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ABSTRACT 

 

Application of the Discontinuous Galerkin Time Domain 

Method to the Simulation of the Optical Properties of 

Dielectric Particles. (May 2010) 

Guanglin Tang, B.S., Peking University 

Co-Chairs of Advisory Committee: Dr. R. Lee Panetta 
                                                   Dr. Ping Yang 

 

A Discontinuous Galerkin Time Domain method (DGTD), using a fourth order 

Runge-Kutta time-stepping of Maxwell’s equations, was applied to the simulation of the 

optical properties of dielectric particles in two-dimensional (2-D) geometry. As examples 

of the numerical implementation of this method, the single-scattering properties of 2D 

circular and hexagonal particles are presented. In the case of circular particles, the 

scattering phase matrix was computed using the DGTD method and compared with the 

exact solution. For hexagonal particles, the DGTD method was used to compute single-

scattering properties of randomly oriented 2-D hexagonal ice crystals, and results were 

compared with those calculated using a geometric optics method. 

Both shortwave (visible) and longwave (infrared) cases are considered, with 

particle size parameters 50 and 100.  Ice in shortwave and longwave cases is absorptive 

and non-absorptive, respectively. The comparisons between DG solutions and the exact 

solutions in computing the optical properties of circular ice crystals reveal the 

applicability of the DG method to calculations of both absorptive and non-absorptive 

particles. In the hexagonal case scattering results are also presented as a function of both 
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incident and scattering angles, revealing structure apparently not reported before.  Using 

the geometric optics method we are able to interpret this structure in terms of 

contributions from varying numbers of internal reflections within the crystal. 
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1. INTRODUCTION 

 

The atmospheric particles include mainly air molecular, aerosol, ice crystals and 

rain droplets. These atmospheric particles scatter and absorb more than half of the 

incoming solar radiation and the outgoing earth radiation. Cirrus clouds, which compose 

mainly of ice crystals and which cover more than 20% of the global surface, play 

important roles in the earth energy balance and in the research of temperature retrieval 

from satellite data. The aerosol, in a number of various types, e.g., dust, soot and clusters 

of them, which are responsible for the cloud formation, are present in the atmosphere 

nearly everywhere, and their optical properties are being studied by many researchers 

because of their big effect on the retrievals. The scattering properties of air molecular can 

be computed using the Rayleigh scattering theory, while those of the droplets, as 

spherical particles, can be computed using the Mie theory. For aerosol and ice crystals 

with large sizes (with size parameter of larger than 20), one can use a geometric optics 

method, which is an approximate method, but for those with moderate size (with size 

parameter between 1~20) and non-spherical geometries one must use numerical methods. 

Numerous analytic and numerical methods have been developed for the 

simulation of the optical properties of particles with nonspherical geometries [1-4], 

including the T-matrix method [5,6], the Finite Difference Time Domain (FDTD) 

technique [7-10], the Pseudo-Spectral Time Domain (PSTD) method [11-13], and the 

Discrete Dipole Approximation (DDA) [14-16]. During the last decade discontinuous 

Galerkin (DG) methods, with versions in both the frequency domain (DGFD) and the 

______________ 
This thesis follows the style of Applied Optics. 
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time domain (DGTD), have been developed and show considerable promise for the 

simulation of electromagnetic wave propagation, particularly in scattering simulations 

involving bodies of complex shapes. DG methods may be considered to be a hybrid of 

finite element, finite volume, and spectral methods, sharing valuable features of each. 

Frequency domain DG methods were introduced in the study of Maxwell’s equations by 

Perugia and Schötzau [17] (see also Houston et. al. [18]).  Time domain DG methods 

were introduced by Hesthaven and Warburton [19]. More information on the early 

history of DG methods can be found in Cockburn et. al. [20], and a historical sketch 

including discussion of more recent refinement of DG methods in the study of Maxwell’s 

equations can be found in [21]. 

Similar to finite volume and finite element methods, discontinuous Galerkin 

methods typically use unstructured grids that can well approximate boundaries having 

geometric complexity, thereby avoiding the “stair-stepping” effects that occur with 

simple structured grids used in finite difference methods, effects that can result in 

numerical dispersion and dissipation that may significantly degrade the simulations 

(Cangellaris & Wright [22]). At the same time, DG methods share with spectral methods 

the ability use a relatively coarse spatial mesh by using polynomials of arbitrarily high 

order on individual elements of the mesh. DG methods may be regarded as “localized 

Galerkin” methods, in the sense that solutions on individual elements are expressed as 

linear combinations of basic funsctions, in this case polynomial functions. In the version 

we use the linear combination represents an interpolation of solution values at specified 

points (“nodes”) within the element and on its boundary, using Lagrange polynomials of 



3 
 

 

user-chosen order “p”.  In general, therefore, DG methods offer two kinds of refinement: 

mesh refinement (or “h-refinement”) and polynomial order refinement (“p-refinement”). 

In comparison with global spectral methods, which have difficulties handling 

either complex geometry or discontinuities in media, the local DG representations allow 

much better treatment of geometry and discontinuities.  Approximations are permitted 

that are discontinuous at boundaries (hence the name of the method): the approximations 

on adjacent elements are connected not by continuity requirements at shared boundaries, 

but instead by flux conditions imposed at those boundaries.  As in finite difference 

methods, choices are available that implement “upwind,” “centered,” or “downwind” 

fluxes, and the implementation is through specification of what are called ``numerical 

fluxes.”  An excellent discussion of the theory and implementation may be found in [21]. 

The computed results given in the thesis concerning scattering from single 

dielectric particles using a version of the DGTD method adapted from that presented in 

[21]. The low-storage fourth-order, five-stage Runge-Kutta method (LSERK) [23] is used 

in the time discretization.  An anisotropic Uniaxial Perfectly Matched Layer (UPML) 

absorbing boundary condition [24] is applied to suppress artificial reflections from the 

computational boundary. The DG method is used to calculate near-field scattering, and a 

surface-integral-based mapping scheme was used to calculate the far field from the near 

field [30].   

Our interest is in the computationally difficult regime of large particle size (as 

measured in wavelengths of incident radiation) and asymmetric geometry. We are 

currently extending our DGTD method to three-dimensional simulations, but here just 

consider two simpler 2-dimensional scattering problems that give some indication of the 
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power of the DGTD method.  In each case the problem may be considered that of the 

scattering produced by an infinitely long cylinder (or very long cylinder with neglect of 

end effects), when the direction of propagation of the incident wave is normal to the axis 

of the cylinder.  In the first case we consider circular geometry, for which an exact 

solution is known [25], and our DGTD results will be shown to give an excellent 

reproduction of the exact solution. In the second case, we consider hexagonal geometry, 

for which exact results are not available, and we instead compare the DGTD solution 

under random orientation conditions with the approximation obtained using the Improved 

Geometric Optics Method (IGOM) [30]. The DGTD and IGOM methods produce results 

that are also in a close agreement.  

The “random” orientation calculation assumes equal probability of all particle 

orientations, and is simply an average of the scattering properties over the incident angles. 

We also present results in the case of hexagonal geometry without the averaging over 

orientation, and show the remarkable fine structure in the scattering field that appears not 

to have been noticed before.  Using the IGOM method we demonstrate that much of this 

structure can be accounted for by considering rays with just a few internal reflections, the 

number of reflections being determined by the amount of absorption occurring within the 

particle.  

In section 2 and 3 we describe the method.  After a presentation of the TE and TM 

versions of the equations, we describe the particular PML scheme used.  We then explain 

the representation of local solutions in terms of an interpolative expansion in Lagrange 

polynomials, and the manner in which the expansion leads to an evolution equation for 

``mass” and ``stiffness” matrices. This explanation involves integration-by-parts 
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arguments that introduce boundary integrals:  the boundary integrals contain the 

numerical flux terms that tie the individual cell solutions together.  The section concludes 

with a description of the near-to-far field solution transformation that allows 

approximation of the far field scattering field that is the quantity of interest. 

Section 4 presents our results, in which we examine the scattered field for two 

different particle sizes (size parameters 50 and 100), and two different incident 

wavelengths.  The size parameter is defined as 2πa
λ

, where for a circle a is the radius, and 

for the hexagon a is the length of a side. The two wavelengths are chosen to correspond 

to the spectral peaks in incoming (shortwave) solar radiation and in outgoing (longwave) 

terrestrial radiation.  
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2. PHYSICAL BACKGROUND 

 

The scattering problems of individual particles are illustrated in theory in this 

section. The theoretical background includes the physical processes of the scattering 

problems, based on which, together with numerical schemes, the scattering problems are 

solved. 

The light scattering of particles is a physical process where the light radiation 

changes its direction of propagation due to the existence of the particles. We focus on the 

scattering of single particles, partly because particles in the atmosphere are mostly 

sufficiently far from each other so that the scattering by one is not affected by the 

presence of others (except in some heavy clouds where multiple scattering of particles 

must be considered), and partly because the study of single particle scattering is the first 

step in the study of multiple scattering problems. 

 

2.1 The amplitude scattering matrix and the scattering phase matrix 

 

As a test of the DG method, the 2-dimensional case is considered. It corresponds 

to the situation of an infinitely long cylindrical particle with incident direction 

perpendicular to its axis. Fig. 1 illustrates the scattering process of a 2-dimensional 

particle: the 2-D particle is located in the X-Y plane. The directions of incident light and 

scattered light beams are also in X-Y plane. Thus the X-Y plane is always the principal 

scattering plane, defined as the plane which contains both the incident and scattered 

beams. One of components of the scattered far field sE//  is in the scattering plane and is 
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perpendicular to the scattered beam, and the other component sE⊥  is perpendicular to the 

scattering plane and to the scattered direction. Likewise for the incident beam, the electric 

field is also decomposed into iE //  which is in the scattering plane and iE⊥  which is 

perpendicular to the scattering plane. In frequency domain, the electric far field and the 

incident field satisfy a relationship: 
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where S1, S2, S3 and S4 are the elements of the amplitude scattering matrix S, r is the 

distance from the particle, and k is the wave number of the incident field. The scattering 

matrix S is a function of the scattering angle θ. The function depends on the particle 

shape, size and orientation. 

The amplitude scattering matrix S represents the scattering properties of a particle 

in a chosen orientation. However, to measure the amplitude scattering matrix, one needs 

to measure both the amplitude and phase of the incident and scattering field. A difficulty 

is met when measuring the phase of the field. Another difficulty emerges when 

computing the scattering properties of a random oriented particle. Thus for ease of 

measurement, an irradiant representation of the scattering properties is derived: 
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where Pij (i,j=1,2,3,4) are the elements of the scattering matrix. I, Q, U and V are Stokes 

parameters, which are practically measurable: 
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where the angular bracket  denotes the time average over a period of time that is much 

longer than the typical period of the quasi-monochromatic light beam. The vector 

(I,Q,U,V)T is the Stokes vector. I is the irradiance of the light. Q, U and V represent the 

polarization of the light. The Stokes vector of a light beam contains all of its information. 

If the incident light is direct solar radiation, for which Q=U=V=0, then Is=P11*Ii, P11 

which is called the phase function, represents the angular distribution of the scattering 

irradiance. Derived from the amplitude scattering matrix relationship and the definitions 

of the Stokes parameters, the scattering phase matrix can be expressed as: 
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Compared with the amplitude scattering matrix, the scattering phase matrix has 

advantages in representing the scattering properties. Beside the of ease measurement, it 

also has advantages in computing the scattering properties of randomly oriented particles 

using the results of various orientations. The scattering phase matrix of a randomly 

oriented particle is simply an average of the phase matrix over all incident angles.  

 

To compute the amplitude scattering matrix, we need to compute the scattering 

fields in two modes, Transverse Magnetic or TM mode, and Transverse Electric or TE 
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mode. In the TM mode, the electric field is always perpendicular to the scattering plane 

while the magnetic field is always in the scattering plane, or E//=0. In the TE mode, the 

magnetic field is always perpendicular to the scattering plane while the electric field is 

always in the scattering plane, or E⊥=0. 

 

2.2 Maxwell’s equations in dielectric media 

 

Being an electromagnetic wave, light contains electric and magnetic fields which 

satisfy Maxwell’s equations: 

t
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where E, B, D, H, Jf and ρf are the electric field, the magnetic field, the electric 

displacement field, the magnetic field density, the free current density and the free charge 

density, respectively. For electromagnetic waves propagating in isotropic dielectric media, 

there are simple relationships between E and D, between B and H, and between Jf and E. 
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where ε0 and μ0 are the permittivity and permeability of free space, ε and μ are the 

relative permittivity and permeability of the media, and σ is the conductivity of the media. 
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Thus Maxwell’s equations in isotropic dielectric media can be written as a set of two 

equations: 
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For ease of introducing incident fields, the entire fields are decomposed into two 

parts: incident fields (Ei, Hi) which satisfy Maxwell’s equations in free space and 

scattered fields (Es, Hs) which are induced due to the existence of the scatterer: 
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Substitution of eqs. (2.8)  into eqs. (2.7) then gives: 
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The scattering phase matrix can present the optical properties of atmospheric 

particles. Thus the main goal of solving scattering problems is to compute the scattering 

phase matrix. The governing equations in a decomposed form are solved in a time 

domain. Then the time domain fields are transformed into frequency domain fields using 

Fourier Transformation, and then be transformed into the far fields using a surface-

integral scheme. Using both incident and scattering fields, the scattering phase matrix is 

calculated.  
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3. DISCONTINUOUS GALERKIN TIME DOMAIN METHOD FOR 

COMPUTATION OF OPTICAL PROPERTIES OF DIELECTRIC PARTICLES 

 

3.1 Governing equations 

 

For computational purposes, we non-dimensionalize Maxwell’s equations in 

terms of four basic quantities: vacuum values of electric permittivity and magnetic 

permeability (ε0, μ0), unit magnetic field strength H0, and wavelength of incident 

radiation λ.  Using these we define non-dimensional variables 

*
0

*1
0

*1
00

***1*
0

1 ,,)(),,,(),,(, σλσλλ ZHHZzyxzyxtct ===== −−−− HHEE  

where (here only) asterisks indicate dimensional quantities. The constants c0 = μ0
−1ε0

−1  

and Z0 = μ0ε0
−1  are the vacuum values of the speed of light and impedance, respectively. 

Total field solutions are decomposed in the usual way into incident and scattered 

components, and then the general 3-D form of Maxwell’s equations in a linear medium 

becomes (eg van de Hulst[26]):  
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μ
∂H s

∂t
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Here E and H  denote the electric and magnetic fields; the superscripts i  and s denote 

the incident and scattered fields, and ε  and σ  are the relative permittivity and the non-

dimensional conductivity [13] of the medium, respectively. Most particles in the 

atmosphere have a relative permeability of approximately 1, and in this study we assume 
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μ  to be 1. The incident field vectors Ei  and H i  are given, and the unknowns are the 

scattered field vectors Es and H s. 

In order to obtain the scattering properties, it is sufficient to consider the 

transverse magnetic (TM) and transverse electric (TE) cases.   For the TM case, the 

magnetic field has non-zero components of incident and scattered waves only 

perpendicular to the symmetry axis of the cylinder, that is, in the plane of our cross-

section, and the electric fields of both the incident and scattered waves have only non-

zero components in the direction of the symmetry axis (perpendicular to that plane). For 

the TE case, it is the electric field that has non-zero components only in the plane 

perpendicular to the symmetry axis, and the magnetic field has its non-zero components 

parallel to that axis. The equations for the TM case are 
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where the subscripts x, y, z denote the corresponding components of the field vectors, 

respectively. 

For the TE case, the equations are: 
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3.2 Boundary conditions and the unixial perfect matched layer 

 

Our scattering problems involve an open boundary condition, which in 

computations must be implemented on a spatial domain of finite size.  We divide the 

computational domain into three regions: the particle, a surrounding region of free space 

(relative permittivity 1), and an outer region in which is an anisotropic absorbing 

boundary layer. This layer prevents artificial reflection occurring at outer computational 

boundaries from re-entering the free space region at any appreciable amplitude (see 

below). The geometry is shown, using dimensional variables, in Fig. 2 for the two 

geometries used for our calculations.  In the case of a particle with circular geometry, 

with dimensional radius a, and incident radiation of dimensional wavelength λ, the outer 

boundary of the free space region surrounding the particle is a square with sides of length 

2a+5λ, and the outer absorbing boundary layer has thickness another 5λ in each 

horizontal direction. Thus the entire computational domain in this 2-d problem is a square 

of dimensional length 2a+15λ  on a side. 

The Uniaxial Perfectly Matched Layer (UPML) absorbing boundary condition [24] 

is used in the outer layer. There, auxiliary variables s
xC , s

yC , and s
zD , are defined, whose 

evolution couples with that of the scattered electromagnetic fields in a way that  

guarantees the stability of the UPML scheme [24].  

The full set of equations in the UPML region in the TM case are 

s
xz

s
z

s
x C

y
E

t
C

σ−
∂

∂
−=

∂
∂ ,      (3.3d) 
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s
xy

s
xzx

s
z

s
x HC

y
E

t
H

σσσ −−+
∂

∂
−=

∂
∂

)( ,    (3.3g) 

( )
s s
y s sz

y x y z y

H E C H
t x

σ σ σ
∂ ∂

= + − −
∂ ∂

,    (3.3h) 

( )
s ss
y s sxz

z y z x z

H HE D E
t x y

σ σ σ
∂ ∂∂

= − + − −
∂ ∂ ∂

.   (3.3i) 

In (3.3a-3i) all variables are real: the auxiliary variables are initially set to zero.  The 

quantities xσ , yσ  and zσ  are functions of space that provide for the rapid (exponential 

[24]) decay of signals propagating in the PML layer, and are of the form 

σ s = σ 0 (
s − si

so − si

)m ,     (3.4) 

where s  denotes x , y , or z ; subscripts i  and o  denote the inner and outer boundaries 

of the PML region, respectively, and m is an integer that controls the rate of decay. The 

constant σ0 is 

σ 0 =
C(m + 1)
(so − si )

.     (3.5) 

with the choices m=2 and C=15, the amplitude of a scattered wave that has entered the 

PML, reflected at the computational boundary, and re-emerged from the PML will have 

diminished by at least a factor of 1310 − . Note that the incident field is not affected by the 

PML region. 
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3.3 Discontinuous Galerkin formulations 

 

The grid for our computation is a tessellation of the computational domain in 

irregular triangle elements generated by the Persson and Strang MATLAB code [27]. In 

two dimensions, the Persson and Strang code provides the mesh by an iterative method, 

with desired length of an edge in the mesh  as an input  parameter: when given the input 

value of a half wavelength of the incident wave, the output is a mesh having a 

distribution of sizes between a half and a third of the wavelength. Examples are shown in 

Fig. 2 for crystals of both circular and hexagonal geometry.  In the figure the size 

parameter is chosen to be 10 in order to make the grid structure visible (a total of ~3700 

elements, with slight differences between the circular and hexagonal cases); our 

simulations used size parameters 50 and 100, giving meshes with approximately 11,000 

and 27,000 elements, respectively (see Table 1). As mentioned above, the shortest 

distance between the boundary of the particle and the inner boundary of the PML layer is 

chosen to be 5/2 times the incident wavelength, and the thickness of the PML layer is 5 

times the wavelength. 

The DG method we use calculates the values of field variables at a finite number 

of suitably chosen points (“nodes”) in each element of the domain; values of field 

variables at other points are obtained by interpolation using Lagrange polynomials.  Thus, 

within each element, field variables have the representation [17]: 

∑
=

=
pN

i
ii yxltFtyxF

1
),(),(),,( ξ ,     (3.6) 

∑
= ∂

∂
=

∂
∂ pN

i
i

i yxl
t

tF
t

tyxF
1

),(
),(),,( ξ

,    (3.7) 
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i
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tyxF
1

),(),(),,( ξ ,    (3.8) 

∑
= ∂

∂
=

∂
∂ pN

i

i
i y

yxl
tF

y
tyxF

1

),(
),(),,( ξ ,    (3.9) 

where F(x, y, t)  may be any function of space and time, for example  an individual 

component  of an electromagnetic field, or  product of a component with a spatially 

varying field (eg. σ z Ey
s ). In such a representation, F (ξ i, t) is the value of F  at time t  at 

node ξi; li(x, y)  is the i th Lagrange polynomial; and, pN is the number of nodes within 

each element. If the order of the polynomials is N , the number of nodes pN  is: 

2
)1( +

=
NNN p .     (3.10) 

As mentioned in the introduction, one way to increase accuracy is to increase the 

order N.  This of course entails computational cost, and after some experimentation we 

settled on the choice N=4. The distribution of nodes in the element follows the α-

optimized nodal sets [17,28].  

In spectral methods, the central variables are the spectral amplitudes, and 

evolution equations for these amplitudes may be obtained by first substituting the spectral 

expansion into the field equations, then multiplying by individual spectral basis functions, 

and finally integrating over the (whole) domain.  Terms involving derivatives of field 

variables lead through integration –by-parts arguments to boundary integrals that are 

evaluated using boundary conditions.  A similar procedure is carried out here, but 

“localized” to inidividual elements: after substituting the expansion in Lagrange 

polynomials in the equations, each equation is multiplied by ),( yxl j , where 
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pNj ,,2,1=  and integrated over the area of the individual element. For terms that 

included a space derivative, the terms are integrated by parts and numerical flux terms are 

introduced. After integrating by parts again, we obtain the strong semi-discrete 

formulation for Eq. (3.3) (see [22]): 

1 1

*

1

1

( , ) ( , ) ( , ) ( , ) [ ( , )] ( , )
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i
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= − × ∇

∂

− × − ×

∂
+ −

∂

−
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∑ ∫

H E

n E n E
 (3.11b) 

where kD∂  denotes the k th triangle element; ξi is the i th node in the element; and  the 

term *ˆ( ( , ))s
in tξ× H  indicates the numerical flux. An advantage of the nodal approach in 

the DG method is that, with some of the nodes located on the boundaries, the surface 

integrals (the underlined terms) may be calculated using only values at those nodes, 

without considering values at interior nodes. This means that the underlined terms in 

equations (3.11a, 3.11b) can be rewritten as sums over a smaller number of surface nodes: 

*

1

3
*

1
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ξ ξ

∂
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∂
=
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n H n H

n H n H
 (3.12a) 
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 (3.12b) 

where N fp  is the number of nodes on one face of a triangular element, N fp = N + 1, ξis
 is 

the coordinate of the node on the surface, and is is the index of nodes on the element 

surface. On each vertex of the trianglar element, the flux term, 

*)),(ˆ(),(ˆ tt
ss i

s
i

s ξξ HnHn ×−× , is counted twice, with n̂  corresponding to the two edges 

sharing the vertex. 

To rewrite the equations in matrix form, the matrices below are defined: 

∫∫=
kD ijij dxdyyxlyxl ),(),(M  ,    (3.13) 

∫∫ ∂

∂
=

kD i
jx

ij dxdyyxl
x

yxl
),(

),(
S ,    (3.14) 

∫∫ ∂

∂
=

kD i
jy

ij dxdyyxl
y

yxl
),(

),(
S ,    (3.15) 

( , ) ( , )
s

k
is j iD

l x y l x y ds
∂

= ∫C  .    (3.16) 

M ij , Sij
x , Sij

y  are p pN N×  matrices, with i and j denoting nodes in the element 

(including boundary nodes). Cis  is 3p fpN N×  matrix, where subscript js  denotes the 

index of a node on the element surface, and the vertices are each counted twice. 

The numerical fluxes for Maxwell’s equations are derived by applying the 

Rankine-Hugoniot conditions [29], and is expressed as follows [21]: 

)](ˆ)([ˆ1)ˆ(ˆ * +−+−+
+− −×−−×

+
=×−× ssssss Z

ZZ
EEnHHnHnHn α , (3.17a) 
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)](ˆ)([ˆ1)ˆ(ˆ * +−+−+
+− −×+−×

+
=×−× ssssss Y

YY
HHnEEnEnEn α , (3.17b) 

where α  is a number between 0 and 1. The numerical flux is a central flux when α  = 0 

and an upwind flux when α  = 1. The upwind flux is what we use. ±Z  and ±Y  are 

functions of the material coefficients with the symbols "-" and "+" denoting the 

coefficients on the inner and outer surfaces of the element, respectively, 

±

±

±
± ==

ε
μ

Y
Z 1 .     (3.18) 

All of these matrices can be calculated. Subsequently, Eq. (3.11) can be written in 

the matrix form: 

)]()1())ˆ(ˆ([1 *11 si
i

sss
s

tdt
d EEEHnHnCMHSME

+−
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∂
−+×−×+×= −− σε

ε
, (3.19a) 

))ˆ(ˆ( *11 sss
s

dt
d EnEnCMESMH

×−×−×−= −− ,    (3.19b) 

where sH  and sE  are (Np x 3) matrices whose (i,j) entry is the jth component of the field 

at the ith node 

Substituting the numerical flux Eq. (3.17) into Eq. (3.19), and considering both 

the scattering region and the PML region, all the functions are rewritten in matrix form. 

In the particle and “free space” regions: 
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In the PML region: 
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where the numerical fluxes are derived from their vector forms (3.17): 
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here s
xH~ , s

yH~ , s
zE~ , s

xC~ , s
yC~ , s

zD~  are 1×pN  vectors, whose values are the corresponding 

field values on the nodal points which are denoted by the index number of these vectors. 

s
HxF~ , s

HyF~  and s
EzF~  are 13 ×fpN  vectors, whose values are corresponding numerical flux 

at the surface nodal points which are denoted by the index number of these vectors. 

The matrix form of the driving function and the numerical fluxes in the TE case is 

obtained following the same algorithms as in the TM case from Eq. (3.2). 
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In the time integration, the low-storage fourth-order, five-stage Runge-Kutta (RK) 

method [23] was applied. After some experimentation with third order schemes, we 

settled on the fourth order scheme: it has two orders of accuracy more than a leap-frog 

scheme, and performs well with a high order special finite element scheme.  Calculations 

were initialized with all scattered field variables initially set to zero, and continued until 

the solution appeared to settle into a steady state.  (Steadiness was tested by integrating 

25-50% longer and comparing results.)  

 

3.4 The transformation of the near field to the far field 

 

 A scattering problem concerns the relation between an incident field and the 

scattered fiend at locations “far” from the particle, i.e., at distance large compared with 

both particle size and incident wavelength. Typically in practical simulations, the near 

field is calculated in a truncated domain covered by a fine spatial mesh, and then the far 

field is calculated using a Green’s function technique. Here, after computing the near 

field using the DGTD method, we transform the field to the frequency domain and use a 

surface-integral based algorithm to calculate the far field and the scattering phase 

function. Details of the algorithm are presented in [30]. As an example we express the 

scattered electric field in terms of the near field and the Green’s function in the TM mode: 

∫ ′′∇′′−′∇′′⋅= rdEGGEE z
s

z
s

z
s )](),(),()([ˆ)( rrrrrrnr

  
 

where the integral is performed at the surface of the particle, or any close curve which 

encloses the particle. In our simulations this surface is chosen to be the interface between 
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the “free space” and the PML region. The Green’s function G(r,rˊ) in 2-D geometry is 

given in terms of the zero-order Hankel function of the first kind: 

|)(|
4

),( )1(
0 rrrr ′−=′ HiG

     
 

Then taking advantage of the asymptotic behavior of the Hankel function, the far field for 

which k(|r-r’|)→∞ can be expressed as: 
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Using the boundary condition of Maxwell’s equations at the surface of the dielectric 

particle, the spatial derivative term of the electric field is expressed in terms of linear 

terms involving the magnetic field: 
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 It follows that the nonzero phase matrix elements P11, P12, P33 and P34  are: 

[ ] ,2/)ˆ()ˆ()ˆ( 2
TE

2
TM11 sFsFsP +=     (3.21a) 

[ ] ,2/)ˆ()ˆ()ˆ( 2
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2
TM12 sFsFsP −=     (3.2b) 

[ ]{ },)ˆ()ˆ(Re)ˆ( *
TETM33 sFsFsP ⋅=     (3.21c) 

[ ]{ },)ˆ()ˆ(Im)ˆ( *
TETM34 sFsFsP ⋅=     (3.21d) 
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where ŝ  is the unit vector in the scattering direction, and nx  and ny  are the x and y 

surface normal vector components, respectively. The asterisk here denotes the complex 

conjugate. The scattered fields used in calculating FTM and FTE are the relative complex 

amplitudes to the incident field amplitudes.   
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4. EXTENSION OF THE DISCONTINUOUS GALERKIN METHOD TO 3-

DIMENSIONAL CALCULATIONS OF SINGLE PARTICLE OPTICAL PROPERTIES 

 

The DG method gives excellent simulations of single particle optical properties in 

2-dimensional geometry. We want to find out how well it works for the 3-dimensional (3-

D) calculation. 

 

4.1 Semi-discrete form of the governing equations for the near field calculation 

 

Using Language polynomials as shape functions and test functions, the discrete 

form of the governing equations in 3-D geometry is derived from vector equations (3.19). 

In the particle and “free space” regions, 
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In the PML region: 
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where M, Sx, Sy, Sz  are Np×Np matrices and C is a Np×4Nfp matrix. 

Np=(N+1)(N+2)(N+3)/6 is the number of nodes and Nfp=(N+1)(N+2)/2 is the number of 

nodes at each face of an triangular element. These matrices are defined as: 
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where li(x,y,z) is the language polynomial associated with the ith node of the element, Dk 

denotes the kth triangular element, and js denotes the index of a node on the surface (with 

the nodes on the vertices counted three times and the other nodes on the edges counted 

twice). The numerical fluxes are derived from the vector form Eq. (3.17), using upwind 

flux which means that α=1: 
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where the electric and magnetic fields are associated with the fields on the nodes where 

the fluxes are calculated. In these equations, s
xH~ , s

yH~ , s
zH~ , s

xE~ , s
yE~ , s

zE~ , s
xC~ , s

yC~ , s
zC~ , 

s
xD~ , s

yD~  and s
zD~  are Np×1 vectors whose values are the fields values on the nodal points 

which are denoted by the index of these vectors, and s
HxF~ , s

HyF~ , s
HzF~ , s

ExF~ , s
EyF~  and s

EzF~  

are 4Nfp×1 vectors whose values are corresponding numerical flux on the surface nodal 

points which are denoted by the index of these vectors. 

 

4.2 Transformation of the near field to the far field 

  

Having the semi-discrete form equations, using the Range-Kutta scheme to 

integrate over a period time during which the fields go into the steady state with 

sinusoidal incident fields, the near fields can be calculated and transformed into 

frequency domain as in the 2D calculations. Using the near fields in frequency domain, 

the far field and the scattering phase matrix can be calculated. The transformation is 

derived using the Green’s function method [9] and shown below: 
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where ⊥ê  is the unit vector perpendicular to the scattering plane, xê  and yê  are unit 

vectors that are perpendicular to the incident direction and perpendicular to each other. 

Applying the volume integral scheme, the matrix F are expressed as: 
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where the integral is performed over the particle. Using the amplitude scattering matrix 

and Eq. (2.4), the scattering phase matrix can be calculated.  
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5. NUMERICAL RESULTS AND DISCUSSIONS 

 

The key parameters for the six DGTD calculations discussed in this section are 

listed in Table 1. 

 

5.1 Investigation of the applicability of the Discontinuous Galerkin Time-

Domain method to the computation of light scattering properties of circular 

particles 

 

First, as demonstration of accuracy, the DGTD method is used to compute the 

scattering phase matrix of infinitely long circular cylinders with normal illumination. In 

Fig. 3, the left panels show the nonzero scattering phase matrix elements for a size 

parameter of 50 and an incident wavelength of 0.532 µm. The refractive index of ice 

crystals at this wavelength is 1.3117+i1.489×10-9, which corresponds to an essentially 

non-absorptive case. The dotted and solid lines correspond to the DGTD and the 

analytical solution, respectively. The right panels show the relative differences between 

the DGTD solution and the analytical solution; the relative difference may get large when 

the true values are small. The results from the DGTD calculation agree very well with the 

analytical solution. For the phase function, except at a few angles, the differences 

between the DGTD solution and the exact solution are smaller than 10%. Larger 

differences are observed at angles around 90˚ and in the backscattering direction, where 

the true values of the phase function are relatively small. (For polarization elements, 
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points where the differences are larger than 100% are not shown.) The data points of 

relative difference in the figure are generally smaller than 20%.  

The panels in Fig. 4 are as Fig. 3 except that the size parameter is now 100. The 

accuracy is similar to the case shown in Fig. 3. The computations were done on an IBM 

p5-575+ cluster, with cores running at 1.9GHz. and Table 1 lists the CPU time necessary 

to complete the simulations of the circular cylinders with size parameters 50 and 100. 

Since computational time is dependent on the hardware used, and relative times are the 

more significant data, we have listed the cpu time in multiples of the time required for the 

particle size 50 case.  The larger particle simulation used approximately 5.5 times as 

much computational time as that needed for the smaller particle simulation. 

To demonstrate accuracy in the absorptive case, an incident wavelength of 12 µm 

was considered. In this case we took advantage of the fact that with higher absorbtion, the 

solution converges rapidly to the steady state, making finer mesh calculations possible. 

We reduced by half the mesh size, so that no cell had diameter larger than a quarter 

wavelength.  Fig. 5 shows the nonzero phase matrix elements (left panels) of the 

infinitely long circular cylinders with a size parameter of 50 and the relative differences 

(right panels) between the DGTD solution and the exact solution. The refractive index is 

1.2799+0.4133i. The results for the absorptive case show a better agreement with the 

analytical solution, as might be expected because of the smaller mesh size, but very 

subtle differences remain in the backscattering direction on the polarized elements P12 

and P34 at values close to zero. The largest difference between the phase functions is less 

than 0.2%. 
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Fig. 6 is the same as Fig. 5 except that the size parameter is 100. The pattern of 

the phase matrix and the accuracy show similar features of the previous case with a size 

parameter of 50. It is evident from a comparison between Figs. 5 and 6 with Figs. 3 and 4 

that the accuracy for the phase matrices is considerably increased when the mesh size is 

decreased. 

 

5.2 Application of the Discontinuous Galerkin Time-Domain method to the 

computation of light scattering properties of hexagonal ice crystal 

 

In the case of hexagonal geometry, the scattered field will depend on the 

orientation of the particle with respect to the direction of propagation of the incident 

wave.  In applications, where there will be many scatterers, information on single 

orientations is not as important as the average over all orientations.  Because of the 60 

degree rotational symmetry of the crystal, we need only consider a range of orientations 

in an angular interval of 60 degrees.  For the calculations in this section, 30 orientations 

were calculated, at 2 degree intervals. Cpu times in Table 1 are accordingly recorded as 

multiples of 30.   

 The nonzero phase matrix elements of 2-D hexagonal ice crystals with size 

parameters of 50 and 100, and an incident wavelength of 0.532 µm are calculated and 

shown in Figs. 7 and 8, respectively. The results are compared with those calculated from 

the IGOM [30] algorithm. The phase function shows a 22˚ halo peak and a scattering 

maximum at round 150˚. 
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 Fig. 7 shows the nonzero phase matrix elements computed from the DGTD and 

IGOM for randomly oriented hexagonal geometry with a size parameter of 50. The 22˚ 

halo peak in the P11 element (i.e., the phase function), which stems (as shown below) 

from the rays that undergo two sequential refractions, is quite pronounced. A sharp peak 

at ~10˚ is due to diffraction at this size parameter. Overall, the DGTD and IGOM results 

for the phase function are consistent, although noticeable differences occur at large 

scattering angles, e.g., near 156˚. For the other phase matrix elements, large errors appear 

in the IGOM results in comparison with the DGTD counterparts, particularly, in the case 

of P34/P11. Recalll that P12/P11. P33/P11 and P34/P11 are associated with the 

polarization state of the scattered waves and are sensitive to the interference of the 

scattered waves. As an approximation, IGOM cannot well simulate this interference 

effect at large scattering angles.  

Fig. 8 is similar to Fig. 7, except for a size parameter of 100. Evidently, with an 

increase in the size parameter, the agreement between the IGOM and DGTD increases in 

the case of the phase function. Additionally, a pronounced scattering maximum at 156˚ is 

noticeable, which is attributed mainly to the 5th  order rays, as illustrated by Cai and Liou 

[31]. Substantial errors of IGOM are still noticed at a size parameter of 100 for the other 

phase matrix elements, particularly in the case of P34/P11. (Note that Cai and Liou used 

the conventional geometric optics version of the ray-tracing technique in their simulation, 

and their numbering order  is different.) Many detailed features in the phase function and 

polarization-related phase matrix elements noticed in the present results are not observed 

in the counterparts reported in [31]. 
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Fig. 9 shows the contributions of the rays of various orders to the normalized 

phase function of the 2-D randomly oriented hexagonal ice crystals with a size parameter 

of 100 and an incident wavelength of 0.532 µm. The 0+1 (reflection + diffraction) curve 

indicates the contribution of the diffraction and the external reflection. (In the following 

discussion, the reader may want to look ahead to the side panels of Fig. 10 for 

clarification of the numbering.) The 0+1+2 curve indicates the sum of the 0+1 

contributions and the contribution of the rays that undergo two refractions without 

internal reflection, the 0+1+2+3 curve indicates the sum of the 0+1+2 contributions and 

the contribution of rays that undergo two refractions and one internal reflection. It is 

evident that the 22˚ halo is mainly due to the rays that undergo two refractions without 

internal reflection. The phase function at angles between 40˚ and 140˚ is due mainly to 

contributions from the third order rays that undergo two refractions  and one internal 

reflection. The weak peak between 140˚ and 160˚ is almost entirely due to rays of order 4 

(two internal reflections) and order 5 (three internal reflections). The backscattering was 

contributed by a combination of higher order rays. For forward scattering, diffraction 

contributes the largest fraction, whereas the 2nd and higher order rays contribute only a 

small amount. 

The results in Figs. 5-9 are all based on averages over crystal orientation.  An 

intriguing structure is revealed by displaying the scattering data without averaging.  The 

upper panel of Fig. 10 details the scattering phase function with respect to the incident 

and scattering angles, which are computed from the geometric optics method. Note that 

these results are for specific orientations of ice crystals. The incident and scattering 

configuration is shown in the lower panel of Fig. 10. As noted above, the rotational 
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symmetry of the ice crystals means that a 60˚ range of incident angles is sufficient, but it 

is visually useful to show data over a 120˚ range.  No extra computations were done: the 

results between 60˚ and 120˚ are simply a duplication of those between 0˚ and 60˚. The 

two off-center wavy bands of strong scattering show that the 22˚ halo is observed in with 

respect to almost all orientation angles, a feature which can also be seen clearly in the 

averaged results presented in Fig. 8.  

In addition to the 22° halo peak, other interesting features are evident. The 

striking diagonally tilted lines of high amplitude for the phase function are comprised of 

contributions from nearly all scattering angles and stem mainly from the external 

reflection. These maximum lines do not leave a trace in the curve of phase function 

shown in Fig. 9, which is averaged over incident angles, because the phase function 

amplitude contributed by these maximum lines distributes almost uniformly with respect 

to the scattering angle in the average over the incident angle. It is also clear that the 

maximum that appears about 150° in Fig. 8 is due to a strong contribution from a band 

incident angles around 20°, with secondary bands between 40° and 60°. 

The results from the IGOM calculations may also be displayed in the manner of 

Fig. 10, and they indicate many of the same structural features as seen in the DG results. 

In fact, some indication of the origin of these features may be seen by constructing a 

succession of such two dimensional displays, with successively adding higher and higher 

orders of approximation (higher numbers of internal reflection). This is shown in Fig. 11, 

which illustrates how the major structural features seen in Fig. 10 are built up, starting 

with reflection, reflection plus diffraction, and subsequently adding higher numbers of 
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internal reflection (0, 1, 2, …9). The lower right-hand panel of Fig. 11 is what should be 

compared with the DG calculation in Fig. 10. 

While the IGOM method has the advantage that such decompositions are possible, 

the comparison just mentioned gives us the impression that the DG representation may be 

the more accurate one. This impression is hard to justify without knowledge of an exact 

solution, or a calculation by an independent method. But with regard to some of the fine 

structure, the IGOM results have the appearance of being a smeared version of the DG 

results, and some features are missing altogether in the IGOM results. This difference is 

not easy to explain in terms of inadequate sampling. Each of the calculations used the 

same number of orientations. The IGOM calculations were done using 3000 rays per 

orientation, and doubling the number of rays per orientation did not noticeably change the 

results, nor did increasing the order of the approximation beyond 9 internal reflections. 

 

5.3 Applicability of the Discontinuous Galerkin Time-Domain method to 

scattering problems in 3-dimensional geometry 

 

Fig. 12 shows a tetrahedron grid used in the calculation of the optical properties 

of a spherical particle. The green, red and blue regions denote the particle, free space and 

the UPML regions, respectively. As a test we show the Ex value at a chosen location in 

the free space with respect to the non-dimensional time in Fig. 13. The size parameter of 

the sphere is 3 and the refractive index is 1.313. It is seen that the field goes into steady 

state after the non-dimensional time 10. The scattering phase matrix will be able to be 

given using the near field and a volume integral scheme.  
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6. SUMMARY 

 

The DGTD method was applied to the scattering of light by dielectric particles in 

two-dimensional geometry. Comparison between the DGTD and the exact solutions for 

the scattering matrix of infinitely long circular cylinders solutions shows that the DGTD 

method is quite accurate. As an example of a case of non-symmetric particles, the single-

scattering properties of 2-D randomly oriented hexagonal ice crystals were calculated 

using the DGTD method with relatively large size parameters. The comparison between 

results calculated from the DGTD and the geometric optics method also showed good 

agreement, and some of the differences were attributed to known weaknesses of the 

geometric optics approximation. A demonstration was also given of an intricate structure 

in the scattering amplitudes when considered as functions of both particle orientation and 

scattering angle. While we cannot currently explain many features of the structure 

revealed, we have the impression that geometrical optics method may not be able to 

capture it as well as the DG method. 
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APPENDIX 

 

Table 1. Set of DGTD simulations and the computer time consumed.  All calculations 
done on an IBM p5-575+ cluster, and only the first time reported is in hours.  
The remaining times are recorded as multiples of this time. 

 
Simulations Ka, λ(μm) # elements, mesh size CPU time 

 

 

DGTD for circle 

50,      0.532 11119,    λ/2 1 (~2.75 hours) 

100,    0.532 27767,    λ/2 5.45 

50,     12.0 27767,    λ/4 5.45  

100,   12.0 45458,    λ/4 12.9 

 

DGTD for hexagon 

50,     0.532 11147,    λ/2 1x30 

100, 0.532 27825,    λ/2 5.45x30 
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Fig.  1. Geometry of light scattering process of a particle 
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Fig.  2. Left: Grid for the simulation of an infinitely long circular cylinder. Right: Grid 
for the simulation of a hexagon. The size parameters are both 10. (Note:  the 
sizes are expressed in dimensional units.) 
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4. Same as Fig. 3 exceppt that the siize parameteer is 100. 
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Fig.  5. The samme as Fig. 3 eexcept that thhe incident wwavelength iis 12 µm. 
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Fig.  6. The samme as Fig. 5 eexcept that thhe size parammeter is 100. 

448 

 



 

 

Fig.  7. Nonzero
ice cryst

o scattering p
tals with a si

phase matrix
ize paramete

x elements o
er of 50 and a

of randomly
an incident w

y oriented 2-
wavelength o

4

-D hexagona
of 0.532 µm

49 

 
al 

m. 



 

 

Fig.  8. The samme as Fig. 6 eexcept that thhe size parammeter is 100. 
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Fig.  9. Contributions of the rays of various orders to the phase function of 2D randomly 
oriented hexagonal ice crystals. 
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Fig. 11. Decomposition of the scattered field using geometrical optics. 
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Fig. 12. An example of tetrahedron grid used in simulations of optical properties of a 
spherical particle. The green tetrahedrons make up the spherical particle, the red 
ones make up the “free space” and the blue ones make up the UPML. 
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Fig. 13. The x component of the electric field at a point of the free space with respect to 
time. 
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