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ABSTRACT

Adapting a Beam-Based Rotordynamics Model to Accept a
General Three-Dimensional Finite-Element Casing Model. (May 2010)
Stephen Mathew James, B.Tech., University of Kerala
Chair of Advisory Committee: Dr. Dara W. Childs

The subject of this thesis is an extension of a two-dimensional, axisymmetric,
Timoshenko-beam finite-element rotordynamic code to include a three-dimensional non-
axisymmetric solid-element casing model. Axisymmetric beams are sufficient to model
rotors. Spring and damper forces provide the interface between the rotor and its casing
and capture the dynamics of the full model. However, axisymmetric beams limit the
modeling of real-case machine structures, where the casing is not axisymmetric.

Axisymmetric and non-axisymmetric 3D finite element casing structures are
modeled. These structures are then reduced using a technique called substructuring.
Modal equations are developed for axisymmetric and non-axisymmetric casing models.
In a 3D non-axisymmetric model, structural dynamics modes can be modeled by lateral
modes in two orthogonal planes. Modal information of the complex 3D casing structures
are generated, and then incorporated into the 2D code after a series of pre-processing
steps.

A reduction method called Component Mode Synthesis (CMS) is used to reduce
the large dimensionality involved in calculation of rotordynamic coefficients. The results
from the casing structures are merged with the rotor model to create a combined rotor-
casing model. The analysis of the combined structure shows that there is a difference in
the natural frequencies and unbalance response between the model that uses symmetrical
casing and the one that uses non-axisymmetric casing.

XLTRC? is used as an example of a two-dimensional axisymmetric beam-

element code. ANSYS is used as a code to build three-dimensional non-axisymmetric
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solid-element casing models. The work done in this thesis opens the scope to incorporate

complex non-axisymmetric casing models with XLTRC?.
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NOMENCLATURE

Units for physical quantities are marked by dimensional units of mass (M), length (L),

time (T) and force (F).

[A] — Eigenvector matrix of coupled rotor-casing model

[ac] — Matrix of eigenvectors of casing

[A] — Component mode synthesis transformation matrix for casing

APDL — ANSYS Parametric Design Language

[a] — Matrix of eigenvectors of rotor

[A,] — Component mode synthesis transformation matrix for rotor

[A] — Eigenvector matrix for X —Z plane

[A( ] — Eigenvector matrix for Y —Z plane

bl, b2, b3, b4 — Bearings used in component-mode-synthesis model

[C] — System damping matrix in Guyan reduction model

[CCSC] — Transformed casing damping matrix due to seal force on casing

[Ccsr] — Transformed casing damping matrix due to seal force on rotor

C;;i=1:m,j=1:n — Damping matrix element [FTL™]

cj;j=1:n — jth casing station

CMS — Component Mode Synthesis

Crec — Damping element entry in rotor due to seal force on casing
[FTL"]

[C] — Transformed rotor damping matrix due to seal force on casing

Crer — Damping element entry in rotor due to seal force on rotor

[FTL™]



FEA
FEM

— Transformed rotor damping matrix due to seal force on rotor
— Damping coefficient of ith seal [FTL™]

— System external forces matrix in Guyan reduction model

— Force acting at the kth bearing [F]

— Transformed casing external forces matrix

— Force acting at the jth station of casing [F]

— Force acting on casing due to ith seal [F]

— Finite element analysis

— Finite element methods

— ith force matrix element in Guyan reduction [F]

— Transformed rotor external forces matrix

— Force acting at the ith station of rotor [F]

— Force acting on rotor due to ith seal [F]

— Force along x-axis [F]

— X —Z plane force matrix

— Force along y-axis [F]

— Y —Z plane force matrix

— Polar inertia coefficient of ith station about ith 3, direction LY
— System stiffness matrix in Guyan reduction model

— Transformed casing stiffness matrix

k.. :i=1:n,j=1:n - Stiffness matrix i,j-th entry of casing [FL™]

cicj

csC

[KW]

[K

ki ;i=1:m,j=1:n

ij

X

— Transformed casing stiffness matrix due to seal force on casing

— Transformed casing stiffness matrix due to seal force on rotor

— Stiffness matrix element [FL"]



[K/] — Transformed rotor stiffness matrix

Kig si=1:m, j=1:m — Stiffness matrix i,j-th entry of rotor [FL]

K — Stiffness element entry in rotor due to seal force on casing
[FL"]

[Krsc] — Transformed rotor stiffness matrix due to seal force on casing

K — Stiffness element entry in rotor due to seal force on rotor [FL™]

[Ke ] — Transformed rotor stiffness matrix due to seal force on rotor

kg si=12 — Stiffness coefficient of ith seal [FL™']

[M ] — System inertia matrix in Guyan reduction model

[M,] — Transformed casing inertia matrix

mg sj=1:n — Inertia coefficient of ith station of casing [M]

M ] — Transformed casing inertia matrix due to seal force on casing

Mg ] — Transformed casing inertia matrix due to seal force on rotor

m ;i=1:m — ith inertia matrix element [M]

Mgy — Lateral inertia coefficient of ith station along ith R, direction [M]

m, ;i=1:m — Inertia coefficient of ith station of rotor [M]

[M ; — Transformed rotor inertia matrix

M, — Inertia element entry in rotor due to seal force on casing [M]

[M — Transformed rotor inertia matrix due to seal force on casing

m., — Inertia element entry in rotor due to seal force on rotor [M]

M ] — Transformed rotor inertia matrix due to seal force on rotor

mg ;i=12 — Inertia coefficient of ith seal [M]

M — Moment about y-axis [FL]

Qg — jth casing modal coordinate



— ith modal coordinate in coupled rotor-casing model
— ith modal coordinate in X —Z plane

— ith modal coordinate in Y —Z plane

— ith rotor modal coordinate

— ith rotor station

— ith displacement coordinate along x-axis

— ith displacement coordinate along y-axis

— Seals used in component mode synthesis model

— Matrix representing displacement terms

— X —Z plane coordinate matrix

— Matrix representing velocity terms

— Matrix representing acceleration terms

— Displacement term of the jth station of casing [L]
— Velocity term of the jth station of casing [LT']

— Acceleration term of the jth station of casing [LT™?]
— Displacement term of the ith station of rotor [L]

— Velocity term of the ith station of rotor [LT"]

— Acceleration term of the ith station of rotor [LT]
— Y —Z plane coordinate matrix

— ith rotation coordinate about x-axis

— ith rotation coordinate about y-axis

— Eigenvalue (natural frequency) of jth mode of casing
— Eigenvalue of ith mode of rotor

— Modal damping coefficient for the jth mode of the casing

X1
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— Modal damping coefficient for the ith mode of the rotor

— Diagonal matrix of eigenvalues of coupled rotor-casing model
— Diagonal matrix of eigenvalues of casing

— Diagonal matrix of eigenvalues of rotor

— Diagonal matrix of eigenvalues in X —Z plane

— Diagonal matrix of eigenvalues in Y —Z plane

— Boundary coordinates in component mode synthesis model
— Interior coordinates in component mode synthesis model

— Master degree of freedom entry in Guyan reduction

— Slave degree of freedom entry in Guyan reduction
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1 INTRODUCTION

1.1 XLTRC? Software

XLTRC?' is a rotordynamic software suite characterized by the following

features:

a. It is fast in building rotordynamic system models and running simulations.

b. It is accurate and has been benchmarked against other industry-standard suites and
known analytical solutions.

c. It has a user-friendly interface.

XLTRC? uses Timoshenko—beam finite element models (FEM) that includes
shear deflections. The Timoshenko—beam finite element model was developed with
significant contributions by Nelson and McVaugh [1] and Nelson [2]. XLTRC? can
model multiple nested shafts. Component mode synthesis (CMS) is used to reduce the
dimensionality of the finite element beam model. The CMS method is explained later in
section 2.2. XLTRC? can also accept a general pole-zero, reaction-force/displacement
model for simulating foundation models.

In XLTRC?, a rotor or casing structure can only be modeled using axisymmetric
beams in a two dimensional system. Figure 1 shows a representative model of a rotor
and casing. The axis of symmetry lies along the longitudinal axis. The spring and
damper forces from bearings and seals provide the interface between the rotor and casing
and capture the dynamics of the full model. Additional input such as added masses help
to model impellers and liquid seals, for example.

The use of axisymmetric beams limit the modeling of real-case machine
structures, e.g. volute pump casings, base plate assemblies, etc. where the casing
structure is not axisymmetric. This limitation is in the context of a rotordynamics sense.

Figure 2 shows an example of a compressor casing. The structure is non-symmetric

This thesis follows the style of Journal of Turbomachinery.

' XLTRC? is licensed by Texas Engineering Experiment Station and developed at the Turbomachinery
Laboratory. © Texas A&M University. All rights reserved.



about at least one of the coordinate axes. Non-axisymmetric structures are common, but

the availability of complete and convenient rotordynamic analysis tools for their analysis

is limited.
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Figure 1 XLTRC? rotor-casing model with connecting bearings and seals [3]



Figure 2 Compressor casing showing non-axisymmetric geometry [4]

1.2 XLTRC?vs. 3D Finite Element Analysis Tools

Modern finite element analysis (FEA) tools (e.g., ANSYS?, MSC Nastran’,
Pro/Engineer4, SolidWorks”, etc.) use three dimensional (3D) elements to model the
rotor, casing and foundation. Bearings and seals are modeled, with equivalent stiffness
and damping coefficients, and then incorporated into the 3D finite element method
(FEM) model. FEA tools do not have straightforward methods to incorporate speed
dependent bearing and seal force coefficients. While able to analyze detailed models,
they lack the spectrum of a complete rotordynamic analysis. XLTRC?, on the other hand,
can couple a rotor-casing or rotor-rotor model through connecting links at bearing and
seal locations. General casing structures can also be incorporated by the use of point
transfer functions. Physical coordinates are used to define the locations of nonlinear or
linear connections with frequency-dependent coefficients, and this is achieved with

component mode synthesis (CMS). Linear, frequency-independent connections are

> ANSYS is a trademark or registered trademark of ANSYS, Inc. or its subsidiaries located in the United
States or other countries.

3 MSC Nastran is a registered trademark of MSC.Software Corporation

* Pro/Engineer is a trademark of TriStar Computer Corporation

> SolidWorks is a trademark of Dassault Systemes S.A.



accounted for via modal stiffness, damping, and mass matrix entries. The following is a

comparison of the features between XLTRC? and a general purpose finite element code:

a. XLTRC? is an easy application in terms of user friendliness and the learning time.
3D finite element codes are more complex as they incorporate a wide variety of
parameters that are applicable to a range of disciplines. Selecting parameters
specific to a rotordynamic analysis requires experience and a thorough
understanding of the tool capabilities.

b. XLTRC? requires less time to create a model and uses a simple interface. Although
3D FEM codes use graphical interface and primitives (fundamental building blocks)
for modeling, the resources required are more taxing than those for XLTRC?.

c. XLTRC? uses only axisymmetric beam-element based modeling, and hence is
limited to simple designs. Since 3D FEM codes employ a wide variety of elements
(such as beams, shells, links, etc.) they can handle more complicated designs.

d. XLTRC? can model only two dimensional axisymmetric beam structures which are
sufficient for rotors. Most other 3D FEM codes allow for full-fledged three

dimensional analyses.

1.3 Research Objective

This research adapts the beam-element based XLTRC? rotordynamic model to
accept a general three dimensional finite element casing model. This step combines the

advantages of XLTRC? and a 3D finite element code.

1.4 Selection of Three Dimensional Finite Element Code

The choice of 3D finite element code is based on the following requirements:
a. A variety of element primitives must be available to model actual structures,
because one element type cannot be accurately used to represent an entire model.
For e.g., a beam element cannot accurately represent a component of the casing

comprised of shell elements.



b. The code should be able to reduce the casing structure using component mode
synthesis (CMS). This reduction technique, as described later in section 2.2, is used
by XLTRC? and provides a compatible format without much restructuring to the
existing XLTRC? code.

c. The modal information contained in the CMS reduced structure must be available
for post processing. Most FEA codes use proprietary data—storage algorithms and
databases. An algorithm, provided by the manufacturer of the FEA code, should
exist to convert relevant portions of the proprietary database to open source format.

d. The finite element code should be widely used so that this feature can be readily
employed among the XLTRC? user base.

Based on the above requirements, ANSYS is chosen as the favorable candidate
over other codes such as MSC Nastran, Pro/Engineer, SolidWorks, etc. The analysis
done in this thesis uses ANSYS Classic Release 11 (Service Pack 1) and ANSYS
Workbench Release 11.

1.5 Previous Work

Previous analyses show that casings and foundation supports have a considerable
effect on the critical speeds and response of a rotordynamic system.

Childs’ [5] 1976 paper presents work done on a Dual-Rotor Jet Engine system
that consists of two flexible rotors (low-speed and high-speed) and flexible casing
structure (Figure 3). The procedure for a transient modal simulation model is described
that includes the effect of bearing connections between the rotors and from the rotors to
the housing® structure. The case structure is modeled as a collection of symmetrically
connected rigid bodies.

A paper by Childs [6] in 1978 presents work on the Space Shuttle Main Engine
(SSME) High-Pressure Fuel Turbopump (HPFTP) and High-Pressure Oxygen
Turbopump (HPOTP). The model (Figure 4) uses exported modes from a general

structural dynamic model of the housing. Modes are used that corresponded to zero

% The terms stator, casing, and housing are used interchangeably in this thesis.



reaction forces at the connection points. A schematic representation of the SSME
HPFTP and HPOTP is shown in Figure 5. In an earlier research [7] in 1975, Childs
shows that introducing stiffness asymmetry in the support structure predicts an
improvement in turbopump stability. This is an example of how the supports influence

the overall rotordynamic stability.
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Figure 3 Dual-rotor/case system analyzed by Childs [5]
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In 1978, Darlow, Smalley and Ogg [8] also presented work that involves casing
effects on an axisymmetric vertical pump, represented by Figure 6. This pump comprises
of three structural elements — the outermost level representing the pump casing, middle
level representing the pump inner structure and the inner-most level, the pump rotor. The
pump is cantilevered from above and supports a large impeller and volute casing. Semi-
rigid connections are used between the top of the pump casing and the inner structure,
and similarly between the top of the pump casing and ground. This pump presented an
unusual rotordynamic situation in which the inner structure and the pump casing are
separated at the bottom by close clearances, causing it to act as a squeeze-film damper.
The work made use of two rotordynamic programs, CAD-26 [9] and CAD-27 [10],
developed by J.W. Lund at Mechanical Technology Incorporated (MTI). In his 2003

paper, Memmott [11] cites the rotordynamic programs and states that the MTI programs

uses the transfer matrix method.
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Figure 6 Schematic diagram of vertical pump analyzed by Darlow, et al [8]



In their 1985 paper, Bellamy, Jonson and Gaffney [12] present the capability of
three dimensional analyses and their solutions. The paper mentions the use of large,
three dimensional, non-axisymmetric detailed solid finite elements that replace the
simpler beam type models. The demand on computation power was made possible by
advancements in the development of digital computers. Three dimensional finite element
based model predictions showed better correlation with static and dynamic analysis,
when compared to the traditional single plane beam model. There was also a dramatic
increase in the number of modes predicted by the three dimensional models.

Gerardin and Kill [13] in 1986 present a three dimensional approach for the
dynamic analysis of a high by-pass aircraft engine and a cryogenic engine’s turbopump
rotor. For the aircraft engine analysis, the approach involves creating substructures out
of the entire system, comprised of two rotors corresponding to the low and high pressure
stages, the casing, and the aircraft pylon. The substructures are represented by
superelements created by the component mode synthesis (CMS) method. The rotating
parts, as shown in Figure 7 and Figure 8, are modeled with axisymmetric shell and solid
elements. The fan blades are represented by quadrangular elements. Each rotor consists
of two superelements. The casing, shown in Figure 9, and pylon are modeled by five

superelements consisting of beam and shell elements.

Figure 7 Superelement model of axisymmetric low pressure rotor comprising of
shell and solid elements [13]
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Figure 8 Superelement model of axisymmetric high pressure rotor comprising of
shell and solid elements [13]

Figure 9 Superelement model of casing comprising of shell and solid elements [13]

For the turbopump rotor of the cryogenic engine, a beam-element approach is
used to model the shaft, and CMS is used to reduce the size of the resulting system of
equations from the finite element analysis. Gerardin and Kill used their substructure
method to perform stability analysis, unbalanced response, and transient analysis. The
same models were later extended [14] in 1990 to study maneuver loading of rotors.

Hylton and Burns’ [15] 1994 paper use an axisymmetric finite element
rotordynamic analysis routine for analysis of bearing loads in high speed turbofan

engines that have encountered blade loss. Beam elements are used to model the engine
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and supporting structure, and the beam elements coupled to the three dimensional finite
element model of the complete structure. Mass elements are used to represent lumped
masses. A combination of spring and damper elements are used to couple the rotating
and stationary components. Figure 10 shows the finite element model used. The analysis
involves calculation of damped and undamped critical speeds, steady state unbalance
response and transient response. Although the term substructure is used in this paper, the

reduction technique, if any, has not been specified.

aC el N

Figure 10  Finite element model of turbofan engine [15]

In 2002, Corbo, Stefanko and Leishar [16]document the rotordynamic analysis of
a vertical pump. The rotordynamic model generation uses a Two-Level Method. The first
level models the rotating pump shaft and the second level, the stationary pump column
(casing). Each individual level is a complete rotordynamic model, and these levels are
then linked at various locations to represent the vibration components that tie the two
levels together. The locations refer to bearings, seals, coupling elements, etc. that allow
complex dynamic interactions between the components to be accounted for. Two valid
methods are used to analyze the system; first, use of a specialized rotordynamics code,
and second a 3D finite element code. The authors emphasize that when the casing is
modeled with a general-purpose FEM code, the fluid-structure-interactions between the
casing and the rotor must be accounted for, a practice that is frequently ignored by pump
manufacturers. The modeling procedure employs rotordynamics computer codes that can

handle only axisymmetric elements. When non-axisymmetric slotted portions of the
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pump casing are encountered, they are modeled as equivalent axisymmetric sections
having the same area and area moment of inertia. The casing is modeled with beam
elements, and the results are reported to be consistent with conventional beam theory.

Clark and Jurjevic [17] show improvements in finite element modeling in their
2007 paper. The casings are first represented with simplified rotor-bearing-support
models. Beam elements represent the shaft while other predefined components model
the flexible disk, coupling, bearing support, and gears. While the use of these
components is useful to predict rotor critical speeds, rotor-structure interaction is not
possible and cannot predict structural resonance. Standard rotordynamic tools include
insufficient detail of casings with the supports modeled as single degree of freedom
systems. This deficit causes limitations in determining the detailed response of the
casings and foundations.

To overcome this drawback, a finite-element-based 3D geometry is used. The
rotor is modeled with beam and pipe elements and validated with field data. For the
casing, a procedure called substructuring is employed where the detailed non-
axisymmetric casing model is represented as a compilation of super-elements. Each of
these superelements is built starting from a FEM base comprising of solid elements.
Modal analysis is carried out on each superelement, and then these superelements are
built into an assembly. Figure 11 through Figure 13 show the process of building the
assembly of superelements. The casing supports introduce non-axisymmetry into the

system.
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\
Figure 11 Detailed FEM model of gas turbine analyzed by Clark et al [17]

F

Figure 12 A section of the gas turbine and its corresponding superelement [17]
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Figure 13  Assembly built out of the individual superelements [17]

The rotordynamics program used could carry out standard analyses as well as
complex dynamic effects, such as rotor-structure coupling. The methodology reduced

calculation time and provided capability for more detailed models.

1.6 Motivation

Moore, et al. [18] in 2006 present work that involves the rotordynamic analysis
of a large industrial turbo-compressor. They demonstrate two approaches to capture the
rotor-casing dynamics. The first involves the generation of a high-order polynomial in
numerator-denominator transfer function format, which models the connection between
the rotor and the ground at the bearings. This method is typically used in XLTRC? for
modeling foundation supports and magnetic bearings. For the housing structure, a forced
identification response is performed at each bearing in the vertical and horizontal
directions. The resulting frequency response functions are used to derive the transfer
functions and then incorporated into XLTRC?. The rotor model is built in XLTRC?, as

seen in Figure 14.
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Figure 14 XLTRC? rotor model built by Moore et al [18]

While providing the rotordynamics code with the advantage that the analysis is
computationally moderate, this approach is limited in that the motion of the separate
bearings is uncoupled, which is not the case in real machines. A later personal discussion
with one of the authors revealed that, even though not published in the paper, an analysis
was done where the coupled effect of the bearings was studied. The results did not differ
much from the uncoupled analysis. However the results were specific to this machine
case, and other machines may require incorporating a coupled effect. Although this
approach modeled the connections between the rotor and stator at the bearings, it
erroneously left the connections at seals from rotor to ground, not rotor to housing.

The second approach used ANSYS to solve a fully coupled finite-element rotor
and casing model. Figure 15 shows the original casing model built in ANSYS. The
analysis eventually resulted in a refined model. Figure 16 shows the coupled rotor-casing

model.
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Figure 16

Sectional view of coupled rotor-casing. Inset view of entire model [18]
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The FEM model, however, has two disadvantages in the scope of study. First,
while ANSYS can model the bearings as a three-dimensional solid element, it does not
have a direct functionality to include speed-dependent bearing coefficients. Second,
capturing the interactions between the coupled rotor and casing model is

computationally intense.
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Figure 17 Unbalance response comparison between ANSYS and XLTRC? [18]

Figure 17 compares the vertical response at one of the bearings, between three
cases — ANSYS combined rotor-casing model, XLTRC? rotor model that uses transfer
functions, and XLTRC? rotor model supported on rigid foundations. Although the
XLTRC? model with transfer functions reported the highest response amplitude, its
behavior is similar to the combined rotor casing model.

The work by Moore et al. [18] stimulated this thesis, as it used the XLTRC?
rotordynamic software suite. An alternate approach is used here with 3D FEM analysis

of the casing to be done in ANSYS, and the resulting modal information incorporated
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with XLTRC?. This approach results in a combined reduced model that can be analyzed,
and extends XLTRC® to account for three dimensional non-axisymmetric casing

structures.
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2  THEORY AND PRINCIPLES

2.1 Guyan Reduction

The Guyan Reduction [19] is a static reduction technique widely used to rewrite
the equations of motion, representing a system such as a rotordynamic model, with a
reduced number of degrees of freedom. The technique defines a set of interior
coordinates in terms of boundary coordinates. By directly eliminating physical
coordinates from a finite-element or lumped-parameter model, it reduces the
dimensionality of the problem.

The degrees of freedom (DOFs) are categorized into master (retained) DOFs and
slave (discarded) DOFs. The retained coordinates are generally selected so that they
coincide with bearing locations, seal locations, unbalance locations, external-force
locations, lumped masses, etc. Coordinates that are not of interest to the analysis, or are
considered less important, are eliminated. Guyan suggested the reduction technique
procedure so that coordinates, where no forces are applied, are eliminated. A general

rotordynamic model can be represented by the following equation,

MR} +[Cl{x}+[K]{x} = {F} (1
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Figure 18 Simple rotor system to illustrate guyan reduction
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Consider the basic equation form (without effects of damping) of a four-point
mass system supported by springs at the outer ends, as shown in Figure 18. The physical

model is defined by Eq.(2), and the static form of the equation given by Eq.(3).

m, 0 0 0 X1 k11 k12 k13 k14 X f1
0 m, 0 0 Xz n k21 kzz k23 kz4 X, _ 0 )
0 0 m, 0 Xy k31 k32 k33 k34 Xy 0
0 0 0 m, X4 k41 k42 k43 k44 X, f4
k11 k12 k13 k14 X fl
k21 kzz k23 k24 X, _ 0 3)
k31 k32 k33 k34 Xy 0
k41 k42 k43 k44 X, f4

The bearing locations (stations 1 and 4) are selected to be the retained

coordinates. Rearranging the model in terms of the boundary(xl, X4)and interior

(X,, X, ) coordinates,

LTI P SR TR I B ¢ f
Ky Ky Ky Ky | )X _ f, 4)
Ky Ky Ky Koy % 0
Ky Ky Ky Kyy X 0

The equation is now partitioned into two groups, representing master DOFs and

slave DOFs. The master DOFs are represented by the subscript ‘m’ and slave by

kmm kms Xin _ I:m (5)
ksm kSS XS - FS
Expanding the above form leads to,

[k {0} + [k {6 = {Fn}
[Kan ]} [k ] (%) = {F

In Guyan reduction, generally {Fs} =0. The eliminated coordinates do not

subscript ‘s’.

(6)

generally include external forces that need to be retained in the model. Eq.(6) becomes,
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[k {0} + [k {6} = {Fn}

[ksm]{xm}"'[kss]{XS}Z{O} (7)

Solving for the slave DOFs yields,
{XS}:_[kss]il[ksm]{Xm} (8)

The transformation is then represented by,
| _| ! =| B 9
x|~ [B] {Xm}—[ :|{Xm} )

Substituting Eq.(8) in (5) leads to the following expression that can be solved for
the master DOFs.

(o] [k 1] ] [ 20} = {Fo} (10)

Eq.(10) can be represented in general terms as,

(K (%) =1{F] (11)

where,
[K}:[kmm]_[kms][kSS]_l[ksm] (12)
{2 ={%} (13)
{FI={F.} (14)

When considering the complete system Eq.(1), a similar expression can be
obtained for the reduced mass and damping matrices. Since direct partitioning is not
practical, owing to the time derivatives of displacement and their difficulty to
implement, Guyan [19] illustrates a method by relating the structural energies of the
system. This leads to the following reduced matrix forms for mass and damping

matrices.
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[M]:[Mmm]_[Kms][KSS]_l [Msm]_[Mms][KSS]_l[Ksm] (15)
HK (K] ML K] [Kan]
[C}Z[CWJ—[KW]“QJA[Cm]—[Cm]UQJA[KW]

1 1 (16)
HKneJ[Ke ] [Co[Ka ] [Kan]

The final system equation, after transformations have been applied, can be

represented by,

[V {5} +[ € (%) +[ K {0} ={F) (17)
%} =[B]{x) (18)

Guyan Reduction is based on the assumption that the dynamic content of the
system can be defined by the retained coordinates, and that the dynamic deflected shapes
are the same as the static. Since there is no modal reduction, an analyst will therefore
have to have a good understanding of the system before selecting those coordinates to be
retained. Ignoring critical coordinates may result in a system with results that are not
accurate.

Note that none of the structural complexity is lost in the reduced stiffness matrix
since all the elements make a contribution. The reduced mass matrix, however, contains
both stiffness and mass elements. Rouch and Kao [20] present comparisons between a
complete finite-element model of an industrial compressor on hydrodynamic bearings
and its corresponding reduced models of various dimensions. The full model has 46
translation DOFs and 5 rotational DOFs. The smallest reduced model has only nine
translational DOFs and zero rotational DOFs. Good correlation is demonstrated in

results through the fourth calculated mode.
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2.2 Component Mode Synthesis

In the analysis of rotordynamic systems, solving simultaneous equations for
synchronous response or determining complex eigenvalues and eigenvectors involves
large dimensionality of the underlying equations of motion. Dimensionality is common
to structural-dynamics, but is intensified in rotor dynamics by reaction forces defined by
nonsymmetrical stiffness, damping, and inertia matrices. These matrices can result in
complex eigenvalues and eigenvectors. Component Mode Synthesis (CMS) is a method
that allows reduction in the size of the overall system problem while retaining essential
dynamic characteristics. CMS has been used extensively in structural analysis of
buildings, frames, etc. The work of Nelson and Glasgow [21] first extended CMS for
rotordynamics. Childs [22] presents a simple model to explain the component mode
development.

This section illustrates CMS development to show its importance with respect to
reduction of a simple rotordynamic system that consists of a rotor, casing, casing support
springs, and interconnecting bearings and seals. Figure 19 shows the representative
model. A lumped-parameter beam model is used to represent the rotor and the casing. To
reduce the complexity of this model, only one degree of freedom is assumed at each

station.

c4
c3
kb3 -------- Casing Support Springs ======== > kb4

Figure 19 Rotor-casing model with bearings and seals
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The rotor has 6 beams and 7 stations — rl, r2, r3, r4, r5, r6, and r7. The casing is
made of 3 beams and has 4 stations — €1, c2, c3, and c4. The casing is connected to
ground and supported by two housing support springs, b3 and b4, at stations c1 and c4.
The rotor is supported by two bearings, b1 and b2 at stations r2 and r6, and they provide
the stiffness connection to the casing. Two interconnecting seals, s1 and s2, are used
between the rotor and the casing.

The development of CMS involves separating the coordinates into boundary
coordinates and interior coordinates. This step is similar to Guyan Reduction where the
degrees of freedom (DOFs) are categorized into master (retained) DOFs and slave
(discarded) DOFs. However the advantage of CMS is that all the interior coordinates get
absorbed into modal coordinates. This helps to retain all the dynamic content of the
rotordynamic system. Usually, boundary coordinates are selected to coincide with
frequency-dependent or nonlinear reaction locations.

Various forces act on the system. Bearing reaction forces occur at the bearing
locations. In the above model, the bearing forces in the rotor acting at stations r2, r6, c1,

and c4 are represented by Eq.(19). For simplicity, the terms f,,, f ., f,, andf_, are

r2> 'r6> ‘cl?

expressed in terms of the bearing indices.

fro=—f, =", = N'L'(XrZ’XCI’XrZ’XCI) (19)
fo=—fo= oy = NoL(Xr X Koo X )
The housing support springs forces are given by
fc =f.=N.L X; ’Xc
1 b3 ( 1 1) (20)

foa=fou = N.L.(XC4,)'(C4)
The seal forces act at stations r3, c2, r5, and ¢3. The rotor-model seal forces are
given by,
frsl =-mg, (Xr3 - Xcz ) —Cy (XrB - Xcz ) - ksl (Xr3 - Xcz)

frsz =-m,, (er - Xc3 ) —C, (er - Xc3)_ ksz (er - Xcs)

21)
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For the casing model, the seal forces have a change in sign and are represented
by,
fcsl =mg (Xr3 - Xcz ) +Cg (Xr3 - Xcz ) + ksl (Xr3 - Xcz)

C o (22)
fcsz = msz (XrS - Xc3 ) + Csz (er - Xc3 ) + ksz (XrS - Xc3)

In the first step of CMS, each shaft is assembled individually into its system
matrices. For the system defined in this example, seals are the only source of damping.
The initial physical model for the rotor is stated by Eq.(23). In practice, many of the
stiffness coefficients are zero. The right-hand side of Eq.(23) represents the bearing

reaction forces and the seal forces.

m, 0 0 0 0 0 0][%,
O m, 0 0 0 0 0%,
0 0 m, 0 0 0 0 [,
0 0 0 m, 0 0 0 |x,
0 0 0 0 m, 0 0 [/,
O 0 0 0 0 m, 0%,
o 0 0 0 0 0 m,l|x,
- - _ (23)
krlrl kr1r2 krlr3 krlr4 krlrs kr1r6 krlr7 Xrl 0 0
kr2r1 kr2r2 kr2r3 kr2r4 kr2r5 kr2r6 kr2r7 Xr2 fbl 0
kr3r1 kr3r2 kr3r3 kr3r4 kr3r5 kr3r6 kr3r7 Xr3 0 frsl
+ kr4r1 kr4r2 kr4r3 kr4r4 kr4r5 kr4r6 kr4r7 Xr4 = 0 + 0
krSrl kr5r2 kr5r3 kr5r4 krSrS kr5r6 kr5r7 XrS 0 frsZ
kr6r1 kr6r2 kr6r3 kr6r4 kr6r5 kr6r6 kr6r7 Xr6 fb2 0
_kr7r1 kr7r2 kr7r3 kr7r4 kr7r5 kr7r6 kr7r7 Xr7 0 0

The companion equation that defines the physical model of the casing is given by

Eq.(24).
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clc2
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c3c2
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S © oS O

s 9 %S D

X N X X
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|T

Xe2
X3
Xe4
Xes
X6
Xe4

0
0

0
0
0
0

0
00 0 0 0 0O

0
0 0 0O
0
0
0
0

0
Csl
kSl
00 0 0

rnsl

0
0

0
00 0 0 0 0O

00 0 0 0 00
00 0 0 0 00
0

00 0 0 0 00
00 0 0 c,
00 0 0
00 0 0 ki,
00 0 0
00 0 0

0 0

The expansion of seal forces on the right-hand side of Eq.(23) in terms of Eq.(21)

ffSl
f|’52

0

is shown in Eq.(25).
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To simplify the development, the contribution of the seals to the inertia,

damping, and stiffness terms will be accounted for after the transformation matrix is

obtained. The rotor coordinates are now rearranged into boundary and interior

coordinates as shown in Eq.(26). The coordinates which coincide with bearing locations

(X.5» X, ) are selected as boundary coordinates.

m, O
0 m,
0 0
0 0
0 0
0 0

0 0
_kr2r2
kr6r2

I(rlr2

+ kr3r2
kr4r2

kr5r2
_kr7r2

oS O

3

rl

S O O O

r2ré

roreé

riré

riré

raré6

rsré

~ X XN XN X RN ™

r7ré

0
0
0
My,
0
0
0
Kear
Keori
Keiry
rari
rarl
rsri

k
k
k
k

rrl

S O O O

3

rar3

ror3

rir3

rir3

r4r3

rsr3

N " XX XXX X <@ <

r7r3

oS O O O O

3

o
3
~

rar4

rér4

rir4

rir4

rar4

rsr4

~ X XN X X X x~

rir4

S O O o o O
X

~ |

rars

rors

= N

rirs

rars

rars

rsrs

~ X XN X

rirs

rar7

ror7

rir7

rir7

r4ar7

rsr7

~ XN XN X X KN ™

r7r7 _J

(26)

The expansion of seal forces on the right-hand side of Eq.(24) in terms of Eq.(22)

is shown in Eq.(27). As in the development of rotor equations, the contribution of the

seals to the inertia, damping, and stiffness terms of the casing equation will be accounted

for after the transformation matrix is obtained.
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rearranged

) coordinates is shown in Eq.(26).
0
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5('rl
sz
0.0 0 0 0 0],
Oom, 0 0 00 ),(,'3
0 0 0m, 00 X,“‘
00 0 0 00"
Xr6
Xr7
Xrl
Xr2
0.0 0 0 0 0],
0c, 00 00 X”
0 0 0c, 0O0f "
Xr5
0 0 0 00|,
Xr6
Xr7
)(rl
Xr2
0.0 0 0 0 0]
0k, 0 0 0o0f"°
X4 (27)
0.0 0k, 00}
0 0 0 0 0Of"
Xr6
Xr7
boundary (X, X,,)and interior
kc1c3 X1 fb3_fb1 0
kc4c3 X:4 _ fb4_fb2 n 0 (28)
k0203 XCZ 0 fCSI
k0303 XC3 0 fCSZ

Static constraint modes for the rotor are now defined by producing a unit

displacement of each boundary coordinate in turn, with all other boundary coordinates

fixed and all interior coordinates unconstrained and unloaded. From Eq.(26) the first
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static displacement vector is obtained by settingX ., =1 and X ,=0. When applied to

Eq.(26), it leads to Eq.(31) via Eq.(29) and Eq.(30).

k|’1r2 kr1r6 krlrl
kr3r2 kr3r6 kr3r1
kr4r2 kr4r6 kr4r1
kr5r2 kr5r6 krSrl
_kr7r2 kr7r6 kr7r1
erZ krlrl
kr3r2 I(r3r]
= kr4r2 + kr4r]
kr5r2 kr5r1
kr7r2 _kr7r1
Xrl krlrl
Xr3 kr3r1
= X4 = - kr4r1
XrS krSrl
Xr7 _kr7r1

rir3

r3r3

rar3

rsr3

~ X XN X x

r7r3

Keirs
Kesrs
Kears
kl’5l’3
kr7r3

rir3
rir3
rar3

rsr3

~ X XN X x

r7r3

rir4

rirs

rar4

rsr4

~ X XN X x

r7r4

rir4

rir4

rar4

rsr4

~ X XN X x

r7r4

rir4

rir4

rar4

rsr4

~ X XN X X

r7r4

rirs

rirs

r4rs

rsrs

~ X X X x

r7rs

Kerrs
Kears
Kears
Keses
Keoes

rirs
rrs
rars

rsrs

~ X XN X

r7rs

1
Ky 1] O
kl’3l’7 Xl'l
kl’4l’7 XI’3
kl’5l'7 XI’4
kl’7l’7_ XI’5
XI’7

I(r]r7 Xrl
kr3r7 XI’3
kr4r7 Xr4
kr5r7 XrS
kr7r7_ X|’7
kr1r7 B krer
kr3r7 kr3r2
kr4r7 kr4r2
kr5r7 I(rSrZ
kr7r7_ kr7r2

b

= b, (31
b
b

(29)

S O O O O

(30)

S O O O O

By employingx,, =0 and X, =1, the second static displacement vector is

obtained

kr1r1 kr1r3 kr1r4 I(r1r5 I(r1r7 kr1r6
kr3r1 kr3r3 |(r3r4 kr3r5 kr3r7 I(r3r6
kr4r1 kr4r3 kr4r4 kr4r5 kr4r7 kr4r6
krsrl kr5r3 kr5r4 kr5r5 kr5r7 kr5r6
_kr7r1 kr7r3 kr7r4 kr7r5 kr7r7_ kr7r6

b
b
b,.. (32)
b
b

The interior coordinates can now be expressed in terms of the boundary

coordinates by the following transformation.
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X brll br21

X3 br13 br23 X X

X4 = br14 br24 {sz} = [Br]{xrz} (33)
ré ré

X s brlS br25

X 7 _bm br27

Next, the constraint normal modes are obtained by setting the boundary

coordinates to zero and solving free vibration problem for the interior coordinates as

shown in Eq.(34).
'm, 0 0
0 m; O
0O 0 m,
0 O 0
10 0

0
0
0
rnr5
0

rirl

rirl

r4rl

rsrl

~ XN X X x

rirl

rir3

rir3

r4r3

rsr3

~ XN XN X x

r7r3

rir4

r3r4

rar4

rsr4

~ X XN X x

r7r4

rirs

rirs

r4rs

rsrs

~ X XN X x

r7rs

This yields the eigenvalue problem described by Eq.(35).

A simplified representation of Eq.(35) is shown by Eq.(36)

ri

rirl

r3rl

r4rl

rsrl

~ XN XN X X

L r7rl

3 1

=

S O O O

rir3

r3r3

r4r3

rsr3

~ X XN X x

r7r3

0 0
0

3

o O O

rir4

rir4

rdr4

rsr4

~ X XN X x

rir4

0

rirs
rirs
r4rs

rsrs

~ X XN X x

r7rs

0

rir7

rir7

r4r7

rsr7

~ X XN X x

r7r7 _|

{_zﬁz (M ]+ [ K ]} {a;}={0)

rir7

rir7

r4r7

rsr7

~ X XN X x

r7r7 |

S O O O O

oS O O O O

(34)

(35)

(36)
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The matrix of eigenvectors is given by,

_arll ar2] a'r?:l a'|’4] arSl—
ar13 ar23 ar33 al’43 ar53
[ar] = 18y Qo Qs Ay Ay (37
ar15 ar25 ar35 ar45 ar55
L8 &y &y &y &y
and has been normalized to satisfy
'm, 0 0 0 0]
0O m, 0 O 0
[a] [0 0 m, 0 o0 |[a] =[] (38)
o 0 0 my, O
0 0 0 0 m,]
_krlrl kr1r3 kr1r4 krlrS kr1r7_ _/11’12 0 O |
kr3r1 kr3r3 kr3r4 kr3r5 kl’3l’7 O ﬂ“r22 O 0
[ar]T Keart Kears Keara Keaes Ky [a‘r]= 0 0 /1r32 0 :>[Ar](39)
krSrl kr5r3 kr5r4 krSrS kr5r7 O O O j’r42 0
_kr7r1 kr7r3 kr7r4 kr7r5 kr7r7_ L 0 0 O 0 ﬂ’rSZ_

A coordinate transformation can now be used to express the interior coordinates
as the superposition of two types of displacement modes: Constrained normal modes, the
displacement relative to the fixed component boundaries and constraint modes, the

displacement produced by displacing boundary coordinates.

X1 _bm b, ] _am A &3 &y &y 1 a
X3 b by X A3 Ay &3 Ay &3 | |0
Xop = | Dy by {sz}"’ Ay Gy A3 Ay &gy |10 (40)
X;s Bis by " s Qs &35 Ays G55 | [0y
Xi7 _b1r7 b2r7_ 87 &7 &3 &y Ay | Urs

The complete transformation is given by Eq.(41), which shows that the boundary

coordinates do not change.
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X, 1 0 0 0 0 0 0 |[x,
X 6 0 1 0 0 0 0 0 ||X
Xl’l bl’ll br21 arll a'I’21 ar31 a|’41 arSl qu
XI’3 = br13 br23 a|’13 ar23 ar33 ar43 ar53 qu (41)
Xr4 bl’14 br24 a'r14 a‘r24 ar34 a'r44 ar54 qr3
XrS bl’lS bl‘25 a‘rlS a|’25 al‘35 a|’45 ar55 qr4
X, _br17 br27 ar; 8y Ay Ay Ay | Qs
The transformation can be expressed as
Xr2 Xr2
Xr6 Xr6
Xrl qu
_ _ {Xf }le 42
Xr3 - [Ar] qrz - [A] {q } ( )
r)5x1) 7%
Xr4 qr3 7
XrS qr4
Xr7 qr5
where the transformation matrix [ A ]is
[ I ]2><2 [0]2><5
[A] = 43)

[ Br ]5x2 [ar ]5><5 Ix7

In a similar methodology, a transformation matrix can be obtained for the casing

coordinates as

Xcl Xcl
XC4 XC4 { XC }

- [A - [A { } (44)
XCZ [ ] qcl [ ] {qc }2><1 4x1
XC3 qc2

where the transformation vector [ A, ]can be represented by,
L. 0L,
[A] = (45)

[ BC ]2><2 [aC ]2><2 4x4
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The equation of the rotor system including the seal contributions, shown in

Eq.(26), is expressed in simpler terms of boundary and interior coordinates by Eq.(46).
[[mrBB ]2x2 [mrBl ]2x5:| {{er }2x1} + l:[krBB ]2><2 [krBl ]2><5] {{XrB }le}
[mrlB ]5><2 [mr” ]5><5 %7 {Xrl }le 7x1 [krlB ]5><2 [kr“ ]5><5 Ix7 {Xrl }le Tx1
— {{ frB }2Xl}
{O}SXI 7x1
_ [mrsrBB ]2 2 rsrBI zxs:l XrB } |:[mrscBB] rscBI ] :| {{%CB }2X1 } (46)
_[mrerB ]5 2 [mrsrll ]5 5 |7w7 Xrl 5x1 ) 751 [mrscIB] rscll ]5 2 l7xa {Xcl }le 4x1
_ [ rsrBB ]2><2 [CrsrBl 2><5j| {{er }2 1} [CrscBB ]2><2 [CrscBl ]2><2:|
_[CrerB ]5><2 [ rsrll ]5 5 77 {X” }5><1 7x1 [C Txd
_ [krsrBB ]2><2 [krsrBl ]2 5] {{XrB 2% 1} + [
[ o U i

_[krerB ]5><2 k

,_||—|

rsciB ]sz

(@]

k

]

rsciB ]sz krscll ]sz

rerI 5%5

where
[mrz 0} [0 00 0 0} |
0 m],, 000 0 0],
[[mrBB]ZX2 [mrBI]2x51| _ ?) g n:)rl n? g 8 g
[mrlB]5x2 [mf"]5x5 Tx7 0 0 0 0r3 m, O 0
0 0 0 0 0 my; 0
i 0 0_52 L 0 0 0 0 m, 5%5 _J7x7
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[krll ]5><5 757 k|'3r2
rar2
kr5r2
__kr7r2
s
sz 2x1
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| ={]o
Tx1 0
0
0 S J7x
To
K
0
[mrsrBI ]2><5 ] _ 0
x2 [mrsrll ]5><5 757 0
0
__0
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0
0
[mrscBI ]2x2i| _ 0
x2 [mrscll]SXz Txd O
0
__O

r2reé

réré |

riré
r3ré
r4ro6

rsré

~ X~ X~ x N X

r7ré6 |

2x2

5x2

2x2

5x2

_errl kr2r3 kr2r4
2x2 _kr6r1 kr6r3 kr6r4
_krlrl I(rlr3 I(r1r4
I(r3rl kr3r3 kr3r4
kr4r1 kr4r3 kr4r4
krSrl kr5r3 kr5r4
5x2 _kr7r1 I(r7r3 I(r7r4
{sz}
Xr(’ 2x1
Xrl
I
Tx1 Xr4
XrS
Xr7 5x1 ) 7x1
0 0 0 0 O]
—O 0 O 0 0_2><5
0 0 0 0 0
Om, 0 0 O
O 0 0 o0 o0
0 0 0 m, O
—0 0 0 0 0_5><5
0 0 i
O O 2x2
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m;, 0
0 0
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r3rs

rars

rsrs

~ X X X X N

r7rs
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r3r7
r4r7
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To 0] 00 0 0 0] |
_O 0_2><2 0 0 0 0 0 2x5
0 0] [0 0 0 0 0]
[[CrsrBB ]2><2 [CrsrBl ]2><5 :| — 0 0 0 c 0 0 0
s1
[CrerB]SXz [Cfsr” ]st 77 0 0 0 0 0 0 O
0 O 0 0 0¢c, O
_—0 0_5x2 _O 0 0 0 0_5><5 Ix7
To 0] 0 0] ]
_O 0_2><2 0 0 2x2
0 0] [0 0]
|:[CrscBB]2x2 [CfSCBl ]2><2:| =1lo0 0 c 0
[CrscIB]5x2 [CTSC”]5><2 Tx4 0 0 (S)l 0
0 0 0 c,
_—0 0—5><2 L 0 0 A5%x2 _17x4
To 0] 00 0 0 0] |
_0 0_2x2 0 0 0 0 O 25
0 0] [0 0 0 0 O]
[[krsrBB]zxz [krsrBI]2X5:| =0 0 0 k, 0 0 O
s1
[krerB]5><2 [k"Sf”]SXS 7x7 0 0 0 0 0 0 O
0 0 0 0 0 k, ©
_0 O_5><2 _O 0 O O 0_5><5 Tx7
To 0] 0 0] |
_0 0_2><2 O O 2x2
0 0] [0 0]
|:[krscBB]2x2 [krscBl ]zu} =llo o k 0
[krsclB]5x2 [kfsc” ]5x2 x4 0 0 (;1 0
00 0 ki
_—0 0_5><2 L 0 O 15%2 _|7x4
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The transformations obtained in Eq.(42) and Eq.(44) are applied to Eq.(46), and

the equation is pre-multiplied by [A ]T , as shown in Eq.(47).

AT HE::% Sl tiel Sl
f

1 f[?“n:z:?:] e el e
i) fenlelie)) o) )
I fie] Gl o0 [ el

After the transformations are applied, the rotor system equation is expressed in

terms of physical and modal coordinates by Eq.(48).
l:[Mrll]zxz [Mr12]2x5j| {{X‘rB}le} + l:[Krll]zxz [KrlZ]zxs:l {{XrB}le}
[Mr21]5x2 [I]5x5 7x7 {qr}sxl 7x1 [Kr21]5x2 [Ar]5x5 Tx7 {qr}5><1 7x1
:{{FrB}le}
{O}le 71
_ [Mrsrll]zxz [MrsrlZ]zxs} {{X } } l:[Mrscn] [ r5012]2x2:| {{XcB}le} (48)
_[Mrsr21]5 2 [Mrsr22]5 5 1747 {qr}51 7 [Mrsc2l] [ rSC22]5x2 Txd {qc}le ax1
_ _[ fs”l]z 2 [CFS”Z ]2 s:l {{XrB }z 1} |:[Crscll] [ rsch]z 2:| {{XcB}le}
[Crsr21]5 2 [Crsr22]5 5 1747 {qf} <1 J 751 [ f5021] [ rsc22]5 2 {7va {qC}z 1 J 451

RS e o ol s B

Similarly, transformations are applied to the casing system equations to express

them in terms of physical and modal coordinates as shown by Eq.(49).
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o AR e IR R R

0, .,
i ol v A 5
ek bl o], e el et
[Keen

21
[ 12]2 z:l {{X B} } +|:[KC5”1]2><2 [KcsrlZ]zxs:l {{XB}Z 1}
_[ 21]2 2 [ ]2 2 {4x4 {q }2 1 J 4x1 [KCSFZI ]5><2 [Kcsrzz ]2><5 4x7 {q 5x1 ) 7x1
single model as shown in Eq.(50).

The rotor and casing equations, (Eq.(48) and Eq.(49)), can be combined into a
[Mrll] [Mrlz] 0 O {XrB}
Mo ] [0 0 (1)
0 O [Mcll] [Mclz] {XCB}
j
[
[

\.V_/

[Ken] [Kea] 0O 0 | |{Xs}

N [Kea] [A] 0 0 |]{a}

0 0 [Ka] [Keo]|[{Xes}

o 0 [My] [1] [ j

{FrB} [Mrsrll] [Mrsrlz] - Mrscll] _[Mrsclz] ”r

_ {0} _ [Mrerl] [Mrsr22] _Mr5021] _[Mrsc22] e
{FCB} _[Mcsrll] _[McerZ] [Mcscll] Mcsclz] “c
Meea]  [Mec] J( {0

__[McerI] _[Mcsr22]

[Krsr21] [Krsr22] _[Krszl] _[Krsczz]
_[Kcsrll] _[Kcsrlz] [ 11] [Kcscl2]

__[Kcsrzl] _[Kcsrzz] [K 21] [Kcsczz]_

[Krsrll [Krsr12] _[Krscll] _[Krsclz] {XrB}
{0}

{Xs) (50)
j
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The system equation can also be ordered first by physical coordinates and then

by modal coordinates. Combining the inertia, damping and stiffness matrices and

arranging them by physical and modal coordinates leads to Eq.(51).

[ rscll] [ rsrlz]
rchl] [ rsr22]

Ma] 0 [Mp] 0 Mo
Me] 00 1] 0 Mea] -
0 [Mcll] 0 [Mclz] [ csril
0 [Mgy] O [1] Mgz
[rsrll] [Crscll] [CrsrlZ] _[ rsch]
i [Crsr21] [Crsc21] [rsr22] [ rchZ]
[ csrll] [C scll] [Ccsrl2] [ csclz]
[ csr21] [ csczl] [C sr22] [ csc22]
[Krll] 0 [Kr12] 0 [Krsrll]
+ [Km 0 [Ar] 0 [KrerI]
0 [Kcll] 0 [KCIZ] [csrl]] [
L 0 [Kch] 0 [AC] [Kcsrzl] [

{
{

X

]
]
{X
{

[ cscll]

rB

q,
G

[Krscll] [Krsr12
[

j
s )
j
j

]
- Krsc21] [ rsr22]

-[K

csri2

K

csc2l ] [ csr22

[ csrlz] [ csclz]

[ cchI] _[Mcsr22] [Mcsczz]

]
]

_[ Krsclz]

Z

-

rsclz]

j
[ Keseza] || ] 1%}
[Ke2] || | 10}
[Kee] JJ (4

If internal viscous damping is present, modal damping factors can be introduced

as shown in Eq.(52). Here &, and 4, represent the modal damping coefficient and natural

frequency for the ith mode of the rotor. Similarly, ¢;;and A;represent modal damping

coefficient and natural frequency for the jth mode of the casing.
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Combining Eq.(51) and Eq.(52) finally leads to

(52)
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Eq.(53) represents a simple single-plane model and can be extended to represent

a full scale model that includes finite element models, gyroscopic effects, cross-coupled

stiffness, and multi-plane solutions. As seen in the development leading to Eq.(53), CMS

is independent of the nature of the supports at the boundary coordinates. Hence the CMS

method can be extended for analysis of nonlinear supports.

In the CMS approach, truncating the number of constrained normal modes

determines the number of degrees of freedom to be retained for the entire system.

Though truncation criteria depend on the application, usually modes are retained whose

natural frequencies are moderately above the running speed of the rotor. For the CMS

development shown in this section, all modes are retained. The highest frequency modes

can be truncated with little effect on the important lower modes. CMS can therefore

allow a significant reduction in the size of the overall problem while retaining the

essential dynamic characteristics of the lower modes.
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2.3 Substructuring

Substructuring is the process of packing a group of components or groups of

finite elements into one single element, called the superelement’. Substructuring uses

Guyan reduction to reduce the model. This technique helps to reduce the time required in

solving systems that have a large number of equations. The work done by Clark and

Jurjevic [17], described earlier in section 1.5, shows extensive use of substructuring. A

substructure can comprise a single superelement or a collection of superelements.

The process of creating a superelement using substructuring consists of the

following steps:

Create the base model — Here the model that needs to be substructured is
created using elements types, element real constants, material properties, and the
model geometry. When ANSYS is used, certain element types have restrictions
for use with a substructure analysis. Figure 20 shows an example of a simple
model constructed with solid elements.

Identify retained coordinates — Retained coordinates are nodes designated as
master degrees of freedom that define the interface between the superelement and
other elements (or superelements). The dynamic characteristics of the system are
then defined by these retained coordinates. Nodes representing retained
coordinates are selected in such a way that they can be used later for applying
constraints and forces, or at locations where output values are desired, such as
nodal displacement, stress, etc. Figure 22 shows nodes that are selected as
retained coordinates from the full scale node set shown in Figure 21.

Reduce the model — Using the specified retained coordinates the entire model is
now reduced. Reduction can be done using a Guyan reduction or component
mode synthesis. The reduced model will be treated as a single superelement, as

shown in Figure 23, and this reduced model can be used in further analysis.

7 Superelement is described in detail in section 2.6.9
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Figure 20 Example of a full scale model built with finite elements
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Figure 21  Front view of the complete node set in full scale model
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Figure 23  Superelement representation of reduced model
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ANSYS includes the ANSYS Parametric Design Language (APDL) [28] that can
be used to programmatically transform the coordinate system. In ANSYS, substructuring
is done using the SUBSTR analysis option [29]. Figure 24 shows an APDL code snippet

with the algorithm that can be used to perform substructuring.

| **GEMERATION PASS™™

! Enter the solution processor

JSoLy

! Specify the substructure analysis type
ANTYPE, SUBSTR

! Set substructure options

SEOPT, model, 2, 1, 0, resolve

! Specify solver and perform solution
EQSLV, SPARSE

SOLVE

! Create substructure file listing
SELIST, brgpdst, 0

FIMISH

! *FUSE PASS™™

! Enter the preprocessor

/PREP7

! Define superelement and reduced model as a superelement
ET, 2000, MATRIXEO

! Create material type and real constant set

TYPE, 3000

REAL, 3000

! Load the CMS reduced substructure file

SE,model, , , 0.1

FINISH

Figure 24 APDL code to perform substructure reduction
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2.4 Modal Equations for Axisymmetric and Non-Axisymmetric Case Models

In a 3D non-axisymmetric model, structural dynamics modes can be shown by
lateral modes in two orthogonal planes. This section shows the development of modal
equations for axisymmetric and non-axisymmetric structural models. A simple lumped-

parameter model will be used to represent a casing, as shown in Figure 25.

Ry1 Ry2 Rys Rya
Rx1 + Rx2 Rx3 + Rxa
Bx1 /IBVI Bx2 /IB\,Z Bxa /1[3\,3 Bxa qﬁyﬂr
X Ri  Q—>R, O—>R, ¢TG>RZ4
021 2 022 3 0z Pz4

Figure 25 Lumped-parameter representation of a casing model

The casing is made of 3 beams and has 4 stations. It is connected to ground and
supported by two housing support springs. Each station has six degrees of freedom —
three translational motions along the X, Yy, and z axes and three rotations about the X, Y,
and z axes. The vector representing the degrees of freedom at a station is shown by

Eq.(54). The second expression is simplified to eliminate the z-axis dependency.
T
(R B, R B R o)
T
{R. B, R, B}

Housing support reaction forces and moments, that occur at the support station 1

(54)

and 4, are given by Eq.(55).

fi :N'L'(RXURXI’Ryl’Ry]) ) Ml :N-L-(ﬂylsﬁypﬁxpﬂxl)

, . . . (55)
f,=N.L (R R Ry Ry ) 5 My =NL (B0 B0 B B )
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First, modal equations are developed for the uncoupled casing model. Separate

uncoupled modal differential equations are developed for each plane. The initial physical

model for the casing in the X —Z plane is
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ﬂy“ 8xl M ¥4 ) g1

8x8

For simplicity, the coordinates, forces, and moments are stated by Eq.(57). Each

term in the simplified coordinate will include both displacement and rotation. Similarly,

each term in the simplified force expression will include both lateral force and moment.

(X1={rR g} 1 (F)={t, M}

{Y}z{Ry IBX}T ; {FY}z{fy

By

M, )

(57)
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The simplified terms defined in Eq.(57) are applied to Eq.(56) to result in

My 0 0 0 Xl Kixix  Kixax  Kixsx  Kixax X, Fix
0 My O 0 Xz + Kaix  Kaxax Koxsx Koxax X, _ 0
0 0 My, 0 X, Kixix  Kixax  Ksxax  Kixax X, 0
0 0 0 My 8x8 X4 8x1 Kixix  Kixax  Kixsx  Kixax 8x8 X, 8x1 Fix 8x1
(58)

Eq.(58) is rearranged into boundary and interior coordinates. The bearing

locations are selected as the boundary coordinates to obtain

My 0 0 0 X1 Kixix  Kixax  Kixax  Kixsx X, Fix
0 My 0 0 >'<4 n Kixix Kixax Kixax Kixax X, _ Fux
0 0 My 0 X, Koxix  Koxax Koxax  Koxix X, 0
0 0 0 3X _gxs >'('3 8x1 Kixix  Kixax  Kixox  Kixax 8x8 Xy 8x1 0 8x1
(39)

CMS is performed on the model. A transformation vector [Ax]is developed to

express the interior coordinates as the superposition of two types of displacement modes
— constrained normal modes, the displacement relative to the fixed component
boundaries and constraint modes, the displacement produced by displacing boundary
coordinates. The complete transformation is given by Eq.(60). The boundary coordinates

do not change while interior coordinates are changed by the transformation.

X, X

x l

= I X (60)
2

X3 exl (qx )i 8x1

Applying the transformation [Ax]to Eq.(59), pre-multiplying by[Ax ]T , and

simplifying the expression, results in

X X Fix
w1 w1 1 3 "/ 1
I\fIXIX MIXZX X + IlelX KIXZX X =[A ]T F4X (61)
M | ¢ K A ¢ )
2X1X 8x8 (qx ) 2X1X X _Igx8 (qx )
1J8x1 1) 8x1 0
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In a similar manner, the modal differential equation for the Y —Z plane is

Y, Y Fi
Vi Vi 1 va va 1
I\_/I Y1y M Y2y Y n lfmv KlY 2y Y _ [ A( ]T F4Y (62)
M ! K A 4 8]
2Y1Y 8x8 (qy ) 2Y1Y Y 8x8 (qy )
1) 8x1 1) 8x1 0

8x1
As seen from Eq.(61) and Eq.(62), the X —Z plane has one set of equations and
eigenvectors. The Y —Z plane has a comparable set of equations and eigen data for
axisymmetric structures. In the CMS development, different number of modes can be

retained in X —Z and Y —Z planes. If the same m stations are used in both planes,
[A;]will be a 2mx(4+ j) matrix where m indicates the number of casing stations
(each with two DOF), and | denotes the modes retained in the X —Z plane. Likewise,
[A Jwill be a 2mx(4+k) matrix where k denotes modes retained in the Y —Z plane.

The initial physical model for the casing in the coupled non-axisymmetric model

is given by one set of equations, as shown in Eq.(63).

My, 0 0 0 0 0 0 o0 [[X
0 M,, 0 0 0 0 0 0 [[|X,
0 0 M, 0 0 0 0 0 ||X
0 0 0 M, O 0 0 0 [|X,
o 0 0 0 M, 0 0 0 |[|Y
0o 0 0 0 0 M, 0 0 |[|Y
o 0 0 0 0 0 M, 0[]V,
0 0 0 0 0 0 0 M|V,
_KIXIX K1X2X K1X3X K1X4X K1X1Y K1X2Y K1X3Y K1X4Y_ Xl FIX
KZX]X K2X2X K2X3X K2X4X KZXIY K2X2Y K2X3Y K2X4Y X2 0
K3X1X K3X2X K3X3X K3X4X K3X1Y K3X2Y K3X3Y K3X4Y X3 0
+ K4X1X K4X2X K4X3X K4X4X K4X1Y K4X2Y K4X3Y K4X4Y X4 — I:4X
K1Y1X K1Y2X K1Y3X K1Y4X K1Y1Y K1Y2Y K1Y3Y K1Y4Y Yl FIY
K2Y1X K2Y2X K2Y3X K2Y4X K2Y1Y K2Y2Y K2Y3Y K2Y4Y Y2 0
K3Y1X K3Y2X K3Y3X K3Y4X K3Y1Y K3Y2Y K3Y3Y K3Y4Y Y3 0 (63)
L K4Y1X K4Y2X K4Y3X K4Y4X K4Y Y K4Y 2Y K4Y 3y K4Y 4Y Y4 I:4Y




Eq. (63) is rearranged into boundary and interior coordinates.
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(64)

A transformation vector [A] is used to express the interior coordinates in terms of

the boundary coordinates as shown in Eq.(65).

Xl

< X < X <
] B

X

<

X < X

N

o <

(65)

Applying the transformation vector [A] to Eq.(64), pre-multiplying by[A]T , and

simplifying the expression, results in
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FlX

X‘ X I:lY

“1 1 F4X

VIR R IS SR I 2
{ _11 12j| X4 +|: _11 12:| X4 :[A]T 4Y (66)

Mo LK Ay 0

4 4 0
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Eq.(66) represents the casing CMS model. The eigenvector [A] defines motion
in both orthogonal planes. If mstations are used in both planes, [A] will be a

4m><(4+ j)matrix where m indicates the number of casing stations (each with four

DOF), and j denotes the modes retained. Eq.(66) can be extended to represent a full

scale model that includes finite elements, structural damping, and seal forces.

2.5 Coordinate Transformation

Coordinate transformation is the process by which one coordinate system is
converted to another, to describe the same space. A direction-cosine matrix is used to
relate components of the same vector in two different coordinate systems. The direction-

cosine matrix relates the components in two coordinate systems and is defined as a real

square matrix whose transpose is its inverse and whose determinant is 1. If [A] is a

direction-cosine matrix, then
T T
(AT [A=[1]=[AT [4] )
[Al=1
Numerous references exist about the process of coordinate transformation. Childs
[23] explains the process for coordinate transformation in a Two-Coordinate system.
Consider a vector U in a X —Y coordinate system. If the coordinate system X —Y 1is
rotated through an angle & in the counter-clockwise direction to get the X '-Y ' system,

the transformation can be defined as the following
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[l [ o smalfon
or {U}=[AJ{U}

where [A] is called the direction-cosine matrix.

(68)

The above result can be extended to a Three-Coordinate system. Three ordered
angles that are used to transform one coordinate system to another are referred to as
Euler angles. Figure 26 shows the Euler angles o, p and y used to rotate the coordinate
system from XYZ to X'Y'Z'. In generating three sets of rotation, when transforming
from one coordinate system to another, there are several choices in which no two
adjacent rotation indices are the same. These various sets are called Euler angle

sequences.

I’Nm
X’
X

Figure 26 Euler angles used for transformation from XYZ coordinate system to
X'Y'Z' coordinate system
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Baruh [24] describes some of the historically important sequences, such as 3-2-3
also known as NASA Standard Aerospace, 3-2-1 also known as NASA Standard

Airplane, etc.
The transformation matrices used in Figure 26 can be expressed as the following

1 0 0

[A]=]0 cosa -—sina

0 sina cosa

[cosp 0 —sinp
[Al=f 0 1 0 (69)
| sing 0 cosp

[cosy —siny 0

[A3]= siny cosy O
0 0 1

The coordinate transformation 3-2-1 can then be defined by
X' X

v =[AlA AN Y 10)
Z' Z
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2.6 Element Types

The following section illustrates the various element types that have been utilized
for the work present. Note that the objective of this thesis, as mentioned in section 1.3, is

not limited to these elements and can include any predefined or user-defined element

type.

2.6.1 3D Beam Element (BEAM4)

The beam element BEAM4 represents a 3D elastic Timoshenko beam that has
tension, compression and torsion capabilities. The element is represented by two nodes
and each node has six degrees of freedom — three translational motions along the nodal
X, Y, and Z axes and three rotations about the nodal X, y, and z axes. This element is used
to model the rotor elements and has a spin component that can be used to include
gyroscopic effects. While BEAM4 is an ANSYS defined 3D beam element, it can also
be used to replicate the 2D beam element used in XLTRC?. As seen in 0, this element is

used to replicate the XLTRC? model in ANSYS for verification purpose.

Y,

Figure 27 Beam element



53

The BEAM4 element, shown in Figure 27, is described by real parameter
constants such as cross-sectional area, area moment of inertia, thickness, torsional
moment of inertia, initial strain, shear deflection and rotational frequency (for
gyroscopic effects). The BEAM4 element cannot have zero length or area. For the work
done in this thesis, the element has been used to represent circular beam (including
hollow beams) although the element can be used for any cross-sectional shape for which
moment of inertia can be calculated. This beam element can also be used to represent a

tapered beam.

2.6.2 Structural Mass Element (MASS21)

Mass element MASS21, shown in Figure 28, represents a single node element
that has concentrated mass components along the X, Yy, and z coordinate directions and
moments of inertia about the element coordinate axes. The element properties can be
used as a 3D or 2D mass element. This element can input masses and moments of inertia
as real constants or as volumes and density. MATRIX27 element (section 2.6.8) can be

used in place of MASS21 if components along non-principal axis need to be specified.

| L,
yi

Figure 28 Mass element
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2.6.3 Multipoint Constraint Element (MPC184)

The multipoint constraint element MPC184 is used to impose kinematic
constraints between nodes. Rigid link, rigid beam, and spherical joints are examples of
constraints. Internal constraint equations are generated for the kinematic constraints
which lead to the elimination of degrees of freedom of a dependent node in the system
equations. Although MPC184 represents a general class of multipoint constraint
elements, its application in rotordynamic comes in the form of either rigid links or rigid
beams. Rigid links are identified by two nodes and three translational DOF at each node,
while rigid beams are associated with two nodes and six DOF at each node — three

translational and three rotational.

/)" /-

Figure 29 Rigid beam used as constraint element between Node I and Node J

Figure 29 shows a constraint element used as a rigid beam when all six degrees
of freedom have constraint equations defined. The element simplifies to a rigid link

when the rotational degrees of freedom - a, B and y - are suppressed.
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2.6.4 3D Structural Solid Element (SOLID45)

The 3D structural solid element is widely used for 3D modeling of casing
structures. This element is defined by eight nodes, one at each of the vertex of the
element. Each node has three degrees of freedom defined in the nodal X, y, and z
directions. Figure 30 shows a representative example of this element type. It can also be
used to replicate prism-shaped and tetrahedron-shaped elements by duplicating
appropriate nodes. In Figure 30, a prism element is formed by duplicating nodes 7-8 and

3-4. A tetrahedron is formed by duplicating nodes 5-6-7-8 and 3-4.

Figure 30 3D solid structural element defined by 8 nodes

2.6.5 3D 20-Node Structural Solid (SOLID186)

The SOLID186 element is used to model 3D structural solids. It is defined by 20
nodes, one at each vertex of the element as well as midway along each edge. Each node
has three translational degrees of freedom along the nodal X, y, and z directions.
SOLID186 is useful for modeling irregular meshes and is generally selected by ANSYS
while importing solids designed by general CAD/CAM systems. Functional capabilities
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of this element include stress stiffening, large deflections, large strains, elasticity, and
plasticity. Variations of the element can be used to enable tetrahedral, pyramid, and
prism elements, as seen in Figure 31. With the capability of having layers, this element

can be also used to model thick shells or solids.

MM.O PN WX

Tetrahedral Cption
MO P LU WK

Fyramid Option
X

OPW
o

¥ AB

=

i KL=

o R
J
Prism Oplion

Figure 31 SOLID186 element used to represent structural solids and shells [25]

2.6.6 3D 10-Node Tetrahedral Structural Solid (SOLID187)

SOLID187 solid element is similar to SOLID186 in terms of the functional
capabilities. The element has 10 nodes with each node having three degrees of freedom
along the nodal x, y, and z directions. This element resembles SOLID186 tetrahedral

option, as seen in Figure 31.
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2.6.7 Spring-Damper Element (COMBI214)

The spring-damper element COMBI214 is used to model a 2D general spring or
damper element that can input direct and general non-symmetric stiffness and damping
matrix coefficients. The element is represented by two nodes with each node having up
to two degrees of freedom. Figure 32 is representative of the element used along x and y
coordinates, however options can be set to change them to any 2D coordinate system.
The stiffness coefficients use the unit of Force/Length, and the damping coefficients are
expressed in Force*Time/Length unit. The stiffness and/or damping matrices can be
input as real constants or as speed dependent entries. Note that the current ANSYS
simulation cannot automatically calculate speed dependent coefficients. Hence they have

to be calculated separately for each speed and then included in the analysis.
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Figure 32 COMBI214 element representing a 2D spring-damper element along X
and Y coordinates [25]
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Although wuseful in many analysis types, COMBI214 has two main
disadvantages. COMBI214 can represent only tension-compression and cannot be used
for bending or torsion. Additionally this element has no mass entries and hence cannot

be used to represent seals that have inertia contributions.

2.6.8 Stiffness, Damping, or Mass Matrix Element (MATRIX27)

The MATRIX27 spring-damper-mass element overcomes the shortcomings of
the COMBI214 element. The COMBI214 element is easier to set up but is less general
than the MATRIX27 element. This element has two nodes with six degrees of freedom
at each node — three translational motions along the nodal X, y, and z axes and three
rotations about the nodal X, y, and z axes. Figure 33 shows a representation of the

MATRIX27 element.

Figure 33 MATRIX27 element representing a general stiffness, damping or mass
element

All matrices generated by this element are of size 12 by 12 with the degrees of
freedom ordered by translation and rotation DOFs for 1* node followed by those for the
2" node. This element can be used to represent both symmetrical as well as
nonsymmetrical formulations. When used for an analysis, the stiffness, damping and

mass elements are represented by individual MATRIX27 elements by the use of
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appropriate options. Stiffness values are expressed in units of Force/Length or
Force*Length/Radian, damping values in units of Force*Time/Length or
Force*Length*Time/Radian, and mass constants in units of Force*Time?/Length or

Force*Time”*Length/Radian.

2.6.9 Superelement (MATRIXS0)

The use of superelements or substructures has been referenced a number of times
in the earlier section [1.5] on previous work. MATRIXS50 is the element that is used to
group a number of previously assembled elements into a single element. As shown in
Figure 34, the element does not have a physical geometry and is simply a mathematical
matrix representation of a structure where the number of nodes and degrees of freedom
are determined by the individual elements that make up the superelement. Superelements

can, in turn, contain other superelements.

Figure 34 Superelement representation

This element type has tremendous application in analysis where the large
dimensionality of the problem is of concern. Nodes which are of interest, such as master
degrees of freedom, constraint locations, etc., are selected in individual assemblies.

Reduction methods such as the Guyan reduction or component mode synthesis are then
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used to reduce individual elements in such a way that required dynamic content is
retained. The superelement is then constructed with these individual elements.

Figure 35, taken from the work done by Clark and Jurjevic [17], shows
individual assemblies of a gas turbine. Each assembly was reduced and converted into a
superelement, as the one shown in Figure 36. Individual superelements are combined

into one final superelement, as shown in Figure 37.

Individual Assemblies

Figure 35 Individual assemblies in the work done by Clark and Jurjevic [17]

Figure 36 Superelement of one of the component assemblies [17]
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Individual Superelements

Figure 37 Individual superelements constructed into one superelement [17]

2.7 Preprocessing Steps

This section describes the concepts and steps involved making the ANSYS
structural data compatible with XLTRC? system.

2.7.1 Axis Alignment Between ANSYS And XLTRC?

A common practice seen in the industry is that a machine, comprised of many
sub-components, may be designed by a number of individuals. While adopting common
standards are desirable, feasibility plays a big role in their adherence. One such standard
is the coordinate system. A casing and rotor, for example, may be designed by two
individuals who may not have adopted the same base coordinate systems. When
combining both the components, units and coordinate systems must be matched so that

the data being read in is interpreted correctly.
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Figure 38 Coordinate system used in XLTRC? [3]

Figure 38 shows an example XLTRC? model with the coordinate system used, in
which the Z-coordinate represents the axial direction. Note that the X-coordinate is
normal to the plane of the paper and coming out of it. The coordinates in XLTRC?
system is fixed and are not transformed. The Z-coordinate always represents the axial
direction.

Figure 39 shows a representative casing and rotor® model built with ANSYS. In
this model, the X-coordinate was used for the axial direction. The coordinate systems in
Figure 38 and Figure 39 clearly do not match, and hence one of them has to be

reoriented in space.

¥ Appearance of the rotor as a series of cube—shaped elements is explained in section 2.8
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ELEMENTS
REAL NUM

Thesis Rotor Model

Figure 39 Representative ANSYS model

The transformation follows the principle as described in section 2.5. The Euler
angles v, p and o represent the angle by which the z, y, and X coordinates in the original
coordinate system need to be rotated. Suppose the transformation followed the 3-1-2

order, the transformation matrices are defined by

cosff 0 —sinpf 1 0 0 cosy —siny 0
[A]l=] 0 1 0 [A]=|0 cosa —sina| [A]=|siny cosy 0[(71)
sinff 0 cosf 0 sina cosa 0 0 1

The coordinate transformation 3-2-1 can then be defined
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X' X
v =[AAIALY )
Z' Z

Where X —Y —Z and X'—Y'—Z'represent the coordinate systems of ANSYS
and XLTRC?, respectively. A graphical representation of the coordinate transformation

is shown in Figure 40.

Y
Y
p
¥
Z i
b\ 24/ [
L
X X
X!
XLTRC2 Coordinate System ANSYS Coordinate System

transformed to XLTRC2 system

Figure 40 Transformation from ANSYS coordinate system to that of XLTRC?

Since ANSY'S provides better computational capability in terms of the size of the
transformation matrix, it should be used to perform nodal coordinate transformation.
ANSYS includes the ANSYS Parametric Design Language (APDL) that can be used to
programmatically transform the coordinate system. Figure 41 shows an APDL code

snippet that can be used to perform the nodal rotation.
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I ==CO0RDIMNATE ROTATIOMN™

Iselect all defined master DOF

nsel, s, m, , all

!define local coordinate system with spin about X
clocal, 100, 0, xlocal, ylocal, zlocal, thxy, thyz, thzx
Iswitch to the local coordinate systemn

csys, 100

rotate all selected nodes

nrotat, all

Figure 41 APDL code to perform nodal rotation

First, the master degrees of freedom (MDOFs) are selected using the nsel
command. The MDOFs comprises of all nodes that the user selects for transformation. A
local coordinate system is defined with the clocal command, and one is created such that
it aligns with the XLTRC? coordinate system. xlocal, ylocal, and zlocal are the location
of the origin of the new coordinate system. The last three parameters of the clocal
command (thxy, thyz, and thzx) are the transformation angles and represent first rotation
about local Z (positive X toward Y), second rotation about local X (positive Y toward Z),
and third rotation about local Y (positive Z toward X).

The entire transformation can be done with one clocal command. Once the
coordinate system has been switched to the created local coordinate system, using the
csys command, the selected nodes are rotated with the nrotat command. For the example
shown in Figure 39, the clocal command would have to be used with thzx =-90 to align
the ANSYS coordinate system with that of XLTRC”.

2.7.2 Coordinate Elimination of Casing Model using ANSYS

A 3D beam element model uses six degrees of freedom at each node to represent
the translational and rotational motion about each coordinate. The degrees of freedom
about the X, Y, and Z coordinates are shown in Figure 42, Figure 43, and Figure 44,
respectively. XLTRC?, being a 2D beam element analysis tool, limits the degrees of

freedom to four at each node. In the construction of the XLTRC? beam model, a Guyan
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reduction is used to eliminate the axial translation and rotation coordinates in ANSYS.
This section illustrates the reasoning behind eliminating the axial casing coordinate from
the analysis. Note that this coordinate elimination holds irrespective of whether the

casing has been modeled with beam, shell, and/or solid elements.

-
e
L.
-

-
-
-
-

X

X

Figure 43 Translational and rotational motion (yaw) about the Y-coordinate
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X X
Figure 44 Translational and rotational motion (roll) about the Z-coordinate

This assumption of eliminating the axial coordinate is based on generalized
rotordynamics cases. If significant axial forces exist in the system, the motion along the
Z-coordinate should be considered. One such example is where the casing modes can be
connected to axial rotor motion through a balance piston or thrust bearing. However, in
this thesis axial displacements are ignored for simplicity.

With the Z coordinate eliminated, a two dimensional system defined by the X and
Y coordinates results. The orthogonal X-Z and Y-Z planes are retained for analysis, as

shown in Figure 45.

Figure 45 Retained analysis planes lie in the XZ and YZ planes



68

2.7.3 Node Matching Between Rotor and Casing Nodes

Once the models have been aligned to a common coordinate system and the
number of degrees of freedom has been matched, the nodes between the rotor and the
casing must be coupled correctly. Coupling does not mean physically connecting them.
It is a mathematical representation of the link between nodes. The analysis tool uses this
to formulate the system matrices in terms of stiffness, damping and inertia terms as well
as to calculate relative displacements, mode shapes, etc. Examples of points where nodes
are matched are bearing locations on casing and rotor, seal locations on casing and rotor,
and points which are constrained in relative motion.

A model built in XLTRC? will consist of one or more shafts which are in turn
made up of a number of beam elements. Each element is geometrically defined by its
length, inner diameter and outer diameter. The left and right ends of an element stand for
the left and right stations (also called nodes), respectively. Stations are used by XLTRC?

to represent the location of bearings, seals, impellers, etc.

Element 2

Element 1

Station 1 Station 2 Station 3

Figure 46 Representation of elements and stations (nodes) in XLTRC?
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In XLTRC? the nodes are represented by successive station numbers. Numbering
starts with element 1 and continues until all elements have been accounted for. The
number of stations in a beam is always one more than its number of elements. Two
consecutive elements share a node. For example, as seen in Figure 46, the right station of
element 1 is the same node as the left station of element 2. XLTRC? builds the elements
such that the nodes coincide with the geometric center of the beam. XLTRC? can also
section an element into sub-elements (along the axial direction) and layers (along the
radial direction); however, that does not affect node numbering.

In constructing a casing structure in ANSYS, the primary difference is that 3D
solid elements may be used. If auto meshing is used, the program decides on the element
type. Depending on the nature of the elements used, the number of nodes and their
spatial locations can vary. The example from section 2.3 is used for representation.
Figure 47 shows the solid model of a representative bearing pedestal A finite element

mesh is first created as shown in Figure 48.

Figure 47 Solid model of a bearing pedestal
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Figure 48 Finite element mesh of bearing pedestal

Figure 49 Nodes created using high density mesh (Note that the appearance of
nodes as a dense cluster is not due to low image quality, but due to the high level
refinement of the finite element mesh used)
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Figure 49 shows the nodes created in the meshing process. High density meshing
that is used results in the large number of nodes. Within the limits of computational
capability, it is advisable to use as high a mesh density as possible. This helps in the
process of having a choice of nodes at desired locations.

The nodes created in Figure 49 are driven by equations that associate their
relative displacements, forces, etc. Change in parameter for one node also influences the
others. In XLTRC? a bearing location on the rotor will be represented by a single node,
so that node must be matched with the appropriate node(s) in the bearing pedestal mesh.
One node-matching method is to attach all the nodes on the inner surface of the pedestal
with the rotor bearing node. However, this is computationally intense since it increases
the number of equations in the system matrix. It is also time consuming for an analyst to
select all nodes. A good approximation can be used by selecting only those nodes that
occur in the axial plane coinciding with the bearing location in the XLTRC? rotor. This
approximation is standard practice. Figure 50 shows the nodes selected at the midsection

plane of the bearing pedestal. The view from the front plane is shown in Figure 51.

Figure 50 Nodes in the geometric center plane of the bearing pedestal
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Figure 51 Center nodes seen from the front plane

Figure 52 illustrates the process of matching the nodes on the rotor and casing
models. As seen earlier in section 2.7.2, the planes of interest are the orthogonal X-Z and
Y-Z planes. The nodes that coincide with these planes in the interior surface of the
bearing, shown in the figure by red dots, are selected. A new node, shown in the figure
by the green dot, is created at the geometric center location of the pedestal by using the
coordinates of the four selected nodes. Finally the selected bearing nodes are connected
to the center node using MPC184 rigid beam type constraint elements. The behavior of
the newly created node will now follow those selected on the bearing inner surface due
to the imposed translational and/or rotational constraints. The advantage of this process
is easily explained. Using all the initial nodes shown in Figure 49 would increase the
complexity and time required for finding a solution. By creating a single center node at
the bearing-center location, dynamic content is retained. Also a single node makes it

easier to use a bearing or damper element to connect the rotor to the casing.
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Bearing nodes selected
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Figure 52  Close up view of the bearing pedestal center to illustrating the selection
of matching nodes

Nodes extending from = S _<
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Node selected to connect to
bearing center node

Figure 53 Pedestal showing nodes extending from interior to exterior surface

The above approximation also generalizes the node matching process for cases
where the casing is modeled with shell elements versus cases where the casing is

modeled with general 3D elements. When using the latter, as in the representative model
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used here, a number of nodes extend from the interior to the exterior surface (Figure 53).
The node on the interior surface is selected and it will respond to the dynamic behavior

of the other nodes around it. This holds good for rotordynamic applications.

2.8 Graphical Representation

The center-node creation in the above section may lead to the question — How do
the newly created node and the bearing node in the XLTRC? model relate if they are at
the same location in the coordinate system? The answer is that this is only a visual
representation. The earlier section 2.2 on CMS formulation shows that when bearings
and seals are used, their stiffness, damping and inertia contributions go into the
appropriate locations in the system matrices. To the ANSYS and XLTRC? codes, only
this mathematical representation is of concern. The graphical display is only to aid an
analyst to visually perceive the relative placements of the casing and rotor. Hence
although both nodes visually take up the same location, the codes can mathematically
distinguish between the radial locations.

The appearance of the rotor as a series of cube-shaped elements, in Figure 39, is
also because of the above mentioned reason — visual representation. The rotor model is
built in ANSYS Classic and APDL by using 3D BEAM4 beam elements. Although the
beam appears to have a square cross-section, the geometric, material, element and mesh
information are the same as a beam represented as a cylinder with circular cross-section.

A verification test is conducted to ensure that the results obtained from the
various tools agree with each other. A solid cylindrical model is tested using XLTRC?,
ANSYS Classic with APDL and ANSYS Workbench. XLTRC? and ANSYS Classic
used beam elements, whereas ANSYS Workbench employed solid elements. The results

showed excellent agreement with each other. 0 shows the details of the verification test.
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2.9 API Unbalance Specification

This section describes the specifications in American Petroleum Institute (API)
Standard paragraphs 617 [26] and API Standard paragraphs 684 [27] for including
effects of unbalance on the system, and will be used later in this thesis for calculation of
unbalance response. The influencing factors for unbalance magnitude are the weight of

the rotor and the maximum continuous operating speed, as shown in Eq.(73).

U =6350><VWV [SI Units|

=  4x % [US Customary Units]

U — Unbalance magnitude in g-mm (0z.-in.) (73)
W — Static load in kg (SI units) or Ibs (US units)
N — Maximum continous operating speed (RPM)

In the analyses of rotating machinery, the actual distribution of the calculated
unbalance along the length and circumference of the rotor is more or less random.
However, for analysis they are usually placed at locations where they tend to impose a
maximum undesirable affect on a particular mode, i.e. create maximum response. An
example 1s shown in Figure 54 that represents a rotor supported between bearings. In this
case, an unbalance applied to the rotor mid-span typically tends to excite the first
bending mode. When proportional unbalance amounts are applied to quarter and three-

quarter span locations they are likely to excite the second bending mode.

J S .
g wlI Iwz Wl] e Iwg
u, |
First Bending Second Bending

Figure 54 Typical first and second bending mode shape for a rotor
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3 PROCEDURE

This section describes the steps involved in creating the various rotordynamic
models used for analyses in this thesis. SI units are used for all models, and English unit
equivalents, where necessary, have been mentioned. A straight-through compressor
design is used as the representative model. Note that these models do not represent any
proprietary data. Various validation steps are performed to ensure model reliability.
These steps compare initial results obtained from XLTRC? with ANSYS and thus ensure
that both the tools are benchmarked against one another.

The procedure begins by building the casing models. This research seeks to
examine the difference between using an axisymmetric and non-axisymmetric casing
structure in XLTRC?. The axisymmetric casing model is built in both XLTRC? and
ANSYS, shown in sections 3.1.1 and 3.1.2 respectively. This step provides a benchmark
for the current approach to modeling casing structures. A solid-element non-
axisymmetric casing model is then built, described in section 3.1.3, and the reduced
model incorporated with XLTRC? for analysis. The required pre-processing steps are
performed to convert the ANSYS casing data into a compatible format with XLTRC?.
These steps were described in detail in section 2.7.

The XLTRC? rotor model is built next, and is described in section 3.2. The rotor
is modeled with beam elements and has stations to provide interface for the bearings and
seal. The rotor has also been modeled with added inertias to represent lumped masses.
Bearings and seals that are used to connect the rotor to the casing structure are then
defined in section 3.3 and 3.4, respectively.

Once individual rotordynamic components are created, they are assembled into
the final coupled rotor-casing model. The axisymmetric and non-axisymmetric casing
models, built out of solid elements in ANSYS, are reduced and incorporated with

XLTRC>.
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3.1 Casing Models

Simple casing models are developed based on representative straight-through
compressor designs. To validate the difference between using axisymmetric and non-
axisymmetric models, separate casing models are developed. The casing models
described in this section will be used hereafter. Steel is used as the material for all casing
models. The material properties are taken from the standard XLTRC? template and have

the following properties,

Density (p) 7833.412 kg/m’ (Specific weight = 0.283 Ib/in*)

Elastic Modulus (E) 206.842E+9 N/m”>  (30.0E+6 Ibf/in?)

Shear Modulus (G) 82.737E+9 N/m*>  (12.0E+6 Ibf/in”)

3.1.1 Axisymmetric XLTRC? Beam Element Casing Model

The first casing model is developed in XLTRC? as an axisymmetric beam
element model to validate the current analysis technique used in XLTRC?. It provides
benchmark results to make sure that procedures used for incorporating casing data are
working correctly.

A verification test for bending mode frequencies is conducted between a beam-
element based XLTRC? beam model and its corresponding solid-element based ANSYS
model, documented in 0, and showed excellent agreement in the reported frequencies.
However, note that it is necessary to divide the XLTRC” model into a sufficiently large
number of beam elements. The reason is that the number of critical speeds is dependent
on the number of elements in the model. The smaller the number of beam elements in
the finite element model, the larger will be the margin in the eigen solution when
compared to a finite element model based on solid elements, which typically has a larger
number of elements. When using fewer elements, certain roots may be missed. The
length-to-diameter aspect ratio is not relevant to finite element models, and usually a
single element will work for most constant-diameter sections. Two cases of the

axisymmetric XLTRC? beam-element casing models with different mesh densities are
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constructed to cross-check the accuracy of the ANSYS solid element casing model. The
validation test is documented in APPENDIX B.

Based on this test the following XLTRC? model is used for the casing. The
casing is made of 160 beam elements of varying lengths and diameters to fit the
geometry of the encasing rotor. Figure 55 shows the model. The element properties are
described in Table 1. Note that not all the elements are shown due to space restrictions,
and the gaps denoted by the ellipses indicate elements of the same geometric properties.
For example, elements 32 through 39 have the same geometric properties as elements 31
and 40. The summary of the complete casing is described in Table 2 and shows a total

length of 4.00 meters (157.48 inches) and a mass of 9010.11 kg; weight of 19863.9 Ib.

Thesis XLTRCZ Model

Casing Model (High Mesh Density)
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Figure 55 Geometric plot of XLTRC? axisymmetric casing model
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Table1 Element properties of XLTRC? axisymmetric casing model
Casing Model Data Entry
Shaft Element Length Left Right
# # (m) OD(m) ID(m) OD(m) ID(m)
1 0.0200 1.000 0.650 1.000 0.650
10 0.0200 1.000 0.650 1.000 0.650
11 0.0275 0.900 0.650 0.900 0.650
30 0.0275 0.900 0.650 0.900 0.650
31 0.0200 0.950 0.500 0.950 0.500
40 0.0200 0.950 0.500 0.950 0.500
41 0.0250 0.900 0.750 0.900 0.750
80 0.0250 0.900 0.750 0.900 0.750
81 0.0250 1.000 0.650 1.000 0.650
90 0.0250 1.000 0.650 1.000 0.650
91 0.3125 0.900 0.750 0.900 0.750
130 0.3125 0.900 0.750 0.900 0.750
131 0.0200 0.950 0.500 0.950 0.500
140 0.0200 0.950 0.500 0.950 0.500
141 0.0150 0.900 0.650 0.900 0.650
150 0.0150 0.900 0.650 0.900 0.650
151 0.0200 1.000 0.650 1.000 0.650
160 0.0200 1.000 0.650 1.000 0.650
Table2  Summary of the complete XLTRC? casing model
1% N® Total Total C.G. Total It Total Ip
STN STN | Length Mass location at C.G. about C.G.
# # (m) (Kg) (m) (Kg-m?) (Kg-m?)
1 161 4.00 9010.11 1.971 15154.81908 1486.87
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3.1.2 Axisymmetric ANSYS Solid Element Casing Model

The second casing model is built in ANSYS as an axisymmetric solid element
model. Geometric properties are the same as in the XLTRC? model. Due to familiarity
with the software, SolidWorks is used for solid modeling. Figure 56 and Figure 57
shows the geometric features. The model is then imported into ANSYS, shown by

Figure 58. The finite element meshed model is shown in Figure 59.

Figure 56 Side view of SolidWorks casing model showing section lengths

Figure 57 Isometric view of SolidWorks model showing section diameters
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Figure 58 Solid model of ANSYS axisymmetric casing
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Figure 59 Finite element model of ANSYS axisymmetric casing



Bounding Box

Length X 1.m

Length ¥ 1.m

Length Z 4. m
Properties

Valume 1,152 m?
Mass 9023.8 kg
Centroid X 2.553%e-005 m
Centroid ¥ 5.1093e-011m
Centroid Z 1.971m
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Moment of Inertia Ip1 15127 kg m?
Moment of Inertia Ip2 15127 kg m?
Moment of Inertia Ip3 1473.2 kg'm?

Statistics
Modes 36723
Elements 19225

Figure 60 Summary of ANSYS axisymmetric casing model

The finite element mesh consists of 19,225 elements and 36,723 corresponding
nodes. Figure 60 shows summary parameter data for the ANSYS axisymmetric casing
model. These values agree well with the XLTRC® casing model summary shown in
Table 2. Note that the slight difference in mass and inertia properties is due to the
additional surfaces created in the ANSYS model that provide the interface to connect
foundation supports to ground, as shown in Figure 58. This method to have body to
ground connections is chosen for convenience, and does not make a big influence as the
parameters vary in value by only 0.1%. APPENDIX C shows a comparison of the Free-
Free modes of casing models with and without the additional surfaces. The results show

negligible change when the additional surfaces are used.

3.1.3 Non-Axisymmetric ANSYS Solid Element Casing Model

The third casing model is built in ANSYS as a non-axisymmetric solid element
model. This model is identical to the axisymmetric ANSYS model except with the

addition of two flanges and a module representing instrumentation and lubrication box,
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as shown in Figure 61. The non-symmetrical elements are only placed to induce non-

symmetry so the geometric coordinates are not important.

0.000 1.000 {m)
e —
0.500

Figure 61 Solid model of ANSYS non-axisymmetric casing

Figure 62 shows a summary of the ANSYS non-axisymmetric casing model. The
FEM mesh consists of 20,753 elements and 39,391 corresponding nodes. The effect of
non-symmetry is evident in the change in location of the center of gravity and values of

inertia when comparing them with the values of the axisymmetric model in Figure 60.
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Bounding Box

Length X 1.4523m
Length ¥ 1.3234m
Length Z 4. m
Properties

Valume 1.738 m?

Mass 13614 kg
Centroid X 0.1836m
Centroid 5.0731e-002 m
Centroid Z 1.808 m

Moment of Inertia Ip1 19825 kg m?
Moment of Inertia Ip2 20454 kg m?
Moment of Inertia Ip3 3132, kg'm?

Statistics
Modes 33391
Elements 20753

Figure 62 Summary of ANSYS non-axisymmetric casing model

3.2 Rotor Model

A rotor model is developed based on representative straight-through compressor
models. Note that this model does not represent any proprietary rotor data. The rotor
model described will be used for the remaining of the analyses to be performed.

The rotor is constructed of 21 beam elements of varying lengths and diameters.
Steel is used as the material for the rotor. The material properties are taken from the

standard XLTRC” template and have the following properties,
Density (p) = 7833.412 kg/m’ (Specific weight = 0.283 Ib/in*)

Elastic Modulus (E) 206.842E+9 N/m”  (30.0E+6 Ibf/in?)

Shear Modulus (G) = 82.737E+9 N/m*>  (12.0E+6 Ibf/in”)

Table 3 describes the shaft properties of the rotor model. To reduce the
complexity of the analysis, the use of sub-elements and layers is not employed. The rotor
is a solid shaft, i.e. inner diameter = 0 m. To simulate the effect of impellers, lumped
masses are added to various stations in the model, as shown in Table 4. Summaries for

each element in the rotor model, comprising the length, center of gravity, mass,
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transverse moment of inertia, and polar moment of inertia, is stated in Table 5. The
summary of the complete rotor is described in Table 6 and shows a total length of 4.00
meters (157.48 inches) and a mass of 6370.05 kg (weight of 14043.50 1b). Figure 63
shows a graphical representation of the rotor.

APDL is used to create the rotor model in ANSYS. The source code has been
included in APPENDIX E.

Table3  Element properties of XLTRC? rotor model

Rotor Model Data Entry
Shaft | Element Sub- Layer | Length Left Right
# # Element # (m) OD(m) | ID(m) | OD(m) | ID(m)
1 1 1 1 0.250 0.200 0 0.200 0
1 2 1 1 0.150 0.200 0 0.200 0
1 3 1 1 0.350 0.300 0 0.300 0
1 4 1 1 0.100 0.250 0 0.250 0
1 5 1 1 0.100 0.250 0 0.250 0
1 6 1 1 0.100 0.300 0 0.300 0
1 7 1 1 0.050 0.300 0 0.300 0
1 8 1 1 0.400 0.400 0 0.400 0
1 9 1 1 0.200 0.400 0 0.400 0
1 10 1 1 0.250 0.400 0 0.400 0
1 11 1 1 0.125 0.400 0 0.400 0
1 12 1 1 0.125 0.400 0 0.400 0
1 13 1 1 0.250 0.400 0 0.400 0
1 14 1 1 0.250 0.400 0 0.400 0
1 15 1 1 0.150 0.400 0 0.400 0
1 16 1 1 0.400 0.400 0 0.400 0
1 17 1 1 0.100 0.300 0 0.300 0
1 18 1 1 0.100 0.300 0 0.300 0
1 19 1 1 0.100 0.250 0 0.250 0
1 20 1 1 0.100 0.250 0 0.250 0
1 21 1 1 0.350 0.300 0 0.300 0




Table 4

86

Lumped masses used to represent impellers in XLTRC2 rotor model

Added Mass & Inertia
STN # Added Mass (Kg) Added Ip (Kg-m?) Added It (Kg-m?)
2 120 5 5
10 100 20 10
11 100 20 10
13 1000 175 100
14 1000 175 100
15 1000 175 100
16 100 20 10
TableS  Summary of individual element properties in XLTRC? rotor model
Elm Lft Rgt Beam Beam Axial Mass Inertia Inertia
STN STN Length C.G. CG It Ip
# # # (m) (m) (m) (Kg) (Kg-m?) | (Kg-m?
1 1 2 0.250 0.125 0.125 61.523 0.474 0.308
2 2 3 0.150 0.075 0.325 36.914 0.161 0.185
3 3 4 0.350 0.175 0.575 193.799 3.068 2.180
4 4 5 0.100 0.050 0.800 38.452 0.182 0.300
5 5 6 0.100 0.050 0.900 38.452 0.182 0.300
6 6 7 0.100 0.050 1.000 55.371 0.358 0.623
7 7 8 0.050 0.025 1.075 27.686 0.161 0.311
8 8 9 0.400 0.200 1.300 393.750 9.188 7.875
9 9 10 0.200 0.100 1.600 196.875 2.625 3.938
10 10 11 0.250 0.125 1.825 246.094 3.743 4.922
11 11 12 0.125 0.063 2.013 123.047 1.391 2.461
12 12 13 0.125 0.063 2.138 123.047 1.391 2.461
13 13 14 0.250 0.125 2.325 246.094 3.743 4.922
14 14 15 0.250 0.125 2.575 246.094 3.743 4.922
15 15 16 0.150 0.075 2.775 147.656 1.753 2.953
16 16 17 0.400 0.200 3.050 393.750 9.188 7.875
17 17 18 0.100 0.050 3.300 55.371 0.358 0.623
21 21 22 0.350 0.175 3.825 193.799 3.068 2.180
AW’ 1 2 0.250 120.000 5.000 5.000
AW 2 10 1.700 100.000 10.000 20.000
AW 3 11 1.950 100.000 10.000 20.000
AW 4 13 2.200 1000.000 100.000 175.000
AWS 14 2.450 1000.000 100.000 175.000
AW 6 15 2.700 1000.000 100.000 175.000
AW 7 16 2.850 100.000 10.000 20.000

Y AW — Added Weight
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Table 6 Summary of the complete XLTRC? rotor model
1% N® Total Total C.G. Total It Total Ip
STN STN Length Mass location at C.G. about C.G.
# # (m) (Kg) (m) (Kg-m?) (Kg-m?)
1 21 4.00 6370.05 2.245 3971.324 640.56
Thesis XLTRC2 Model
Rotor Model
1.2
0.8 1
o
% 0.4+
E = 18 19 55 21 A
"
3 0
o
[
o
dr-E' -0.4
=
n
'0.8 +
s i = . ,
0 0.8 1.6 2.4 3.2 4
Axial Location, meters

Figure 63 Geometric plot of XLTRC? rotor model

A model validation step is performed for the XLTRC? rotor model to ensure that

it has been built correctly. It also provides a means to verify that the differences in

parameters, such as coordinate systems, are accounted for correctly. This step is not

essential to the process of incorporating the casing structure from ANSYS into XLTRC>.

Nevertheless, it is recommended. The validation step is documented in 0.
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3.3 Bearing Model

Two 2-lobe sleeve journal bearings support the rotor. The bearings have a length
of 0.16 m (6.30 in), diameter of 0.25 m (9.84 in), and pad clearance of 0.004 m (0.0157
in). The bearing use a lubricant with viscosity of 21.99e-03 Pa-s (21.99 cp) and density
of 853.49 kg/m’ (specific weight = 0.0308 Ib/in®). With a bearing span of 2.70 m

(106.30 in) they connect to the rotor model at stations 5 and 20, as shown in Figure 63'°.
Bearing locations and rotor center of gravity are shown in Figure 64. These bearings will

later be used to connect the rotor to the casing structure.

Figure 64 Bearing load calculation

The following force balance equation provides the reaction forces (Ra and Rp).

Total mass of rotor = 6370.05 kg (436.48 slug)
Weight of rotor, W = 62490.19 N (14048.40 1bf)
Center of gravity location = 2.245 m (88.385 in) from left end of rotor
R, + Rz =62490.19 (74)
Moment about A = 2.7R; —6370.05x1.395=0 (75)

This results in

' The bearing stations use different numbering in the combined rotor-casing model
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. R, =30203.59N

(76)
R, =32286.59N
XLJrnl™ spreadsheet for Journal Bearing Coefficients
Title: Bearing 1
Bearing Type: 2 Lobe Sleeve E]
Bearing Lenagth E] 0.16|meters
Bearing Diameter | | 0.25| meters Lubricant Viscosity | 2199953 @  [+]
Pad Cr, Cp [»]  0.0004|meters Lubricant Density 853.49 kajm3 [~
Bearing Load, F | 30203.59 Newtons (]
Bearing Preload, m EI_EIEIEI1| --
Speed Hxx Hxy Hyx Hyy Cxx Cxy Cyx Cyy

rpm N/m N/m N/m N/m MN-s/m MN-s/m MN-s/m MN-s/m
400| 27E+08 -6.2E+07 -6.5E+08 1.02E+09 4809581 -T467756 -T467744 28654746
ol0| 2.8E+08 13720457 -5.8E+08 6.95E+08 3229085 -3856346 -3856337 12963474
1200| 2 91E+08 GBOBT258 -5 5E+08 546E+08 2506482 -2500004 -2499999 5184931
1600 JE+08 1.1ME+08 -54E+08 4.8E+08 2157678 -1685056 -1885043 6139058
1800| 3.05E+08 1.32E+08 -5 4E+08 4 48E+08 2041411 -1680074 -1680065 A457101
2000( 3.09E+08 1.52E+08 -5.4E+08 4 2TE+08 1959460 -1526460 -1526450 4959466
2400( 3.18E+08 1.91E+08 -5.5E+08 3. 97E+08 1846033 -1304944 -1304933 4254169
2600( 3 22E+08 2 1E+08 -5.6E+08 3.82E+08 1802408 -1219746 -1219734 3982901
3000| 3.3E+08 248E+08 -5.7E+08 358E+08 1726101 -1078503 -1078489 3562145

Figure 65 Calculated rotordynamic coefficients of bearing 1

The stiffness and damping bearing coefficients for bearing 1 and bearing 2 are
calculated as shown in Figure 65 and Figure 66, respectively. A third-order polynomial
fit is used to obtain expressions for speed dependent stiffness and damping bearing
coefficients. N represents the running speed in RPM. The equations for bearing 1 are

shown in Eq.(77) and bearing 2 in Eq.(78).
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= 1066393315x N~ +255286980.2x N’ +31095.3652x N' —2.172088328 x N*
=-30104742824x N~' —27798078.92x N’ +102487.8616x N' —2.4442301x N*
=-59619636440x N~ —510140831.9x N +24557.04362x N' —13.0524594x N*
= 2.31531E+11x N +487023684.1x N —128187.9399x N' +20.20956004 x N>
1126279319 N~ +2268914.8x N° —725.3190345x N' +0.142588357 x N

w = —2842395798 % N~ -508206.302x N° +381.4519148x N' —0.087678631x N*
= —2842391408 x N~ —508206.8736x N° +381.454552x N' —0.087677984 x N*

K
K
K
K
C. =
C
C
C

yy

XLJrnl™ spreadsheet for Journal Bearing Coefficients

Title: Bearing 2

Bearing Type: | 2 Lobe Sleeve

-]
[~

Bearing Load, F

Bearing Lenagth
Bearing Diameter
Pad CIr, Cp

0.16

0.25

0.0004

32286.6

Bearing Preload, m

=]

meters
meters
meters

Mewtons E]

0.0001] --

Speed Kxx

Kxy

Kyx Kyy

= 13263960051x N~ —5519587.151x N° +2683.710808 x N' —0.378480913x N*

(77)

Lubricant Viscosity

21999530 [¥]

Lubricant Density

853.49 kajm3 [~

Cxx Cxy

Cyx Cyy

rpm N/m
400
a00

1200
1600
1800
2000
2400
2600

3000

3.26E+08

N/m

2.88E+08 -TAE+0T
2.98E+08 7025245
J.09E+086 62425760
3.18E+08 1.07VE+D8
3.23E+08 1.28E+08
1.58E+08
3.36E+08 1.88E+08
JAE+08 2.0VE+0DS
349E+08 24BE+08

N/m
-T1E+08
-5.2E+08
-5 9E+08
-5 BE+08
-5 BE+08
-5 BE+08
-5 9E+08
-5 9E+08

-BE+08

N/m
1.13E+09
7.64E+08
G.0BE+08
5.32E+08
4 99E+08
4 GEE+08
4 3TE+08
4 22E+08
J.92E+08

MN-s/m

4998424
3378899
2604861
2229845
2105558
2006395
1885146
1838512
1763897

MN-s/m
-7950433
-4138534
-2680561
-2012287
-1793168
1618121
-1381329
-1290255
1144537

MN-s/m
-7950420
-4138525
-2GB0556
-2012279
-1793159
1618112
-1381318
-1290243
-1144524

MN-s/m
30968583
13960643

8808604

BAG2342

5833353

5251313

4497375
4207399
3743437

Figure 66 Calculated rotordynamic coefficients of bearing 2

The polynomial fit equations for bearing 2 are shown in Eq. (78).
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K, = 1453070445x N~ +272186237.9x N’ +31603.41526x N' —2.132270135x N*
K, =-33145936257x N~ —=32508425.09x N’ +104532.0399x N' —2.756220705x N*
K, =-66023587471x N~ —549617088.4x N° +27529.90062x N' —12.87745021x N*
K, = 2.59554E+11x N~ +527609699.1x N° —=131963.5864 x N' +19.72913164x N*

1116961207 x N™' +2547929.708 x N® —904.1695253x N' +0.17587026 x N*
—2966327354x N~ —742905.3155x N° +546.9707955x N' —=0.119750611x N>

~2966321753x N~ —742906.8109x N° +546.9735545x N' —0.119750085x N*
= 14345445250x N~ —5972848.052x N° +2845.020331x N' —0.402189446x N*

(78)

The stiffness and damping curve fits for bearing 1 are graphically represented by

Figure 67 and Figure 68, respectively. Bearing 2 curve fits are represented by Figure 69

and Figure 70.
XLJrnl Stiffness Coefficients
Bearing 1
o 150E+09 J +Km""“
——
= 1.00E+09 ‘"M —h— K‘j}(
«w 5.00E+08 e ———r —— Kyy
W OOl —— I ——— ?’E@
& 0.00E+00 B o Sniamn —o— Kook it
£ 5.00E408 - —roda— e w e AL
w —— Kyx fit
~1.00E+09
—o— Kyy fit
0 500 1000 1500 2000 2500 3000 3500
Rotor Speed, rpm

Figure 67 Stiffness coefficients curve fit plot for bearing 1
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XLJrnl Damping Coefficients

Bearing 1
~  400E+07 SR
B —— Cxy
2 3.00E+07 N 3 e
- 2.00E+07 —e Cyy
2 N
-5 1.00E+07 — ] —o— Cxx it
£ 0.00E+00 e B o = S R el —— Cxy fit
] - [ R d | & v
il T —— Cyx fit
0O 1 00E+07 Ca
' —— Cyy fit
500 1000 1500 2000 2500 3000 3500
Rotor Speed, rpm
Figure 68 Damping coefficients curve fit plot for bearing 1
XLJrnl Stiffness Coefficients
Bearing 2
o 150E+00 = o= Kmt:
——
~ R
= 1.00E+09 M —d— KYK
@ 500E+08 ey —— Kyy
7] n——n—u—u—nn———ﬂ—l:'—i:;:ﬁ:ﬁ
L 0.00E+00 B e e —o— Koxx fit
'-'u:: -5.00E+08 S —wm ~ A
w S —— Kyx fit
-1.00E+09
—o— Kyy fit

500 1000 1500 2000 2500 3000 3500
Rotor Speed, rpm

Figure 69 Stiffness coefficients curve fit plot for bearing 2
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4 00E+07
3.00E+07
2.00E+07
1.00E+07
0.00E+00
-1.00E+07

Damping, N-s/ir

XLJrnl Damping Coefficients

Bearing 2

N

s = S = S S AU - e

200 1000

1500 2000 2500 3000 3500

Rotor Speed, rpm

—a— CXx
—+— Cxy
—— Cyx
—— Cyy
—o— Cxx fit
—— Cxy fit
—— Cyx fit
—o— Cyy fit

Figure 70 Damping coefficients curve fit plot for bearing 2

3.4 Seal Model

The rotor used in the analyses represents a straight-through compressor. The use

of a seal in such an application prevents leakage losses that can occur across the various

stages of a compressor. A simple made-up gas seal is used to include the effect of this

rotordynamic element in the analysis, and it connects to the rotor at station 12, as shown

in Figure 63. Note that this seal does not represent any actual data set and is used only as

a representative model. Constant seal coefficients are used as illustrated in Figure 71.

Seal rotordynamic stiffness, damping and mass coefficients curve fits are

represented in Figure 72, Figure 73, and Figure 74, respectively. Note that the direct

coefficients have the same value, ie. K,, =K,,,C,, =C,,, and M, =M,, . Hence

these plots appear to overlay each other on the figures.
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XLUseKCM™ user Defined Support Stiffness, Damping, and Mass Rotordynamic Coefficients

Version 2.0, Copyright 1996 - 1998 by Texas A&M University. All rights reserved.

Title: Seal
Speed Kxx Kxy Hyx Kyy Cxx Cxy Cyx Cyy Mxx Mxy Myx Myy
rpm Nim Nfm Nim Nim N-sfm N-s/m N-sfm N-s/m kg kg kg kg
300] 1.50E+08 0 0| 1.50E+08| 5.00E+05 0 0] 5.00E+05] 1.50E+01 0 0| 1.50E+01
600] 1.50E+08 0 0] 1.50E+08| 5.00E+05 0 0] 5.00E+05] 1.50E+01 0 0| 1.50E+01
900] 1.50E+08 0 0] 1.50E+08| 5.00E+05 0 0] 5.00E+05] 1.50E+01 0 0] 1.50E+01
1200] 1. 50E+08 0 0| 1.50E+08| 5.00E+05 0 0] 5. 00E+05] 1. 50E+01 0 0| 1.50E+01
1500] 1.50E+08 0 0| 1.50E+08| 5.00E+05 0 0| 5. 00E+05| 1. 50E+01 0 0| 1.50E+01
1800] 1.50E+08 0 0| 1.50E+08| 5.00E+05 0 0] 5.00E+05] 1.50E+01 0 0] 1.50E+0M
2100] 1.50E+08 0 0] 1.50E+08| 5.00E+05 0 0] 5.00E+05] 1.50E+01 0 0] 1.50E+01
2400] 1 50E+08 0 0| 1.50E+08| 5 00E+05 0 0] 5 00E+05| 1 50E+01 0 0| 1.50E+01
2700] 1.50E+08 0 0| 1.50E+08| 5.00E+05 0 0] 5. 00E+05] 1. 50E+01 0 0| 1.50E+01
3000] 1.50E+08 0 0] 1.50E+08| 5.00E+05 0 0] 5.00E+05] 1.50E+01 0 0] 1.50E+01
Figure 71 Seal rotordynamic coefficients
User Defined Stiffness Coefficients
Seal
1.6E+08 —— Kxx
£ 1.4E+08 —=— Kxy
——
= +
v +
© —— Kxx fit
= T Kxy fit
—— |
= 40E+07 :
O0E+D) +—=—+—w—Tue—Tror g s 8 s KWﬂt
0 1000 2000 3000
Rotor Speed, RPM

Figure 72  Stiffness coefficients curve fit plot for seal
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Figure 73 Damping coefficients curve fit plot for seal

User Defined Mass Coefficients

1.6E+01

Seal

i—@h@i—m

1 4E+01
o 1.2E+01

~ 1 0E+01
8.0E+00
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S 6.0E+00
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Figure 74

Mass coefficients curve fit plot for seal
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3.5 Coupled Rotor—Casing Model

This section shows the models used for symmetrical and non-symmetrical
coupled rotor-casing model. The rotor is connected to the casing at bearing locations,
and the seal used at about midway of the rotor length. The casing is connected to ground
using foundation supports. These supports are modeled as isotropic supports with no

damping and stiffness of 5x10° N/m (2.86x10° Ib/in).

3.5.1 Axisymmetric Coupled XLTRC? Rotor—Casing Model

Figure 75 shows the XLTRC? model for coupled rotor-casing consisting of 181

elements and 183 stations (nodes). Table 7 describes the connecting elements.

Thesis XLTRCZ Maodel

Coupled Rotor-Casing Model
1.2

Shaft Radius, meters

Bea'ring 2

Foundation Foundation

Support 1 Support 2

=12 t t + + +
0 0.8 1.6 2.4 3.2 4

Axial Location, meters

Figure 75 XLTRC? coupled rotor-casing model for symmetrical case
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Table 7  Connecting elements between rotor and casing

Rotor Station # Casing Station # Connecting Element
166 36 Bearing 1
181 136 Bearing 2
173 86 Seal
- 6 Foundation Support 1
- 156 Foundation Support 2

3.5.2 Axisymmetric Coupled ANSYS Rotor—Casing Model

The ANSYS coupled rotor-casing model for the axisymmetric case is shown in

Figure 76 and Figure 77.

1.000 {m)

0.500

Figure 76 ANSYS coupled rotor-casing model for axisymmetric case
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Zc—L

0,000 1,000 {m)
I 000

0,500

Figure 77 Axisymmetric coupled model with locations of connecting elements

3.5.3 Non—-Axisymmetric Coupled ANSYS Rotor—Casing Model

R T f} ' 1,000 {m;) Z./I\. 5
[

0.500

Figure 78 ANSYS coupled rotor-casing model for non-axisymmetric case
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The ANSYS coupled rotor-casing model for the non-axisymmetric case is shown

in Figure 78 and Figure 79.

Foundation Support d
ki
.LL
0,000 1,000 {m) z
| I
0.500

Figure 79 Non-axisymmetric coupled model showing connecting elements

3.6 Setting up Component Mode Synthesis in ANSYS

Depending on the level of accuracy desired, the type of component mode
synthesis (CMS) method can be specified. The analyses used here employ the Fixed-
interface method. In this method, interface nodes are specified and constrained while
creating the superelement. This method is recommended in the ANSY'S help manual for
casings and structural materials where the accuracy of the lower modes is important.
CMS analysis in ANSYS involves three distinct steps called passes. The passes are
version-specific, so it is important to have them performed using the same version of
ANSYS in which the database file is created. As of version 11 SP1, the CMS option in

ANSYS generates only the reduced mass and stiffness matrices.
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The first CMS pass is called Generation Pass and can be considered an extension
of the substructuring procedure, described in section 2.3. It involves condensing a group
of finite elements into a single superelement. Once a finite element model is built, a set
of master degrees of freedom (MDOF) are identified. This will define the interface of the
newly created superelement with other superelements or elements. The master DOF are
essential to capture the dynamic characteristics for analyses. The CMS method and the
frequency range of interest are specified. Applicable loads are defined, and the solution
is initiated. The output of the generation pass is the superelement matrix file, identified
by the default .SUB extension

The second CMS pass is called Use Pass and it makes use of the generated
superelement file by making it part of the model. The entire model may eventually
consist of only a single superelement or may be a combination of superelements and
other non-superelements. The CMS use pass can be used for analysis types such as
modal, static, force response, transient, etc. While a generation pass needs to be done for
each component of the entire structure, the use pass is done only once because it uses all
the superelements together in one full model.

The third pass, called the Expansion Pass, is optional. As the name suggests, it is
used to expand results from the reduced model to the full-scale model. Figure 80 shows
details of the commands used in an algorithm for CMS generation and use pass in

ANSYS.
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P **GERNERATION PASS**

! Enter the solution processar

/S0oLU

! Specify the substructure analysis type
AMTYPE, SUBSTR

I Set component mode synthesis options
CMSOPT, FIX, &, , ,

I Set substructure options

SECPT, brgpdstl, 2, 1, 0, resolve

! Specify solver and perform solution
EQSLY, SPARSE

I Start the solution phase

SOLVE

! Create substructure file listing
SELIST, brgpdstl, O

FIMISH

I **ISE PASS™ ™

!l Enter the preprocessor

/PREPY

I Define superelement and reduced model as a superelement
ET, 3000, MATRIx 50

| Create material type and real constant set

TYPE, 2000

FEAL, 2000

! Load the CMS reduced substructure file

SE, brgpdstl, , , 0.1

FIMISH

Figure 80 CMS generation and use pass

3.7 Coupled Rotor-Reduced Casing Model

Having described the substructuring and component mode synthesis algorithms
in the previous section, the next step involves performing the reduction steps. The details

of the steps are described in the following sub-sections.

3.7.1 Axisymmetric Coupled ANSYS Rotor-Reduced Casing Model

The integration of ANSYS into XLTRC? begins with the ANSYS database file.
The ANSYS Workbench model is first imported into ANSYS Classic using the available
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database conversion tools. Workbench is designed as a user-friendly application that
encapsulates most of the powerful features of Classic through graphical user interface
elements. However, many advanced features are unavailable such as flexibility and
control over the use of elements and nodes. Figure 81 shows the casing model after it has
been imported into ANSYS Classic.

Next the node matching step is performed. The theory behind this step is
described in detail in section 2.7.3, and explained the creation of a new node at the
center and then connecting them with rigid elements in the radial direction. Figure 82
shows the newly created nodes for the bearings and seals. These nodes, along with nodes
at the foundation supports, are then included in the master degree of freedom (DOF) set.

Once the master DOFs are selected and necessary constraints applied,
substructuring is performed. This reduces the casing model while retaining all essential

dynamic characteristics.

ELEMENT3

TYEE NOM

AYISYMMETRICAL: CASING

Figure 81 Axisymmetric casing model in ANSYS classic format
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e ANSYS

WODE WM ; OCT 23 2008
/ 0B:11:04

FED35
i

MDOF NODES

Figure 82 Nodes at bearing and seal locations that form MDOF set

Figure 83 shows the reduced casing model. Note that the missing graphical
features do not indicate that those elements have been removed. The reduced casing
model is then integrated with the rotor model, described in section 3.2, to form the
coupled axisymmetric rotor-reduced casing model. Figure 84 shows the placement of the
rotor within the axisymmetric casing structure. Figure 85 can be compared with Figure
77 for graphical validation. The APDL source code for axisymmetric casing

substructuring has been included in APPENDIX E.
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Isometric view showing combined rotor —reduced casing model

Figure 84
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OCT 23 2008
OB:-1&:15

COUPLED AXISYMMETRICARL ROTOR-CASING MODEL

Figure 85 Side view of coupled axisymmetric model showing relative placement

3.7.2 Non-Axisymmetric Coupled ANSYS Rotor—Reduced Casing Model

Similar reduction steps are performed for the non-axisymmetric casing structure.
Figure 86 shows the casing model when imported into ANSYS Classic. The node
matching step is performed, and the selected master degree of freedom set is shown in
Figure 87. Substructuring is performed and results in the reduced model, shown in
Figure 88. The non-axisymmetric components can be seen clearly. The reduced casing
model is then integrated with the rotor model. Figure 89 shows the placement of the
rotor within the non-axisymmetric casing structure.

The APDL source code for axisymmetric casing substructuring has been

included in APPENDIX E.
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Figure 87 Nodes at bearing and seal locations that form MDOF set
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Figure 88 Reduced model of non-axisymmetric casing structure

CASING MODEL

COUPLED MOM-AXISYMMETRICAL RO
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4 RESULTS AND DISCUSSION

Having described the casing, rotor, bearing and seal models in the previous
section, the next step is to run the various analyses and calculate the results.

The analyses are first done for the rotor-only model. This provides a base for
comparison, as the objective of this thesis is to adapt the beam-based XLTRC?
rotordynamic model to accept a general three dimensional finite element casing model.
Section 4.1 describes the details of the analysis. The unbalance magnitude specifications
and configurations, mentioned in section 4.1.4, are also used in the casing structure
analyses that follow. An unbalance response is performed with the axisymmetric model
built in XLTRC? and this is compared with the axisymmetric model from ANSYS. This
comparison serves to provide a direct measure of the accuracy of the existing XLTRC?
suite.

Once the rotor model results are generated, the casing structure is included for
the coupled rotor-casing model analyses, illustrated in section 4.2. With the casing
structure, the first set of analysis uses the axisymmetric casing structure. Both the
XLTRC? axisymmetric casing and the ANSYS axisymmetric casing are employed. The
second set of analysis uses the non-axisymmetric casing structure model from ANSYS.
This is compared with the axisymmetric model for changes in the rotordynamic
behavior. The mode shapes and unbalance response are investigated.

A study is also conducted into the connection used for the interstage seal. The
results obtained by connecting the seal between rotor and ground are compared with
those obtained in the case where the seal connection is made between the rotor and the

casing. These predictions are discussed in section 4.2.4.
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4.1 Rotor-Only Model

This section describes the undamped critical speed, damped critical speed and

unbalance response analysis done on the rotor and the results inferred.

4.1.1 Rotor Undamped Critical Speed Map

The undamped critical speed (UCS) analysis is performed on the rotor model to
get a preliminary assessment of critical speeds and mode shapes of the rotor. This
analysis does not include the effects of any damping on the system, and thus does not
represent the actual dynamics of the rotor. However it gives insight into the general
behavior of the rotor. UCS analysis is performed by applying varying amounts of
stiffness at the support locations, which are the bearings in this case. The critical speeds
and mode shapes are then calculated for each value of direct support stiffness. A UCS
map is generated by plotting the support stiffness (abscissa axis) versus critical speed

frequency (ordinate axis), as shown in Figure 90.

Undamped Critical Speed Map
100000
#—Mode 1
E +—Mode 2
o
- 10000 ¢ : T * —a—Mode 32
&

o *
@ o T = Brgxx
. o
S 1000 4 «BY. ——Bragyy
— P o
H .

’EndnCrlt.Spd. Kk Kyy

g =t Crt. Spd.

100 t } } } }
1.E+06 1.E+07 1.E+08 1.B409 1.E+10 1.E+11 1.E+12
Bearing Stiffness, N/m

Figure 90 Rotor undamped critical speed map with bearing stiffness cross-plotted
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The highlighting characteristic in the UCS map is the relationship between the
rotor stiffness and the support stiffness. The controlling element in a system is the one
with the lowest stiffness. Hence at lower support bearing stiffness, the frequencies of the
system are influenced by the bearing stiffness and rotor mass. The left area of the UCS
map is therefore called the stiff rotor part because the rotor does not undergo much
bending. At higher bearing stiffness, as seen in the right area of the UCS map, the
critical speeds are no longer influenced by the support stiffness and are influenced by the
rotor stiffness and rotor mass. The support locations becomes node points and the rotor
experiences higher degree of bending.

Once the UCS map is defined, the actual support characteristics are taken into
account to assess the critical speeds. Speed-dependent direct bearing stiffness values for
both the bearings, earlier calculated in section 3.3, are cross-plotted on the UCS map.
The speeds where the coefficient curves corresponding to the support stiffness coincide
with the critical-speed curves are estimated to be potential critical speeds of the system.

Based on Figure 90, the first critical speed lies roughly between 2000 rpm and
2750 rpm. The rotor is designed to run at 3600 rpm. Figure 91(a) through Figure 91(c)
show the bending modes of the first critical under the effect of varying bearing support
stiffness. The locations of the bearings are indicated by the dotted lines. As seen in
Figure 91(a), at low bearing stiffness the rotor is stiff and does not have much bending.
When the bearing stiffness increases, the locations of the bearings become node points
and the rotor bends about these nodes. This is evident in Figure 91(c). American
Petroleum Institute (API) specification [26] states that critical speeds up to twice the
running speed should be accounted for. Figure 92(a) through Figure 92(b) show the
bending modes of the second critical under varying bearing support stiffness. Similar to
the first critical bending modes, under low bearing stiffness, the rotor shows rigid body
modes. At high bearing stiffness, the stiffness of the rotor becomes the controlling

element thereby showing rotor bending modes.
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Figure 91

First undamped critical speed mode shape.
(a) at 223.40 rpm (3.72 Hz) with bearing stiffness of 1.751Ex10° N/m
(b) at 1950.70 rpm (32.51 Hz) with bearing stiffness of 1.751x10” N/m
(c) at 3549.10 rpm (59.15 Hz) with bearing stiffness of 1.751x10" N/m
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(a) Undamped Critical Speed 2-D Mode Shape Plot
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(b) Undamped Critical Speed 2-D Mode Shape Plot
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Figure 92 Second undamped critical speed mode shape.
(a) at 418.10 rpm (6.96 Hz) with bearing stiffness of 1.751x10° N/m
(b) at 3947.70 rpm (65.79 Hz) with bearing stiffness of 1.751x10” N/m

(c) at 21266.10 rpm (354.44 Hz) with bearing stiffness of 1.751x10"" N/m
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4.1.2 Rotor-Only Damped Critical Speed Map

The damped critical speed analysis measures the stability index of the rotor. A

damped eigenvalue is a complex number expressed in the form s = p+tiw,, where pis

called damping exponent and is the measure of the stability of the system. A system is

stable when p is negative and unstable when pis positive. As a measure of system
stability, API specification [27] uses a derived quantity called log decrement given by

o=-27zp +|a)d | . A system is stable when ¢ is positive and unstable when it is negative.

The damped natural frequencies are calculated for the rotor model without and
with the addition of the interstage seal (at station 12 in the rotor model). Figure 93 shows
the natural frequency map for the rotor model without the effect of the seal. The
synchronous excitation intersects the first and fourth modes. The addition of the seal at
station 12 influences the rotordynamic system by slightly improving the stability, as will
be seen in the next section. Figure 94 shows the natural frequency map for the rotor
model with the addition of the seal. The synchronous excitation line moves slightly away

from the first critical speed and tends to excite the third critical speed.

Rotordynamic Damped Natural Frequency Map
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16000 +
14000 +
12000 +
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0
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0. 2000. 4000. 6000. 8000.
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Figure 93 Damped natural frequency map without the effect of the seal
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Rotordynamic Damped Natural Frequency Map
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Figure 94 Damped natural frequency map with the addition of the seal

4.1.3 Rotor Damped Modes

The first four rotor damped mode shapes of the rotor, with and without the
addition of the seal, are described in this section. Gyroscopic effects are included to
obtain the modes and their corresponding mode shapes.

Table 8 shows a listing of log decrement and respective frequencies of the first
four damped modes at various running speeds of the rotor without the addition of the

seal. The modes are in forward whirl.
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Table 8  First four damped modes without the effect of the seal
Speed logd1 cpml logd2 cpm2 logd3 cpm3 logd4 cpm4

600 8.4 430.4 8.7 402.8 0.1 3488.7 1.3 3412.3
1200 5.9 952.9 7.1 782.3 0.3 3466.6 2.2 3244.8
1800 3.4 1680.3 6.0 1180.9 0.4 3438.8 3.7 2988.3
2400 1.7 2029.1 51 1586.8 0.5 3412.3 5.0 3275.3
3000 0.9 2152.4 4.2 2015.6 0.5 3387.6 4.7 3922.2
3600 0.3 2243.8 3.3 2519.1 0.6 3364.0 3.9 4708.2
4200 -0.2 2349.2 2.2 3301.8 0.6 3345.4 2.7 6029.6
4800 -0.8 2506.6 0.2 4510.1 0.6 3340.1 0.6 7319.9
5400 -1.3 2795.2 -2.2 5628.0 0.5 3350.6 0.4 9560.0
6000 -1.1 3242.9 -1.0 10228.4 0.5 3370.0 0.3 9539.1
6600 -0.7 3429.0 0.0 13817.6 0.4 3389.7 0.2 9520.2
7200 -0.4 3483.5 -0.1  17298.3 0.3 3405.1 0.1 9423.1
7800 -0.3 3507.5 0.0 17543.2 0.3 3414.1 0.0 9259.2

For the operational speed of 3600 rpm, Figure 95 (a) shows the first mode shape
at 2243.8 rpm. This mode is in forward whirl with large deflection at the center of the
rotor. The second mode at 2519.1 rpm is also in forward whirl, as seen in Figure 95 (b).
A node is observed at the center of the rotor where the deflection produced is the least.

Figure 95 (c) shows the third mode shape at 3364.0 rpm. This mode shows
pronounced elliptical orbits with large deflection at the center of the rotor. The fourth
mode at 4708.2 rpm, as seen in Figure 95 (d), is above the running speed of the rotor and

shows maximum deflection at the rotor ends.



() Damped Eigenvalue 3-D Mode Shape Plot
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Figure 95 Damped mode shape for rotor model without seal.
(a) First mode at frequency of 2243.8 rpm
(b) Second mode at frequency of 2519.1 rpm
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(©) Damped Eigenvalue 3-D Mode Shape Plot
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(d) Damped Eigenvalue 3-D Mode Shape Plot
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Figure 95 Continued
(¢) Third mode at frequency of 3364.0 rpm
(d) Fourth mode at frequency of 4708.2 rpm
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Table 9 shows a listing of the log decrements and frequencies of the first four
damped modes at various running speeds of the rotor with the seal added to the model.
Comparing the log decs of the rotor model without and with the seal indicate that at the
rotor running speed there is improvement in stability once the seal is added, due to the

increase in log dec.

Table 9  First four damped modes with the addition of the seal
Speed logd1 cpml logd2 cpm2 logd3 cpm3 logd4 cpm4

600 12.2 362.4 8.8 402.7 0.9 3860.1 1.8 3868.0
1200 8.5 812.5 7.1 782.1 1.0 3850.2 2.4 3805.3
1800 5.9 1406.2 6.0 1177.1 11 3833.6 3.2 3704.1
2400 3.7 1989.9 51 1577.8 1.2 3815.1 4.1 3756.9
3000 2.5 2267.4 4.2 2005.0 1.3 3795.3 4.2 4224.1
3600 1.6 2430.5 3.3 2508.3 1.3 3774.1 3.7 4908.7
4200 1.0 2608.5 2.2 3288.5 13 3756.6 2.7 6129.5
4800 0.3 2865.4 1.3 3751.9 0.3 4498.0 0.7 7349.1
5400 -0.1 3277.2 13 3762.9 -2.2 5623.6 0.4 9561.8
6000 0.1 3663.3 12 3781.5 -1.0 10225.9 0.3 9537.2
6600 0.4 3786.3 1.2 3799.4 0.1 138414 0.2 9517.7
7200 0.5 3826.4 11 3813.3 0.1 173175 0.1 9421.7
7800 0.7 3843.0 1.0 3823.4 0.1 17560.9 0.0 9259.0

For the operational speed of 3600 rpm, Figure 96(a) shows the first mode shape
at 2430.5 rpm. This mode is in forward whirl and produces large deflection at the center
of the rotor, as seen in the case of the rotor without the seal. The second mode at 2508.3
rpm, seen in Figure 96 (b), is also in forward whirl. A node is observed at the center of
the rotor where the deflection produced is the least.

Figure 96 (c) shows the third mode shape at 3774.1 rpm. This mode is in forward
whirl. This mode has a pronounced elliptical orbit with large deflection at the center of
the rotor. The fourth mode at 4908.7 rpm, as seen in Figure 96 (d), is above the running
speed of the rotor and shows maximum deflection at the rotor ends.

Overall, the damped mode analysis of the rotor shows a change in critical speed
with the addition of the seal. The critical speeds of the first, third and fourth modes show
an increase while the second mode has a small decrease in the critical speed. Note that

the mode shapes illustrated in this section pertain to the rotor and do not consider the



119

effect of the casing. These mode shapes will be compared later on with the coupled

rotor-casing model.

Damped Eigenvalue 3-D Mode Shape Plot

(a)
Rotor Model with seal - Mode Shape 1
— forward
— backward
f=2430.5 cpm
d=1.6469 logd
Running Speed =3600 rpm
(b) Damped Eigenvalue 3-D Mode Shape Plot

Rotor Model with seal - Mode Shape 2

— forward
— backward

f=2508.3 cpm
d=3.2852 logd
Running Speed =3600 rpm

Figure 96 Damped mode shape for rotor model with seal.
(a) First mode at frequency of 2430.5 rpm
(b) Second mode at frequency of 2508.3 rpm



Damped Eigenvalue 3-D Mode Shape Plot

(©
Rotor Model with seal - Mode Shape 3
— forward
— backward
f=3774.1 cpm
d=1.2889 logd
Running Speed =3600 rpm
) Damped Eigenvalue 3-D Mode Shape Plot
Rotor Model with seal - Mode Shape 4
— forward
— backward
f=4908.7 cpm

d=3.7153 logd
Running Speed =3600 rpm

Figure 96 Continued
(¢) Third mode at frequency of 3774.1 rpm
(d) Fourth mode at frequency of 4908.7 rpm
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4.1.4 Rotor Unbalance Response

This section shows the unbalance response of the XLTRC? rotor-only model.
These results will later be compared with the coupled rotor-casing models in section

4.2.3. The unbalance amount is calculated from the API unbalance equation shown in

section 2.9.
W =6370.05 kg
N =1800 rpm
79
u = 6350x% [SI Units]| )

=22472.12 g-mm

A multiplier is sometimes used with the calculated unbalance magnitude and this
serves as a factor of safety. A multiplier of approximately 3.75x is used here. The
resulting total unbalance magnitude is rounded to 85,000 g-mm. The rotor model is a
between-bearings design. An unbalance applied to the rotor mid-span typically tends to
excite the first bending mode. When proportional unbalance amounts are applied close to
the shaft end locations they are likely to excite the second bending mode, as seen earlier
in Figure 54. Based on this, two cases of unbalance responses are performed.

The first unbalance response case uses an unbalance of 85,000 g-mm at the rotor
mid span node. This corresponds to station 12 on the rotor. The unbalance response is
obtained for a speed range of 600 rpm to 7800 rpm, with the maximum speed being little
more than twice the design running speed. The analysis with the mid span unbalance
amount is done for the cases without and with the addition of the interstage seal.
Gyroscopic effects are included in the analysis. Figure 97(a), Figure 97 (b), and Figure
97 (c) show the unbalance response obtained at bearing 1, mid span and bearing 2 probe
locations, respectively. The influence of the damping provided by the seal is evident in
the smaller unbalance responses amplitudes. The second case of unbalance response
analysis applies a distributed unbalance of 40,000 g-mm and 45,000 g-mm to rotor end
locations at stations 8 and 17, respectively. Figure 98(a), Figure 98 (b), and Figure 98 (c)
show the unbalance response obtained at the three probe locations, respectively. The

effect of damping, by the seal, is also evident in this unbalance configuration.
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( ) Rotor Unbalance Response
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Figure 97 Unbalance response for mid span unbalance.
(a) at bearing 1 location, (b) at rotor mid span location, (c) at bearing 2 location



(a) Rotor Unbalance Response
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Figure 98 Unbalance response for rotor quarter-span unbalance.
(a) at bearing 1 location, (b) at rotor mid span location, (c) at bearing 2 location
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4.1.5 Rotor Unbalance Response Validation with ANSYS Data

In this section, an ANSYS generated rotor-only model is compared with an
XLTRC? rotor-only model. This ensures the validity of the ANSYS data. Since this is
only for validation, the unbalance response is compared only at bearing 1 and bearing 2
locations for the configuration with seals and the case where unbalance is applied to
rotor quarter-span locations. Figure 99(a) and Figure 99 (b) show excellent agreement
between XLTRC? rotor-only model results and those obtained with the ANSYS rotor-
only model. The XLTRC? and ANSYS results in each direction overlap each other. Note
that similar to the XLTRC? model, the ANSYS model also includes gyroscopic effects.

(a) Rotor Response Plot
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(b) Rotor Response Plot
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Figure 99 Comparison of XLTRC? and ANSYS unbalance responses.
(a) at bearing 1 and (b) at bearing 2
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4.2 Coupled Rotor—Casing Model

This section describes results of the analyses done on the coupled rotor-casing
model, for axisymmetric and non-axisymmetric cases. The casing is connected to ground
using foundation supports. These supports are modeled as isotropic supports with no

damping and direct stiffness of 5x10° N/m (2.86x10° Ib/in).

4.2.1 Coupled Rotor—Axisymmetric Casing Models Damped Modes

The damped critical speed analysis is performed on the coupled rotor—
axisymmetric casing model. Two sets of models are used. The first set has a XLTRC?
rotor coupled with a XLTRC? axisymmetric casing, as shown in Figure 100. The second
set has a XLTRC? rotor coupled with an ANSYS axisymmetric casing, seen in Figure
101. For the second set, the casing data from ANSYS is incorporated with the XLTRC?
rotor model. This section only describes the configuration with the seal as similar results

are obtained for the coupled model that does not include the seal.

Thesis XLTRCZ2 Model

Coupled Rotor-Casing Model
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Figure 100 Coupled XLTRC? rotor- XLTRC? axisymmetric casing model
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Rotor
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coupled rotor-casing model - symmetrical casing

Figure 101 Coupled XLTRC? rotor- ANSYS axisymmetric casing model

Table 10 shows the natural frequencies of the first three modes in the coupled

rotor—axisymmetric casing models compared with XLTRC? rotor-only model, seen in

Table 9. XLTRC? can currently model axisymmetric casings. For reference, the first four

natural frequencies of the casing-only model are shown in APPENDIX B. The

comparison between the model that uses the XLTRC? axisymmetric casing and the one

that uses the ANSYS axisymmetric casing is to ensure the validity of the existing

modeling method in XLTRC?. The eigenvalues observed in the both the symmetrical

coupled models are the same in the X —Z plane and Y —Z plane. The modes calculated

are at a rotor running speed of 3600 rpm.

Table 10 Natural frequency of first three modes in coupled rotor-axisymmetric
casing model compared with XLTRC? rotor-only model

Mode | Coupled XLTRC? rotor— | Coupled XLTRC” rotor— XLTRC?
XLTRC? axisymmetric ANSYS axisymmetric rotor-only model
casing model casing model
Log Dec Frequency Log Frequency Log | Frequency
(rpm) Dec (rpm) Dec (rpm)
1 0.95 1811.3 0.98 1804.3 | 1.65 2430.5
2 2.20 2167.9 2.21 2139.1 | 3.29 2508.3
3 3.50 3435.2 3.57 3429.7 1 1.29 3774.1
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The results of the coupled XLTRC? rotor-XLTRC? axisymmetric casing model
and the XLTRC? rotor-ANSYS axisymmetric casing show that they are very close to
each other. Both these models use the same rotor and the casings are built with the same
dimensions. Hence it is expected that the results be similar. This establishes that the use
of the ANSYS data with the XLTRC? model is valid and correct. For the remainder of
this thesis the XLTRC? rotor-ANSY'S axisymmetric casing model will be referenced and
mentioned as coupled rotor-axisymmetric casing model.

Now on comparing the coupled rotor-axisymmetric casing models with the rotor-
only model, it can be seen that the first three modes show a decrease in critical speeds
which can be attributed to the following. The stiffness of the bearings connecting the
rotor to the casing and the stiffness of the foundation supports are similar to each other
in the order of 10° N/m. The two stiffness models act as springs in series which results in
lower combined stiffness. This causes the critical frequency of the rotor in the coupled
model to drop. The change in critical speeds is an indication that the casing influences
the rotordynamic performance of the rotor. Log decs associated with the first two critical
speeds of the coupled model show a decrease when compared with the XLTRC? rotor-
only model and this indicates that the effective damping is less. However for the third
critical speed, the log dec is observed to the higher for the coupled model. As seen in
Figure 96(c), the rotor shows high deflection near the seals at the third critical speed.
Figure 102(c) shows the same characteristic with the casing included. There is a higher
relative motion between the rotor and the casing and the effective damping that is
present in the model increases when the relative motion increases. This is the reason for
the higher log dec observed.

Figure 102 (a) through Figure 102 (c) show the rotor mode shapes for the first
three modes. The casing structure can also be seen in these figures. Comparing these to
the mode shapes observed in the rotor-only model, seen in Figure 96 (a) through Figure
96 (c), indicates that they are similar. While the overall stiffness supporting the rotor has
reduced, the deflected shape of the rotor for a particular mode does not differ by a large

extent due to the symmetry of the casing.
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(a) Mode Shape 1
Frequency = 1804.3 rpm
Running Speed = 3600 rpm
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(b) Mode Shape 2
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Running Speed = 3600 rpm
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Figure 102 Damped critical speed mode shape.
(a) First mode at 1804.3 rpm (30.07 Hz)
(b) Second mode at 2139.1 rpm (35.65 Hz)
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(C) Mode Shape 3
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Figure 102 Continued
(¢) Third mode at 3429.7 rpm (57.16 Hz)

4.2.2 Coupled Rotor—Non-Axisymmetric Casing Model Damped Modes

The casing data of the ANSY'S non-axisymmetric casing is incorporated with the
XLTRC? rotor model and a damped critical speed analysis is performed. This section
describes the configuration with the seal. Similar results are observed for the coupled
rotor-non-axisymmetric casing model configuration that does not include the seal.
However these results are not presented in this thesis for brevity. Additionally, the
previous section 4.2.1 showed that the coupled XLTRC? rotor-XLTRC? axisymmetric
casing model and the XLTRC? rotor-ANSYS axisymmetric casing model have similar
results. Therefore only results of the coupled XLTRC? rotor-ANSYS axisymmetric
casing are used here for comparison.

Natural frequencies of the first three modes are shown in Table 11. In the
coupled rotor-non-axisymmetric model, one set of eigenvalues are generated. The modes
observed are at the rotor running speed of 3600 rpm. Table 11 also shows the
frequencies seen in the coupled rotor-axisymmetric casing model and XLTRC? rotor-

only model. These values are presented for comparison.
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Table 11  Natural frequency data of first three modes in coupled rotor—-non-
axisymmetric casing model compared with earlier models
Mode | Coupled rotor—-non- Coupled rotor— XLTRC?
axisymmetric casing axisymmetric casing rotor-only model
model model
Log Dec | Frequency | Log Dec | Frequency | Log Dec | Frequency
(rpm) (rpm) (rpm)
1 0.87 1785.7 0.98 1804.3 1.65 2430.5
2 2.01 2100.8 2.21 2139.1 3.29 2508.3
3 3.43 3368.1 3.57 3429.7 1.29 3774.1

The rotor mode shapes for the first three modes with a non-axisymmetric casing
can be seen in Figure 103 through Figure 105. The casing structure can also be seen in
these figures. The eigenvectors shown in these figures have components in the X —Z
and Y —Z planes, and the eigenvectors in each of these planes are different. In other
words, the rotor has a slightly different mode shape in each of these planes.

When compared to the XLTRC? rotor-only model, the first three modes show a
decrease in critical speeds. This is similar to the behavior shown by the coupled rotor-
axisymmetric casing model, described in section 4.2.1 The lower combined stiffness.
leads to lower critical frequency of the rotor in the coupled model. Log decs associated
with the modes also show the same behavior. The first two critical speeds of the coupled
model show a decrease in log decs when compared with the XLTRC? rotor-only model
which indicates lower effective damping. The third critical speed shows a higher log dec
when compared with the XLTRC? rotor-only model. This is because the higher relative
motion between the rotor and the casing, as seen in Figure 105, results in more effective
damping. Table 11 also indicates a small change in frequencies of the coupled rotor-non-
axisymmetric model when compared to the coupled rotor-axisymmetric model. This
shows that using a non-axisymmetric casing model, where necessary, will produce

different results.
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Figure 103 First damped critical speed mode shape for the coupled rotor-non-
axisymmetric casing model.
(a) 1785.7 rpm (29.76 Hz) as observed in the X-Z plane
(b) 1785.7 rpm (29.76 Hz) as observed in the Y-Z plane
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Mode Shape 2 — X-Z plane
(a) Frequency = 2100.8 rpm
Running Speed = 3600 rpm
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Mode Shape 2 — Y-Z plane
(b) Frequency = 2100.8 rpm
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Figure 104 Second damped critical speed mode shape for the coupled rotor-non-
axisymmetric casing model.
(a) 2100.8 rpm (35.01Hz) as observed in the X-Z plane
(b) 2100.8 rpm (35.01Hz) as observed in the Y-Z plane
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(a) Mode Shape 3 — X-Z plane
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Mode Shape 3 — Y-Z plane
(b) Frequency = 3368.1 rpm
Running Speed = 3600 rpm
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Figure 105 Third damped critical speed mode shape for the coupled rotor-non-
axisymmetric casing model.
(a) 3368.1 rpm (56.14 Hz) as observed in the X-Z plane
(b) 3368.1 rpm (56.14 Hz) as observed in the Y-Z plane
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4.2.3 Coupled Rotor—Casing Model Unbalance Response

This section describes the unbalance response analysis performed with the
coupled XLTRC*-rotor and ANSYS axisymmetric casing model as well as the coupled
XLTRC?-rotor and ANSYS non-axisymmetric casing model. In order to evaluate any
change in unbalance response observed, the results obtained from these two models are
compared with the XLTRC? rotor-only model which does not include the effect of the
casing. Two separate configurations are used. In the first configuration there is no seal
connection to the rotor. In other words, the rotor is supported only by the two bearings.
In the second configuration, the seal is used. For the XLTRC? rotor-only model, the seal
connection is to ground whereas in the other two models, the seal connects the rotor to
the casing. Note that only one unbalance case is presented here — mid-span unbalance
applied to the rotor. The unbalance response measured at the rotor mid-span location is
shown for all the three models. The other cases that involved rotor-ends unbalance and
response at the bearing 1 and bearing 2 locations are found to be similar in nature and
are hence not presented. The unbalance amount and configurations used are the same as
described in section 4.1.4.

Figure 106(a) and Figure 106(b) shows the rotor unbalance response at the
midspan location along the horizontal and vertical directions, respectively, for the
configuration that does not use the seal connection. These responses are in absolute rotor
coordinates and not relative to the casing. The XLTRC? rotor-only model shows a
resonance at about 3000 rpm. The rotor unbalance response in the axisymmetric and
non- axisymmetric casing models show a peak at a frequency of 1900 rpm. There is a
drop in the resonant frequency and can be attributed to the following. The stiffness of the
bearings connecting the rotor to the casing and the stiffness of the foundation supports
are similar to each other in the order of 10® N/m. The two stiffness models act as springs
in series which results in lower combined stiffness. This causes the critical frequency of
the rotor to drop. A similar behavior is observed at the second resonance. The XLTRC?
rotor-only model shows a resonance at about 5100 rpm, whereas the models which have

the casing have a lower resonant frequency.



135

(3) Horizontal Unbalance Response at Rotor midspan
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(b) Vertical Unbalance Response at Rotor midspan
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Figure 106 Rotor response at mid span location (without seal configuration)
(a) Horizontal response (b) Vertical response

Figure 107(a) and Figure 107(b) shows the rotor unbalance response at the
midspan location along the horizontal and vertical directions, respectively, for the
configuration that uses the seal connection. These responses are in absolute rotor
coordinates and not relative to the casing. The resonances follow the similar trend as
those seen in the above case. The frequency is slightly higher than that seen in the case
that does not use the seal and the reason is the damping provided by the seal. Also note
that while the damping raised the critical frequency, it also brought the resonance of the

XLTRC? rotor-only model closer to the running speed of 3600 rpm thus reducing the
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separation margin. A decrease is seen in the rotor unbalance response amplitude in the
axisymmetric and non- axisymmetric casing models, when compared to the
configuration that does not use the seal. For both the horizontal and vertical responses,

the resonant frequency of the coupled model is less than that seen in the XLTRC? rotor-

only model.
(a) Horizontal Unbalance Response at Rotor midspan
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Figure 107 Rotor response at mid span location (without seal configuration)
(a) Horizontal response (b) Vertical response
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A comparison is also made for the rotor relative to casing amplitudes. This
comparison is important because high relative amplitude could indicate that the rotor and
casing are moving in opposing directions. Such a condition can lead to rubs. Small
relative response amplitude can mean that the rotor and casing are moving in phase with
each other. The relative response in horizontal and vertical directions for the
configuration without the seal is shown in Figure 108(a) and Figure 108 (b),
respectively. Likewise, responses for the configuration with the seal are shown in Figure
109(a) and Figure 109(b). These figures show that in both the axisymmetric and non-
axisymmetric models, there is a higher relative response at the resonant frequencies. As
the running speed increases, the relative response is higher.

The impact of using a coupled rotor-casing model, in particular the non-
axisymmetric casing model, is evident in the results presented in this section. This shows
that including a full-scale non-axisymmetric model can produce significantly different
predictions than an approximated symmetric model.

The results obtained in XLTRC? by incorporating the reduced non-axisymmetric
casing structure are verified in ANSYS. The ANSYS source code used for verification is

included in APPENDIX E.
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(a) Rotor relative to Casing Horizontal Unbalance Response at
midspan
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Figure 109 Rotor relative to casing response (with seal)
(a) Horizontal response (b) Vertical response

4.2.4 Seal Connected to Casing versus Seal Connected to Ground

Moore, et al. [18] uses a high-order polynomial in numerator-denominator
transfer function format to model the connection between the rotor and ground for a
large industrial turbo-compressor. Although this approach models the connections
between the rotor and casing at the bearings, it erroneously leaves the connections at
seals from rotor to ground, not rotor to casing.

In order to answer the question about the validity of connecting the seal from

rotor to casing (Figure 110) versus rotor to ground (Figure 111), this section studies the
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two cases in which the seal can be connected. For the remaining of this section, the case

with seal connection from rotor to casing will be referred as Case I and the case with seal

|

connection from rotor to ground will be referred as Case II.

Seal connected between
rotor and casing

Figure 110 Representation of seal connected between rotor and casing

|

Seal connected between
rotor and zround

Figure 111 Representation of seal connected between rotor and ground

The results presented in this section pertain to the mid-span unbalance
configuration and uses the non-axisymmetric casing. Rotor-end unbalance
configurations and the axisymmetric casing show similar results but are not presented.
Figure 112 through Figure 114 shows the horizontal and vertical responses of the rotor at

the bearing 1, mid span, and bearing 2 locations, respectively. For case I, the first critical
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response is predicted at a lower speed and its amplitude is higher when compared to
Case II. Since the relative rotor to casing response is smaller at the first critical, as seen
earlier in section 4.2.3, the effective damping provided by the seal is less. This explains
the higher amplitude. As the speed increases, there is higher relative rotor to casing
motion. The damping provided by the seal is now more effective and hence the response
seen in case | is lower. The response of case II follows the similar profile as case I, with
the exception that it over predicts the first critical response speed. At all other running
speeds case II nearly coincides with the location of the critical responses reported by
case I, but has higher response amplitudes. Similar trends can be seen in all the figures.

From the two cases presented in this section, it is clear that having the seal
connection from rotor to ground shows different predictions in the first critical response
location and response amplitudes. It is evident that making the seal connection from
rotor to casing versus rotor to ground has a difference on the dynamic response of the
system. This is because the dynamics of the casing structure now comes into effect. This
has a potential significance in injection compressors with hole-patter-stator seals where
the balance-piston or division-wall seals can be as stiff as the bearings.

As seen in the section 4.2.3, the first mode has less relative rotor-casing
amplitude and hence the connection of seal to ground does not make a difference. At the
second critical speed, there is large relative rotor-casing amplitude and hence the seal
connected to ground shows more difference in amplitude. This is important in labyrinth
seals where having large relative motion at the seals can produce large destabilizing
forces on the rotor. The general effect of including the casing structure was also

observed by Moore, et al, as seen in Figure 17.
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Figure 112 Unbalance response at bearing 1 location
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142



143

(a) Horizontal Rotor Unbalance Response at Midspan location
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Figure 113 Unbalance response at mid span location
(a) Horizontal response (b) Vertical response
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(a) Horizontal Rotor Unbalance Response at Bearing 2 location
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(b) Vertical Rotor Unbalance Response at Bearing 2 location
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Figure 114 Unbalance response at bearing 2 location
(a) Horizontal response (b) Vertical response
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5 CONCLUSION

Research is conducted to extend the capabilities of the beam-element based
XLTRC? rotordynamic software suite to accept a general 3D finite-element casing
model. This study broadens the work done by Clark and Jurjevic [17]. ANSYS serves as
a powerful tool to model complex axisymmetric and non-axisymmetric casing structures.
Using component mode synthesis reduction technique, reduced casing structure modal
information is generated. Algorithms are developed that provided the necessary interface
for the data to be incorporated with XLTRC?,

Various validation steps are conducted to certify the techniques and algorithms
used. The existing beam—element based modeling is verified for rotor and casing
structure by comparing critical speeds and mode shapes. The current use of
axisymmetric casing structures is verified by direct comparison of results obtained from
XLTRC? and ANSYS. The impact of the non-axisymmetric casing is evident in the
results presented. When the relative response amplitude between a rotor and casing is
low, including the casing in the analysis may not have a significant benefit. However,
cases in which there is high relative amplitude between the rotor and casing are common
in industrial applications and not including the casing can produce erroneous predictions.

The work presented by Moore, et al. [18] posed the question of validity of
analysis when a seal connection is involved. The comparison of connecting a seal
between rotor and casing versus connecting the seal between rotor and ground, presented
in this thesis, shows that the relevance of seal connection between rotor and casing
depends on the relative amplitudes between the rotor and casing. If it is significant and
the seal forces are large, then leaving a seal connection to ground will not produce
accurate results.

Overall, this work has opened a new area of analysis in XLTRC?. Casing models
can now be modeled more accurately. Combined with the speed and user-friendliness of

XLTRC?, this will be an effective tool for future analyses.
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APPENDIX A

VALIDATION OF SIMULATION TOOLS

A verification test is required to make sure that the results obtained by the
different simulation tools agree with each other. A solid cylindrical model is tested in
XLTRC?, ANSYS Classic using APDL and ANSYS Workbench and the results are
compared. The beam is 2.25 m (88.58 in) in length, has a diameter of 0.3 m (11.81 in)

and uses the following material properties.

Density (p) 7833.412 kg/m’ (0.283 Ibm/in’ )

Elastic Modulus (E) 206.842E+9 N/m’  (30.0E+6 Ibf/in’)

Shear Modulus (G) = 82.737E+9 N/m’  (12.0E+6 Ibf/in®)

XLTRC? and ANSYS Classic models are divided into 200 beam elements, as
shown in Figure 115 and Figure 116 respectively, whereas ANSYS Workbench used
solid elements as shown in Figure 117. Figure 116 shows the graphical representation as
a series of cube-shaped elements. Table 12 shows the first 5 bending modes'' which
show excellent agreement with each other. Figure 118 through Figure 132 shows the

mode shapes of the first 5 bending modes.

Table 12 First five bending mode frequencies compared to XLTRC? results

Mode XLTRC? ANSYS Percentage ANSYS Percentage
Classic (Hz) | Change (%) | Workbench (Hz) change
1 259.42 260.97 0.59 259.54 0.05
2 666.78 666.12 -0.09 667.73 0.14
3 1201.87 1203.70 0.15 1204.90 0.25
4 1814.37 1814.50 0.01 1821.00 0.37
5 2472.83 2470.00 -0.11 2484.30 0.46

" XLTRC? uses 2D beam elements and does not have degrees of freedom along the axial direction. Hence
axial bending modes from the ANSYS Classic and ANSYS Workbench results are ignored. Note that any
comparisons between XLTRC? and ANSYS mentioned in this thesis does not account for axial modes.
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Free-Free 2-D Mode Shape Plot

C\WX Frade LF Compressor
Core Ends In Fhase Unbalance

1.5
1 —m— Re(x)
—— Imix)
Re(y)
—=— Im(y)
f=259.4 Hz
N= rpm

Axial Location, meters

Figure 118 First bending mode of XLTRC? model (259.42 Hz)
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Figure 120 First bending mode of ANSYS Workbench model (259.54 Hz)
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Figure 122 Second bending mode of ANSYS Classic model (666.12 Hz)
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Figure 123 Second bending mode of ANSYS Workbench model (667.73 Hz)
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Free-Free 2-D Mode Shape Plot
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Figure 124 Third bending mode of XLTRC” model (1201.87 Hz)

Figure 125 Third bending mode of ANSYS Classic model (1203.70 Hz)
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Figure 126 Third bending mode of ANSYS Workbench model (1204.90 Hz)
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Free-Free 2-D Mode Shape Plot
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Figure 127 Fourth bending mode of XLTRC? model (1814.37 Hz)
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Figure 129 Fourth bending mode of ANSYS Workbench model (1821.00 Hz)
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Free-Free 2-D Mode Shape Plot
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Figure 130  Fifth bending mode of XLTRC? model (2472.83 Hz)
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Figure 131 Fifth bending mode of ANSYS Classic model (2470.00 Hz)
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Figure 132 Fifth bending mode of ANSYS Workbench model (2484.30 Hz)
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APPENDIX B

MESH DENSITY VALIDATION FOR CASING MODEL

To determine an acceptable mesh density in the XLTRC? casing model, three test
casing models are made. The first case uses ANSYS solid elements, as illustrated in
Figure 133, and has 19,225 elements. The second case, made of XLTRC? beam
elements, uses low mesh density of 14 elements, seen in Figure 134. The third case, also
made with XLTRC? beam elements, has a higher mesh density of 160 elements, shown

in Figure 135.

Table 13 shows comparison of the first four bending modes. It shows that the
higher mesh density XLTRC? model is closer in agreement with the ANSYS results than
the one with lower mesh density. The high mesh density XLTRC* model is therefore
used. Figure 136 through Figure 147 show the similar mode shapes.

R
g i

5
1

0.000 1,000 {m) ‘/I\
[ z %

0.500

Figure 133 ANSYS solid element casing model
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Table 13 Comparison of first four bending mode frequencies (in Hertz)

Mode ANSYS XLTRC® Percentage XLTRC® Percentage
Low Mesh Change (%) High Mesh Change (%)
1 224 .37 227.96 1.60 226.82 1.09
2 515.99 549.05 6.41 522.15 1.19
3 732.80 784.03 6.99 755.73 3.12
4 978.87 1190.39 21.61 1031.64 5.39
Thesis XLTRCZ hodel
Casing Model {Low Mesh Density)
1.2
0.8
5 os H
L)
£
%;- D o — o o  m— o o mm—— E e E = m m— m e e mm— E m— E e E e m e m e m m— E e m —— = m—
2
&
"‘,_E' -0.4
»
—am
=il t
u] 0.2 & 2.4 3.2 4
Axial Location, meters

Figure 134 Low mesh density XLTRC? beam element casing model
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Figure 135 High mesh density XLTRC? beam element casing model

158



0.01018
0.0081848
0.0061494
0.0041339
0.0021138
0.00010303 Min

.LL
0,000 1,000 {m} z
[ |

0,500

Figure 136 ANSYS model first bending mode at 224.37 Hz
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Figure 137 XLTRC? low mesh density first bending mode at 227.96 Hz
’ 5 B ™
Free-Free 2-D Mode Shape Plot
Thesis XLTRCZ Model
e Zasing Model {High Mesh Density)
1 —8— Relx)
0.5 —— Imix)
—&— Rely)
0
—=—Imiy}
0.5 4
-1
f=226.8 Hz
1.5 N=1000 rpri
Axial Location, meters
., v,

Figure 138 XLTRC? high mesh density first bending mode at 226.82 Hz
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Figure 139 ANSYS model second bending mode at 515.99 Hz
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Figure 140 XLTRC” low mesh density second bending mode at 549.05 Hz
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Figure 141 XLTRC? high mesh density second bending mode at 522.15 Hz
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ANSYS model third bending mode at 732.80 Hz
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Figure 143 XLTRC? low mesh density third bending mode at 784.03 Hz
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Figure 144 XLTRC? high mesh density third bending mode at 755.73 Hz
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ANSYS model fourth bending mode at 978.87 Hz
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Figure 146 XLTRC? low mesh density fourth bending mode at 1190.39 Hz
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Figure 147 XLTRC? high mesh density fourth bending mode at 1031.64 Hz
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APPENDIX C

CASING MODEL VALIDATION FOR END SUPPORT

Figure 148 shows the original ANSYS axisymmetric geometry for the casing
model. Figure 149 shows the model after additional surface have been created to provide
the interface to connect foundation supports to ground. Table 14 shows comparison of

the first seven free-free mode frequencies.

1,000 {m)

' [ —
@ 0,500

Figure 148 ANSYS axisymmetric casing model with original geometry
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Figure 149 Above model with additional surfaces on end supports

Table 14 Comparison of first seven Free-Free mode frequencies
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. . Model with additional Percentage
Mode Original Model surfaces Change (‘;gA) )
1 224.80 224.37 0.19
2 224.83 224.38 0.20
3 332.55 332.05 0.15
4 437.34 437.04 0.07
5 437.38 437.21 0.04
6 515.61 514.98 0.12
7 516.63 515.99 0.12
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APPENDIX D

ROTOR MODEL VALIDATION

The simplest method to validate the rotor model is to perform a Free-Free modal
analysis. Free-Free modes are the resonant frequencies obtained when an object is
subjected to a strike. The resonant frequencies obtained from such a test are also called
fundamental frequencies. The effect of all bearings and seals are excluded in such an
analysis. If rotor gyroscopic effects are included, then the Free-Free modes are a
function of the rotor speed. Field hammer test data are usually done on freely suspended
rotors and hence do not include gyroscopic effects. XLTRC? and ANSYS have the
capability of including or excluding these gyroscopic effects. For the purpose of this
validation, gyroscopic effects are not included.

Table 15 shows a comparison of the frequencies (in Hertz) corresponding the
first five bending modes of the rotor. The values show excellent agreement between
XLTRC? and ANSYS codes. Figure 150 through Figure 159 show the mode shapes
obtained in ANSYS and XLTRC? which also show excellent agreement. This completes

the validation step for the rotor.

Table 15 Free-Free bending modes frequencies compared between ANSYS and
XLTRC?

Mode ANSYS XLTRC? Percentage
(Hz) (Hz) Difference (%)
1 102.57 102.59 0.02
2 211.31 211.41 0.05
3 335.66 335.88 0.07
4 502.00 502.34 0.07
5 659.77 660.43 0.01
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Figure 150 ANSYS first bending mode at 102.57 Hz
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Figure 151 XLTRC? first bending mode at 102.59 Hz
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Figure 152 ANSYS second bending mode at 211.31 Hz
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Figure 153  XLTRC’ second bending mode at 211.41 Hz
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Figure 154 ANSYS third bending mode at 335.66 Hz
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Figure 155 XLTRC? third bending mode at 335.88 Hz
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Figure 156 ANSYS fourth bending mode at 502.00 Hz
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Figure 157 XLTRC? fourth bending mode at 502.34 Hz
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Figure 159  XLTRC? fifth bending mode at 660.43 Hz
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APPENDIX E

APDL SOURCE CODE
E.1 Rotor Model
!
! *
I* PROJECT : Thesis
1* PROJECT TITLE : Rotor Analysis
! *
1* AUTHOR : Stephen James
! *
1* OBJECTIVE : 1) Build rotor model of XLTRC2 Rotor and save database
1> 2) Compare Free-Free modes to ensure model validity
1 * * *
FINISH
/CLEAR, START

/input,startl10,ans, "C:\Program Files\Ansys Inc\v110\ANSYS\apdI\",,,,,.555555355251

/TITLE,Thesis Rotor Model
/FILNAME, rotor_pz,1
/UNITS, SI

/GRAPHICS, POWER

/0UT, ,0UT

/PREP7
/ESHAPE, 1
/VIEW,1,1,1,1
/ANG, 1

/REP ,FAST
/PBC,ALL, ,1

6=9.81 1Gravity
RPM = 2000

W=(RPM)*3.14159/30 IChange to Omega for Gyroscopics

I MATERIAL PROPERTIES START HERE
RN RN R RN R RN AR RN RN

IMaterial 1 Properties
MP,EX,1,206.8423E+09
MP,PRXY,1,0.3

MP,DENS,1,7833.412
TRRRRRRR R R RN nEnerInnnet

I MATERIAL PROPERTIES END HERE
RN RN RN R RN AR RN RN

1 Beam Model

ET,101,BEAM4

KEYOPT,101,2,0
KEYOPT,101,6,0
KEYOPT,101,7,1
KEYOPT,101,9,0
KEYOPT,101,10,0

1 Added Mass

ET,102,MASS21
KEYOPT,102,1,0
KEYOPT,102,2,0
KEYOPT,102,3,0



I REAL CONSTANTS FOR ENTIRE MODEL START HERE
AR RN R RN R AR RN R NNy

I *** SHAFT REAL CONSTANTS ***
R,1,3.1416E-02,7.8540E-05,7.8540E-05,2.0000E-01,2.0000E-01,0.0000E+00
RMORE,0.0000E+00,3.0762E-01,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00
R,2,3.1416E-02,7.8540E-05,7.8540E-05,2.0000E-01,2.0000E-01,0.0000E+00
RMORE,0.0000E+00,1.8457E-01,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00
R,3,7.0686E-02,3.9761E-04,3.9761E-04,3.0000E-01,3.0000E-01,0.0000E+00
RMORE, 0.0000E+00,2.1802E+00,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00
R,4,4.9087E-02,1.9175E-04,1.9175E-04,2.5000E-01,2.5000E-01,0.0000E+00
RMORE,0.0000E+00,3.0041E-01,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00
R,5,4.9087E-02,1.9175E-04,1.9175E-04,2.5000E-01,2.5000E-01,0.0000E+00
RMORE,0.0000E+00,3.0041E-01,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00
R,6,7.0686E-02,3.9761E-04,3.9761E-04,3.0000E-01,3.0000E-01,0.0000E+00
RMORE,0.0000E+00,6.2293E-01,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00
R,7,7.0686E-02,3.9761E-04,3.9761E-04,3.0000E-01,3.0000E-01,0.0000E+00
RMORE,0.0000E+00,3.1146E-01,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00
R,8,1.2566E-01,1.2566E-03,1.2566E-03,4.0000E-01,4.0000E-01,0.0000E+00
RMORE, 0.0000E+00,7.8750E+00,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00
R,9,1.2566E-01,1.2566E-03,1.2566E-03,4.0000E-01,4.0000E-01,0.0000E+00
RMORE, 0.0000E+00,3.9375E+00,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00
R,10,1.2566E-01,1.2566E-03,1.2566E-03,4.0000E-01,4.0000E-01,0.0000E+00
RMORE,0.0000E+00,4.9219E+00,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00
R,11,1.2566E-01,1.2566E-03,1.2566E-03,4.0000E-01,4.0000E-01,0.0000E+00
RMORE, 0.0000E+00,2.4609E+00,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00
R,12,1.2566E-01,1.2566E-03,1.2566E-03,4.0000E-01,4.0000E-01,0.0000E+00
RMORE, 0.0000E+00,2.4609E+00,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00
R,13,1.2566E-01,1.2566E-03,1.2566E-03,4.0000E-01,4.0000E-01,0.0000E+00
RMORE, 0.0000E+00,4.9219E+00,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00
R,14,1.2566E-01,1.2566E-03,1.2566E-03,4.0000E-01,4.0000E-01,0.0000E+00
RMORE, 0.0000E+00,4.9219E+00,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00
R,15,1.2566E-01,1.2566E-03,1.2566E-03,4.0000E-01,4.0000E-01,0.0000E+00
RMORE, 0.0000E+00,2.9531E+00,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00
R,16,1.2566E-01,1.2566E-03,1.2566E-03,4.0000E-01,4.0000E-01,0.0000E+00
RMORE, 0.0000E+00, 7 .8750E+00,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00
R,17,7.0686E-02,3.9761E-04,3.9761E-04,3.0000E-01,3.0000E-01,0.0000E+00
RMORE,0.0000E+00,6.2293E-01,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00
R,18,7.0686E-02,3.9761E-04,3.9761E-04,3.0000E-01,3.0000E-01,0.0000E+00
RMORE ,0.0000E+00,6.2293E-01,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00
R,19,4.9087E-02,1.9175E-04,1.9175E-04,2.5000E-01,2.5000E-01,0.0000E+00
RMORE,0.0000E+00,3.0041E-01,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00
R,20,4.9087E-02,1.9175E-04,1.9175E-04,2_.5000E-01,2.5000E-01,0.0000E+00
RMORE ,0.0000E+00,3.0041E-01,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00
R,21,7.0686E-02,3.9761E-04,3.9761E-04,3.0000E-01,3.0000E-01,0.0000E+00
RMORE, 0.0000E+00,2.1802E+00,1.1100E+00,1.1100E+00,2.0944E+02,0.0000E+00

1 *** ADDED MASS REAL CONSTANTS ***
R,230,120,120,120,5,5,5
R,231,100,100,100,10,10,20
R,232,100,100,100,10,10,20
R,233,1000,1000,1000,100,100,175
R,234,1000,1000,1000,100,100,175
R,235,1000,1000,1000,100,100,175
R,236,100,100,100,10,10,20

RN RN R R RN R R AR NN NN A an

I REAL CONSTANTS FOR ENTIRE MODEL END HERE
RN R R R R RN R R N

I NODE DEFINITIONS START HERE
TRRRRRR RN R RN RN rnnnnt
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1.95000
2.07500
2.20000
2.45000
2.70000
2.85000
3.25000
3.35000
3.45000
3.55000
3.65000
4.00000

=NNNRRRRRRRR R
=NRPOOO~NOUAWNR

TYPE, 101
I *** SHAFT ELEMENTS ***

MAT,1
REAL, 10
E,10,11
MAT, 1
REAL,11
E,11,12
MAT, 1
REAL, 12
E,12,13
MAT,1
REAL, 13
E,13,14
MAT,1
REAL , 14
E,14,15
MAT, 1
REAL , 15
E,15,16
MAT, 1
REAL , 16
E,16,17
MAT, 1
REAL,17
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E,17,18
MAT,1
REAL , 18
E,18,19
MAT, 1
REAL, 19
E,19,20
MAT, 1
REAL , 20
E,20,21
MAT,1
REAL,21
E,21,22

TYPE, 102
MAT,1

1 *** ADDED MASS ELEMENTS ***
REAL , 230

E,2

REAL , 231

REAL ,233
E,13
REAL ,234

E,15
REAL ,236
E,16

I ELEMENT DEFINITIONS END HERE
AR R RN RN RN RN R nnY!

CSYS, O
/NUMBER, 1
/PNUM,REAL ,1
/REPLOT
EPLOT

ALLSEL ,ALL
CM,ROTOR, ELEM

/PREP7
TLIST ALL NODES TO OUTPUT FILE FOR REFERENCE
NLIST,ALL, , , ,NODE,NODE,NODE

; Enter solution processor for static analysis to include pre-stress effects
SOLU

ANTYPE, STATIC,NEW

PSTRES,ON

CORIOLIS,ON, , ,ON

CMOMEGA,ROTOR, , , W

SOLVE

FINISH

1 Enter solution processor for modal analysis
/S0oLU

ANTYPE , MODAL

MODOPT , QRDAMP, 60

MXPAND , 60

DMPRAT,0.0

PSTRES,ON

CORIOLIS,ON, , ,ON

CMOMEGA,ROTOR, , , W

SOLVE

FINISH
/EOF
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E.2 Substructure Algorithm for Axisymmetric Casing Model

I* PROJECT : Thesis

1* PROJECT TITLE : Axisymmetric Casing Substructuring Analysis

!*

1* AUTHOR : Stephen James

!*

1* OBJECTIVE : 1) Define bearing center nodes and constrained locations
1> 2) Create substructure of axisymmetric casing model
!*

L

*

FINISH

1 Header

/TITLE,Axisymmetric Casing

/CLEAR,START

/input,startl10,ans, "C:\Program Files\Ansys Inc\v110\ANSYS\apdI\",,,,,,55555555551
/FILNAME, symmcas, 1

/UNITS, SI

/GRAPHICS, POWER

/0UT, ,0UT

I Resume casing model
RESUME

/PREP7

/ESHAPE, 1
/VIEW,1,1,1,1

/ANG, 1

/REP,FAST
/PBC,ALL, ,1

EPLOT

Tdefine matl props for rigid beams
MP,DENS,2000,0.01

Idefine beam element type

ET,2000,MPC184

KEYOPT,2000,1,1 1 Rigid Beam Behavior

KEYOPT,2000,2,0 I Direct elimination reduction method

Iswitch to global coor system first
CSYs,0

I Create center nodes
I Bearing 1
N,500005,0.0,0.0,0.850
1 Seal location
N,500012,0.0,0.0,2.075
1 Bearing 2
N,500020,0.0,0.0,3.550

Imesh rigid connections
TYPE, 2000
MAT, 2000

1 Bearing 1

E,500005, 35898
E,500005,27789
E,500005,27439
E,500005, 33877

I Seal
E,500012,33394
E,500012,24644



E,500012,24562
E,500012,5690

1 Bearing 2

E,500020,25653
E,500020,27109
E,500020,26035
E,500020,23672

I Delete the existing constraints on the casing model so that
I CMS includes these coordinates in the substructure.

DDELE,36724,ALL,36738,2

I Select center nodes as master dof
M,500005,ALL
M,500012,ALL
M,500020,ALL

I Select constraint locations as master dof
M,36724,ALL
M,36726,ALL
M,36728,ALL
M,36730,ALL
M,36732,ALL
M,36734,ALL
M,36736,ALL
M,36738,ALL

EPLOT
/AUTO, 1
/REP ,FAST
/TRIAD,RBOT

I Show coordinate system on display
/PSYMB,CS,1

I Enter solution processor for substructure analysis
/SOLU

ANTYPE, SUBSTR

1 Specify CMS reduction option

CMSOPT,FI1X,15,,,

SEOPT,SYMMCAS,2,1,0, RESOLVE

EQSLV, SPARSE

1 Create substructure file listing
SOLVE
SELIST, ,0

FINISH
/0UT
/EOF
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E.3 Substructure Algorithm for Non—-Axisymmetric Casing Model

I* PROJECT : Thesis

1* PROJECT TITLE : Non-axisymmetric Casing Substructuring Analysis

!*

1* AUTHOR : Stephen James

!*

1* OBJECTIVE : 1) Define bearing center nodes and constrained locations
1> 2) Create substructure of non-axisymmetric casing model
!*

! * * *

FINISH

I Header

/TITLE,Non-axisymmetric Casing

/CLEAR,START

/input,startll0,ans, "C:\Program Files\Ansys Inc\v110\ANSYS\apdI\~",,...,.,..:55555-1
/FILNAME, nsymmcas, 1

/UNITS, SI

/GRAPHICS, POWER

/0UT, ,0UT

1 Resume casing model
RESUME

/PREP7

/ESHAPE, 1
/VIEW,1,1,1,1

/ANG, 1

/REP ,FAST
/PBC,ALL, ,1

EPLOT

ITdefine matl props for rigid beams
MP,DENS,2000,0.01

Idefine beam element type

ET,2000,MPC184

KEYOPT,2000,1,1 1 Rigid beam behavior

KEYOPT,2000,2,0 I Direct elimination reduction method

Iswitch to global coor system first
CSYs,0

I Create center nodes

! Drive End (DE) Bearing 1
N,500005,0.0,0.0,0.850

! Seal location
N,500012,0.0,0.0,2.075

1 Non-Drive End (NDE) Bearing 2
N,500020,0.0,0.0,3.550

Imesh rigid connections
TYPE, 2000
MAT, 2000

1 Bearing 1

E,500005,24298
E,500005,24470
E,500005, 23658
E,500005, 37521

1 Seal

E,500012,30742
E,500012,24186
E,500012,27404
E,500012,26300



I Bearing 2

E,500020,35147
E,500020, 6069
E,500020,5736
E,500020,5627

I Delete the existing constraints on the casing model so that
I CMS includes these coordinates in the substructure.

DDELE,39392,ALL,39406,2

1 Select center nodes as master dof
M,500005,ALL
M,500012,ALL
M,500020,ALL

1 Select constraint locations as master dof
M,39392,ALL
M,39394 ,ALL
M,39396,ALL
M,39398,ALL
M,39400,ALL
M,39402,ALL
M,39404 ,ALL
M,39406 ,ALL

EPLOT
/AUTO, 1
/REP ,FAST
/TRIAD,RBOT

1 Show coordinate system on display
/PSYMB,CS,1

1 Enter solution processor for substructure analysis
/S0oLu

ANTYPE , SUBSTR

I Specify CMS reduction option

CMSOPT, fix,15,,,

SEOPT,NSYMMCAS,2,1,0, RESOLVE

EQSLV, SPARSE

/EOF

1 Create substructure file listing
SOLVE

SELIST, ,0

FINISH

/0UT

/EOF

178



179

E.4 Unbalance Response Algorithm for Coupled Rotor and Non—Axisymmetric
Casing Model

I* PROJECT : Thesis

1* PROJECT TITLE : Coupled Non-Axisymmetric Rotor-Casing Analysis
!*

1* AUTHOR : Stephen James

!*

1* OBJECTIVE : 1) Import rotor and non-axisymmetric databases
1> 2) Use bearing and seal coefficients

1> 3) Calculate forced unbalance response of combined model
!*

!

FINISH

1 ** HEADER INFORMATION **

/CLEAR, START

/input,startl10,ans, "C:\Program Files\Ansys Inc\v110\ANSYS\apdI\",,,,,.,5525552251
/TITLE, COUPLED NON-AXISYMM ROTOR-CASING UNBAL RESP

! ** RESUME ROTOR MODEL **
RESUME, rotor_pz,DB

I Define rotor component as group of all existing elements in resumed rotor model
CM, ROTOR, ELEM

/FILNAME ,nsymm_rc_unbal ,1

I ** GRAPHIC SETTINGS **
/UNITS, SI

/GRAPHICS, POWER

/0UT, ,0UT

/PREP7
/ESHAPE, 1
/VIEW,1,1,1,1
/ANG, 1
/PBC,ALL, ,1
CSYS, O
/NUMBER, 1
/PNUM,NODE, 1
/PNUM,REAL ,1

I Define superelement and import casing model as a superelement
ET,3000,MATRIX50

TYPE, 3000

REAL,3000

SE,nsymmcas, ,,0.1

/REPLOT
EPLOT

I ** INPUT FOR UNBALANCE RESPONSE **
minrpm= 50 I minimum response speed in rpm
maxrpm= 4200 I maximum response speed in rpm
incrpm= 10 1 speed increment In rpm
MR8= 40000.00 Unbalance from XLTRC2 Model at station 8
MR17= 45000.00 I Unbalance from XLTRC2 Model at station 17

I ** UNBALANCE LOAD AND RESPONSE STATIONS **

ucase = 2 1 1 = Unbalance at mid-span station 12
1 2 = Unbalance at stations 8 and 17
inc_seal= 1 I 0 = DO NOT include seal model, 1 = include seal
ua = 8 I bearing 1 unbalance node number
ub = 12 I mid-span unbalance node number
uc = 17 1 bearing 2 unbalance node number
pra = 5 I bearing 1 probe node number on rotor - output station



pca=

prb
pcb
prc

pcc=

/PREP7

1 ** REAL

rbrgl
rbrg2

rtrndl
casndl

rtrnd2
casnd2

*IF, inc

*ENDIF

500005

500020

bearing 1 probe
seal probe node
seal probe node
bearing 2 probe
bearing 2 probe

CONSTANT DEFINITIONS **
real consant set number for bearing 1
real consant set number for bearing 2

1000
rbrgl+2

5

500005

20
500020

seal ,EQ,1,THEN

rtrnd3
casnd3

rsealK
rsealC
rsealM

I Call

2000
2001
2002

12

500012

to seal

rotor brgl node

casing brgl node

rotor brg2 node

casing brg2 node

node number on casing - output station
number on rotor - output station
number on rotor - output station
node number on rotor - output station
node number on casing - output station

! rotor seal node
1 casing seal node

macro

seal ,rsealK, rsealC,rsealM

1 ** GET STATION COORDINATES **
*GET,BRG1X,NODE, rtrndl1,LOC,X
*GET,BRG1Y,NODE, rtrndl1,LOC,Y
*GET,BRG1Z,NODE, rtrndl1,L0C,Z
*GET,BRG2Z ,NODE, rtrnd2,L0C,Z
*1F,inc_seal ,EQ,1,THEN
*GET,BRG3Z,NODE, rtrnd3,L0C,Z

*ENDIF

I ** ROTATION DIRECTION **
1 Check for +Z rotation vector - this insures that the shaft rotation
1 is always about the +Z axis

;IF,BRGlZ,GT,BRGZZ,THEN

*ELSE

*ENDIF

RTR1Z=BRG2Z
RTR2Z=BRG1Z

RTR1Z=BRG1Z
RTR2Z=BRG2Z

I Show local coordinate system (CS) and nodal CS symbols on display
/PSYMB,CS, 1
/PSYMB,NDIR, 1

I % QUTPUT ARRAY DEFINITIONS **

*AFUN,D

EG

*dim,UOUT ,array,1,2
ncol=(maxrpm-minrpm)/incrpm+1
*dim,rs,array,24,ncol
*dim,rsr,array,12,ncol
*dim,rsc,array,12,ncol

col=0

/PREP7

ET,105,COMBI214,,0,1

I output phase angle in degrees
I output array to hold real and imaginary part

I main array
! array to store rotor info
I array to store casing info
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1 2-D Spring-Damper element used to represent bearing

I Add constraints to all DOFs at baseplate nodes
D,39392,ALL, ,,39406,2

1 Create a status bar to show progress
"Unbalance Response Solution Progress”,BAR

*ABSET,



1 Scales the progress bar to (0 to 100%) scale
pncol=ncol/100

1 Refresh the display screen
/AUTO, 1
/REP,FAST

I ** UNBALANCE RESPONSE LOOP STARTS **
*DO,RPM, minrpm,maxrpm, incrpm
col=col+1

1 Update the progress bar
REMAINDER = MOD(col,pncol)
*1F,REMAINDER,EQ,O, THEN

*abcheck,col/pncol
*ENDIF

/PREP7
*MSG,NOTE ,RPM
Calc Response for %l rpm

HZ=RPM/60 IChange to Hz for Harmic
W=(RPM)*3.14159/30 IChange to Omega for Gyroscopics
W2=W**2

I Select unbalance case
*1F,ucase,EQ,1,THEN
FUNBALO= (MR8+MR17)*W2*_001*.001
*ELSEIF,ucase,EQ,2,THEN
FUNBAL1= MR8*W2*.001*.001
FUNBAL2=MR17*W2*.001*.001
*ENDIF

1 Call to bearing macros
brgl,rpm,rbrgl,1
brg2,rpm,rbrg2,2

IONLY MESH ON FIRST LOOP
*1F,RPM,EQ,minrpm, THEN
*1F,inc_seal ,EQ,1,THEN
TYPE, 106
I1Stiffness at seal location
REAL ,rsealK
E,rtrnd3,casnd3

TYPE, 107

IDamping at seal location
REAL,rsealC
E,rtrnd3,casnd3

TYPE, 108
Ilnertia at seal location
REAL ,rsealM
E,rtrnd3,casnd3

*ENDIF

TYPE, 105

I1Bearing 1
REAL,rbrgl
E,rtrndl,casndl

1Bearing 2

REAL, rbrg2

E,rtrnd2,casnd2
*ENDIF

I ** SOLUTION PROCESSOR **
/SOLU

ANTYPE ,HARMIC
DMPRAT , strdamp
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coriolis,on,,,on

CMOMEGA, rotor, W, , , BRG1X, BRG1lY, RTR1Z, BRG1X, BRG1lY, RTR2Z, O
HROPT,FULL

HROUT , OFF

OUTPR,ALL,NONE

NSUBST, 1

HARFRQ,HZ ,HZ

KBC,1

*1F,ucase,EQ,1, THEN I Unbalance at rotor midspan
F,ub,FX, 0, FUNBALO
F,ub,FY, FUNBALO, O

*ELSEIF,ucase,EQ,2,THEN 1 Unbalances at outer stations
TUNBALANCE COUPLE AT STATION 8
F,ua,FX, 0, FUNBAL1
F,ua,FY, FUNBAL1, O

TUNBALANCE COUPLE AT STATION 17
F,uc,FX, 0, FUNBAL2
F,uc,FY, FUNBAL2, O

*ENDIF

SOLVE

FINISH

1 ** POST-PROCESSOR **

/POST26

PRCPLX,1

I Overide default 10 variables allowed in POST26

NUMVAR, 13

NSOL, 2, pra,U,X
NSOL, 3, pra,U,Y
NSOL, 4, prb,U,X
NSOL, 5, prb,U,Y
NSOL, 6, prc,U,X
NSOL, 7, prc,U,Y
NSOL, 8, pca,U,X
NSOL, 9, pca,U,Y
NSOL, 10, pcb,U,X
NSOL, 11, pcb,U,Y
NSOL, 12, pcc,U,X
NSOL, 13, pcc,U,Y

STORE ,MERGE

*DO,parm,1,12,1
row=(parm-1)*2+1

VGET,UOUT(1,1),parm+1,,0
VGET,UOUT(1,2),parm+1,,1

rs(row, col)=SQRT((UOUT(L,1))**2+(UOUT(1,2))**2)
1 Use ATAN2 because it correctly takes care of the signs in the phase
rs(row+1,col)=ATAN2(UOUT(1,2),U0UT(1,1))
*ENDDO
FINISH
*ENDDO

I Close the progress bar
*abfinish
FINISH

I Split into two arrays for two reasons:
I (1) *VWRITE can only output 19 parms at a time.
I (2) Even with two files, the array outputs more values to file than array index
*DO,row,1,12,1

*D0O,col,1,ncol,1

rsr(row,col)=rs(row,col)

*ENDDO

*ENDDO
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*DO,row,1,12,1
*D0,col,1,ncol,1
rsc(row,col)=rs(row+12,col)
*ENDDO
*ENDDO

I Reset message status boxes
/UIS, MSGPOP, 2
/U1S, ABORT, ON

I Refresh the display screen
/AUTO, 1
/REP ,FAST

PRINT_PHASE = 1 I 0=Do not print phase, 1=Print phase in output file

I ** CREATE TWO OUTPUT FILES (ROTOR AND CASING) BECASUSE *VWRITE SUPPORTS MAX 19
PARMS OUTPUT

I ** ROTOR ABSOLUTE FILE
1 Open formatted text file for output of response at required locations
*CFOPEN , UNBAL_UR%ucase%,0uUT, ,

I Ouput file header info

*I1F,PRINT_PHASE,EQ,1,THEN

*VWRITE, "RPM™, "MX_R%pra%" , "PX_R%pra%" , "MY_R%pra%", "PY_R%pra%" , "MX_R%prb%" , *PX_R%prb
%", "MY_R%prb%" , "PY_R%prb%" , *MX_R%prc%" , "PX_R%prc%" , "MY_R%prc%" , "PY_R%prc%"
(4X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8)
*ELSE

*VWRITE, "RPM*, *"MX_R%pra%* , *MY_R%pra%" , “MX_R%prb%" , "MY_R%prb%" , *"MX_R%prc%" , *"MY_R%prc
%"

(4X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8)

*ENDIF

rw=0
*DO, rpm,minrpm,maxrpm, incrpm
rw=rw+1

I Amplitude in ANSYS is O-pk. To compare to XLTRC2 multiply by 2.
I Here 2000 is for conversion of O-pk to pk-pk and m to mm.

*1F,PRINT_PHASE,EQ,1,THEN

*VWRITE, rpm, rsr(1, rw)*2000,rsr(2,rw),rsr(3,rw)*2000,rsr(4,rw),rsr(5,rw)*2000,rsr(6,
rw), rsr(7,rw)*2000,rsr(8,rw),rsr(9,rw)*2000, rsr(10,rw),rsr(11,rw)*2000, rsr(12,rw)
(E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X ,E12.4,2X ,E12.4,2X,E12.4,2X,E
12.4,2X,E12.4,2X,E12.4,2X,E12_4)

*ELSE

*VWRITE, rpm, rsr(1, rw)*2000, rsr(3, rw)*2000, rsr(5, rw)*2000, rsr(7,rw)*2000,rsr(9, rw)*2
000, rsr(11, rw)*2000

(E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4)

*ENDIF

*ENDDO
*CFCLOSE

1 ** CASING ABSOLUTE FILE
1 Open formatted text file for output of response at required locations
*CFOPEN , UNBAL_UC%ucase%,0uUT, ,

I Ouput file header info

*I1F,PRINT_PHASE,EQ,1,THEN

*VWRITE, "RPM™, "MX_CY%pra%" , "PX_C%pra%" , "MY_C%pra%", "PY_C%pra%" , "MX_C%prb%" , "PX_C%prb
%", "MY_C%prb%* , "PY_Chprb%" , *MX_Chprc%" , "PX_C%prc%" , "MY_C%prc%" , "PY_CW%prc%"
(4X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8)
*ELSE

*VWRITE, "RPM*, *MX_C%pra%* , "MY_Ch%pra%" , "MX_C%prb%" , "MY_C%prb%" , *MX_C%prc%" , "MY_C%prc
%"

(4X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8,6X,A8)

*ENDIF



rw=0
*DO, rpm,minrpm,maxrpm, incrpm
rw=rw+1

I Amplitude in ANSYS is O-pk. To compare to XLTRC2 multiply by 2.
I Here 2000 is for conversion of O-pk to pk-pk and m to mm.

*1F,PRINT_PHASE,EQ,1,THEN
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*VWRITE, rpm, rsc(1, rw)*2000, rsc(2,rw),rsc(3,rw)*2000,rsc(4,rw),rsc(5,rw)*2000,rsc(6,
rw),rsc(7,rw)*2000,rsc(8,rw),rsc(9,rw)*2000,rsc(10,rw),rsc(11l,rw)*2000,rsc(12,rw)
(E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X ,E12.4,2X ,E12.4,2X,E12.4,2X,E

12.4,2X,E12.4,2X,E12.4,2X,E12.4)
*ELSE

*VWRITE, rpm, rsc(1, rw)*2000, rsc(3, rw)*2000, rsc(5, rw)*2000, rsc(7,rw)*2000, rsc(9, rw)*2

000, rsc(11, rw)*2000
(E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X,E12.4,2X ,E12.4)
*ENDIF

*ENDDO

*CFCLOSE

/EOF

1

1* PROJECT : Thesis

1* PROJECT TITLE : Bearing 1 macro??
1*

1* AUTHOR : Stephen James

!*

1* OBJECTIVE : 1) Calculate speed dependent bearing coefficients
1

I Input parameters from main file
rpm= argl
rbrg= arg2

brgnum= arg3

*MSG, NOTE, brgnum, rpm
Setting Bearing Location %l Coefficients for %l rpm

I Create real constant set
R,rbrg

I The curve fit coefficients are taken from the XLTRC2 bearing sheet
1 Stiffness coefficients

KXX= 1066393315* (RPM**(-1)) + 2552869802 + 31095 .3652*RPM
2.172088328* (RPM**(2))

KXY=-30104742824* (RPM**(-1)) - 27798078.92 + 102487 .8616*RPM
2.4442301*(RPM**(2))

KYX=-59619636440*(RPM**(-1)) - 510140831.9 + 24557 _04362*RPM

13.0524594* (RPM**(2))

KYY=2.31531E+11* (RPM**(-1)) + 487023684.1 - 128187 .9399*RPM

20.20956004* (RPM**(2))

I Damping coefficients

CXX= 1126279319* (RPM**(-1)) +  2268914.8 -  725.3190345*RPM
0.142588357*(RPM**(2))

CXY=-2842395798* (RPM**(-1)) - 508206.302 + 381.4519148*RPM
0.087678631* (RPM**(2))

CYX= -2842391408* (RPM** (-1)) - 508206.8736 + 381.454552*RPM
0.087677984* (RPM**(2))

CYY=13263960051* (RPM**(-1)) - 5519587 .151 + 2683.710808*RPM

0.378480913* (RPM**(2))

I Real Constants order in ANSYS for COMBI214 element:
1 Ki1l, K22, K12, K21 , C11, C22, Ci12, C21

12 Bearing 2 macro has not been included because it differs only in the curve fit data
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1 Assign calculated values to real constant set
RMODIF,rbrg, 1, KXX

RMODIF,rbrg, 2, KYY

RMODIF,rbrg, 3, KXY

RMODIF,rbrg, 4, KYX

RMODIF,rbrg, 5, CXX

RMODIF,rbrg, 6, CYY

RMODIF,rbrg, 7, CXY

RMODIF,rbrg, 8, CYX

L

I* PROJECT : Thesis

1* PROJECT TITLE > Seal macro

1* AUTHOR : Stephen James

1* OBJECTIVE : 1) Use seal coefficients. Speed independent coefficients
1> are used here, however the macro file can be easily
1> adapted for speed-dep coeff.
1

rsealK = argl

rsealC = arg2

rsealM = arg3

KXX = 150000000

KXY = 0

KYX = 0

KYY = 150000000

CXX = 500000

CXY = 0

CYX = 0

CcYy = 500000

MXX = 15

MXY = 0

MYX = 0

MYY = 15

I The indices of the RMODIF statement are very important and have changed between
ANSYS versions 10 and 11.
1

! Unsymmetric Stiffness Matrix
1

ET,106, MATRIX27,,2,4,0

R, rsealK

RMODIF,rsealK, 1, KXX I KXX
RMODIF,rsealK, 79, KXX

RMODIF,rsealK, 7,-KXX I-KXX
RMODIF,rsealK, 73,-KXX !
RMODIF,rsealK, 14, KYY I KYY
RMODIF,rsealK, 92, KYY
RMODIF,rsealK, 20,-KYY !-KYY
RMODIF,rsealK, 86,-KYY !
RMODIF,rsealK, 2, KXY I KXY
RMODIF,rsealK, 80, KXY
RMODIF,rsealK, 8,-KXY I-KXY
RMODIF,rsealK, 74,-KXY !
RMODIF,rsealK, 13, KYX I KYX

RMODIF,rsealK, 91, KYX
RMODIF,rsealK, 19,-KYX I-KYX
RMODIF,rsealK, 85,-KYX

1
I Unsymmetric Damping Matrix
1

ET, 107, MATRIX27,,2,5,0
R,rsealC

RMODIF,rsealC, 1, CXX I CXX
RMODIF,rsealC, 79, CXX
RMODIF,rsealC, 7,-CXX [I-CXX
RMODIF,rsealC, 73,-CXX !
RMODIF,rsealC, 14, CYY ! CYY
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RMODIF,rsealC, 92, CYY
RMODIF,rsealC, 20,-CYY I-CYY
RMODIF,rsealC, 86,-CYY !
RMODIF,rsealC, 2, CXY ! CXY
RMODIF,rsealC, 80, CXY
RMODIF,rsealC, 8,-CXY [I-CXY
RMODIF,rsealC, 74,-CXYy !
RMODIF,rsealC, 13, CYX I CYX
RMODIF,rsealC, 91, CYX
RMODIF,rsealC, 19,-CYX [I-CYX
RMODIF,rsealC, 85,-CYX

1 Unsymmetric Mass Matrix

1

ET, 108, MATRIX27,,2,2,0

R, rsealM

RMODIF,rsealM, 1, MXX I MXX
RMODIF,rsealM, 79, MXX
RMODIF,rsealM, 7,-MXX I-MXX
RMODIF,rsealM, 73,-MXX 1!
RMODIF,rsealM, 14, MYY 1 MYY
RMODIF,rsealM, 92, MYY
RMODIF,rsealM, 20,-MYY I-MYY
RMODIF,rsealM, 86,-MYY !
RMODIF,rsealM, 2, MXY ! MXY
RMODIF,rsealM, 80, MXY
RMODIF,rsealM, 8,-MXY I-MXY
RMODIF,rsealM, 74,-MXY 1!
RMODIF,rsealM, 13, MYX I MYX
RMODIF,rsealM, 91, MYX
RMODIF,rsealM, 19,-MYX I-MYX
RMODIF,rsealM, 85,-MYX
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