G/T students. 

     ‡These schools have at least one class with all G/T students. 
     



 

 

1
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Table B2.12 

G/T sorting for schools 233-262 

Dependent Variable: Gifted/Talented (Probit Regression1) 

School 233 235 236 237† 241 2 250 251 256 259 2 262 

Class 2 0.0410 0.0888 -0.0753 
  

0.276* -0.119 -0.0941 
 

0.122 

 
(0.266) (0.641) (-0.584) 

  
(1.812) (-1.001) (-0.614) 

 
(0.665) 

Class 3 -0.194 0.0455 -0.0121 
  

-0.132 -0.251** 
  

0.280 

 
(-1.283) (0.327) (-0.0920) 

  
(-0.74) (-2.438) 

  
(1.434) 

Class 4 -0.0147 
 

-0.0232 -0.0927 
  

-0.259** 
  

-0.0394 

 
(-0.097) 

 
(-0.178) (-0.892) 

  
(-2.505) 

  
(-0.219) 

Class 5 
   

-0.147 
  

-0.186* 
  

0.0700 

    
(-1.421) 

  
(-1.701) 

  
(0.376) 

Class 6 
   

0.00 
  

-0.305*** 
  

-0.0955 

    
(-0.00) 

  
(-3.015) 

  
(-0.509) 

Class 7 
   

-0.0370 
      

    
(-0.338) 

      Class 8 
   

-0.00941 
              (-0.0864)             

Obs 70 69 73 108   50 119 32   75 

1Reported with marginal effects 
       2No variation in G/T status 

        †These schools have at least one class with zero G/T students. 

     ‡These schools have at least one class with all G/T students. 

     



 

 

1
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Table B2.13 

G/T sorting for schools 263-273 

Dependent Variable: Gifted/Talented (Probit Regression1) 

School 263 264 265 267† 268 269 270 271 272 273† 

Class 2 0.137 0.0825 -0.124 
 

0.0596 0.272* 0.123 0.00181 0.138 
 

 
(1.051) (0.544) (-0.89) 

 
(0.525) (1.656) (1.035) (0.0176) (1.037) 

 Class 3 -0.054 -0.053 -0.255* 
 

-0.0863 0.272* 0.184 0.0406 0.0822 
 

 
(-0.41) (-0.34) (-1.80) 

 
(-0.756) (1.656) (1.466) (0.389) (0.637) 

 Class 4 
 

0.00 
  

0.0747 0.319* 0.123 -0.0537 0.0756 -0.065 

  
(-0.00) 

  
(0.636) (1.932) (1.035) (-0.551) (0.595) (-0.71) 

Class 5 
 

0.251 
 

0.00 0.195 
 

0.0713 0.00949 0.0822 -0.053 

  
(1.542) 

 
(-0.00) (1.639) 

 
(0.623) (0.0905) (0.637) (-0.57) 

Class 6 
   

0.0866 0.0747 
 

0.123 -0.0430 0.194 -0.112 

    
(0.423) (0.636) 

 
(1.035) (-0.427) (1.398) (-1.23) 

Class 7 
   

0.102 -0.0023 
 

-0.048 0.00181 0.138 
 

    
(0.469) (-0.020) 

 
(-0.44) (0.0176) (1.037) 

 Class 8 
    

0.00987 
 

-0.048 0.0180 
  

     
(0.0832) 

 
(-0.44) (0.168) 

  Class 9 
    

0.0920 
               (0.755)           

Obs 63 90 52 43 181 91 176 165 152 88 

1Reported with marginal effects 

       2No variation in G/T status 
        †These schools have at least one class with zero G/T students. 

     ‡These schools have at least one class with all G/T students. 
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Table B2.14 

G/T sorting for schools 274-284 

Dependent Variable: Gifted/Talented (Probit Regression1) 

School 274 275† 276 277† 280 281 283 284 

Class 2 0.0561 
 

0.0566 
 

-0.0422 0.0739 -0.0083 0.0214 

 
(0.582) 

 
(0.539) 

 
(-0.418) (0.521) (-0.065) (0.194) 

Class 3 -0.0474 0.102 -0.053 -0.19* -0.0976 0.150 0.0352 -0.027 

 
(-0.556) (0.774) (-0.55) (-1.88) (-0.994) (1.023) (0.276) (-0.24) 

Class 4 0.00417 -0.0640 0.0566 -0.100 0.0449 -0.097 0.138 0.0214 

 
(0.0466) (-0.517) (0.539) (-1.05) (0.416) (-0.68) (1.048) (0.194) 

Class 5 -0.0474 -0.0100 0.0566 -0.026 0.0543 0.0739 
  

 
(-0.556) (-0.080) (0.539) (-0.26) (0.492) (0.521) 

  Class 6 0.00869 
 

-0.053 
 

-0.0066 0.0739 
  

 
(0.0954) 

 
(-0.55) 

 
(-0.065) (0.521) 

  Class 7 0.134 
   

-0.0365 0.0450 
  

 
(1.288) 

   
(-0.354) (0.282) 

  Class 8 
        

         Class 9 
                          

Obs 153 90 115 102 136 123 84 78 
1Reported with marginal effects 

      2No variation in G/T status 
      †These schools have at least one class with zero G/T students. 
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