Concentration in the international construction market
Kunhui Ye †; Weisheng Lu ‡; Weiyan Jiang *
† Faculty of Construction Management and Real Estate, Chongqing University, P.R. China
‡ Department of Real Estate and Construction, The University of Hong Kong, P.R. China

Online publication date: 17 December 2009

To cite this Article Ye, Kunhui, Lu, Weisheng and Jiang, Weiyan(2009) 'Concentration in the international construction market', Construction Management and Economics, 27: 12, 1197 — 1207
To link to this Article DOI: 10.1080/01446190903222429
URL: http://dx.doi.org/10.1080/01446190903222429

PLEASE SCROLL DOWN FOR ARTICLE
Concentration in the international construction market

KUNHUI YE,¹* WEISHENG LU² and WEIYAN JIANG¹

¹Faculty of Construction Management and Real Estate, Chongqing University, P.R. China
²Department of Real Estate and Construction, The University of Hong Kong, P.R. China

Received 28 February 2009; accepted 23 July 2009

With the involvement of an increasing number of contractors in the international construction market, venturing overseas has been fraught with fierce competition and considerable uncertainties. This underscores the importance of examining the extent to which the intensity of competition (IoC) for international construction business is moderate. Concentration is a conventional IoC measure. By synthesizing four major concentration methods including concentration ratio, entropy, Gini coefficient and the Herfindahl index, a new model for measuring moderate IoC is thus proposed. Using the 28 years ENR-based data of the top 225 international contractors (TIC 225) in the proposed model, the IoC for international construction business is found to be moderate, if the magnitude of the market shares occupied by the top four international contractors is 0.2735. The finding revises a popular view that international construction competition has been intensifying only since 2002. It is implied that the proposed model favours a better understanding of competition characteristics in the international construction market and provides new insights into the theories about concentration.

Keywords: International construction market, business concentration, intensity of competition, moderate competition.

Introduction

The 21st century is characterized by advanced technology, fast transportation, convenient communication, integrated markets and trade liberalization. These new characteristics have accelerated the internationalization of construction businesses, and few contractors find that they can be exempt from this trend (Raftery et al., 1998; Loosemore, 1999; Korkmaz and Messener, 2007). On the one hand, many construction firms adopt venturing overseas as a major strategy to ensure continued growth. They make due response to business competition in cross-border markets. On the other hand, they have to struggle against foreign rivals in their domestic markets. The construction business is nowadays both a local and an international practice.

With the increasing internationalization of the construction market, there is a popular view that the intensity of competition (IoC) has been increasing and the international market has consequently much volatility. For instance, Ofori (2003) opined that involving contractors from China, South America, South-East Asia and Africa, the international market will be more competitive. Low et al. (2004) disclosed that as a result of intense competition, the international involvement of top British contractors has declined from a peak in 1996, while there is an increasing presence of Chinese contractors in the international arena. Although competition in the construction market worldwide has been an all-pervading phenomenon, it is considered that a moderate IoC deserves attention. This is because little or no competition is not good for the effectiveness and efficiency of the deployment of construction resources, while over-competition can result in serious market failure (Akintoye and Skitmore, 1991; Ball et al., 2000).

The IoC has been measured in a number of ways typically including concentration, market mobility and market instability (Barla, 1999; Bajo and Salas, 2002). Among the existing approaches, concentration is a conventional instrument that measures competition intensity by quantifying the extent to which market shares are distributed among incumbents (Bajo and Salas, 2002; Egghe, 2005). The rationale behind the
concentration-based measurement is that a high degree of concentration in an industry conveys an image of weak competition, while those industries wherein numerous businesses have parallel market shares are deemed as highly competitive (Boone, 2001). Concentration is thus an indirect measure of competition intensity.

Employing concentration approaches to measure competition intensity is prevalent in the area of construction management and economics. Chiang et al. (2001) found that construction business in the building sector was less concentrated than that in the civil engineering sector in Hong Kong. McCloughan (2004) illustrated little concentration phenomenon in the British construction market. There are still other related studies addressing parallel findings that construction firms appear to have equivalent market powers, construction business is unconcentrated, and the construction market is fiercely competitive (Langford and Male, 2001; Wang, 2004). Notwithstanding considerable research devoted to the subject of competition intensity, little effort has been put into researching moderate IoC in the international construction market. As stated earlier, little competition or over-competition can both bring about market failure, while a moderate IoC is good for the long-run development of the international construction market.

The purpose of this study is therefore to examine what moderate IoC is in the international construction market from the perspective of market concentration. The study offers new insights into international construction competition. Through such an examination, it is possible for international contractors to gauge competition pressure, and thus appropriate competitive strategies can be devised to address this competition. The paper is divided into four parts. First, previous theories about market concentration are reviewed critically. In the following ‘methods’ section, a new concentration approach is proposed based on the critical review. Data collection methods are introduced. Then it moves on to the data analyses and discussions of IoC in the international construction arena. Lastly, conclusions are drawn.

Measures of concentration

Theories on concentration

Concentration theories are an important part of the structure-conduct-performance paradigm in the discipline of industrial economics (Bird, 1999; McCloughan, 2004). The concern about concentration can be traced back as early as to the development of the theories of imperfect and monopolistic competition in the 1930s (Utton, 1970). Since then, substantial research has been conducted to investigate the application of concentration theories in different industrial sectors.

Research has pinpointed the impact of concentration on various aspects of the structure-conduct-performance paradigm, e.g. industrial profitability (Bonardi, 2001), advertising (Shepherd and Shepherd, 2004), innovation (Shrives, 1978; Boone, 2001), pricing (Bonanno and Haworth, 1998), differentiation (Shepherd and Shepherd, 2004), specialization (George, 1972), diversification (Carlton and Perloff, 2005), market entry barriers (Lipczynski and Wilson, 2001), industrial wage (Haworth and Reuther, 1978), and competition policies (Wang, 2004). The measurement of concentration supports governmental decision-making on deterring any collusive or anti-competitive behaviours (Bird, 1999).

On the other hand, concentration is determined by multiple factors including business diversity (Miller, 1969), market entry barriers (Wenders, 1971), market growth (Shepherd, 1964) and market size (Neumann et al., 2001). It seems that the term ‘concentration’ has become multidimensional, referring to the concentration of economic power, market power, oligopoly power, competition intensity and market efficiency. The multidimensional nature complicates the measurement of concentration.

Concentration measures

There are four dominant approaches to measuring concentration, namely, concentration ratio (CR$_n$), Herfindahl index (HL$_n$), entropy (EN) and Gini coefficient (GINI). More detail about these four concentration measures is given in Table 1. It can be seen from the column ‘model’ of Table 1 that the calculation of the four concentration indexes is mainly based on firm i's market share (S_i) and firm number (n).

Concentration ratio (CR$_n$) can be calculated as the percentage of the outputs occupied by the n largest firms in relation to a given market. The extremes of CR$_n$ values are zero and one, representing perfect competition and little competition (monopoly) respectively. For example, van Kranenburg (2002) employed the measure CR$_4$ to address the status of market competition, and suggested that the industry is highly competitive if CR$_4$ is close to 0. In contrast, it means that the market is close to a monopoly when CR$_4$ is near to 1. It is one of the most commonly used concentration measures because of the relatively easy collection of data in terms of the largest n (normally 4 or 8) companies and their market shares.

Although CR$_n$ has many applications, criticism of CR$_n$ is largely focused on its two major inadequacies. First, the measure only accounts for the market powers owned by a few largest firms without taking into...
account the other firms in the market. Second, the equal-weight setting in the CRn construct oversimplifies the substantial difference in market powers of the investigated n largest firms. As an alternative, the Herfindahl index (HI) envisages the presence of all firms by weighting each according to their relative market shares. As can be seen from Table 1, HI ranges from zero (perfect competition) to one (little competition). An increase in HI value equals a decrease in competition intensity.

Entropy (EN) measures the uncertainty/probability of a random variable in information theory (Yu, 2000). The process of business competition is so interactive, complex and dynamic that not all competitors can always outperform their counterparts (Bengtsson, 1998). Therefore, concentration of market shares as a consequence of business competition appears to be an accident. Many researchers have thus used EN to reflect the process of business rivalry, the distribution of marker power among incumbent firms and the corresponding status of market competition (Horowitz and Horowitz, 1968). The higher the IoC level, the lower the probability that firms can outdo their competitors. Entropy and industrial concentration are inversely related.

Gini coefficient (GINI) is directly linked to the well-known Lorenz curve that is defined as a ratio with values varying between zero and one in describing the distribution of income, wealth and business. GINI can be derived by quantifying the deviation of the distribution of market shares held by all firms from a current status to the equal situation where each firm has identical market share (Baldwin and Gorecki, 1994; Egghe, 2005). As a general rule, the decrease in GINI indicates the approach of the market to the equal situation and a higher intensity of competition, while a larger coefficient mirrors a more unequal distribution and a lower IoC accordingly.

The merits and demerits of concentration measures have long been debated in previous studies. For instance, Davies (1979) developed an Iso-concentration approach to unveil the close similarities between the above four measures. Kwoka (1981) illustrated that the choice of concentration measures does matter to a large extent. Bailey and Boyle (1971) claimed that few concentration indexes are superior to others, while Hall and Tideman (1967) asserted that the measure HI is more effective. The debate on concentration measures has not pinpointed a good way for understanding moderate IoC, but it does suggest using an individual measure for the investigation of market concentration may not be robust. There is a need for a new model with greater robustness to measure market concentration and in turn to inform moderate IoC.

Research methods

Proposing a new model for measuring moderate IoC

The inadequacy of single measure (e.g. CRn, HI, EN, and GINI) for the investigation of market concentration necessitates the exploration of an improved concentration measure, which ideally could eliminate the demerits of previous studies while keep their merits. Moreover, the new model should inform moderate IoC in the international construction market, which we are concerned with in this study. According to the definitions shown in Table 1, the decrease in EN value suggests that the incumbent firms are able to win business competition with higher probabilities, thus the market is more attractive to potential competitors. Meanwhile, the decrease in EN value presents an increase in the dominance of a few largest firms as well as the level of market inequality that can be measured.

Table 1 Models of concentration measures

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Model</th>
<th>Range</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRn</td>
<td>Aggregating the market shares of the n largest firms, where n is usually 4</td>
<td>$CR_n = \sum_{i=1}^{n} S_i$</td>
<td>(4/n, 1)</td>
<td>Baldwin and Gorecki (1994); Wang (2004)</td>
</tr>
<tr>
<td>HI</td>
<td>Accumulating the market shares of all the firms by weighting the corresponding market sales</td>
<td>$HI = \sum_{i=1}^{n} S_i^2$</td>
<td>(1/n, 1)</td>
<td>Ghosh (1975); Davies (1979)</td>
</tr>
<tr>
<td>EN</td>
<td>Measuring the degree of disorder, uncertainty, or randomness to reflect competition intensity</td>
<td>$EN = \sum_{i=1}^{n} S_i \log(1/S_i)$</td>
<td>(0, logn)</td>
<td>Davies (1979); Sawyer (1985)</td>
</tr>
<tr>
<td>GINI</td>
<td>Measuring the extent to which businesses in a market are unequal in firm size distribution</td>
<td>$GC = \frac{n+1}{n-1} - \frac{2}{n(n-1)\mu} \sum_{i=1}^{n} (N_i S_i)$</td>
<td>(0, 1)</td>
<td>Guth (1971); Ghosh (1975); White (1976)</td>
</tr>
</tbody>
</table>

When n is very large, the ranges of both CRn and HI will be (0, 1).

Notes: S_i firm i’s market share; n, firm number; N_i, the rank of firm i; μ, mean market share of all firms.
by GINI. This further enables greater market entry barriers posed by the largest firms to impede the entrance of potential competitors. Researchers have pointed out that the occurrence of greater entry barriers can force the market away from its contestable status (Bain, 1956; Bengtsson, 1998). Therefore, the lower the market entry barriers are, the better the market is, and thus the lower the GINI should be. This interactive process signals the potential intersection of EN and GINI where the desirable IoC (or concentration status) can be recorded as shown in Figure 1.

As discussed above, the measure HI is better than CR$_n$ in reflecting competition intensity, but the difficulty of collecting data for HI undermines the applicability to the construction market. While on the other hand CR$_n$ is an acceptable measure for concentration and it is an easy-to-calculate indicator of concentration with statistics usually available in many governmental periodical compilations. It is therefore the intent of this research to use CR$_n$ to construct EN, GINI, and HI. This is possible because the above discussion on the four concentration measures favours the recognition of conceptual relationships between EN, HI, GINI and CR$_n$ as shown in Table 2. In order for them to join in the calculation, different concentration measures with different ranges need to be normalized. Equation 1 to 3 serve this purpose. GINI index needs no normalization as its range is (0, 1) already.

Normalized Herfindahl index (HI):

$$NHI = \frac{(HI - 1/n)}{(1 - 1/n)}$$ (1)

Normalized concentration ratio (CR$_n$):

$$NCR_n = \frac{(CR_n - 4/n)}{(1 - 4/n)}$$ (2)

Normalized entropy index (EN):

$$NEN = \frac{(EN - 0)}{\log n} = \frac{EN}{\log n}$$ (3)

Therefore, a function is proposed as shown in Equation 4, although at this stage, specific relationships between the four concentration measures are still awaiting further exploration:

$$NHI = f(NCR_n)$$ indicates the moderate IoC of a market

where NCR$_n$ is subject to functions GINI = f (NCR$_n$); NEN = f (NCR$_n$); and GINI = NEN.

Data collection for investigating moderate IoC in the international construction market

International construction usually refers to the construction works undertaken by companies outside their home countries. Many international construction companies have a diversity of businesses in terms of architecture, engineering and construction. They are also able to simultaneously compete for project contracts in various countries. It is quite difficult, if not completely impossible, to collect data per business competition and to identify those contractors who have international businesses. Hence, data on construction activities are usually poor and erratic whether domestic or international (Ruddock, 2002).
Data analysis

Annual IRs of the TIC 225 spanning from 1981 to 2008 are transferred into relative market shares to derive the indices of CR₄, EN, HI, and GINI. The derived indices are then normalized by using Equations 1 to 3 as shown above. Results of the calculation are presented in Table 3.

The curve regression embedded in SPSS is applied to determine the most suitable functions NHI = f (NCR₄), GINI = f (NCR₄), and NEN = f (NCR₄) as pursued in Equation 4. The functional relationships between the four concentration measures are shown in Figure 2. The resultant model parameters are described separately in Table 4.

Using the parameters in Table 4 and Equation 2 functions NHI, GINI and NEN can be rewritten as follows and described graphically in Figure 3. It can be seen that NEN and GINI intersect at a point where NCR₄ is 0.2603. According to the description as shown in Figure 1, this is the point indicating the moderate IoC in the international construction market. As shown in Figure 3, at this point where NCR₄ is 0.2603, a moderate IoC expressed in NHI is 0.3052.

\[
NHI = 0.607 \left(\frac{CR_4 - 4/n}{1 - 4/n} \right)^2 + 1.030 \left(\frac{CR_4 - 4/n}{1 - 4/n} \right) - 0.004
\]

\[
GINI = 0.921 - 0.040 \left(\frac{1 - 4/n}{CR_4 - 4/n} \right)
\]

\[
NEN = 0.595 \left(\frac{CR_4 - 4/n}{1 - 4/n} \right)^{-0.189}
\]

Many researchers have pointed out the weakness of concentration measures especially in terms of data availability (Adelman, 1951; Parker, 1991; McCloughan, 2004). Many concentration ratios are not made available in official publications, which typically include information on the size distribution of firms, as it is not permitted to disclose commercial data for individual firms (McCoughan and Abounoori, 2003). Thus, researchers commonly opt for the most readily available measure, CR₄ (Boyes and Smyth, 1979; Wang, 2004). Compared with the equations shown in Table 1, Equations 5–7 are more applicable as they are built on CR₄ rather than commercial data for all individual firms. Furthermore, using these equations, it is expected to be able to detect the level of moderate concentration if only GINI equals to NEN.

Findings and discussion

Understanding international construction market by using the Moderate IoC Model

Based on the above analysis, it can be seen that the new model can inform a moderate intensity of competition (IoC) in a given market. By synthesizing existing concentration measures, the Moderate IoC Model suggests that the intersection between GINI and EN indicates that the competition within a market is moderate; the market is contestable from the perspectives of market entry barriers and winning business
competition. The Moderate IoC Model also avoids the
demerits of existing concentration measures. CR is a
rough measure of market concentration but calculating
CR is relatively easier in terms of data availability. HI
is a better measure than HI in reflecting competition
intensity, but the difficulty of collecting data for HI
undermines its wider applicability. The shortcomings
are overcome in this research by using CR to construct
EN, GINI and HI.
 By applying 28 years’ data from ENR to the Moderate
IoC Model, it is found that the intensity of competition
in the international construction market is moderate
when normalized CR (NCR) is 0.2603 and the indices
of NHI, GINI, and NEN are 0.3052, 0.7673, and
0.7673 respectively. By applying the normalized indices
into Equations 1 to 3, the values of CR, HI, and EN
are derived, namely, 0.2735, 0.3083, and 1.8049
respectively. In other words, the IoC in the international
market construction market is moderate when CR is
0.2735 and HI is 0.3083. This gives a reference point
against which the IoC level in the international
construction market can be compared. The closer the
NHI value to the point (where HI is 0.3083) indicated
by the intersection of NEN and GINI, the more appro-
priate the concentration status as well as the IoC level.

IoC as expressed in NHI over the study period 1981
to 2008 is calculated and shown in Figure 4. It can be
seen that the international construction competition
was relatively moderate in three years, namely 1992,
2001 and 2004. A significant variation in IoC over the
study period 1981 to 2008 is also noted; the competi-
tion intensity in the international construction market
during the period has exhibited a wavy trend. This
revises a view presented earlier in this paper that the
competition for international construction business has
been intensifying only since 2002. Actually, from 2002
to 2008, sometimes the IoC is close to the moderate
level, while at other times it deviates from the level.

Comparing the Moderate IoC Model with
previous concentration studies

To some extent, the research findings contradict
previous concentration studies conducted in contexts

<table>
<thead>
<tr>
<th>Year</th>
<th>CR</th>
<th>EN</th>
<th>HI</th>
<th>GINI</th>
<th>NCR</th>
<th>NEN</th>
<th>NHI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>0.2334</td>
<td>1.9569</td>
<td>0.2281</td>
<td>0.6676</td>
<td>0.2196</td>
<td>0.8319</td>
<td>0.2247</td>
</tr>
<tr>
<td>1982</td>
<td>0.1543</td>
<td>2.0563</td>
<td>0.1509</td>
<td>0.5965</td>
<td>0.1390</td>
<td>0.8742</td>
<td>0.1471</td>
</tr>
<tr>
<td>1983</td>
<td>0.1491</td>
<td>2.0417</td>
<td>0.1511</td>
<td>0.6165</td>
<td>0.1337</td>
<td>0.8680</td>
<td>0.1473</td>
</tr>
<tr>
<td>1984</td>
<td>0.2223</td>
<td>2.0068</td>
<td>0.2031</td>
<td>0.6246</td>
<td>0.2082</td>
<td>0.8532</td>
<td>0.1996</td>
</tr>
<tr>
<td>1985</td>
<td>0.2381</td>
<td>1.9429</td>
<td>0.2563</td>
<td>0.6689</td>
<td>0.2243</td>
<td>0.8260</td>
<td>0.2529</td>
</tr>
<tr>
<td>1986</td>
<td>0.2195</td>
<td>1.9502</td>
<td>0.2170</td>
<td>0.6782</td>
<td>0.2054</td>
<td>0.8291</td>
<td>0.2135</td>
</tr>
<tr>
<td>1987</td>
<td>0.1967</td>
<td>1.9877</td>
<td>0.1911</td>
<td>0.6538</td>
<td>0.1822</td>
<td>0.8450</td>
<td>0.1875</td>
</tr>
<tr>
<td>1988</td>
<td>0.1508</td>
<td>2.0514</td>
<td>0.1450</td>
<td>0.6140</td>
<td>0.1354</td>
<td>0.8721</td>
<td>0.1412</td>
</tr>
<tr>
<td>1989</td>
<td>0.1896</td>
<td>1.9700</td>
<td>0.1912</td>
<td>0.6696</td>
<td>0.1749</td>
<td>0.8375</td>
<td>0.1875</td>
</tr>
<tr>
<td>1990</td>
<td>0.2111</td>
<td>1.8746</td>
<td>0.2352</td>
<td>0.7392</td>
<td>0.1968</td>
<td>0.7970</td>
<td>0.2318</td>
</tr>
<tr>
<td>1991</td>
<td>0.2026</td>
<td>1.8856</td>
<td>0.2283</td>
<td>0.7367</td>
<td>0.1882</td>
<td>0.8016</td>
<td>0.2249</td>
</tr>
<tr>
<td>1992</td>
<td>0.2731</td>
<td>1.7934</td>
<td>0.3043</td>
<td>0.7778</td>
<td>0.2600</td>
<td>0.7624</td>
<td>0.3012</td>
</tr>
<tr>
<td>1993</td>
<td>0.3132</td>
<td>1.7661</td>
<td>0.3514</td>
<td>0.7838</td>
<td>0.3007</td>
<td>0.7508</td>
<td>0.3485</td>
</tr>
<tr>
<td>1994</td>
<td>0.2494</td>
<td>1.8432</td>
<td>0.2657</td>
<td>0.7544</td>
<td>0.2358</td>
<td>0.7836</td>
<td>0.2624</td>
</tr>
<tr>
<td>1995</td>
<td>0.1904</td>
<td>1.9559</td>
<td>0.1915</td>
<td>0.6912</td>
<td>0.1757</td>
<td>0.8315</td>
<td>0.1879</td>
</tr>
<tr>
<td>1996</td>
<td>0.1638</td>
<td>1.9635</td>
<td>0.1742</td>
<td>0.6913</td>
<td>0.1487</td>
<td>0.8348</td>
<td>0.1705</td>
</tr>
<tr>
<td>1997</td>
<td>0.1766</td>
<td>1.9484</td>
<td>0.1842</td>
<td>0.7008</td>
<td>0.1617</td>
<td>0.8283</td>
<td>0.1806</td>
</tr>
<tr>
<td>1998</td>
<td>0.2121</td>
<td>1.9015</td>
<td>0.2175</td>
<td>0.7268</td>
<td>0.1978</td>
<td>0.8084</td>
<td>0.2140</td>
</tr>
<tr>
<td>1999</td>
<td>0.1845</td>
<td>1.9179</td>
<td>0.2016</td>
<td>0.7179</td>
<td>0.1697</td>
<td>0.8154</td>
<td>0.1981</td>
</tr>
<tr>
<td>2000</td>
<td>0.2104</td>
<td>1.8419</td>
<td>0.2428</td>
<td>0.7634</td>
<td>0.1961</td>
<td>0.7831</td>
<td>0.2394</td>
</tr>
<tr>
<td>2001</td>
<td>0.2664</td>
<td>1.7850</td>
<td>0.3042</td>
<td>0.7838</td>
<td>0.2531</td>
<td>0.7589</td>
<td>0.3011</td>
</tr>
<tr>
<td>2002</td>
<td>0.3144</td>
<td>1.7582</td>
<td>0.3700</td>
<td>0.7861</td>
<td>0.3020</td>
<td>0.7475</td>
<td>0.3672</td>
</tr>
<tr>
<td>2003</td>
<td>0.2997</td>
<td>1.7586</td>
<td>0.3424</td>
<td>0.7936</td>
<td>0.2870</td>
<td>0.7476</td>
<td>0.3395</td>
</tr>
<tr>
<td>2004</td>
<td>0.2607</td>
<td>1.7695</td>
<td>0.3118</td>
<td>0.7900</td>
<td>0.2473</td>
<td>0.7523</td>
<td>0.3087</td>
</tr>
<tr>
<td>2005</td>
<td>0.2573</td>
<td>1.7897</td>
<td>0.3006</td>
<td>0.7797</td>
<td>0.2439</td>
<td>0.7609</td>
<td>0.2974</td>
</tr>
<tr>
<td>2006</td>
<td>0.2409</td>
<td>1.8144</td>
<td>0.2842</td>
<td>0.7653</td>
<td>0.2271</td>
<td>0.7714</td>
<td>0.2810</td>
</tr>
<tr>
<td>2007</td>
<td>0.2309</td>
<td>1.8499</td>
<td>0.2619</td>
<td>0.7476</td>
<td>0.2169</td>
<td>0.7865</td>
<td>0.2586</td>
</tr>
<tr>
<td>2008</td>
<td>0.2020</td>
<td>1.8909</td>
<td>0.2291</td>
<td>0.7262</td>
<td>0.1876</td>
<td>0.8039</td>
<td>0.2257</td>
</tr>
</tbody>
</table>
Concentration of international construction

Figure 2 Functional relationships between the four concentration measures

Note: Linear, logarithmic, inverse, quadratic, cubic, compound, power, S, growth, exponential, and logistic models are compared for the choice of the best function forms.

Table 4 Model summary and parameter estimates

<table>
<thead>
<tr>
<th>Expression</th>
<th>Model summary</th>
<th>Parameter estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHI = f (NCR4)</td>
<td>Quadratic</td>
<td>R Square 0.948</td>
</tr>
<tr>
<td>GINI = f (NCR4)</td>
<td>Inverse</td>
<td>Std. errors of the estimate 0.015</td>
</tr>
<tr>
<td>NEN = f (NCR4)</td>
<td>Power</td>
<td>F 227.059 df1 2 df2 25 Sig. 0.000</td>
</tr>
</tbody>
</table>

Note: The independent variable is NCR4.
(e.g. domestic economy) other than the international construction market. Baldwin and Gorecki (1994) claimed that an industry with CR₄ above 75% is more conducive to a ‘competition problem’ that undermines the role of the market in resource allocation. As such, it appears that the international construction market has been good since 1981, for all the CR₄ values (Table 3) are considerably lower than this alert level. However, according to Oster (1999), competition statuses can be classified into four groups in accordance with CR₄ values, namely, highly concentrated oligopoly (1.00–0.75), moderately concentrated oligopoly (0.50–0.749), oligopoly (0.25–0.499), and atomism (0.00–0.249). The competition for international construction in the past 28 years satisfies Oster’s definition of atomism, thus, the market has been over-competitive for a long time.

The Herfindahl index (HI) can be used to gauge potential adverse competitive effects imposed by a merger and market efficiency. For instance, in the

Figure 3 Moderate IoC in the international construction market

Figure 4 Annual NHI in the international construction market (1981–2008)
United States, a post-merger HI below 0.1000 in a market is deemed as unconcentrated and above 0.1800 is regarded as highly concentrated (DjFTC, 1997). The larger the extent to which HI exceeds 0.1800, the less the competition will be in the market. Therefore, it is widely accepted that industries with HI values over 0.1800 have insufficient competition (Oster, 1999). However, this is not the case in the context of international construction; as suggested by the Moderate IoC Model, a moderate IoC is recorded when HI is 0.3083, rather than 0.1800.

The IoC in the international construction market can also be interpreted at GINI level. As suggested previously, an IoC is moderate when GINI is 0.7673. The closer the Gini coefficient (GINI) to 1, the less equal the distribution of firm sizes in a market, and the lower the IoC. According to this GINI rule, the moderate concentration in the international construction market should refer to a relatively unequal distribution of firm sizes, thus the competition therein is not fierce. In addition, as presented above, concentration decreases as entropy (EN) values increase. The moderate concentration of the international construction market has an entropy value of 1.8049, 76.73% relative to the maximum entropy (log 225). This EN level signifies a relatively low level of concentration and high level of intensity of competition.

To summarize, by comparing the Moderate IoC Model with previous concentration studies, it is apparent that the study of concentration in the international construction market necessitates particular examination. Research findings developed in other sectors or in the area of domestic economy cannot be applied to this particular market. This in turn verifies the inefficiency of the existing concentration measures in investigating IoC in the international construction context.

Using the Moderate IoC Model

It has been found in this study that the Moderate IoC Model is applicable to indicate a moderate concentration (or IoC) in the international construction market. By mapping the evidence against the derived moderate concentration, it will be possible to provide contractors with advice on how they could have a better understanding of concentration situations in the international construction market. For example, it might not be good for contractors to undertake international construction business when the NHI index has been away from the moderate level, which implies that the competition in the market is too fierce.

Although the Moderate IoC Model is able to indicate a moderate concentration for international contractors, there is a limit on what an individual company can do to change the competition. This is particularly true in the international construction market which is actually formulated by many individual regional parts, for example, US market, Western European market, the Middle East market. Except for the market force, there is no organization to regulate and develop a moderately concentrated international construction market. This is in contrast to the situation in some domestic economies (e.g. China) where governmental departments tend to maintain a moderate IoC by introducing some measures such as qualification system, increasing/decreasing government spending, etc.

Conclusions

A moderate concentration of market shares contributes to the efficiency of market resources allocation. By synthesizing four major concentration methods, namely, concentration ratio (CRn), the Herfindahl index (HI), entropy, and Gini coefficient, a Moderate IoC Model is developed in this study for identifying moderate concentration in the international construction market. The model is superior to the existing concentration measures in several aspects. The model balances the merits and demerits of the existing concentration measures, elaborates a way for approaching moderate concentration, and is easily computable by using the market shares of the top four construction contractors.

By applying 28 years’ data from ENR to the Moderate IoC Model, it is found that the IoC in the international construction market is moderate when CR4 is 0.2735 and HI is 0.3083 respectively. This gives a reference point against which the IoC level can be compared. The closer the HI value to the point where HI is 0.3083, the more appropriate the concentration status as well as the IoC level. Based on this, the international construction competition was found to be relatively moderate in 1992, 2001 and 2004. The competition intensity in the international construction market during the period has exhibited a wavy trend. This revises a popular view that international construction competition has been increasingly intensifying only since 2002.

By comparing the Moderate IoC Model with previous concentration studies, it is found that the study of concentration in the international construction market necessitates a new examination with new approaches. Research findings developed in other sectors cannot be applied to this particular market. The Moderate IoC Model complements the existing concentration measures in investigating IoC in the international construction context. The identified moderate IoC can be a valuable reference for practitioners to understand characteristics of the international construction market;
it is implied that it is good for contractors to compete for international construction business when the market is approaching its moderate status. It is claimed that the HI 0.3083 can be a cut-off concentration level for the international construction market. A concentration status can be acceptable, referred to as the buffer zone of concentration, even though it does not reach the ideal concentration situation. Although this study does not exactly provide the buffer zone of concentration, the HI 0.3083 is constructive and informative, as it lays a theoretical foundation for future studies.

References

