
 

 

ADAPTING A BEAM-BASED ROTORDYNAMICS MODEL TO ACCEPT A  

GENERAL THREE-DIMENSIONAL FINITE-ELEMENT CASING MODEL  

 

 

A Thesis  

by 

STEPHEN MATHEW JAMES  

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE  

 

 

May 2010  

 

 

Major Subject: Mechanical Engineering  

 



 

 

 

ADAPTING A BEAM-BASED ROTORDYNAMICS MODEL TO ACCEPT A  

GENERAL THREE-DIMENSIONAL FINITE-ELEMENT CASING MODEL  

 

A Thesis  

by 

STEPHEN MATHEW JAMES   

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE  

 

Approved by: 

Chair of Committee,  Dara W. Childs 
Committee Members, Luis A. San Andres  
 S. Bart Childs  
Head of Department, Dennis L. O’Neal 

 

May 2010  

 

Major Subject: Mechanical Engineering  

 



 iii

ABSTRACT 
 

Adapting a Beam-Based Rotordynamics Model to Accept a 

General Three-Dimensional Finite-Element Casing Model. (May 2010) 

Stephen Mathew James, B.Tech., University of Kerala 

Chair of Advisory Committee: Dr. Dara W. Childs 

 

The subject of this thesis is an extension of a two-dimensional, axisymmetric, 

Timoshenko-beam finite-element rotordynamic code to include a three-dimensional non-

axisymmetric solid-element casing model. Axisymmetric beams are sufficient to model 

rotors. Spring and damper forces provide the interface between the rotor and its casing 

and capture the dynamics of the full model. However, axisymmetric beams limit the 

modeling of real-case machine structures, where the casing is not axisymmetric. 

Axisymmetric and non-axisymmetric 3D finite element casing structures are 

modeled. These structures are then reduced using a technique called substructuring. 

Modal equations are developed for axisymmetric and non-axisymmetric casing models. 

In a 3D non-axisymmetric model, structural dynamics modes can be modeled by lateral 

modes in two orthogonal planes. Modal information of the complex 3D casing structures 

are generated, and then incorporated into the 2D code after a series of pre-processing 

steps. 

A reduction method called Component Mode Synthesis (CMS) is used to reduce 

the large dimensionality involved in calculation of rotordynamic coefficients. The results 

from the casing structures are merged with the rotor model to create a combined rotor-

casing model. The analysis of the combined structure shows that there is a difference in 

the natural frequencies and unbalance response between the model that uses symmetrical 

casing and the one that uses non-axisymmetric casing. 

XLTRC2 is used as an example of a two-dimensional axisymmetric beam-

element code. ANSYS is used as a code to build three-dimensional non-axisymmetric 
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solid-element casing models. The work done in this thesis opens the scope to incorporate 

complex non-axisymmetric casing models with XLTRC2. 
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NOMENCLATURE 
 

Units for physical quantities are marked by dimensional units of mass (M), length (L), 

time (T) and force (F). 

 

[ ]A    – Eigenvector matrix of coupled rotor-casing model 

[ ]ca    – Matrix of eigenvectors of casing 

[ ]cA  – Component mode synthesis transformation matrix for casing 

APDL – ANSYS Parametric Design Language   

[ ]ra    – Matrix of eigenvectors of rotor 

[ ]rA    – Component mode synthesis transformation matrix for rotor 

[ ]XA    – Eigenvector matrix for X Z− plane 

[ ]YA    – Eigenvector matrix for Y Z− plane 

,  ,  ,  b1 b2 b3 b4  – Bearings used in component-mode-synthesis model 

[ ]C    – System damping matrix in Guyan reduction model 

[ ]cscC    – Transformed casing damping matrix due to seal force on casing 

[ ]csrC    – Transformed casing damping matrix due to seal force on rotor 

 ; 1: , 1:ijc i m j n= =  – Damping matrix element [FTL-1] 

c  ; 1:j j = n   – jth casing station 

CMS   – Component Mode Synthesis 

rscc  – Damping element entry in rotor due to seal force on casing 

   [FTL-1] 

[ ]rscC    – Transformed rotor damping matrix due to seal force on casing 

rsrc  – Damping element entry in rotor due to seal force on rotor 

   [FTL-1] 
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[ ]rsrC    – Transformed rotor damping matrix due to seal force on rotor 

  ; 1, 2sic i =   – Damping coefficient of ith seal [FTL-1] 

{ }F    – System external forces matrix in Guyan reduction model 

 ;k 1:bkf p=   – Force acting at the kth bearing [F] 

{ }cBF    – Transformed casing external forces matrix 

 ; 1:cjf j n=   – Force acting at the jth station of casing [F] 

csif    – Force acting on casing due to ith seal [F] 

FEA   – Finite element analysis 

FEM   – Finite element methods 

 ; 1:if i = m   – ith force matrix element in Guyan reduction [F] 

{ }rBF    – Transformed rotor external forces matrix 

 ; 1:rif i m=   – Force acting at the ith station of rotor [F] 

rsif    – Force acting on rotor due to ith seal [F] 

xf    – Force along x-axis [F] 

{ }XF    – X Z− plane force matrix 

yf    – Force along y-axis [F] 

{ }YF    – Y plane force matrix Z−

i yiJ β    – Polar inertia coefficient of ith station about ith yβ direction [L4] 

[ ]K    – System stiffness matrix in Guyan reduction model 

[ ]cK    – Transformed casing stiffness matrix 

 ; 1: , 1:cicjk i n j= = n  – Stiffness matrix i,j-th entry of casing [FL-1] 

[ ]cscK    – Transformed casing stiffness matrix due to seal force on casing 

[ ]csrK    – Transformed casing stiffness matrix due to seal force on rotor 

 ; 1: , 1:ijk i m j n= =  – Stiffness matrix element [FL-1] 
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[ ]rK    – Transformed rotor stiffness matrix 

 ; 1: , 1:rirjk i m j m= =  – Stiffness matrix i,j-th entry of rotor [FL-1] 

rsck  – Stiffness element entry in rotor due to seal force on casing 

   [FL-1] 

[ ]rscK    – Transformed rotor stiffness matrix due to seal force on casing 

rsrk    – Stiffness element entry in rotor due to seal force on rotor [FL-1] 

[ ]rsrK    – Transformed rotor stiffness matrix due to seal force on rotor 

  ; 1,sik i = 2   – Stiffness coefficient of ith seal [FL-1] 

[ ]M    – System inertia matrix in Guyan reduction model 

[ ]cM    – Transformed casing inertia matrix 

 ; 1:cim j n=   – Inertia coefficient of ith station of casing [M] 

[ ]cscM    – Transformed casing inertia matrix due to seal force on casing 

[ ]csrM    – Transformed casing inertia matrix due to seal force on rotor 

 ; 1:im i m=   – ith inertia matrix element [M] 

iRxim    – Lateral inertia coefficient of ith station along ith xR direction [M] 

 ; 1:rim i m=   – Inertia coefficient of ith station of rotor [M] 

[ ]rM    – Transformed rotor inertia matrix 

rscm    – Inertia element entry in rotor due to seal force on casing [M] 

[ ]rscM    – Transformed rotor inertia matrix due to seal force on casing 

rsrm    – Inertia element entry in rotor due to seal force on rotor [M] 

[ ]rsrM    – Transformed rotor inertia matrix due to seal force on rotor 

  ; 1, 2sim i =   – Inertia coefficient of ith seal [M] 

ˆ
yM    – Moment about y-axis [FL] 

cjq    – jth casing modal coordinate 
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iq    – ith modal coordinate in coupled rotor-casing model 

   – ith modal coordinate in X Z− plane iXq

   – ith modal coordinate in Y Z−iYq plane 

riq    – ith rotor modal coordinate  

r  ;i 1:i m=   – ith rotor station 

xiR    coordinate along x-axis  – ith displacement

yiR    – ith displacement coordinate along y-axis 

,s1  s2    – Seals used in component mode synthesis model 

{ }x    – Matrix representing displacement terms 

{ }X    – X Z− plane coordinate matrix 

{ }x&    – Matr  representing velocity termix s 

{ }x&&    – Matrix representing acceleration terms 

cjx    – Displacement term of the jth station of casing [L] 

   – Velocity term of the jth station of casing [LT-1] cjx&

cjx&&    – Acceleration term of the jth station of casing [LT-2] 

rix    – Displacement term of the ith station of rotor [L] 

   – Velocity term of the ith station of rotor [LT-1] rix&

rix&&    – Acceleration term of the ith station of rotor [LT-2] 

{ }Y    – Y Z− plane coordinate matrix 

 th rotation coordinate about x-axis   – ixiβ

   – ith rotation coordinate about y-axis yiβ

  – Eigenvalue (natural frequency) of jthcjλ   mode of casing  

   – Eigenvalue of ith mode of rotor riλ

   – Modal damping coefficient for the jth mode of the casing cjζ
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   – Modal damping coefficient for the ith mode of the rotor riζ

[ ]Λ    – Diagonal matrix of eigenvalues of coupled rotor-casing model 

[ ]cΛ    – Diagonal matrix of eigenvalues of casing 

[ ]rΛ    – Diagonal matrix of eigenvalues of rotor  

[ ]XΛ    – Diagonal matrix of eigenvalues in X Z− plane 

[ ]YΛ    – Diagonal matrix of eigenvalues in Y Z− plane 

B    – Boundary coordinates in componen e synthesis mt mod odel 

   – Interior coordinates in component mode synthesis model I

   – Master degree of freedom entry in Guyan reduction m

s    – Slave degree of freedom entry in Guyan reduction 
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1 INTRODUCTION 
  

1.1 XLTRC2 Software 

XLTRC21 is a rotordynamic software suite characterized by the following 

features: 

a. It is fast in building rotordynamic system models and running simulations. 

b. It is accurate and has been benchmarked against other industry-standard suites and 

known analytical solutions. 

c. It has a user-friendly interface. 

XLTRC2 uses Timoshenko–beam finite element models (FEM) that includes 

shear deflections. The Timoshenko–beam finite element model was developed with 

significant contributions by Nelson and McVaugh [1] and Nelson [2]. XLTRC2 can 

model multiple nested shafts. Component mode synthesis (CMS) is used to reduce the 

dimensionality of the finite element beam model. The CMS method is explained later in 

section 2.2. XLTRC2 can also accept a general pole-zero, reaction-force/displacement 

model for simulating foundation models. 

In XLTRC2, a rotor or casing structure can only be modeled using axisymmetric 

beams in a two dimensional system. Figure 1 shows a representative model of a rotor 

and casing. The axis of symmetry lies along the longitudinal axis. The spring and 

damper forces from bearings and seals provide the interface between the rotor and casing 

and capture the dynamics of the full model. Additional input such as added masses help 

to model impellers and liquid seals, for example. 

The use of axisymmetric beams limit the modeling of real-case machine 

structures, e.g. volute pump casings, base plate assemblies, etc. where the casing 

structure is not axisymmetric. This limitation is in the context of a rotordynamics sense. 

Figure 2 shows an example of a compressor casing. The structure is non-symmetric 

                                                 
This thesis follows the style of Journal of Turbomachinery. 
 
1 XLTRC2 is licensed by Texas Engineering Experiment Station and developed at the Turbomachinery 
Laboratory. © Texas A&M University. All rights reserved. 
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about at least one of the coordinate axes. Non-axisymmetric structures are common, but 

the availability of complete and convenient rotordynamic analysis tools for their analysis 

is limited. 

 
 
 

 
Figure 1 XLTRC2  rotor-casing model with connecting bearings and seals [3] 
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Figure 2 Compressor casing showing non-axisymmetric geometry [4] 

 
 
 
1.2 XLTRC2 vs. 3D Finite Element Analysis Tools 

Modern finite element analysis (FEA) tools (e.g., ANSYS2, MSC Nastran3, 

Pro/Engineer4, SolidWorks5, etc.) use three dimensional (3D) elements to model the 

rotor, casing and foundation. Bearings and seals are modeled, with equivalent stiffness 

and damping coefficients, and then incorporated into the 3D finite element method 

(FEM) model. FEA tools do not have straightforward methods to incorporate speed 

dependent bearing and seal force coefficients. While able to analyze detailed models, 

they lack the spectrum of a complete rotordynamic analysis. XLTRC2, on the other hand, 

can couple a rotor-casing or rotor-rotor model through connecting links at bearing and 

seal locations. General casing structures can also be incorporated by the use of point 

transfer functions. Physical coordinates are used to define the locations of nonlinear or 

linear connections with frequency-dependent coefficients, and this is achieved with 

component mode synthesis (CMS). Linear, frequency-independent connections are 

                                                 
2 ANSYS is a trademark or registered trademark of ANSYS, Inc. or its subsidiaries located in the United 
States or other countries. 
3 MSC Nastran is a registered trademark of MSC.Software Corporation 
4 Pro/Engineer is a trademark of TriStar Computer Corporation 
5 SolidWorks is a trademark of Dassault Systemes S.A. 
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accounted for via modal stiffness, damping, and mass matrix entries. The following is a 

comparison of the features between XLTRC2 and a general purpose finite element code: 

a. XLTRC2 is an easy application in terms of user friendliness and the learning time. 

3D finite element codes are more complex as they incorporate a wide variety of 

parameters that are applicable to a range of disciplines. Selecting parameters 

specific to a rotordynamic analysis requires experience and a thorough 

understanding of the tool capabilities. 

b. XLTRC2 requires less time to create a model and uses a simple interface. Although 

3D FEM codes use graphical interface and primitives (fundamental building blocks) 

for modeling, the resources required are more taxing than those for XLTRC2. 

c. XLTRC2 uses only axisymmetric beam-element based modeling, and hence is 

limited to simple designs. Since 3D FEM codes employ a wide variety of elements 

(such as beams, shells, links, etc.) they can handle more complicated designs.  

d. XLTRC2 can model only two dimensional axisymmetric beam structures which are 

sufficient for rotors. Most other 3D FEM codes allow for full-fledged three 

dimensional analyses. 

 

1.3 Research Objective 

This research adapts the beam-element based XLTRC2 rotordynamic model to 

accept a general three dimensional finite element casing model. This step combines the 

advantages of XLTRC2 and a 3D finite element code. 

 

1.4 Selection of Three Dimensional Finite Element Code 

The choice of 3D finite element code is based on the following requirements: 

a. A variety of element primitives must be available to model actual structures, 

because one element type cannot be accurately used to represent an entire model. 

For e.g., a beam element cannot accurately represent a component of the casing 

comprised of shell elements. 
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b. The code should be able to reduce the casing structure using component mode 

synthesis (CMS). This reduction technique, as described later in section 2.2, is used 

by XLTRC2 and provides a compatible format without much restructuring to the 

existing XLTRC2 code.  

c. The modal information contained in the CMS reduced structure must be available 

for post processing. Most FEA codes use proprietary data–storage algorithms and 

databases. An algorithm, provided by the manufacturer of the FEA code, should 

exist to convert relevant portions of the proprietary database to open source format. 

d. The finite element code should be widely used so that this feature can be readily 

employed among the XLTRC2 user base. 

Based on the above requirements, ANSYS is chosen as the favorable candidate 

over other codes such as MSC Nastran, Pro/Engineer, SolidWorks, etc. The analysis 

done in this thesis uses ANSYS Classic Release 11 (Service Pack 1) and ANSYS 

Workbench Release 11. 

 

1.5 Previous Work 

Previous analyses show that casings and foundation supports have a considerable 

effect on the critical speeds and response of a rotordynamic system. 

Childs’ [5] 1976 paper presents work done on a Dual-Rotor Jet Engine system 

that consists of two flexible rotors (low-speed and high-speed) and flexible casing 

structure (Figure 3). The procedure for a transient modal simulation model is described 

that includes the effect of bearing connections between the rotors and from the rotors to 

the housing6 structure. The case structure is modeled as a collection of symmetrically 

connected rigid bodies. 

A paper by Childs [6] in 1978 presents work on the Space Shuttle Main Engine 

(SSME) High-Pressure Fuel Turbopump (HPFTP) and High-Pressure Oxygen 

Turbopump (HPOTP). The model (Figure 4) uses exported modes from a general 

structural dynamic model of the housing. Modes are used that corresponded to zero 

                                                 
6 The terms stator, casing, and housing are used interchangeably in this thesis. 
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reaction forces at the connection points. A schematic representation of the SSME 

HPFTP and HPOTP is shown in Figure 5. In an earlier research [7] in 1975, Childs 

shows that introducing stiffness asymmetry in the support structure predicts an 

improvement in turbopump stability. This is an example of how the supports influence 

the overall rotordynamic stability. 

 
 
 

 
Figure 3 Dual-rotor/case system analyzed by Childs [5] 
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Figure 4 Structural dynamic model of the SSME HPFTP [6] 

 
 
 

 
Figure 5 Schematic representation of the SSME HPFTP and HPOTP [6] 
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In 1978, Darlow, Smalley and Ogg [8] also presented work that involves casing 

effects on an axisymmetric vertical pump, represented by Figure 6. This pump comprises 

of three structural elements – the outermost level representing the pump casing, middle 

level representing the pump inner structure and the inner-most level, the pump rotor. The 

pump is cantilevered from above and supports a large impeller and volute casing. Semi-

rigid connections are used between the top of the pump casing and the inner structure, 

and similarly between the top of the pump casing and ground. This pump presented an 

unusual rotordynamic situation in which the inner structure and the pump casing are 

separated at the bottom by close clearances, causing it to act as a squeeze-film damper. 

The work made use of two rotordynamic programs, CAD-26 [9] and CAD-27 [10], 

developed by J.W. Lund at Mechanical Technology Incorporated (MTI). In his 2003 

paper, Memmott [11] cites the rotordynamic programs and states that the MTI programs 

uses the transfer matrix method. 

 
 
 

 
Figure 6 Schematic diagram of vertical pump analyzed by Darlow, et al [8] 
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In their 1985 paper, Bellamy, Jonson and Gaffney [12] present the capability of 

three dimensional analyses and their solutions. The paper mentions the use of large, 

three dimensional, non-axisymmetric detailed solid finite elements that replace the 

simpler beam type models. The demand on computation power was made possible by 

advancements in the development of digital computers. Three dimensional finite element 

based model predictions showed better correlation with static and dynamic analysis, 

when compared to the traditional single plane beam model. There was also a dramatic 

increase in the number of modes predicted by the three dimensional models.  

Gerardin and Kill [13] in 1986 present a three dimensional approach for the 

dynamic analysis of a high by-pass aircraft engine and a cryogenic engine’s turbopump 

rotor. For the aircraft engine analysis, the approach involves creating substructures out 

of the entire system, comprised of two rotors corresponding to the low and high pressure 

stages, the casing, and the aircraft pylon. The substructures are represented by 

superelements created by the component mode synthesis (CMS) method. The rotating 

parts, as shown in Figure 7 and Figure 8, are modeled with axisymmetric shell and solid 

elements. The fan blades are represented by quadrangular elements. Each rotor consists 

of two superelements. The casing, shown in Figure 9, and pylon are modeled by five 

superelements consisting of beam and shell elements.  

 
 
 

 
Figure 7 Superelement model of axisymmetric low pressure rotor comprising of 

shell and solid elements [13] 
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Figure 8 Superelement model of axisymmetric high pressure rotor comprising of 

shell and solid elements [13] 
 
 
 

 
Figure 9 Superelement model of casing comprising of shell and solid elements [13] 
 
 
 

For the turbopump rotor of the cryogenic engine, a beam-element approach is 

used to model the shaft, and CMS is used to reduce the size of the resulting system of 

equations from the finite element analysis. Gerardin and Kill used their substructure 

method to perform stability analysis, unbalanced response, and transient analysis. The 

same models were later extended [14] in 1990 to study maneuver loading of rotors. 

Hylton and Burns’ [15] 1994 paper use an axisymmetric finite element 

rotordynamic analysis routine for analysis of bearing loads in high speed turbofan 

engines that have encountered blade loss. Beam elements are used to model the engine 
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and supporting structure, and the beam elements coupled to the three dimensional finite 

element model of the complete structure. Mass elements are used to represent lumped 

masses. A combination of spring and damper elements are used to couple the rotating 

and stationary components. Figure 10 shows the finite element model used. The analysis 

involves calculation of damped and undamped critical speeds, steady state unbalance 

response and transient response. Although the term substructure is used in this paper, the 

reduction technique, if any, has not been specified. 

 
 
 

 
Figure 10 Finite element model of turbofan engine [15] 

 
 
 

In 2002, Corbo, Stefanko and Leishar [16]document the rotordynamic analysis of 

a vertical pump. The rotordynamic model generation uses a Two-Level Method. The first 

level models the rotating pump shaft and the second level, the stationary pump column 

(casing). Each individual level is a complete rotordynamic model, and these levels are 

then linked at various locations to represent the vibration components that tie the two 

levels together. The locations refer to bearings, seals, coupling elements, etc. that allow 

complex dynamic interactions between the components to be accounted for. Two valid 

methods are used to analyze the system; first, use of a specialized rotordynamics code, 

and second a 3D finite element code. The authors emphasize that when the casing is 

modeled with a general-purpose FEM code, the fluid-structure-interactions between the 

casing and the rotor must be accounted for, a practice that is frequently ignored by pump 

manufacturers. The modeling procedure employs rotordynamics computer codes that can 

handle only axisymmetric elements. When non-axisymmetric slotted portions of the 
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pump casing are encountered, they are modeled as equivalent axisymmetric sections 

having the same area and area moment of inertia. The casing is modeled with beam 

elements, and the results are reported to be consistent with conventional beam theory. 

Clark and Jurjevic [17] show improvements in finite element modeling in their 

2007 paper. The casings are first represented with simplified rotor-bearing-support 

models. Beam elements represent the shaft while other predefined components model 

the flexible disk, coupling, bearing support, and gears. While the use of these 

components is useful to predict rotor critical speeds, rotor-structure interaction is not 

possible and cannot predict structural resonance. Standard rotordynamic tools include 

insufficient detail of casings with the supports modeled as single degree of freedom 

systems. This deficit causes limitations in determining the detailed response of the 

casings and foundations. 

To overcome this drawback, a finite-element-based 3D geometry is used. The 

rotor is modeled with beam and pipe elements and validated with field data. For the 

casing, a procedure called substructuring is employed where the detailed non-

axisymmetric casing model is represented as a compilation of super-elements. Each of 

these superelements is built starting from a FEM base comprising of solid elements. 

Modal analysis is carried out on each superelement, and then these superelements are 

built into an assembly. Figure 11 through Figure 13 show the process of building the 

assembly of superelements. The casing supports introduce non-axisymmetry into the 

system. 
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Figure 11 Detailed FEM model of gas turbine analyzed by Clark et al [17] 

 
 
 

 
Figure 12 A section of the gas turbine and its corresponding superelement [17] 
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Figure 13 Assembly built out of the individual superelements [17] 

 
 
 

The rotordynamics program used could carry out standard analyses as well as 

complex dynamic effects, such as rotor-structure coupling. The methodology reduced 

calculation time and provided capability for more detailed models. 

 

1.6 Motivation 

Moore, et al. [18] in 2006 present work that involves the rotordynamic analysis 

of a large industrial turbo-compressor. They demonstrate two approaches to capture the 

rotor-casing dynamics. The first involves the generation of a high-order polynomial in 

numerator-denominator transfer function format, which models the connection between 

the rotor and the ground at the bearings. This method is typically used in XLTRC2 for 

modeling foundation supports and magnetic bearings. For the housing structure, a forced 

identification response is performed at each bearing in the vertical and horizontal 

directions. The resulting frequency response functions are used to derive the transfer 

functions and then incorporated into XLTRC2. The rotor model is built in XLTRC2, as 

seen in Figure 14.  
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Figure 14 XLTRC2 rotor model built by Moore et al [18] 

 

While providing the rotordynamics code with the advantage that the analysis is 

computationally moderate, this approach is limited in that the motion of the separate 

bearings is uncoupled, which is not the case in real machines. A later personal discussion 

with one of the authors revealed that, even though not published in the paper, an analysis 

was done where the coupled effect of the bearings was studied. The results did not differ 

much from the uncoupled analysis. However the results were specific to this machine 

case, and other machines may require incorporating a coupled effect. Although this 

approach modeled the connections between the rotor and stator at the bearings, it 

erroneously left the connections at seals from rotor to ground, not rotor to housing. 

The second approach used ANSYS to solve a fully coupled finite-element rotor 

and casing model. Figure 15 shows the original casing model built in ANSYS. The 

analysis eventually resulted in a refined model. Figure 16 shows the coupled rotor-casing 

model. 
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Figure 15 Casing geometry modeled in ANSYS [18] 

 
 
 

 
Figure 16 Sectional view of coupled rotor-casing. Inset view of entire model [18] 
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The FEM model, however, has two disadvantages in the scope of study. First, 

while ANSYS can model the bearings as a three-dimensional solid element, it does not 

have a direct functionality to include speed-dependent bearing coefficients. Second, 

capturing the interactions between the coupled rotor and casing model is 

computationally intense. 

 
 
 

 
Figure 17 Unbalance response comparison between ANSYS and XLTRC2 [18] 

 
 
 

Figure 17 compares the vertical response at one of the bearings, between three 

cases – ANSYS combined rotor-casing model, XLTRC2 rotor model that uses transfer 

functions, and XLTRC2 rotor model supported on rigid foundations. Although the 

XLTRC2 model with transfer functions reported the highest response amplitude, its 

behavior is similar to the combined rotor casing model. 

The work by Moore et al. [18] stimulated this thesis, as it used the XLTRC2 

rotordynamic software suite. An alternate approach is used here with 3D FEM analysis 

of the casing to be done in ANSYS, and the resulting modal information incorporated 
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with XLTRC2. This approach results in a combined reduced model that can be analyzed, 

and extends XLTRC2 to account for three dimensional non-axisymmetric casing 

structures. 

 



 19

2 THEORY AND PRINCIPLES 
 

2.1 Guyan Reduction 

The Guyan Reduction [19] is a static reduction technique widely used to rewrite 

the equations of motion, representing a system such as a rotordynamic model, with a 

reduced number of degrees of freedom. The technique defines a set of interior 

coordinates in terms of boundary coordinates. By directly eliminating physical 

coordinates from a finite-element or lumped-parameter model, it reduces the 

dimensionality of the problem.  

The degrees of freedom (DOFs) are categorized into master (retained) DOFs and 

slave (discarded) DOFs. The retained coordinates are generally selected so that they 

coincide with bearing locations, seal locations, unbalance locations, external-force 

locations, lumped masses, etc. Coordinates that are not of interest to the analysis, or are 

considered less important, are eliminated. Guyan suggested the reduction technique 

procedure so that coordinates, where no forces are applied, are eliminated. A general 

rotordynamic model can be represented by the following equation, 

 [ ]{ } [ ]{ } [ ]{ } { }M x C x K x F+ + =&& &  (1) 

 
 
 

 
Figure 18 Simple rotor system to illustrate guyan reduction 
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Consider the basic equation form (without effects of damping) of a four-point 

mass system supported by springs at the outer ends, as shown in Figure 18. The physical 

model is defined by Eq.(2), and the static form of the equation given by Eq.(3). 
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 (3) 

 
The bearing locations (stations 1 and 4) are selected to be the retained 

coordinates. Rearranging the model in terms of the boundary ( )1 4,x x and interior 

( 2 3, )x x coordinates, 
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 (4) 

The equation is now partitioned into two groups, representing master DOFs and 

slave DOFs. The master DOFs are represented by the subscript ‘m’ and slave by 

subscript ‘s’. 

 mm ms m m

sm ss s s

k k x F
k k x F
⎡ ⎤ ⎧ ⎫ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬⎢ ⎥
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 (5) 

Expanding the above form leads to, 

 
[ ]{ } [ ]{ } { }
[ ]{ } [ ]{ } { }

mm m ms s m

sm m ss s s

k x k x F

k x k x F

+ =

+ =
 (6) 

In Guyan reduction, generally { } 0sF = . The eliminated coordinates do not 

generally include external forces that need to be retained in the model. Eq.(6) becomes, 
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[ ]{ } [ ]{ } { }
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 (7) 

 

Solving for the slave DOFs yields, 

 { } [ ] [ ]{ }1
s ss sm mx k k x−= −  (8) 

 
The transformation is then represented by, 

 [ ] { } { }m
m

s

Ix
mx B x

Bx
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Substituting Eq.(8) in (5) leads to the following expression that can be solved for 

the master DOFs. 

  (10) [ ] [ ][ ] [ ] { } { }1
mm ms ss sm m mk k k k x F−⎡ ⎤−⎣ ⎦ =

 
Eq.(10) can be represented in general terms as, 

 { } { }ˆ ˆK x F⎡ ⎤ =⎣ ⎦
ˆ  (11) 

where, 

 [ ] [ ][ ] [ ]1ˆ
mm ms ss smK k k k k−⎡ ⎤ = −⎣ ⎦  (12) 

 { } { }ˆ mx x=  (13) 

 { } { }ˆ
mF F=  (14) 

 
When considering the complete system Eq.(1), a similar expression can be 

obtained for the reduced mass and damping matrices. Since direct partitioning is not 

practical, owing to the time derivatives of displacement and their difficulty to 

implement, Guyan [19] illustrates a method by relating the structural energies of the 

system. This leads to the following reduced matrix forms for mass and damping 

matrices. 
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The final system equation, after transformations have been applied, can be 

represented by, 

 { } { } { } { }ˆˆ ˆ
m m mM x C x K x F⎡ ⎤⎡ ⎤ ⎡ ⎤+ + =⎣ ⎦ ⎣ ⎦⎣ ⎦&& &  (17) 

 { } [ ]{ }s mx B x=  (18) 

Guyan Reduction is based on the assumption that the dynamic content of the 

system can be defined by the retained coordinates, and that the dynamic deflected shapes 

are the same as the static. Since there is no modal reduction, an analyst will therefore 

have to have a good understanding of the system before selecting those coordinates to be 

retained. Ignoring critical coordinates may result in a system with results that are not 

accurate. 

Note that none of the structural complexity is lost in the reduced stiffness matrix 

since all the elements make a contribution. The reduced mass matrix, however, contains 

both stiffness and mass elements. Rouch and Kao [20] present comparisons between a 

complete finite-element model of an industrial compressor on hydrodynamic bearings 

and its corresponding reduced models of various dimensions. The full model has 46 

translation DOFs and 5 rotational DOFs. The smallest reduced model has only nine 

translational DOFs and zero rotational DOFs. Good correlation is demonstrated in 

results through the fourth calculated mode. 
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2.2  Component Mode Synthesis 

In the analysis of rotordynamic systems, solving simultaneous equations for 

synchronous response or determining complex eigenvalues and eigenvectors involves 

large dimensionality of the underlying equations of motion. Dimensionality is common 

to structural-dynamics, but is intensified in rotor dynamics by reaction forces defined by 

nonsymmetrical stiffness, damping, and inertia matrices. These matrices can result in 

complex eigenvalues and eigenvectors. Component Mode Synthesis (CMS) is a method 

that allows reduction in the size of the overall system problem while retaining essential 

dynamic characteristics. CMS has been used extensively in structural analysis of 

buildings, frames, etc. The work of Nelson and Glasgow [21] first extended CMS for 

rotordynamics. Childs [22] presents a simple model to explain the component mode 

development. 

This section illustrates CMS development to show its importance with respect to 

reduction of a simple rotordynamic system that consists of a rotor, casing, casing support 

springs, and interconnecting bearings and seals. Figure 19 shows the representative 

model. A lumped-parameter beam model is used to represent the rotor and the casing. To 

reduce the complexity of this model, only one degree of freedom is assumed at each 

station. 

 
 
 

 
Figure 19 Rotor-casing model with bearings and seals 
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The rotor has 6 beams and 7 stations – r1, r2, r3, r4, r5, r6, and r7. The casing is 

made of 3 beams and has 4 stations – c1, c2, c3, and c4. The casing is connected to 

ground and supported by two housing support springs, b3 and b4, at stations c1 and c4. 

The rotor is supported by two bearings, b1 and b2 at stations r2 and r6, and they provide 

the stiffness connection to the casing. Two interconnecting seals, s1 and s2, are used 

between the rotor and the casing. 

The development of CMS involves separating the coordinates into boundary 

coordinates and interior coordinates. This step is similar to Guyan Reduction where the 

degrees of freedom (DOFs) are categorized into master (retained) DOFs and slave 

(discarded) DOFs. However the advantage of CMS is that all the interior coordinates get 

absorbed into modal coordinates. This helps to retain all the dynamic content of the 

rotordynamic system. Usually, boundary coordinates are selected to coincide with 

frequency-dependent or nonlinear reaction locations. 

Various forces act on the system. Bearing reaction forces occur at the bearing 

locations. In the above model, the bearing forces in the rotor acting at stations r2, r6, c1, 

and c4 are represented by Eq.(19). For simplicity, the terms 2 6 1,  , ,  and r r c c4f f f f  are 

expressed in terms of the bearing indices.  
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The housing support springs forces are given by 
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The seal forces act at stations r3, c2, r5, and c3. The rotor-model seal forces are 

given by, 
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For the casing model, the seal forces have a change in sign and are represented 

by, 
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In the first step of CMS, each shaft is assembled individually into its system 

matrices. For the system defined in this example, seals are the only source of damping. 

The initial physical model for the rotor is stated by Eq.(23). In practice, many of the 

stiffness coefficients are zero. The right-hand side of Eq.(23) represents the bearing 

reaction forces and the seal forces. 
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 (23) 

 

The companion equation that defines the physical model of the casing is given by 

Eq.(24). 
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The expansion of seal forces on the right-hand side of Eq.(23) in terms of Eq.(21) 

is shown in Eq.(25). 
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To simplify the development, the contribution of the seals to the inertia, 

damping, and stiffness terms will be accounted for after the transformation matrix is 

obtained. The rotor coordinates are now rearranged into boundary and interior 

coordinates as shown in Eq.(26). The coordinates which coincide with bearing locations 

( 2 6,r r )x x are selected as boundary coordinates. 
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 (26) 

 

The expansion of seal forces on the right-hand side of Eq.(24) in terms of Eq.(22) 

is shown in Eq.(27). As in the development of rotor equations, the contribution of the 

seals to the inertia, damping, and stiffness terms of the casing equation will be accounted 

for after the transformation matrix is obtained. 
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The casing equation rearranged into boundary ( )1 4,c cx x and interior 

( 2 3,c c )x x coordinates is shown in Eq.(26).  
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Static constraint modes for the rotor are now defined by producing a unit 

displacement of each boundary coordinate in turn, with all other boundary coordinates 

fixed and all interior coordinates unconstrained and unloaded. From Eq.(26) the first 

 



 29

static displacement vector is obtained by setting 2 1  and  0r rx x 6= = . When applied to 

Eq.(26), it leads to Eq.(31) via Eq.(29) and Eq.(30). 

 

1 2 1 6 1 1 1 3 1 4 1 5 1 7

3 2 3 6 3 1 3 3 3 4 3 5 3 7 1

4 2 4 6 4 1 4 3 4 4 4 5 4 7 3

5 2 5 6 5 1 5 3 5 4 5 5 5 7

7 2 7 6 7 1 7 3 7 4 7 5 7 7

1
0r r r r r r r r r r r r r r

r r r r r r r r r r r r r r r

r r r r r r r r r r r r r r r

r r r r r r r r r r r r r r

r r r r r r r r r r r r r r

k k k k k k k
k k k k k k k x
k k k k k k k x
k k k k k k k x
k k k k k k k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

4

5

7

0
0

  0
0
0

r

r

r

x
x

⎧ ⎫
⎪ ⎪ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪⎩ ⎭
⎪ ⎪
⎩ ⎭

⎪

 (29) 

 

1 2 1 1 1 3 1 4 1 5 1 7 1

3 2 3 1 3 3 3 4 3 5 3 7 3

4 2 4 1 4 3 4 4 4 5 4 7

5 2 5 1 5 3 5 4 5 5 5 7

7 2 7 1 7 3 7 4 7 5 7 7

      

r r r r r r r r r r r r r

r r r r r r r r r r r r r

r r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

k k k k k k x
k k k k k k x
k k k k k k x
k k k k k k
k k k k k k

⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎢ ⎥
⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎢ ⎥⇒ +⎨ ⎬

⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪⎩ ⎭ ⎣ ⎦

4

5

7

0
0

  0
0
0

r

r

x
x

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪= ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪⎩ ⎭⎩ ⎭ ⎪

14r

 (30) 

 

1
1 1 1 1 3 1 4 1 5 1 7 1 2

3 3 1 3 3 3 4 3 5 3 7 3 2

4 4 1 4 3 4 4 4 5 4 7 4

5 5 1 5 3 5 4 5 5 5 7

7 7 1 7 3 7 4 7 5 7 7

        

r r r r r r r r r r r r r

r r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r

r r r r r r r r r r r

x k k k k k k
x k k k k k k
x k k k k k k
x k k k k k
x k k k k k

−
⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎢ ⎥
⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎢ ⎥⇒ = −⎨ ⎬

⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪⎩ ⎭ ⎣ ⎦

11

13

2

5 2 15

7 2 17

    

r

r

r

r r r

r r r

b
b
b

k b
k b

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪= ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎪⎭

6r =

5

 (31) 

 

By employing , the second static displacement vector is 

obtained 

2 0  and  1rx x=
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 (32) 

 

The interior coordinates can now be expressed in terms of the boundary 

coordinates by the following transformation. 
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Next, the constraint normal modes are obtained by setting the boundary 

coordinates to zero and solving free vibration problem for the interior coordinates as 

shown in Eq.(34).  
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This yields the eigenvalue problem described by Eq.(35). 
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A simplified representation of Eq.(35) is shown by Eq.(36) 

 [ ]{ }{ } { }2 0ri ri rirj rijm k aλ ⎡ ⎤− + =⎣ ⎦  (36) 
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The matrix of eigenvectors is given by, 
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and has been normalized to satisfy 
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A coordinate transformation can now be used to express the interior coordinates 

as the superposition of two types of displacement modes: Constrained normal modes, the 

displacement relative to the fixed component boundaries and constraint modes, the 

displacement produced by displacing boundary coordinates. 
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The complete transformation is given by Eq.(41), which shows that the boundary 

coordinates do not change. 
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The transformation can be expressed as 
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where the transformation matrix [ ]rA is 
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In a similar methodology, a transformation matrix can be obtained for the casing 

coordinates as 
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where the transformation vector [ ]cA can be represented by, 
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The equation of the rotor system including the seal contributions, shown in 

Eq.(26), is expressed in simpler terms of boundary and interior coordinates by Eq.(46).  
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The transformations obtained in Eq.(42) and Eq.(44) are applied to Eq.(46), and 

the equation is pre-multiplied by [ ]TrA , as shown in Eq.(47). 
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After the transformations are applied, the rotor system equation is expressed in 

terms of physical and modal coordinates by Eq.(48). 
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Similarly, transformations are applied to the casing system equations to express 

them in terms of physical and modal coordinates as shown by Eq.(49). 
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The rotor and casing equations, (Eq.(48) and Eq.(49)), can be combined into a 

single model as shown in Eq.(50). 
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The system equation can also be ordered first by physical coordinates and then 

by modal coordinates. Combining the inertia, damping and stiffness matrices and 

arranging them by physical and modal coordinates leads to Eq.(51). 
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  (51) 

If internal viscous damping is present, modal damping factors can be introduced 

as shown in Eq.(52). Here riζ and riλ represent the modal damping coefficient and natural 

frequency for the ith mode of the rotor. Similarly, cjζ and cjλ represent modal damping 

coefficient and natural frequency for the jth mode of the casing. 
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Combining Eq.(51) and Eq.(52) finally leads to 
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  (53) 

Eq.(53) represents a simple single-plane model and can be extended to represent 

a full scale model that includes finite element models, gyroscopic effects, cross-coupled 

stiffness, and multi-plane solutions. As seen in the development leading to Eq.(53), CMS 

is independent of the nature of the supports at the boundary coordinates. Hence the CMS 

method can be extended for analysis of nonlinear supports. 

In the CMS approach, truncating the number of constrained normal modes 

determines the number of degrees of freedom to be retained for the entire system. 

Though truncation criteria depend on the application, usually modes are retained whose 

natural frequencies are moderately above the running speed of the rotor. For the CMS 

development shown in this section, all modes are retained. The highest frequency modes 

can be truncated with little effect on the important lower modes. CMS can therefore 

allow a significant reduction in the size of the overall problem while retaining the 

essential dynamic characteristics of the lower modes. 
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2.3 Substructuring 

Substructuring is the process of packing a group of components or groups of 

finite elements into one single element, called the superelement7. Substructuring uses 

Guyan reduction to reduce the model. This technique helps to reduce the time required in 

solving systems that have a large number of equations. The work done by Clark and 

Jurjevic [17], described earlier in section 1.5, shows extensive use of substructuring. A 

substructure can comprise a single superelement or a collection of superelements. 

The process of creating a superelement using substructuring consists of the 

following steps: 

• Create the base model – Here the model that needs to be substructured is 

created using elements types, element real constants, material properties, and the 

model geometry. When ANSYS is used, certain element types have restrictions 

for use with a substructure analysis. Figure 20 shows an example of a simple 

model constructed with solid elements. 

• Identify retained coordinates – Retained coordinates are nodes designated as 

master degrees of freedom that define the interface between the superelement and 

other elements (or superelements). The dynamic characteristics of the system are 

then defined by these retained coordinates. Nodes representing retained 

coordinates are selected in such a way that they can be used later for applying 

constraints and forces, or at locations where output values are desired, such as 

nodal displacement, stress, etc. Figure 22 shows nodes that are selected as 

retained coordinates from the full scale node set shown in Figure 21. 

• Reduce the model – Using the specified retained coordinates the entire model is 

now reduced. Reduction can be done using a Guyan reduction or component 

mode synthesis. The reduced model will be treated as a single superelement, as 

shown in Figure 23, and this reduced model can be used in further analysis. 

                                                 
7 Superelement is described in detail in section 2.6.9 
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Figure 20 Example of a full scale model built with finite elements 
 
 
 

 
Figure 21 Front view of the complete node set in full scale model  
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Figure 22 Nodes selected to represent retained coordinates 

 
 
 

 
Figure 23 Superelement representation of reduced model 
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ANSYS includes the ANSYS Parametric Design Language (APDL) [28] that can 

be used to programmatically transform the coordinate system. In ANSYS, substructuring 

is done using the SUBSTR analysis option [29]. Figure 24 shows an APDL code snippet 

with the algorithm that can be used to perform substructuring. 

 
 
 

 
Figure 24 APDL code to perform substructure reduction 
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2.4 Modal Equations for Axisymmetric and Non-Axisymmetric Case Models 

In a 3D non-axisymmetric model, structural dynamics modes can be shown by 

lateral modes in two orthogonal planes. This section shows the development of modal 

equations for axisymmetric and non-axisymmetric structural models. A simple lumped-

parameter model will be used to represent a casing, as shown in Figure 25.  
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Figure 25 Lumped-parameter representation of a casing model  

 
 
 

The casing is made of 3 beams and has 4 stations. It is connected to ground and 

supported by two housing support springs. Each station has six degrees of freedom – 

three translational motions along the x, y, and z axes and three rotations about the x, y, 

and z axes. The vector representing the degrees of freedom at a station is shown by 

Eq.(54). The second expression is simplified to eliminate the z-axis dependency. 
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Housing support reaction forces and moments, that occur at the support station 1 

and 4, are given by Eq.(55). 
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First, modal equations are developed for the uncoupled casing model. Separate 

uncoupled modal differential equations are developed for each plane. The initial physical 

model for the casing in the X Z− plane is 
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(56) 

 
For simplicity, the coordinates, forces, and moments are stated by Eq.(57). Each 

term in the simplified coordinate will include both displacement and rotation. Similarly, 

each term in the simplified force expression will include both lateral force and moment. 
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The simplified terms defined in Eq.(57) are applied to Eq.(56) to result in 
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Eq.(58) is rearranged into boundary and interior coordinates. The bearing 

locations are selected as the boundary coordinates to obtain 
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  (59) 

CMS is performed on the model. A transformation vector [ ]XA is developed to 

express the interior coordinates as the superposition of two types of displacement modes 

– constrained normal modes, the displacement relative to the fixed component 

boundaries and constraint modes, the displacement produced by displacing boundary 

coordinates. The complete transformation is given by Eq.(60). The boundary coordinates 

do not change while interior coordinates are changed by the transformation. 
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Applying the transformation [ ]XA to Eq.(59), pre-multiplying by[ ]TXA , and 

simplifying the expression, results in 
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In a similar manner, the modal differential equation for the Y plane is Z−

 
( ) ( )

[ ]
1

1 1
41 1 1 2 1 1 1 2

4 4 8x8
2 1 2 18x8 8x8

8x1 8x1
8x1

0
0

Y

T YY Y Y Y Y Y Y Y
Y

Y Y Y Y Y
Y Yi i

F
Y Y

FM M K K
Y Y A

M I K
q q

⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎪ ⎪⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪ ⎪ ⎪+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥Λ⎣ ⎦ ⎣ ⎦⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭ ⎪ ⎪⎩ ⎭

&&

&&

&&

 (62) 

As seen from Eq.(61) and Eq.(62), the X Z− plane has one set of equations and 

eigenvectors. The Y plane has a comparable set of equations and eigen data for 

axisymmetric structures. In the CMS development, different number of modes can be 

retained in

Z−

X Z− and planes. If the same stations are used in both planes, Y − Z m

[ ]XA will be a  matrix where m  indicates the number of casing stations 

(each with two DOF), and 

(2 4m× + )j

j  denotes the modes retained in the X Z− plane. Likewise, 

[ ]YA will be a 2 4  matrix where  denotes modes retained in the Y plane. (m× + )k k Z−

The initial physical model for the casing in the coupled non-axisymmetric model 

is given by one set of equations, as shown in Eq.(63). 
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Eq. (63) is rearranged into boundary and interior coordinates. 

  (64) 

1 1

1 1

4 4

4 4

2 2

2 2

3 3

3 3

1 1 1 1 1 4 1 4 1 2 1 2

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

   
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

X

Y

X

Y

X

Y

X

Y

X X X Y X X X Y X X X Y

M X
M Y

M X
M Y

M X
M Y

M X
M Y

K K K K K K K

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥ ⎨ ⎬⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭

+

&&

&&

&&

&&

&&

&&

&&

&&

1 3 1 3

1 1 1 1 1 4 1 4 1 2 1 2 1 3 1 3

4 1 4 1 4 4 4 4 4 2 4 2 4 3 4 3

4 1 4 1 4 4 4 4 4 2 4 2 4 3 4 3

2 1 2 1 2 4 2 4 2 2 2 2 2 3 2 3

2 1 2 1 2 4 2 4 2 2 2 2

X X X Y

Y X Y Y Y X Y Y Y X Y Y Y X Y Y

X X X Y X X X Y X X X Y X X X Y

Y X Y Y Y X Y Y Y X Y Y Y X Y Y

X X X Y X X X Y X X X Y X X X Y

Y X Y Y Y X Y Y Y X Y Y

K
K K K K K K K K
K K K K K K K K
K K K K K K K K
K K K K K K K K
K K K K K K K

1 1

1 1

4 4

4 4

2

2 3 2 3 2

3 1 3 1 3 4 3 4 3 2 3 2 3 3 3 3 3

3 1 3 1 3 4 3 4 3 2 3 2 3 3 3 3 3

0
0
0
0

X

Y

X

Y

Y X Y Y

X X X Y X X X Y X X X Y X X X Y

Y X Y Y Y X Y Y Y X Y Y Y X Y Y

X F
Y F
X F
Y F
X

K Y
K K K K K K K K X
K K K K K K K K Y

⎡ ⎤ ⎧ ⎫
⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪

⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭⎣ ⎦

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪

⎩ ⎭

A transformation vector [ ]A is used to express the interior coordinates in terms of 

the boundary coordinates as shown in Eq.(65). 
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Applying the transformation vector [ ]A  to Eq.(64), pre-multiplying by[ ]TA , and 

simplifying the expression, results in 
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Eq.(66) represents the casing CMS model. The eigenvector [ ]A  defines motion 

in both orthogonal planes. If stations are used in both planes, [m ]A  will be a 

matrix where  indicates the number of casing stations (each with four 

DOF), and 

(4 4m× + )j m

j  denotes the modes retained. Eq.(66) can be extended to represent a full 

scale model that includes finite elements, structural damping, and seal forces. 

 

2.5 Coordinate Transformation 

Coordinate transformation is the process by which one coordinate system is 

converted to another, to describe the same space. A direction-cosine matrix is used to 

relate components of the same vector in two different coordinate systems. The direction-

cosine matrix relates the components in two coordinate systems and is defined as a real 

square matrix whose transpose is its inverse and whose determinant is 1. If [ ]A  is a 

direction-cosine matrix, then 

 
[ ] [ ] [ ] [ ] [ ]

1

T TA A I A A

A

= =

=
 (67) 

Numerous references exist about the process of coordinate transformation. Childs 

[23] explains the process for coordinate transformation in a Two-Coordinate system. 

Consider a vector U  in a X Y− coordinate system. If the coordinate system X Y−  is 

rotated through an angle α  in the counter-clockwise direction to get the ' 'X Y−  system, 

the transformation can be defined as the following 
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  (68) 
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where [ ]A  is called the direction-cosine matrix. 

The above result can be extended to a Three-Coordinate system. Three ordered 

angles that are used to transform one coordinate system to another are referred to as 

Euler angles. Figure 26 shows the Euler angles  used to rotate the coordinate 

system from 

α, β and γ

XYZ  to ' ' 'X Y Z . In generating three sets of rotation, when transforming 

from one coordinate system to another, there are several choices in which no two 

adjacent rotation indices are the same. These various sets are called Euler angle 

sequences.  

 
 
 

 
Figure 26 Euler angles used for transformation from XYZ coordinate system to 

X'Y'Z' coordinate system 
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Baruh [24] describes some of the historically important sequences, such as 3-2-3 

also known as NASA Standard Aerospace, 3-2-1 also known as NASA Standard 

Airplane, etc. 

The transformation matrices used in Figure 26 can be expressed as the following 
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The coordinate transformation 3-2-1 can then be defined by 

 [ ][ ][ ]1 2 3
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2.6 Element Types 

The following section illustrates the various element types that have been utilized 

for the work present. Note that the objective of this thesis, as mentioned in section 1.3, is 

not limited to these elements and can include any predefined or user-defined element 

type. 

 

2.6.1 3D Beam Element (BEAM4) 

The beam element BEAM4 represents a 3D elastic Timoshenko beam that has 

tension, compression and torsion capabilities. The element is represented by two nodes 

and each node has six degrees of freedom – three translational motions along the nodal 

x, y, and z axes and three rotations about the nodal x, y, and z axes. This element is used 

to model the rotor elements and has a spin component that can be used to include 

gyroscopic effects. While BEAM4 is an ANSYS defined 3D beam element, it can also 

be used to replicate the 2D beam element used in XLTRC2. As seen in 0, this element is 

used to replicate the XLTRC2 model in ANSYS for verification purpose. 

 
 
 

 

Figure 27 Beam element 
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The BEAM4 element, shown in Figure 27, is described by real parameter 

constants such as cross-sectional area, area moment of inertia, thickness, torsional 

moment of inertia, initial strain, shear deflection and rotational frequency (for 

gyroscopic effects). The BEAM4 element cannot have zero length or area. For the work 

done in this thesis, the element has been used to represent circular beam (including 

hollow beams) although the element can be used for any cross-sectional shape for which 

moment of inertia can be calculated. This beam element can also be used to represent a 

tapered beam. 

 

2.6.2 Structural Mass Element (MASS21) 

Mass element MASS21, shown in Figure 28, represents a single node element 

that has concentrated mass components along the x, y, and z coordinate directions and 

moments of inertia about the element coordinate axes. The element properties can be 

used as a 3D or 2D mass element. This element can input masses and moments of inertia 

as real constants or as volumes and density. MATRIX27 element (section 2.6.8) can be 

used in place of MASS21 if components along non-principal axis need to be specified. 

 
 
 

 
Figure 28 Mass element 
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2.6.3 Multipoint Constraint Element (MPC184) 

The multipoint constraint element MPC184 is used to impose kinematic 

constraints between nodes. Rigid link, rigid beam, and spherical joints are examples of 

constraints. Internal constraint equations are generated for the kinematic constraints 

which lead to the elimination of degrees of freedom of a dependent node in the system 

equations. Although MPC184 represents a general class of multipoint constraint 

elements, its application in rotordynamic comes in the form of either rigid links or rigid 

beams. Rigid links are identified by two nodes and three translational DOF at each node, 

while rigid beams are associated with two nodes and six DOF at each node – three 

translational and three rotational. 

 
 
 

 
Figure 29 Rigid beam used as constraint element between Node I and Node J 

 
 
 

Figure 29 shows a constraint element used as a rigid beam when all six degrees 

of freedom have constraint equations defined. The element simplifies to a rigid link 

when the rotational degrees of freedom - α - are suppressed. , β and γ
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2.6.4 3D Structural Solid Element (SOLID45) 

The 3D structural solid element is widely used for 3D modeling of casing 

structures. This element is defined by eight nodes, one at each of the vertex of the 

element. Each node has three degrees of freedom defined in the nodal x, y, and z 

directions. Figure 30 shows a representative example of this element type. It can also be 

used to replicate prism-shaped and tetrahedron-shaped elements by duplicating 

appropriate nodes. In Figure 30, a prism element is formed by duplicating nodes 7-8 and 

3-4. A tetrahedron is formed by duplicating nodes 5-6-7-8 and 3-4. 

 
 
 

 
Figure 30 3D solid structural element defined by 8 nodes 

 
 
 
2.6.5 3D 20–Node Structural Solid (SOLID186) 

The SOLID186 element is used to model 3D structural solids. It is defined by 20 

nodes, one at each vertex of the element as well as midway along each edge. Each node 

has three translational degrees of freedom along the nodal x, y, and z directions. 

SOLID186 is useful for modeling irregular meshes and is generally selected by ANSYS 

while importing solids designed by general CAD/CAM systems. Functional capabilities 
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of this element include stress stiffening, large deflections, large strains, elasticity, and 

plasticity. Variations of the element can be used to enable tetrahedral, pyramid, and 

prism elements, as seen in Figure 31. With the capability of having layers, this element 

can be also used to model thick shells or solids. 

 
 
 

 
Figure 31 SOLID186 element used to represent structural solids and shells [25] 

 
 
 
2.6.6 3D 10–Node Tetrahedral Structural Solid (SOLID187) 

SOLID187 solid element is similar to SOLID186 in terms of the functional 

capabilities. The element has 10 nodes with each node having three degrees of freedom 

along the nodal x, y, and z directions. This element resembles SOLID186 tetrahedral 

option, as seen in Figure 31. 
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2.6.7 Spring–Damper Element (COMBI214) 

The spring-damper element COMBI214 is used to model a 2D general spring or 

damper element that can input direct and general non-symmetric stiffness and damping 

matrix coefficients. The element is represented by two nodes with each node having up 

to two degrees of freedom. Figure 32 is representative of the element used along x and y 

coordinates, however options can be set to change them to any 2D coordinate system. 

The stiffness coefficients use the unit of Force/Length, and the damping coefficients are 

expressed in Force*Time/Length unit. The stiffness and/or damping matrices can be 

input as real constants or as speed dependent entries. Note that the current ANSYS 

simulation cannot automatically calculate speed dependent coefficients. Hence they have 

to be calculated separately for each speed and then included in the analysis. 

 
 
 

 
Figure 32 COMBI214 element representing a 2D spring-damper element along X 

and Y coordinates [25] 
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Although useful in many analysis types, COMBI214 has two main 

disadvantages. COMBI214 can represent only tension-compression and cannot be used 

for bending or torsion. Additionally this element has no mass entries and hence cannot 

be used to represent seals that have inertia contributions. 

 

2.6.8 Stiffness, Damping, or Mass Matrix Element (MATRIX27) 

The MATRIX27 spring-damper-mass element overcomes the shortcomings of 

the COMBI214 element. The COMBI214 element is easier to set up but is less general 

than the MATRIX27 element. This element has two nodes with six degrees of freedom 

at each node – three translational motions along the nodal x, y, and z axes and three 

rotations about the nodal x, y, and z axes. Figure 33 shows a representation of the 

MATRIX27 element. 

 
 
 

 
Figure 33 MATRIX27 element representing a general stiffness, damping or mass 

element  
 
 
 

All matrices generated by this element are of size 12 by 12 with the degrees of 

freedom ordered by translation and rotation DOFs for 1st node followed by those for the 

2nd node. This element can be used to represent both symmetrical as well as 

nonsymmetrical formulations. When used for an analysis, the stiffness, damping and 

mass elements are represented by individual MATRIX27 elements by the use of 
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appropriate options. Stiffness values are expressed in units of Force/Length or 

Force*Length/Radian, damping values in units of Force*Time/Length or 

Force*Length*Time/Radian, and mass constants in units of Force*Time2/Length or 

Force*Time2*Length/Radian. 

 

2.6.9 Superelement (MATRIX50) 

The use of superelements or substructures has been referenced a number of times 

in the earlier section [1.5] on previous work. MATRIX50 is the element that is used to 

group a number of previously assembled elements into a single element. As shown in 

Figure 34, the element does not have a physical geometry and is simply a mathematical 

matrix representation of a structure where the number of nodes and degrees of freedom 

are determined by the individual elements that make up the superelement. Superelements 

can, in turn, contain other superelements. 

 
 
 

 
Figure 34 Superelement representation 

 
 
 

This element type has tremendous application in analysis where the large 

dimensionality of the problem is of concern. Nodes which are of interest, such as master 

degrees of freedom, constraint locations, etc., are selected in individual assemblies. 

Reduction methods such as the Guyan reduction or component mode synthesis are then 
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used to reduce individual elements in such a way that required dynamic content is 

retained. The superelement is then constructed with these individual elements. 

Figure 35, taken from the work done by Clark and Jurjevic [17], shows 

individual assemblies of a gas turbine. Each assembly was reduced and converted into a 

superelement, as the one shown in Figure 36. Individual superelements are combined 

into one final superelement, as shown in Figure 37. 

 
 
 

 
Figure 35 Individual assemblies in the work done by Clark and Jurjevic [17] 

 
 
 

 
Figure 36 Superelement of one of the component assemblies [17] 
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Figure 37 Individual superelements constructed into one superelement [17] 

 
 
 
2.7 Preprocessing Steps 

This section describes the concepts and steps involved making the ANSYS 

structural data compatible with XLTRC2 system. 

 

2.7.1 Axis Alignment Between ANSYS And XLTRC2 

A common practice seen in the industry is that a machine, comprised of many 

sub-components, may be designed by a number of individuals. While adopting common 

standards are desirable, feasibility plays a big role in their adherence. One such standard 

is the coordinate system. A casing and rotor, for example, may be designed by two 

individuals who may not have adopted the same base coordinate systems. When 

combining both the components, units and coordinate systems must be matched so that 

the data being read in is interpreted correctly. 
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Figure 38 Coordinate system used in XLTRC2 [3] 

 
 
 

Figure 38 shows an example XLTRC2 model with the coordinate system used, in 

which the Z-coordinate represents the axial direction. Note that the X-coordinate is 

normal to the plane of the paper and coming out of it. The coordinates in XLTRC2 

system is fixed and are not transformed. The Z-coordinate always represents the axial 

direction. 

Figure 39 shows a representative casing and rotor8 model built with ANSYS. In 

this model, the X-coordinate was used for the axial direction. The coordinate systems in 

Figure 38 and Figure 39 clearly do not match, and hence one of them has to be 

reoriented in space. 

 

                                                 
8 Appearance of the rotor as a series of cube–shaped elements is explained in section 2.8   
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Figure 39 Representative ANSYS model 

 
 
 

The transformation follows the principle as described in section 2.5. The Euler 

angles  represent the angle by which the z, y, and x coordinates in the original 

coordinate system need to be rotated. Suppose the transformation followed the 3-1-2 

order, the transformation matrices are defined by  

γ, β and α 

 

 (71) [ ] [ ] [ ]1 2 3

cos 0 sin 1 0 0 cos sin 0
0 1 0    0 cos sin    sin cos 0
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The coordinate transformation 3-2-1 can then be defined 
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 [ ][ ][ ]1 2 3

X X
Y A A A Y
Z Z

′⎧ ⎫ ⎧ ⎫
⎪ ⎪′ = ⎪ ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪′⎩ ⎭ ⎩ ⎭

⎪
 (72) 

Where X Y Z− − and X Y Z′ ′ ′− − represent the coordinate systems of ANSYS 

and XLTRC2, respectively.  A graphical representation of the coordinate transformation 

is shown in Figure 40. 

 
 
 

 
Figure 40 Transformation from ANSYS coordinate system to that of XLTRC2 

 
 
 

Since ANSYS provides better computational capability in terms of the size of the 

transformation matrix, it should be used to perform nodal coordinate transformation. 

ANSYS includes the ANSYS Parametric Design Language (APDL) that can be used to 

programmatically transform the coordinate system. Figure 41 shows an APDL code 

snippet that can be used to perform the nodal rotation. 
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Figure 41 APDL code to perform nodal rotation 

 
 
 

First, the master degrees of freedom (MDOFs) are selected using the nsel 

command. The MDOFs comprises of all nodes that the user selects for transformation. A 

local coordinate system is defined with the clocal command, and one is created such that 

it aligns with the XLTRC2 coordinate system. xlocal, ylocal, and zlocal are the location 

of the origin of the new coordinate system. The last three parameters of the clocal 

command (thxy, thyz, and thzx) are the transformation angles and represent first rotation 

about local Z (positive X toward Y), second rotation about local X (positive Y toward Z), 

and third rotation about local Y (positive Z toward X). 

The entire transformation can be done with one clocal command. Once the 

coordinate system has been switched to the created local coordinate system, using the 

csys command, the selected nodes are rotated with the nrotat command. For the example 

shown in Figure 39, the clocal command would have to be used with  to align 

the ANSYS coordinate system with that of XLTRC2. 

90thzx = −

 

2.7.2 Coordinate Elimination of Casing Model using ANSYS 

A 3D beam element model uses six degrees of freedom at each node to represent 

the translational and rotational motion about each coordinate. The degrees of freedom 

about the X, Y, and Z coordinates are shown in Figure 42, Figure 43, and Figure 44, 

respectively. XLTRC2, being a 2D beam element analysis tool, limits the degrees of 

freedom to four at each node. In the construction of the XLTRC2 beam model, a Guyan 

 



 66

reduction is used to eliminate the axial translation and rotation coordinates in ANSYS. 

This section illustrates the reasoning behind eliminating the axial casing coordinate from 

the analysis. Note that this coordinate elimination holds irrespective of whether the 

casing has been modeled with beam, shell, and/or solid elements. 

 
 
 

 
Figure 42 Translational and rotational motion (pitch) about the X-coordinate 

 
 
 

 
Figure 43 Translational and rotational motion (yaw) about the Y-coordinate 
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Figure 44 Translational and rotational motion (roll) about the Z-coordinate 
 
 
 

This assumption of eliminating the axial coordinate is based on generalized 

rotordynamics cases. If significant axial forces exist in the system, the motion along the 

Z-coordinate should be considered. One such example is where the casing modes can be 

connected to axial rotor motion through a balance piston or thrust bearing. However, in 

this thesis axial displacements are ignored for simplicity. 

With the Z coordinate eliminated, a two dimensional system defined by the X and 

Y coordinates results. The orthogonal X-Z and Y-Z planes are retained for analysis, as 

shown in Figure 45. 

 
 
 

 

Figure 45 Retained analysis planes lie in the XZ and YZ planes 
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2.7.3 Node Matching Between Rotor and Casing Nodes 

Once the models have been aligned to a common coordinate system and the 

number of degrees of freedom has been matched, the nodes between the rotor and the 

casing must be coupled correctly. Coupling does not mean physically connecting them. 

It is a mathematical representation of the link between nodes. The analysis tool uses this 

to formulate the system matrices in terms of stiffness, damping and inertia terms as well 

as to calculate relative displacements, mode shapes, etc. Examples of points where nodes 

are matched are bearing locations on casing and rotor, seal locations on casing and rotor, 

and points which are constrained in relative motion. 

A model built in XLTRC2 will consist of one or more shafts which are in turn 

made up of a number of beam elements. Each element is geometrically defined by its 

length, inner diameter and outer diameter. The left and right ends of an element stand for 

the left and right stations (also called nodes), respectively. Stations are used by XLTRC2 

to represent the location of bearings, seals, impellers, etc. 

 
 
 

 
Figure 46 Representation of elements and stations (nodes) in XLTRC2  
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In XLTRC2 the nodes are represented by successive station numbers. Numbering 

starts with element 1 and continues until all elements have been accounted for. The 

number of stations in a beam is always one more than its number of elements. Two 

consecutive elements share a node. For example, as seen in Figure 46, the right station of 

element 1 is the same node as the left station of element 2. XLTRC2 builds the elements 

such that the nodes coincide with the geometric center of the beam. XLTRC2 can also 

section an element into sub-elements (along the axial direction) and layers (along the 

radial direction); however, that does not affect node numbering. 

In constructing a casing structure in ANSYS, the primary difference is that 3D 

solid elements may be used. If auto meshing is used, the program decides on the element 

type. Depending on the nature of the elements used, the number of nodes and their 

spatial locations can vary. The example from section 2.3 is used for representation. 

Figure 47 shows the solid model of a representative bearing pedestal A finite element 

mesh is first created as shown in Figure 48. 

 
 
 

 
Figure 47 Solid model of a bearing pedestal 
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Figure 48 Finite element mesh of bearing pedestal 

 
 
 

 
Figure 49 Nodes created using high density mesh (Note that the appearance of 
nodes as a dense cluster is not due to low image quality, but due to the high level 

refinement of the finite element mesh used) 
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Figure 49 shows the nodes created in the meshing process. High density meshing 

that is used results in the large number of nodes. Within the limits of computational 

capability, it is advisable to use as high a mesh density as possible. This helps in the 

process of having a choice of nodes at desired locations. 

The nodes created in Figure 49 are driven by equations that associate  their 

relative displacements, forces, etc. Change in parameter for one node also influences the 

others. In XLTRC2 a bearing location on the rotor will be represented by a single node, 

so that node must be matched with the appropriate node(s) in the bearing pedestal mesh. 

One node-matching method is to attach all the nodes on the inner surface of the pedestal 

with the rotor bearing node. However, this is computationally intense since it increases 

the number of equations in the system matrix. It is also time consuming for an analyst to 

select all nodes. A good approximation can be used by selecting only those nodes that 

occur in the axial plane coinciding with the bearing location in the XLTRC2 rotor. This 

approximation is standard practice. Figure 50 shows the nodes selected at the midsection 

plane of the bearing pedestal. The view from the front plane is shown in Figure 51. 

 
 
 

 
Figure 50 Nodes in the geometric center plane of the bearing pedestal 
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Figure 51 Center nodes seen from the front plane 

 
 
 

Figure 52 illustrates the process of matching the nodes on the rotor and casing 

models. As seen earlier in section 2.7.2, the planes of interest are the orthogonal X-Z and 

Y-Z planes. The nodes that coincide with these planes in the interior surface of the 

bearing, shown in the figure by red dots, are selected. A new node, shown in the figure 

by the green dot, is created at the geometric center location of the pedestal by using the 

coordinates of the four selected nodes. Finally the selected bearing nodes are connected 

to the center node using MPC184 rigid beam type constraint elements. The behavior of 

the newly created node will now follow those selected on the bearing inner surface due 

to the imposed translational and/or rotational constraints. The advantage of this process 

is easily explained. Using all the initial nodes shown in Figure 49 would increase the 

complexity and time required for finding a solution. By creating a single center node at 

the bearing-center location, dynamic content is retained. Also a single node makes it 

easier to use a bearing or damper element to connect the rotor to the casing. 
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Figure 52 Close up view of the bearing pedestal center to illustrating the selection 

of matching nodes  
 
 
 

 
Figure 53 Pedestal showing nodes extending from interior to exterior surface 

 
 
 

The above approximation also generalizes the node matching process for cases 

where the casing is modeled with shell elements versus cases where the casing is 

modeled with general 3D elements. When using the latter, as in the representative model 
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used here, a number of nodes extend from the interior to the exterior surface (Figure 53). 

The node on the interior surface is selected and it will respond to the dynamic behavior 

of the other nodes around it. This holds good for rotordynamic applications. 

 

2.8 Graphical Representation 

The center-node creation in the above section may lead to the question – How do 

the newly created node and the bearing node in the XLTRC2 model relate if they are at 

the same location in the coordinate system? The answer is that this is only a visual 

representation. The earlier section 2.2 on CMS formulation shows that when bearings 

and seals are used, their stiffness, damping and inertia contributions go into the 

appropriate locations in the system matrices. To the ANSYS and XLTRC2 codes, only 

this mathematical representation is of concern. The graphical display is only to aid an 

analyst to visually perceive the relative placements of the casing and rotor. Hence 

although both nodes visually take up the same location, the codes can mathematically 

distinguish between the radial locations. 

The appearance of the rotor as a series of cube-shaped elements, in Figure 39, is 

also because of the above mentioned reason – visual representation. The rotor model is 

built in ANSYS Classic and APDL by using 3D BEAM4 beam elements. Although the 

beam appears to have a square cross-section, the geometric, material, element and mesh 

information are the same as a beam represented as a cylinder with circular cross-section. 

A verification test is conducted to ensure that the results obtained from the 

various tools agree with each other. A solid cylindrical model is tested using XLTRC2, 

ANSYS Classic with APDL and ANSYS Workbench. XLTRC2 and ANSYS Classic 

used beam elements, whereas ANSYS Workbench employed solid elements. The results 

showed excellent agreement with each other. 0 shows the details of the verification test. 
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2.9 API Unbalance Specification 

This section describes the specifications in American Petroleum Institute (API) 

Standard paragraphs 617 [26] and API Standard paragraphs 684 [27] for including 

effects of unbalance on the system, and will be used later in this thesis for calculation of 

unbalance response. The influencing factors for unbalance magnitude are the weight of 

the rotor and the maximum continuous operating speed, as shown in Eq.(73). 

 

[ ]

[ ]

    6350     SI Units

             4     US Customary Units

Unbalance magnitude in g-mm (oz.-in.)
W Static load in kg (SI units) or lbs (US units)
N Maximum continous operating speed (RPM)

WU
N
W
N

U

= ×

= ×

→
→
→

 (73) 

In the analyses of rotating machinery, the actual distribution of the calculated 

unbalance along the length and circumference of the rotor is more or less random. 

However, for analysis they are usually placed at locations where they tend to impose a 

maximum undesirable affect on a particular mode, i.e. create maximum response. An 

example is shown in Figure 54 that represents a rotor supported between bearings. In this 

case, an unbalance applied to the rotor mid-span typically tends to excite the first 

bending mode. When proportional unbalance amounts are applied to quarter and three-

quarter span locations they are likely to excite the second bending mode. 

 
 
 

 
Figure 54 Typical first and second bending mode shape for a rotor  
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3 PROCEDURE 
 

This section describes the steps involved in creating the various rotordynamic 

models used for analyses in this thesis. SI units are used for all models, and English unit 

equivalents, where necessary, have been mentioned. A straight-through compressor 

design is used as the representative model. Note that these models do not represent any 

proprietary data. Various validation steps are performed to ensure model reliability. 

These steps compare initial results obtained from XLTRC2 with ANSYS and thus ensure 

that both the tools are benchmarked against one another. 

The procedure begins by building the casing models. This research seeks to 

examine the difference between using an axisymmetric and non-axisymmetric casing 

structure in XLTRC2. The axisymmetric casing model is built in both XLTRC2 and 

ANSYS, shown in sections 3.1.1 and 3.1.2 respectively. This step provides a benchmark 

for the current approach to modeling casing structures. A solid-element non-

axisymmetric casing model is then built, described in section 3.1.3, and the reduced 

model incorporated with XLTRC2 for analysis. The required pre-processing steps are 

performed to convert the ANSYS casing data into a compatible format with XLTRC2. 

These steps were described in detail in section 2.7. 

The XLTRC2 rotor model is built next, and is described in section 3.2. The rotor 

is modeled with beam elements and has stations to provide interface for the bearings and 

seal. The rotor has also been modeled with added inertias to represent lumped masses. 

Bearings and seals that are used to connect the rotor to the casing structure are then 

defined in section 3.3 and 3.4, respectively. 

Once individual rotordynamic components are created, they are assembled into 

the final coupled rotor-casing model. The axisymmetric and non-axisymmetric casing 

models, built out of solid elements in ANSYS, are reduced and incorporated with 

XLTRC2. 
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3.1 Casing Models 

Simple casing models are developed based on representative straight-through 

compressor designs. To validate the difference between using axisymmetric and non-

axisymmetric models, separate casing models are developed. The casing models 

described in this section will be used hereafter. Steel is used as the material for all casing 

models. The material properties are taken from the standard XLTRC2 template and have 

the following properties, 

Density ( )ρ   = 7833.412 3kg m  (Specific weight = 0.283 3lb in ) 

Elastic Modulus ( )E  = 206.842E+9 2N m  (30.0E+6 2lbf in ) 

Shear Modulus ( )G  = 82.737E+9 2N m  (12.0E+6 2lbf in ) 

 

3.1.1 Axisymmetric XLTRC2 Beam Element Casing Model 

The first casing model is developed in XLTRC2 as an axisymmetric beam 

element model to validate the current analysis technique used in XLTRC2. It provides 

benchmark results to make sure that procedures used for incorporating casing data are 

working correctly.  

A verification test for bending mode frequencies is conducted between a beam-

element based XLTRC2 beam model and its corresponding solid-element based ANSYS 

model, documented in 0, and showed excellent agreement in the reported frequencies. 

However, note that it is necessary to divide the XLTRC2 model into a sufficiently large 

number of beam elements. The reason is that the number of critical speeds is dependent 

on the 

 elements. When using fewer elements, certain roots may be missed. The 

length-to-diameter aspect ratio is not relevant to finite element models, and usually a 

single element will work for most constant-diameter sections. Two cases of the 

axisymmetric XLTRC2 beam-element casing models with different mesh densities are 

number of elements in the model. The smaller the number of beam elements in 

the finite element model, the larger will be the margin in the eigen solution when 

compared to a finite element model based on solid elements, which typically has a larger 

number of
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constructed to cross-check the accuracy of the ANSYS solid element casing model. The 

validat

elements of the same geometric properties. 

ple, elements 32 through 39 have the same ents 31 

and 40. The summary of the complete casing is described in Table 2 and shows a total 

ters .48 mass of 9010.11 kg; weight of 19863.9 lb. 

 

ion test is documented in APPENDIX B. 

Based on this test the following XLTRC2 model is used for the casing. The 

casing is made of 160 beam elements of varying lengths and diameters to fit the 

geometry of the encasing rotor. Figure 55 shows the model. The element properties are 

described in Table 1. Note that not all the elements are shown due to space restrictions, 

and the gaps denoted by the ellipses indicate 

For exam  geometric properties as elem

length of 4.00 me  (157  inches) and a 

 

 

 
Figure 55 Geometric plot of XLTRC2 axisymmetric casing model 
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 Table 1 Element properties of XLTRC2 axisymmetric casing model 

Casing Model Data Entry 
Left Right Shaft 

# 
Element 

# 
Length 

(m) OD(m) ID(m) OD(m) ID(m) 
1 1 0.0200 1.000 0.650 1.000 0.650

… … … … … … …
1 10 0.0200 1.000 0.650 1.000 0.650
1 11 0.0275 0.900 0.650 0.900 0.650

… … … … … … …
1 30 0.0275 0.900 0.650 0.900 0.650
1 31 0.0200 0.950 0.500 0.950 0.500

… … … … … … …
1 40 0.0200 0.950 0.500 0.950 0.500
1 41 0.0250 0.900 0.750 0.900 0.750

… … … … … … …
1 80 0.0250 0.900 0.750 0.900 0.750
1 81 0.0250 1.000 0.650 1.000 0.650

… … … … … … …
1 90 0.0250 1.000 0.650 1.000 0.650
1 91 0.3125 0.900 0.750 0.900 0.750

… … … … … … …
1 130 0.3125 0.900 0.750 0.900 0.750
1 131 0.0200 0.950 0.500 0.950 0.500

… … … … … … …
1 140 0.0200 0.950 0.500 0.950 0.500
1 141 0.0150 0.900 0.650 0.900 0.650

… … … … … … …
1 150 0.0150 0.900 0.650 0.900 0.650
1 151 0.0200 1.000 0.650 1.000 0.650

… … … … … … …

 
 
 
Table 2 Summary of the complete XLTRC2 casing model 

1st 
STN 

# 

Nth 
STN 

Total 
Length 

Total 
Mass 

C.G. 
location 

Total It 
at C.G. 

Total Ip 
about C.G. 

²) 

1 160 0.0200 1.000 0.650 1.000 0.650

# (m) (Kg) (m) (Kg-m²) (Kg-m

1 161 4.00 9010.11 1.971 15154.81908 1486.87 
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3.1.2 Axisymmetric ANSYS Solid Element Casing Model 

The second casing model is built in ANSYS as an axisymmetric solid element 

m eom ert e sa 2 m rity 

with the software, SolidWorks is used fo  mode Figu nd Figure 57 

shows the geometri e model is then imported into ANSYS, shown by 

Figure 5 he finite ment  mode wn in  59. 

 
 
 

od  Gel. etri propc ies th are me as in the XLTRC odel. Due to familia

r solid ling. re 56 a

c featur s. The 

8. T  ele  meshed l is sho  Figure

 
Figure 56 Side view of SolidWorks casing model showing section leng

 
 
 

ths 

 
Figure 57 Isometric view of SolidWorks model showing section diameters 
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Figure 58 Solid model of ANSYS axisymmetric casing 

 
 
 

 
Figure 59 Finite element model of ANSYS axisymmetric casing 
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Figure 60 Summary of ANSYS axisymmetric casing model 

 
 
 

The finite elem

odes. Figure 60 shows summary parameter data for the ANSYS axisymmetric casing 

model. These values agree well with the XLTRC2 casing model summary shown in 

Table 2. Note that the slight difference in mass and inertia properties is due to the 

additional surfaces created in the ANSYS model that provide the interface to connect 

foundation supports to ground, as shown in Figure 58. This method to have body to 

ground connections is chosen for convenience, and does not make a big influence as the 

parameters vary in value by only 0.1%. APPENDIX C shows a comparison of the Free-

Free modes of casing models with and without the additional surfaces. The results show 

negligible change when the additional surfaces are used. 

 

3.1.3 Non–Axisymmetric ANSYS Solid Element Casing Model 

The third casing model is built in ANSYS as a non-axisymmetric solid element 

model. This model is identical to the axisymmetric ANSYS model except with the 

addition of two flanges and a module representing instrumentation and lubrication box, 

ent mesh consists of 19,225 elements and 36,723 corresponding 

n
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as shown in Figure 61. The non-symmetrical elements are only placed to induce non-

symmetry so the geometric coordinates are not important. 

 
 
 

 
Figure 61 Solid model of ANSYS non-axisymmetric casing 

 
 
 

Figure 62 shows a summary of the ANSYS non-axisymmetric casing model. The 

FEM mesh consists of 20,753 elements and 39,391 corresponding nodes. The effect of 

non-symmetry is evident in the change in location of the center of gravity and values of 

ertia when comparing them with the values of the axisymmetric model in Figure 60. in
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Figure 62 Summary of ANSYS non-axisymmetric casing model 

 
 
 
3.2 Rotor Model 

A rotor model is developed based on representative straight-through compressor 

models. Note that this model does not represent any proprietary rotor data. The rotor 

model described will be used for the remaining of the analyses to be performed. 

The  diameters. 

teel is used as the material for the rotor. The material properties are taken from the 

tandar 2

rotor is constructed of 21 beam elements of varying lengths and

S

s d XLTRC  template and have the following properties, 

Density ( )ρ   = 7833.412 3 3kg m  (Specific weight = 0.283 lb in ) 

Elastic Modulus ( )E  = 206.842E+9 2N m  (30.0E+6 2lbf in ) 

Shear Modulus ( )G  = 82.737E+9 2N m  (12.0E+6 2lbf in ) 

Table 3 describes the shaft properties of the rotor model. To reduce the 

complexity of the analysis, the use of sub-elements and layers is not employed. The rotor 

is a solid shaft, i.e. inner diameter = 0 m. To simulate the effect of impellers, lumped 

masses are added to various stations in the model, as shown in Table 4. Summaries for 

each element in the rotor model, comprising the length, center of gravity, mass, 
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transverse moment of inertia, and polar moment of inertia, is stated in Table 5. The 

summary of the complete rotor is described in Table 6 and shows a total length of 4.00 

meters (157.48 inches) and a mass of 6370.05 kg (weight of 14043.50 lb). Figure 63 

shows a graphical representation of the rotor. 

APDL is used to create the rotor model in ANSYS. The source code has been 

included in APPENDIX E. 

 
 
 
Table 3 Element properties of XLTRC2 rotor model 

 

Rotor Model Data Entry 
Left Right Shaft 

# 
Element Sub- 

l
Layer Length 

ID(m) # E ement# # (m) OD(m) ID(m) OD(m) 
1 1 1 1 0.250 0.200 0 0.200 0 
1 2 1 1 0.150 0.200 0 0.200 0 
1 3 1 1 0.350 0.300 0 0.300 0 
1 4 1 1 0.100 0.250 0 0.250 0 
1 5 1 1 0.100 0.250 0 0.250 0 
1 6 1 1 0.100 0.300 0 0.300 0 
1 7 1 1 0.050 0.300 0 0.300 0 
1 8 1 1 0.400 0.400 0 0.400 0 
1 9 1 1 0.200 0.400 0 0.400 0 
1 10 1 1 0.250 0.400 0 0.400 0 
1 11 1 1 0.125 0.400 0 0.400 0 
1 12 1 1 0.125 0.400 0 0.400 0 
1 13 1 1 0.250 0.400 0 0.400 0 
1 14 1 1 0.250 0.400 0 0.400 0 
1 15 1 0 0.400 0 0.400 1 0.15 0 
1 16 1 0 0.400 0 0.400 0  1 0.40
1 17 1 0.300 1 0.100 0 0.300 0 
1 18 1 0. 0.300  1 100 0 0.300 0 
1 19 1 0.250 1 0.100 0 0.250 0 
1 2 1  0.250 0 1 0.100 0 0.250 0 
1 21 1 1 0.350 0.300 0 0.300 0 

 
Summaries for each element in the rotor model, comprising the length, center of 

gravity, mass, transverse moment of inertia, and polar moment of inertia, is mentioned in 

the table that follows. 
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Table 4 Lumped masses used to represent impellers in XLTRC2 rotor model 
Added Mass & Inertia  

STN # Added Mass (Kg) Added Ip (Kg-m²) Added It (Kg-m²) 
2 120 5 5 

10 100 20 10 
11 100 20 10 
13 1000 175 100 
14 1000 175 100 
15 1000 175 100 
16 100 20 10 

 
 
 
Table 5 Summary of individual element properties in XLTRC2 rotor model 

 

B
L

(m

Axial Iner

) 

Inertia 

²) 

Elm 
  

#

Lft 
STN 

# 

Rgt 
STN 

# 

eam 
en h gt

) 

Beam 
C.G. 
(m) 

CG 
(m) 

Mass 
  

(Kg) 

tia 
It 

(Kg-m²
Ip 

(Kg-m
1 1 2 0.25 0 61.5  4 8 0 0.125 .125 23 0.47 0.30
2 2 3 0.15 0 36.9  1 5 0 0.075 .325 14 0.16 0.18
3 3 4 0.35 0 193.7  8 0 0 0.175 .575 99 3.06 2.18
4 4 5 0.10 0 38.4  2 0 0 0.050 .800 52 0.18 0.30
5 5 6 0.10 0 38.4  2 0 0 0.050 .900 52 0.18 0.30
6 6 7 0.10 1 55.3  8 3 0 0.050 .000 71 0.35 0.62
7 7 8 0.05 1 27.6  1 1 0 0.025 .075 86 0.16 0.31
8 8 9 0.40 1 393.7  8 5 0 0.200 .300 50 9.18 7.87
9 9 10 0.20 1 196.8  5 8 0 0.100 .600 75 2.62 3.93

10 10 11 0.25 1 246.0  3 2 0 0.125 .825 94 3.74 4.92
11 11 12 0.12 2 123.0  1 1 5 0.063 .013 47 1.39 2.46
12 12 13 0.12 2 123.0  1 1 5 0.063 .138 47 1.39 2.46
13 13 14 0.25 2 246.0  3 2 0 0.125 .325 94 3.74 4.92
14 14 15 0.25 2 246.0  3 2 0 0.125 .575 94 3.74 4.92
15 15 16 0.15 2 147.6  3 3 0 0.075 .775 56 1.75 2.95
16 16 17 0.40 3 393.7  8 5 0 0.200 .050 50 9.18 7.87
17 17 18 0.10 3 55.3  8 3 0 0.050 .300 71 0.35 0.62
… … … … … … … … … 
21 21 22 0.35 3 193.7  8 0 0 0.175 .825 99 3.06 2.18

AW9   2 0 120.0  0 0 1     .250 00 5.00 5.00
AW 2   10 1 100.0  0 2 00     .700 00 10.00 0.0
AW 3   11     1.950 100.000 10.000 20.000 
AW 4   13     2.200 1000.000 100.000 175.000 
AW 5   14     2.450 1000.000 100.000 175.000 
AW 6  15     2.700 1000.000 100.000 175.000 
AW 7   16     2.850 100.000 10.000 20.000 
                                                 
 AW – Added Weight 9
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Table 6 Summary of the complete XLTRC2 rotor model 
1st Nth 

ST
# 

STN 
Total Total 

ass 
 

C.G. Total It 
at C
(Kg-m²

Total Ip 
.G. 

m
N 

# 
Length 

(m) 
M
(Kg)

location 
(m) 

.G. 
) 

about C
(Kg- ²) 

1 21 4.00 6 245 3971.324 640.370.05 2. 56 
 
 
 

 
Figure 63 Geometric plot of XLTRC2 rotor model 

 
 
 

A model validation step is perform r the RC2 ode sure tha

been b lt corr ly. It also p means to ve  the ence

eters, such as coordinate systems, are cou for y. T p is

ial to th proces  incorporati  the ca g s re SY LT

theless, it is recommended. The validation step is docu n 0

ed fo  XLT  rotor m l to en t 

it has ui ect rovides a rify that  differ s in 

param ac nted correctl his ste  not 

essent e s of ng sin tructu  from AN S into X RC2. 

Never mented i . 
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3.3 Bearing Model 

Two e s urnal ngs su  rotor. arings have a length 

of 0.16 m (6.30 in), di ter of 0  (9.84 i d pad c of 0.00 157 

). The bearing use a lubricant with viscosity of 21.99e-03 Pa-s (21.99 cp) and density 

f 853.49

 2-lob leeve jo  beari pport the  The be

ame .25 m n), an learance 4 m (0.0

in

 3kg m (specific weight = 0.0308 3lb ino ). With a bearing span of 2.70 m 

(106.30 in) they connect to the rotor model at stations 5 and 20, as shown in Figure 6310. 

Bearing locations and rotor center of gravity are shown in Figure 64. These bearings will 

later be used to connect the rotor to the casing structure. 

 
 
 

 
Figure 64 Bearing load calculation 

 
 

The following force balance equation provides the reaction forces (RA and RB). 

otal mass of rotor  = 6370.05 kg (436.48 slug) 

Weight

 

T

 of rotor, W  = 62490.19 N (14048.40 lbf) 

Center of gravity location = 2.245 m (88.385 in) from left end of rotor 

 62490.19A BR R+ =  (74) 

 Moment about A    2.7 6370.05 1.395 0BR⇒ − × =  (75) 

This results in  
                                                 
10 The bearing stations use different numbering in the combined rotor-casing model 
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 A R 3

B    R 32286.59
0203.59N

N
∴ =

 
=

 
 
 

(76) 

 
Figure 65 f bearing 1 

e 

 i Figure 65 an A third-order polynomial 

 and damping bearing 

ng 1 are 

hown in Eq.(77) and bearing 2 in Eq.(78). 

Calculated rotordynamic coefficients o
 
 
 

The stiffness and damping bearing coefficients for bearing 1 and bearing 2 ar

calculated as shown n d Figure 66, respectively. 

fit is used to obtain expressions for speed dependent stiffness

coefficients. N represents the running speed in RPM. The equations for beari

s
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1 0 1

1 0 1

  1066393315
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  (77) 

 
 
 

1 0 1 2

255286980.2 31095.3652 2.172088328N N N N
−

× + × + × − ×

 
Figure 66 Calculated rotordynamic coefficients of bearing 2  

 
 
The polynomial fit equations for bearing 2 are shown in Eq. (78). 
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1 0 1

1 0 1

1 0 1

  1453070445 272186237.9 31603.41526 2.132270135

33145936257 32508425.09 104532.0399 2.756220705

66023587471 549617088.4 27529.90062 12.87745021
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The stiffness and damping curve fits for bearing 1 are graphically represented by 

Figure 67 and Figure 68, respectively. Bearing 2 curve fits are represented by Figure 69 

and Figure 70. 

 
 
 

  (78) 

 
Figure 67 Stiffness coefficients curve fit plot for bearing 1 
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Figure 68 Damping coefficients curve fit plot for bearing 1 

 
 
 

 
Figure 69 Stiffness coefficients curve fit plot for bearing 2 
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Figure 70 Damping coefficients curve fit plot for bearing 2 

 
 
 
3.4 Seal Model 

The rotor used in the analyses represents a straight-through compressor. The use 

of a seal in such an application prevents leakage losses that can occur across the various 

stages of a compressor. A simple made-up gas seal is used to include the effect of this 

rotordynamic element in the analysis, and it connects to the rotor at station 12, as shown 

in Figure 63. Note that this seal does not represent any actual data set and is used only as 

a representative model. Constant seal coefficients are used as illustrated in Figure 71.  

Seal rotordynamic stiffness, damping and mass coefficients curve fits are 

represented in Figure 72, Figure 73, and Figure 74, respectively. Note that the direct 

coefficients ahave the s me value, i.e. , ,  and XX YY XX YY XXK K C C M MYY= = = . Hence 

ese plots appear to overlay each other on the figures. 

 

th
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Figure 71 Seal rotordynamic coefficients 

 
 
 

 
Figure 72 Stiffness coefficients curve fit plot for seal 
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Figure 73 Damping coefficients curve fit plot for seal 

 
 
 

 
Figure 74 Mass coefficients curve fit plot for seal 
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3.5 Coupled Rotor–Casing Model 

This section shows the models used for symmetrical and non-symmetrical 

coupled rotor-casing model. The rotor is connected to the casing at bearing locations, 

and the seal used at about midway of the rotor length. The casing is connected to ground 

using foundation supports. These supports are modeled as isotropic supports with no 

damping and stiffness of 5x108 N/m (2.86x106 lb/in). 

 

3.5.1 Axisymmetric Coupled XLTRC2 Rotor–Casing Model 

Figure 75 shows the XLTRC2 model for coupled rotor-casing consisting of 181 

elements and 183 stations (nodes). Table 7 describes the connecting elements.

 

 

 
 

 
Figure 75 XLTRC2 coupled rotor-casing model for symmetrical case 
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Table 7 Connecting elements between rotor and casing 
Rotor Station # Casing Station # Connecting Element 

166   36 Bearing 1 
181 136 Bearing 2 
173   86 Seal 

-     6 Foundation Support 1 
- 156 Foundation Support 2 

 
 
 
3.5.2 xisymmetric Coupled ANSYS Rotor–Casing Model 

etric case is shown in 

Figure 

A

The ANSYS coupled rotor-casing model for the axisymm

76 and Figure 77. 

 
 
 

 
Figure 76 ANSYS coupled rotor-casing model for axisymmetric case 
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Figure 77 Axisymmetric coupled model with locations of connecting elements 

 
 
 
3.5.3 Non–Axisymmetric Coupled ANSYS Rotor–Casing Model 

 
Figure 78 ANSYS coupled rotor-casing model for non-axisymmetric case 
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The ANSYS coupled rotor-casing model for the non-axisymmetric case is shown 

in Figure 78 and Figure 79. 

 
 
 

 
Figure 79 Non-axisymmetric coupled model showing connecting elements 

 
 
 
3.6 Setting up Component Mode Synthesis in ANSYS 

Depending on the level of accuracy desired, the type of component mode 

synthesis (CMS) method can be specified. The analyses used here employ the Fixed-

interface method. In this method, interface nodes are specified and constrained while 

creating the superelement. This method is recommended in the ANSYS help manual for 

casings and structural materials where the accuracy of the lower modes is important. 

CMS analysis in ANSYS involves three distinct steps called passes. The passes are 

version-specific, so it is important to have them performed using the same version of 

ANS h  in 

ANSYS generates only the reduced mass and stiffness matrices. 

YS in whic  the database file is created. As of version 11 SP1, the CMS option
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The first CMS pass is called Generation Pass and can be considered an extension 

of the substructuring procedure, described in section 2.3. It involves condensing a group 

f finite elements into a single superelement. Once a finite element model is built, a set 

f master degrees of freedom (MDOF) are identified. This will define the interface of the 

newly created superelement with other superelements or elements. The master DOF are 

essential to capture the dynamic characteristics for analyses. The CMS method and the 

frequency range of interest are specified. Applicable loads are defined, and the solution 

is initiated. The output of the generation pass is the superelement matrix file, identified 

by the default .SUB extension 

The second CMS pass is called Use Pass and it makes use of the generated 

superelement file by making it part of the model. The entire model may eventually 

consist of only a single superelement or may be a combination of superelements and 

other non-superelements. The CMS use pass can be used for analysis types such as 

modal, static, force response, transient, etc. While a generation pass needs to be done for 

each component of the entire structure, the use pass is done only once because it uses all 

the superelements together in one full model. 

The third pass, called the Expansion Pass, is optional. As the name suggests, it is 

used ws 

etails of the commands used in an algorithm for CMS generation and use pass in 

NSYS. 

o

o

 to expand results from the reduced model to the full-scale model. Figure 80 sho

d

A
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Figure 80 CMS generation and use pass  

 
 
 
3.7 Coupled Rotor-Reduced Casing Model 

Having described the substructuring and component mode synthesis algorithms 

in the previous section, the next step involves performing the reduction steps. The details 

of the steps are described in the following sub-sections. 

 

3.7.1 Axisymmetric Coupled ANSYS Rotor–Reduced Casing Model 

The integration of ANSYS into XLTRC2 begins with the ANSYS database file. 

The ANSYS Workbench model is first imported into ANSYS Classic using the available 
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database conversion tools. Workbench is designed as a user-friendly application that 

encapsulates most of the powerful features of Classic through graphical user interface 

elements. However, many advanced features are unavailable such as flexibility and 

control over the use of elements and nodes. Figure 81 shows the casing model after it has 

been imported into ANSYS Classic. 

Next the node matching step is performed. The theory behind this step is 

described in detail in section 2.7.3, and explained the creation of a new node at the 

center and then connecting them with rigid elements in the radial direction. Figure 82 

shows the newly created nodes for the bearings and seals. These nodes, along with nodes 

at the foundation supports, are then included in the master degree of freedom (DOF) set. 

Once the master DOFs are selected and necessary constraints applied, 

substructuring is performed. This reduces the casing model while retaining all essential 

dynamic characteristics.  

 
 
 

 
Figure 81 Axisymmetric casing model in ANSYS classic format 
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Figure 82 Nodes at bearing and seal locations that form MDOF set 

 
 
 

Figure 83 shows the reduced casing model. Note that the missing graphical 

features do not indicate that those elements have been removed. The reduced casing 

model is then integrated with the rotor model, described in section 3.2, to form the 

coupled axisymmetric rotor-reduced casing model. Figure 84 shows the placement of the 

rotor within the axisymmetric casing structure. Figure 85 can be compared with Figure 

77 for graphical validation. The APDL source code for axisymmetric casing 

substructuring has been included in APPENDIX E. 
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Figure 83 Reduced model of axisymmetric casing structure 

 
 
 

 
Figure 84 Isometric view showing combined rotor –reduced casing model 
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Figure 85 Side view of coupled axisymmetric model showing relative placement 

 
3.7.2 Non–Axisymmetric Coupled ANSYS Rotor–Reduced Casing Model 

Similar reduction steps are performed for the non-axisymmetric casing structure. 

Figure 86 shows the casing model when imported into ANSYS Classic. The node 

matching step is performed, and the selected master degree of freedom set is shown in 

Figure 87. Substructuring is performed and results in the reduced model, shown in 

Figure 88. The non-axisymmetric components can be seen clearly. The reduced casing 

model is then integrated with the rotor model. Figure 89 shows the placement of the 

rotor within the non-axisymmetric casing structure. 

The APDL source code for axisymmetric casing substructuring has been 

included in APPENDIX E. 
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Figure 86 Non-axisymmetric casing model in ANSYS classic format 

 
 
 

 
Figure 87 Nodes at bearing and seal locations that form MDOF set 
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Figure 8 Reduced model of non-axisymmetric casing structure 8 

 
 
 

 
Fi t gure 89 Coupled non-axisymmetric model showing relative placemen
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4 RESULTS AND DISCUSSION 
 

Having described the casing, rotor, bearing and seal models in the previous 

section, the next step is to run the various analyses and calculate the results. 

The analyses are first done for the rotor-only model. This provides a base for 

comparison, as the objective of this thesis is to adapt the beam-based XLTRC2 

rotordynamic model to accept a general three dimensional finite element casing model. 

Section 4.1 describes the details of the analysis. The unbalance magnitude specifications 

and configurations, mentioned in section 4.1.4, are also used in the casing structure 

analyses that follow. An unbalance response is performed with the axisymmetric model 

built in XLTRC2 and this is compared with the axisymmetric model from ANSYS. This 

comparison serves to provide a direct measure of the accuracy of the existing XLTRC2 

suite. 

O r ded for 

e coupled rotor-casing model analyses, illustrated in section 4.2. With the casing 

tructure, the first set of analysis uses the axisymmetric casing structure. Both the 

XLTRC2 axisymmetric casing and the ANSYS axisymmetric casing are employed. The 

second set of analysis uses the non-axisymmetric casing structure model from ANSYS. 

This is compared with the axisymmetric model for changes in the rotordynamic 

behavior. The mode shapes and unbalance response are investigated. 

A study is also conducted into the connection used for the interstage seal. The 

results obtained by connecting the seal between rotor and ground are compared with 

those obtained in the case where the seal connection is made between the rotor and the 

casing. These predictions are discussed in section 4.2.4. 

nce the roto  model results are generated, the casing structure is inclu

th

s
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4.1 Rotor-Only

 

ode shapes are then calculated for each value of direct support stiffness. A UCS 

map is

 Model 

This section describes the undamped critical speed, damped critical speed and 

unbalance response analysis done on the rotor and the results inferred. 

4.1.1 Rotor Undamped Critical Speed Map 

The undamped critical speed (UCS) analysis is performed on the rotor model to 

get a preliminary assessment of critical speeds and mode shapes of the rotor. This 

analysis does not include the effects of any damping on the system, and thus does not 

represent the actual dynamics of the rotor. However it gives insight into the general 

behavior of the rotor. UCS analysis is performed by applying varying amounts of 

stiffness at the support locations, which are the bearings in this case. The critical speeds 

and m

 generated by plotting the support stiffness (abscissa axis) versus critical speed 

frequency (ordinate axis), as shown in Figure 90. 

 
 
 

 
Figure 90 Rotor undamped critical speed map with bearing stiffness cross-plotted 
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The highlighting characteristic in the UCS map is the relationship between the 

rotor st

frequencies of the 

ystem are influenced by the bearing stiffness and rotor mass. The left area of the UCS 

ause the rotor does not undergo much 

bending. At higher bearing stiffness, as seen in the right area of the UCS map, the 

critical

d lies roughly between 2000 rpm and 

750 rpm. The rotor is designed to run at 3600 rpm. Figure 91(a) through Figure 91(c) 

how the bending modes of the first critical under the effect of varying bearing support 

stiffness. The locations of the bearings are indicated by the dotted lines. As seen in 

Figure 91(a), at low bearing stiffness the rotor is stiff and does not have much bending. 

When the bearing stiffness increases, the locations of the bearings become node points 

and the rotor bends about these nodes. This is evident in Figure 91(c). American 

Petroleum Institute (API) specification [26] states that critical speeds up to twice the 

running speed should be accounted for. Figure 92(a) through Figure 92(b) show the 

bending modes of the second critical under varying bearing support stiffness. Similar to 

the first critical bending modes, under low bearing stiffness, the rotor shows rigid body 

modes. At high bearing stiffness, the stiffness of the rotor becomes the controlling 

element thereby showing rotor bending modes. 

iffness and the support stiffness. The controlling element in a system is the one 

with the lowest stiffness. Hence at lower support bearing stiffness, the 

s

map is therefore called the stiff rotor part bec

 speeds are no longer influenced by the support stiffness and are influenced by the 

rotor stiffness and rotor mass. The support locations becomes node points and the rotor 

experiences higher degree of bending. 

Once the UCS map is defined, the actual support characteristics are taken into 

account to assess the critical speeds. Speed-dependent direct bearing stiffness values for 

both the bearings, earlier calculated in section 3.3, are cross-plotted on the UCS map. 

The speeds where the coefficient curves corresponding to the support stiffness coincide 

with the critical-speed curves are estimated to be potential critical speeds of the system. 

Based on Figure 90, the first critical spee

2

s
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(a) 

Location of 
Bearings 

 

 
(b) 

 

 

 

Figure 91 First undamped critical speed mode shape. 
(a) at 223.40 rpm (3.72 Hz) with bearing stiffness of 1.751Ex106 N/m 
(b) at 1950.70 rpm (32.51 Hz) with bearing stiffness of 1.751x107 N/m 
(c) at 3549.10 rpm (59.15 Hz) with bea

(c) 

ring stiffness of 1.751x1011 N/m 
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F Second undamped critical speed mode shape. 

(  
 

(a) 

(b) 

(c) 

igure 92 
(a) at 418.10 rpm (6.96 Hz) with bearing stiffness of 1.751x106 N/m 

(b) at 3947.70 rpm (65.79 Hz) with bearing stiffness of 1.751x107 N/m 
c) at 21266.10 rpm (354.44 Hz) with bearing stiffness of 1.751x1011 N/m
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4.1.2 r-Only Damped Critical Speed Map 

The damped critical speed analysis measures the stability index of the rotor. A 

damped eigenvalue is a complex number expressed in the form

Roto

, where p ds p iω= ± is 

called damping exponent and is the measure of th  

stable when

e stability of the system. A system is

p is negative and unstable when p is positiv

[27] uses a derived quantity called log decrement given by 

e. As a measure of system 

stability, API specification 

2 dpδ π ω= − ÷ . A system is stable when δ  is positive and unstable when it is negative.  

The damped natural frequencies are calculated for the rotor model without and 

with the addition of the interstage seal (at station 12 in the rotor model). Figure 93 shows 

the natural frequency map for the rotor model without the effect of the seal. The 

synchronous excitation intersects the first and fourth modes. The addition of the seal at 

station 12 influences the rotordynamic system by slightly improving the stability, as will 

be seen in the next section. Figure 94 shows the natural frequency map for the rotor 

model with the addition of the seal. The synchronous excitation line moves slightly away 

from the first critical speed and tends to excite the third critical speed.  
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Figure 93 Damped natural frequency map without the effect of the seal 
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Rotordynamic Damped Natural Frequency Map
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Figure 94 Damped natural frequency map with the addition of the seal 
 
 
 
4.1.3 Rotor Damped Modes 

The first four rotor damped mode shapes of the rotor, with and without the 

ddition of the seal, are described in this section. Gyroscopic effects are included to 

obtain the modes and their corresponding mode shapes.  

Table 8 shows a listing of log decrement and respective frequencies of the first 

four damped modes at various running speeds of the rotor without the addition of the 

seal. The modes are in forward whirl. 

a
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Table 8 First four damped modes without the effect of the seal 
Speed logd1 cpm1 logd2 cpm2 logd3 cpm3 logd4 cpm4

600 8.4 430.4 8.7 402.8 0.1 3488.7 1.3 3412.3
1200 5.9 952.9 7.1 782.3 0.3 3466.6 2.2 3244.8
1800 3.4 1680.3 6.0 1180.9 0.4 3438.8 3.7 2988.3
2400 1.7 2029.1 5.1 1586.8 0.5 3412.3 5.0 3275.3
3000 0.9 2152.4 4.2 2015.6 0.5 3387.6 4.7 3922.2
3600 0.3 2243.8 3.3 2519.1 0.6 3364.0 3.9 4708.2
4200 -0.2 2349.2 2.2 3301.8 0.6 3345.4 2.7 6029.6
4800 -0.8 2506.6 0.2 4510.1 0.6 3340.1 0.6 7319.9
5400 -1.3 2795.2 -2.2 5628.0 0.5 3350.6 0.4 9560.0
6000 -1.1 3242.9 -1.0 10228.4 0.5 3370.0 0.3 9539.1
6600 -0.7 3429.0 0.0 13817.6 0.4 3389.7 0.2 9520.2
7200 -0.4 3483.5 -0.1 17298.3 0.3 3405.1 0.1 9423.1
7800 -0.3 3507.5 0.0 17543.2 0.3 3414.1 0.0 9259.2  

 
 

For the operational speed of 3600 rpm, Figure 95 (a) shows the first mode shape 

at 2243.8 rpm. This mode is in forward whirl with large deflection at the center of the 

rotor. The second mode at 2519.1 rpm is also in forward whirl, as seen in Figure 95 (b). 

 nod ed

Figure 95 (c) shows the third mode shape at 3364.0 rpm. This mode shows 

h large deflection at the center of the rotor. The fourth 

mode at 4708.2 rpm, as seen in Figure 95 (d), is above the running speed of the rotor and 

shows m

A e is observ  at the center of the rotor where the deflection produced is the least. 

pronounced elliptical orbits wit

aximum deflection at the rotor ends. 
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Damped Eigenvalue 3-D Mode Shape Plot

Rotor Model without seal - Mode Shape 1

f=2243.8 cp

forward

backward

m
d=.3 logd

Running Speed=3600 rpm

 
 

Damped Eigenvalue 3-D Mode Shape Plot

Rotor Model without seal - Mode Shape 2

f=2519.1 cpm
d=3.2558 logd

Running Speed =3600 rpm

forward

backward

(b) 

 

Figure 95 Damped mode shape for rotor model without seal. 
(a) First mode at frequency of 2243.8 rpm 

(b) Second mode at frequency of 2519.1 rpm 

(a) 
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Damped Eigenvalue 3-D Mode Shape Plot

Rotor Model without seal - Mode Shape 3

f=3364. cpm
d=.5722 logd

Running Speed =3600 rpm

forward

backward

(c) 

 
 

Damped Eigenvalue 3-D Mode Shape Plot

Rotor Model without seal - Mode Shape 4

f=4708.2 cpm
d=3.9064 logd

Running Speed =3600 rpm

forward

backward

 

(d) 

Figure 95 Continued 
(c) Third mode at frequency of 3364.0 rpm 

(d) Fourth mode at frequency of 4708.2 rpm 
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Table 9 shows a listing of the log decrements and frequencies of the first four 

damped modes at various running speeds of the rotor with the seal added to the model. 

Comparing the log decs of the rotor model without and with the seal indicate that at the 

rotor running speed there is improvement in stability once the seal is added, due to the 

increase in log dec. 

 
 
 
Table 9 First four damped modes with the addition of the seal 

Speed logd1 cpm1 logd2 cpm2 logd3 cpm3 logd4 cpm4
600 12.2 362.4 8.8 402.7 0.9 3860.1 1.8 3868.0

1200 8.5 812.5 7.1 782.1 1.0 3850.2 2.4 3805.3
1800 5.9 1406.2 6.0 1177.1 1.1 3833.6 3.2 3704.1
2400 3.7 1989.9 5.1 1577.8 1.2 3815.1 4.1 3756.9
3000 2.5 2267.4 4.2 2005.0 1.3 3795.3 4.2 4224.1
3600 1.6 2430.5 3.3 2508.3 1.3 3774.1 3.7 4908.7
4200 1.0 2608.5 2.2 3288.5 1.3 3756.6 2.7 6129.5
4800 0.3 2865.4 1.3 3751.9 0.3 4498.0 0.7 7349.1
5400 -0.1 3277.2 1.3 3762.9 -2.2 5623.6 0.4 9561.8
6000 0.1 3663.3 1.2 3781.5 -1.0 10225.9 0.3 9537.2
6600 0.4 3786.3 1.2 3799.4 0.1 13841.4 0.2 9517.7
7200 0.5 3826.4 1.1 3813.3 0.1 17317.5 0.1 9421.7
7800 0.7 3843.0 1.0 3823.4 0.1 17560.9 0.0 9259.0  

 
 
 

For the operational speed of 3600 rpm, Figure 96(a) shows the first mode shape 

at 2430.5 rpm. This mode is in forward whirl and produces large deflection at the center 

of the rotor, as seen in the case of the rotor without the seal. The second mode at 2508.3 

rpm, seen in Figure 96 (b), is also in forward whirl. A node is observed at the center of 

the rotor where the deflection produced is the least.  

Figure 96 (c) shows the third mode shape at 3774.1 rpm. This mode is in forward 

whirl. This mode has a pronounced elliptical orbit with large deflection at the center of 

the rotor. The fourth mode at 4908.7 rpm, as seen in Figure 96 (d), is above the running 

speed of the rotor and shows m

Overall, the d ritical speed 

with the addition of the seal. The critical speeds of the first, third and fourth modes show 

an increase while the second mode has a small decrease in the critical speed. Note that 

the mode shapes illustrated in this section pertain to the rotor and do not consider the 

ax rotor ends. imum deflection at the 

amped mode analysis of the rotor shows a change in c
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effect of the casing. These mode shapes will be compared later on with the coupled 

rotor-casing model. 

 
 
 

Damped Eigenvalue 3-D Mode Shape Plot

Rotor Model with seal - Mode Shape 1

f=2430.5 cpm
d=1.6469 logd

Running Speed =3600 rpm

forward

(a) 

backward

 
 

Damped Eigenvalue 3-D Mode Shape Plot

Rotor Model with seal - Mode Shape 2

f=2508.3 cpm

forward

backward

(b) 

d=3.2852 logd
Running Speed =3600 rpm

 
Figure 96 Damped mode shape for rotor model with seal. 

(a) First mode at frequency of 2430.5 rpm 
(b) Second mode at frequency of 2508.3 rpm 
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Damped Eigenvalue 3-D Mode Shape Plot
(c) 

Rotor Model with seal - Mode Shape 3

f=3774.1 cpm
d=1.2889 logd

Running Speed =3600 rpm

forward

backward

 
 

Damped Eigenvalue 3-D Mode Shape Plot

Rotor Model with seal - Mode Shape 4

f=4908.7 cpm
d=3.7153 logd

Running Speed =3600 rpm

forward

backward

 
Figure 96 Continued 

(c) Third mode at frequency of 3774.1 rpm 
(d) Fourth mode at frequency of 4908.7 rpm 

(d) 
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4.1.4 Rotor Unbal

This section shows the unbalance response of the XLTRC2 rotor-only model. 

These results will later be compared with the coupled rotor-casing models in section 

4.2.3. The unbalance amount is calculated from the API unbalance equation shown in 

section 2.9. 

 

ance Response 

[ ]

   6370.05 kg
    1800 rpm

   6350     SI Units

       22472.12 g-mm

W
N

WU
N

=
=

= ×

=

 (79) 

A multiplier is sometimes used with the calculated unbalance magnitude and this 

serves as a factor of safety. A multiplier of approximately 3.75x is used here. The 

resulting total unbalance magnitude is rounded to 85,000 g-mm. The rotor model is a 

etween-bearings design. An unbalance applied to the rotor mid-span typically tends to 

excite the first bending mode. When proportional unbalance amounts are applied close to 

the shaft end locations they are likely to excite the second bending mode, as seen earlier 

in Figure 54. Based on this, two cases of unbalance responses are performed. 

The first unbalance response case uses an unbalance of 85,000 g-mm at the rotor 

mid span node. This corresponds to station 12 on the rotor. The unbalance response is 

obtained for a speed range of 600 rpm to 7800 rpm, with the maximum speed being little 

more than twice the design running speed. The analysis with the mid span unbalance 

amount is done for the cases without and with the addition of the interstage seal. 

Gyroscopic effects are included in the analysis. Figure 97(a), Figure 97 (b), and Figure 

97 (c) show the unbalance response obtained at bearing 1, mid span and bearing 2 probe 

locations, respectively. The influence of the damping provided by the seal is evident in 

the smaller unbalance responses amplitudes. The second case of unbalance res onse 

analysis applies a dis 0 g-mm to rotor end 

locations at stations 8 ), and Figure 98 (c) 

show the unbalance response obtained at the three probe locations, respectively. The 

effect of damping, by the seal, is also evident in this unbalance configuration. 

b

p

tributed unbalance of 40,000 g-mm and 45,00

 and 17, respectively. Figure 98(a), Figure 98 (b
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Rotor Unbalance Response
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Figure 97 Unbalance response for mid span unbalance. 
(a) at bearing 1 location, (b) at rotor mid span location, (c) at bearing 2 location 

(c) 
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Rotor Unbalance Response
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(a) 
quarter-span unbalance 
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(c) 
quarter-span unbalance 

Figu ce. 
(a) at bearing 1 location, (b) at rotor mid span location, (c) at bearing 2 location 

re 98 Unbalance response for rotor quarter-span unbalan
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4.1.5 lance Response Validation with ANSYS Data 

In this section, an ANSYS generated rotor-only model is compared with an 

XLTRC2 rotor-only model. This ensures the validity of the ANSYS data. Since this is 

only for validation, the unbalance response is compared only at bearing 1 and bearing 2 

locations for the configuration with seals and the case where unbalance is applied to 

rotor quarter-span locations. Figure 99(a) and Figure 99 (b) show excellent agreement 

between XLTRC2 rotor-only model results and those obtained with the ANSYS rotor-

only model. The XLTRC2 and ANSYS results in each direction overlap each other. Note 

that similar to the XLTRC2 model, the ANSYS model also includes gyroscopic effects. 

 

Rotor Unba
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(a) at bearing 1 and (b) at bearing 2 

(a) 
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Figure 99 Comparison of XLTRC2 and ANSYS unbalance responses. 
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4.2 Coupled Rotor–Casing Model 

This section describes results of the analyses done on the coupled rotor-casing 

model, for axisymmetric and non-axisymmetric cases. The casing is connected to ground 

using foundation supports. These supports are modeled as isotropic supports with no 

damping and direct stiffness of 5x108 N/m (2.86x106 lb/in). 
 

4.2.1 Coupled Rotor–Axisymmetric Casing Models Damped Modes 

The damped critical speed analysis is performed on the coupled rotor–

axisymmetric casing model. Two sets of models are used. The first set has a XLTRC2 

tor coupled with a XLTRC2 axisymmetric casing, as shown in Figure 100. The second 
2 rotor coupled with an ANSYS axisymmetric casing, seen in Figure 

101. For the second set, the casing data from ANSYS is incorporated with the XLTRC2 

rotor model. This section only describes the configuration with the seal as similar results 

are obtained for the coupled model that does not include the seal. 

 
 
 

ro

set has a XLTRC

 
Figure 100 Couple etric casing model d XLTRC2 rotor- XLTRC2 axisymm
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Rotor 

Casing 

 
Figure 101 Coupled XLTRC2 rotor- ANSYS axisymmetric casing model 

 
 
 

Table 10 shows the natural frequencies of the first three modes in the coupled 

rotor–axisymmetric casing models compared with XLTRC2 rotor-only model, seen in 

able 9. XLTRC2 can currently model axisymmetric casings. For reference, the first four 

atural frequencies of the casing-only model are shown in APPENDIX B. The 

comparison between the model that uses the XLTRC2 axisymmetric casing and the one 

that uses the ANSYS axisymmetric casing is to ensure the validity of the existing 

modeling method in XLTRC2. The eigenvalues observed in the both the symmetrical 

coupled models are the same in the 

T

n

X Z− plane and Y Z− plane. The modes calculated 

are at a rotor running speed of 3600 rpm. 

 
Table 10 Natural frequency of first three modes in coupled rotor–axisymmetric 
casing model compared with XLTRC2 rotor-only model 

Coupled XLTRC2 rotor– 
XLTRC2 axisymmetric 

casing model 

Coupled XLTRC2 rotor– 
ANSYS axisymmetric 

casing model 

XLTRC2  
rotor-only model 

Mode 

Log Dec Frequency 
(rpm) 

Log 
Dec 

Frequency 
(rpm) 

Log 
Dec 

Frequency 
(rpm) 

1 0.95 1811.3 0.98 1804.3 1.65 2430.5
2 2.20 2167.9 2.21 2139.1 3.29 2508.3
3 3.50 3435.2 3.57 3429.7 1.29 3774.1
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The results of the coupled XLTRC2 rotor-XLTRC2 axisymmetric casing model 

and the XLTRC2 rotor-ANSYS axisymmetric casing show that they are very close to 

each other. Both these models use the same rotor and the casings are built with the same 

dimensions. Hence it is expected that the results be similar. This establishes that the use 

of the ANSYS data with the XLTRC2 model is valid and correct. For the remainder of 

this thesis the XLTRC2 rotor-ANSYS axisymmetric casing model will be referenced and 

mentioned as coupled rotor-axisymmetric casing model. 

Now on comparing the coupled rotor-axisymmetric casing models with the rotor-

only model, it can be seen that the first three modes show a decrease in critical speeds 

which  the

tor to the casing and the stiffness of the foundation supports are similar to each other 

 the order of 108 N/m. The two stiffness models act as springs in series which results in 

lower c

terist casin

he casing and the effective damping that is 

resent in the model increases when the relative motion increases. This is the reason for 

Figure 102 ode shapes f irst 

three mo an ure  to 

the mode otor-

96 (c), indicates that they are similar. W supporting the rotor has 

reduced, the deflected shape rotor  particular oe iffer ge 

extent due to the symmetry sing.

 can be attributed to the following. The stiffness of the bearings connecting  

ro

in

ombined stiffness. This causes the critical frequency of the rotor in the coupled 

model to drop. The change in critical speeds is an indication that the casing influences 

the rotordynamic performance of the rotor. Log decs associated with the first two critical 

speeds of the coupled model show a decrease when compared with the XLTRC2 rotor-

only model and this indicates that the effective damping is less. However for the third 

critical speed, the log dec is observed to the higher for the coupled model. As seen in 

Figure 96(c), the rotor shows high deflection near the seals at the third critical speed. 

Figure 102(c) shows the same charac ic with the g included. There is a higher 

relative motion between the rotor and t

p

the higher log dec observed. 

 (a) through Figure 102

des. The casing structure c

es observed in 

 (c) show the rotor m

also be seen in these fig

 model, seen in

or the f

s. Comparing these

 shap the r only

hile the overall stiffness 

 Figure 96 (a) through Figure 

 of the  for a mode d s not d  by a lar

of the ca  
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Mode Shape 1 
Frequency = 1804.3 rpm 

Running Speed = 3600 rpm 

(a) 

 
 
 
 

Mode Shape 2 
Frequency = 2139.1 rpm 

Running Speed = 3600 rpm 

(b) 

 
Figure 102 Damped critical speed mode shape. 

(a) First mode at 1804.3 rpm (30.07 Hz) 
(b) Second mode at 2139.1 rpm (35.65 Hz) 
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Frequency = 3429.7 rpm 
Running Speed = 3600 rpm 

Mode Shape 3 (c) 

 
Figure 102 Continued 

(c) Third mode at 3429.7 rpm (57.16 Hz) 

 
 
4.2.2 Coupled Rotor–Non-Axisymmetric Casing Model Damped Modes 

The casing data of the ANSYS non-axisymmetric casing is incorporated with the 

XLTRC2 rotor model and a damped critical speed analysis is performed. This section 

describes the configuration with the seal. Similar results are observed for the coupled 

rotor-non-axisymmetric casing model configuration that does not include the seal. 

However these results are not presented in this thesis for brevity. Additionally, the 

previous section 4.2.1 showed that the coupled XLTRC2 rotor-XLTRC2 axisymmetric 

casing model and the XLTRC2 rotor-ANSYS axisymmetric casing model have similar 

results. Therefore only results of the coupled XLTRC2 rotor-ANSYS axisymmetric 

casing are used he

Natural frequ in Table 11. In the 

coupled rotor-non-axisymmetric model, one set of eigenvalues are generated. The modes 

observed are at the rotor running speed of 3600 rpm. Table 11 also shows the 

frequencies seen in the coupled rotor-axisymmetric casing model and XLTRC2 rotor-

only model. These values are presented for comparison. 

 

re for comparison. 

encies of the first three modes are shown 
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Table 11 Natural frequency data of first three modes in coupled rotor–non-
axisymmetric casing model compared with earlier models 

Coupled rotor–non-
axisymmetric casing 

model 

Coupled rotor–
axisymmetric casing 

model 

XLTRC2  
rotor-only model 

Mode 

Log Dec Frequency 
(rpm) 

Log Dec Frequency 
(rpm) 

Log Dec Frequency 
(rpm) 

1 0.87 1785.7 0.98 1804.3 1.65 2430.5
2 2.01 2100.8 2.21 2139.1 3.29 2508.3
3 3.43 3368.1 3.57 3429.7 1.29 3774.1

 
 
 

The rotor mode -axisymmetric casing 

an be seen in Figure 103 through Figure 105. The casing structure can also be seen in 

ese figures. The eigenvectors shown in these figures have components in the

 shapes for the first three modes with a non

c

X Z−  

 In other 

th

and Y Z− planes, and the eigenvectors in each of these planes are different.

words,

tor-only model. This is because the higher relative 

motion

 the rotor has a slightly different mode shape in each of these planes. 

When compared to the XLTRC2 rotor-only model, the first three modes show a 

decrease in critical speeds. This is similar to the behavior shown by the coupled rotor-

axisymmetric casing model, described in section 4.2.1 The lower combined stiffness. 

leads to lower critical frequency of the rotor in the coupled model. Log decs associated 

with the modes also show the same behavior. The first two critical speeds of the coupled 

model show a decrease in log decs when compared with the XLTRC2 rotor-only model 

which indicates lower effective damping. The third critical speed shows a higher log dec 

when compared with the XLTRC2 ro

 between the rotor and the casing, as seen in Figure 105, results in more effective 

damping. Table 11 also indicates a small change in frequencies of the coupled rotor-non-

axisymmetric model when compared to the coupled rotor-axisymmetric model. This 

shows that using a non-axisymmetric casing model, where necessary, will produce 

different results. 
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(a) 

 
 

Mode Shape 1 – Y-Z 
Frequency = 1785.7 rpm 

Running Speed = 3600 rpm 

(b) plane 

 
Figure 103 First damped critical speed mode shape for the coupled rotor-non-

axisymmetric casing model. 
(a) 1785.7 rpm (29.76 Hz) as observed in the X-Z plane 
(b) 1785.7 rpm (29.76 Hz) as observed in the Y-Z plane 
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Mode Shape 2 – X-Z plane 
Frequency = 2100.8 rpm 

Running Speed = 3600 rpm 

 

 

Mode Shape 2 – Y-Z plane 
Frequency = 2100.8 rpm 

Running Speed = 3600 rpm 

(a) 

(b) 

Figure 104 Second damped critical speed mode shape for the coupled rotor-non-
axisymmetric casing model. 

(a) 2100.8 rpm (35.01Hz) as observed in the X-Z plane 
(b) 2100.8 rpm (35.01Hz) as observed in the Y-Z plane 
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Frequency = 3368.1 rpm 
Running Speed = 3600 rpm 

Mode Shape 3 – X-Z plane (a) 

 
 

Frequency = 3368.1 rpm 
Running Speed = 3600 rpm 

Mode Shape 3 – Y-Z plane 
(b) 

 
Figure 105 Third damped critical speed mode shape for the coupled rotor-non-

axisymmetric casing model. 
(a) 3368.1 rpm (56.14 Hz) as observed in the X-Z plane 
(b) 3368.1 rpm (56.14 Hz) as observed in the Y-Z plane 
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4. Coupled Rotor–Casing Model Unbalance Response 

This section describes the unbalance response anal e 

coupled XLTRC2-rotor and ANSYS axisymmetric casing model as well as the coupled 

XLTRC2-rotor and ANSYS non-axisymmetric casing model. In order to evaluate any 

change in unbalance response observed, the results obtained from these two models are 

compared with the XLTRC2 rotor-only model which does not include the effect of the 

casing. Two separate configurations are used. In the first configuration there is no seal 

connection to the rotor. In other words, the rotor is supported only by the two bearings. 

In the second configuration, the seal is used. For the XLTRC2 rotor-only model, the seal 

connection is to ground whereas in the other two models, the seal connects the rotor to

e casing. Note that only one unbalance case is presented here – mid-span unbalance 

applied to the rotor. The unbalance response measured at the ro s 

shown for all the three models. The other cases that involved rotor-ends unbalance and 

response at the bearing 1 and bearing 2 locations are found to be similar in nature and 

are hence not presented. The unbalance amount and configurations used are the same as 

described in section 4.1.4. 

Figure 106(a) and Figure 106(b) shows the rotor unbalance response at the 

midspan location along the horizontal and vertical directions, respectively, for the 

configuration that does not use the seal connection. These responses are in absolute rotor 

coordinates and not relative to the casing. The XLTRC2 rotor-only model shows a 

resonance at about 3000 rpm. The rotor unbalance response in the axisymmetric and 

non- axisymmetric casing models show a peak at a frequency of 1900 rpm. There is a

dr o e 

bearings conne ation supports 

re similar to each o

in series which results in lower combined stiffness. This causes the critical frequency of 

the rotor to drop. A similar behavior is observed at the second resonance. The XLTRC2 

rotor-only model shows a resonance at about 5100 rpm, whereas the models which have 

the casing have a lower resonant frequency. 

2.3 

ysis performed with th

 

th

tor mid-span location i

 

op in the res nant frequency and can be attributed to the following. The stiffness of th

cting the rotor to the casing and the stiffness of the found

ther in the order of 108 N/m. The two stiffness models act as springs a

 



 

 

135

Horizontal Unbalance Response at Rotor midspan
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Vertical Unbalance Response at Rotor midspan
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Figure 106 Rotor response at mid span location (without seal configuration) 
(a) Horizontal response (b) Vertical response 

 
 
 

Figure 107(a) and Figure 107(b) shows the rotor unbalance response at the 

midspan location along the horizontal and vertical directions, respectively, for the 

configuration that uses the seal connection. These responses are in absolute rotor 

coordinates and not relative to the casing. The resonances follow the similar trend as 

those seen in the above case. The frequency is slightly higher than that seen in the case 

that does not use the seal and the reason is the damping provided by the seal. Also note 

that while the damping raised the critical frequency, it also brought the resonance of the 

XLTRC2 rotor-only model closer to the running speed of 3600 rpm thus reducing the 

(a) 

(b) 
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separation margin. A decrease is seen in the rotor unbalance response amplitude in the 

axisymmetric and non- axisymmetric casing models, when compared to the 

configuration that does not use the seal. For both the horizontal and vertical responses, 

the resonant frequency of the coupled model is less than that seen in the XLTRC2 rotor-

only model. 

 
 
 

Horizontal Unbalance Response at Rotor midspan
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Vertical Unbalance Response at Rotor midspan
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Figure 107 Rotor response at mid span location (without seal configuration) 
(a) Horizontal response (b) Vertical response 
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A comparison is also made for the rotor relative to casing amplitudes. This 

comparison is important because high relative amplitude could indicate that the rotor and 

casing are moving in opposing directions. Such a condition can lead to rubs. Small 

relative response amplitude can mean that the rotor and casing are moving in phase with 

each other. The relative response in horizontal and vertical directions for the 

onfiguration without the seal is shown in Figure 108(a) and Figure 108 (b), 

spectively. Likewise, responses for the configuration with the seal are shown in Figure 

109(a) and Figure 109(b). These figures show that in both the axisymmetric and non-

axisymmetric models, there is a higher relative response at the resonant frequencies. As 

the running speed increases, the relative response is higher. 

The impact of using a coupled rotor-casing model, in particular the non-

axisymmetric casing model, is evident in the results presented in this section. This shows 

that including a full-scale non-axisymmetric model can produce significantly different 

predictions than an approximated symmetric model. 

The results obtained in XLTRC2 by incorporating the reduced non-axisymmetric 

casing structure are verified in ANSYS. The ANSYS source code used for verification is 

cluded in APPENDIX E. 
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Rotor relative to Casing Horizontal Unbalance Response at 
midspan

0.00

0.04

0.08

0.12

0.16

0 2000 4000 6000 8000
Rotor Speed, rpm

R
e
s
p

o
n

s
e
, 

m
m

 p
k
-

p
k

Symm
model

Non-
Symm
model

3600
rpm

 
 

Rotor relative to Casing Vertical Unbalance Response at 
midspan
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Figure 108 Rotor relative to casing response (without seal) 

(a) Horizontal response (b) Vertical response 
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Rotor relative to Casing Horizontal Unbalance Response at 
midspan
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Rotor relative to Casing Vertical Unbalance Response at 
midspan
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Figure 109 Rotor relative to casing response (with seal)  

4.2.4 Seal Connected to Casing versus Seal Connected to Ground 

Moore, et al. [18] uses a high-order polynomial in numerator-denominator 

transfer function format to model the connection between the rotor and ground for a 

large industrial turbo-compressor. Although this approach models the connections 

between the rotor and casing at the bearings, it erroneously leaves the connections at 

seals from rotor to ground, not rotor to casing. 

In order to answer the question about the validity of connecting the seal from 

rotor to casing (Figure 110) versus rotor to ground (Figure 111), this section studies the 

(a) 

(b) 

(a) Horizontal response (b) Vertical response 
 
 
 

 



 140

two cases in which the seal can be connected. For the remaining of this section, the case 

with seal connection from rotor to casing will be referred as Case I and the case with seal 

connection from rotor to ground will be referred as Case II. 
 

 
Figure 110 Representation of seal connected between rotor and casing 

 
 
 

 
nd ground 

 
 

ow similar results but are not presented. 

Figure 

Figure 111 Representation of seal connected between rotor a

 
The results presented in this section pertain to the mid-span unbalance 

configuration and uses the non-axisymmetric casing. Rotor-end unbalance 

configurations and the axisymmetric casing sh

112 through Figure 114 shows the horizontal and vertical responses of the rotor at 

the bearing 1, mid span, and bearing 2 locations, respectively. For case I, the first critical 
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response is predicted at a lower speed and its amplitude is higher when compared to 

Case II. Since the relative rotor to casing response is smaller at the first critical, as seen 

earlier in section 4.2.3, the effective damping provided by the seal is less. This explains 

the higher amplitude. As the speed increases, there is higher relative rotor to casing 

motion. The damping provided by the seal is now more effective and hence the response 

seen in case I is lower. The response of case II follows the similar profile as case I, with 

the exception that it over predicts the first critical response speed. At all other running 

speeds case II nearly coincides with the location of the critical responses reported by 

case I, but has higher response amplitudes. Similar trends can be seen in all the figures. 

From the two cases presented in this section, it is clear that having the seal 

connection from rotor to ground shows different predictions in the first critical response 

locatio from 

tor to casing versus rotor to ground has a difference on the dynamic response of the 

ystem. This is because the dynamics of the casing structure now comes into effect. This 

has a potential significance in injection compressors with hole-patter-stator seals where 

the balance-piston or division-wall seals can be as stiff as the bearings. 

As seen in the section 4.2.3, the first mode has less relative rotor-casing 

amplitude and hence the connection of seal to ground does not make a difference. At the 

second critical speed, there is large relative rotor-casing amplitude and hence the seal 

connected to ground shows more difference in amplitude. This is important in labyrinth 

seals where having large relative motion at the seals can produce large destabilizing 

forces on the rotor. The general effect of including the casing structure was also 

bser e

n and response amplitudes. It is evident that making the seal connection 

ro

s

o ved by Moor , et al, as seen in Figure 17. 
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Horizontal Rotor Unbalance Response at Bearing 1 location
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Vertical Rotor Unbalance Response at Bearing 1 location
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Figure 112 Unbalance response at bearing 1 location 
(a) Horizontal response (b) Vertical response 
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Horizontal Rotor Unbalance Response at Midspan location
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Vertical Rotor Unbalance Response at Midspan location
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Figure 113 Unbalance response at mid span location 
(a) Horizontal response (b) Vertical response 
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Horizontal Rotor Unbalance Response at Bearing 2 location
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Vertical Rotor Unbalance Response at Bearing 2 location
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Figure 114 Unbalance response at bearing 2 location 
(a) Horizontal response (b) Vertical response 
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5 CONCLUSION 
 

Research is conducted to extend the capabilities of the beam-element based 

XLTRC2 rotordynamic software suite to accept a general 3D finite-element casing 

model. This study broadens the work done by Clark and Jurjevic [17]. ANSYS serves as 

a powerful tool to model complex axisymmetric and non-axisymmetric casing structures. 

Using component mode synthesis reduction technique, reduced casing structure modal 

information is generated. Algorithms are developed that provided the necessary interface 

for the data to be incorporated with XLTRC2. 

Various validation steps are conducted to certify the techniques and algorithms 

used. The existing beam–element based modeling is verified for rotor and casing 

structure by comparing critical speeds and mode shapes. The current use of 

axisymmetric casing structures is verified by direct comparison of results obtained from 

XLTRC2 and ANSYS. The impact of the non-axisymmetric casing is evident in the 

results presented. When the relative response amplitude between a rotor and casing is 

low, including the casing in the analysis may not have a significant benefit. However, 

cases in which there is high relative amplitude between the rotor and casing are common 

in industrial applications and not including the casing can produce erroneous predictions. 

The wo  of validity of 

analysis when a se  connecting a seal 

e seal between rotor and ground, presented 

in this thesis, shows that the relevance of seal connection between rotor and casing 

depends on the relative amplitudes between the rotor and casing. If it is significant and 

the seal forces are large, then leaving a seal connection to ground will not produce 

accurate results. 

Overall, this work has opened a new area of analysis in XLTRC2. Casing models 

can now be modeled more accurately. Combined with the speed and user-friendliness of 

XLTRC2, this will be an effective tool for future analyses. 

 

rk presented by Moore, et al. [18] posed the question 

al connection is involved. The comparison of

between rotor and casing versus connecting th



 146

REFERENCES 
 

[1

nce TEP Turbocharger Troubleshooting 

guide

[8

emmott, E., 2003, “Usage of the Lund Rotordynamic Programs in the 

Analy

85, “Developing Concepts in 

the Rotordynamic Analysis of Aero Gas Turbines,” Paper 85-GT-230, ASME Gas 

Turbine Conference and Exhibit, Houston, Texas. 

] Nelson, H., and McVaugh, J., 1976, “The Dynamics of Rotor-Bearing 

Systems Using Finite Elements,” Journal of Engineering for Industry, 99, pp. 593-600. 

[2] Nelson, H., 1980, “A Finite Rotating Shaft Element Using Timoshenko 

Beam Theory,” Journal of Mechanical Design, 2(4), pp. 793-803. 

[3] XLTRC2 ™ Rotordynamic Software Suite, Version 2.4, Turbomachinery 

Laboratory, Texas A&M University, College Station, Texas, 2007. 

[4] Turbo Exchange & Performa

 (http://www.tepturbos.com/troubleshooting.htm), accessed on March 2010. 

[5] Childs, D. W., 1976, “A Modal Transient Rotordynamic Model for Dual 

Rotor Jet Engine Systems,” Journal of Engineering for Industry, pp 876-882. 

[6] Childs, D. W., 1978, "The Space Shuttle Main Engine High Pressure Fuel 

Turbopump Rotordynamic Instability Problem," ASME Trans., Journal of Engineering 

for Power, January 1978, 100, pp 48-57. 

[7] Childs, D.W., 1975, “SSME Turbopump Technology Improvements via 

Transient Rotordynamic Analysis,” Contract Report NAS8-31233, The University of 

Louisville/Speed Scientific School, Louisville, Kentucky, December 1975. 

] Darlow, M. S., Smalley, A. J. and Ogg, J., 1978, “Critical Speeds and 

Response of a Large Vertical Pump,” ASME Paper 78-PVP-34, San Antonio, Texas. 

[9] Lund, J.W., “User’s Manual, MTI Computer Program CAD-26”, 

Mechanical Technology Inc. 

[10] Lund, J.W., “User’s Manual, MTI Computer Program CAD-27”, 

Mechanical Technology Inc. 

[11] M

sis of centrifugal Compressors,” Journal of Vibration and Acoustics, 125(4), pp 

500-506. 

[12] Bellamy, R.A., Jonson, C.P., Gaffney, R., 19

 



 147

[13] Gerardin, M. and A 3-Dimensional Approach To 

Dynamic Analysis of Rotating Shaft-Disk Flexible Systems,” Proceedings, IFToMM 

 

 Chicago, USA, pp. 

 Use 

achinery 

es For Quality Improvement And Reduced 

P., 2006, 

E 

65, "Reduction of Stiffness and Mass Matrices," AIAA 

ao, J., 1980, “Dynamic Reduction in Rotor Dynamics by 

ystems Using Component Mode Synthesis,” Journal of Mechanical 

Kill, N., 1986, “

International Conference on Rotordynamics, Tokyo, Japan, pp. 87-93. 

[14] Gerardin, M. and Kill, N., 1990, “Dynamic Analysis of Aircraft Engines

Subjected to Maneuvers,” Proceedings, IFToMM International Conference on 

Rotordynamics, Lyon, France, pp. 397-402. 

[15] Hylton, P. and Burns, D., 1994, “Turbofan Blade Loss Tools,” 

Proceedings, IFToMM International Conference on Rotordynamics,

81-83. 

[16] Corbo, M. A., Stefanko, D. B. and Leishear, R. A., 2002, “Practical

of Rotordynamic Analysis to Correct a Vertical Long Shaft Pump’s Whirl Problem,” 

Proceedings of the 19th International Pump Users Symposium, Turbom

Laboratory, Texas A&M University, College Station, Texas. 

[17] Clark, A., and Jurjevic, Z., 2007, “Fast Simulation Of Dynamic 

Behaviour Of Heavy Duty Gas Turbin

Design Cycle Time,” GT2007-27382, Proceedings of ASME Turbo Expo 2007 : Power 

for Land, Sea and Air. 

[18] Moore, J., Vannini, G., Camatti, M., and Bianchi, 

“Rotordynamic Analysis of a Large Industrial Turbo-Compressor including Finite 

Element Substructure Modeling,” GT2006-90481, Proceedings of GT2006: ASM

Turbo Expo 2006: Power for Land, Sea and Air. 

[19] Guyan, R. J., 19

Journal, 3(2), pp. 380. 

[20] Rouch, K., and K

the Finite-Element Method,” Journal of Mechanical Design, 102, pp. 360-368. 

[21] Glasgow, D.A., and Nelson, H.D., 1979, “Stability Analysis of Rotor-

Bearing S

Engineering Design, 102(2), pp. 352-359. 

 



 148

[22] Childs, D. W., 1993, “Turbomachinery Rotordynamics Phenomena, 

Modeling, & Analysis,” John Wiley and Sons, Inc., Hoboken, New Jersey 

[23] Childs, D. W., 2005, “MEEN 363 Dynamics and Vibration: Dynamics in 

sors for Petroleum, Chemical and Gas Industry Services, American Petroleum 

n, August 2005. 

Engineering Practice,” Sixth Edition, John Wiley and Sons, Inc., Hoboken, New Jersey 

[24] Baruh, H., 1999, “Analytical Dynamics,” McGraw-Hill International 

Editions, New York City, New York. 

[25] Release 11.0 Documentation for ANSYS, ANSYS Inc., 2007. 

[26] API Standard 617, Axial and Centrifugal Compressors and Expander-

compres

Institute, Seventh Edition, July 2002. 

[27] API Recommended Practice 684, API Standard Paragraphs Rotordynamic 

Tutorial: Lateral Critical Speeds, Unbalance Response Stability, Train Torsionals, and 

Rotor Balancing, American Petroleum Institute, Second Editio

[28] Guide to Interfacing with ANSYS, ANSYS Release 10.0 documentation, 

ANSYS Inc., 2005. 

[29] User’s Manual, Intel Visual FORTRAN, Intel Corp, 2007. 

 



 149

APPENDIX A  
 

VALIDATION OF SIMULATION TOOLS 

 

A verification test is required to make sure that the results obtained by the 

different simulation tools agree with each other. A solid cylindrical model is tested in 

results are XLTRC2, ANSYS Classic using APDL and ANSYS Workbench and the 

compared. The beam is 2.25 m (88.58 in) in length, has a diameter of 0.3 m (11.81 in) 

and uses the following material properties. 

Density ( )ρ   = 7833.412 3kg m  (0.283 3lbm in ) 

Elastic Modulus ( )E  = 206.842E+9 2N m  (30.0E+6 2lbf in ) 

Shear Modulus ( )G  = 82.737E+9 2N m  (12.0E+6 2lbf in ) 

XLTRC2 and ANSYS Classic models are divided into 200 beam elements, as 

shown in Figure 115 and Figure 116 respectively, whereas ANSYS Workbench used 

resentation as 

a series of cube-shaped elements. Table 12 shows the first 5 bending modes11 which 

show excellent agreement with each other. Figure 118 through Figure 132 shows the 

mode shapes of the first 5 bending modes. 

 

Table 12 First five bending mode frequencies compared to XLTRC2 results 
Mode XLTRC2 ANSYS 

Classic (Hz) 
Percentage 
Change (%) 

ANSYS 
Workbench (Hz) 

Percentage 
change 

solid elements as shown in Figure 117. Figure 116 shows the graphical rep

1   259.42 260.97   0.59   259.54 0.05 
2   666.78 666.12 -0.09   667.73 0.14 
3 1201.87 1203.70 0.15 1204.90 0.25 
4 1814.37 1814.50 0.01 1821.00 0.37 
5 2472.83 2470.00 -0.11 2484.30 0.46 

 

                                                 
11 XLTRC2 uses 2D beam elements and does not have degrees of freedom along the axial direction. Hence 
axial bending modes from the ANSYS Classic and ANSYS Workbench results are ignored. Note that any 
comparisons between XLTRC2 and ANSYS mentioned in this thesis does not account for axial modes. 
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Figure 115 XLTRC2 model constructed with 2D beam elements 
 

 

Figure 116 ANSYS Classic APDL model constructed with 3D beam elements 
 

 
Figure 117 ANSYS Workbench model constructed with solid elements 
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Figure 118 First bending mode of XLTRC2 model (259.42 Hz) 
 

 

Figure 119 First bending mode of ANSYS Classic model (260.97 Hz) 
 

 

Figure 120 First bending mode of ANSYS Workbench model (259.54 Hz) 
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F Sigure 121 econd bending mode of XLTRC2 model (666.78 Hz) 
 

 

F Sigure 122 econd bending mode of ANSYS Classic model (666.12 Hz) 
 

 

igure 123 econd bending mode of ANSYS Workbench model (667.73 Hz) F S
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Figure 124 Third bending mode of XLTRC2 model (1201.87 Hz) 
 

 

Figure 125 Third bending mode of ANSYS Classic model (1203.70 Hz) 
 

 

Figure 126 Third bending mode of ANSYS Workbench model (1204.90 Hz) 
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Figure 127 Fourth bending mode of XLTRC2 model (1814.37 Hz) 
 

 

Figure 128 Fourth bending mode of ANSYS Classic model (1814.50 Hz) 
 

 

Figure 129 Fourth bending mode of ANSYS Workbench model (1821.00 Hz) 
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Figure 130 Fifth bending mode of XLTRC2 model (2472.83 Hz)  
 

 

Figure 131 Fifth bending mode of ANSYS Classic model (2470.00 Hz)  
 

 

Figure 132 Fifth bending mode of ANSYS Workbench model (2484.30 Hz)  
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APPENDIX B  
 

MESH DENSITY VALIDATION FOR CASING MODEL 

 

To determine an acceptable mesh density in the XLTRC2 casing model, three test 

casing models are made. The first case uses ANSYS solid elements, as illustrated in 

Figure 133, and has 19,225 elements. The second case, made of XLTRC2 beam 

elements, s ase, also 

made with XLTRC2 beam elements, has a higher mesh density of 160 elements, shown 

in Figure 135. 

This is a placeholder for white space. 

Table 13 shows comparison of the first four bending modes. It shows that the 

higher mesh density XLTRC2 model is closer in agreement with the ANSYS results than 

the one with lower mesh density. The high mesh density XLTRC2 model is therefore 

used. Figure 136 through Figure 147 show the similar mode shapes. 

 
 
 

 uses low me h density of 14 elements, seen in Figure 134. The third c

 

Figure 133 ANSYS solid element casing model 
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This is a placeholder f

Table 13 Comparison of first four bending mode frequencies (in Hertz) 

Mode AN centage 
%) 

or white space. 

SYS 
 

XLTRC2 
Low Mesh 

Percentage 
Change (%) 

XLTRC2  
High Mesh 

Per
Change (

1 224.37   227.96   1.60   226.82 1.09 
2 515.99   549.05   6.41   522.15 1.19 
3 732.80   784.03   6.99   755.73 3.12 
4 978.87 1190.39 21.61 1031.64 5.39 

 
 
 

 

Figure 134 Low mesh density XLTRC2 beam element casing model 
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Figure 135 High mesh density XLTRC2 beam element casing model 
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Figure 136 ANSYS model first bending mode at 224.37 Hz 
 

 

Figure 137 XLTRC2 low mesh density first bending mode at 227.96 Hz 
 

 

Figure 138 XLTRC2 high mesh density first bending mode at 226.82 Hz 
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F ANSYS model second bending mode at 515.99 Hz igure 139 

 

 
F X  igure 140 LTRC2 low mesh density second bending mode at 549.05 Hz

 

 
F X 2  igure 141 LTRC  high mesh density second bending mode at 522.15 Hz
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Figure 142 ANSYS model third bending mode at 732.80 Hz 

 

 
Figure 143 XLTRC2 low mesh density third bending mode at 784.03 Hz 

 

 
Figure 144 XLTRC2 high mesh density third bending mode at 755.73 Hz  
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Figure 145 ANSYS model fourth bending mode at 978.87 Hz 

 

 
F X  igure 146 LTRC2 low mesh density fourth bending mode at 1190.39 Hz

 

 
F X  igure 147 LTRC2 high mesh density fourth bending mode at 1031.64 Hz

 



 163

APPENDIX C  
 

CASING MODEL VALIDATION FOR END SUPPORT 

 

Figure 148 shows the original ANSYS axisymmetric geometry for the casing 

model. Figure 149 shows the model after additional surface have been created to provide 

the interface to connect foundation supports to ground. Table 14 shows comparison of 

the first seven free-free mode frequencies. 

 

 

Figure 148 ANSYS axisymmetric casing model with original geometry 
 

 



 164

 

Figure 149 Above model with additional surfaces on end supports 
 
 
 
Table 14 Comparison of first seven Free-Free mode frequencies 

Mode Original Model Model with additional 
surfaces 

Percentage 
Change (%) 

1 224.80 224.37 0.19 
2 224.83 224.38 0.20 
3 332.55 332.05 0.15 
4 437.34 437.04 0.07 
5 437.38 437.21 0.04 
6 515.61 514.98 0.12 
7 516.63 515.99 0.12 
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APPENDIX D  
 

ROTOR MODEL VALIDATION 

 

The simplest method to validate the rotor model is to perform a Free-Free modal 

analysis. Free-Free modes are the resonant frequencies obtained when an object is 

subjected to a strike. The resonant frequencies obtained from such a test are also called 

fundamental frequencies. The effect of all bearings and seals are excluded in such an 

analysis. If rotor gyroscopic effects are included, then the Free-Free modes are a 

function of the rotor speed. Field hammer test data are usually done on freely suspended 

rotors and hence do not include gyroscopic effects. XLTRC2 and ANSYS have the 

capability of including or excluding these gyroscopic effects. For the purpose of this 

validation, gyroscopic effects are not included. 

T ing the 

rst five bending modes of the rotor. The values show excellent agreement between 

LTRC2 and ANSYS codes. Figure 150 through Figure 159 show the mode shapes 

t. This completes 

the val

 

Table 15 Free-Free b modes frequencies compared between ANSYS and 
XLTRC2

Mo  A XL Percentage 
Diffe  (%) 

able 15 shows a comparison of the frequencies (in Hertz) correspond

fi

X

obtained in ANSYS and XLTRC2 which also show excellent agreemen

idation step for the rotor. 

 ending 
 

de NSYS 
(Hz) 

TRC   2

(Hz) rence
1 102.57 102.59 0.02 
2 211.31 211.41 0.05 
3 335.66 335.88 0.07 
4 502.00 502.34 0.07 
5 659.77 660.43 0.01 
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Figure 150 ANSYS first bending mode at 102.57 Hz 

 

 
Figure 151 XLTRC2 first bending mode at 102.59 Hz 
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F ANSYS second bending mode at 211.31 Hz igure 152 

 

 
F X 2  

 
igure 153 LTRC  second bending mode at 211.41 Hz
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Figure 154 ANSYS third bending mode at 335.66 Hz 

 

 
Figure 155 XLTRC2 third bending mode at 335.88 Hz 
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Figure 156 ANSYS fourth bending mode at 502.00 Hz 

 

 
Figure 157 XLTRC2 fourth bending mode at 502.34 Hz 
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Figure 158 ANSYS fifth bending mode at 659.77 Hz  

 

 
Figure 159 XLTRC2 fifth bending mode at 660.43 Hz  
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APPENDIX E  
 

APDL SOURCE CODE 

 

E.1 Rotor Model 
 
!******************************************************************************** 
!* 
!* PROJECT  : Thesis 
!* PROJECT TITLE : Rotor Analysis 
!* 
!* AUTHOR  : Stephen James 
!* 
!* OBJECTIVE  : 1) Build rotor model of XLTRC2 Rotor and save database 
!*      2) Compare Free-Free modes to ensure model validity 
!******************************************************************************** 
 
FINISH   
/CLEAR,START 
/input,start110,ans,'C:\Program Files\Ansys Inc\v110\ANSYS\apdl\',,,,,,,,,,,,,,,,1   
/TITLE,Thesis Rotor Model 
/FILNAME,rotor_pz,1 
/UNITS, SI 
/GRAPHICS, POWER 
/OUT,,OUT 
 
/PREP7 
/ESHAPE,1 
/VIEW,1,1,1,1 
/ANG,1 
/REP,FAST 
/PBC,ALL,,1 
 
=9.81   ! y
PM = 2000 

W=(RPM)*3.14159/30 !Change to Omega for Gyroscopics 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! MATERIAL PROPERTIES START HERE 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!Material 1 Properties 
MP,EX,1,206.8423E+09 
MP,PRXY,1,0.3 
MP,DENS,1,7833.412 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! MATERIAL PROPERTIES END HERE 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
! Beam Model 
ET,101,BEAM4    
KEYOPT,101,2,0 
KEYOPT,101,6,0 
KEYOPT,101,7,1 
KEYOPT,101,9,0 
KEYOPT,101,10,0  
 
! Added Mass 
ET,102,MASS21 
KEYOPT,102,1,0 
KEYOPT,102,2,0
KEYOPT,102,3,0

 

G
R

Gravit  
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! REAL CONSTANTS FOR ENTIRE M
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! *** SHAFT REAL CONSTANTS *** 
R,1,3.1416E-02,7.8540E-05,7.8540E-05,2.0000E-01,2.0000E-01,0.0000E+00 
RMORE,0.0000E+00,3.0762E-01,1. 4E+02,0.0000E+00 
R,2,3.1416E-02,7.8540E-05,7.85 -01,0.0000E+00 
MORE,0.0000E+00,1.8457E-01,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00 
,3,7.0686E-02,3.9761E-04,3.9761E-04,3.0000E-01,3.0000E-01,0.0000E+00 
MORE,0.0000E+00,2.1802E+00,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00 

5E-04,1.9175E-04,2.5000E-01,2.5000E-01,0.0000E+00 
041E-01,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00 

,5,4.9087E-02,1.9175E-04,1.9175E-04,2.5000E-01,2.5000E-01,0.0000E+00 

E+ .22 100E+00,1.1100E+00,2.0944E+02,0.0000E+00 
761 0000E-01,3.0000E-01,0.0000E+00 
.1146 .1100E+00,2.0944E+02,0.0000E+00 

-01 566 000E-01,4.0000E-01,0.0000E+00 
E+00,7.8750 0,1.1100E+00,2.0944E+02,0.0000E+00 

566
+ .93

-01,1.2566E-03,1.2566E-03,4.0000E-01,4.0000E-01,0.0000E+00 
00,2.4609E+00,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00 

,1.2566E-03,4.0000E-01,4.0000E-01,0.0000E+00 
219E+00,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00 

2566E-03,1.2566E-03,4.0000E-01,4.0000E-01,0.0000E+00 
.9219E+00,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00 

-01,1.2566E-03,1.2566E-03,4.0000E-01,4.0000E-01,0.0000E+00 
000E+00,2.9531E+00,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00 
E-01,1.2566E-03,1.2566E-03,4.0000E-01,4.0000E-01,0.0000E+00 

0,7.8750E+00,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00 
,3.9761E-04,3.9761E-04,3.0000E-01,3.0000E-01,0.0000E+00 

0E+00,6.2293E-01,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00 
,3.9761E-04,3.9761E-04,3.0000E-01,3.0000E-01,0.0000E+00 

E+00,6.2293E-01,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00 
,2.5000E-01,2.5000E-01,0.0000E+00 
0,1.1100E+00,2.0944E+02,0.0000E+00 

7 E-01,0.0000E+00 
041 E+02,0.0000E+00 

-04,3.0000E-01,3.0000E-01,0.0000E+00 
E+00,1.1100E+00,2.0944E+02,0.0000E+00 

* 
 
,20 

,10,20 

!!!!!!!!!!!!!!!!!! 
FOR ENTIRE MODEL END HERE 
!!!!!!!!!!!!!! 

!!!!!!!!!!!!!! 
 START HERE 
!!!!!!!!!!!!!! 

0 
 

 
0,0,1.10000 
0,0,1.50000 

,10,0,0,1.70000 

!!! 
ODEL START HERE 

1100E+00,1.1100E+00,2.094
40E-05,2.0000E-01,2.0000E

R
R
R
R,4,4.9087E-02,1.917
RMORE,0.0000E+00,3.0
R
RMORE,0.0000E+00,3.0041E-01,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00 

7.0686E-02,3.9761E-04,3.9761E-04,3.0000E-01,3.0000E-01,0.0000E+00 R,6,
RMORE,0.0000 00,6 93E-01,1.1
R,7,7.0686E-02,3.9 E-04,3.9761E-04,3.

E,0.0000E+00,3 E-01,1.1100E+00,1RMOR
R,8,1.2566E ,1.2 E-03,1.2566E-03,4.0

E,0.0000 E+00,1.1100E+0RMOR
R,9,1.2566E-01,1.2 E-03,1.2566E-03,4.0000E-01,4.0000E-01,0.0000E+00 

000ERMORE,0.0 00,3 75E+00,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00 
R,10,1.2566E-01,1.2566E-03,1.2566E-03,4.0000E-01,4.0000E-01,0.0000E+00 

E,0.0000E+00,4.9219E+00,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00 RMOR
R,11,1.2566E
RMORE,0.0000E+
R,12,1.2566E-01,1.2566E-03,1.2566E-03,4.0000E-01,4.0000E-01,0.0000E+00 

.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00 RMORE,0.0000E+00,2.4609E+00,1
-03R,13,1.2566E-01,1.2566E

E+00,4.9RMORE,0.0000
R,14,1.2566E-01,1.

0E+00,4RMORE,0.000
,1.2566ER,15

RMORE,0.0
R,16,1.2566
RMORE,0.0000E+0

86E-02R,17,7.06
RMORE,0.000
R,18,7.0686E-02

E,0.0000RMOR
R,19,4.9087E-02,1.9175E-04,1.9175E-04

E+00,3.0041E-01,1.1100E+0RMORE,0.0000
R,20,4.9087E-02,1.91 5E-04,1.9175E-04,2.5000E-01,2.5000

E,0.0000E+00,3.0 E-01,1.1100E+00,1.1100E+00,2.0944RMOR
R,21,7.0686E-02,3.9761E-04,3.9761E
RMORE,0.0000E+00,2.1802E+00,1.1100
 

TANTS **! *** ADDED MASS REAL CONS
5R,230,120,120,120,5,5,

00,10,10R,231,100,100,1
R,232,100,100,100,10
R,233,1000,1000,1000,100,100,175 

 R,234,1000,1000,1000,100,100,175
R,235,1000,1000,1000,100,100,175 

6,100,100,100,10,10,20 R,23
!!!!!!!!!!!!!!
! REAL CONSTANTS 
!!!!!!!!!!!!!!!!!!
 
!!!!!!!!!!!!!!!!!!
! NODE DEFINITIONS
!!!!!!!!!!!!!!!!!!

0,0,0.00000 N,1,
N,2,0,0,0.2500
N,3,0,0,0.40000
N,4,0,0,0.75000 
N,5,0,0,0.85000 
N,6,0,0,0.95000 

0,0,1.05000N,7,
N,8,
N,9,
N
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N,11,0,0,1.95000 
N,12,0,0,2.07500 
N,13,0,0,2.20000 
N,14,0,0,2.45000 
N,15,0,0,2.70000 
N,16,0,0,2.85000 
N,17,0,0,3.25000 
N,18,0,0,3.35000 
N,19,0,0,3.45000 
N,20,0,0,3.55000 
N,21,0,0,3.65000 
N,22,0,0,4.00000 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! NODE DEFINITIONS END HERE 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! ELEMENT DEFINITIONS START HERE 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
TYPE,101 
 
! *** SHAFT ELEMENTS ***  
MAT,1 
REAL,1 
E,1,2 
MAT,1 
REAL,2 
E,2,3 
MAT,1 
REAL,3 
E,3,4 
MAT,1 
REAL,4 
E,4,5 
MAT,1 
REAL,5 
E,5,6 
MAT,1 
REAL,6 
E,6,7 
MAT,1 
REAL,7 
E,7,8 
MAT,1 
REAL,8 
E,8,9 
MAT,1 

T,1 

REAL,9 
E,9,10 
MAT,1 
REAL,10 
E,10,11 
MAT,1 
REAL,11 
E,11,12 
MAT,1 
REAL,12 
E,12,13 
MA
REAL,13 
E,13,14 
MAT,1 
REAL,14 
E,14,15 
MAT,1 
REAL,15 
E,15,16 
MAT,1 
REAL,16 
E,16,17 
MAT,1 
REAL,17 
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E,17,18 
MAT,1 
REAL,18 
E,18,19 
MAT,1 
REAL,19 
E,19,20 
MAT,1 
REAL,20 
E,20,21 
MAT,1 
REAL,21 
E,21,22 
 
TYPE,102 
MAT,1 

,231 

2 

3 

 

5 

6 

!!!!!!!!!!!!!!!!!!!!!!!!! 
NT DEFINITIONS END HERE 

!!!!!!!!!!!!!!!!!!!!!!! 

 
      

EAL,1 
   

ALL 
ELEM 

L NODES TO OUTPUT FILE FOR REFERENCE 
, , , ,NODE,NODE,NODE   

olution processor for static analysis to include pre-stress effects 

STATIC,NEW 
 
ON,,,ON 

,ROTOR, , , W 

olution processor for modal analysis 

MODAL 
DAMP,60 
 

0.0 
 
ON,,,ON 

,ROTOR, , , W 

 
! *** ADDED MASS ELEMENTS ***  
REAL,230 
E,2 
REAL
E,10 
REAL,23
E,11 
REAL,23
E,13 
REAL,234
E,14 
REAL,23
E,15 
REAL,23
E,16 
 
!!!!!!!
! ELEME
!!!!!!!!!
 
CSYS, 0
/NUMBER,1
/PNUM,R
/REPLOT
EPLOT 
 
ALLSEL,
CM,ROTOR,
 
/PREP7 
!LIST AL
NLIST,ALL
 
! Enter s
/SOLU 
ANTYPE,
PSTRES,ON
CORIOLIS,
CMOMEGA
SOLVE 
FINISH 
 
! Enter s
/SOLU 
ANTYPE,
MODOPT,QR
MXPAND,60
DMPRAT,
PSTRES,ON
CORIOLIS,
CMOMEGA
SOLVE 
 
FINISH 
/EOF 
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E.2  Substructure Algorithm for Axisymmetric Casing Model 

************************************************************************** 

T  : Thesis 
T TITLE : Axisymmetric Casing Substructuring Analysis 

  : Stephen James 

IVE  : 1) Define bearing center nodes and constrained locations 
   2) Create substructure of axisymmetric casing model 

***********************************************************************

isymmetric Casing 
 

art110,ans,'C:\Program Files\Ansys Inc\v110\ANSYS\apdl\',,,,,,,,,,,,,,,,1   
mcas,1 

I 
OWER 

 

casing model 

APE,1 

,ALL,,1 

l props for rigid beams 
,0.01 

 element type 

 ! Rigid Beam Behavior 
00,2,0  ! Direct elimination reduction method 

t 

.850 

 
ng 2 

0.0,0.0,3.550 

00 

98 
789 

 
33394 

2,24644 

 
!********
!* 
!* 
!* PROJEC
!* PROJEC
!* 
!* AUTHOR
!* 
!* OBJECT
!*   
!* 
!***********
* 
 

FINISH   
 
! Header 

,Ax/TITLE
/CLEAR,START

,st/input
/FILNAME,sym

, S/UNITS
/GRAPHICS, P

OUT/OUT,,
 

me ! Resu
RESUME 

 /PREP7
/ESH
/VIEW,1,1,1,1 
/ANG,1 
/REP,FAST 
/PBC
 
EPLOT 
 
!define mat

,2000MP,DENS
 
!define beam
ET,2000,MPC184 

PT,2000,1,1 KEYO
KEYOPT,20
 
!switch to global coor system firs

,0 CSYS
 

e center nodes ! Creat
! Bearing 1 

0,0.0,0N,500005,0.
! Seal location 
N,500012,0.0,0.0,2.075
! Beari
N,500020,
 
!mesh rigid connections 
TYPE,20
MAT,2000 
 

 ! Bearing 1
E,500005,358
E,500005,27
E,500005,27439 
E,500005,33877 
 

al! Se
E,500012,

1E,5000
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E,500012,24562 
,500012,5690 E

 
! Bearing 2 

0020,25653 E,50
E,500020,27109 

35

e e ing  casing model so that 
es these co he substructure. 

738

lec center nodes a

0020,ALL 

straint locations as master dof 
LL 

 

te system on display 

n processor for substructure analysis 

SUBSTR 

 RESOLVE 

ure file li

E,500020,260  
E,500020,23672 
 
! Delete th xist  constraints on the

S includ ordinates in t! CM
DDELE,36724,ALL,36 ,2 
 

t s master dof ! Se
M,500005,ALL 
M,500012,ALL 
M,50
 
! Select con
M,36724,A
M,36726,ALL 
M,36728,ALL 
M,36730,ALL 
M,36732,ALL 
M,36734,ALL 
M,36736,ALL 
M,36738,ALL 
 
EPLOT 
/AUTO,1 
/REP,FAST
/TRIAD,RBOT  
 
! Show coordina
/PSYMB,CS,1 
 
! Enter solutio
/SOLU 
ANTYPE,
! Specify CMS reduction option 
CMSOPT,FIX,15,,, 
SEOPT,SYMMCAS,2,1,0,
EQSLV,SPARSE 
 
! Create substruct sting 
SOLVE 
SELIST,,0 
 
FINISH 
/OUT 
/EOF 
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E.3  Substructure Algorithm for Non–Axisymmetric Casing Model 

******************************************************************* 

: Thesis 
: Non-axisymmetric Casing Substructuring Analysis 

nd constrained locations 
 Create substructure of non-axisymmetric casing model 

********************************************* 

,ans,'C:\Program Files\Ansys Inc\v110\ANSYS\apdl\',,,,,,,,,,,,,,,,1   
as,1 

R 

 model 

 
 

1 

01 

gid beam behavior 
0  ! Direct elimination reduction method 

e center nodes 
nd (DE) Bearing 1 

05,0.0,0.0,0.850 
 location 

N,500012,0.0,0.0,2.075 
! Non-Drive End (NDE) Bearing 2 
N,500020,0.0,0.0,3.550 
 
!mesh rigid connections 
TYPE,2000 
MAT,2000 
 
! Bearing 1 
E,500005,24298 
E,500005,24470 
E,500005,23658 
E,500005,37521 
 
! Seal 
E,500012,30742 
E,500012,24186 
E,500012,27404 
E,500012,26300 
 

 
!**************
!* 
!* PROJECT  
!* PROJECT TITLE 
!* 
!* AUTHOR  : Stephen James 
!* 
!* OBJECTIVE  : 1) Define bearing center nodes a
!*      2)
!* 
!************************************
 
FINISH   
! Header 
/TITLE,Non-axisymmetric Casing 
/CLEAR,START 
/input,start110
/FILNAME,nsymmc
/UNITS, SI 
/GRAPHICS, POWE
/OUT,,OUT 
 
! Resume casing
RESUME 
/PREP7
/ESHAPE,1
/VIEW,1,1,1,
/ANG,1 
/REP,FAST 
/PBC,ALL,,1 
 
EPLOT 
 
!define matl props for rigid beams 
MP,DENS,2000,0.
 
!define beam element type 
ET,2000,MPC184 
KEYOPT,2000,1,1  ! Ri
KEYOPT,2000,2,
 
!switch to global coor system first 
CSYS,0 
 
! Creat
! Drive E
N,5000
! Seal
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! Bearing 2 
,500020,35147 E

E,500020,6069 

ing
se co

,AL 406

des

001 ALL 

straint locations as master dof 

 
  

te system on display 
 

tion processor for substructure analysis 

SUBSTR 

,0, RESOLVE 

ure file li

E,500020,5736 
0020,5627 E,50

 
! Delete the exist  constraints on the casing model so that 

S includes the ordinates in the substructure. ! CM
DDELE,39392 L,39 ,2 
 
! Select center no  as master dof 

ALL M,500005,
2,M,50

M,500020,ALL 
 
! Select con
M,39392,ALL 
M,39394,ALL 
M,39396,ALL 
M,39398,ALL 
M,39400,ALL 
M,39402,ALL 
M,39404,ALL 

 M,39406,ALL
 
EPLOT 
/AUTO,1 
/REP,FAST
/TRIAD,RBOT
 

ordina! Show co
/PSYMB,CS,1
 

ter solu! En
/SOLU 

PE,ANTY
! Specify CMS reduction option 
CMSOPT,fix,15,,, 

T,NSYMMCAS,2,1SEOP
EQSLV,SPARSE 
 
/EOF 
 

eate substruct sting ! Cr
SOLVE 

 SELIST,,0
SH FINI

 
/OUT 
 
/EOF 
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E.4  Unbalance Response Algorithm for Coupled Rotor and Non–Axisymmetric 
del 

****************************************************************************** 

upled Non-Axisymmetric Rotor-Casing Analysis 
 

 : 1) Import rotor and non-axisymmetric databases 
   2) Use bearing and seal coefficients 

      3) Calculate forced unbalance response of combined  model 

****************************************************************** 

ORMATION ** 

,ans,'C:\Program Files\Ansys Inc\v110\ANSYS\apdl\',,,,,,,,,,,,,,,,1   
 NON-AXISYMM ROTOR-CASING UNBAL RESP 

 RESUME ROTOR MODEL ** 
rotor_pz,DB 

tor component as group of all existing elements in resumed rotor model 
M 

 GRAPHIC SETTINGS ** 

CS, POWER 

,1 
LL,,1 

, 0 

ODE,1 
1 

fine superelement and import casing model as a superelement 
0,MATRIX50 

,3000 
000 

SE,nsymmcas,,,0.1 
 
/REPLOT   
EPLOT 
 
! ** INPUT FOR UNBALANCE RESPONSE ** 
 minrpm =    50   ! minimum response speed in rpm 
 maxrpm =  4200   ! maximum response speed in rpm 
 incrpm =    10   ! speed increment in rpm 
    MR8 = 40000.00   ! Unbalance from XLTRC2 Model at station 8 
   MR17 = 45000.00   ! Unbalance from XLTRC2 Model at station 17 
 
 
! ** UNBALANCE LOAD AND RESPONSE STATIONS ** 
  ucase =     2 ! 1 = Unbalance at mid-span station 12 

! 2 = Unbalance at stations 8 and 17 
inc_seal=   1 ! 0 = DO NOT include seal  model, 1 = include seal 
     ua =       8 ! bearing 1 unbalance node number 
     ub =      12 ! mid-span unbalance node number 
     uc =      17 ! bearing 2 unbalance node number 
    pra =       5 ! bearing 1 probe node number on rotor - output station 

Casing Mo
 
!***
!* 
!* PROJECT  : Thesis 
!* PROJECT TITLE : Co
!*
!* AUTHOR  : Stephen James 
!* 
!* OBJECTIVE 
!*  
!*
!* 
!**************
  
FINISH   
! ** HEADER INF
/CLEAR,START 
/input,start110
/TITLE, COUPLED
 
! **
RESUME,
 
! Define ro
CM, ROTOR, ELE
 
/FILNAME,nsymm_rc_unbal,1 
 
! **
/UNITS, SI 
/GRAPHI
/OUT,,OUT 
 
/PREP7 
/ESHAPE,1 
/VIEW,1,1,1,1 
/ANG
/PBC,A
CSYS
/NUMBER,1      
/PNUM,N
/PNUM,REAL,
 
! De
ET,300
TYPE
REAL,3
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    pca=   500005 ! bearing 1 probe node number on casing - output station 
    prb =      12 ! seal probe node number on rotor - output station 
    pcb =  500012 
   prc =      20 

! seal probe node number on rotor - output station 
! bearing 2 probe node number on rotor - output station 

   pcc=   500020 ! bearing 2 probe node number on casing - output station 

P7 

 DE
rg1 =   1000 ! real consant set number for bearing 1 

 rb 2 t number for bearing 2 

nd1  5000

nd2 =     20 ! rotor brg2 node 

,EQ,1,THEN 
! rotor seal node 

= 500012 ! casing seal node 

rsealC = 2001 

! Call to seal macro 

** 
,BRG1X,NODE,rtrnd1,LOC,X 

,Y 
ODE,rtrnd1,LOC,Z 

rnd2,LOC,Z 
l,EQ,1,THEN 

*GET,BRG3Z,NODE,rtrnd3,LOC,Z 

IRECTION ** 
or +Z rotation vector - this insures that the shaft rotation 

ut the +Z axis 
,GT,BRG2Z,THEN 

2Z 
RG1Z 

RTR1Z=BRG1Z 

l coordinate system (CS) and nodal CS symbols on display 

MB,NDIR,1 

TPUT ARRAY DEFINITIONS ** 
N,DEG     ! output phase angle in degrees 

tput array to hold real and imaginary part 
m)/incrpm+
col

,nco tor info 

l=0 

1 1 o represent bearing 
 

rai  
2

r
e

 
 
 
/PRE
 
! ** REAL CONSTANT FINITIONS ** 
  rb
  rbrg2 =  rg1+ ! real consant se
  
 rtrnd1 =      5 ! rotor brg1 node 
 cas  = 05 ! casing brg1 node 
  
 rtr
 casnd2 = 500020 ! casing brg2 node 
 
*IF,inc_seal
 rtrnd3 =     12 
 casnd3 
 
 rsealK = 2000 
 
 rsealM = 2002 
 
 
 seal,rsealK,rsealC,rsealM 
*ENDIF   
  
! ** GET STATION COORDINATES 
*GET
*GET,BRG1Y,NODE,rtrnd1,LOC
*GET,BRG1Z,N
*GET,BRG2Z,NODE,rt
*IF,inc_sea
 
*ENDIF  
 
! ** ROTATION D
! Check f
! is always abo
*IF,BRG1Z
 RTR1Z=BRG
 RTR2Z=B
*ELSE 
 
 RTR2Z=BRG2Z 
*ENDIF 
 
! Show loca
/PSYMB,CS,1 
/PSY
 
! ** OU
*AFU
*dim,UOUT,array,1,2   ! ou
ncol=(maxrpm-minrp 1 
*dim,rs,array,24,n    ! main array 
*dim,rsr,array,12 l  ! array to store ro
*dim,rsc,array,12,ncol  ! array to store casing info 
 
co
 
/PREP7 
ET,105,COMBI2 4,,0,  ! 2-D Spring-Damper element used t

! Add const nts to all DOFs at baseplate nodes 
D,39392,ALL,,,39406,  
 
! Create a status ba  to show progress 
*ABSET, 'Unbalance R sponse Solution Progress',BAR 
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! Scales the progres  bar to (0 to 100%) scale s

y

,FAST 

* 
rpm

e p
 MO

*IF,REMAINDER,EQ,0,THEN 
hec

 %I 

  !Change to Hz for Harmic 
 !Change to Omega for Gyroscopics 

e 

FUNBAL0= (MR8+MR17)*W2*.001*.001 
*ELSEIF,ucase,EQ,2,THEN 

*.001 
01*.001 

s 

!ONLY MESH ON FIRST LOOP 

ffness at seal location 
ealK 
3,casnd3 

7 
g at seal location 

 REAL,rsealC 
  E,rtrnd3,casnd3 

 TYPE,108 
!Inertia  at seal location 

  REAL,rsealM 
 

IF 

 
 

 E,rtrnd1,casnd1 

 !Bearing 2 
REAL,rbrg2 

casnd
*ENDIF 

ESSOR ** 
/SOLU 

pncol=ncol/100 
 
! Refresh the displa  screen 
/AUTO,1  
/REP
 
 
! ** UNBALANCE RESPONSE LOOP STARTS *
*DO,RPM,minrpm,max ,incrpm 
 col=col+1 
 
 ! Update th rogress bar 
 REMAINDER = D(col,pncol) 
 
  *abc k,col/pncol 
 *ENDIF   
 
 /PREP7 
 *MSG,NOTE,RPM 
 Calc Response for rpm 
 
 HZ=RPM/60  
 W=(RPM)*3.14159/30 
 W2=W**2 
 
 ! Select unbalance cas
 *IF,ucase,EQ,1,THEN 
  
 
  FUNBAL1= MR8*W2*.001
  FUNBAL2=MR17*W2*.0
 *ENDIF 
 
 ! Call to bearing macro
 brg1,rpm,rbrg1,1 
 brg2,rpm,rbrg2,2 
 
 
 *IF,RPM,EQ,minrpm,THEN 
  *IF,inc_seal,EQ,1,THEN 
   TYPE,106 
   !Sti
   REAL,rs
   E,rtrnd
 
   TYPE,10
   !Dampin
  
 
 
  
   
 
   E,rtrnd3,casnd3
  *END
 
  TYPE,105 
 
  !Bearing 1
  REAL,rbrg1
 
 
 
  
  E,rtrnd2, 2 
 
 
 ! ** SOLUTION PROC
 
 ANTYPE,HARMIC 
 DMPRAT,strdamp 
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 coriolis,on,,,on 
 CMOMEGA, rotor, W, , , BRG1X, BRG1Y, RTR1Z, BRG1X, BRG1Y, RTR2Z, 0 

HROPT,FULL 

PR,ALL,NONE 
ST,1 

HARFRQ,HZ,HZ 
KBC,1 

 ! Unbalance at rotor midspan 
FUNBAL0 

 F,ub,FY, FUNBAL0, 0 
 ! Unbalances at outer stations 

8 

 !UNBALANCE COUPLE AT STATION 17 
, 0, FUNBAL2 

L2, 0 

! ** POST-PROCESSOR ** 

allowed in POST26 

,U,X 
 NSOL,  3, pra,U,Y 

 NSOL,  7, prc,U,Y 

STORE,MERGE 

 VGET,UOUT(1,1),parm+1,,0 
1 

))**2+(UOUT(1,2))**2) 
y takes care of the signs in the phase 

ATAN2(UOUT(1,2),UOUT(1,1)) 
*ENDDO 

DO 

SH 

asons: 
s at a time. 

es, the array outputs more values to file than array index 
row,1,12,1 

w,col)=rs(row,col) 

 
 HROUT,OFF 
 OUT
 NSUB
 
 
 
 *IF,ucase,EQ,1,THEN  
  F,ub,FX, 0, 
 
 *ELSEIF,ucase,EQ,2,THEN 
  !UNBALANCE COUPLE AT STATION 
  F,ua,FX, 0, FUNBAL1 
  F,ua,FY, FUNBAL1, 0 
 
 
  F,uc,FX
  F,uc,FY, FUNBA
 *ENDIF 
 
 SOLVE 
 FINISH 
   
 
 /POST26 
 PRCPLX,1 
  
 ! Overide default 10 variables 
 NUMVAR, 13 
  
  NSOL,  2, pra
 
  NSOL,  4, prb,U,X 
  NSOL,  5, prb,U,Y 
  NSOL,  6, prc,U,X 
 
  NSOL,  8, pca,U,X 
  NSOL,  9, pca,U,Y 
  NSOL, 10, pcb,U,X 
  NSOL, 11, pcb,U,Y 
  NSOL, 12, pcc,U,X 
  NSOL, 13, pcc,U,Y 
               
 
 
 *DO,parm,1,12,1 
  row=(parm-1)*2+1 
 
 
  VGET,UOUT(1,2),parm+1,,
 
  rs(row,col)=SQRT((UOUT(1,1
  ! Use ATAN2 because it correctl
  rs(row+1,col)=
 
 FINISH 
*END
 
! Close the progress bar 
*abfinish 
FINI
 
! Split into two arrays for two re
! (1) *VWRITE can only output 19 parm
! (2) Even with two fil
*DO,
 *DO,col,1,ncol,1 
  rsr(ro
 *ENDDO 
*ENDDO 
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*DO, ,1,12,1 row

=rs(row+12,col) 

set message status boxes 

fre

T_PHASE = 1  ! 0=Do not print phase, 1=Print phase in output file  

 CASING) BECASUSE *VWRITE SUPPORTS MAX 19 

 ROTOR ABSOLUTE FILE 
t file for output of response at required locations 

,OUT,, 

put
HEN 
%','PX_R%pra%','MY_R%pra%','PY_R%pra%','MX_R%prb%','PX_R%prb

'PY_R%prb%','MX_R%prc%','PX_R%prc%','MY_R%prc%','PY_R%prc%' 
A8, 8,6X,A8,6X,A8,6X,A8) 

MX_R%pra%','MY_R%pra%','MX_R%prb%','MY_R%prb%','MX_R%prc%','MY_R%prc
 
A8, 8,6X,A8,6X,A8) 
IF 

 
rpm  

rw=rw
 
pli  To compare to XLTRC2 multiply by 2. 
re  of 0-pk to pk-pk and m to mm. 

PRI
rw)*2000,rsr(2,rw),rsr(3,rw)*2000,rsr(4,rw),rsr(5,rw)*2000,rsr(6,

w),rsr(9,rw)*2000,rsr(10,rw),rsr(11,rw)*2000,rsr(12,rw) 
.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E

) 

ITE,rpm,rsr(1,rw)*2000,rsr(3,rw)*2000,rsr(5,rw)*2000,rsr(7,rw)*2000,rsr(9,rw)*2

2.4,2X,E12.4) 
IF 

DO 

LE 
rmatted text file for output of response at required locations 

PEN,UNBAL_UC%ucase%,OUT,, 

e header info 
_PHASE,EQ,1,THEN 

ITE,'RPM','MX_C%pra%','PX_C%pra%','MY_C%pra%','PY_C%pra%','MX_C%prb%','PX_C%prb
_C%prc%','MY_C%prc%','PY_C%prc%' 

,A8,6X,A8,6X,A8,6X,A8,6X,A8) 

C%pra%','MY_C%pra%','MX_C%prb%','MY_C%prb%','MX_C%prc%','MY_C%prc

 *DO,col,1,ncol,1 
  rsc(row,col)
 *ENDDO 
*ENDDO 
 
 
! Re
/UIS, MSGPOP, 2 
/UIS, ABORT, ON 
 
! Re sh the display screen 
/AUTO,1  
/REP,FAST 
 
PRIN
 
! ** CREATE TWO OUTPUT FILES (ROTOR AND
PARMS OUTPUT 
 
! **
! Open formatted tex
*CFOPEN,UNBAL_UR%ucase%
 
! Ou  file header info 
*IF,PRINT_PHASE,EQ,1,T
*VWRITE,'RPM','MX_R%pra
%','MY_R%prb%',
(4X, 6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A
*ELSE 
*VWRITE,'RPM','
%'
(4X, 6X,A8,6X,A8,6X,A8,6X,A
*END
 
rw=0
*DO, ,minrpm,maxrpm,incrpm
  +1 
  
! Am tude in ANSYS is 0-pk.
! He 2000 is for conversion
 
*IF, NT_PHASE,EQ,1,THEN 
*VWRITE,rpm,rsr(1,
rw),rsr(7,rw)*2000,rsr(8,r
(E12
12.4,2X,E12.4,2X,E12.4,2X,E12.4
*ELSE 
*VWR
000,rsr(11,rw)*2000 
(E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E1
*END
 
*END
*CFCLOSE 
 
! ** CASING ABSOLUTE FI
! Open fo
*CFO
 
! Ouput fil
*IF,PRINT
*VWR
%','MY_C%prb%','PY_C%prb%','MX_C%prc%','PX
(4X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X
*ELSE 
*VWRITE,'RPM','MX_
%' 
(4X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8) 
*ENDIF 
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rw=0 
rpm,incrpm 

 0-pk. To compare to XLTRC2 multiply by 2. 
00 is for conversion of 0-pk to pk-pk and m to mm. 

PRINT_PHASE,EQ,1,THEN 
2,rw),rsc(3,rw)*2000,rsc(4,rw),rsc(5,rw)*2000,rsc(6,

0,rsc(8,rw),rsc(9,rw)*2000,rsc(10,rw),rsc(11,rw)*2000,rsc(12,rw) 
X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E

,2X,E12.4,2X,E12.4,2X,E12.4) 

rsc(1,rw)*2000,rsc(3,rw)*2000,rsc(5,rw)*2000,rsc(7,rw)*2000,rsc(9,rw)*2
rw)*2000 

.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4) 

******************************************************** 
is 

rg1 
= arg2 

 brgnum, rpm 

 

57.04362*RPM - 

31E+11*(RPM**(-1)) + 487023684.1 - 128187.9399*RPM + 
04*(RPM**(2)) 

efficients 
**(-1))  + 2268914.8 - 725.3190345*RPM + 

8*RPM - 

(-1)) - 508206.8736 + 381.454552*RPM - 

 

*DO,rpm,minrpm,max
  rw=rw+1 
   
! Amplitude in ANSYS is
! Here 20
 
*IF,
*VWRITE,rpm,rsc(1,rw)*2000,rsc(
rw),rsc(7,rw)*200
(E12.4,2X,E12.4,2
12.4
*ELSE 
*VWRITE,rpm,
000,rsc(11,
(E12
*ENDIF 
 
*ENDDO 
*CFCLOSE 
 
/EOF 

 
!*************************
!* PROJECT  : Thes
!* PROJECT TITLE : Bearing 1 macro12 
!* 
!* AUTHOR  : Stephen James 
!* 
!* OBJECTIVE  : 1) Calculate speed dependent bearing coefficients 
!*********************************************************************************  
 
! Input
   rpm= a

 parameters from main file 

  rbrg
brgnum= arg3 
 
*MSG, NOTE,
Setting Bearing Location %I Coefficients for %I rpm 
 
!
R,rb
 Create real constant set 

rg 
 
! The curve fit coefficients are taken from the XLTRC2 bearing sheet 
! Stiffness coefficients 
KXX= 1066393315*(RPM**(-1))  + 255286980.2 + 31095.3652*RPM -

88328*(RPM**(2)) 2.1720
KXY=-30104742824*(RPM**(-1)) - 27798078.92  + 102487.8616*RPM - 
2.4442301*(RPM**(2)) 
KYX=-59619636440*(RPM**(-1)) - 510140831.9 + 245

594*(RPM**(2)) 13.0524
KYY=2.315
20.209560
 
!
CXX=
 Damping co

  1126279319*(RPM
0.142588357*(RPM**(2)) 
CXY=-2842395798*(RPM**(-1)) - 508206.302  + 381.451914
0
CYX=
.087678631*(RPM**(2)) 

 -2842391408*(RPM**
0.087677984*(RPM**(2)) 
CYY=13263960051*(RPM**(-1)) - 5519587.151 + 2683.710808*RPM -
0.378480913*(RPM**(2)) 
 
!  Rea
!  K11,

l Constants order in ANSYS for COMBI214 element: 
 K22, K12, K21 , C11, C22, C12, C21  

 

                                                 
12 Bearing 2 macro has not been included because it differs only in the curve fit data 
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! Assign calculated values to real constant set 

, 2, KYY 
IF,rbrg, 3, KXY 

IF,rbrg, 6, CYY 

*************************************************
ECT  : Thesis 

: Stephen James 
ent coefficients 

   are used here, however the macro file can be easily 
     adapted for speed-dep coeff. 

**************************************************************************  
g1 

lC = arg2 
 = arg3 

XX = 150000000 

000

00 

0 
15 

F statement are very important and have changed between 

ix 

ATRIX27,,2,4,0   

!-KXY 

MODIF,rsealC, 79, CXX 
RMODIF,rsealC,  7,-CXX  !-CXX 

RMODIF,rbrg, 1, KXX 
RMODIF,rbrg
RMOD
RMODIF,rbrg, 4, KYX 
RMODIF,rbrg, 5, CXX 
RMOD
RMODIF,rbrg, 7, CXY 
RMODIF,rbrg, 8, CYX 
 
 
!*********************************
!* PROJ
!* PROJECT TITLE : Seal macro 
!* AUTHOR  
!* OBJECTIVE  : 1) Use seal coefficients. Speed independ
!*  
!*
!********
rsealK = ar
rsea
rsealM
 
K
KXY = 0 

 KYX = 0
KYY = 1500 00 
 
CXX = 5000

 = 0 CXY
CYX = 0 
CYY = 500000 
 
MXX = 15 

0 MXY = 
MYX = 
MYY = 
 
! The indices of the RMODI
ANSYS versions 10 and 11. 
! 
! Unsymmetric Stiffness Matr
! 
T,106, ME

R,rsealK 
 KXX  RMODIF,rsealK,  1, KXX  !

RMODIF,rsealK, 79, KXX 
RMODIF,rsealK,  7,-KXX  !-KXX 
RMODIF,rsealK, 73,-KXX  ! 
RMODIF,rsealK, 14, KYY  ! KYY  
RMODIF,rsealK, 92, KYY 
RMODIF,rsealK, 20,-KYY  !-KYY 
RMODIF,rsealK, 86,-KYY  ! 
RMODIF,rsealK,  2, KXY  ! KXY 

IF,rsealK, 80, KXY RMOD
RMODIF,rsealK,  8,-KXY  
RMODIF,rsealK, 74,-KXY  ! 
RMODIF,rsealK, 13, KYX  ! KYX 
RMODIF,rsealK, 91, KYX 
RMODIF,rsealK, 19,-KYX  !-KYX 
RMODIF,rsealK, 85,-KYX 
 
! 
! Unsymmetric Damping Matrix 
! 
ET, 107, MATRIX27,,2,5,0  
R,rsealC 
MODIF,rsealC,  1, CXX  ! CXX  R

R

RMODIF,rsealC, 73,-CXX  ! 
RMODIF,rsealC, 14, CYY  ! CYY  
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RMODIF,rsealC, 92, CYY 
RMODIF,rsealC, 20,-CYY  !-CYY 

! 
 ! CXY 

!-CXY 
! 
! CYX 

IF,rsealC, 19,-CYX  !-CYX 
IF,rsealC, 85,-CYX 

 Ma

,2,
eal
IF, ealM,  1, MX

 7,-MXX  !-MXX 
73,-MXX  ! 
14, MYY  ! MYY  

IF,rsealM, 92, MYY 
, Y 
, YY  ! 
, XY  ! MXY 
,

IF,rsealM,  8,-MXY  !-MXY 
,  
, YX  ! MYX 
, YX 
, MYX 

IF,rsealM, 85,-MYX 

RMODIF,rsealC, 86,-CYY  
RMODIF,rsealC,  2, CXY 
RMODIF,rsealC, 80, CXY 
RMODIF,rsealC,  8,-CXY  
RMODIF,rsealC, 74,-CXY  
RMODIF,rsealC, 13, CYX  
RMODIF,rsealC, 91, CYX 
RMOD
RMOD
 
! 
! Unsymmetric Mass trix 
! 
ET, 108, MATRIX27, 2,0  
R,rs M 
RMOD rs X  ! MXX  
RMODIF,rsealM, 79, MXX 
RMODIF,rsealM, 
RMODIF,rsealM, 
RMODIF,rsealM, 
RMOD
RMODIF,rsealM  20,-MYY  !-MY
RMODIF,rsealM  86,-M
RMODIF,rsealM   2, M
RMODIF,rsealM  80, MXY 
RMOD
RMODIF,rsealM  74,-MXY  !
RMODIF,rsealM  13, M
RMODIF,rsealM  91, M
RMODIF,rsealM  19,-MYX  !-
RMOD

 



 

 

187

VITA 
 

 Al-Ahmadi, Kuwait. After completing high 

wait, he moved to India in 1998 to pursue a degree in 

ineering. He graduated from the University of Kerala, India, in 2002 with a B.Tech. 

g. or the next three years, he worked at COMPRO 

lhi, India as a mechanical design and software engineer, 

 utilities for motion control applications. 

exas A&M University, College Station. He worked as a 

machinery Laboratory under the guidance of Dr. Dara 

k involved development of the XLTRC2 rotordynamics 

software, as well as technical support to the Turbo Research Consortium (TRC). 

In 2008, Stephen joined the Rotating Machinery section in the Fluids & 

Machinery Engineering Department at Southwest Research Institute. His research 

interests are in the areas of rotating machinery rotordynamics, structural dynamics, finite 

element analysis, machinery design, tools and simulation systems, plant systems, 

software programming, and instrumentation. He also spends time researching software 

development, compilers, hardware, and memory-and-time-saving algorithms. 

Stephen received his Master of Science degree in mechanical engineering from 

Texas A&M University in May 2010. 

 Stephen may be reached at Southwest Research Institute, 6220 Culebra Road, 

San Antonio, TX 78238. His email is stephen.james@swri.org. 

Stephen Mathew James was born in

school at The Indian School Ku

eng

in mechanical engineerin  F

Technologies Pvt. Ltd., New De

developing system configurators and analysis

In 2005, he enrolled at T

research assistant in the Turbo

Childs. A large part of his wor


	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1 INTRODUCTION
	2 THEORY AND PRINCIPLES
	3 PROCEDURE
	4 RESULTS AND DISCUSSION
	5 CONCLUSION
	REFERENCES
	VITA

