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ABSTRACT 

 

Hydrologic and Ecological Effects of Watershed Urbanization: Implication for 

Watershed Management in Hillslope Regions. 

 (May 2010) 

Chan Yong Sung, B.E., Hongik University; M.E., Hongik University; 

M.P.A/M.S., Indiana University 

Chair of Advisory Committee: Dr. Ming-Han Li 

 

In this study, I examined the effect of watershed urbanization on the invasion of alien 

woody species in riparian forests. This study was conducted in three major steps: 1) 

estimating the degree of watershed urbanization using impervious surface maps 

extracted from remote sensing images; 2) examining the effect of urbanization on 

hydrologic regime; and 3) investigating a relationship between watershed urbanization 

and ecosystem invasibility of a riparian forest.  

I studied twelve riparian forests along urban-rural gradients in Austin, Texas. 

Hydrologic regimes were quantified by transfer function (TF) models using four-year 

daily rainfall-streamflow data in two study periods (10/1988-09/1992 and 10/2004-

09/2008) between which Austin had experienced rapid urbanization. For each study 

period, an impervious surface map was generated from Landsat TM image by a support 

vector machine (SVM) with pairwise coupling. SVM more accurately estimated 
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impervious surface than other subpixel mapping methods. Ecosystem invasibilities were 

assessed by relative alien cover (RAC) of riparian woody species communities.  

The results showed that the effects of urbanization differ by hydrogeologic 

conditions. Of the study watersheds, seven located in a hillslope region experienced the 

diminishing peakflows between the two study periods, which are contrary to current 

urban hydrologic model. I attributed the decreased peakflows to land grading that 

transformed a hillslope into a stair-stepped landscape. In the rest of the watersheds, 

peakflow diminished between the two study periods perhaps due to the decrease in 

stormwater infiltration and groundwater pumpage that lowered groundwater level. In 

both types of watersheds, streamflow rising during a storm event more quickly receded 

as watershed became more urbanized.    

This study found a positive relationship between RAC and watershed impervious 

surface percentage. RAC was also significantly related to flow recession and canopy gap 

percentages, both of which are indicators of hydrologic disturbance. These results 

suggest that urbanization facilitated the invasion of alien species in riparian forests by 

intensifying hydrologic disturbance.   

The effects of urbanization on ecosystems are complex and vary by local 

hydrologeologic conditions. These results imply that protection of urban ecosystems 

should be based on a comprehensive and large-scale management plan. 
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CHAPTER I 

 INTRODUCTION 

 

Background 

Riparian forests buffer harmful effects from surrounding areas (Basnyat et al., 2000; 

Groffman et al., 2002; Mitsch and Gosselink, 2007). They protect water quality of 

adjacent streams by filtering various types of pollutants from stormwater runoff. The 

filtered pollutants are stored in soil and biomass or degraded by soil microorganisms. 

For instance, denitrification process in riparian soils significantly removes nitrogen and 

consequently reduces eutrophication in downstream ecosystems (Mitsch et al., 2000; 

Watts and Seitzinger, 2000). A field measurement by Pinay et al. (1995) showed that 

riparian forests return terrestrial nitrogen to the atmosphere at the rate of 29.5 N g m-2 

yr-1.  

In addition to the buffer effect, riparian forests play an important role in both 

global and local ecosystems. Riparian forests mitigate climate change by sequestrating a 

large amount of carbon in soil and biomass (Brinson, 1981). Riparian vegetation also 

prevents soil erosion from stream banks. Beeson and Doyle (1995) found that stream 

banks without vegetation eroded sediment 30 times higher than those with vegetation. 

Hession et al. (2003) also reported that stream channels with riparian forests are wider 

than the ones without forests, suggesting that vegetation reduced stream bank erosion.  

 
____________ 
This dissertation follows the style of Landscape and Urban Planning. 
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Urbanization threatens these valuable ecosystem services. Impervious surface 

along with an engineered drainage system quickly discharges stormwater into 

downstream and increases the frequency and magnitude of floods (Arnold and Gibbons, 

1996; Burges et al., 1998; Leopold, 1968; Kim et al., 2002; Booth et al., 2004; Rogers 

and DeFee II, 2005; Walsh et al., 2005). The increased stormwater runoff also degrades 

stream water quality by washing off pollutants generated by urban activities (Barrett et 

al., 1998; Barbec et al., 2002; Brezonik and Stadelmann, 2002; Hatt et al., 2004; 

Goonetilleke et al., 2005; Schoonover et al., 2005; Alberti et al., 2007; Li et al., 2008) 

and by increasing soil erosion (Chin and Gregory, 2001; Jones et al., 2000). During non-

storm periods, urban streams may have lower baseflow because impervious surface 

impedes the infiltration of stormwater (Groffman et al., 2003; Brandes et al., 2005; 

Meyer, 2005). The decreased stormwater infiltration lowers the groundwater table, and 

results in hydrologic drought in downstream and riparian ecosystems. Therefore, urban 

riparian forests suffer from severe disturbance regimes with higher peak discharge, 

degraded water quality, and drought during non-storm events.  

Previous studies suggested that the increases in disturbance levels facilitate the 

invasion of alien species in urban riparian forests (Tickner et al., 2001; Zedler and 

Kercher, 2004; Burton et al, 2005; Maskell et al., 2006). Riparian ecosystems are often 

regulated in early successional stage because severe disturbances, especially floods, kill 

mature trees (Cronk and Fennessy, 2001; Pettit and Froend, 2001; Shafroth et al., 2002; 

Corbacho et al., 2003; Lytle and Merritt, 2004). Once floods recede, canopy gaps are 

quickly filled by new seedlings that consist of both native and alien species (Bendix and 
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Hupp, 2000; Cooper et al., 2003). However, some alien species are known to 

outcompete the native ones in the regenerating cohort due to their abilities to grow faster 

and be tolerant to disturbance (Stromberg, 1998; Vandesande et al., 2001; Morris, et al., 

2002; Pratt and Black, 2006). Stream channel serves as a conduit for propagules of alien 

species. This implies that the invasion of alien species is not limited to urban areas, but 

spreads to riparian forests in downstream (Moggridge et al., 2009). The biological 

invasion in riparian forests is of a particular concern in arid- and semi-arid regions where 

the riparian forests provide irreplaceable habitats for regionally rare wetland species 

(Aguiar and Ferreira, 2005). Hence, increasing the invasion of alien species in riparian 

forests threatens regional biodiversity in this climatic region. 

 

Research Objectives and Significance 

The main objective of this study is to examine the effect of watershed urbanization on 

ecosystem invasibility of twelve riparian forests along urban-rural gradients in Austin, 

Texas. I answered this question by taking three main steps: 1) measuring the degrees of 

watershed urbanization; 2) examining the effect of urbanization on hydrologic 

disturbance regime, and 3) exploring relationships among watershed urbanization, 

hydrologic disturbance regime, and ecosystem invasibility of a riparian forest. Each step 

requires a lengthy technical description and has its own research significance that 

deserves to be discussed in detail. Thus, I described these tasks in three separate 

chapters, each of which has an introduction and conclusion.   
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Chapter II discussed the method of estimating the degrees of urbanization in 

study watersheds. I measured the degrees of urbanization using impervious surface maps 

generated from remote sensing images. One of the problems of using remote sensing 

images to extract urban land cover is that the images cannot capture the heterogeneity of 

urban landscape within instantaneous field of views (IFOV), i.e., more than one type of 

land cover occurs in a single image pixel (Small, 2001; 2002). To overcome this 

problem, I employed a subpixel image classification method – an image classification 

method that estimates the proportion of impervious surface in each pixel (Huang and 

Townshend, 2003; Lee and Lathrop, 2006). Of many subpixel methods, I used support 

vector machine (SVM) with pairwise coupling due to its ability to avoid an overfitting 

problem (Burges, 1998). In spite of its promising feature, it has yet been evaluated in 

remote sensing context. Therefore, in Chapter II, I assessed the applicability of SVM to 

subpixel impervious surface mapping.  

Chapter III examined the effect of urbanization on stream hydrology. The effect 

of urbanization was examined by comparing hydrologic regimes of the same watershed 

before and after urbanization. I introduced the transfer function (TF) model to quantify 

hydrologic regimes (Young, 2003). TF models were estimated by four-year daily rainfall 

and streamflow data in two study periods spanning 20 years. Chapter III also discussed 

the factors that led to the different hydrologic consequences in two hydrogeologic 

regions: a gentle slope region and a hillslope region.  

Chapter IV addressed a question whether and how urbanization facilitates the 

invasion of alien species in riparian forests. Although many studies have reported that 
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urban riparian forests have more alien species than rural ones (King and Buckney, 2000; 

Burton and Samuelson, 2008; Oneal and Rottenberry, 2008), only few directly related 

the hydrologic disturbance regime to the ecosystem invasibility in urban riparian forests. 

Lack of such study may be due to the difficulty in quantifying hydrologic regime. As 

discussed in Chapter III, this problem can be solved by the TF model. I also measured 

other environmental variables that may affect the ecosystem invasibility, including the 

degrees of watershed urbanization (done in Chapter II), soil nutrient contents, and 

vegetation community structures. Using these dataset, I explored a model that can 

describe a causal relationship between watershed urbanization and the invasion of alien 

species in a riparian forest.  

Finally, I summarized the findings of three independent studies in Chapter V. I 

also discussed implications for urban planners and water resources and ecosystem 

managers.     
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CHAPTER II 

SUBPIXEL IMPERVIOUS SURFACE MAPPING USING SUPPORT VECTOR 

MACHINE WITH PAIRWISE COUPLING 

 

Chapter Summary 

We evaluated the performance of support vector machine (SVM) with a pairwise 

coupling algorithm on subpixel impervious surface mapping, and compared SVM’s 

performance with that of linear spectral mixture analysis (LSMA) and multi-layer 

perceptron (MLP). Landsat TM images of Austin, Texas taken in February and October 

2008 were used to assess the three subpixel methods. The results indicate that SVM had 

higher estimation accuracies than LSMA and MLP. Non-linear kernel function and the 

structural risk minimization scheme equally contributed to the superiority of SVM to 

LSMA. The analysis of error shows that MLP was more appropriate for hard (per-pixel) 

classification. It was not effective in reflecting the variation of impervious surface in 

subpixel level. Comparison of the estimation accuracies by season suggests that the 

February image taken when tree lost foliage generated more accurate maps than the 

October one when lush tree canopies still existed. The low accuracy of the October 

image may be due to impervious surface under tree canopy that was not detectable when 

trees have foliage. Our results suggest 1) that SVM is suited to map impervious surface 

in subpixel level, and 2) that winter images generate more accurate impervious surface 

maps especially for urban areas in a subtropical climate. 
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Introduction 

Impervious surface adversely affects urban environment. Stormwater runoff generated 

from impervious surface increases the frequency and magnitude of flood in urban 

streams (Arnold and Gibbons, 1996; Brabec et al., 2002; Walsh et al., 2005). Pollutants 

washed off from impervious surface degrade water quality of the streams (Brezonik and 

Stadelmann, 2002; Goonetilleke et al., 2005; Li et al., 2008). The effect of impervious 

surface is not limited to the urban stream. The flashy hydrology and degraded water 

quality further deteriorate the health of aquatic and riparian ecosystems. Many studies 

showed that the impervious surface alters the population density and the community 

structure of benthic macroinvertebrates (Gillies et al., 2003; Morse et al., 2003), fish 

(Wang et al., 2001; Sutherland et al., 2002), amphibian and reptile (Riley et al., 2005], 

and riparian vegetation (Moffatt, et al., 2004; Maskell et al., 2006). 

Remote sensing images have been widely used to map impervious surfaces in 

urban areas. One of the problems associated with using these images is the so-called a 

mixed pixel problem. Urban images are covered by various surface materials within the 

sensor’s instantaneous field of view (IFOV). Hard image classification methods – image 

processing methods designed to assign one class membership per pixel – cannot account 

for the heterogeneity in subpixel level (Fisher and Pathirana, 1990; Small, 2001; 2002).   

To overcome this problem, several soft classification methods, or subpixel 

estimation methods, have been developed. The most common method is linear spectral 

mixture analysis (LSMA) that models the spectral characteristics of a pixel by a linear 

combination of spectrally pure pixels, namely endmembers. Ridd (1995) proposed the 
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vegetation-impervious surface-soil (V-I-S) model that unmixes the urban land covers 

with these three basic types of land covers. Later works improved Ridd’s model by 

elaborating endmember selection schemes (Wu and Murray, 2003; Lu and Weng, 2004). 

Although LSMA is simple and has produced reasonably accurate subpixel maps, LSMA 

has some drawbacks: the spectral characteristics are not mixed linearly; and the 

endmembers do not always correctly represent physical surface materials (Huang and 

Townshend, 2003; Walton, 2008). 

Many non-linear subpixel methods, such as regression trees (Huang and 

Townshend, 2003) and artificial neural network (ANN) (Moody et al, 1996; Liu and Wu, 

2005; Lee and Lathrop; 2006) have been used to extract land cover maps from remote 

sensing images. However, the nonlinear methods are often overfitted and thereby 

sensitive to the selection of training pixels. Recently, support vector machine (SVM), a 

binary classification method based on statistical learning theory, has become popular due 

to its capacity to minimize the overfitting problem (Burges, 1998; Foody and Mathur, 

2004). Previous studies have reported that SVM was very successful in land cover 

mapping using remote sensing images. Using this method, Nemmour and Chibani 

(Nemmour and Chibani, 2006) accurately detected the land cover change in Algerian 

capital using Landsat MSS images, and Liu et al. (2006) identified forests infested by 

Sudden Oak Death disease in California from data acquisition and registration (ADAR) 

5500 images. SVM has also been applied to the processing of hyperspectral (Melgani 

and Bruzzone, 2004; Pal and Mather; 2004), synthetic aperture radar (SAR) (Lardeux et 
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al., 2009), and Terra multi-angle imaging spectroradiometer (MISR) images (Mazzoni et 

al., 2007; Su et al, 2007).  

Although SVM was originally developed for hard image classification, it can 

extend to subpixel mapping by integrating a pairwise coupling algorithm developed by 

Hastie and Tibshirani (1998) and Wu et al. (2004). The basic idea of this algorithm is to 

estimate a probability that a pixel belongs to one land cover class from the pairwise 

probabilities of two land covers. The estimated probability for a land cover can directly 

be interpreted to the proportion of area occupied by the land cover within IFOV.  

In this chapter, we compared the SVM with pairwise coupling algorithm to two 

commonly used subpixel methods: LSMA and multi-layer perceptron (MLP) using 

Landsat TM images of Austin, Texas taken in two different seasons (February and 

October) that represent nearly minimum and maximum tree foliage conditions, 

respectively. We also discussed the effect of plant phenology on the performances of the 

three subpixel methods.  

 

Subpixel Estimation Techniques 

Linear spectral mixture analysis  

LSMA unmixes the spectral characteristics of a pixel using those characteristics of 

endmembers (Wu and Murray, 2003; Lu and Weng, 2004). For a pixel, the spectral 

characteristics, ݔ௞, can be expressed as: 
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௞ = ෍ݔ ௟݌

௅

௟ୀଵ

 ௞ߝ + ௞,௟ݔ
(2.1)

 

where, ݌௟ is the proportion of area occupied by land cover l within IFOV, L is the total 

number of land cover, ݔ௞,௟ is the spectral characteristics of a endmember representing 

land cover l for band k, and ߝ௞ is the error of band k. ݌௟ can be solved by minimizing the 

sum of squared errors for all bands, subject to two constraints, ∑ ௟݌
௅
௟ୀଵ ൌ 1 and ݌௟ ൒

 The accuracy of LSMA largely depends on the selection of endmembers. Suitable .݈ ׊ 0

endmembers must lie on the edge on the spectral scatterplots.  

 

Multi-layer perceptron 

MLP is one of classification methods in ANN family that feeds-forward the input data to 

output class membership through a network with several layers. Each layer consists of a 

number of nodes that resemble neurons in a biological nervous system (Moody et al., 

1996; Liu and Wu, 2005). The most common structure of MLP is a three-layered 

network with one input, one hidden, and one output layers (Hu and Weng, 2009). Input 

and output nodes represent input data and output class, i.e., the numbers of input and 

output nodes are equal to the number of band of a sensor and the number of land cover 

classes, respectively. Hidden nodes receive input signals, transform, and transfer them to 

the output nodes. At each hidden node, the input data were transformed by the following 

equation:  
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݄௜ ൌ ଵ݂ ൭෍ ௞ݔ௞௜ݓ

௄

௜ୀଵ

൱ 
(2.2)

where ݓ௞௜ is the weight of the connection between input node k and hidden node i, ܭ is 

the total number of input nodes, and ଵ݂ is an activation function of the hidden layer. ݄௜ is 

an activation value at the hidden node i. In a same manner, an activation value for the 

output node, ݋௟, can be calculated by: 

 

௟݋ ൌ ଶ݂ ൭෍ ௜௟݄௜ݓ

ு

௜ୀଵ

൱ 
(2.3)

 

where ݓ௜௟ is the weight for the connection between hidden node i and output node l, ܪ is 

the total number of hidden nodes, and ଶ݂ is the activation function of the output layer. ܪ 

is a user-specific parameter determined by trials and errors. Using training pixels, the 

weights, ݓ௞௜ and ݓ௜௟, are estimated by a back-propagation algorithm. For hard image 

classification, a class membership is assigned to the one with the highest ݋௟ at the output 

layer. For subpixel mapping, ݋௟ can be interpreted as the proportion of the land cover l 

within IFOV (Lee and Lathrop, 2006; Weng and Hu, 2008). After several trials, 

however, we recognized that existing activation functions, e.g., sigmoidal and hyperbolic 

tangent functions could not capture the varying degrees of impervious surface in 

subpixel level. Because the existing functions were designed for hard classification, 

output values from these functions were clustered into two extremes, i.e., close to either 

0 or 1. Therefore, we used a linear activation function for ଶ݂ and then rescaled ݋௟s to 0 to 
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1 by ݌௟ ൌ ௟݋ ሺ∑ ௟݋
௅
௜ୀଵ ሻ⁄  where ݌௟ is the proportion of area occupied by land cover l 

within IFOV. For ଵ݂, we used the sigmoidal function. MLP were trained using AMORE 

package in R (Limas et al., 2009). 

  

Support vector machine with pairwise coupling 

SVM is a binary classifier that determines the class membership of a pixel using a 

separating hyperplane in feature space. The optimum hyperplane is the one with the 

largest margin between the data on the boundary of two classes. The data defining the 

margin width are called support vectors. Statistical learning theory shows that 

maximizing the margin width, a.k.a. structural risk minimization, can also minimize risk 

of overfitting by a classifier (Burges, 1998). The separating hyperplane, ݂ሺݔሻ ൌ ܟ · ܠ ൅

ܾ, can be estimated by: 

  

min ൥
ԡܟԡ૛

૛ ൅ ܥ ෍ ௜ߦ
୧

൩ 

 

subject to ݕ୧ሺܠܟ ൅ ܾሻ ൒ 1 െ ௜ߦ ௜ andߦ ൒ (2.4) ݅׊  ,0

 

where ܟ is normal to the hyperplane ݂ሺܠሻ and ܾ is the bias of ݂ሺܠሻ, respectively, ߦ௜ is a 

slack variable for a pixel i that is not separable by ݂ሺܠሻ, ܥ is a user defined parameter 

that penalizes ߦ௜, ݕ୧ א ሼെ1, 1ሽ which indicates the binary class membership of a pixel i. 

Using Lagrange multiplier, ݂ሺݔሻ can be written: 
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݂ሺܠሻ ൌ  ෍ ୧ߙ

ௌ

୧ୀଵ

୨ܠ୧ܠ୧ݕ ൅ ܾ 
(2.5)

 

where ߙ୧ is a Lagrange multiplier satisfying 0 ൏ ୧ߙ ൏  and ܵ is the number of support ܥ

vectors. SVM can extend to the non-linear classifier by replacing the dot product ܠ୧ܠ୨ in 

Eq. (2.5) by kernel function which implicitly maps the data into a higher dimensional 

feature space. The most common form of the kernel function is: 

 

k൫ܠ୧ܠ୨൯ ൌ eିஓ|ሺܠିܠ౟ሻ| (2.6)

 

where, γ is a parameter defined by users.  

For hard classification, the class membership is determined by evaluating the 

sign of Eq. (2.5). For subpixel mapping, however, we need one more step. Pairwise 

coupling is an algorithm for estimating ݌୧ given the pairwise probabilities ݎ௟௠,௜ ൌ

Probሺݕ௜ ൌ ௜ݕ| ݈ ൌ ݈ or ݉,  ୧ is a posterior probability for a pixel classified to݌ ሻ, whereܠ

land cover l. ݎ௟௠,௜ can be estimated by:  

 

௟௠,௜ݎ ൌ  
1

1 ൅ e஺௙መ೔ା஻
 (2.7)
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where, ప݂෡ is the decision value calculated by Eq. (2.5), and A and B are parameter to be 

estimated by minimizing a negative log likelihood function using five-fold cross-

validation of training pixels. Since ݎ௠௟,௜ ݌௟,௜ ൌ  :୧ can be estimated by݌  ,௠,௜݌ ௟௠,௜ݎ 

  

min ෍ ෍൫ݎ௠௟,௜ ݌௟,௜ െ ௠,௜൯ଶ݌௟௠,௜ݎ 

௠ஷ௟

௅

௟ୀଵ

 

 

subject to ∑ ௟݌  
௅
௟ ൌ 1, and ݌௟ ൒ 0, ׊ ݈ (2.8)

 

The solution of Eq. (2.8) can be found iteratively using an algorithm developed by Wu et 

al. (2004). ݌௟ can be interpreted as the proportions of areas occupied by land cover class 

l within IFOV. e1071 package in R is used to train SVM with pairwise coupling 

(Dimitriadou et al. 2009). 

  

Methods 

Study area and images 

The study area is a rectangular area (1851km2) completely covering the City of Austin, 

Texas. The study area was selected because it is located above the Edwards Aquifer, a 

shallow karst aquifer sensitive to the contamination of surface water (Scanlon, et al., 

2003). Austin is one of the most rapidly growing cities in the United States. Population 

increased by 62.7% in the last two decades (465 622 in 1991 to 757 688 in 2008) (U.S. 

Census Bureau, 2009). During the same period, impervious surface increased by 51.4% 
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(10.9% to 16.5%) (See Chapter III). To protect the aquifer from this rapid urban growth, 

it is necessary to monitor the change in impervious surface on the recharge zone of the 

aquifer in a timely manner.  

We extracted impervious surfaces from two cloud-free Landsat TM images (band 

1-5, 7) acquired on February 07 and October 20, 2008. Two images were selected so that 

we can evaluate the effect of plant phenology on the performance of subpixel methods. 

In the study area, October is still during the growing season and almost all plants have 

foliage. February is in the dormant season when deciduous trees have dropped their 

leaves. Before the subpixel mapping, two images were atmospherically corrected by 

FLAASH module in ENVI 4.5 (ITT Visual Information Solutions, 2008). Previous 

studies reported that minimum noise fraction (MNF) transformation can improve the 

estimation accuracy of LSMA. Our preliminary analysis also showed that MNF 

transformation improved the estimation accuracies not only of LSMA but also of MLP 

and SVM. Therefore, for fair comparison, we used six MNF component images for all 

three methods.     

 

The selection of training pixels 

We selected training pixels from five land cover classes: high-albedo impervious surface 

(e.g., cement and glass), low-albedo impervious surface (e.g., asphalt), forest, 

grass/agriculture (e.g., lawn and farmland), and waterbody. For each land cover class, 

nine to twelve polygons evenly distributed in the study area were selected. Each polygon 

consists of 4 to 16 pure pixels. The total number of pixels was 522, i.e., around 100 
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pixels per each class. The training pixels were selected by looking into 2008 aerial 

photographs with 0.5 m of spatial resolution. For LSMA, we used the mean values of 

training pixels for each class as endmembers. As shown in Fig. 2.1, the mean values 

roughly lie on the edge of spectral scatterplots of pairs of the first three MNF component 

images, except low-albedo impervious surface whose endmember is not clearly 

discernable and confused with waterbody and forest. We tried both a four-class (without 

low-albedo impervious surface) and a five-class (with low-albedo impervious surface) 

training options, but the five-class option was more accurate. Thus, we trained three 

subpixel methods using five land cover classes.  

 

Accuracy assessment 

For accuracy assessment, we measured the proportions of impervious surface for 300 

reference pixels randomly selected from Landsat TM images. For each pixel, impervious 

surface was on-screen digitized over the 2008 aerial photographs. We initially tried to 

evaluate the performance of SVM on mapping high- and low-albedo impervious surfaces 

separately, but we recognized many impervious surface materials cannot be clearly 

delineated into these two classes in a real urban landscape. To avoid inaccuracy, we 

measured the proportions of impervious surface regardless of the reflectivity of surface 

materials. Accordingly, the estimated proportions of two types of impervious surfaces 

were summed before accuracy assessment.  

One of the problems extracting impervious surface from remote sensing images 

is impervious surface under tree canopies (Lee and Lathrop, 2006). To test the effect of  
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tree canopy on the performance of SVM, we measured the proportion of impervious 

surface on the ground level. This procedure requires somewhat subjective decision 

because the actual boundary of impervious surface under tree canopy is not visible on 

the aerial photographs. To minimize the subjectivity in delineation, we referred to 

historic aerial photographs acquired during the early stage of the development when 

existing trees were clearcut and newly planted landscape trees were not mature. Because 

impervious surface may not change much over time, historic aerial photographs can 

provide ground cover information that may be obstructed by the tree canopy in today’s 

aerial photographs. Four historic aerial photographs taken in 1984, 1987, 2000, and 2006 

were used for referencing. 

Accuracy assessments were done by calculating root mean square error (RMSE), 

mean absolute error (MAE), and Nash-Sutcliffe model efficiency coefficient (R2):  

 

RMSE ൌ ඨ∑ ሺ̂݌௜ െ ௜ሻଶே݌
௜ୀଵ

ܰ  
(2.9)

 

MAE ൌ
∑ ௜̂݌| െ ௜|ே݌

௜ୀଵ
ܰ  (2.10)

 

ܴଶ ൌ 1 െ
∑ ሺ̂݌௜ െ ௜ሻଶே݌

௜ୀଵ
∑ ሺ݌௜ െ ҧሻଶே݌

௜ୀଵ
 

(2.11)

 

where ̂݌௜ is the estimated impervious surface proportion of reference pixel i, ݌௜ is  
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Table 2.1. User specific parameters and accuracy assessments for two images (February 
and October) by three methods. 
 
Methods Parameters R2 RMSE MAE 
 
February 07, 2008 
LSMA - 0.603 0.192 0.131 
MLP # hidden node=100 0.597 0.193 0.118 
SVM 2960= ܥ, γ =1×10-5 0.663 0.177 0.116 

October 20, 2008 
LSMA - 0.442 0.228 0.155 
MLP # hidden node=50 0.384 0.239 0.150 
SVM 850= ܥ, γ =1×10-5 0.500 0.215 0.146 

 

 

 

 

measured impervious surface proportion of the reference pixel i, ݌ҧ is the mean of ݌௜. R
2 

ranges -∞ and 1, and can be read similar to regression R2 (Nash and Sutcliffe, 1970). The 

negative values only occur when the model performs very poorly. The user-specific 

parameters (ܪ for MLP, and C and γ for SVM) were determined so that each method has 

the best estimation accuracy (Table 2.1).    
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Results 

Fig. 2.2 illustrates subpixel land cover maps generated by SVM with pairwise coupling. 

SVM effectively extracted the land covers from two Landsat TM images. Major urban 

features, such as airport runway and major roads, are clearly identified on impervious 

surface maps, especially on low-albedo impervious surface maps, in both seasons. The 

forest and grass/agriculture maps successfully discriminate the land cover/land use in the 

study area, e.g., farms and ranches in the east and large forests in the west of the study 

area. Other geographic features, such as stream and river channels and reservoirs, are 

also identified on the maps.    

Fig. 2.3 displays the subpixel impervious surface maps by three different 

methods. Again, the proportion of impervious surface in each pixel is the sum of the 

proportions of high- and low-albedo impervious surfaces. All maps look similar and 

major urban features can be identified. Three accuracy assessment measures provide 

more detailed analyses on the accuracy of subpixel mapping. For the February image, 

SVM estimated the impervious surfaces more accurately than other methods. R2 was 

0.663 for SVM, the highest among three methods (Table 2.1). SVM’s lowest RMSE 

(0.177) and MAE (0.116) also indicate the lowest degree of estimation error by SVM. A 

comparison of LSMA and MLP suggests that two methods had similar estimation 

accuracies. RMSE and R2 show a better performance of LSMA while MAE shows a 

better performance of MLP. For the October image, SVM had the highest accuracy for 

impervious surface mapping. R2 was 0.500 for SVM while 0.442 and 0.384 for LSMA 

and MLP, respectively. RMSE and MAE accuracy measures also indicate that  
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SVM was more effective for subpixel impervious surface mapping. Like the February 

image, no consensus among the accuracy measures in comparison of LSMA and MLP 

was found and therefore, two methods can be considered similar in mapping the 

impervious surfaces from the October image.  

Comparison on mapping accuracies of the same methods by different season 

shows that the February image resulted in more accurate impervious surface maps than 

the October image. Therefore, images of the winter season when tree dropped leaves are 

more suited for the subpixel mapping of the impervious surface than those of other 

seasons. 

 

Discussion 

The superiority of SVM to LSMA can partially be explained by confusion of low-albedo 

impervious surface with other land covers, particularly with waterbody (see Fig. 2.1). 

The inseparability of the low-albedo impervious surface has been discussed by other 

studies (Small, 2001; 2002). These studies indirectly solved this problem by masking out 

the waterbody prior to the image processing (Wu and Murray, 2003; Weng and Hu, 

2008; Hu and Weng, 2009) or by employing a multi-level classification scheme (Alberti 

et al., 2004), but both approaches require additional time and effort. SVM bypasses this 

problem by introducing a kernel function that brings a non-linearity to SVM. To verify 

the effect of kernel function, we also conducted the same analysis but with the linear 

kernel function. For the February image, R2 of SVM with the liner kernel function 

decreased to 0.632 (580=ܥ), approximately in the middle of R2s of SVM with radial 
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kernel (0.663) and LSMA (0.603). This result suggests that non-linear classification by 

the kernel function made about half of the difference between SVM and LSMA. Another 

half of the difference can be attributed to the structural risk minimization scheme of 

SVM.  

The comparison of SVM and MLP suggests that MLP is not effective for 

subpixel mapping. Compared to SVM, MLP tended to estimate more zero percent 

impervious surfaces for pixels that in fact have a certain areas of impervious surfaces. 

This type of error is illustrated by the clouds of dots along Y-axes in Fig. 2.4 that shows 

the scatterplots between measured and estimated impervious surface proportions for 300 

reference pixels. The density and heights of the clouds are much higher on the 

scatterplots for MLP than the plots for SVM, which represents greater magnitude of this 

type of error by MLP. Again, MLP was initially developed for hard image classification. 

Because the training algorithm of MLP is based on minimizing the errors between the 

activation values and the binary code indicating the class membership at the output 

nodes, the weights must be determined so that the activation values are close to 0 or 1. 

We tested various activation functions including softmax function, the one designed for 

subpixel estimation (Moody et al., 1996), but none of them showed better outcomes than 

our approach, i.e., applying the linear activation function and rescaling the activation 

values from 0 to 1. Pairwise coupling algorithm was less vulnerable to this type of error. 

Some studies trained MLP with continuous scale output data, i.e., with the proportions of 

five land cover classes (Liu and Wu, 2005). Although this approach resulted in higher 

accuracy, it cannot be widely applied because of the difficulty in clearly classifying  
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various surface materials into one of discrete land cover classes in a real urban 

landscape. High cost of data collection also makes this approach less practical.  

Our finding suggests that a winter image is more appropriate for subpixel impervious 

surface mapping, which is contrary to the findings of previous studies (Weng and Hu, 

2008; Hu and Weng, 2009). For instance, Hu and Weng (2009) discussed that dense 

foliage in summer increases the contrast between vegetation and impervious surface in 

Indianapolis, Indiana, and thereby results in higher estimation accuracy. The difference 

between this and previous studies can be explained by the difference in plant phenology. 

Austin’s climate is subtropical and some trees and lawns remain green in winter 

(February). Many pixels in the winter image have a typical spectral curve of the 

vegetation, i.e., the abrupt change in reflectance at near infrared. Meanwhile, many trees 

lose foliage during winter, which allows a sensor to better detect impervious surfaces 

under tree canopies. The lower accuracy when using the October image can also be 

identified in Fig. 2.4. Comparison of the pairs of scatterplots for the same method shows 

that the October image had more dots along the Y-axis. This type of error suggests that 

impervious surface is underestimated when using the October image, perhaps due to the 

tree canopy that hides the impervious surfaces underneath it. Therefore, the improved 

accuracy of impervious surface map using the winter image can be attributed to the 

higher visibility below the tree canopy. 

 

 

 



 27

Conclusion 

In this study, we compared three subpixel impervious surface mapping methods. SVM 

with pairwise coupling estimated the impervious surface more accurately than LSMA 

and MLP. Both non-linearity and the structural risk minimization scheme make SVM 

superior to LSMA. LSMA did not successfully discriminate low-albedo impervious 

surface and waterbody, suggesting that this method is not appropriate for impervious 

surface mapping in a region where waterbody covers a significant portion of the area. 

For MLP, the training algorithm specialized for hard classification leads to a lower 

subpixel estimation accuracy. The linear activation function mitigates this problem to 

some degree, but not completely. Finally, we found that the impervious surface can be 

more successfully extracted from the winter image in the study area due to reduced tree 

canopy cover. 
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CHAPTER III 

THE EFFECT OF URBANIZATION ON STREAM HYDROLOGY IN HILLSLOPE 

WATERSHEDS IN CENTRAL TEXAS 

 

Chapter Summary 

This study examined the effect of urbanization on stream hydrology in hillslope 

watersheds. Ten streams (seven in hillslope and three in gentle slope watersheds) around 

Austin, Texas were selected for analysis. For each stream, we compared parameters of 

transfer function (TF) models estimated from daily rainfall and streamflow data 

collected in two study periods (10/1988-09/1992 and 10/2004-09/2008) representing 

different degrees of watershed urbanization. As expected, the streams became more 

intermittent as the watersheds were more urbanized in all the study streams. However, 

the effect of urbanization on peakflow differs between hillslope and gentle slope 

watersheds. After watershed urbanization, peakflow increased in gentle slope 

watersheds, but it decreased in hillslope watersheds. Based on the results of the TF 

models, we found that urban stream became less flashy but drier in hillslope watersheds. 

Overpumpage of aquifer has been recognized as a problem that leads to the stream 

dryness in the study area. However, the overpumpage alone cannot explain the 

differences in hydrologic changes between the two types of watersheds. We attributed 

the reduced peakflow and stream dryness in the hillslope watersheds to land grading for 

construction forming stair-stepped or terraced landscape. Compared with natural 

hillslope, a stair-stepped landscape infiltrates more stormwater by slowing down surface 



 29

runoff on tread portions of the stair. Our findings suggest that a watershed management 

scheme should take into account local hydrogeologic conditions to mitigate the stream 

dryness resulting from urbanization in hillslope watersheds.  

 

Introduction 

Urban streams suffer from flashy hydrology with frequent floods and low baseflow. 

Urban watersheds run off more stormwater because of increased impervious surface 

(Leopold, 1968; Hollis, 1975; Arnold Jr. and Gibbons, 1996; Rose and Peters, 2001; 

Booth et al., 2002; Burns et al., 2005; Walsh et al., 2005). Engineered drainage systems, 

such as stormwater sewer pipes and open channel ditches, quickly discharge the 

stormwater runoff from the impervious surface, and raise peakflow during a storm event 

much higher and quicker after watershed urbanization. Meanwhile, impervious surface 

also decreases baseflow during dry periods by impeding infiltration of stormwater and 

lowering the groundwater level (Simmons and Reynolds, 1982; Groffman et al., 2002; 

2003).  

There are many previous studies that have reported flashier hydrology in urban 

streams. Most of them were carried out in gentle slope watersheds where stormwater 

runoff moves slowly over the ground surface and does not seriously erode soil (e.g., 

Jennings and Jarnagin, 2002; Rogers and DeFee II, 2005; White and Greer, 2006). This 

type of watersheds generally has a soil with a deep A horizon and high water holding 

capacity. Paving these watersheds dramatically reduce the surface permeability and, 

therefore, result in flashy hydrology.  
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Does a similar phenomenon occur in a hillslope watershed? In hillslope 

watersheds, stormwater easily runs off over the steep sloped surfaces (Jackson, 1992; 

Wilcox et al., 2008). Because the large volume and the high velocity of the surface and 

subsurface flows result in severe soil erosion, the soil layers are generally shallow and 

bedrocks are often exposed on surface. Streamflow in these watersheds is relatively 

flashy even before urbanization occurs and the impact of pavement on the stream 

hydrology may not be as significant in hillslope as in gentle slope watersheds. 

However, the effect of urbanization in hillslope watersheds is not limited to the 

increase in surface permeability. Land grading, a common practice for the construction 

of buildings on hillslope, alters local topography into stair-stepped or terraced landscape 

(see Fig. 3.1). This change in topography may lead to change in local hydrogeologic 

characteristics that cannot be predicted by conventional watershed models that are 

primarily based on the watershed permeability. Considering that an incorrect hydrologic 

prediction can result in significant damage to downstream, understanding the impact of 

urbanization on stream hydrology in hillslope watersheds is needed.  

In this paper, we explored how urbanization alters hydrologic regime of hillslope 

watersheds. We studied ten streams around Austin, Texas. Of the ten streams, seven 

were located in hillslope watersheds and the other three in gentle slope watersheds. 

Transfer function (TF) models were used to quantify time series relationships, on a daily 

scale, between rainfall and streamflow (Salas et al., 1985). Previous studies showed that 

TF models successfully predicted streamflow given rainfall data (e.g., Young and Beven, 

1994; Nwakalila, 2001; Young, 2003; Farahmand et al., 2007). For each stream, we  
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estimated two TF models using rainfall-streamflow data from two study periods 

spanning approximately 20 years. Since the study area had experienced rapid 

urbanization, the comparison of model parameters for the two study periods allowed us 

to examine the effect of the watershed urbanization on stream hydrology.   

 

Methods 

Study area 

The study area includes ten watersheds around Austin, Texas where the Blackland 

Prairie meet the Hill Country across the Balcones Escarpment (Fig. 3.2). The Blackland 

Prairie, a flat to gently rolling plain, lies on the eastern half of the study area. This region 

is underlain with a Houston Black soil with a deep (150 cm) and well drained clay A 

horizon (Soil Conservation Service, 1974). Across the Balcones Escarpment to the west 

is the Hill Country, the eastern border of the Edwards Plateau. In this region, topography 

dramatically changes to rugged landscape with rocky hills and deep valleys. The 

dominant soil is a Brackett soil that has a shallow (15 cm) A horizon with gravel and 

clay loam weathered and eroded from the underlying Cretaceous limestone bedrock (Soil 

Conservation Service, 1974). The bedrock consists of alternating limestone and dolomite 

layers interbedded with soft marly layers. As the marl is weathered and eroded, the slope 

fails and the upper layer recedes. This process has formed a stair-stepped landscape with 

a series of treads and risers (Marsh and Marsh, 1995; Woodruff Jr. and Wilding, 2008). 

Naturally occurring steps have a dimension of approximately 2 m in height and 10-20 m 

in width (Wilcox et al., 2007).  
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The Edwards Aquifer, a shallow karst aquifer underneath the study area, plays an 

important role in stream hydrology. This aquifer is mainly recharged via fractures and 

cracks of the limestone bedrock along streambeds near the Edwards Escarpment, called 

the recharge zone. About 75% of aquifer recharge occurs along the streams (Bowles and 

Arsuffi, 1993). The aquifer also discharges to the streams from many artesian springs. 

Overpumpage of the Edwards Aquifer has long been a concern. Many springs have dried 

up as water was pumped out of the aquifer for agricultural and residential consumption 

over the last decades. The Colorado River, crossing the Edwards Escarpment from 

northwest to southeast in the study area, divides the aquifer into two sections: the Barton 

Springs segment and the Northern segment (Scanlon et al., 2003). The climate is 

subtropical with a mean annual precipitation of 810 mm falling more on spring and fall 

[U.S. National Climatic Data Center (NCDC), 2009]. Snow is rare. 

Austin is one of the fastest growing cities in the United States. The population 

almost doubled over the last two decades from 465,622 in 1990 to 757,688 in 2008 (U.S. 

Census Bureau, 2009). Many natural and agricultural lands surrounding the city were 

converted to suburban areas. We selected ten intermittent streams whose watersheds 

cover varying degrees of urbanization from downtown to suburban and to rural areas. At 

each stream, the U.S. Geological Survey (USGS) has monitored daily mean streamflow 

for more than 20 years. Other USGS stations located at the Colorado River or whose 

watersheds lie in both the Blackland Prairie and the Hill Country were excluded from 

analysis. Table 3.1 describes the characteristics of the ten watersheds chosen for this 

study. Of the ten study watersheds, seven are located in the Hill Country and the  
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Table 3.1. Characteristics of ten USGS gaging stations and their contributing 
watersheds. 
 

USGS ID Site Name*  
Area of watershed 

(km2) Mean Slope (%) Geologic region 
08158600 Walnut Creek 138.4 3.99 Blackland Prairie 
08156800 Shoal Creek 33.0 3.33 Blackland Prairie 
08105100 Berry Creek 213.9 2.14 Blackland Prairie 
08154700 Bull Creek 58.7 11.07 Hill Country 
08158920 Williamson Creek 16.3 6.35 Hill Country 
08158840 Slaughter Creek 22.7 5.38 Hill Country 
08155200 BartonUP Creek  231.8 6.97 Hill Country 
08155240 BartonMID Creek 278.0 7.69 Hill Country 
08155300 BartonDOWN Creek 301.6 7.78 Hill Country 
08158700 Onion Creek 320.2 6.16 Hill Country 

 
* The suffixes, “UP”, “MID” and “DOWN,” refer to upstream, midstream, and 
downstream of Barton Creek. 
 

 

 

remaining three in the Blackland Prairie. Barton Creek is monitored by three gaging 

stations. Thus, the number of the streams studied is eight in total. Seven streams are 

tributaries of the Colorado River. Berry Creek flows into the Brazos River.   

 

Measurement of watershed urbanization 

The degree of watershed urbanization was measured by impervious surface percentage 

of the watershed, a commonly used indicator of urbanization (Arnold and Gibbons, 

1996; Brabec et al., 2002). Two impervious surface maps were generated from cloud 

free Landsat TM images acquired on February 8, 1991 and February 7, 2008. Winter 

images were selected to more easily detect impervious surfaces under tree canopies. We 
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used the support vector machine (SVM) for mapping impervious surfaces because of its 

ability to minimize errors near the boundary between land cover classes (Burges, 1996, 

Foody and Mathur, 2004; 2006). This attribute is particularly promising for urban 

remote sensing images because urban landscape consists of diverse surface materials 

within an image pixel. 

We classified two images separately into four land cover classes: impervious 

surface, forest, grassland, and waterbody. Since SVM is a supervised classification 

algorithm, i.e., SVM assigns each pixel into one of the land cover classes predefined by 

users, we trained it using 40 rectangular polygons (10 polygons per each land cover 

class), each of which consists of four to ten pure pixels representing each land cover. 

The training pixels were selected with aids of aerial photographs taken in 1987 and 

2006. For impervious surface, the training pixels covered various construction materials 

such as concrete, cement and glass. We applied the second order polynomial kernel to 

non-linearly separate impervious surface from other land cover classes. We also 

included a slack variable to penalize errors for training pixels not separable by SVM. 

The weight of the slack variable, the level of penalty for the errors, was determined by 

trial-and-error so that SVM has the highest classification accuracy. 58 validation pixels 

were additionally obtained to assess the classification accuracy. Initially, we randomly 

selected 300 validation pixels and measured the area of impervious surface for each 

pixel by on-screen digitizing over the 1987 and 2006 aerial photographs. However, only 

29 pixels had impervious surfaces greater than 50%. Thus, 29 non-impervious pixels 

were randomly selected from remaining 271 pixels. The pixels that experienced land 
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cover change between the two study periods were excluded from training or validation 

pixels. Because we are only interested in impervious surface, three non-impervious land 

cover classes classified by the SVM were merged into one class before assessing 

classification accuracy. The optimum weight for the slack variable is the one that yields 

the highest classification accuracy. Once impervious surface was classified, impervious 

surface percentages were calculated for ten watersheds delineated from 1 arc-second 

National Elevation Dataset. ENVI 4.5 was used for the SVM classifications (IIT Visual 

Information Solutions, 2008).  

 

Transfer function model 

TF models were estimated using daily rainfall and daily mean streamflow data collected 

in two 4-water year (WY) periods: 1989-1992WY (10/1988 to 09/1992) and 2005-

2008WY (10/2004 to 09/2008). Daily rainfall data were measured at Austin Mueller 

Municipal Airport (NCDC COOPID: 410428) located approximately at the center of the 

study area. Although there were other weather stations near some of the study 

watersheds, we did not use the data from those stations because they did not measure the 

daily rainfall from midnight to midnight. Mean annual precipitations were 929 mm and 

863 mm for 1989-1992WY and 2005-2008WY, respectively, both of which were higher 

than a long-term average (810 mm). Fig. 3.3 illustrates daily hyetograph and 

hydrographs for Shoal Creek (the most urbanized stream) for the two study periods. For 

BartonUP Creek and BartonMID Creek where the USGS had missing data during the  
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first two months in 1989-1992WY period, TF models were estimated with the remaining 

46 months data.  

The TF model expresses the daily mean streamflow as: 

 

sbtsbtbtrtrtt XXXYYY −−−−−−− +++=−−− ϖϖϖδδ LL 11011    (3.1) 

 

where tY  denotes the mean streamflow at day t in m3/min, tX  is the rainfall depth at 

day t in mm/day, b is the time delay between rainfall and streamflow in day, r and s are 

the orders of time series, and rδδ L1  and sϖϖ L1 are parameters to be estimated. Using 

backshift operator and adding a noise term into Eq. (3.1): 

 

tbtt NX
B
BY += −)(

)(
δ
ω           (3.2) 

 

where B is a backshift operator that transforms any time series data such that 

1)( −= tt YYB , )(Bω  and )(Bδ  are backshift polynomials, and tN  is an unexplained 

noise at time t. tN  is to be white-noised by fitting an autoregressive and moving average 

(ARMA) model, ( ) tt eBBN  )()( φθ=  , where te ),0(~ 2σN  and  )(Bφ  and )(Bθ  are 

polynomials for error terms, estimated by the Box-Jenkins procedure (Box and Jenkins, 

1976). For this study, we assumed there is no delay, i.e., b is equal to 0, based on the fact 

that a daily time interval is too coarse to detect the time delay between the rainfall and 
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the streamflow in the relatively small study watersheds. The ratio of polynomials, 

)()( BB δω , is called the transfer function and describes how the impact of one unit of 

rainfall is transferred to streamflow over time (O’Connell and Clarke, 1981; Young, 

2003). For simplicity, we set r and s to 1 and 0, respectively, i.e., daily streamflow after 

the rainfall decreases by the first order. Rewriting Eq. (3.2) with these restrictions yields: 

 

ttt NX
B

Y +
−

=
)1( 1

0

δ
ω

            (3.3) 

 

Since streamflow eventually goes to baseflow, tY  series is stationary and 1δ  is always 

less than 1. Therefore, Eq. (3.3) can be rewritten as: 

 

t
i
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∞
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−

0
10 δω             (3.4) 

 

The impacts of unit rainfall on day t on streamflow on day t, t+1, t+2, … were 

calculated by updating Eq. (3.4) by i time intervals and taking partial derivatives with 

respect to tX : 
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Eq. (3.5) tells us that 1δ  is a recession constant representing the impacts of unit rainfall 

decay at a rate of 1δ . As 1δ  is closer to 0, the stream dries up more quickly. 
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are called the discrete impulse response functions (IRFs). 

Because each term in IRF indicates the impact of unit rainfall, graphical representation 

of IRF is equivalent to unit hydrograph (O’connell and Clarke, 1981; Young, 2003). 

Eq. (3.5) also indicates that the impact of unit rainfall on streamflow on the same day of 

storm, or peakflow, is solely represented by 0ω . If we convert the units of daily rainfall 

and streamflow to the total volume of rainfall falling onto a watershed (by multiplying 

the area of a watershed to rainfall depth) and total volume of streamflow flowing out 

during the storm day (by multiplying a conversion factor from minutes to day), 

respectively, 0ω  becomes a dimensionless parameter that indicates the volumetric ratio 

of streamflow to rainfall. Assuming that, in an intermittent stream, surface runoff 

contributes to most of the streamflow during the storm day, the dimensionless 0ω  can 

approximately interpreted as runoff coefficient, or zero-day runoff coefficient, of the 

watershed. The TF model has an advantage over other hydrologic methods in that this 

model can take into account antecedent rainfalls. The volume of stormwater runoff is not 
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only determined by today’s rainfall but also by soil moisture and groundwater level 

affected by antecedent rainfalls. Therefore, runoff coefficient might be overestimated if 

it is measured after a heavy rainfall event a few days ago. TF models were estimated 

using the ARIMA procedure in SAS 9.1 (SAS Institute Inc., 2004).   

 

Results 

Impervious surface classification 

For both Landsat TM images taken in 1991 and 2008, SVM correctly classified 79.3% 

(46 of 58) of the validation pixels. As intended, impervious and non-impervious surfaces 

were classified without bias, i.e., 79.3% (23 of 29) pixels were correctly classified for 

both classes. The weights of slack variables were 35 and 10 for 1989 and 2008 images, 

respectively. Fig. 3.4 illustrates the impervious surface maps for the two study periods. 

Overall, impervious surface increased by 5.6% (from 10.9% to 16.5%) in all the study 

watersheds between the two study periods. On the 1991 map, impervious surface was 

found mostly in the Shoal Creek watershed located near downtown Austin, but it had 

expanded to neighboring watersheds in 2008. On both maps, impervious surfaces were 

the largest in the Shoal Creek watershed. Impervious surfaces covered 68.2% and 74.1% 

of the watershed area in 1991 and 2008, respectively (Table 3.2). The greatest change 

occurred in the Walnut Creek watershed. Impervious surface increased by 18.0% (from 

39.4% to 57.4%) for this watershed. Of the watersheds in the Hill Country, the 

Williamson Creek watershed has experienced the largest increase in impervious surface. 

In this watershed, 13.4% of the watershed area (from 18.0% to 31.4%) changed to  
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impervious surface. The watershed with the least impervious surface percentage was the 

Onion Creek watershed. Less than 5% of the watershed was covered by impervious 

surface both on 1991 and 2008 maps.    
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Table 3.2. Impervious surface percentages and two parameters of transfer function (TF) models.  
 

 

Site* 

1991 % 
impervious 

surface 

2008 % 
impervious 

surface  

Change in 
% 

impervious 
surface 

1989-
1992WY 

0ω̂   

2005-
2008WY 

0ω̂  

1989-
1992WY 

dimension-
less 0ω̂ ** 

2005-
2008WY 

dimension-
less 0ω̂ ** 

2005-
2008WY 

1̂δ  

2005-
2008WY 

1̂δ  

1989-
1992WY 

(AR, MA)+ 

2005-
2008WY 

(AR, MA)+

% 
change 
in 0ω̂  

% 
change 

in 1̂δ  

Walnut (BP) 39.4 57.4 18.0 19.51 21.67 0.20 0.23 0.29 0.29 (1,0) (0,0) 11.1 -40.0 
Shoal (BP) 68.2 74.1 5.9 5.22 6.09 0.23 0.27 0.16 0.16 (0,0) (1,0) 16.6 -44.7 
Berry (BP) 2.1 6.3 4.2 9.62 12.39 0.06 0.08 0.55 0.55 (1,2) (1,1) 28.7 -13.8 
Bull (HC) 18.1 27.6 9.5 4.43 3.35 0.11 0.08 0.59 0.59 (1,3) (1,1) -24.4 -12.7 
Williamson (HC) 18.0 31.4 13.4 2.56 1.17 0.23 0.10 0.41 0.41 (1,1) (1,1) -54.4 -20.1 
Slaughter (HC) 6.4 10.4 4.0 1.71 1.54 0.11 0.10 0.41 0.41 (1,4) (1,4) -11.1 -43.8 
BartonUP (HC) 3.7 6.5 2.8 12.40 11.53 0.08 0.07 0.58 0.58 (1,3) (1,1) -7.0 -25.4 
BartonMID (HC) 4.7 8.3 3.6 14.43 11.09 0.07 0.06 0.62 0.62 (1,3) (1,1) -23.2 -22.3 
BartonDOWN (HC) 5.4 9.6 4.2 20.53 12.00 0.10 0.06 0.65 0.65 (1,3) (1,1) -41.5 -18.2 
Onion (HC) 2.3 3.9 1.6 11.75 11.58 0.05 0.05 0.57 0.57 (1,3) (1,0) -1.4 -29.8 
 

*    (BP): Blackland Prairie; (HC): Hill Country  
**  dimensionless 0ω̂  = 0ω̂  [(m3/min)/(mm/day)] × 1440 (min/day) × 1000 (mm/m) / area of watershed (km2) × (10-6 km2/m2) 

+    AR refers the orders of polynomial )(Bφ  and MA refers to the order of polynomial )(Bθ  that whitens the unexplained 
error by rainfall. 
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Hydrologic change 

Three streams in the Blackland Prairie became flashier and more responsive per unit 

rainfall between the two study periods. TF models indicate that peakflow on the day of a 

storm rose up higher, while decayed more rapidly after the storm in 2005-2008WY than 

in 1989-1992WY. For the three streams, 0ω̂ s increased by 18.8%, while 1̂δ s decreased 

by 32.8% on average (Table 3.2).   

Unlike the streams in the Blackland Prairie, the streams in the Hill Country 

became less responsive. For all seven streams, 0ω̂ s were lower in 2005-2008WY than in 

1989-1992WY. On average, 0ω̂ s decreased by 23.3 % between the two study periods 

(Table 3.2). The stream with the largest change in 0ω̂  was Williamson Creek whose 

watershed also experienced the largest change in impervious surface percentage among 

seven watersheds in the Hill Country. For this creek, 0ω̂  decreased by 54.4% and 

impervious surface increased by 13.4%. For two creeks with the least changes in 0ω̂ s 

(Onion Creek and BartonUP Creek), impervious surfaces also changed the least. To 

investigate the effects of urbanization on stream hydrology in the Hill Country, we 

plotted percent change in 0ω̂  over the change in impervious surface percentage between 

the two study periods (Fig. 3.5a). A strong negative relationship (R2 = 0.593, p = 0.043) 

indicates that peakflow during the day of storm decreased as watersheds became more 

urbanized. 1̂δ s also decreased in all seven streams in the Hill Country (24.6% on 

average) in that the streams decay rapidly as watershed became more urbanized, but the  
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relationship between percent change in 1̂δ s and the changes in impervious surface 

percentage is not statistically significant (R2 = 0.222, p = 0.285) (Fig. 3.5b).  

IRF plots further illustrate the contrasting patterns in hydrologic changes 

between the Blackland Prairie and the Hill Country regions. Fig. 3.6 plotted the 

estimated IRFs for the first 15 days after a storm. For the streams in the Blackland 

Prairie, the impacts of unit rainfall were initially higher in 2005-2008WY than in 1989-

1992WY, but the higher impacts lasted only for one or two days after the storm and 

remained smaller for the rest of the days (Fig 3.6a to 3.6c). However, the impacts of unit 

rainfall on the streams in the Hill Country were always lower for 2005-2008WY,  
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suggesting that urbanization decreased peakflow during a storm day (Fig 3.6d to 3.6j). 

Again, the change in initial impacts between the two study periods is largest in 

Williamson Creek (Fig 3.6e), while negligible on Onion Creek (Fig 3.6j) and BartonUP 

Creek (Fig 3.6g).  

 

Discussion and Conclusion 

Urbanization does not always make a stream flashier. Of the study streams, only those in 

the Blackland Prairie (gentle slope watersheds) became flashier during the last two 

decades. IRF plots illustrate that, as the gentle slope watershed was urbanized, the 

stream had a larger 0ω̂ , i.e., larger peakflow on the same day of a storm, and a smaller 

1̂δ , i.e., more rapid recession of streamflow after the storm. In contrast, the streams in 

Hill Country (hillslope watersheds) became less flashy in that the stream had smaller 0ω̂

s and 1̂δ s after urbanization. Therefore, we can conclude that urbanization makes stream 

hydrology drier rather than flashier in hillslope watersheds with less intensive peakflow 

and longer dry periods. 

The comparison of IRFs between the two study periods showed that the streams 

became more intermittent during the last decades in all study streams. As previously 

mentioned, this change can be attributed to the overpumpage of the Edwards Aquifer 

(Bowles and Arsuffi, 1993; Scanlon et al., 2003), but the overpumpage altered the 

stream hydrology mainly through lowering the baseflow. The stream dryness can be 

exemplified by the decreases in 1̂δ s in all study streams regardless of their degrees of 
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urbanization. Because these streams were hydrologically connected by the Edwards 

Aquifer, the effect of the overpumpage was not limited to the watershed where the 

pumpage occurred but extended to neighboring watersheds. In other words, the 

overpumpage alone cannot explain the different responses between the Blackland Prairie 

and the Hill Country streams. In the Blackland Prairie, peakflow increased, which 

suggests that the increase in impervious surface played an important role in stream 

hydrology of a gentle slope watershed even though the overpumpage lowered the aquifer 

level and reduced baseflow. Furthermore, the decreases in the peakflow were more 

evident on hillslope watersheds that were more urbanized, which is contrary to the 

conventional urban hydrology models. Then, what made the difference between two 

types of watersheds? Why did the peakflow decrease in the Hill Country watersheds 

although they also experienced watershed urbanization over the last decades?  

We suspect that land grading for the construction resulted in reduced surface 

runoff in a hillslope watershed. The grading on hillslope creates a stair-stepped or 

terraced landscape. Fig 3.1 illustrates typical landscapes after urbanization in a hillslope 

watershed. As described earlier, the Hill County has a stair-stepped landscape even 

before urbanization due to weathering of the marly interbeds. Marsh and Marsh (1995) 

and then Woodruff and Wilding (2008) discussed that a hydrologic process on this 

naturally occurring stair-stepped topography is much more complex than that on non-

stair-stepped hillslope. On the stair-stepped watershed, as shown in Fig 3.7, stormwater 

falling on a tread infiltrates into the ground and moves as subsurface flow until it meets a 

riser. Then it seeps out to the sidewall of the riser and cascades down to the next tread  



50 
 

 

 

 

below one level. On the tread, stormwater slows down and infiltrates again into the 

ground. As the infiltration-seepage process continues through a series of risers and 

treads, the volume and velocity of surface runoff is significantly reduced once it reaches 

the downstream channel. As a result, stream hydrology is less flashy in the stair-stepped 

watershed than in other hillslope watersheds with non-stair-stepped hillslope. This 

process was developed to describe the hydrologic process on a naturally occurring stair-
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stepped hillslope, but it can also explain the stream dryness of the study area because 

land grading likely magnified the steppedness of the hillslope watersheds. Wider and 

flatter steps created through land grading further decreased the surface runoff in the Hill 

Country watersheds. In addition to land grading, urbanization also provides an additional 

stormwater storage area in the form of retention basins nowadays mandated by many 

municipalities. Water retained in these basins is lost via evapotranspiration if the basin 

lies over shallow impermeable bedrock that does not permit the infiltration. In the study 

area, the decrease in surface runoff further dried up downstream because the Edwards 

Aquifer is mostly recharged through the streambed. Less streamflow during a storm 

event reduced the aquifer recharge, lowered the aquifer level, and consequently resulted 

in a longer intermittent period. Fig 3.7 illustrates the hydrologic processes on the stair-

stepped landscape altered by urbanization in a hillslope watershed. 

It is worth noting other factors that may lead to hydrologic changes in the study 

watersheds. In this study, we compared stream hydrology of the same watersheds 

between two study periods. The longitudinal comparison allowed us to control for most 

natural hydrogeologic characteristics, such as soil and climate because they remained 

unchanged within this short period of time. Urbanization was the only change having 

occurred between the two study periods. Therefore, we can attribute the change in 

hydrologic regimes to urbanization. However, this comparison cannot rule out other 

potential impacts, such as different development schemes across the study watersheds. 

Austin divides its territory into five water protection zones and regulated them with 

varying levels of impervious surface limit, riparian buffer width, and the standards of 
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sedimentation/infiltration basins (City of Austin, 2008). We originally planned to 

compare stream hydrology of the different protection zones, but we recognized that the 

effect of zoning regulation was minor and outweighed by other factors, i.e., slopes of 

watershed and land grading. Although this study cannot decompose these confounding 

factors, it would be interesting to evaluate the effect of the watershed regulations on 

urban hydrology.  

Another limitation is related to the method used to estimate watershed 

permeability. Recently, stormwater management experts suggest to use effective 

impervious surface area (EIA), impervious surface area only directly connected to 

drainage system (Lee and Heaney, 2003; Roy and Shuster, 2009). EIA provides more 

accurate information on watershed permeability, but it has not been widely applied to 

hydrologic studies because it needs intensive field work to verify what impervious 

surface area is directly connected to the drainage system. Considering a relatively large 

study area and the requirement of longitudinal data that cannot be acquired by field 

survey, we had to use total impervious surface area (TIA) to estimate watershed 

permeability. Although the analysis based on EIA would be more accurate, we believe 

that the general conclusion will be the same because in most cases TIA and EIA are 

strongly positively related.   

Current stormwater management schemes are based on maintaining the 

watershed permeability. For instance, low impact development (LID), a site 

development technique to maintain predevelopment hydrology, is based on stormwater 

best management practices (BMPs) that treat stormwater on site (U.S. Environmental 
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Protection Agency, 2000; Hood et al., 2007; Dietz and Clausen, 2008). Although these 

management schemes have showed some promising outcomes in gentle slope 

watersheds, our findings suggest that they may not properly reflect complex 

hydrogeologic processes in hillslope watersheds. Detention and retention basins may not 

help preventing the stream dryness in hillslope watersheds because they are likely to 

decrease the volume of stormwater that reaches the stream channel. Other strategies, 

such as a site layout plan that adapts to local topography, should be considered. Hillslope 

watershed attracts more and more residents due to its scenic view. We recommend that 

watershed management schemes be revised to reflect the local hydrogeological 

conditions in the hillslope watersheds.   
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CHAPTER IV 

INVESTIGATING ALIEN PLANT INVASION IN URBAN RIPARIAN FORESTS IN 

A HOT AND SEMI-ARID REGION 

 

Chapter Summary 

In this paper, we examined twelve riparian forests along urban-rural gradients in Austin, 

Texas on 1) the invasion of alien woody species in urban and rural riparian forests, and 

2) the relationships among ecosystem invasibility, watershed urbanization, and stream 

hydrology. Ecosystem invasibility was assessed by relative alien cover (RAC) of the 

study sites. Stream hydrology was quantified using the transfer function (TF) model. 

Four years of daily rainfall and streamflow data were used to estimate two parameters of 

TF models: ߸଴ (the peak discharge during storm events) and ߜଵ (the flow recession after 

the storms), each of which represents a different attribute of hydrologic regimes. We also 

measured various environmental variables (15 in total) that characterized the study sites, 

including impervious surface percentage, area of watershed, two species diversity 

indices, canopy gap percentage, and several soil nutrient contents. The results indicate 

that impervious surface percentage was related to ߜଵ. The more the impervious surface 

in a watershed, the faster streamflow recedes after the storm, and the longer dry period 

the riparian forest experienced (R2=0.722). Impervious surface percentage was also 

related to RAC (R2=0.498). Nonmetric multidimensional scaling (NMDS) grouped the 

environmental variables into five dimensions. One of the dimensions was strongly 

related to three variables that are known to be associated with hydrologic disturbance: 
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impervious surface percentage, recession parameter, and canopy gap percentage. 

Multiple regression analysis of RAC on the five NMDS dimensions shows that the 

dimension representing hydrologic disturbance significantly affected RAC. This result 

indicates that watershed urbanization facilitates the invasion of alien species in riparian 

forests through increasing the level of hydrologic disturbance, particularly drought in a 

hot and semi-arid region.   

 

Introduction 

Riparian forests are prone to the invasion of alien species (Stohlgren et al., 1998; 

Tickner et al., 2001; Zedler and Kercher, 2004). Floods disturb the riparian forests 

mechanically as well as by periodically creating an anaerobic environment (Hood and 

Naiman, 2000; Pettit and Froend, 2001). Once floods recede, the disturbed forests are 

more easily invaded by alien species that grow faster and are more tolerant to 

disturbance than native species (Nilsson et al., 1997; Morris et al., 2002; Glenn and 

Nagler, 2005; Stromberg et al., 2007). Stream channels also help dispersal of the alien 

species by transporting their propagules from upstream habitats (Moggridge et al., 

2009). The invasion of the alien species could threaten biodiversity in a hot and semi-

arid region because the riparian forests serve as refugees for regionally rare wetland 

species (Aguiar and Ferreira, 2005).   

Urbanization worsens the invasibility of alien species. Increased impervious 

surface generates more stormwater runoff, and intensifies the frequency and magnitude 

of floods in downstreams (Leopold, 1968). Impervious surface also lowers stream 
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baseflow by decreasing stormwater infiltration into groundwater (Groffman et al., 2002; 

2003). Therefore, riparian forests in urban areas suffer from more floods during storm 

events and droughts during dry periods, and become more vulnerable to invasion by 

disturbance-tolerant alien species that may be better able to cope with the fluctuating 

water levels (Medina, 1990; Moffatt et al., 2004; Maskell et al., 2006).  

Previous studies attributed the higher invasibility of urban riparian forests to 

various aspects of urbanization. For instance, King and Buckney (2000) investigated 

stream and riparian ecosystems in northern Sydney, Australia and found that an increase 

in soil nutrient level was related to the alien invasion. They discussed that nutrients 

washed off from fertilized backyards and lawns by stormwater runoff facilitated the 

invasion of alien species that grow faster than native species in an excessive nutrient 

environment. In a study of riparian forests in Birmingham, United Kingdom, Maskell et 

al. (2006) ascribed the abundance of alien species in urban sites to the stream 

channelization that intensifies flood magnitude. Some studies explained the higher 

invasibility of urban riparian forests by land use/land cover in surrounding areas. Moffatt 

et al. (2004) and Burton and Samuelson (2008) reported that alien species in riparian 

forests increased with urbanization in surrounding landscapes. These studies argued that 

loss and fragmentation of habitats decreases the ecosystem resistance to the biological 

invasion. Although the previous studies identified various environmental factors 

associated with the biological invasion, they recognized hydrologic disturbance as an 

underlying cause that governed those factors. However, only few have directly related 

hydrologic disturbance to the invasion of the alien species in urban riparian forests (e.g., 
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Greer and Stow, 2003; Burton et al., 2009). This may be due to the difficulty in 

quantifying hydrologic disturbance. 

The objective of this study is to examine whether urbanization facilitates alien 

species invasion by raising the level of hydrologic disturbance. To quantify hydrologic 

disturbance, we used a transfer function (TF) model that characterizes the dynamic 

relationship between rainfall and streamflow. TF models were estimated from four-year 

daily rainfall and streamflow data of twelve streams along urban-rural gradients in 

Austin, Texas. We also measured various environmental variables potentially affecting 

the invasibility of riparian forests. Based on the relationships between the environmental 

variables and ecosystem invasibility assessed by surveying woody vegetation 

communities near the stream gaging stations, we investigated factors that lead to the 

biological invasion in urban riparian forests.  

 

Materials and Methods 

Study sites 

The study area is Austin, Texas, one of the fast growing cities in the United States. 

Population increased from 465,622 in 1990 to 757,688 in 2008 (U.S. Census Bureau, 

2009) and correspondingly many natural habitats have been converted to urban areas. 

The study area shown in Fig. 4.1 is located where two major ecoregions meet. The 

eastern half of the study area is the Blackland Prairie ecoregion, a flat to rolling plain 

with deeply incised streams. This ecoregion has deep and organic rich clay soil (Soil 

Conservation Service, 1974). Across the Balcones Escarpment to the west is the Hill 
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Country, an eastern end of the Edwards Plateau ecoregion. This region has a rugged 

landscape with numerous hills and valleys formed by exposed limestone bedrocks 

(Marsh and Marsh, 1995; Woodruff Jr. and Wilding, 2008). The soil in this region is 

shallow and composed of gravel and clay loam weathered from the underlain Cretaceous 

limestone bedrock (Soil Conservation Service, 1974). The study area is underlain by the 

Edwards Aquifer, a shallow karst aquifer vulnerable to surface water contamination 

(Bowles and Arsuffi, 1993). Many artesian springs fed by the Edwards Aquifer are also 

found in this area. Except human land uses, the study area is covered by mixed forests 

dominated by live oak (Quercus virginiana), Ashe’s juniper (Juniperus ashei), and 

honey mesquite (Prosopis glandulosa) (McMahan et al., 1984). The climate is 

subtropical with hot summer and mild winter. Mean annual precipitation is 810mm 

mostly falling in spring and fall [National Climatic Data Center (NCDC), 2009]. Snow is 

rare.  

We studied twelve remnant riparian forests in Austin (Fig. 4.1). The study sites 

were selected to couple the vegetation survey data with the daily mean streamflow data 

collected by the U.S. Geological Survey (USGS). All streams are intermittent. Because 

Barton Creek and Onion Creek are monitored by multiple stations, the total number of 

streams is seven. Five streams are tributaries of the Colorado River, while Plum Creek 

and Berry Creek are tributaries of the Guadalupe River and the Brazos River, 

respectively.   
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Impervious surface estimation 

We estimated the degree of watershed urbanization by measuring impervious surface 

percentage. This section highlights key procedures. Detailed procedures are described in 

Chapter II and III. An impervious surface map was generated from Landsat TM image 

acquired on February 7, 2008. We selected this image because it is cloud free and taken 

in winter when impervious surface under tree canopy is more easily detectable. The 

image was classified by support vector machine (SVM) due to its ability to improve 

classification accuracy particularly for image pixels near the margin between land cover 

classes (Burges, 1998; Foody and Mathur, 2006). Training and validation pixels were 

selected by referring fine resolution aerial photographs taken in 2008. ENVI 4.5 was 

used for the image classifications (ITT Visual Information Solutions, 2008). Once 

impervious surface was classified, impervious surface percentage was calculated for a 

watershed delineated from 1 arc-second USGS National Elevation Dataset using 

BASINS.  

 

Quantifying hydrologic regime 

For each stream, the TF model was estimated using daily rainfall and daily mean 

streamflow for four water years (WY) between October 2004 and September 2008. The 

daily rainfall data were observed at Austin Mueller Municipal Airport (NCDC COOP 

ID: 410428) approximately at the center of the study area. Although there were other 

weather stations near some of the study stream gaging stations, we did not use the data 

from those stations because they did not measure the rainfall from midnight to midnight  
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(e.g., the Morgan weather station, the one near Plum Creek, read the rain gage at 8am 

every day). The mean annual precipitation during the 4WY study period was 863mm, 

which is higher than the long term average (810mm). Fig. 4.2 illustrates the daily 

hyetograph and hydrograph for Shoal Creek (the one near downtown Austin).         

TF model expresses the daily mean streamflow as: 

 

௧ܻ ൌ
߸ሺܤሻ
ሻܤሺߜ ܺ௧ ൅ ௧ܰ,     ௧ܰ ൌ

ሻܤሺߠ
߶ሺܤሻ ݁௧ (4.1)
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where, ௧ܻ denotes the mean streamflow at day t in m3/min, ܺ௧ is the rainfall depth at day 

t in mm, B is the backshift operator, ߸ሺܤሻ, ߜሺܤሻ, ߠሺܤሻ, and ߶ሺܤሻ are the backshift 

polynomials estimated by Box and Jenkins’ (1976) procedure,  ௧ܰ is unexplained noise 

at time t, and ݁௧ is true white noise. For simplicity, we restricted the model by setting the 

orders of polynomial ߸ሺܤሻ and ߜሺܤሻ by 0 and 1, respectively. The simplified TF models 

can be written as:  

 

௧ܻ ൌ
߸଴

1 െ ܤଵߜ ܺ௧ ൅ ௧ܰ (4.2)

 

where, ߸଴ is a parameter of the 0 order term in the polynomial ߸ሺܤሻ, and ߜଵ is a 

parameter of the first order term in the polynomial ߜሺܤሻ. Because daily streamflow rises 

during a storm event and ultimately returns to baseflow, rainfall-streamflow series is 

stationary and ߜଵ must have a value between 0 and 1. Eq. (4.2) can be expressed as an 

infinite sum of weighted rainfalls on previous days: 

 

௧ܻ ൌ ߸଴ ෍ ଵߜ

ஶ

௜ୀ଴

ܺ௧ ൅ ௧ܰ (4.3)

 

The parameters of ܺ௧, ܺ௧ିଵ, ܺ௧ିଶ, …ܺ௧ି௜  …, in Eq. (4.3) were given as ߸଴, 

߸଴ߜଵ, ߸଴ߜଵ
ଶ,…, ߸଴ߜଵ

௜, …, and can be interpreted as the impacts of unit rainfall at day t 
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on streamflow at day t, t-1, t-2, …., t-i, ….  Because 0 ൏ ଵߜ ൏ 1, the impact of unit 

rainfall on streamflow is ߸଴ at day 0,  and decays exponentially at the rate of ߜଵ. 

Therefore, ߸଴ represents the impact of unit rainfall on the streamflow on a same day and 

 ଵ indicates how fast streamflow decays after a storm. Higher ߸଴ means higherߜ

magnitude of streamflow during storm events and higher ߜଵ means slower recession of 

streamflow after the storm. The TF models were estimated by the maximum likelihood 

method using the ARIMA procedure in SAS 9.1 (SAS Institute Inc., 2004). 

Previous studies showed that the TF model is equivalent to other conventional 

hydrologic methods. For instance, graphical representation of the daily impacts is 

equivalent to unit hydrograph, commonly used in hydrologic analysis (O’connell and 

Clarke, 1981; Young, 2003). Also, we can estimate zero-day runoff coefficient from the 

TF model by simply converting the unit of ߸଴ so that ߸଴ represents the ratio of the total 

volume of streamflow flowing out during a storm day to the total volume of rainfall 

falling onto a watershed. Although the TF model is conceptually equivalent to the 

existing methods, it has an advantage on incorporating antecedent rainfalls in parameter 

estimation. A watershed-stream system has a strong memory on rainfalls on previous 

days, i.e., it stores stormwater in various forms, such as reservoir, soil moisture and 

groundwater. Ignoring the antecedent rainfalls significantly lowers the prediction 

accuracy of streamflow. Many studies showed that TF models successfully predicted 

streamflow using rainfall data in various time intervals (e.g., Young and Beven, 1994; 

Nwakalila, 2001; Young, 2003; Farahmand et al., 2007).    
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Vegetation sampling 

We surveyed woody vegetation communities near USGS gaging stations during October 

2008 using a line intercept method (Caratti, 2006). We placed two 30m line transects 

parallel to stream bank – the first transect along the stream bank and the second one 5m 

apart from the stream bank. Transects followed the curvature of the streamline. Lengths 

of canopies intersecting the transect lines for all woody vegetation taller than 0.6m were 

measured. To exclude the effect of gaging stations, such as physical damage during 

installation and regular maintenance, the transects began at 10m downstream from the 

station. In the case that the transects passed over areas that were not accessible (e.g., 

fenced private lands) or significantly disturbed by human activities (e.g., street trees and 

lawns), we selected an alternative location in the following order: 1) across the stream 

from the gaging station, 2) toward the upstream direction at the same side of the station, 

3) toward the upstream direction across the stream from the station. Nomenclature and 

native status of species followed the USDA NRCS PLANTS database 

(http://plants.usda.gov). Soil samples were taken at a depth of 30cm in the middle of 

each transect and sent to the Texas A&M University Soil, Water and Forage Testing 

Laboratory for analysis of pH, nitrate-N (NO3-N), phosphorus (P), potassium (K), 

calcium (Ca), magnesium (Mg), sulfur (S), and sodium (Na) concentrations.  

 

Data analysis 

We summarized the vegetation survey data to reflect several characteristics of the 

riparian community. The invasibility of the riparian forest was estimated by relative 
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alien cover (RAC) (Magee et al., 2008). Canopy gap percentage was calculated to 

indirectly measure the level of ecosystem disturbance, i.e., the greater the canopy gap, 

the more severe disturbance the riparian forest experienced. Species richness and 

Shannon diversity index were also calculated to measure the species diversity of the 

vegetation communities (Magurran, 1988). Ultimately analyzed variables added up to 15 

environmental variables, including watershed characteristics, hydrologic regimes, 

vegetation community structures, and soil nutrient contents. These variables are listed in 

Table 4.1. 

Preliminary analyses (paired t-tests) showed that there was no significant 

difference between the first and second transects on all variables including RAC, two 

diversity indices, canopy gap percentage, and soil nutrient contents. Therefore, data of 

the first and second transects were pooled for the rest of the analyses. Additional tests (t-

tests) were conducted to compare the potential effects of different environmental or 

sampling conditions, such as different ecoregions or different sampling locations (i.e., 

between upstream and downstream of the USGS gaging stations, or between the sites on 

the same side and across the stream from the USGS stations). Again, no statistically 

significant differences were found between all aforementioned variables, and thus these 

variations were not considered in subsequent analyses.  

Because many environmental variables confound each other, they need to be 

decorrelated or reduced to evaluate the net effect on the invasibility of the riparian forest. 

We extracted the smaller number of dimensions from a 15-dimensional input space 

using nonmetric multidimensional scaling (NMDS) (Everitt, 2005). The distances  
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Table 4.1. Description of variables analyzed in this study. 
 

Variables Description 

Invasibility of riparian forest  
Relative alien cover (RAC) (sum of alien species cover / total species cover) × 100% (Magee et al., 2008) 

  
Watershed characteristics  
Area of watershed Delineated using national elevation data (NED) by BASINS (km2) 
Impervious surface (%) Classified from 2008 Landsat TM image by support vector machine (SVM) 
  

Stream hydrology  

߸ෝ଴ Scale parameter from TF model (m3/min/mm) 

 መଵ Recession parameter from TF model [(m3/min)/(m3/min)]ߜ
  

Community structure  
Canopy gap (%) (Lengths not covered by canopy of any woody species / length of transect) × 100% 
Species richness Total number of woody plant species (Magurran, 1988) 
Shannon diversity index െ ∑ ௜݌ ln ௜݌

ௌ
௜ୀଵ    where, S = number of species,  

 ௜ = the relative abundance of species i  (Magurran, 1988)݌                                     
  

Soil nutrient contents*  
pH      - 
NO3-N  (ppm) 
P  (ppm) 
K  (ppm) 
Ca  (ppm) 
Mg  (ppm) 
S  (ppm) 
Na  (ppm) 

 
* average concentrations in soil samples taken at two transects 
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between the pairs of twelve sites in the input space were used to construct a dissimilarity 

matrix. To level out different measurement units for the environmental variables, they 

were rescaled from 0 to 1 prior to constructing the dissimilarity matrix. The number of 

dimensions to be extracted was determined based upon stress values calculated by 

1-norm Minkowski distance between original and estimated dissimilarities. The varimax 

method was used to rotate the dimensions. Once NMDS extracted dimensions, we 

performed a regression analysis to predict RAC using the NMDS dimensions. Because 

the sample size is small (n=12) and vulnerable to the violation of the normality 

assumption, all statistical tests were based upon a bootstrapping procedure. 95% 

confidence intervals (CIs) were constructed from 999 resampled datasets using the bias 

correction with acceleration constant (BCa) method. vegan (Oksanen, et al., 2009) and 

boot (Canty and Ripley, 2009) packages in R were used to conduct NMDS and 

bootstrapping regression analysis, respectively.   

 
 

Results 

The vegetation survey of the twelve riparian forests documented thirty-four woody 

species (Table 4.2). Dominant native species included Pecan (Carya illinoinensis), 

Sugarberry (Celtis laevigata), Netleaf Hackberry (Celtis reticulata), Green Ash 

(Fraxinus pennsylvanica), American Elm (Ulmus americana), and Cedar Elm (Ulmus 

crassifolia). These species were found at more than half of the study forests. Of the 

thirty-four species, four were alien species. Those species include Chinaberry (Melia 

azedarach), Glossy Privet (Ligustrum lucidum), Chinese Privet (Ligustrum sinense), and  
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Table 4.2. Woody native and alien species (taller than 0.6m) found at twelve study sites. 
 
 
 
Scientific name Common name Number of sites observed 

Alien species   
Ligustrum lucidum Glossy Privet 4 
Ligustrum sinense Chinese Privet 1 
Melia azedarach Chinaberrytree 8 
Triadica sebifera Chinese Tallow 3 

Native species   
Acer negundo Boxelder 4 
Amorpha fruticosa Desert False Indigo 1 
Carya illinoinensis Pecan 7 
Celtis laevigata Sugarberry 9 
Celtis occidentalis Common Hackberry 2 
Celtis reticulate Netleaf Hackberry 8 
Cephalanthus occidentalis Common Buttonbush 4 
Cornus drummondii Roughleaf Dogwood 5 
Diospyros texana Texas Persimmon 1 
Eysenhardtia Texana Texas Kidneywood 1 
Fraxinus pennsylvanica Green Ash 7 
Fraxinus texensis Texas Ash 4 
Ilex deciduas Possumhaw 4 
Ilex vomitoria Yaupon 2 
Juglans major Arizona Walnut 1 
Juglans nigra Black Walnut 3 
Juniperus ashei Ashe's Juniper 1 
Morus rubra Red Mulberry 4 
Parkinsonia aculeata Jerusalem thorn 1 
Platanus occidentalis American Sycamore 5 
Populus deltoids Eastern Cottonwood 2 
Quercus macrocarpa Bur Oak 1 
Quercus shumardii Shumard's Oak 1 
Rhus copallina Winged Sumac 2 
Robinia Pseudoacacia Black Locust 2 
Salix nigra Black Willow 3 
Sideroxylon lanuginosum Gum Bully 3 
Taxodium distichum Bald Cypress 1 
Ulmus Americana American Elm 8 
Ulmus crassifolia Cedar Elm 8 
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Table 4.3. The parameter estimates of transfer function (TF) models and the relative 
alien cover (RAC) of twelve study sites. 

USGS ID Site Name*  Ecoregion 
Area of watershed 

(km2) 
% impervious 

surface 
08158600 Walnut Creek Blackland Prairie 138.4 57.4 
08156800 Shoal Creek Blackland Prairie 33.0 74.1 
08159000 OnionDOWN Creek     Blackland Prairie** 838.0 13.1 
08105100 Berry Creek Blackland Prairie 213.9 6.3 
08172400 Plum Creek Blackland Prairie 287.0 7.1 
08154700 Bull Creek Hill Country 58.7 27.6 
08158920 Williamson Creek Hill Country 16.3 31.4 
08158840 Slaughter Creek Hill Country 22.7 10.4 
08155200 BartonUP Creek  Hill Country 231.8 6.5 
08155240 BartonMID Creek Hill Country 278.0 8.3 
08155300 BartonDOWN Creek Hill Country 301.6 9.6 
08158700 OnionUP Creek Hill Country 320.2 3.9 

 
 
*   The surfixes, “UP”, “MID”, and “DOWN” represent the relative locations of USGS 
gaging stations at Barton Creek and Onion Creek 
** The watershed lying on two ecoregions 
 

 

 

Chinese Tallow (Triadica sebifera). Chinaberry (Melia azedarach) was the most 

widespread alien woody species in the study area. Eight of twelve sites were invaded by 

M. azedarach.   

Impervious surface covered 18% of the area of the twelve study watersheds 

altogether. Table 4.3 presents the percent impervious surface of the study watersheds. 

Shoal Creek watershed located near downtown Austin had the highest impervious 

surface percentage at 74%. Walnut Creek was the second most urbanized watershed 

(57%). The watershed with the least impervious surface was OnionUP Creek (4%), the 

southwesternmost watershed in the study area. Berry Creek (6%) and BartonUP Creek  
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(7%) also had low impervious surface percentages. Fig. 4.3 illustrates the impervious 

surface map generated from the Landsat TM image by SVM. 

Impervious surface percentage was found to be significantly related to ߜመଵ 

(Fig. 4.4a). The regression analysis showed the strong negative effect of impervious 

surface percentage on ߜመଵ (R2 = 0.722, the regression slope significantly different from 0 

at α=0.05), indicating that as a watershed is increasingly urbanized, streamflow more 

rapidly recedes after a storm. The relationship between impervious surface percentage 

and ߸ෝ଴ was not statistically significant (Fig. 4.4b). 
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Table 4.4. Pearson’s correlations between four dimensions extracted by nonmetric 
multidimensional scaling (NMDS) and 15 environmental variables.  
 
 
Variables NMDS 1 NMDS2 NMDS3 NMDS4 NMDS5 
Area of watershed -0.429 -0.813* 0.174 0.275 0.038 
% Impervious surface 0.332 0.049 -0.832* -0.415 0.095 
߸ෝ଴ -0.389 -0.857* -0.152 0.113 -0.127 
 መଵ -0.245 -0.015 0.925* 0.018 0.088ߜ
% canopy gap 0.207 0.219 -0.583* 0.323 0.050 
Species richness 0.638* -0.344 0.516 -0.394 0.089 
Shannon diversity Index 0.597* -0.514 0.338 -0.391 -0.144 
pH 0.745* 0.424 0.236 0.384 0.100 
NO3-N -0.385 -0.677* -0.180 0.179 0.021 
P -0.678* -0.088 -0.074 -0.254 0.328 
K -0.850* 0.202 -0.050 -0.231 0.254 
Ca 0.829* -0.456 -0.093 0.101 -0.112 
Mg -0.033 0.249 0.741* 0.042 0.081 
S 0.041 0.176 0.214 -0.187 -0.673* 
Na -0.716* 0.242 0.242 -0.425 0.018 

 
* significant at α=0.05 
 

 

 

NMDS extracted five dimensions from the 15 environmental variables 

(Table 4.4). The five-dimensional model was selected because stress values, an indicator 

of the overall error not captured by reduced dimensions, i.e., began to stabilize from this 

model. The first dimension (NMDS 1) indicates species diversity and soil nutrient levels 

of a riparian ecosystem: it was significantly related to species richness, Shannon 

diversity index, soil pH, P, K, Ca, and Na. The second dimension (NMDS 2) generally 

represented flow magnitude: it was found to be significantly related to the area of 

watershed, ߸ෝ଴, and soil N. The third dimension (NMDS 3) can be considered as an  
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Table 4.5. 95% bootstrapping confidence intervals (CIs) of regression slopes of relative 
alien cover (RAC) on five dimensions extracted from nonmetric multidimensional 
scaling (NMDS) (R2 = 0.764). 
 
  95% CIs 

NMDS Dimensions 
Parameter 
estimates Lower Bound (2.5%) Upper Bound (97.5%) 

Intercept 0.134 - - 
NMDS1 0.065 -0.383 0.209 
NMDS2 0.027 -0.132 0.446 
NMDS3* -0.221 -0.735 -0.004 
NMDS4 -0.020 -0.197 1.631 
NMDS5 0.315 -0.074 0.708 

 
 
* the regression slope statistically significant different from 0 at α =0.05 

 

 

 

indicator of hydrologic disturbance. This dimension was significantly related to ߜመଵ, 

impervious surface percentage, and canopy gap percentage (r = -0.583). Two other 

dimensions did not reflect any distinct environmental characteristics.   

We investigated the effects of various environmental factors on the ecosystem 

invasibility by regressing RAC on the five NMDS dimensions. The result showed that 

only the third dimension (NMDS 3) significantly affected RAC of the riparian forest 

controlling the effects of other environmental variables (the regression slope 

significantly different from 0 at α=0.05) (Table 4.5). Because this dimension represents 

the degree of hydrologic disturbance, we can conclude that hydrologic disturbance 

contributed to the increased invasibility of the urban riparian forests. Bivariate 

regression analyses between RAC and 15 environmental variables also showed that RAC  
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was significantly affected by the three variables related to the third NMDS dimensions: 

  .መଵ, impervious surface percentage, and canopy gap percentage (Fig. 4.5)ߜ

 

Discussion 

In this study, we found that RAC was related to three environmental variables: 

impervious surface percentage of a watershed, recession parameter ߜመଵ, and canopy gap 

percentage. NMDS also showed these three variables covary with each other. As 

mentioned earlier, canopy gap is an indicator of ecosystem disturbance. The strong 

positive relationship between impervious surface percentage and canopy gap percentage 

suggests that urbanization increases the ecosystem disturbance of riparian forests. From 

these results, we can conjecture a causal pathway from watershed urbanization to alien 

species invasion: 1) urbanization alters stream hydrology of a watershed by lengthening 

dry periods; 2) the altered hydrologic regime disturbs riparian forests and provides space 

for invasion by alien species; 3) alien species replace a native competitor within a same 

regenerating cohort; and 4) after several generations, the riparian forests become 

dominated by the alien invaders. 

As expected, hydrologic disturbance appears to play a critical role in the invasion 

of riparian forests in the study area, but the inferred mechanism in this study differs from 

what conventional urban hydrologic models assert. According to the conventional 

models, urbanization facilitates biological invasion in a riparian forest by increasing 

peakflow. However, in the study area, RAC was not significantly related to ߸ෝ଴, but 

strongly related to ߜመଵ. No significant relationship between RAC and ߸ෝ଴ is apparently 
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due to the very large effect of the area of watershed on ߸ෝ଴ overwhelming other effects. 

Thus, for a more accurate analysis of the effect of urbanization on peakflow, we need to 

control for the effect of the area of watershed, as we did in a previous study (see Chapter 

III), by longitudinally comparing stream hydrology of the same watershed before and 

after urbanization. In the previous study, we showed that urbanization did not always 

increase peakflow in the study area. Peakflow increased only in the Blackland Prairie 

region during the last two decades when Austin experienced rapid urbanization, but in 

the Hill Country region, peakflow decreased during the same period. In the same study, 

we also found that urbanization always decreased ߜመଵ, suggesting that urbanization dried 

up streams in the study area, due to the alteration of hillslope topography and 

overpumpage of groundwater. Combining these findings with the ones of the present 

study, we can conclude that, the study area suffered from hydrologic drought with a 

longer intermittent period as a result of watershed urbanization. Decreased peakflow 

implies that urbanization facilitated biological invasion in riparian forests not by 

increasing flood magnitude, but by hydrologic drought caused by lower baseflow. 

Hydrologic drought in urban riparian forests has been reported in previous 

studies. For instance, Moffatt et al. (2004) reported drier and more alkaline soils, and 

more alien plant species in urban than rural riparian forests in Manitoba, Canada. 

Groffman et al. (2003) also found that in Baltimore, USA, urban riparian forests 

experienced more dry conditions, indicated by high soil denitrification potential. Burton 

et al. (2009) also exhibited that watershed urbanization was related negatively to 

baseflow in an adjacent stream and positively to flood-intolerant species in Georgia, 
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USA. Many native riparian species adapt to a mesic environment, and are less likely to 

survive in a drier condition. Therefore, the droughts shifted riparian vegetation 

compositions to the ones invaded by drought-tolerant alien species. The Baltimore study 

showed that urban riparian forests consisted of twice as many upland invaders as rural 

ones. The drought effect could be much more serious in a hot and semi-arid climate 

region where evapotranspiration quickly depletes moistures in soil. In this region, water 

is a limiting factor for the plant growth and groundwater is often the sole source of water 

for phreatophytic riparian species. Lowering groundwater level by watershed 

urbanization could make a riparian forest less habitable for the native riparian species 

(Snyder and Williams, 2000; Horton and Clark, 2001). In our study, canopy gap 

percentage was significantly related to impervious surface percentage (R2=0.172) and to 

 መଵ (R2=0.276). These relationships imply that urbanization-induced drought is so severeߜ

that many woody species cannot establish in the study sites. A positive relationship 

between canopy gap percentage and RAC further shows that canopy gaps created by 

drought were easily invaded by alien species. Less competition with native counterparts 

made the urban riparian forests more vulnerable to invasion by disturbance-tolerant alien 

species. Similar patterns were also found in previous studies that investigated the 

invasion of Tamarix spp., rapidly spreading along riparian forests in U.S. southwest. 

These studies showed that the abundance of Tamarix spp. was related to the altered 

hydrologic regime, particularly the flood regulation by dams in upstreams that increased 

the drought stress to riparian forests (Glenn and Nagler, 2005; Stromberg et al, 2007). 

Again, no strong relationship between ߸ෝ଴ and canopy gap percentage (R2=0.008) implies 
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that peakflow, an indicator of flood magnitude, was not a dominant type of disturbance 

of these sites.  

Finally, no strong relationships between two species diversity indices (species 

richness and Shannon diversity index) and RAC in this study results suggest that Elton’s 

theorem, a theorem stating that an ecosystem with higher species diversity is more 

resistant to biological invasion (Elton 1958), cannot explain the invasibility of urban 

riparian forests. Lack of an effect of species diversity has been reported in many studies 

that were conducted in highly disturbed ecosystems. These studies argued that under 

severe disturbance regimes the effect of disturbance outweighs the effect of diversity and 

allogenic process governs ecological succession (Planty-Tabacchi et al., 1995; Stohlgren 

et al., 1999; von Holle, 2005; Maskell et al., 2006, but see Levine, 2000). In other words, 

biological invasion was primarily determined by the disturbance regime, but not by 

interspecific competition between native and alien species in our study sites.  

 

Conclusion 

In this study, we investigated twelve riparian forests in Austin, Texas and found that 

watershed urbanization increased the invasibility of urban riparian forests. We infer that 

the change in hydrologic regime with extended intermittent period altered the riparian 

forests to become less suitable for native plants that adapt to a mesic environment, 

allowing the gaps previously occupied by the natives to be readily invaded by drought-

tolerant alien species.   
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Our results provide several important implications for urban planners and 

ecosystem managers. First, mechanical removal will not eliminate alien species from 

urban riparian forests. An empty space created by the removal would be quickly refilled 

by fast growing and disturbance-tolerant alien invaders as long as severe disturbances 

are continued. This leads to a corollary of the first implication: the remedy should come 

from a watershed-wide managerial scheme. Several municipalities have adopted 

stormwater management schemes, such as low impact development, to mitigate 

hydrologic alteration by development. However, the current management schemes focus 

mainly on flood control but often overlook the overall hydrologic cycle of a watershed, 

particularly their effects on baseflow during periods without rainfall. For instance, a 

detention/retention basin, the most commonly used stormwater best management 

practice designed to reduce peak discharge by retaining water during storm events, does 

not necessarily maintain groundwater level unless they are carefully placed by taking 

into account local infiltration capacity. Many of these basins are even lined with 

impermeable materials for easy maintenance. The retained stormwater will quickly 

evaporate instead of infiltrate, especially in hot and semi-arid region like Austin and 

could further aggravate the drought, through decreased baseflow, in downstream 

ecosystems. We recommend that urban planners and ecosystem managers take a holistic 

approach to protect valuable riparian forests from the invasion of alien species.  
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CHAPTER V 

CONCLUSIONS 

 

Biological invasion has received attentions due to a concern for loss of biodiversity 

(Kendle and Rose, 2000). This study showed that urban riparian forests are more 

invaded by alien species than rural ones. Hydrologic disturbance appears to be an 

underlying cause of the increased invasibility in urban riparian forests. Nonmetric 

multidimensional scaling (NMDS) suggested that environmental conditions in the study 

forests can be described by five dimensions. The degree of watershed urbanization 

covaried with a dimension that represents the disturbance regime of riparian forests. 

Multivariate regression analysis showed that, among the five NMDS dimensions, only 

this dimension significantly affected the degree of invasibility in the riparian forest. 

Considering that this dimension consists of other variables, such as the degree of stream 

dryness and canopy gap percentage, I concluded that watershed urbanization facilitated 

the alien invasion through increasing disturbance levels.  

In chapter III, I showed that urbanization did not necessarily increase peakflow 

of the study streams. I found that peakflow increases only in gentle slope watersheds 

during the last two decades when rapid urbanization occurred in the study area. In 

hillslope watersheds, however, urbanization even decreased peakflow. I attributed the 

decreased peakflow in hillslope watersheds to a stair-stepped landscape formed by heavy 

earthwork during construction. The stair-stepped landscape slowed down stormwater 

runoff and consequently increased the travel time to downstream. Unlike the contrasting 
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pattern of peakflow, baseflows decreased in all the study area during the last two 

decades. Combining the findings in Chapter III and Chapter IV, I concluded that a 

dominant type of disturbance that led to the biological invasion to urban riparian forests 

were drought rather than floods in a hot and semi-arid climatic region.  

Chapter II presents the method of measuring the degrees of watershed 

urbanization using Landsat TM images. I showed that support vector machine (SVM) 

with pairwise coupling was superior to other methods in subpixel impervious surface 

mapping. A winter image was more suited to urban land cover mapping because there 

was less tree canopy hiding impervious surface.  

The results of this study provide several recommendations for urban planners and 

policy makers.  

First, planners should establish a development plan by adapting natural 

topography. As discussed in Chapter III, landform grading that creates stair-stepped 

landforms in a hillslope watershed reduces surface runoff. This also leads to fast 

recession in streamflow. Urbanization could degrade the ecosystem service supplied by 

this ecosystem because the stream dryness severely disturbs a riparian forest in hot and 

semi-arid climate. I recommend that planners adapt natural topography and avoid a site 

layout that requires heavy earthworks with cutting and filling the natural slope. 

Second, planners should take into account local infiltration capacity when they 

establish a stormwater management plan. Current stormwater management schemes 

focus mainly on flood mitigation. One may think that a site plan that mitigates floods 

also guarantees to infiltrate stormwater into groundwater. However, it is not necessarily 
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true if a watershed is less permeable, e.g., a watershed with impermeable bedrock near 

surface. In a less permeable watershed, stormwater best management practices (BMPs), 

such as detention/retention basins, still effectively mitigate floods, but may not help 

stormwater infiltration. The stormwater BMPs even worsen drought stress in 

downstream ecosystem in a case that the retained stormwater evapotranspired back to 

the atmosphere after the storms. Therefore, planners should carefully establish 

stormwater management plan by looking into local hydrogeologic conditions so that the 

site maintains the predevelopment infiltration rate.  

Finally, protection of urban riparian forests should be based on a watershed-scale 

management plan. A site-level management will not mitigate the invasion of alien 

species in an urban riparian forest. For instance, the direct removal of alien species will 

not prevent the biological invasion in riparian forests. Unless disturbance levels are 

alleviated, the alien species will quickly reestablish in the riparian forests after the 

removal. A comprehensive management plan is required to minimize the hydrologic 

disturbance resulting from watershed urbanization. 

In this study, I provided several recommendations to urban planners and 

ecosystem managers. Readers should be noted that none of the above recommendations 

opposes current stormwater management schemes, such as low impact development. In 

fact, most recommendations share the same principles with the current schemes. Rather, 

the problem lies on lack of tool to implement these principles. Researchers and 

practitioners should elaborate planning methods to effectively implement these 

principles in practice.   
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