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ABSTRACT 

 

Adaptive Reliability Analysis of Reinforced Concrete Bridges Using Nondestructive 

Testing. (May 2010) 

Qindan Huang, B.S., Tongji University; 

M.S., University of Toledo 

Chair of Advisory Committee:  Dr. Paolo Gardoni 

 

There has been increasing interest in evaluating the performance of existing 

reinforced concrete (RC) bridges just after natural disasters or man-made events 

especially when the defects are invisible, or in quantifying the improvement after 

rehabilitations.  In order to obtain an accurate assessment of the reliability of a RC 

bridge, it is critical to incorporate information about its current structural properties, 

which reflects the possible aging and deterioration.  This dissertation proposes to 

develop an adaptive reliability analysis of RC bridges incorporating the damage 

detection information obtained from nondestructive testing (NDT).   

In this study, seismic fragility is used to describe the reliability of a structure 

withstanding future seismic demand.  It is defined as the conditional probability that a 

seismic demand quantity attains or exceeds a specified capacity level for given values of 

earthquake intensity.  The dissertation first develops a probabilistic capacity model for 

RC columns and the capacity model can be used when the flexural stiffness decays non-

uniformly over a column height.  Then, a general methodology to construct probabilistic 
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seismic demand models for RC highway bridges with one single-column bent is 

presented.  Next, a combination of global and local NDT methods is proposed to identify 

in-place structural properties.  The global NDT uses the dynamic responses of a structure 

to assess its global/equivalent structural properties and detect potential damage locations.  

The local NDT uses local measurements to identify the local characteristics of the 

structure.  Measurement and modeling errors are considered in the application of the 

NDT methods and the analysis of the NDT data.  Then, the information obtained from 

NDT is used in the probabilistic capacity and demand models to estimate the seismic 

fragility of the bridge.  As an illustration, the proposed probabilistic framework is 

applied to a reinforced concrete bridge with a one-column bent.  The result of the 

illustration shows that the proposed framework can successfully provide the up-to-date 

structural properties and accurate fragility estimates. 
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1. INTRODUCTION 

 

1.1 Background 

Most in-service reinforced concrete (RC) bridges in the US are suffering from aging and 

deterioration due to harsh environmental exposure conditions and/or are damaged by 

natural (earthquakes, hydrologic forces, etc.) or man-made (collisions, fire, de-icing salt, 

etc.) hazards.  Consequently, the structural capacity of an existing bridge is typically less 

than the structural capacity of a new structure.  Even if the deterioration does not lead to 

the direct failure of a structure, it may weaken the structure, making it more vulnerable 

to earthquakes and other hazards.  The collapse of the Minneapolis bridge on August 1, 

2007 awakened the nation’s awareness of existing bridges safety issues.  At least $140 

billion has been proposed to make major repairs or upgrades to one of every four U.S. 

bridges, according to the report by American Association of State Highway and 

Transportation Officials (2008). 

With limited funds available for the maintenance of aging and degrading bridges, 

knowing the ability of RC bridges to withstand future seismic demands during their life-

cycle can help bridge owners make rational decisions regarding optimal allocation of 

resources for maintenance, repair, and/or rehabilitation of bridge systems (Frangopol et 

al. 2001).  To obtain accurate estimates of the residual reliability of a deteriorating 

bridge, it is reorganized to be important to accurately estimate the actual properties of  

__________ 

This dissertation follows the format of the ASCE Journal of Engineering Mechanics. 
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the bridge and properly account for all prevailing uncertainties, including the 

randomness inherent in the loads, the uncertainties in the material properties, and the 

uncertainties in the characteristics (time, rate, and location) of the deterioration 

processes. 

Current assessment of the safety of RC bridges is primarily performed by visual 

inspections.  However, visual inspections have several limitations. 

 The information provided is subjective and limited.  The quantity of visual 

inspection heavily relies on the knowledge and experiences of the inspector. 

 Visual inspections typically detect only very advanced deteriorated conditions 

and are not able to detect damages at the locations that the inspector cannot 

reach. 

 With the rapid increase of the size and complexity of bridges, the conventional 

visual inspections become less inefficient, more expensive, and time consuming. 

 They are schedule-based. 

Nondestructive testing (NDT), on the other hand, can be applied during the 

operation of structures and is an effective way to evaluate up-to-date in-place structural 

properties and detect damages.  It can also serves as a tool for autonomous and 

continuous detection.  More importantly, it can localize and qualify varying degrees of 

damage and discover damage at early stage.  There is consensus on the importance of 

NDT which can be implemented as a complement to visual inspection. 

Methods using vibration measurement to determine structural properties are 

referred as global/vibration-based NDT.  It uses measureable changes in the structural 
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dynamic characteristics caused by damage to identify the damage.  Comprehensive 

review of global NDT can be found in (Doebling et al. 1998; Farrar et al. 2001; Fritzen 

2005).  Modal frequencies and modal shapes are most common used in global NDTs.   

Humar et al. (2006) gave a survey of some commonly used algorithms including 

methods based on the changes in modal frequencies, modal shapes, modal shape 

curvatures, flexibility matrix, modal strain energy, and etc.  However, global NDT 

requires an undamaged/baseline structure that is usually not available for existing 

structures.  Moreover, for large structures, global NDT is only effective to identify 

global/equivalent structural properties and detect the possible damage locations.  To 

further determine the local characteristics of structural properties or detect small defects, 

local NDT is needed. 

The efforts to apply local NDT to the civil engineering field have been 

concentrated in the approaches using 1) acoustic signals, 2) electromagnetism, 3) 

radiography, 4) fiber optics, 5) radar and radio frequency, 6) optics, and 7) piezoelectric 

ceramics (Chang and Liu 2003).  Different approaches usually focus on specific 

structural properties (crack length of concrete, bond strength between concrete and 

reinforcement, etc.) or different characteristics of a material deterioration process 

(corrosion initiation time, corrosion rate, etc.).  For example, ACI Committee 228 (2003) 

provides a guidance of using NDT methods to predict compressive strength of concrete, 

including rebound hammer test, ultrasonic pulse velocity (UPV) test, maturity, and cast-

in-place cylinders.  Local NDT can be applied to the suspected damaged area that is 

identified by global NDT.  Therefore, a combination of global and local NDTs is usually 
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helpful. 

This dissertation proposes to develop an adaptive reliability analysis of RC 

bridges incorporating the damage detection information obtained from NDT.  NDT can 

be used to identify damages and provides valuable information to evaluate up-to-date, 

in-place structural properties.  Thus, the uncertainties in the properties of a bridge can be 

reduced using the bridge actual properties evaluated from NDT.  Figure 1-1 illustrates 

this proposed scheme that uses the actual structural properties to update the capacity and 

demand models, where PDF refers to the probability of density function.  Consequently 

the reliability will be updated.  Compared with the conventional reliability analysis 

incorporating with the deterioration models, the proposed method accounts for all 

possible causes of deterioration detected by NDT instead of only considering the 

degrading mechanisms captured by the deterioration models. 

 

 

As an illustration of the benefits of the proposed approach, Figure 1-2 shows a 

qualitative comparison between the proposed reliability model and a traditional time-

PDF update update 

capacity, demand 

Figure 1-1.  Effect of updating input on capacity and demand models 

D

D

C

C
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variant reliability model for a RC bridge, e.g., Choe et al. (2008).  The proposed adaptive 

reliability model reduces the uncertainty in the reliability estimate because a damage 

detection using NDT provides information about the actual properties and conditions of 

the bridge.  It also properly captures the damage caused, for example, by an earthquake 

that might occur at a certain time 1t . As shown in Figure 1-2, the earthquake might 

suddenly damage the bridge, producing a negative impact on reliability, 1fP .  

Similarly, rehabilitation action might follow the same earthquake leading to an 

improvement in reliability, 2fP .  As another example, at time 2t  the bridge might 

undergo maintenance that would undo part of the damage due to aging.  The proposed 

adaptive reliability model can incorporate events such as these, providing a more 

accurate reliability assessment. 

 

0.0 

1.0 

2fP
1fP

3fP

Estimate based 
on the proposed 
adaptive 
reliability model 

Current estimate 

Time 

1 fP

Reliability 

Figure 1-2.  Qualitative comparison between the proposed reliability model 
and a model including corrosion by Choe et al. (2008) 

1t 2t
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1.2 Research Objectives 

The goal of this dissertation is to develop an adaptive reliability framework for RC 

bridges that accounts for the information provided by a damage-detection strategy 

referred to as NDT to determine the current and better predict the future health state of 

instrumented RC bridges.  The reliability models will be continuously updated by the 

data obtained from the long-term and continuous damage detection.  The proposed work 

has the following four objectives: 

Objective 1: Develop probabilistic deformation and shear capacity models for 

RC bridge columns.  Since the failure of bridge columns is vital to the whole structure, 

the system failure of a RC bridge will be defined as the failure of any column.  While 

capacity models for RC bridge columns have been developed (Gardoni et al. 2002; Choe 

et al. 2007), the existing models do not account for the degradation in the flexural 

stiffness that typically varies along the column height due to different exposure 

conditions and loadings.  This objective is to extend the developed capacity models to 

account for non-uniform degradation in RC columns. 

Objective 2: Develop probabilistic seismic deformation and shear demand 

models for RC bridge with one single-bent column.  The proposed demand models will 

fully consider all the relevant uncertainties associated with the structural demands on RC 

bridges due to seismic excitations.  Such uncertainties include uncertainties in the 

ground motions and the structural properties, model errors, and statistical uncertainties in 

the model parameters. 
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Objective 3: Develop probabilistic damage detection using NDT considering 

measurement error and modeling error.  Despite of the extensive study of damage 

detection methods, it has been increasingly recognized that a considerable amount of 

errors exist in the measurement data and in the damage detection process.  Through 

developing probabilistic damage detection in this objective, the measurement and 

modeling error can be incorporated. 

Objective 4: Incorporate the data from NDT into the probabilistic capacity and 

demand models.  This objective reflects the ultimate goal of this proposal: to use the 

information obtained from NDT to evaluate the current and future performance of a 

structure.  Additionally, the evaluation can be continuously updated as new information 

becomes available. 

The work proposed by this dissertation can lead to a significant decrease in 

lifecycle and maintenance costs for RC bridges based on the accurate estimate of their 

reliability that can be used for optimal allocation of resources for maintenance, repair, 

and rehabilitation.  Furthermore, the outcomes of the proposed work will be of interest to 

the international civil engineering community as well. 

 

1.3 Organization of Dissertation 

This dissertation is organized using a section-subsection format.  There are six sections 

and within each section there are subsections.  The word “section” corresponds to the 

first heading level and “subsection” corresponds to the second, third, and fourth heading 

levels.  Following are brief descriptions for each section in this dissertation. 
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 Section 1 (current section) gives an introduction about the background of this 

dissertation, including the problem statement, the current available solutions, and 

the proposed ideas.  Then, the objectives and the structure of this dissertation are 

given. 

 Section 2 develops deformation and shear capacity models for RC bridge 

columns that incorporate information obtained from NDT.  The proposed models 

can be used when the flexural stiffness decays non-uniformly over a column 

height.  The flexural stiffness of a column is estimated based on measured 

acceleration responses using a system identification method and the damage 

index method.  This work has been published in the Journal of Engineering 

Mechanics ASCE, 135 (12) with the title of “Probabilistic Capacity Models and 

Fragility Estimates for Reinforced Concrete Columns Incorporating NDT Data”. 

 Section 3 presents a general methodology to construct probabilistic demand 

models for RC highway bridges with one single-column bent.  The developed 

probabilistic models consider the dependence of the seismic demands on the 

ground motion characteristics and the prevailing uncertainties, including 

uncertainties in the structural properties, statistical uncertainties, and model 

errors.  This work has been summarized in a Journal paper titled “Probabilistic 

Seismic Demand Models and Fragility Estimates for Reinforced Concrete 

Highway Bridges with One Single-Column Bent” and submitted to Journal of 

Engineering Mechanics ASCE. 
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 Section 4 proposes a novel probabilistic vibration-based damage detection 

approach that accounts for the underlying uncertainties.  This vibration-based 

damage detection serves as a global NDT in this dissertation.  In particular, the 

proposed approach considers the measurement errors in the vibration tests, the 

modeling errors in the damage detection process, and the statistical uncertainties 

in the unknown model parameters.  This work is summarized into two Journal 

papers: one is titled with “Extracting Modal Parameters Considering 

Measurement and Modeling Errors” and has been submitted to Journal of Risk 

and Reliability, and the other one is titled with “A Probabilistic Damage 

Detection Approach Using Vibration-based Nondestructive Testing” and has 

been submitted to Structural Safety. 

 Section 5 develops a probabilistic multivariable linear regression model to 

predict the compressive strength of concrete using a combination of rebound 

hammer and ultrasonic pulse velocity tests, two local NDT test.  This work has 

been summarized in a Journal paper titled “Predicting Concrete Compressive 

Strength Using Ultrasonic Pulse Velocity and Rebound Number Data” and 

submitted to ACI Materials Journal. 

 Section 6 applies the overall framework proposed in this dissertation to a RC 

bridge with a one-column bent.  Following with this illustration, it is the 

conclusions of this dissertation. 
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2. PROBABILISTIC CAPACITY MODEL 

 

2.1 Introduction 

When a capacity model is used to estimate the residual reliability of a deteriorating 

bridge, it is essential to incorporate the actual properties of the structure.  Previous work 

either only assessed the reliability of bridges without considering structural deterioration, 

underestimating the actual vulnerability of bridges, or used deterministic or probabilistic 

deterioration models to account for the deterioration.  For example, Gardoni et al. (2002, 

2003) and Choe et al. (2007) assessed the reliability of pristine bridges by developing 

probabilistic capacity models for circular RC bridge columns without considering the 

structural deterioration.  Val et al. (1997), Enright and Frangopol (1998), Stewart and 

Rosowsky (1998), Vu and Steward (2000), and Choe et al. (2008) used probabilistic 

corrosion models to account for the corrosion initiation time and the corrosion 

propagation rate.  Fajfar and Gašperšič (1996), Williams and Sexsmith (1997), van de 

Lint and Goh (2004), Teran-Gilmore and Bahena-Arredonom (2008), and Kumar et al. 

(2009) used mathematical models to capture the effects of cumulative seismic damage.  

However, the deterioration models are derived based on laboratory data or from the 

behavior of other similar structures under similar conditions (Estes et al. 2003).  As a 

result, additional uncertainties associated with the deterioration models are introduced 

into the reliability analysis.  Furthermore, deterioration models are limited to specific 

deterioration mechanisms.  Finally, whether or not the deterioration process has been 

accounted for, the basic material properties and parameters used in the capacity model 
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are generally assumed using typical values and are not customized for a particular 

structure, leading to a significant degree of inaccuracy. 

In this Section, the deformation and shear capacity models previously developed 

by Gardoni et al. (2002) and Choe et al. (2007) for RC circular columns are extended to 

incorporate field measured information about the flexural stiffness, which is typically 

non-uniform along a column height.  By avoiding using deterioration models, the 

proposed formulation has two main advantages over the previous approaches 1) actual 

values for the material properties are used instead of assumed values; and 2) the 

approach accounts for all possible causes of deterioration instead of only the 

mechanisms captured by the deterioration models. 

In a case study, the developed capacity models are used to estimate the fragility 

(or the conditional probability of attaining or exceeding the capacity level) of the column 

in the Lavic Overcrossing Bridge for a given deformation or shear demand.  In 1999, this 

two-span concrete box-girder bridge located in Southern California was subject to the 

Hector Mine Earthquake.  In this section, the pre- and post-earthquake estimates of the 

univariate shear and deformation fragilities and the bivariate shear-deformation fragility 

are computed and compared.  To estimate the flexural stiffness of a column, the system 

identification method and the damage index method developed by Stubbs et al. (1996) 

based on the bridge eigenmodes are used in this study.  NDT is used to record the bridge 

acceleration responses and extract the eigenmodes.  Both displacement and shear 

capacities are found to decrease after the Hector Mine Earthquake.  Furthermore, the 

result shows that the damage due to the earthquake has more impact on the shear 
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capacity than the deformation capacity, leading to a more significant increment in the 

shear fragility than on the deformation fragility.  While the work in this study focuses on 

incorporating the information about the flexural stiffness changes of the column, the 

same methodology can be extended to account for other information on structural 

conditions that might be obtained from NDT. 

In the following, the probabilistic capacity models developed by Gardoni et al. 

(2002) and Choe et al. (2007) are briefly reviewed.  These models are then extended to 

account for the field data from NDT.  Next, how the flexural stiffness of RC columns 

can be obtained using NDT techniques and how measurement and model errors can be 

accounted for are described.  Then, an assessment of the structural fragility of RC 

columns that accounts for the present uncertainties is described.  Finally, as an 

application of the proposed approach, the fragilities of the Lavic Overcrossing bridge 

column are assessed based on the estimated flexural stiffness before and after the Hector 

Mine Earthquake. 

 

2.2 Probabilistic Capacity Models 

2.2.1 Review of Probabilistic Capacity Models for Pristine Bridges 

Gardoni et al. (2002) and Choe et al. (2007) developed probabilistic capacity models for 

circular RC bridge columns in a pristine state without considering the effects of 

deterioration.  These models account for model errors that arise from potential 

inaccuracies in the model form and missing variables, and statistical uncertainties.  The 

probabilistic deformation and shear capacity models are expressed as  
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      , , , , ,ˆ, ,k C k k C k C k C k C kC c     x Θ x x θ             ,k v  (2.1) 

where ˆ ( )kc x selected deterministic capacity model, , ,( , )C k C k x θ correction term for 

the bias inherent in the deterministic model, , , ,( , )C k C k C k Θ θ a vector of unknown 

model parameters, ,C k  standard deviation of the model error, ,C k  random variable 

with zero mean and unit variance, x a vector of basic variables, e.g., material 

properties, structural dimensions, and imposed boundary conditions, as per build-in 

state.  The index k  indicates the mode of failure considered, i.e., deformation failure 

( k  ) or shear force failure ( k v ).  The unknown parameters in the models are 

, , , ,( , , )C k C C v C v Θ Θ Θ , where ,C v  correlation coefficient between the model errors 

, ,C C    and , ,C v C v  .  In developing the models in Eq. (2.1), Gardoni et al. (2002) and 

Choe et al. (2007) used a logarithmic transformation of the deformation and shear 

capacity to satisfy the homoskedasticity assumption ( ,C k  is independent of x ) and the 

normality assumption ( ,C k  follows the Normal distribution).  These two assumptions 

are needed to assess the unknown parameters ,C kΘ .  Additional details on how to obtain 

,C kΘ  using experimental data can be found in Gardoni et al. (2002). 

The selected deterministic model for the deformation capacity ˆ ( )c x  consists of 

two terms: an elastic component, ˆ
y , and a plastic component, ˆ

p , computed assuming 

a bilinear approximation for the column moment-curvature relation (Priestley et al. 

1996).  The elastic component ˆ
y  can be further partitioned into three components: a 
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flexure component ˆ
f  based on a linear curvature distribution along the column height, 

a shear component ˆ
sh  due to the shear distortion, and a slip component ˆ

sl  due to the 

slipping of the longitudinal bar reinforcement at the base.  For the shear capacity, the 

selected deterministic model ˆ ( )vc x  is the sum of contribution of the transverse steel, ŝV , 

and the contribution of the concrete, ĉV . 

 

2.2.2 Proposed Probabilistic Capacity Models for Deteriorating Bridges 

The models developed by Gardoni et al. (2002) and Choe et al. (2007) do not account for 

the degradation in the flexural stiffness that typically varies along the column height due 

to different exposure conditions and loadings.  Here the capacity models described above 

are extended to account for non-uniform degradation in RC columns. 

To develop the deformation capacity model for a column with non-uniform 

stiffness, a column with clear height H  is divided into n  finite segments (Figure 2-1) 

such that each segment i  ( 1,2,...,i n ) located at a distance ih  from the base of the 

column has approximately uniform flexural stiffness ( )i t
EI  over its height ih  at time 

t .  The time t  indicates when the measured data are recorded in the field.  If a lateral 

force, iF , is applied to the top of the column such that the section in the thi  segment 

reaches the yield curvature, ,y i , the relation between iF  and ,y i  can be found as 

, ( ) /i y i i iF EI h  .  The critical cross section is defined as the one that reaches yielding 

first and the corresponding yielding force yF  is defined as 
1, ,

min ( )y i
i n

F F





.  If it is 
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assumed that there is only one critical cross section and it is located in the thq segment, 

then the lateral force making the column cross section yield is y qF F .  In the case of 

uniform flexural stiffness, the critical section is always at the bottom of a column where 

the moment is largest.  In the case considered here of non-uniform flexural stiffness, the 

critical section might not be at the bottom of the column. 

 

In the case of deterioration over time, the vector x  in Eq. (2.1) can be partitioned 

as 1 2[ , | ]tx x x  where 1 x a vector of time-invariant variables and 2 |tx a vector of 

time-variant variables.  Since the flexural stiffness is the focus of this study, 2 |tx  refer to 

those variables related to the flexural stiffness. 

Using the segmented column, ˆ |f t  can be obtained as ˆ | ( ) |f t tu z H   , where 

( )u z  flexural displacement along the column height that is the solution of the 

following differential equation:  

 

 1EI

 i
EI

 n
EI

ih

H

1h

nh

z

Figure 2-1.  Equivalent and local flexural stiffness for a single-column bridge bent 

nh

local 
EI 
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EI 

EI

2h
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   

 

2

2

d

d
t t

t

u z M z

z EI z
  (2.2) 

where ( ) | | | [1 / | ]t t eff t eff tM z F l z l  moment at height z , in which | |eff t tl H YP   if 

1q   (i.e., the critical section is at the base of the column) and |eff tl H  if 1q  , where 

YP  is the depth of the yield penetration into the column base.  Based on analysis and test 

results (Priestley et al. 1996), | 0.022 |t y t bYP f d  where |y tf  yield strength of the 

longitudinal reinforcement (in MPa) and bd diameter of the longitudinal 

reinforcement.  The flexural stiffness ( ) |tEI z  is piece-wise uniform with value ( ) |i tEI  

in each segment i  at time t . 

Similarly, ˆ
sh  can be obtained accounting for the time dependency of the angle 

of rotation |i t  of each segment due to yF .  The angle of rotation can be computed as 

1
,| tan [ / ( | | )]i t y i t ve i tF G A   , where , ,| |ve i t I i t s gA k k A  effective shear area for the thi  

segment, in which 0.9sk   represents the shape factor for a circular cross section, 

, | ( ) | /I i t i tk EI EI  where EI  is the pristine flexural stiffness of the column, and 

gA  gross cross sectional area.  Accordingly, ˆ
sh  can be calculated as  

  
1

ˆ
n

sh i itt
i

h


    (2.3) 

The contribution ˆ |sl t  is present only when the critical section is at the base of 

the column ( 1q  ) since the local rotation at the base does not need to be accounted for 

when the base section remains elastic (Alsiwat and Saatcioglu 1992).  When the critical 
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section is not at the base of the column ( 1q  ), ˆ |sl t  is equal to zero.  Thus, ˆ |sl t  can 

be written as  

 

,
1ˆ 8

0 1

y m y btt

sl tt

f d H
q

q





  
 

  




 (2.4) 

where | 1.08 |t c tf  , and cf   concrete compressive strength (in MPa).  The equation 

for 1q   was developed by Pujol et al. (1999).  Figure 2-2 shows the three contributions 

to ˆ
y  in case of non-uniform flexural stiffness. 

 

Considering the tension cracking of the concrete along with the yielding of the 

longitudinal reinforcement, the plastic curvature is assumed to follow an equivalent 

trapezoidal shape as shown in Figure 2-3 (Priestley et al. 1996).  The plastic 

deformation, ˆ |p t , can then be written as  

Figure 2-2.  The components of yield displacement for a RC bridge column  

1

2

1n 

n

z

ˆ
f ˆ

sh

2
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ˆ
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1

,
1

ˆ
q

p p q p ittt
i

l H h




 
     

 
  (2.5) 

where , , ,| | |p q t u q t y q t    plastic curvature, , |u q t  ultimate curvature for the critical 

cross section, pl  plastic hinge length calculated based on analysis and test results 

(Priestley et al. 1996) as (0.08 0.022 | ) 0.044 |y t b y t bH f d f d   with yf  in MPa units. 

 

Following Gardoni et al. (2002) and Choe et al. (2007), 1 2 ,, | ,t C    x x θ  can be 

written as  

 ,

1 2 , , 1 , 2 , 3 , 32

4
, , = 0.099 0.7614

I q s yh ct t
C C C C C cut t

g c gt t

V f D

D f f D     


     


         
x x θ

 (2.6) 

where the posterior statistics of the model parameters , , 1 , 2 , 3( , , )C C C C     θ  are 

provided in Appendix A, , ,| | /I q t I q tV M H  in which , |I q tM  denotes the ideal 

Figure 2-3.  Curvatures along the height of the column 
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(theoretical) moment capacity corresponding to the idealized yield curvature , |y q t , 

gD gross (or outer) column diameter, | 0.5 |t t c tf f   tensile strength of concrete with 

|c tf   in MPa, cD  core column diameter (defined as the diameter of the concrete 

contained within the centerline of the spiral reinforcement), |yh tf  yield stress of the 

transverse reinforcement, s  volumetric transverse reinforcement ratio, and 

|cu t  ultimate confined concrete compressive strain. 

For the shear capacity mode, the contribution ŝV  is written as 

 ˆ v yh et
s

t

A f D
V

S
  (2.7) 

where 2v hA A  total area in a layer of the transverse reinforcement in the direction of 

the shear force, in which hA  cross-sectional area at the transverse reinforcement, 

0.8e gD D  effective depth for circular cross section, and S  spacing of transverse 

reinforcements.  The contribution ˆ |c tV  is computed based on the model developed by 

Moehle et al. (1999, 2000) as  

 ˆ 1t t
c tt

e t gt

f N
V R

a D f A

 
  

  
 (2.8) 

where |tR  is a factor that accounts for the strength degradation within the plastic hinge 

region and is a function of the displacement ductility, and / ea D  aspect ratio, in which 

a distance from the location of the maximum moment to the inflection point.  Note 

that one could use other models for ŝV  and ĉV  as suggested in different literature (e.g., 
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ASCE-ACI Joint Task Committee 426 1973; ATC-32 1996; Kowalsky and Priestley 

2000; Kim and Mander 2007), and then follow the procedures suggested by Gardoni 

2003 to develop the corresponding probabilistic capacity models. 

The correction term 1 2 ,[ , | , ]v t C v x x θ  for the shear capacity model in this study is 

written as  

 1 2 , ,v1 ,v2, , =
v yh gt

v C v C l Ct
g t t

A f D

A f S
       

x x θ  (2.9) 

where l  longitudinal reinforcement ratio and the posterior statistics of the model 

parameters , , 1 , 2( , )C v C v C v θ  are given in Appendix A.  In addition, Appendix A 

provides the posterior statistics for , , ,( , , )C C C v C v Θ Θ Θ  that are needed to define the 

bivariate deformation-shear capacity model. 

 

2.3 Flexural Stiffness Estimation Using Nondestructive Testing 

This study proposes to assess the deteriorated flexural stiffness of a column using 

vibration-based NDT.  The vibration-based NDT is an emerging technique based on the 

principle that the occurrence of deterioration alters the structural dynamic characteristics 

(e.g., eigenmodes) of a bridge (Hurlebaus and Gaul 2006).  Thus, measuring and 

evaluating the dynamic characteristics can aid in detecting the location and severity of 

the deterioration.  There are several advantages of adopting vibration-based NDT 

(Humar et al. 2006): first, prior knowledge about the locations of the deterioration in the 

structure is not required; second, the sensors (e.g. accelerometers) used to measure the 
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dynamic responses do not need to be put in the vicinity of the deterioration; and last, a 

limited number of sensors is enough to obtain sufficient information needed to detect the 

deterioration in a large and complex structure such as a bridge. 

The dynamic responses of a bridge can be recorded either by exciting the bridge 

using a drop weight impact hammer or by considering ambient excitations such as wind 

loading, traffic loading, etc.  If the input is known, conventional modal analysis 

techniques can be applied to extract the eigenmodes.  If the input is unknown, output-

only methods have to be used.  Examples of these methods are the frequency domain 

decomposition that requires a singular value decomposition technique (Brinker et al. 

2001) and the time domain decomposition that provides a more accurate estimation of 

mode shapes (Kim et al. 2005).  After extracting the eigenmodes, the system 

identification and the damage index method proposed by Stubbs et al. (1996) can be 

used to estimate the stiffness change of the bridge. 

 

2.3.1 Damage Index Method 

In order to use the damage index method to estimate the flexural stiffness at time t t  , 

the bridge stiffness at time t  and the change in the modal shapes over a time interval t  

are needed.  However, in general, only the properties of the bridge at t t   are known 

and the stiffness and modal shapes at t  are not available.  To overcome this problem, 

Stubbs et al. (1996) proposed to developed a reference bridge that replaces the bridge at 

time t  using a finite element model that has the same modal frequencies as the bridge at 

t t   but no damage (i.e., each component has uniform stiffness over its length or 
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height).  Therefore the reference bridge has different modal shapes.  A reference bridge 

is generated by adjusting the stiffness or mass of the structural components in the finite 

element model. 

The damage index method assumes that the ratio between the modal energy of 

the thi  segment, jiS , and the modal energy of a whole component in the thj  

eigenmode, jS , remains approximately the same over time, i.e. 

| / | | / |ji t j t ji t t j t tS S S S  .  Kim and Stubbs (2002) have shown that this assumption is 

a good approximation when j jiS S , which is obtained when a component is divided 

into a sufficient number of segments.  If a column with height H  of either the bridge at 

t  or of the reference bridge can be considered as a Bernoulli-Euler beam, the strain 

energy for the whole column and thi  segment can be found as 

2

0

| ( ) | [ ( ) | ] d
H

j t t j tS EI z z z   and 2| ( ) | [ ( ) | ] d
i i

i

h h

ji t i t j t

h

S EI z z


   respectively, where 

( ) |tEI z  is the piece-wise uniform stiffness of the thi  segment with value ( ) |i tEI , 

( ) |j tz  denotes the thj mode curvature, ih  and i ih h   are the geometric bounds of the 

thi  segment.  It should be note that when a reference bridge is used, each segment i  has 

the same flexural stiffness within a component, ( ) | ( ) |i t tEI EI  for every i .  Thus, the 

damage index for the thi  segment in the thj mode can be expressed as 

 
 

   

 

 

   
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 (2.10) 
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The flexural stiffness at time t t  , ( ) |i t tEI  , can be obtained by multiplying ( ) |i tEI  

by jiDI .  If the first N  modes are used, the damage index is modified as 

 1

1

N

ji t t
j

i N

ji t
j

f

DI
f










 (2.11) 

where 2 2

0

| [ ( )] | d / ( ) | [ ( )] | d
i i

i

h h H

ji t jj t t j t

h

f z z EI z z z 


     and a similar expression can be 

found for |ji t tf  .  The curvature function  j z  can be calculated using central 

difference methods using the mode shape data at the recording points or the values from 

an interpolation of the mode shapes at the recording points.  In particular, to estimate 

(0)j  and ( )j H , the values of ( )j h   and ( )j H h    are needed.  To estimate 

them, a cubic-spline interpolation is suggested.  The inaccuracy in predicting ( )j h   

and ( )j H h    may lead to the inaccurate estimates of DI  for the boundary segments. 

To further generalize the DI  independently of the structure type, a normalized 

iDI ,
 

iZ  , is introduced as, 

 i DI
i

DI

DI
Z





  (2.12) 

where DI  and DI  refer to the mean and standard deviation of iDI .  To assess whether 

damage exists in a specific segment, iZ  should be compared with a threshold value, 

which is discussed in Section 4.  Note that the mode shapes are not affected by changes 

in the environmental parameters, such as temperature and humidity, because the changes 
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tend to be uniform over the entire structure and not localized to a specific portion.  

Therefore, the damage index method, which uses modal shape curvatures, is not 

sensitive to changes in the environmental parameters. 

 

2.3.2 Measurement and Model Errors 

In estimating material properties from field data, errors are present in the field 

measurement of the acceleration, here called measurement error, and in the process of 

obtaining the material properties from the measured accelerations, here called model 

error.  As discussed previously, the process of obtaining the material properties from the 

measured accelerations requires first extracting the modal parameters, then identifying 

the damages using the damage index method, and finally estimating the unknown 

material properties.  Model errors are associated to each step of this process.  Model 

errors can be due to 1) changes in boundary or environment conditions between the 

reference and the deteriorated structures, 2) the limited number of accelerometers, and 3) 

simplifications in the data processing and analysis.  To account for the measurement and 

model errors, the variables 2 |tx  are written as  

 2 2ˆ e et t
  x x  (2.13) 

where 2ˆ |tx estimated value obtained from NDT, e  a random variable with zero mean 

and unit variance, and e  standard deviation of the measurement and model error.  The 

formulation in Eq. (2.13) assumes that any systematic measurement and model error 

have been corrected by calibration.  Furthermore, the value of e  can be assessed based 
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on engineering judgment and experience or calibration using more accurate 

measurements and more refined models. 

 

2.4 Assessment of Structural Component Fragility 

In this study, the univariate deformation and shear fragilities and the bivariate 

deformation-shear fragility of RC columns are estimated using the developed capacity 

models that reflect the actual flexural stiffness.  Fragility is defined as the conditional 

probability of attaining or exceeding a specified capacity given a demand level.  

Following the conventional notation in structural reliability, the event 

1 2 ,{ [ , | , ] 0}k t C kg x x Θ  denotes the failure of a bridge column in the kth failure mode.  

The limit state function 1 2 ,[ , | , ]k t C kg x x Θ  is written as 

 1 2 , 1 2 ,, , , ,k C k k C k kt t
g C D       x x Θ x x Θ             ,k v  (2.14) 

where kD  denotes the given demand for the kth failure mode.  The fragility is then 

written as 

  1 2 1 2 ,, , , , 0C k C k kt t
k

F P g D
          

x x Θ x x Θ  (2.15) 

The uncertainties in the fragility arise from the inherent randomness, and the 

measurement and model errors in the capacity variables, the inexact nature of the limit 

state model 1 2 ,[ , | , ]k t C kg x x Θ  (or its sub-models), and the uncertainties inherent in the 

model parameters ,C kΘ .  Following Gardoni et al. (2002), predictive fragilities that 

account for the above uncertainties are developed.  To explicitly reflect the influence of 
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the epistemic uncertainties in ,C kΘ , the approximate  1 standard deviation (SD) 

confidence bounds on the fragility are also developed by first-order analysis.  The 

bounds approximately correspond to 15% and 85% probability levels. 

 

2.5 Application 

As an application of the developed capacity models, the fragility estimates for the RC 

column in the Lavic Road Overcrossing bridge are assessed, accounting for its 

deterioration over time.  This concrete box-girder bridge is selected because much effort 

has been made in estimating the deterioration of its flexural stiffness using NDT (Stubbs 

et al. 1999; Park et al. 2001; Choi et al. 2004; Bolton et al. 2005).  The bridge was built 

in 1967 in San Bernardino County, California, 7 miles west of Ludlow town.  It passes 

over Interstate I-40 and is North-South oriented.  The bridge is supported by abutments 

on the north and south ends and at approximately mid-span by one circular column with 

a diameter of 1,524 mm that seats on a spread footing.  Additional details of the bridge 

can be found in Stubbs et al. (1999).  The bridge was tested four times (in Dec. 1997, 

Sep. 1998, Sep. 1999, and Oct. 1999), exciting the bridge using a drop weight impact 

hammer.  The responses of the bridges were measured by accelerometers.  Based on the 

recorded response data, the eigenmodes were extracted using MEScope software (Stubbs 

et al. 1999).  Then, the damage index method developed by Stubbs et al. (1996) was 

used to estimate the local stiffness change of the column.  The Hector Mine Earthquake 

of magnitude 7.1 occurred between the last two measurements causing moderate damage 
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to the bridge.  The proposed approach is used to assess the change in fragility due to the 

damage from the earthquake. 

Table 2-1 summarizes the flexural stiffness of the column according to the 

measurements by Choi et al. (2004).  Among these four measurements, the first one 

(Dec. 1997) is considered to be accurate and is close to the calculated value based on the 

push-over analysis performed using the design parameters.  The next three 

measurements (Sep. 1998, Sep. 1999, and Oct. 1999) were taken with a different set of 

instruments (Bolton et al. 2001, 2005) and lead to lower flexural stiffness than the first 

ones.  To remove the bias in the 1998 and 1999 measurements, the measurements taken 

before the Hector Mine Earthquake (Sep. 1998 and Sep. 1999) are scaled up to the Dec. 

1997 value. The same scaling factor for the Sep. 1999 measurement is then used for the 

measurement after the earthquake (Oct. 1999).  Table 2-1 also summarizes the flexural 

stiffness calculated using the scaling factor. 

 

Table 2-1.  Flexural stiffness of the example column, EI (106·kN·m2) 

 Dec. 1997 Sep. 1998 Sep. 1999 Oct. 1999 

Original1 4.61 2.65 2.62 2.15 

Scaled 4.61 4.61 4.61 3.77 

1. Choi et al. (2004) 

 

The numerical calculations for the fragility estimation are conducted using 

OpenSees software.  OpenSees is a comprehensive, open-source, object-oriented finite 

element software.  Haukaas and Der Kiureghian (2004) extended this software with 



 28

reliability and sensitivity analysis capabilities.  The column in this study is modeled in 

OpenSees by fiber-discretized cross-sections where each fiber contains a uniaxial 

inelastic material model. 

 

Table 2-2.  Distribution, mean and coefficient of variation  
(COV) for the random variables in the model 

Random 
Variables 

Mean COV Distribution 

cf   20.7 (MPa) 1 5%2 Lognormal 

yf  276 (MPa) 5% Lognormal 

yhf  276 (MPa) 5% Lognormal 

P  2,641.3 (kN) 3 25% Normal 

H  7,467.6 (mm) 1% Lognormal 

gD  1,524 (mm) 2% Lognormal 

S  101.6 (mm) 5% Lognormal 

cover 38.1 (mm) 10% Lognormal 

1. Corresponds to the pre-event value 
2. To account for uncertainties from measurement and model errors 
3. Corresponds to 7% of the axial capacity based on the gross  
    cross-section area 

 
 

The decrease in the equivalent flexural stiffness of the column after the Hector 

Mine Earthquake is assumed to be due only to the strength and stiffness reduction in 

concrete associated to cracking and it is assumed that the properties of the reinforcement 

steel are not affected by the earthquake.  Concrete compressive strength cf   is adjusted 

so that EI  from the moment curvature of the cross-sections with elastic-perfectly plastic 

idealization matches |tEI  obtained from the NDT.  Thus, based on the estimated 
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flexural stiffness from the Sep. 1999 measurement and the Oct. 1999 measurement, one 

can find 1|c tf   and 2|c tf   for the pre- and post-earthquake conditions, respectively. 

After assessing cf  , to account for the uncertainties in the material properties, 

geometry, and applied axial force, the quantities in Table 2-2 are considered as random 

variables.  Table 2-2 also provides the assumed distribution for each random variable, 

their mean and coefficient of variation (COV). 

Figures 2-4 and 2-5 show the predictive fragility estimates of the example 

column for varying deformation and shear demands based on the estimated flexural 

stiffness pre- (thin solid line) and post-earthquake (thick solid line).  It is shown that the 

fragility increases for both deformation and shear failure modes because of the reduction 

in the deformation and shear capacity due to the damage induced by the Hector Mine 

Earthquake.  Table 2-3 gives the mean shear and deformation capacities, pre- to post-

earthquake.  The results show that the damage introduced by the earthquake has a larger 

effect on the shear capacity than the deformation capacity. 

In order to explicitly show the effect of the epistemic uncertainty in the model 

parameters, kΘ ,  1 SD bounds are provided.  The dashed lines in Figure 2-4 and 2-5 

represent the bounds that approximately correspond to 15% and 85% probability levels.  

The dispersion indicated by the slope of the solid curve represents the effect of the 

aleatory uncertainty present in the random variables in Table 2-2,  , and v .  The 

dispersion indicated by the confidence bounds represents the influence of the epistemic 

uncertainty present in the model parameters kΘ . 
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Figure 2-5.  Fragility estimate with approximate confidence bounds for 
the shear failure of the example column, pre- (thin lines) and post-

earthquake (bold lines) 
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10

-3

10
-2
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Figure 2-4.  Fragility estimate with approximate confidence bounds for 
the deformation failure of the example column, pre- (thin lines) and post-

earthquake (bold lines)
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Table 2-3.  Mean deformation and shear capacity  
pre- and post-earthquake 

Capacity 
Pre-

earthquake
Post-

earthquake
Percentage 

Change 

Deformation (mm) 396.36 352.03 11.18% 

Shear (kN) 3701.35 2892.31 21.86% 

 

Figure 2-6 shows a comparison between the contour lines of the predictive 

bivariate fragilities, pre- and post-earthquake.  Each contour line in this figure connects 

pairs of values of the demands D  and vD  that are associated with a level of fragility in 

the range 0.1 ~ 0.9 .  Consistently with what is observed for the univariate fragilities in 

Figures 2-4 and 2-5, Figure 2-6 shows that the damage induced by the Hector Mine 

Earthquake increases the probability of failure in the shear mode more significantly than 

in the deformation mode. 

 

2.6 Conclusions 

Probabilistic deformation and shear capacity models for RC bridge columns are 

developed to incorporate field information from NDT.  The proposed models can be 

used when the flexural stiffness decays non-uniformly over the column height.  The 

probabilistic models are used to assess the conditional probability of failure of reinforced 

concrete bridge columns for given deformation and shear demands. 

The proposed formulation avoids using deterioration models and uses material 

properties estimated from the field data.  This has two main advantages over the 
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previous approaches 1) actual values for the material properties are used instead of 

assumed values; and 2) the approach accounts for all possible causes of deterioration 

instead of the mechanisms captured by the deterioration models.  Furthermore, the 

approach takes into account the relevant sources of uncertainties including measurement 

and model errors.  Although this study focuses on incorporating information on the 

flexural stiffness, the methodology presented in this section can be extended to account 

for other structural properties that might be obtained from NDT. 
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As an illustration, a case study is carried out to estimate the univariate 

deformation and shear fragilities and the bivariate deformation-shear fragility for the 

column in the Lavic Road Overcrossing bridge.  This RC bridge was subject to the 

Hector Mine Earthquake in 1999.  Pre- and post-earthquake fragility estimates are 

computed and compared.  The results show that both the deformation and shear fragility 

increase due to the damage from the earthquake event.  Furthermore, the analysis of the 

example column shows that the shear capacity degrades more rapidly than the 

deformation capacity.  These results indicate that columns designed to fail in 

deformation, as per the current Caltrans’ seismic design criteria, might fail in shear after 

being damaged by past earthquakes.  However, a conclusive statement on this regard 

cannot be made based on the available results since the fragilities are computed for given 

deformation and shear demands. 
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3. PROBABILISTIC DEMAND MODEL 

 

3.1 Introduction 

The need for incorporating performance-based engineering concepts into bridge design 

and rehabilitation has been widely recognized (e.g., Cornell and Krawinkler, 2000; 

Mackie and Stojadinović, 2003; Moehle and Deierlein, 2004).  Seismic demand models 

are a critical component in performance-based seismic design and seismic risk 

assessment.  Nonlinear static procedures (NSPs) are commonly used to predict the 

seismic demands by making use of force-deformation curves generated from nonlinear 

static pushover analysis.  Commonly used NSPs include the capacity spectrum method 

(CSM) by the Applied Technology Council (ATC 1996), the coefficient method (CM) 

proposed by FEMA-273 (BSSC 1997), and the N2 method proposed by Fajfar (2000).  

FEMA-440 (ATC 2005) improves CSM and CM, and presents a preliminary evaluation 

of the improved methods.  The N2 method can be considered as a special form of the 

CSM and has been adopted in the Eurocode-8 (CEN 2001).  On the other hand, many 

researchers (e.g., Gardoni et al. 2003; Goel and Chopra 2004; Kunnath and Kalkan 2004; 

Kalkan and Kunnath 2006; Akkar and Metin 2007; Goel 2007; Zhong et al. 2008) have 

pointed out the drawbacks of these simplified static procedures.  In particular, Heintz 

and Miranda (2007) attributed the inaccuracy of NSPs to (1) the unjustified use of the 

“equal displacement” rule in the short period range, (2) the use of a static load pattern, 

and (3) the negligence of the cyclic material strength and stiffness degradation, the 

dynamic P   effect and instability, the multi-degree of freedom (MDOF) effects, and 
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the effects from soil-structure interaction.  Additionally, NSPs do not account for the 

uncertainties and variability in the ground motions and in the structural responses. 

Probabilistic seismic demand models aim at capturing the uncertainties in the 

ground motions and the structure dynamic responses.  Vamvatsikos and Cornell (2002) 

developed the incremental dynamic analysis (IDA) to estimate the structural demand 

given the pseudo-spectral acceleration, PSA , at the first mode period, 1T .  However, 

IDA requires a series of time history analyses for any given structure to account for the 

variability in the ground motion and does not account for the uncertainties in the 

structural properties.  Gardoni et al. (2002) proposed a general Bayesian methodology to 

construct probabilistic models that account for any source of information, including field 

measurements, laboratory data, and engineering judgment.  Following this Bayesian 

methodology, Gardoni et al. (2003) and Zhong et al. (2008) constructed probabilistic 

seismic demand models for RC bridges that account for the prevailing uncertainties such 

as uncertainties in the structural properties, statistical uncertainties, and model errors.  In 

particular, Gardoni et al. (2003) developed probabilistic demand models for general RC 

bridges with single-column bents and Zhong et al. (2008) developed demand models for 

RC bridges with two-column bents.  However, Gardoni et al. (2003) and Zhong et al. 

(2008) used limited laboratory data on RC bents and one numerical model of a full 

bridge to calibrate the proposed demand models.  Additionally, the dependence of the 

demand parameters on the ground motion characteristics is not complete, because the 

effects from the soil profile are not accounted for and near-field earthquakes are not 

considered. 
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Krawinkler et al. (2003) studied the dependence of seismic deformation and 

ductility demand on earthquake magnitude and source-site distance.  They found that 

one seismic intensity is adequate to describe ordinary ground motions but not for near-

field earthquakes, indicating that additional seismic intensities should be considered.  

Consistently, Luco (2002) used a combination of two intensity measures to account for 

the effect of the near-field ground motions on the nonlinear structural responses.  More 

generally, Mackie and Stojadinović (2003) conducted a sensitivity analysis to explore 

the effect of different ground motion intensities on the seismic demands of RC bridges. 

This study considers the randomness from ground motions and incorporates the 

prevailing uncertainties, such as the uncertainties in the structural properties, statistical 

uncertainties, and model errors, to develop probabilistic seismic demand models.  The 

formulation of the proposed probabilistic demand models is constructed by adding 

correction terms to existing conventional deterministic demand models.  The correction 

terms are used to correct the bias and improve the accuracy in the selected deterministic 

models.  The model parameters are estimated through a Bayesian updating approach 

based on the virtual experiment demand data obtained from nonlinear analysis of 

detailed finite element models (FEMs) subjected to a set of representative ground motion 

records, including near-field records and considering the effects from soil characteristics.  

The FEMs simulate RC highway bridges with one single-column bent, typical of current 

construction in California.  A computer experiment design method is used to construct 

60 representative bridge configurations.  Finally, an all possible subsets model selection 

is used to select the correction terms that contribute most to the demand prediction.  
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Although the proposed model only focuses on typical RC highway bridges with one 

single-column bent in California, the same methodology is readily applied to other 

classes of bridges, when experiment demand data of another class of bridges become 

available.  

Following the introduction, firstly how the virtual experiment demand data are 

obtained from numerical simulations is described.  Next, the formulation of the proposed 

probabilistic demand models is introduced.  Then, the model assessment is presented.  

Finally, the developed seismic demand models are illustrated by estimating the fragilities 

of an example bridge. 

 

3.2 Virtual Experiment Demand Data 

Due to the limited experimental or field data on full-scale bridges, this study uses 

computer-based simulations to evaluate the performance of RC bridges with one single-

column bent.  The term “virtual experiment” herein refers to a nonlinear dynamic 

analysis performed on detailed bridge FEMs.  In this section, 60 representative 

configurations of RC bridges with one single-column bent are generated using a Latin 

hypercube sample technique.  Then how the ground motion records are selected is 

described.  Finally, it shows how the FEMs are built and how the ground motions are 

assigned to the 60 bridge configurations. 

 

3.2.1 Latin Hypercube Sampling 

To reduce the high computational cost of nonlinear dynamic analyses, experimental 
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design can be used to select representative bridge configurations.  The experimental 

design in virtual experiments is different from classical experimental design since the 

computer code or program is deterministic; therefore, there is no random error and no 

replication is required.  The design space is defined as the region bounded by the upper 

and lower limits of each design (input) variable being studied (Simpson et al. 2001).  

The goal of an experimental design for the virtual experiments is to spread the design 

variables as far from each other as possible while staying in the design space.  This study 

adopts the Latin hypercube sampling technique introduced by McKay et al. (1979).  For 

a fixed sample size, the Latin hypercube sampling technique maximizes the minimum 

distance between the design points and evenly spaces each design point in its range to 

give a good coverage of the design space. 

 
 

 
Figure 3-1. Typical one–bent column RC highway bridge configuration 

 

 
12 parameters to characterize each bridge configuration are considered as shown 

in Figure 3-1.  These parameters are the inputs for the experimental design.  Table 3-1 
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provides the considered ranges of the parameters, which are typical of current practice.  

The sample size is chosen based on the practical rule of about 5 samplings per design 

variable unless the output is quite variable over the range of that input variable.  

Therefore, 60 bridge configurations are generated by Latin hypercube sampling using 

the statistical software JMP version 7 (2007).  The design parameters for the 60 bridges 

can be found in Appendix B.  Note that each individual bridge configuration is not 

intended to correspond to any specific existing bridge. 

 

 
Table 3-1. Ranges of the design parameters for typical highway bridges with one single-

column bent 

Design Parameter Range 

Degree of skew,   0 – 60o 

Span (the shorter one), 1L  18 – 55 m 

Column height, cH  5 – 11 m 

Column diameter-to-superstructure depth ratio, /c sD D 0.67 – 1.33 

Reinforcement nominal yield strength, yf  276 – 655 MPa 

Concrete nominal strength, cf   20 – 55 MPa 

Longitudinal reinforcement ratio (column), l  1 – 4% 

Transverse reinforcement ratio (column), s  0.4 – 1.1% 

Additional bridge dead load, tw  10 – 75% self-weight 

Pile soil stiffness, soilK  (USGS) A, B, C, D 

Abutment models, abutK  A, B, C, D, E, F, G 

Two-span ratio, 2 1/L L  1.0 – 1.5 

 

 
3.2.2 Ground Motions 

To properly assess the seismic demand variables of interest and their associated 

uncertainties, it is critical to select representative ground motions for the virtual 
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experiments.  In particular, as pointed out by Krawinkler et al. (2003), the selected 

ground motion records should capture the characteristics of the possible seismic hazards, 

including their return periods, intensities, frequency contents, and durations.  In this 

study, representative earthquake records are selected from the PEER (Pacific Earthquake 

Engineering Research Center) database.  Each selected record has two orthogonal 

horizontal components and one vertical component.  Thus, a fully three-dimensional 

dynamic analysis can be performed.  Following Shome and Cornell (1999), the selected 

ground motions are subdivided into five bins based on moment magnitude, M  and the 

closest distance between the record location and the rupture zone, R .  Each bin 

represents specific combinations of the earthquake characteristics and the collection of 

all bins captures all possible characteristics.  Thus, each bin should have (1) enough 

earthquakes to capture the variability of the characteristics of that bin, and (2) the same 

number of ground motions as each of the other bins to provide an even representation of 

the possible characteristics without introducing bias into the ground motion 

characteristic or the assessment of the seismic demand variables of interest.  

Furthermore, ground motions within bins can be scaled up to higher intensities, without 

introducing bias. 

The following five bins are considered: 

1. Bin-I (SMSR: small M  and small R ): [5.5, 6.5]M  , and 

[15km, 30km)R   

2. Bin-II (SMLR: small M  and large R ): [5.5, 6.5]M  , and 

[30km, 50km]R   
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3. Bin-III (LMSR: large M  and small R ): (6.5, 7.5]M  , and 

[15km, 30km)R   

4. Bin-IV (LMLR: large M  and large R ): (6.5, 7.5]M  , and 

[30km, 50km]R   

5. Bin-V (NF: near-field): [6.0, 7.5]M  , and [0km,15km)R   

The records in the first four bins with 15 kmR   are ordinary ground motions and the 

ones in Bin-V with 15 kmR   are near-field ground motions.  Near-field ground 

motions are separated from the ordinary ground motions because they can have unique 

effects on the structural responses such as directivity and fling-step (Bray and 

Rodriguez-Marek 2004).  Particularly, Baker and Cornell (2008) proposed vector-valued 

intensity measures for near-field ground motions.  In this study, distance R  alone is used 

to define the near-field ground motions.  Additionally, to capture the rupture directivity 

effects in the near field ground motions, earthquake moments 6.0M   are selected for 

Bin-V (Luco, 2002). 
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Table 3-2. Number (percentage) of earthquake records in PEER Strong Motion Database for given GM and USGS soil 
classification (Luco, 2002) 

Ground 
Motion Group 

GM Classification 
USGS Classification 

A 
750m/ssV 

B 
360 750m/ssV 

C 
360 750m/ssV 

D 
180m/ssV 

Group 1 

A: rock ( sV  > 600 m/s) 
or every thin soil (< 5m) over rock 42 (93.33%) 79 (43.30%) 22 (7.91%) 0 (0%) 

B: shallow soil 
soil 5 to 20m thick over rock 

Group 2 

C: deep soil in narrow canyon 
soil > 20m think, canyon < 2m wide

3 (6.67%) 103 (56.60%) 256 (92.09%) 19 (100%) D: deep soil over broad canyon 
soil > 20m think, canyon > 2m wide

E: soft soil 
Total  45 (100%) 182 (100%) 278 (100%) 19 (100%) 

sV : average shear wave velocity to a depth of 30m 
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To consider the effect of soil amplification due to different soil characteristics, 

the selected ground motions are divided into two groups as shown in Table 3-2 based on 

the soil types determined by Geomatrix (GM) site classification (PEER Strong Motion 

Database, 2000).  Following the classification used by Abrahamson and Silva (1997), 

GM A and B are combined into the “rock and shallow” site category as ground motion 

Group 1 and GM C, D and E are combined into the “deep soil” site as Group 2.  Each 

soil group has the five bins described above, which gives a total of 10 bins.  For each 

bin, 20 ground motions are selected, for a total of 200 ground motions.  Appendix C 

gives the selected ground motion records and record information. 

Note that the shape of the pseudo acceleration spectrum of the first period, 

1( )PSA T , can be used to assess the frequency content of the ground motions selected for 

each bin (Vamvatsikos and Cornell 2005).  Therefore, the representativeness of the 

selected ground motions is checked by comparing the shape of the median of the 

computed 1( )PSA T  for each bin with the shape of the median 1( )PSA T  calculated based 

on Abrahamson and Silva (1997) attenuation law using the central values of the M  and 

R  ranges for each bin.  Furthermore, the selected ground motions should be 

representative of the variability in the frequency content of each bin.  Similar with the 

check on the median frequency content, the variability in the frequency content of the 

selected ground motions is checked by comparing the standard deviation of the 

computed 1( )PSA T  for each bin with the standard deviation of the calculated 1( )PSA T  

using Abrahamson and Silva (1997) attenuation law using the central values of the M  

and R  ranges for each bin. 
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(a) Based on selected ground motions for each bin (left: log-log space; right: original 

space) 

10
-2

10
-1

10
0

10
1

10
-3

10
-2

10
-1

10
0

10
1

Period (s)

M
ed

ia
n 

V
al

ue
 o

f 
P

S
A

 (
g)

0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Period (s)

M
ed

ia
n 

V
al

ue
 o

f 
P

S
A

 (
g)

 

 

SMSR

SMLR

LMSR
LMLR

NF

 
(b) Based on attenuation law by Abrahamson and Silva (1997) (left: log-log space; right: 

original space) 
Figure 3-2. Median 1( )PSA T  spectra for each bin with 5% damping at rock and shallow 

soil site 
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(a) Based on selected ground motions for each bin (left: log-log space; right: original 

space) 
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(b) Based on attenuation law by Abrahamson and Silva (1997) (left: log-log space; right: 

original space) 
Figure 3-3. Median 1( )PSA T  spectra for each bin with 5% damping at deep soil site 

 
 
 

Figure 3-2 shows the median 1( )PSA T  spectra based on the selected ground 

motions and Abrahamson and Silva (1997) attenuation law for Group 1.  Similarly, 

Figure 3-3 shows the same quantities as in Figure 3-2 for Group 2.  Figures 3-4 and 3-5 
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show the comparisons of the standards deviation of 1( )PSA T .  The solid dots () 

represent the values calculated using the selected ground motions and the solid line 

represents the values calculated using Abrahamson and Silva (1997) attenuation law.  

The similarity in both the shapes of the median 1( )PSA T  spectra and the values of the 

standard deviations suggest that the selected ground motions are adequately 

representative of each bin. 

In order to study the nonlinear responses of bridges due to larger earthquakes, the 

ground motions in each bin are scaled by multiplying the earthquake acceleration 

records by a constant.  Followed the suggestion by Luco (2002), the ordinary ground 

motions (Bins I-IV) are scaled up by a factor of eight, and the near-field ground motions 

(Bin V) are scaled up by a factor of two such that “1-sigma level” of elastic 

displacements are approximately the same for the ordinary and near-field ground 

motions.  Thus, in each bin, there are 20 un-scaled ground motions and 20 

correspondingly scaled ground motions. 
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Figure 3-4. Comparison of standard deviation of 1( )PSA T  values obtained by 20 ground 

motions (dots) and standard deviation values based on attenuation law by Abrahamson 
and Silva (1997) (solid lines) for each bin with 5% damping at rock and shallow soil site 
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Figure 3-5. Comparison of standard deviation of 1( )PSA T  values obtained by 20 ground 

motions (dots) and standard deviation values based on attenuation law by Abrahamson 
and Silva (1997) (solid lines) for each bin with 5% damping at deep soil site 
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3.2.3 Finite Element Models 

The OpenSees platform (McKenna and Fenves 2000) is used in this study for 

constructing the FEMs of the bridges and conducting the nonlinear time history analysis.  

Sixty FEMs are generated for the bridge configurations described above.  In the FEMs, 

the bridge piles are modeled using bilinear elastic-perfectly plastic springs.  To reflect 

the variability in the soil type, four different stiffnesses are considered based on the 

USGS (U.S. Geological survey) soil classification.  The properties for each spring type 

can be found in Mackie and Stojadinović (2003).  Instead of the GM soil classification 

that are used to divide the ground motions, the USGS soil classification is used for pile 

springs, because the USGS soil classification is based only on the top up to 30m of soils. 

Seat-type abutment is assumed in the longitudinal direction.  The interaction 

between the abutment and the soil is modeled using gap-spring elements and bearing pad 

springs with elastic-perfectly plastic behavior.  Seven abutment models of the gap-spring 

elements with different stiffness and strength properties are used.  They are a simple 

roller support model (abutment type A), one model that follows Caltrans’ specifications 

(2000) (abutment type B), two models (with and without participating mass) developed 

by Maroney et al. (1994) (abutment type C and type F), one model developed by Wilson 

and Tan (1990) (abutment type D), and two models (with and without participating 

mass) developed by Zhang and Makris (2001) (abutment type E and type G).  An initial 

gap of 152.4 mm in the longitudinal direction and no gap in the transverse direction are 

assumed.  The details on the stiffness and the participating mass for these abutment 

models can be found in Mackie and Stojadinović (2002). 
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The bridge deck is designed as a 4-cell box girder 10.97 m wide, which is typical 

of bridges with single-column bents.  The ratio between the depth of the box girder, sD , 

and the longest span, 2L , is assumed to be 0.055 for all bridge configurations. This value 

is within the recommended range (0.05-0.06) in AASHTO (1992) for best appearance 

and economy.  The box-girder superstructure is modeled by elastic beam elements, 

which is consistent with the assumptions in the current design practice in California.  

The column and pile shafts are modeled using nonlinear beam-column elements with 

fiber cross sections including P   effects. 

Table 3-2 shows the number and percentage of earthquake records in the PEER 

Strong Motion Database for given GM and USGS soil classification.  Based on the 

correlation between GM and USGS shown in Table 3-2, in this study, bridges with 

USGS soil type A (USGS-A) are excited only by the records in Group 1, bridges with 

USGS-B are excited by the ground motions in both groups, and bridges with USGS-C 

and USGS-D are excited only by the ground motions in Group 2. 

Instead of exciting 60 bridges with all earthquake records (a total of 200 ground 

motions for each group), 20 ground motions are randomly assigned to every bridge, two 

from each of the 10 bins.  For the bridges with USGS-B, one ground motion from each 

of the 20 bins is selected.  To ensure that all the ground motion records are used, the 

earthquake records are assigned to the bridges using a sampling without replacement.  

Because the orientation of the bridges with respect to the fault is unknown, one of the 

horizontal components of each ground motion record is randomly assigned to the bridge 

transverse direction and the other horizontal component to the bridge longitudinal 
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direction. 

 

3.3 Formulation of Probabilistic Demand Models 

Following Gardoni et al. (2003), the probabilistic deformation and shear demand models 

are developed by adding correction terms to a selected existing deterministic model 

commonly used in practice.  The models can be written as  

      , , , , ,
ˆ, ,k D k k D k D k D k D kD d     x Θ x x θ             ,k v  (3.1) 

where ( , )k kD x Θ demand measure (or a suitable transformation), ˆ ( )kd x demand (or a 

suitable transformation) predicted by a selected deterministic demand model, 

, ,( , )D k D k x θ correction term for correcting the bias and random errors in ˆ ( )kd x , 

, , ,( , )D k D k D k Θ θ a vector of unknown model parameters, , , 1 ,( , , )
kD k D k D k p θ  , 

,D k  standard deviation of the model error, k  normal random variable with zero 

mean and unit variance, x a vector of basic variables, e.g., material properties, member 

dimensions, and imposed boundary conditions.  The index k  denotes the failure mode of 

interest, e.g., for deformation ( k  ) and for shear force ( k v ).  Two assumptions are 

used in assessing the demand model in Eq. (3.1): the homoskedasticity assumption ( ,D k  

is constant and independent of x ), and the normality assumption ( ,D k  has the Normal 

distribution).  Both assumptions usually can be satisfied by using a variance stabilizing 

transformation of the demand quantities of interest (Box and Cox, 1964).  Diagnostic 

plots can be used to check the suitability of the transformation (Rao and Toutenburg, 

1997; Sheather, 2008).  This study uses the natural logarithmic transformation of the 
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normalized deformation and shear demands, that is ln( / )cD H   , where 

  deformation demand, cH  height of the bridge column; ln[ / ( )]v t cD V f A , where 

V  shear demand, tf   tensile strength of concrete and cA  bridge column gross cross-

sectional area; ˆ ˆln( / )cd H    and ˆ ˆln[ / ( )]v t cd V f A  where ̂  and V̂ are the 

deterministic estimates of the deformation and shear demands.  In the following, it 

shows which existing deterministic demand models are selected and how to construct the 

candidate correction terms. 

In this study, three existing deterministic procedures are considered to assess the 

demand quantities of interest: the improved CM described in FEM-440 (ATC 55 2005), 

the N2 method developed by Fajfar (2000), and the modified N2 (MN2) method 

developed by Gardoni et al. (2003).  In these three methods, a MDOF system is 

transformed into an equivalent single-degree-of-freedom (SDOF) system through a 

nonlinear static pushover analysis using an assumed displacement shape and lateral load 

distributions.  A nonlinear force-deformation curve for the equivalent SDOF is then 

generated.  The N2 method generates the force-deformation curve taking the sum of all 

the shear reactions including those at the abutments.  The MN2 method, on the other 

hand, only uses the sum of the shear forces in the columns.  Not including the shear 

forces at the abutments was found to provide more accurate estimates of the shear 

demand in the bridge columns (Gardoni et al. 2003).  In this study,equations developed 

by Krawinkler and Nassar (1992) for determining the inelastic displacement demand are 

used in the N2 and MN2 methods.  CM is implemented using the pushover analysis from 
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the MN2 methods and computing the transition from the elastic displacement to the 

inelastic displacement demand with modification factors (ATC 55 2005).  With these 

three selected deterministic models, three corresponding probabilistic demand models 

are developed.  Then, a comparison of the accuracy and complexity of the three 

probabilistic models is made to determine which demand model is the most effective. 

The candidate correction terms are selected based on their relations to the 

residuals between the demand data and ˆ ( )kd x .  By correcting the bias in ˆ ( )kd x , the 

developed demand models consider the nonlinear behavior and the inherent uncertainties 

of bridges, while retaining the simplicity of ˆ ( )kd x  to facilitate their practical 

implementation.  Therefore, the selected correction terms provide a way to complement 

ˆ ( )kd x  with ground motion intensity measures, which are critical to determine the 

seismic demands, and give us an insight into the seismic behavior of structures.  The 

correction term, , ,( , )D k D k x θ  in Eq. (3.1), can be expressed by a set of “explanatory” 

functions as follows: 

    
,

, , ,
0

,
D kp

D k D k D k kj
j

h 


 x θ x             ,k v  (3.2) 

where ,D kθ  is a vector of unknown model parameters, , 1D kp    number of model 

parameters, and ( )kjh x  are the candidate normalized explanatory functions.  Particularly 

0 ( ) 1kh x  is selected to detect a potential constant bias, and 1
ˆ( ) ( )k kh dx x  is used to 

capture the potential under- or over-estimate of the deterministic model.  To account for 

different structural behavior before and after yielding, two correction terms are selected: 
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     
       

   
, ,

2 ,

,

ˆ ˆ ˆ ˆif
ˆ ˆ

ˆ ˆ0 if

k k y k k y

k k k y

k k y

d d d d
h d d

d d

        

x x x x
x x x

x x
            ,k v

 (3.3) 

     
   

       
,

3 ,

, ,

ˆ ˆ0 if
ˆ ˆ

ˆ ˆ ˆ ˆif

k k y

k k k y

k k y k k y

d d
h d d

d d d d

        

x x
x x x

x x x x
            ,k v

 (3.4) 

where ,
ˆ ( )k yd x demand value at yielding predicted from the selected deterministic 

demand model. 

Furthermore, since ground motion characteristics, such as the intensity, 

frequency content, and duration, could also play a critical role in the response of 

complex soil-structure systems (Krawinkler et al. 2003), the explanatory functions 

containing earthquake parameters should be included.  Explanatory functions 4 ( )kh x  

through 16 ( )kh x  are defined as the natural logarithm of the 12 intensity measures defined 

in Table 3-3.   

In the Table 3-3, 1T  natural frequency of equivalent SDOF for a bridge, ( )gu t , 

( )gu t , and ( )gu t  denote the ground motion displacement, velocity and acceleration at 

time t , respectively, D duration of a ground motion record, and 

(0.95 ) (0.05 )D A AT t I t I   strong ground motion duration based on the time between 

2.5 and 97.5 per cent of the Arias intensity, AI  (Trifunac and Brady, 1975).  An 

indicator variable, soilD , is defined as 17 ( )kh x  is used to classify the soil based on GM 
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and can be expressed as,  

  17

0 for GM soil classification A or B

1 for GM soil classification Cor Dk soilh D


  


x       ,k v  (3.5) 

Finally, to account the potential dependence of the shear demand on the deformation 

demand and vice versa, 18
ˆ( ) ( )vh d x x  and 18

ˆ( ) ( )vh dx x  are used.  Note that all the 

candidate explanatory functions are dimensionless so that they can be used for any unit 

systems.  Among the candidate explanatory functions, only those statistically important 

will be selected using a model selection process, which is described later. 

 

3.4 Model Assessment 

The demand values from the virtual experiments are randomly split into two groups.  

Two-thirds of the data (training data) are used to develop the demand models, and the 

remaining one-third of the data is used for model validation (validation data) to evaluate 

the performance of the developed models.  A Bayesian updating rule (Box and Tiao 

1992) is adopted to estimate the posterior statistics of the model parameters ,D kΘ  in Eq. 

(3.1).  Note that the problem of numerical instability in the virtual experiments can be 

handled by setting a threshold value for the demand of interest.  Such threshold 

represents the maximum demand that can be obtained with sufficient confidence on the 

accuracy of the numerical analysis.  The threshold value can then be taken as a lower 

bound demand datum in case the numerical instability occurs and the analysis exceeds 

the specified threshold.  Details on how to incorporate lower bound data in the likelihood 

function in the Bayesian updating can be found in Gardoni et al. (2002) and 
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Ramamoorthy et al. (2006).  Furthermore, a model selection process is used to eliminate 

unimportant explanatory functions and select the ones that are needed for an accurate, 

unbiased, and parsimonious model. 

 

 
Table 3-3. Candidate explanatory functions of normalized intensity measures 

Intensity Measure Description Normalized Formula 
Elastic spectral acceleration † /aS g  

Elastic spectral velocity † 1 /v cS T H  

Elastic spectral displacement † /d cS H  

Peak ground acceleration / max ( ) /gPGA g u t g   

Peak ground velocity 1 1/ max ( ) /c g cPGV T H u t T H    

Peak ground displacement / max ( ) /c g cPGD H u t H  

Cumulative absolute velocity 1 1

0

/ [ ( ) d ] /
D

c g cCAV T H u t t T H     

Cumulative absolute displacement 
0

/ [ ( ) d ] /
D

c g cCAD H u t t H    

Arias Intensity 2
1 1

0

/ ( / 2 ) [ ( )] d /
D

A c g cI T H g u t t T H      

Velocity Intensity 2
,max

0

/ 1 / [ ( )] d /
D

c g g cCAD H u u t t H     

Root mean square acceleration 2

0

/ 1 / [ ( )] d /
DT

rms D gA g T u t t g     

Characteristic intensity 1.5
1 1/ /c c rms D cI T H A T T H    

† at the first mode period in the transverse direction and with 5% damping 
 
 
 

Before conducting the model selection, the validity of the full models, which 

includes all the candidate explanatory functions, is checked using diagnostic plots.  The 

diagnostic plots include plots of the residuals and of the roots of the standardized 
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residuals vs. the fitted values, normal Q-Q plots of the standardized residuals, and plots 

of standardized residuals vs. the corresponding leverages (Sheather 2008).  For each 

demand model, the first two diagnostic plots are used to check the homoskedasticity 

assumption, the normal Q-Q plot is used to check the normality assumption, and the last 

diagnostic plot can help identify outliners and bad leverage points.  Additionally, 

marginal model plots (Cook and Weisberg 1997) are used to check that each explanatory 

function is modeled correctly in the corresponding model.  Added variable plots 

(Mosteller and Tukey 1977) are used to assess the effect of each explanatory function on 

the predicted demands.  However, since non-constant standardized residuals are still 

observed in the diagnostic plots for the shear models after using natural logarithmic 

transformation suggested by Box and Cox (1964), a weighted least squares regression 

(Sheather 2008) is used to handle the remaining heteroskedasticity (non-constant 

variance) of the models. 

For model selection, with a number of p  predictors, the traditional stepwise 

methods (either backward or forward) consider at most ( 1) / 2p p   possible predictor 

subsets, while all possible subsets model selection (Sheather 2008) determine the best 

model from all 2 p  of the possible subsets.  When there is high multicolinearity among 

the potential explanatory functions (such as the case in this study), instead of a 

traditional stepwise model section process the all possible subsets model selection 

process should be used.  The all possible subsets model selection uses the adjusted 2R  

( 2
adjR ), the Akaike’s information criterion ( AIC ) (Akaike 1974), the corrected Akaike’s 
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information criterion ( CAIC ) (Hurvich and Tsai 1989), and the Bayesian information 

criterion ( BIC ) (Schwarz, 1978).  The quantity 2
adjR  is defined as 

 
   

   

2

, , ,
2 1

2

, ,
1

ˆˆ , 1
1

ˆˆ, 1

s

s

N

k i D k k i s p
i

adj N

k i D k k s
i

D d N N
R

D d N





    
 

   





x Θ

x Θ

      ,k v  (3.6) 

where , ,
ˆˆ( , )k i D kD x Θ a point estimate of the demand of interest predicted by the 

developed probabilistic model using the mean vectors of x  and ,D kΘ , indicated as x̂  

and ,
ˆ

D kΘ , respectively, ,k id  the demand values from the virtual experiments, 

,
1

/
sN

k k i s
i

d d N


  the sample mean of ,k id , and sN  sample size. The other three criteria 

AIC , CAIC , and BIC  measure how well the model fits the data by trading off the 

complexity of the model with its accuracy.  They can be written as 

  ,2 ln 2D k pAIC L N    Θ       ,k v  (3.7) 

 
  2 2 3

2
p p

C
s p

N N
AIC AIC

N N

 
 

 
 (3.8) 

    ,2 ln lnD k p sBIC L N N    Θ      ,k v  (3.9) 

where  kL Θ the maximum of the likelihood function for the estimated model. 

For each subset of size pN  (the number of explanatory functions used in the 

model) that ranges from 1 to 1kp  , the model selection identifies the model that 

maximizes 2
adjR  and minimizes the other three criteria.  The model with the highest 2

adjR  
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and the lowest AIC , CAIC , and BIC  is the most desirable among the competing 

models in the same subset.  Notice that for each subset, the model that maximizes 2
adjR  

also minimizes AIC , CAIC , and BIC .  Thus there are 1kp   candidate models to chose 

from, one for each subset.  However, maximizing 2
adjR  and minimizing AIC , CAIC , and 

BIC  across all the subsets to select the overall most desirable model can give different 

answers because of the different penalties for the model complexity.  Therefore, the 

candidate models are refitted using the validation data and the overall most desirable 

model is selected by checking the statistical significance (p-value) of the coefficients of 

the explanatory functions.  All the models that have at least one p-value 0.05  are 

removed from the pool of candidate models because this is an indication that the model 

is over fitting the data.  Additionally, the F-test (Sheather 2008) is used to select the 

most parsimonious model among the remaining ones without under-fitting the data. 

To verify the validity of the selected model, the estimates of kΘ  based on the 

training data are compared with the estimates based on the validation data.  The 

consistency in the estimates indicates that the selected model can be applied to data 

beyond those used to construct and assess the model.  The Mean Absolute Percentage 

Error (MAPE) can be used as an intuitive measure of the accuracy of the model and is 

defined as 

 
 , , ,

1 ,

ˆˆ ,1

100

sN k i D k k i

is k i

D d
MAPE

N d

           


x Θ
      ,k v  (3.10) 

The MAPE is used to compare the accuracy of the probabilistic demand models base on 
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the three different deterministic demand models (i.e., CM, N2 and MN2). 

 
 

Table 3-4. Comparison of the complexity and accuracy of the developed probabilistic 
models  

Mode 
Deterministic 

models 

Model selection 
Model 

validation 
No. of 

correction 
terms 

No. of 
intensity 
measures 

MAPE 
[%] 

Deformation

CM 8 5 36.56 

N2 5 3 38.11 

MN2 5 2 38.10 

Shear 

CM 5 2 24.16 

N2 7 3 27.23 

MN2 5 2 20.58 

 

 
Table 3-4 shows the numbers of correction terms and of intensity measures needed 

to correct for the bias in each deterministic model, and the corresponding value of MAPE.  

The numbers of correction terms and of intensity measures represent the complexity of the 

model.  The MAPE gauges the accuracy of the model based on the validation data.  The 

left charts in Figure 3-6 show the deformation demand predicted based on CM, N2 and 

MN2 versus the corresponding values computed using the FEMs.  The right charts show 

the mean predictions for the probabilistic models.  Ideally, the predictions should line up 

along the 1:1 line.  Predictions that systematically fall above (or below) the 1:1 line 

indicate that the model has in inherent bias and tends to over- (or under-) estimate the 

demand.  The dotted lines in the right charts indicated the 1  standard deviation band.  

Similarly, Figure 3-7 compares the predictions for the shear models. 
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Figure 3-6. Comparison between (logarithmic) drift ratio demand predictions based on 
FEMs (left) and predicted values from probabilistic demand models (right) 
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Figure 3-7. Comparison between (logarithmic) normalized shear demand predictions 
based on FEMs (left) and predicted values from probabilistic demand models (right) 

 
 
 

The deformation and shear probabilistic models developed based on MN2 are 
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selected because they have the best compromise between model simplicity and accuracy.  

The corresponding univariate deformation and shear demands are expressed as, 

 

     

   

, , 0 , 1 , 2

1
, 3 , 4 , 5 , , ,

ˆ ˆ, , , , ln

ˆ ˆln ,

d
D D D v D

C

D D soil D y D D
C

S
D PSA PGV d PSA d PSA

H

T
PGV D d PSA d

H

     
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  

    


 
     

 
            

x Θ x x

x x

 (3.11) 
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where ,
v

D v

vw

   in which the weight vw  1.210 if ,
ˆ ˆ( , ) ( )d yd S d x x  and 

vw  9.0195 if ,
ˆ ˆ( , ) ( )d yd S d x x .  The relation of 2

1[ / (2 )]dS T PSA   is used in Eq. 

(3.12).  The two values of vw  reflect that the model error changes going from the elastic 

to the inelastic state.  The weight is taken as the inverse of variance of standardized 

residuals of the full models.  Tables 3-5 and 3-6 show the posterior statistics of ,D Θ  and 

,D vΘ , respectively.  Table 3-7 shows the posterior statistics of the model parameters 

, , ,( , , )D D D v D v Θ Θ Θ  in the bivariate deformation-shear demand model, where 

,D v  the correlation between the model errors ,D   and ,D v . 
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Table 3-5. Posterior statistics of the parameters in the deformation model 

Parameter Mean 
Standard 
Deviation 

 Correlation Coefficient 

, 0D   , 1D   , 2D   , 3D   , 4D   , 5D   

, 0D   −2.796 0.180 1.00      

, 1D   0.277 0.044 −0.82 1.00     

, 2D   −0.947 0.063 0.90 0.77 1.00    

, 3D   0.457 0.040 −0.33 0.15 −0.69 1.00   

, 4D   −0.150 0.036 −0.53 0.49 −0.42 0.10 1.00  

, 5D   0.542 0.063 −0.83 0.63 −0.65 0.10 0.32 1.00 

,D   0.430 − − − − − − − 

 
 
 

Table 3-6. Posterior statistics of the parameters in the shear model 

Parameter Mean 
Standard 
Deviation 

Correlation Coefficient 

, 0D v  , 1D v  , 2D v  , 3D v  , 4D v  , 5D v  

, 0D v  −0.551 0.089 1.00      

, 1D v  −0.107 0.017 –0.30 1.00     

, 2D v  −0.266 0.029 0.89 –0.42 1.00    

, 3D v  0.165 0.018 –0.23 0.16 –0.63 1.00   

, 4D v  −0.194 0.023 –0.64 –0.31 –0.46 –0.05 1.00  

, 5D v  0.177 0.026 –0.88 0.37 –0.71 0.07 0.43 1.00 

,v D v vw   0.356 − – – – – – – 
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Table 3-7. Posterior statistics of the parameters in the bivariate deformation–shear model 

Para- 
meter 

Mean Std 
Correlation Coefficient 

, 0D   , 1D   , 2D   , 3D   , 4D   , 5D  , 0D v  , 1D v  , 2D v  , 3D v  , 4D v  , 5D v  ,D   v  ,D v  

, 0D   −2.799 0.180 1.00 −0.82 0.90 −0.33 −0.53 −0.83 0.30 −0.32 0.32 −0.15 0.04 −0.33 0.02 0.00 −0.20 

, 1D   0.278 0.044 −0.82 1.00 −0.77 0.16 0.49 0.63 −0.23 0.43 −0.26 0.06 −0.01 0.24 0.00 0.00 −0.14 

, 2D   −0.948 0.062 0.90 −0.77 1.00 −0.69 −0.42 −0.65 0.29 −0.33 0.40 −0.35 0.04 −0.26 0.01 0.01 −0.14 

, 3D   0.458 0.040 −0.33 0.16 −0.69 1.00 0.10 0.10 −0.13 0.07 −0.33 0.52 −0.01 0.04 −0.01 −0.01 0.15 

, 4D   −0.150 0.036 −0.53 0.49 −0.42 0.10 1.00 0.32 0.04 0.01 0.02 0.01 −0.04 −0.03 0.00 0.00 0.01 

, 5D 
 0.542 0.062 −0.83 0.63 −0.65 0.10 0.32 1.00 −0.28 0.27 −0.24 0.04 −0.02 0.43 0.00 0.00 0.22 

, 0D v  −0.551 0.088 0.30 −0.23 0.29 −0.13 0.04 −0.28 1.00 −0.29 0.89 −0.23 −0.65 −0.88 0.01 −0.01 −0.26 

, 1D v  −0.107 0.017 −0.32 0.43 −0.33 0.07 0.01 0.27 −0.29 1.00 −0.42 0.17 −0.32 0.36 0.00 −0.01 0.15 

, 2D v  −0.266 0.029 0.32 −0.26 0.40 −0.33 0.02 −0.24 0.89 −0.42 1.00 −0.63 −0.46 −0.71 0.00 0.00 −0.30 

, 3D v  0.166 0.018 −0.15 0.06 −0.35 0.52 0.01 0.04 −0.23 0.17 −0.63 1.00 −0.06 0.07 0.00 −0.01 0.23 

, 4D v  −0.195 0.023 0.04 −0.01 0.04 −0.01 −0.04 −0.02 −0.65 −0.32 −0.46 −0.06 1.00 0.43 −0.01 0.02 −0.05 

, 5D v  0.177 0.026 −0.33 0.24 −0.26 0.04 −0.03 0.43 −0.88 0.36 −0.71 0.07 0.43 1.00 −0.01 0.01 0.21 

,D   0.429 0.011 0.02 0.00 0.01 −0.01 0.00 0.00 0.01 0.00 0.00 0.00 −0.01 −0.01 1.00 0.32 0.17 

v  0.355 0.012 0.00 0.00 0.01 −0.01 0.00 0.00 −0.01 −0.01 0.00 −0.01 0.02 0.01 0.32 1.00 0.18 

,D v  0.623 0.020 −0.20 −0.14 −0.14 0.15 0.01 0.22 −0.26 0.15 −0.30 0.23 −0.05 0.21 0.17 0.18 1.00 
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3.4.1 Discussion of Results 

The fewer the correction terms and intensity measures needed to correct a deterministic 

model are, the better the deterministic model is.  Among the candidate deterministic 

models considered in this study, MN2 is shown to be the most suitable model to use in 

the development of probabilistic demand models.  This result indicates that using only 

the shear force in the column to develop the bilinear push-over curve better captures the 

deformation and shear behavior of bridge columns.  Since the data used for developing 

the models are based on a class of structures, instead of a specific bridge, the conclusions 

drawn from such comparison are valid for the entire class of structures. 

It is also observed that the standard deviations of the model errors shown in 

Tables 3-5 and 3-6 for the developed demand models are larger than those calculated by 

Gardoni et al. (2003).  This is likely due to the fact that the sample size used in Gardoni 

et al. (2003) was not fully representative of the variability in the bridge responses.  The 

models proposed in this study are developed using a more representative set of ground 

motions selected based on a bin approach.  If more demand data for the same class of 

bridges become available in the future, the developed models can be updated and the 

posterior estimates of Θ  can be used as priors in the updating process. 

 

3.5 Application of the Demand Models to Estimate Seismic Fragilities 

Seismic fragility is defined as the conditional probability that a demand quantity attains 

or exceeds a specified capacity level for given values of the earthquake intensity 

(intensity measures).  As an application of the developed probabilistic demand models, 
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deformation, shear, and deformation-shear fragility estimates are developed for an 

example bridge.  Figure 3-1 shows and Table 3-8 gives the geometry and material 

properties of the example bridge, where yhf   yielding stress of the transverse 

reinforcement in the column, and cover = the thickness of the concrete cover in the 

column.  To account for their inherent randomness, some quantities are considered as 

random variables and their statistic information is shown in Table 3-8.  The deformation 

and shear capacities are computed using the probabilistic models in Choe et al. (2007).  

According to Eqs. (3.11) and (3.12), two intensity measures, PSA  and PGV , are needed 

for computing the probabilistic demands. 

 
 

Table 3-8. Design parameters for the example bridge 

Parameter Value or Mean COV Distribution 

  0o − − 

1L  30.480 m 1% Lognormal 

cH  6.706 m 1% Lognormal 

cD  1.572 m 2% Lognormal 

yf  344.738 MPa 5% Lognormal 

yhf
 275.790 MPa 5% Lognormal 

cf   27.579 MPa 10% Lognormal 

l  3.59% − − 

s  1.06% − − 

tw  45% self–weight 25% Normal 

soilK  (USGS) C − − 

abutK  C − − 

2 1/L L  1.25 − − 

cover 0.038 m 10% Lognormal 
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In general, the uncertainty in the fragility estimate comes from the variability in 

the structural properties, model parameters, and model error.  Following Gardoni et al. 

(2002), a point estimate of the fragility can be computed by replacing the model 

parameters with their point estimates (e.g., the posterior means).  Furthermore, by 

ignoring both the variability in the model parameters and the structural properties, the 

following form for deformation and shear fragility estimates can be derived: 

       , ,
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2 2
, ,
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  
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      ,k v  (3.13) 

where ( )kg   limit state function of the thk  failure mode, x̂  and , ,
ˆ ˆ ˆ( , )k C k D kΘ Θ Θ  

indicate the means of x  and , ,( , )k C k D kΘ Θ Θ , ( )   cumulative distribution function 

(CDF) of a standard normal random variable, ,C k  and ,D k mean estimates of the thk  

capacity and demand models, and ,C k  standard deviation of the thk  capacity model 

error. 

Under the same assumptions, an approximation form for the deformation-shear 

fragility estimate is proposed here as 
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where 2 ( )   is the bi-variety CDF of two standard normal random variables, and 

v  the correlation between g  and vg .  As a further simplification, if the capacity and 

demand models are statistically independent, then v  can be written as 

 
  
, , , , , ,

2 2 2 2
, , , ,

C v C C v D v D D v
v

C D C v D v

   


 

     


   




 
 (3.15) 

where ,C v  correlation coefficient between the model errors of deformation capacity 

and shear capacity. 

To check the accuracy of Eqs. (3.13) and (3.14) in accessing the fragilities of the 

example bridge, four different fragility estimates ( 1kE , 2kE , 3kE , and 4kE ) for each 

failure mode are compared.  Estimate 1kE  is calculated based on Eq. (3.13).  Estimate 

2kE  is evaluated using the same form as Eq. (3.13) but 2
,D k  is replaced with 

2 2 2
, , ,D k k k   θ x , where 2

,k θ variance in ,( , )k D kD x Θ  due to the variability in ,D kθ  and 

2
,k x variance in ,( , )k D kD x Θ  due to the variability in x .  Using Eqs. (3.11) and (3.12), 

2
,k θ  can be computed in closed form, and 2

,k x  is assessed by FOSM (first order second-

moment) that uses first order approximation with a Taylor expansion around the mean of 

x .  Estimate 3kE  uses the form of Eq. (3.13) but replacing 2
,D k  with 2 2

, ,D k k  θ  to 

assess the effects of only the uncertainties in ,D kθ  in addition to the uncertainties in the 

model error.  Finally 4kE  is the predictive fragility (Gardoni et al. 2002) that accounts 

for the uncertainties in ,D kθ  in an average sense.  Note that 4kE  does not make any 
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assumption or approximation in accounting for the uncertainties in ,D kθ .  The 

consistency of the first two estimates, 1kE  and 2kE , can tell us whether the variance in 

the model error controls the overall uncertainties in the probabilistic demand models.  

An agreement between 3kE  and 4kE  can help conclude whether the simplified form in 

Eq. (3.13) is a good approximation. 

Figures 3-8(a) and (b) show the univariate deformation and shear fragility 

contour curves for the example bridge, respectively, conditioning on the normalized 

intensity measures PSA  and PGV .  Each contour represent a fragility level between 

0.1 0.9  for a given pair of PSA  and PGV .  Note that the change in the variability in 

the shear demand model brings the discontinuities in the fragility contour lines as shown 

in Figure 3-8(b), because different weights are used before and after yielding.  In Figures 

3-8(a) and (b), the solid curves and dotted curves represent 1kE  and 2kE , respectively, 

and the dashed and dot-dashed curves correspond to 3kE  and 4kE .  The similarities of 

all four curves indicate that the model error k  captures most of the uncertainties in the 

corresponding demand model, and Eq. (3.13) is a good approximation of the fragility 

surface of the example bridge.  Accordingly, Eq. (3.14) can be shown to be a good 

approximation for the bivariate deformation-shear fragility estimate shown in Figure 3-9.  

It is noticed that for high values of intensity measures, the interaction between the 

deformation and shear failure modes is more significant than at lower values. 
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(a) Deformation fragility 

PGVT1/Hc

P
S

A
/g

0.1
0.5

0.1

0.5

0.8

0.9

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

 

(b) Shear fragility 
 

Figure 3-8. Univariate fragilities for the example bridge with estimates 1kE  (solid 

curve), 2kE  (dotted curve), 3kE  (dashed curve), 4kE  (dot-dashed curve) 
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Figure 3-9. Bivariate deformation-shear fragility estimate 
 
 
 
3.6 Conclusions 

The study develops probabilistic models to predict the deformation and shear demands 

on typical RC highway bridges with one single-column bent for given ground motion 

intensity measures.  In order to facilitate the use in practice of the developed seismic 

demand models, the probabilistic models are developed by adding correction terms to 

commonly used deterministic models to amend their inherent bias and improve the 

accuracy of the deterministic models.  The correction terms are constructed using a set of 

candidate “explanatory” functions developed based on understanding of the underlying 

behavioral phenomena and potential ground motion parameters.  Three candidate 

deterministic models are considered for each failure mode.  A Bayesian updating 

approach is used to assess the unknown model parameters.  The model assessment was 
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conducted using virtual experimental demand data obtained from nonlinear time history 

analyses of detailed finite element models (FEMs) subject to a representative suite of 

ground motion records.  The FEMs simulate RC highway bridges with one single-

column bent, typical of current construction in California.  A computer experiment 

design method was used to construct 60 representative bridge configurations.  An all 

possible subsets model selection process is used to select the explanatory functions that 

most effectively correct the bias and random errors in the selected deterministic demand 

models.  As a result, the modified N2 (MN2) method developed by Gardoni et al. (2003) 

is shown to be the most suitable model to add in the development of probabilistic 

demand models. 

The demand models developed in this section are based on 60 representative 

configurations of FEMs of RC bridges subjected to a large number of representative 

seismic ground motions.  Therefore, the developed demand models fully consider the 

uncertainties associated with the structural demands on RC bridges due to seismic 

excitations.  Such uncertainties include uncertainties in the ground motions and the 

structural properties, model errors, and statistical uncertainties in the model parameters.  

Note that while the FEMs are considered to be sufficient accurate, future work should 

quantify the model error associated to the FEMs.  

As an application, the developed demand models are used to assess the univariate 

deformation and shear fragilities and the bivariate deformation-shear fragility for an 

example bridge.  A simple approximate form is proposed to assess the fragilities of RC 

bridges.  The approximate form is shown to be accurate and in good agreement with 
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predictive fragility estimates.  The proposed approximate form saves the computation 

costs associated with simulations.  In general, the developed demand models and 

fragility estimates can be used in loss estimation and life-cycle analysis, and in 

determining the optimal allocation of resources for maintenance, repair, and/or 

rehabilitation of bridges and bridge systems. 
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4. GLOBAL NONDESTRUCTIVE TESTING 

 

4.1 Introduction 

Current civil engineering infrastructure is aging and deteriorating.  Damage detection is 

critical in evaluating the condition and performance of the existing infrastructure.  

Typically, visual inspections are carried out to detect potential damage.  However, for 

large and complex structures such as bridges, visual inspection is inefficient and 

expensive.  Furthermore, the results of visual inspection are subjective, and vary with the 

knowledge and experience of the inspectors.  To address these issues, damage detection 

techniques that use vibration-based/global NDT have been increasingly studied. 

Damage detection using vibration-based NDT can be classified into two 

categories: non-model-based methods and model-based inverse methods, as shown in 

Figure 4-1.  Non-model-based methods, known as pattern recognition techniques, are 

straightforward and do not require any computer-simulated models.  They have been 

used to detect damage location successfully (Nair et al. 2006); however, they cannot 

quantify the damage severity, which is critical information for evaluating the structure 

reliability.  Additionally, a sufficient coverage on various damage scenarios is needed as 

training data in the non-model-based method, while usually such data obtained from the 

field are limited.  On the other hand, model-based inverse methods require constructing a 

computer-simulated model but they can quantify damage severity. 
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damage detection using 
vibration-based NDT

model-based 
methods

non-model 
based methods

vibration-based damage identification 
techniques (VBDITs) using
• modal frequencies
• mode shapes
• mode shape area
• strain energy
• mode shape curvature
• flexibility matrix
• etc.

FEM updating including
• Lagrange multiplier
• matrix mixing
• sensitivity approach
• Bayesian model updating
• etc.

 
 

Figure 4-1.  Damage detection using vibration-based NDT 
 
 
 

Two approaches that are commonly used for model-based inverse methods are 

finite element model (FEM) updating and vibration-based damage identification 

techniques (VBDITs).  Extensive reviews regarding to these two approaches can be 

found in Doebling et al. (1998) and Friswell and Mottershead (1995).  However, damage 

detection using FEM updating is limited to the detection of damage at the global level 

due to the computational cost and potential inverse ill-conditioning problems.  On the 

other hand, VBDITs have been used to identify local level damage successfully, but they 

require an accurate baseline structure that usually is not available for an existing 

damaged structure.  Several methods have been proposed to construct a baseline such as 

the iterative method (Stubbs and Kim 1996), the ratio approach (Barroso and Rodriguez 
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2004), and the neural network approach (Feng et al. 2004).  However, these methods are 

deterministic and they do not account for the underlying uncertainties. 

Furthermore, a damage detection method should properly treat the uncertainties 

present in the overall damage detection process (Sohn and Law 1997).  A proper 

treatment of the underlying uncertainties can also help deal with the issue of ill-

conditioning and non-uniqueness in the model inverse problem (Papadimitriou et al. 

2001). 

This section develops a novel probabilistic damage detection approach using 

modal parameters extracted from output only responses.  It is proposed to use a Bayesian 

FEM updating not to detect damage but to construct a probabilistic baseline using modal 

frequencies and to use a VBDIT to detect damages using mode shapes.  In this way, one 

can take advantage of the strength of the FEM updating that succeeds in identifying the 

structural properties at global level and the strength of the VBDIT in detecting the 

damage at local level.  Following the taxonomy of uncertainties (Gardoni et al. 2002), in 

the proposed approach, three sources of uncertainties are taken into account in addition 

to the variability of the basic structural properties (geometry and material properties) of 

the real structure: (1) the measurement error reflecting the uncertainties in the vibration 

response measurements; (2) the modeling error due to the inexactness and assumptions 

in the modeling processes; and (3) the statistical uncertainties in the model parameters.  

It is important to distinguish between the different types of uncertainties because the 

required actions to reduce them are different.  Several techniques have been proposed to 
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extract modal parameters from ambient vibration data (Peerters and De Roeck 2001; 

Brincker et al. 2001; Kim et al. 2005), making the proposed approach of practical value. 

In the following, the background and the overview of the proposed approach are 

firstly descibed, followed by a detailed description of the individual methods adopted in 

the proposed approach.  Then, the sources and types of uncertainties are discussed.  

Next, the propagation of the uncertainties through the proposed damage detection 

approach is described.  Finally, the proposed approach with a numerical example is 

illustrated. 

 

4.2 Proposed Damage Detection Approach 

The FEM updating determines damage as a change in the physical properties of a 

structure by updating the structural parameters in the FEM to match some selected 

quantities that are either directly measured or derived from field measurements at two 

different times.  The selected quantities can be modal parameters (Sohn and Law 1997; 

Teughels et al 2002; Brownjohn et al. 2003; Jaishi and Ren 2005), time-domain response 

data (Koh et al 2000; Katkhuad et al 2005; Bu et al. 2006), and static responses (Banan 

et al. 1994a, b; Hjelmstad and Shin 1997; Sanayei et al. 2005).  According to the 

algorithm adopted, the conventional model updating includes direct methods (such as 

Lagrange multiplier, matrix mixing, and Bayesian model updating) and a sensitivity 

approach.  A review of those approaches is given in Friswell and Mottershead (1995). 

Bayesian model updating has several advantages compared to other conventional 

model updating methods (Beck and Katafygiotis 1998): (1) it is capable of incorporating 
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all types of available information, such as field observation, and engineering judgment, 

and all types of uncertainties, such as measurement errors, modeling errors, and 

statistical uncertainties; (2) it can be applied when there are only a few lower modal 

parameters due to a limited number of sensors in large-scale structures; (3) it does not 

use a sensitivity matrix that can be unstable for complex structures; and (4) the updating 

parameters can be continuously updated easily when new measurement data become 

available. 

However, as mentioned previously, Bayesian model updating and in general 

FEM updating are limited to detect global damage due to the computational costs and 

potential inverse ill-conditioning problems.  Therefore, one can use a Bayesian model 

updating to build a baseline.  Note that in an undamaged (baseline) structure, each 

structural element has uniform stiffness throughout its length.  Accordingly, the 

properties used to define the baseline are global level properties and a Bayesian model 

updating is suitable for building such a baseline. 

VBDIT detects structural damage by investigating the change between the 

structural vibration characteristics before and after the damage occurs.  The vibration 

characteristics include modal frequencies (Salawu 1997), mode shapes (Fox 1992; Ko et 

al. 1994), mode shape area (Huth et al. 2005), mode shape curvature (Pandey et al. 

1991), modal strain energy (Stubbs and Kim 1996; Cornwell et al. 1997; Yu et al. 1999) 

and flexibility matrix (Catbas et al. 2006).  In this study, with the baseline constructed by 

Bayesian model updating, the DIM proposed by Stubbs and Kim (1996) is adopted to 

detect damage using mode shapes.  Among the commonly used VBDITs, the DIM has 
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been shown to perform well in numerical examples (Humar et al. 2006; Alvandi and 

Cremona 2006) and a bridge experiment (Farrar and Jauregui 1998). 

With reference to Figure 4-2, the proposed damage detection approach can be 

summarizes as follows: 

(1) conduct a vibration test on the selected structure in the field and record the 

dynamic time-history responses; 

(2) extract modal parameters (such as modal frequencies and mode shapes) from the 

time-history responses using the time domain decomposition method (TDD) 

(Kim et al. 2005); 

(3) build a preliminary FEM based on the structure design drawings, field 

measurements and engineering knowledge; 

(4) use the Bayesian model updating to update the preliminary FEM into a baseline 

by matching the extracted modal frequencies from Step (2); and 

(5) identify damage using the DIM with the mode shapes of the damaged structure 

extracted from Step (2) and the mode shapes of the baseline built in Step (4). 

The details of each step are described next. 

 

4.2.1 Vibration Test 

While forced vibration tests usually provide more informative data since the input can be 

broad-band to excite more modes, ambient vibration does not interrupt structural normal 

operation.  Therefore, the ambient vibration is more suitable and feasible for practical 

applications to obtain the modal data.  
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Figure 4-2.  Flowchart of the proposed damage detection approach 
 
 

4.2.2 Time Domain Decomposition 

Acceleration responses are the commonly measured quantities in a vibration test.  

Following the modal parameter extraction method, TDD, proposed by Kim et al. (2005), 

if there are n  acceleration sensors, the output acceleration time-history can be written as 

        
1 1

n

j j j j t
j j

t c t c t t


 

   y φ φ ε    (4.1) 

where 1( ) [y ( ),..., y ( )]nt t ty   , ( )jc t  j th mode contribution factor at time t , j φ j th 

modal shape, and 
1

( )t j j
j n

t c


 
 ε φ truncation error.  After the frequency bandwidth 

for each mode is estimated, a digital band-pass filter can be designed to filter out mode-
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isolated discrete-time responses.  The j th mode-isolated acceleration response, ( )j ty , 

can be expressed as 

          
1

1

n

j j j k k j j f
k

t c t d t c t t




   y φ ψ φ ε    (4.2) 

where 
1

1

( ) ( )
n

f k k
k

t d t




 ε ψ error due to the truncation and the filtering, k ψ orthogonal 

noise base, and ( )kd t  k th mode contribution factor to the total error. 

By assuming orthogonal bases in the modal space that consists of 

1[ ( ),..., ( )]j j j Nc t c tc    and an error space that consists of 1[ ( ),..., ( )]k k k Nd t d td   , where 

N  total time sample, a cross-correlation T
j j jE Y Y  of the j th mode-isolated 

acceleration can be derived as 

 
1

1

n
T T

j j j j k k k
k

q 




 E φ φ ψ ψ  (4.3) 

where T
j j jq  c c   and T

k k k  d d  .  Since the energy contributed by noises is relatively 

small, it is appropriate to assume 1 1...j nq      .  Thus, by conducting a singular 

value decomposition of jE , the first singular vector in the singular vector matrix is the 

j th mode shape jφ . 

With the obtained j th mode shape jφ , the corresponding contribution factor of 

acceleration jc  can be calculated by 

 
T
j jT

j T
j j


φ Y

c
φ φ

  (4.4) 
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A windowed Fast Fourier Transform (FFT) can be used to transform jc  into the 

frequency domain.  The frequency at the single peak is the j th modal frequency. 

 

4.2.3 Preliminary FEM 

Based on the design drawing of the structure of interest, field measurements, and 

engineering judgment, a preliminary FEM is constructed by incorporating engineering 

knowledge on structural mechanics, including kinematics, material laws, equilibrium, 

and boundary conditions.  A baseline is then built by updating the preliminary FEM in 

the next step. 

 

4.2.4  Bayesian Model Updating 

Bayesian statistics (Box and Tiao 1992) enables one to use the modal parameters 

extracted from a real structure using TDD to update the joint PDF, ( )p x , of the 

structural variables, x, used in the preliminary FEM.  If M  denotes the vector of data 

used to update the model, the posterior PDF of x, ( )p x , can be written as  

      p L p x M x x  (4.5) 

where 1[ ( | ) ( )d ]L p   M x x x , and ( | )L M x likelihood function.  Using modal 

frequencies and assuming that the prediction error, 2 2 2ˆ( ) /j j j jf f f   , between the 

square of the frequency predicted using FEM, ˆ
jf , and the square of the corresponding 
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target frequency, jf , follows a normal distribution, the likelihood function can be 

written as 

    
  2

2 2 2
,

2
,,

ˆ
1

exp
22

j j j f j

j f jf j
j

f f f
L



 

         
 


M x  (4.6) 

where M a vector of modal frequencies, j = mode number, ,f j  and ,f j , 

respectively, refer to the mean and standard deviation of j .  In other words, ,f j  and 

,f j , can be considered as the bias and randomness in j , respectively.  The Bayesian 

updating is conducted using the modal frequencies because damage at local level has 

insignificant effects on the modal frequencies allowing constructing an accurate 

baseline.  Furthermore, the selection of the parameters to update is critical, because a 

large number of updating parameters leads to high computation cost and may also result 

in an ill-conditioned problem.  Following the suggestions in Friswell and Motterhead 

(1995), one should choose parameters that are most uncertain and sensitive to the 

vibration measurement data. 

However, calculating the normalizing factor   can be challenging, especially 

when the dimension of x  is high.  To effectively compute the posterior statistics, one 

can use a sampling-based technique like the Markov Chain Monte Carlo (MCMC) 

simulations (Gilks et al. 1996).  MCMC generates a sequence of random variables called 

Markov chain such that the current value or state of the sequence depends only on the 

previous value.  Given certain conditions, the chain will forget its initial state and 

converge to a stationary distribution.  For the application shown in this study, DRAM, 
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which is a special form of the Metropolis-Hastings type of MCMC algorithm proposed 

by Haario et al. (2006) is used.  DRAM incorporates the adaptive Metropolis-Hastings 

(AM) algorithm with the delayed rejection (DR) method, improving the efficiency of the 

MCMC algorithm. 

 

4.2.4.1 Markov Chain Monte Carlo (MCMC) 

MCMC, a simulation-based method, has been proposed to cope with the difficulties in 

obtaining the posterior distribution in Bayesian statistics updating approaches due to the 

requirement of the integration of high-dimensional functions.  By generating a Markov 

chain that is introduced in the following context, MCMC can be used to estimate various 

characteristics of posterior distribution, such as moments, modes, and densities.   

 

Monte Carlo Integration 

Classic Monte Carlo integration draws a large sample 1, , nx x   from a distribution ( )q x , 

then a integral of an function ( )g x  can be estimated by, 

        
1

1b b n

i
ia a

g x dx f x q x dx f x
n 

     (4.7) 

As an example, to estimate the mean and variance of posterior ( )p x  of x , one can use 

the following expression, 

  
1

1 n

i
i

E
n 

 x x  (4.8) 

     2

1

1 n

i
i

Var E
n 

   x x x  (4.9) 
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where 1, , n  x x  from the joint distribution ( )p x .  However, ( )p x  is usually not known. 

 

Markov Chain 

First order Markov chain refers to a sequence of random variables, X , from a Markov 

process where the current value or state of the sequence, tX  depends only to the 

previous one, 1tX , by drawing from a called transition kernel (or transition density) 

1( | )t tq X X , where 1,2,...t   referring as an sequence and when considering continuous 

states for the Markov chain, t  denotes the time.  The Markov process denoting the 

process at state is  to state js  can be expressed as 

      0 1 1Pr ,..., Pr ,t j k t i t j t is s s s s q i j       X X X X X  (4.10) 

where Pr( )  probability.  If one lets ( )j X  represent the state js  at t , then the 

following equation can be obtained, 

      , 1j k
k

t q k j t 


    (4.11) 

The above equation is called Chapman-Kolomogrov equation.  The successive iteration 

of the Chapman-Kolomogrov equation gives the evolution of the Markov chain.  In a 

discrete space, one can define a probability transition matrix Q  where ( , )q i j  is the 

( , )i j th  element.  Note that the sum of each row/column of Q  equals to one.  Thus, 

Chapman-Kolomogrov equation can be rewritten as 

    1t t π π Q  (4.12) 

Based on the above equation, it can be shown that 
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    0 tt π π Q  (4.13) 

where ( , )tq i j  is the ( , )i j th  element of matrix tQ . 

Furthermore, a Markov chain is called irreducible if it starts from any one of the 

state, there always exists a positive integer, t , such that it can get to any other state.  A 

Markov chain is periodic if a state is  has a period, which indicates that for given that 

t isX , only t n d is  X  in which n   a positive integer.  A chain is said to be aperiodic 

when the chain is not periodic.  In other words, there is no fixed integer t  between two 

certain states in an aperiodic chain.  If    , ,j kq j k q k j  , then the Markov chain is 

called to be reversible. 

It has been shown that when the Markov chain is irreducible and aperiodic, the 

chain will forget its initial state and the will converge to the target distribution (or 

stationary distribution), *π  (Robert and Casella 1999).  The target distribution satisfies 

the following equation, 

 * *π π Q  (4.14) 

Additionally, reversibility of a Markov chain is a sufficient condition for a unique 

stationary distribution. 

The basic idea of discrete state of Markov chain can be extended to a continuous 

state, where the Chapman- Kolomogrov equation becomes, 

      , 1 dj kt q k j t k    (4.15) 

When a chain convergences to the target distribution, it satisfies 

  * *, dj kq k j k    (4.16) 
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Since the samplings are not independent but have positive autocorrelation, the 

sample averages for estimating posterior values result in errors called Monte Carlo error.  

However, if tX  are drawn from the stationary distribution, the correlated sampling still 

can provide unbiased characteristics of the distribution when the sample size is 

sufficiently large. 

To generate a Markov chain, a method called Delayed Rejection Adaptive 

Metropolis (DRAM) proposed by Haario et al. (2006) is used.  DRAM is a novel 

combination of two ideas, adaptive Metropolis (AM) and delayed rejection (DR), for 

improving efficiency of MCMC algorithms.  In the following, Metropolis-Hasting 

algorithm, AM algorithm, DR method, and then DRAM are briefly reviewed. 

 

Metropolis-Hasting Algorithm 

Metropolis-Hasting (MH) algorithm is one of the most general algorithms used in 

MCMC simulation.  It was used to integrate complex functions by random sampling 

techniques (Metropolis et al. 1953).  The special cases of MH methods include 

Metropolis sampler, the independence sampler, and random-walk.  The detail of this 

algorithm can be found in Chib and Greenberg (1995).  Moreover, the target distribution 

π  only needs to know up to the constant of normalization.  Suppose the target 

distribution is the posterior distribution as shown in Eq. (4.5), then the MH algorithm 

can be formulated in the following, 

i. Start with initial values of 0x  as the beginning of the chain; 
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ii. For each step, sample a candidate *x  from a proposal distribution *
1( , )tq x x  in 

which 1t x the current value of the chain; 

iii. Accept the candidate *x  by the probability of a move,  , which can be 

calculated by 

 
     
     

* * *
1

*
1 1 1

,
min 1,

,

t

t t t

L p q

L p q
 

  

 
 
  

M x x x x

M x x x x
 (4.17) 

When 1  , *x  are accepted unconditionally.  Notice that the normalizing factor 

  in Eq. (4.5) canceled out, which voids the complexity for estimating  .  

iv. If *x  is rejected, then set 1t tx x  and go back to step (ii) until enough samplings 

are generated.  

The special cases of MH methods include Metropolis sampler, the independence 

sampler, and random-walk.  The Metropolis sampler uses * *
1 1( , ) ( , )t tq q x x x x ; 

independence sampler uses such proposal distribution that * *
1( , ) ( )tq q x x x ; and 

random-walk Metropolis adopt proposal distribution * *
1 1( , ) (| |)t tq q  x x x x . 

 

Adaptive Metropolis Algorithm 

The proposal distribution, *
1( , )tq x x  used in MH methods play a critical role in the 

convergence rate of simulation.  The closer the proposal distribution gets to the target 

distribution, the faster the convergence and the better the acceptance rate.  An adaptive 

version of the random walk Metropolis-Hastings algorithm developed by Haario et al. 

(2001) uses the values in the chain generated so far to construct covariance matrix of the 
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proposal distribution.  That is after an initial non-adaptation period ( 0t t ), the proposal 

distribution is centered at the current state of the sequence, tx , with adaptive covariance 

0 1Cov( ,..., )q d t d ds s I  Σ x x , where ds   a scale parameter that depends only on the 

dimension, d , of the state space x and it is taken as 22.4 / d  suggested by Gelman et al. 

(1996),    a non-negative and small constant that ensure qΣ  will not be singular, and 

dI   an identity matrix with dimension d .  The procedure of AM can be summarized as 

below: 

i. Set values for 0t , ds , and  , and start with initial values of 0x  as the beginning 

of the chain and initial proposal covariance matrix ,0q qΣ Σ ; 

ii. For each step, sample a candidate *x  from a proposal distribution *
1( , )tq x x  with 

covariance matrix qΣ , in which 1t x  the current value of the chain; 

iii. Accept the candidate *x  by the probability of a move,  , which can be 

calculated by Eq. (4.17); 

iv. If *x  is rejected, then set 1t tx x  and go back to step ii until enough samplings 

are generated; 

v. For 0t t , the proposal covariance matrix will be adapted by 

0 1Cov( ,..., )q d t d ds s I  Σ x x . 

 

Delayed Rejection Method 

DR developed by Mira (2001) provides a local adaptive strategy for the rejected values 
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in a Markov chain.  Alternatively, a second (or higher) stage move proposed for the 

rejection point instead retaining the same sampling for the next state, while the Markov 

chain properties and reversibility are remained.  If the acceptance probability shown in 

Eq. (4.17) is called as the first stage acceptance probability *
1 1( , )t x x , then the second 

stage acceptance probability can be expressed by 

            
         

* * ** * ** * * **
1 1* **

2 1 * * ** *
1 1 1 1 1

, , , 1 ,
, , min 1,

, , , 1 ,

t

t

t t t t

L p q q

L p q q









   

      
    

D x x x x x x x x x
x x x

D x x x x x x x x x

 (4.18) 

The higher stage can be written in the same fashion as for the second stage.  The 

covariance    1i
q i qΣ Σ  of the i th stage can be chosen as scaled version of the proposal 

of the first stage, where i   scaling factor, 1,..., tryi N  in which tryN  is the number of 

the tries allowed.  Because of the reversibility of the chain, DR will leads to the same 

stationary distribution. 

 

Delayed Rejection Adaptive Metropolis 

DRAM is a combination of two algorithms: DR and AM, proposed by Haario et al. 

(2006).  This idea considers AM as a global adaption procedure and uses DR as a local 

adaption for the rejected values from AM.  Through adaption, different proposal 

distributions make it possible to provide better results.  The procedure of DRAM can be 

described briefly as below: 
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i. Set values for 0t , ds ,  , i , and . tryN ., and start with initial values of 0x  as the 

beginning of the chain and initial proposal covariance matrix  1
,0q qΣ Σ ; 

ii. For each step, sample a candidate *x  from a proposal distribution *
1( , )tq x x  with 

covariance matrix  1
qΣ , in which 1t x  the current value of the chain; 

iii. Accept the candidate *x  by the probability of a move,  , which can be 

calculated by Eq. (4.17); 

iv. If *x  is rejected, then go to a DR loop where maximum . tryN . tries will be made, 

where propose **x  from a proposal distribution *
1( , )tq x x  with covariance 

matrix  k
qΣ  and accept the propose value with k th stage of acceptance 

probability. 

v. For 0t t , the proposal covariance matrix will be adapted by 

 1
0 1Cov( ,..., )

q d t d ds s I  Σ x x . 

vi. Go back to step ii until enough samplings are generated; 

After the MCMC run using DRAM, the chain can be used as a sample from the 

posterior distribution ( )p x  in Eq. (4.5).  Then, Monte Carlo integration as shown in Eq. 

(4.7) can be used for assessing the posterior statistics.  In this study, the simulated 

annealing method to the Markov chain (Van and Arts 1987) is applied to obtain a rapidly 

mixing sampler.  For the convergence criteria, the Geweke method (Geweke 1992) is 

used in this study, which provides unbiased estimates of the posterior statistics. 
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4.2.5 Damage Index Method 

The details of DIM are described in Section 1. 

 

4.3 Uncertainties in the Proposed Damage Detection Approach 

As described previously, the proposed approach consists of five steps: conducting 

ambient vibration tests, extracting modal parameters using TDD, constructing a 

preliminary FEM, building a baseline, and applying the DIM.  Each of these steps has 

associated errors that need to be recognized and accounted for.  Due to those errors, the 

damage detection results are not deterministic anymore and one can talk about the 

probability that the proposed method identifies damage or not.  The errors for each of the 

five steps can be described as follows.  Table 4-1 provides additional details on the 

description of the errors and their influencing factors.  The names used to describe the 

errors are based on the taxonomy in Gardoni et al. (2002). 

Conducting ambient vibration tests:  The errors associated with ambient 

vibration tests are mainly due to noises in the signals and the data processing.  These 

errors are called measurement errors and indicated as 1e .  They are epistemic in nature 

and can be reduced by using more accurate sensors and improving the data processing.  

Accounting for the effect due to the measurement error in the vibration test is described 

later. 

Extracting modal parameters using TDD:  The errors are associated to this 

step primarily due to the mode isolation process.  In a real structure, modes overlap due 

to the presence of damping.  TDD uses digital bandwidth filter to isolate the individual 
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modes but it cannot completely filter out the influence of other modes.  Other sources of 

error are the truncation of non-dominant models and numerical errors in the singular 

value decomposition.  These errors are called modeling errors and indicated as 2e .  They 

are also epistemic errors and they can be reduced by improving the process used to 

extract the modal parameters.  Later, it gives the details of estimating the modeling 

errors associated with TDD.  To estimate these errors can be critical for the success of 

damage detection. 

Constructing a preliminary FEM:  The errors present in this step refer to the 

difference between the predicted response in the FEM and the response from the real 

structure.  They are called modeling errors and denoted as 3e .  These errors can be 

considered as two parts: 3ae  and 3be .  Errors 3ae  mainly come from the uncertainties in 

geometries and material properties, and influence of the environmental variability on the 

structural response.  The nature of 3ae  is both epistemic and aleatory.  The epistemic part 

can be reduced in the model updating by calibrating the FEM with measurement data.  

The sources of 3be  include the inaccuracy of the model forms (such as material models), 

the assumptions used (such as the assumption related to the boundary conditions), and 

numerical errors (such as the discretization by approximate the shape functions).  The 

errors 3be  are epistemic in nature and can be reduced by improving the accuracy and 

sophistication of the FEM.  Haukaas and Gardoni (2009) proposed a general 

methodology and specific implementations to consider 3be . 
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Table 4-1.  Errors and uncertainties in the proposed damage detection approach 

Process Method 
Error 

Symbol Description Influencing factors 

Conducting ambient 
vibration tests (1) 

Record 1e  

 electromagnetic noises in sensor; signal conditioning 
 data acquisition; discretization 
 data processing and testing economy 
 system nonlinearity 

 sensor type; signal conditioning type 
 data-acquisition system; sampling rate
 signal processing system 
 instrumentation; excitation 

Extracting modal 
data from dynamic 
responses (2) 

TDD 2e  
 mode isolation process 
 truncating non-dominant modes 
 singular value decomposition 

 filter width; response length 
 excitation type; sensor layout 
 noise orthogonal assumption 

Constructing 
preliminary FEM 
(3) 

Engineer 
knowledge 

3ae   environmental variability 
 uncertainties in geometries and material properties 

 temperature and humidity 
 engineering knowledge 

3be  

 non- or structural members not accounted in FEM 
 modeling of damping 
 material models 
 idealization of loads and boundary conditions 
 size effects and component-to-system errors 
 weak form of the boundary value problems 
 discretization of approximate shape functions 
 numerical integration of element integrals 
 iterative scheme to attain equilibrium 
 explicit or implicit time-stepping schemes 

 engineering knowledge  
 engineering knowledge 
 engineering knowledge 
 engineering knowledge 
 mathematical formulation 
 mathematical formulation 
 mathematical formulation 
 mathematical calculation 
 mathematical calculation 
 mathematical calculation 

Updating 
preliminary FEM 
using modal data (4) 

Bayesian 
Model 

Updating 

4ae   objective function   formulation of likelihood function  

4be  sampling process  sampling size 

Detecting local 
damage using 
baseline and 
damaged structure 
modal shapes (5) 

DIM 5e  
 relation between the index and the damage 
 mode shape expansion 
 calculating of damage index 

 threshold 
 expansion algorithm 
 assumption 
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Building a baseline FEM:  The errors in this step are due to two sources: (1) the 

formulation of the likelihood function in the Bayesian updating that relays on an the 

assumption that the prediction errors follows a normal distribution, and (2) the sampling 

size when MCMC is used to estimate the posterior statistics of the structural parameters.  

The error from the first source is a form of modeling errors and is indicated as 4ae .  The 

error from the second source is called statistical uncertainty and is indicated as 4be .  

Both 4ae  and 4be  represent epistemic uncertainties and they can be reduced.  The errors 

4ae  can be reduced by using appropriate variance stabilizing transformations (Box and 

Cox 1964) and 4be  can be reduced by increasing the sample size. 

Applying the DIM:  The errors present in the DIM are the errors between the DI 

and the damage itself, which strongly depend on the threshold value selected.  These 

errors are also called modeling errors and indicated as 5e .  They are epistemic and can 

be reduced by choosing an appropriate threshold value.  When one chooses a threshold 

i , the probabilities that the DIM indicates damage ( iID ) and does not indicating 

damage ( iNID ) in a component i  can be defined as, 

    i i iP ID P Z    (4.19) 

    i i iP NID P Z    (4.20) 

Four cases can happen for a given threshold.  If there exists damage in the i th segment, 

the probability of correctly detecting this damage is denoted as ( | )iP ID D , and the 

probability of not detecting the damage is expressed as ( | )iP NID D .  If there is no 
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damage (event ND ) in the i th component, the probability of correct detection is written 

as ( | )iP NID ND  and the probability of false detection is ( | )iP ID ND .  Ideally, one 

wants to choose an appropriate threshold to maximize ( | )iP ID D  and ( | )iP NID ND , 

and to minimize ( | )iP NID D  and ( | )iP ID ND .  As shown in Figure 4-3, lowering the 

threshold can increase ( | )P ID D , but it also increases ( | )P ID ND  .  If the threshold is 

set too high, a high probability of missing a damage ( | )P NID D  is obtained, although 

( | )P NID ND  also increases. 

 

 

 

4.4 Propagation of Uncertainties 

The errors described in the previous section propagate through the proposed damage 

detection approach as shown in Figure 4-2.  In particular, the modal frequencies jf  and 
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Figure 4-3.  Conceptual illustration of correct and false detection probabilities 
when a low threshold (left) and a high threshold (right) are used 
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the mode shapes jφ  of the damaged structure are affected by 1e  and 2e  because they are 

extracted by TDD from the ambient vibration response records.  The prediction error j , 

the modal frequencies ˆ
jf  and the mode shapes ˆ

jφ  of the baseline are affected by 1e , 2e , 

3e  and 4e  because they obtained by calibration the preliminary FEM using the Bayesian 

updating based on jf .  Finally, the DI  is influenced by 1e , 2e , 3e , 4e  and 5e . 

Note that modal parameters have been commonly used in system identification to 

validate and/or update a computer simulated model (Doebling and Farrar 2001).  They 

are also adopted in the vibration-based NDT for damage detection such as the study of 

this section, where the modal parameters obtained form a damaged system with those in 

the corresponding undamaged system are compared.  However, studies in assessing 

uncertainties in modal parameters are still limited, especially in the area of considering 

the modeling error due to the modal parameter extraction process.  A typical approach is 

to assume that modal parameters consist of deterministic quantities and additive random 

errors with zero mean (Liu 1995; Papadopoulos and Garcia 1998; Xia et al. 2002; 

Pothisiri and Hjelmstad 2003).  In this approach, regardless of the inaccuracy of this 

assumption, the contributions from the measurement and the extracting processes are 

obscured, which is not able to provide guidance of allocating recourses to improve the 

estimation of modal data. 

In the following subsections, general procedures to assess the variability of 

modal data due to 1e  and 2e  are presented.  A bootstrap approach is used to propagate 1e  

and 2e  to the modal data, when an ensemble of a limited number of noised time-history 
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response recordings is available.  To estimate the modeling error associated with the 

extraction process, we adopted a model prediction expansion approach where the 

modeling error is considered as an “adjustment” directly to the prediction obtained from 

the modal data extraction process.  The modeling error considered in this study is due to 

a specific modal data extraction process, TDD (Kim et al. 2005).  The proposed 

procedures can be used to account for the influence of 1e  and 2e  when the modal 

parameters are furthered applied to system identification, damage detection, and other 

applications. 

 

4.4.1 Measurement Errors in Ambient Vibration Test 

The measurement error reflects the difference between the measured responses and the 

true responses.  It may vary with sensor type, layout, installation of equipment, and 

environment.  In numerical studies, the measurement error is generally modeled by 

adding random errors into the time-history response signals and the error is often 

simulated as a random Gaussian noise with zero mean and a specific standard deviation.  

To provide reasonable bounds on the measurement error, absolute error and proportional 

error are commonly used (Banan et al. 1994b).  For absolute error, the standard deviation 

of measurement error is a fixed value; while for proportional error, the standard 

deviation of the measurement error is proportional to the value of the amplitude of the 

response. 
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Figure 4-4.  Flowchart of the procedures to propagate the measurement noises to the 

modal data 
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Two typical ways are used to propagate the measurement error to modal data.  

One is the perturbation method or sensitivity method, which requires finding the 

sensitivity of the measurement error to the modal data.  In this respect, Longman and 

Jung (1987) developed a framework for eigenrealization algorithm (ERA); Peterson et 

al. (1996) used the perturbation analysis for fast ERA; and Arici and Mosalam (2005) 

provided a formulation of sensitivity approach for observer Kalman filter identification-

ERA with direction correlations.  Although the perturbation approach is straightforward 

and efficient after the sensitivity is expressed analytically, the procedure and 

computation of obtaining the sensitivity is not an easy task, and the first order 

approximation that may not be accurate is usually used in the sensitivity analysis 

(Doebling and Farrar 2001).  The other approach of propagating the measurement error 

into the modal parameters is the sampling method.  The sampling method is conducted 

by extracting modal data from a set of time-history responses that are contaminated by 

measurement error.  Note that the variability in the modal parameters reflects the effect 

from the measurement error and the modeling error associated with the modal data 

extraction process.  The sampling method is straightforward but requires a good number 

of time-history responses. 

Usually, a certain number of dynamic time-history responses with a particular 

noise level can be recorded.  For each series of the responses, TDD is applied to obtain 

one set of modal data.  Thus the statistical inferences of the modal data can be estimated.  

With a limited number of dynamic response series, following Efron (1982), a bootstrap 

method is used to generate more records at the same measurement noise level to 
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propagate the measurement noises to the modal data.  In an ambient vibration test, the 

input varies for each recording.  However, it is legitimate to assume that the input in the 

frequency domain is a constant in a narrow bandwidth.  Thus, a bootstrap method can be 

applied to the normalized mode-isolated responses in the frequency domain for each 

sensor node.  Figure 4-4 shows the flowchart of the procedures using the bootstrap 

method to propagate the measurement noises to the modal data, when n acceleration 

sensors are used and m dynamic response records are collected.  As shown in Figure 4-4, 

the propagation process involves the extraction process; therefore, the uncertainties in 

the modal data are brought in by the measurement error and the modeling error 

associated with the extraction process as well. 

 

4.4.2  Modeling Errors Due to TDD 

Modeling error reflects the error in the output of a model due to the model inaccuracy.  

The sources of the error can come from the abstractions, assumptions, and 

approximations used in the modeling process.  Conventionally, there are two types of 

modeling errors: parameter error and model error.  Parameter error refers to the 

uncertainties in the model parameters in a given model due to the lack of knowledge of 

the parameter values.  For example, the uncertainties in the stiffness and mass values in a 

finite element model (FEM) are parameter errors.  Model error is associated with the 

model itself, reflecting the fact that there is no perfect numerical model to represent a 

real-world system and/or from the missing of a portion that is not included in the model. 
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Reinert and Apostolakis (2006) gave a review of approaches to handle modeling 

errors, including model set expansion and prediction expansion methods.  Model set 

expansion tries to use the advantages from different models and combines different 

models to produce a meta-model for a real system.  Model prediction expansion, on the 

other hand, applies an “adjustment” directly to the prediction outcome from one model, 

with a single model being chosen as the best one.  Therefore model set expansion can be 

treated as a special case of model set expansion by considering only one model.  In this 

study, since only one specific extraction method is adopted to extract the modal data, 

using model prediction expansion is appropriate to estimate the modeling error 

associated with the extraction process. 

Using additive model prediction expansion, the relation between the real modal 

data in the i th mode (modal frequencies, if , and mode shape, iφ ) and the extracted 

modal data ( ˆ
if  and ˆ

iφ ) can be formulated as following, 

 ˆ
ii i ff f e   (4.21) 

 ˆ
ii i  φφ φ e  (4.22) 

where 
if

e  and 
iφ

e  are the modeling errors in modal frequencies and mode shape due to 

the TDD process.  They can be considered the “adjustments” to the prediction. 

To assess the “adjustments”, 
if

e  and 
iφ

e , one can directly compare the extracted 

modal data from TDD, ˆ
if  and ˆ

iφ , and the real values, if  and iφ .  In system 

identification or a vibration-based NDT, a FEM usually needs to be constructed and 

validated by calibrating the unknown structural parameters (such as stiffness and/or 
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mass) in a preliminary FEM using the extracted modal data.  Given a certain setting in 

the vibration test, the uncertainties in the unknown structural prosperities can be used to 

estimate 
if

e  and 
iφ

e .  To obtain ˆ
if  and ˆ

iφ , the vibration responses used in the TDD are 

obtained by exciting a group of FEMs which is similar with the preliminary FEM but 

with different combinations of structural parameter values that are randomly drawn from 

the parameter ranges.  Meanwhile, modal analysis is conducted for each FEM in that 

group to find the corresponding if  and iφ .  When the error in the constructing FEM can 

be ignored, the difference between the identified modal data ( ˆ
if  and ˆ

iφ ) and the real 

modal data ( if  and iφ ) reflect the errors resulted from TDD.  Note that if the modeling 

error in the constructing FEM needs to be considered, one can follow the methodology 

and specific implementations proposed by Haukaas and Gardoni (2009). 

Using the difference between if  and ˆ
if , to estimate 

if
e  is straightforward.  

Given certain influencing factors, the mean, 
ief , and standard deviation, 

ief , of 
if

e  can 

be estimated from the differences, ˆ
i if f .  The differences between iφ  and ˆ

iφ  for the 

i th mode can be considered a linear combination of mode shapes of other modes.  This 

is because in the frequency domain the modes are overlapped due to the existence of the 

damping, which makes it impossible to obtain a pure mode-isolated response in the TDD 

method.  Especially, a mode shape is influenced most by the nearest mode shape.  

Therefore, a linear regression model can be used to access mode shape error 
iφ

e  for the 

i th mode, which is written as follows, 
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    ,

, ,
1

1 σ
e

j i

i i

N

j i j i j i j ij
j

f f


  


       φ φe φ ε  (4.23) 

where eN  number of modes used, ,j i , ,j i , and ,j i  are the model parameters for  the 

i th mode, ij   Kronecker delta (i.e. 1ij  , for i j ; 0ij  , for i j ), σ
i
φ  standard 

deviation of the model error, and ε a vector of normal random variables with zero 

mean and unit variance.  The model parameters are estimated by the Bayesian updating 

rule (Gardoni et al. 2003).  One could use locally uniform distributions for the model 

parameters as the non-informative priors in the Bayesian updating rule.  Note that the 

further a mode is from the i th mode, the less contribution that mode has to the modeling 

error 
iφ

e .  Moreover, the closeness of two modes can be measured by the difference 

between the corresponding modal frequencies, which is the reason that the term 

,

, ( ) j i

j i j if f    is included in Eq. (7).  A stepwise deletion procedure (Gardoni et al. 

2002) is adopted to eliminate unimportant terms in Eq. (7) to obtain a parsimonious 

model without losing accuracy.  Overall, the steps of accessing 
if

e  and 
iφ

e  are shown in 

Figure 4-5.  Although the procedure described here is in terms of a particular modal 

parameter identification scheme, TDD, it can be extended to any other identification 

process. 

 

4.4.3 Sample size 

In the flowchart shown in Figure 4-4, the sample size for the bootstrap needs to be 

determined.  Generally, one thousand samples are often enough for a first look. 
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However, given available computing power and time, it is reasonable to use as many 

samples as possible. 

 

ˆ ˆ,i if φ

,i if φ
ˆ

if i ie f f  ˆ
i i i φe φ φ

 
 

Figure 4-5.  Flowchart of the procedures to estimate the modeling error in TDD 
 

 
The sample size in the flowchart in Figure 4-5 is determined by the maximum of 

two sample sizes, where one sample size, fn , is for determining the statistical 

interference of 
if

e , and the other sample size, nφ , is for assessing the regression models 

for 
iφ

e . 
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The sample size, fn  can be estimated from confidence intervals.  With 

100(1 )%  confidence where   refers to the significance level, the following 

relationships hold, 

 /2 /2ˆ ˆef ef
ef ef ef

f f

S S
Z Z

n n
 

 

       (4.24) 

 2 2 2
2 2

/2 1 /2

f f
ef ef ef

n n
S S 

 


  

   (4.25) 

where ef   mean of 
if

e , ˆef population mean, efS  population of standard deviation, 

ef  standard deviation of 
if

e , /2Z  critical value at the vertical boundary for the area 

of / 2  in the right tail of the standard normal distribution, and 2
/2  critical value at 

the vertical boundary for the area of / 2  in the right tail of the 2  distribution.  Given 

certain confidence intervals for ef  and ef , then the sample size fn  can be calculated 

by max( , )f f fn n n  . 

As shown in Eq. (4.23), a linear regression model can be used to access mode 

shape error 
iφ

e .  The sample size, nφ , needs to be determined for the multivariate 

regression model, Eq. (4.23), to ensure sufficient statistical power to detect a significant 

effect.  Followed the theory in Cohen (1988), four input parameters are needed to 

determine nφ : (1) a significance confidence level  , (2) a target power level,  , (3) the 

effect size, ES , and (4) the number of predictors used, p .  For a regression model, the 

power level of the F-test refers to the probability that one rejects the null hypothesis 

while the alternative hypothesis is true.  To calculate the power, the F-distribution and 
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the noncentral F-distribution probability density function are used and they are 

respectively written as 

  
2 2

11
1

,
2 2

u v

ux ux
p x x

v u ux v ux v
B

             
 
 

 (4.26) 
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 
   



            
 

  (4.27) 

where ( )B   Beta function, u  number of predictors, p , or numerator degrees of 

freedom, v  denominator degrees of freedom,  noncentrality parameter, and 

g  critical value of F-distribution.  Note that no intercept is included in Eq. (4.23), thus 

the sample size n̂ u v  ; otherwise, if intercept is included in a regression model, 

ˆ 1n u v   .  The effect size, ES , describes the degree to which the null hypothesis is 

false.  Therefore, the larger the effect size is, the greater the degree to which the 

alternative hypothesis is manifested.  Conventionally, ES  of 0.02, 0.15, and 0.35 are 

considered as small, medium, and large, respectively.  With the four input values, the 

sample size, MSn , can be calculated by using the following steps: 

i) Set a desired power level  , an effect size ES , and a significance confidence 

level  , and set initial value v p . 

ii) Calculate critical value of F-distribution g  through Eq. (4.26), with given values 

of  , u ( p ), and v . 

iii) Compute ( )ES u v    . 



 

 

109

iv) With the values of g , u ( p ), v , and  , estimate the value of the noncentral F-

distribution through Eq. (4.27). 

v) Compute the power by calculating the cumulative area under the standard normal 

curve from zero to the value of the noncentral F-value estimated from the 

previous step. 

vi) If the power computed from step v) is less the desired power level  , increase v  

value and repeat step ii) through step v). 

vii) Determine the sample size n u v φ . 

 

4.5 Illustration 

In this study, the investigation of the effects of the measurement, modeling and statistical 

errors is illustrated with a numerical example.  A FEM of a two-span continuous 

aluminum beam on elastic supports shown in Figure 4-6 is selected as the target 

structure, which has been previously analyzed by Stubbs and Kim (1996).  The FEM is 

built in OpenSees (McKenna and Fenves 2002) using 50 elastic beam-column elements 

with elastic springs for the supports, where the mass density of the beam 

32710 kg/m  , the cross section area 3 21.05 10 mA  , the second moment of area 

around the vertical z-axis 7 49.57 10 mzI   , the second moment of the area around the 

transverse y-axis 7 47.23 10 myI   , the Poisson’s ratio 0.33  , the elastic modulus of 

the beam 56 GPabE  , and the stiffness of the support springs 5
1 2 6.0 10 N/mK K     

and 4
3 1.2 10 N/mK   . 
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A vibration test is conducted by applying a pulse force at node 6 of the beam.  

The effect of different error levels 1e  in the sensors is simulated by adding to the time 

history records a Gaussian white noise with standard deviations equal to 0.5%, 1%, 2%, 

and 3%, of the amplitude of the acceleration responses.  The recording time is 4 s with 

sampling time 0.0001 s.  The first three modal frequencies and mode shapes are used in 

the damage detection.   

 

Figure 4-6.  Schematic of the example beam and the FEM 
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To estimate the effects of modeling error in the modal parameters due to TDD 

following the flowchart shown in Figure 4-5, one needs to determine the sample size 

first.  If a significance confidence level 5% is chosen, and confidence intervals for ef  

and ef  are set to be [ / 5, / 5]ef efS S    and 2 2[86.4% ,116.4% ]S S   respectively, 

then 100fn   and 350fn  .  Followed the steps for determining nφ , with selected 

Figure 4-7.  Mean (a) and standard deviation (b) of modeling error in modal 
frequencies 
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0.05  , 0.9  , 0.15ES  , and 6p  , the 123n φ .  Thus the sample size should be 

at least 350.  A total of 400 FEMs is generated with the same configurations as the 

preliminary FEM by varying the stiffness properties of the structures, bE , 1 2( )K K , 

and 3K .  Note that the modeling error due to TDD is a function of the corresponding 

influence factors described previously.  Figure 4-7 shows how the modeling error due to 

TDD in the first four frequencies varies when one of the influence factors, the response 

length, increases.  Notice that after exceeding a certain response length, the error does 

not change much anymore.  Other influence factors can be studied in a similar manner. 

The regression models of the mode shape error 
iφ

e  of the first three modes are 

obtained following the formulation given by Eq. (4.23) 

    1,1

1 1,1 2 2,1 3 3,1 4 1,1 2 1 2 0,1 1,1 2 1f f
              φe φ φ φ φ I φ ε  (4.28) 

    1,2

2 1,2 1 2,2 3 3,2 4 1,2 2 1 1 0,2 1,2 1 2f f
              φe φ φ φ φ I φ ε  (4.29) 

    1,3

3 1,3 1 2,3 3 3,3 4 1,3 4 3 4 0,3 1,3 4 2f f
              φe φ φ φ φ I φ ε  (4.30) 

where the statistics of the model parameters ,j i , ,j i , ,j i , and ,j i  are shown in Table 

4-2 and they are estimated using the Bayesian approach (Box and Tiao 1992). 

The preliminary FEM is the same as the one used for the target baseline where 

80 GPabE  , 5
1 2 3.0 10 N/mK K     and 4

3 0.6 10 N/mK   .  In this example, since 

the preliminary FEM is a FEM constructed in the same manner as the target structure, 

3be  is zero.  Details on the quantification of 3be  in other cases can be found in (Haukaas 

and Gardoni 2009).  Table 4-3 compares the modal frequencies for the preliminary, 
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target, and identified baseline FEMs.  The differences of modal frequencies between the 

target structure and preliminary FEMs indicate that the error 3ae  exists in the preliminary 

FEM.  This error can be reduced by calibrating bE , 1 2( )K K , and 3K  in the model 

updating process. 

 

Table 4-2.  Statistics of model parameters 

1  2  3  1  1  0  1    

mode 1 
mean -1.41E-04 -2.57E-05 -1.96E-05 -2.03E+00 1.41E-01 5.38E-05 2.68E-04 8.51E-07

cov† 6.65E-03 1.09E-02 1.38E-02 1.06E-03 3.42E-03 5.53E-03 7.93E-03 - 

mode 2 
mean 9.10E-05 -4.10E-05 -2.59E-05 -1.70E+00 1.51E-01 1.23E-05 1.08E-03 1.61E-06

cov† 1.88E-02 1.04E-02 1.39E-02 7.75E-04 2.19E-03 9.69E-03 7.87E-04 - 

mode 3 
mean 1.68E-04 2.20E-04 -1.34E-03 -3.86E+00 -3.55E+01 8.98E-04 6.70E-03 4.10E-05

cov† 1.91E-01 1.45E-01 2.66E-02 6.61E-03 4.07E-02 9.52E-03 9.12E-03 - 

† cov = coefficient of variance = standard deviation / mean 
 
 

In the Bayesian model updating, one can validate the normality assumption of j  

and the sampling size in MCMC is sufficiently large so that the errors 4ae  and 4be  can be 

ignored.  In addition, 1e  is simulated as white noises that contain broadband information 

in the frequency domain, therefore, the j  is not influenced by 1e .  As such, in this 

example j  results from 2e  and 3ae .  After applying the Bayesian model updating, ˆ
jf  

agree well with jf  (as shown in Table 4-3), and the errors 3ae  in the identified baseline 

has been significantly reduced (as shown in Table 4-4).  These results indicate that the 

preliminary FEM has been updated successfully.  As such, in this illustration, the DI  is 

influenced by 1e , and 2e . 
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Table 4-3.  Comparison of modal frequencies (Hz) 

Mode 
Preliminary† 

ˆ
jf  

Target‡ 

jf  
Identified ˆ

jf  

Mean St. Dev. 

1 40.4487 36.6270 36.6042 0.0240 

2 58.8472 55.1379 55.1042 0.0376 

3 150.6397 141.6217 141.6214 0.1379 
† frequencies obtained from modal analysis 
‡ frequencies obtained from TDD

 
 
 

Table 4-4.  Estimates of 3ae  for the example beam 

Parameter 
Preliminary 

FEM 

Identified FEM 

Mean
Mean  

– 1 St. Dev
Mean  

+ 1 St. Dev 

bE  25% 0.16% 0.11% 0.21% 

1 2( )K K  50% –1.63% –3.15% –0.11% 

3K  50% 0.16% –0.15% 0.47% 

 
 

Four damage scenarios are introduced to the target structure:  Damage Case 1: 

the flexural stiffness in beam Element 16 is reduced by 2%, 6%, and 10%; Damage Case 

2: the flexural stiffness in beam Element 48 is reduced by 2%, 6%, and 10%; Damage 

Case 3: the flexural stiffness in beam Elements 16 and 30 is reduced 2%, 6%, and 10%; 

and Damage Case 4: the flexural stiffness in beam Elements 11-15 is reduced 2%, 6%, 

and 10%.  Different percentage deductions reflecting different level of damage are used 

to study influences of the severity.  Damage Cases 1 and 2 are designed to evaluate the 

effects of the proximity of the support to the damaged area.  Damage Case 3 is used to 
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illustrate situations when more than one damage location is present.  Damage Case 4 is 

used to study the effects of the size of the damage area. 

It is found that the modal frequencies extracted from TDD for all the damage 

cases even with the most severe damage (10% flexural stiffness reduction) are close to 

the ones for the case where no damage is introduced.  Table 4-5 shows a comparison 

between the modal frequencies for the undamaged beam and the four damage cases with 

10% flexural stiffness reduction.  This observation further confirms that the modal 

frequencies of a structure are not sensitive to the damages at local level (Wang and 

Haldar 1994).  Thus, it is legitimate to believe that when the modal frequencies of a 

damaged structure are used to update the preliminary FEM, as proposed in this study, the 

updated FEM can be considered as an accurate baseline for the damaged structure. 

 

Table 4-5.  Comparison of modal frequencies of no damage case and damage cases† 
(Hz) 

Mode 
No 

damage 
Damage 
Case 1 

Damage 
Case 2 

Damage 
Case 3 

Damage 
Case 4 

1 36.6270 36.5588 36.6192 36.5359 36.2470 

2 55.1379 55.1103 55.1223 55.0909 54.7927 

3 141.6217 141.4680 141.5126 141.2381 141.4453 
† considering 10% flexural stiffness reduction 

 
 
 
One objective of this illustration is to study how the errors in the damage 

detection process influence the damage indexes.  Figures 4-8 to 4-10 show the variability 

of Z  when different levels of measurement noise (error 1e ) are considered for Damage 

Case 1.  Figure 4-11 shows the variability of Z  for each beam element when only the 
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error 2e  is considered.  It is observed that when the damage severity increases, the effect 

from 2e  on Z decreases.  By comparing Figures 4-8 to 4-10 with Figure 4-11, it is found 

that the variability in Z  due to 1e  is larger than the one due to 2e , indicating that the 

measurement error has more effects on the damage detection results than the modeling 

error in TDD.  The same observations can be made for the other three damage cases and 

for brevity are not shown in the dissertation. 

Given the same level of 1e , Figures 4-8 to 4-10 show the influence of the damage 

severity level on Z .  For a low level of damage (2% flexural stiffness reduction), the Z  

values of damaged elements can hardly be differentiated from other elements regardless 

of the threshold used even for the smallest 1e .  However, when the severity becomes 

larger, this differentiation becomes more obvious.  This concludes that if the damage 

severity is too small, it is difficult to detect damage even when the measurement noise 

level is small.  Additionally, it is noticed from Figures 4-8 to 4-10 that the mean values 

of Z  decreases and the standard deviations of Z  increases over the damaged element 

with increasing 1e .  As anticipated, a high level of 1e  obscures the signal that can be 

used to detect damages and brings in more uncertainties.  Furthermore, the elements next 

to the support (elements 1 and 50), which do not have stiffness reduction, also have high 

values of Z , which might lead to false detections.  These observations can also be made 

for the other three damage cases. 
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(a) 2% stiffness reduction

(c) 10% stiffness reduction

(b) 6% stiffness reduction

Figure 4-8.  Z values (solid line: mean, dotted line: mean ± 1 
standard deviation) for the beam elements with Damage Case 

1 under 1% noise level 
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(a) 2% stiffness reduction

Figure 4-9.  Z values (solid line: mean, dotted line: mean ± 1 
standard deviation) for the beam elements with Damage 

Case 1 under 2% noise level 

(b) 6% stiffness reduction

(c) 10% stiffness reduction
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Figure 4-10.  Z values (solid line: mean, dotted line: mean ± 1 
1standard deviation) for the beam elements with Damage 

Case 1 under 3% noise level 

(a) 2% stiffness reduction

(b) 6% stiffness reduction

(c) 10% stiffness reduction

0 10 20 30 40 50
-4

-2

0

2

4

6

Element

Z

0 10 20 30 40 50
-4

-2

0

2

4

6

Element

Z
0 10 20 30 40 50

-4

-2

0

2

4

6

Element

Z

damaged 
element

damaged 
element

damaged 
element



 

 

120

 

(a) 2% stiffness reduction

(c) 10% stiffness reduction

(b) 6% stiffness reduction

Figure 4-11.  Z values (solid line: mean, dotted line: mean ± 1 
standard deviation) for the beam elements with Damage 

Case 1 considering error e2
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Figure 4-12.  Probability of damage detection for Damage Cases 
1-4 with 10% flexural stiffness reduction under 1% noise 

level using 2.0 

(b) Damage Case 2

(a) Damage Case 1

(d) Damage Case 4

(c) Damage Case 3
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For all the damage cases, if a threshold is chosen appropriately, the damage 

location can be identified.  Figure 4-12 shows the probability of detection for the all four 

damage cases with 10% flexural stiffness reduction under 1% noise level using a 

selected threshold 1.0i  , which is a typical threshold value used in the literature 

(Alvandi and Cremona 2006; Park et al. 2001).  The star points () in Figure 4-12 

indicate the probability of correct detection ( | )P ID D , while the dots (*) indicate the 

probability of false detection ( | )P ID ND   For these four damage cases, ( | ) 0.9P ID D  , 

which shows that the damage detection approach can successfully detection damage 

location for the four damage scenarios considered.  However, the elements adjacent to 

the damaged elements in the first three damage cases have a high probability of false 

detection ( | )P ID ND , which indicates a difficulty in assessing the size of the damage 

area.  Furthermore, as pointed out previously, the undamaged elements 1 and 50 also 

show relatively high values of ( | )P ID ND , which is in part due to the use of the spline 

interpolation. 

The natural question followed by the observations in Figure 4-12 is how to 

choose an appropriate threshold for the DIM to reach a compromise between 

maximizing ( | )P ID D  and minimizing ( | )P ID ND .  Figure 4-13 shows the probability 

of damage detection for Damage Case 1 with 10% flexural stiffness reduction and 1% 

measurement noise when three different thresholds are chosen.  The selection of 1.0i   

and 3.0i   is used to assess the effects of a higher thresholds on ( | )P ID D  and 

( | )P ID ND , and the selction of 1.0i i   , where i  the standard deviation of iZ  



 

 

123

for i th element is used to assess the effects of a varying the threshold over the length of 

the beam.  The threshold 1.0i i    sets high criteria for the non-damaged elements 

next to the supports, where i  is larger.  As discussed before, when the threshold is low 

(such as 1.0i  ), ( | )P ID ND  is too high for non-damaged elements such as Elements 1 

and 50.  By increasing the threshold to 3.0i  , although it helps decrease ( | )P ID ND , 

it also significantly reduce ( | )P ID D .  As shown in Figure 4-13, the proposed threshold 

1.0i i    greatly improves the results maximizing ( | )P ID D  and 

minimizing ( | )P ID ND .  Based on observation that the mean values of iZ  decreases and 

the standard deviations of iZ  increases over the damaged element with increasing 1e , the 

threshold should also vary with different levels of measurement noises. 

 

4.6 Conclusions 

This section presents a probabilistic damage detection approach that is based on modal 

parameters extracted from ambient vibration responses.  The proposed approach uses a 

Bayesian model updating to develop an accurate baseline using the extracted modal 

frequencies, and the damage index method (DIM) to accurately detect the local damage 

using the extracted mode shapes.  The uncertainties in the proposed approach and how 

they affect the damage detection are discussed.  Considering these uncertainties, the 

proposed approach is illustrated using a numerical example. 

It is found that the uncertainties in the damage detection have considerably effect 

on the damage detection results, indicating that to present the detection results in a 
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probabilistic form is necessary.  In particular, the measurement error due to the noise in 

the ambient vibration has the largest effect on the damage detection.  Therefore, it is 

suggested to allot more effort to improve measurement devices and/or data processing.  

With low damage level such as stiffness deduction less than 2%, it may impossible to 

detect the damage using the DIM even under low level of measurement error.  

Additionally, it is observed that the non-damaged elements next to the supports show 

high probability of false detection for all the damage cases considered in the numerical 

example.  This is partially due to the use of spline interpolation to obtain the mode shape 

curvature at the boundaries in DIM.  To choose an appropriate threshold in DIM to 

identify the local damage locations, it is found that the proposed threshold is most 

effective to minimize the false detection probability and maximize the correct detection 

probability.  For different measurement noise level, the threshold level should to be 

defined differently. 

 

 

Figure 4-13.  Probability of damage detection for Damage Case 1 
with 10% flexural stiffness reduction under 1% noise level 
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Since the modal parameters are usually obtained though a vibration test, the 

proposed approach cannot keep track of the instantaneous stiffness change, such as 

during an earthquake event.  However, it can be used to evaluate the structural 

performance before and after an event.  The proposed method is able to evaluate the 

reliability of the damage estimation results probabilistically and quantitatively, requiring 

only the dynamic responses.  Thus, this proposed framework can be used to evaluate the 

current and future performance of a structure.  Furthermore, the structural parameters 

used in the performance evaluation can be continuously updated when new modal 

parameters become available. 
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5. LOCAL NONDESTRUCTIVE TESTING 

 

5.1 Introduction 

As a general index of concrete strength, compressive strength of concrete, cf , is 

important in the performance assessment of existing RC structures.  The concrete 

compressive strength, cf ,  is considered as a general index of concrete strength and can 

be determined by NDT methods.  ACI Committee 228 (2003) provides a guideline for 

using NDT methods to predict cf .  The various NDT methods include rebound hammer 

test, ultrasonic pulse velocity (UPV) test, maturity, and cast-in-place cylinders.  As 

found by many researchers (Samarin and Meynink 1981; Miretti et al. 2004; Hola and 

Schabowicz 2005), the combined methods that refer to the use of two or more in-situ 

testing methods can lead to more accurate and reliable strength prediction.  Among the 

NDT methods, the most frequent used one is a combination of rebound hammer test and 

UPV test, which is well known as SonReb.  This combination technique is used because 

the rebound number (RN) obtained by rebound hammer test can provide the information 

about the concrete strength near to the surface, while UPV can reflect the concrete 

properties along the thickness of the structural component. 

However, SonReb results are affected by the variability in environment (such as 

temperature and humidity), measurement process (such as rebar effect), and material 

properties (such as age of concrete, mix proportion, stresses in the concrete, and curing 

conditions).  Reducing the variability can improve the accuracy of the cf  predictions. 

To account for the variability described above, there are three commonly used 
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prediction techniques: computational modeling, artificial intelligence, and parametric 

multivariable regression models.  Computational modeling technique is often based on 

modeling the complex physical phenomenal, which requires complicated mathematical 

models.  Popovics (1995) gave a review of mathematical models for strength 

development of Portland cement concrete.  Lin et al. (2003) established mathematical 

models for predicting concrete pulse velocity.  However, the computational modeling 

often is not practical due to the complexity of the model and/or the time-consuming 

numerical computation.  Artificial intelligence, including artificial neural network 

(ANN) and fuzzy logic method, is a non-parametric statistical tool and is able to 

consider nonlinear multivariable regressions without knowing the theoretical 

relationships between the input and the output.  Application of ANN and fuzzy logic 

method to predict cf  can be found in many recent publications (Hola and Schabowicz 

2005; Cho et al. 2009; Kewalramani and Gupta 2006; Trtnik et al. 2009; Na et al. 2009).  

However, the relation that obtained by artificial intelligence has no physical meaning but 

only provides the best fit between the predictions and actual values. 

Parametric multivariable regression models, on the other hand, can perform 

faster than the other two techniques; therefore, it is suitable to be implemented to other 

applications.  Particularly, the confidence interval of prediction calculated by parametric 

regression models indicates the reliability of the estimation, and the statistics of model 

parameters can provide insight of how each variable influences the prediction.  By far, a 

considerable number of parametric regression models using SonReb to predict cf  have 

been developed (Samarin and Meynink 1981; Tanigawa et al. 1984; Ramyar and Kol 
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1996; Bellander 1979; Hobbs and Kebir 2007; Wiebenga 1968; Arioğlu and Manzak 

1991; Sriravindrajah et al. 1988; Arioğlu and Köylüoğlu 1996; Kheder 1999; Arioğlu et 

al. 1994; Postacioglu 1985); however, these regression models can only be applied to the 

concrete with the same characteristics of the concrete used for the calibration of the 

model.  Thus, the different suggested formulations of regression models are due to the 

limited scope of calibration data used.  Additionally, the suitability of applying these 

suggested formulations to the data that is not used for calibration is still not clear.  

Therefore, a robust regression model based on different type of concrete is needed for 

the general use.  In addition to SonReb measurements (UPV and RN), other variables 

may be needed in the model to reflect the information about concrete properties to 

improve the prediction accuracy. 

In this study, cf  is predicted by a probabilistic multivariable linear regression 

model with respect to the SonReb measurements, mixture proportions, curing conditions, 

and age of concrete.  The data used for developing the model cover a wide range of 

concrete properties.  Bayesian updating is used to assess the model parameters and also 

provides a convenient way to update the model when new additional data become 

available.  An all possible subset model selection is used to obtain an accurate, unbiased, 

and parsimonious model, while it also helps understand how variables contribute to the 

prediction.  Additionally, multiple imputation (MI) is used to deal with missing data 

such that the data information can be incorporated as much as possible to develop the 

regression model.   

Note that the previously developed multivariable regression models have 



 

 

129

published in various places, thus it seems worthwhile to give a summation and 

comparison of these models.  To be fair in the comparison, the previously developed 

models are refitted to the calibration data used in the proposed model as well.  Then the 

validation of those models is checked by using diagnostic plots and marginal model 

plots.  Lastly, the validated models and the proposed model in this Section are applied to 

a group of test data that collected from different research groups to evaluate the 

performance and robustness of the models. 

 

5.2 Review of UPV and Rebound Hammer Tests 

The UPV test is performed by using a sending transducer that sends an ultrasonic pulse 

to the concrete specimen and a receiving transducer where the pulse is received.  With 

the known distance between the sending and receiving transducers and the time that the 

stress wave generated by the ultrasonic pulse travels through the concrete, UPV of the 

specimen can be calculated.  Then, the elastic properties of the concrete can be 

estimated.  The relation between UPV and dynamic elastic modulus, dynE  that is 

correlated to cf , can be written as 

 
 

  
1

1 1 2
dynE

UPV


  



 

 (5.1) 

where   dynamic Poisson’s ratio.  This formula shown in Eq. (5.1) is derived for 

elastic homogeneous materials; however, concrete is well known as inelastic and 

heterogeneous material.  Therefore, using UPV alone to predict cf  is not reliable 

(Komloš 1996). 
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Rebound hammer test uses the rebound of an elastic mass, striking at the 

concrete surface.  When the plunger of the rebound hammer is pushed against to the 

surface and the latch is released, the spring-pulled mass rebounds back with a rebound 

distance.  This distance is measured on a scale numbered from 10 to 100 and is recorded 

as RN.  The measurement RN depends on the energy absorbed during the impact; 

therefore, it can be considered as an indicator of the concrete strength.  Additionally, it is 

more likely affected by the near-surface layer of concrete. 

As pointed out by many researchers (Trtnik 2009; Chung 1978; Phoon et al. 

1999), UPV is effected by numerous factors: properties and proportion of the constituent 

materials, aggregate content and types, age of concrete, the presence of micro-cracks, 

water content, and stresses in the concrete specimens, surface condition, temperature of 

concrete, path length, shape and size of specimen, the presence of reinforcement, and 

etc.  The results of rebound hammer test is significantly influenced by smoothness and 

carbonation conditions of the concrete, moisture conditions of concrete, type of coarse 

aggregate, type of cement, cement content, age of concrete, and size, shape, rigidity of 

the test concrete specimen, and etc. (Domingo and Hirose 2009; Proverbio and Venturi 

2005).  Because of those influence factors described above, using UPV or RN alone is 

not able to indicate an accurate prediction of cf .  However, SonReb can improve the 

prediction because UPV and RN have different sensitivities to the influence factors, thus 

additive values are brought in (Breysse 2009). 
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5.3 Development of Multivariable Linear Regression Model 

5.3.1 Formulation of proposed regression model 

The proposed probabilistic multivariable linear regression model can be expressed as 

    
0

,
p

j j j
j

y h x 


  x Θ  (5.2) 

where ( , )Θ θ , ( , )y x Θ predictive cf  (or a suitable transformation), 

{ }j θ unknown model parameters, ( )j jh x   predictors or suitable transformation 

function of jx , p  number of predictors, { }jx x selected variables, such as SonReb 

measurements, mix proportions, and concrete age,   standard deviation of model 

error, and   random variable with zero mean and unit variance.  The selection of jx  is 

based on the influence factors of cf  and SonReb, while it is also restraint by the data 

collected.  Note that the formulation of Eq. (5.2) is based on two assumptions.  One is 

called homoskedasticity assumption, stating that   is a constant and independent of x .  

The other one is normality assumption which assumes that   follows the normal 

distribution.  These two assumptions can be satisfied by using a parameterized family of 

power transformation (Box and Cox 1964), which define the power transformation of a 

data vector Z  as 

    
 
1 if 0

log f 0

Z
Z

Z i


  



   


 (5.3) 

The data vector in this study can be y  and jx  in Eq. (5.2).  Diagnostic plots (Sheather 

2008) and marginal model plots (Cook and Weisberg 1997) that are shown later can be 
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used to check the suitability of the transformation to ensure the validation of the two 

assumptions. 

 

5.3.2 Data collection 

The regression model should be developed based on a large number of widely ranging 

compressive strength values containing the known information about the concrete 

properties as much as possible.  Although a great number of experimental research using 

SonReb have been conducted, most of the experimental data or the characteristics of 

concrete are not explicitly shown in the corresponding literatures.  In this study, there are 

a total of 1103 data collected from a wide literature review and the literature is listed in 

Appendix D. 

The data is set into three groups.  Group 1 consists of 412 data and is used for the 

model assessment and the model selection.  This group of data has better information in 

the variables so that the model selection can be conducted to delete those predictors that 

do not contribute to the prediction significantly.  Group 2 with 555 data is used to update 

the model that developed based on the data in Group 1.  This step illustrates how the 

model parameters can be updated when new additional data is collected.  Group 3 with 

136 data is collected from four different research groups (Na et al. 2009; Domingo and 

Hirose 2009; Malhotra and Carette 1980; Knaze and Beno 1984), and is used to check 

the model performance.  Furthermore, the data in Groups 1 and 2 are called training 

data, and the Group 3 data is called test data.  Table 5-1 gives the ranges of variables for 
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the training data.  Note that there are missing data in some of the variables in the training 

data.  The methods to manage missing data are described in the following section. 

 

Table 5-1.  Ranges of variables from database 

Variable Range 

concrete compressive strength, cf , MPa 6.86–87.61 

rebound number, RN  12–52 

ultrasonic pulse velocity, UPV , km/s 2.92–4.93 
unit weight of concrete, weight , kN/m3 20.38–25.00 

water-cement ratio, wc , % 20–70 

unit volume of cement, vc  89–286 

unit volume of sand, va , m3 96–316 
unit volume of gravel, vg , m3 200–496 

fly ash-cement ratio, FA , % 0–20 

superplasticiser-cement ratio, SP , % 0–3.5 

sand-aggregate ratio, sa , % 20–48 

cement-aggregate ratio, ca , % 12–60 

unit weight of water, water , kN/m3 1.22–2.74 

unit volume air content, air  % 0.5–32 

Slump, sl , cm 0–24.5 
age of concrete, age , day 3–730 

curing temperature, T , Co 14–27 

concrete curing condition, curing  
1: water curing 

2: air curing 
3: curing outdoors 

aggregate type, TA  

1: river sand and gravel 
2: river sand and crushed gravel 

3: crushed sand and gravel 
4: recycled aggregate 

 
 
 

5.3.3 Missing data 

In order to use all the data collected from literature, including the ones that have 

incomplete data in some of the variables, methods that deal with missing data are 
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adopted.  Rubin (1987) developed the general statistical theory and framework for 

managing missing data.  A review of different methods to handle incomplete data has 

been given by Allison (2002) and Litter (1992).  The conventional methods include 

listwise deletion, pairwise deletion, dummy variable adjustment, and least square using 

imputed data.  More advance methods include expectation-maximization (EM), direct 

maximize likelihood method, and multiple imputation (MI).  Note that some methods 

can only be applied for specific missing data mechanism. 

The missing data mechanism gives an idea how the missingness is related to 

other values.  If the probability of missing data in one variable (say variable 1x ) is 

complete random, which means the missing data is unrelated to other data in 1x  or other 

variables, then the data in 1x  is called missing completely at random (MCAR).  If the 

probability of missing data in 1x  is only unrelated to other data in 1x , then it is called 

missing at random (MAR).  If the data is not MAR, the missing data is nonignorable.  In 

this study, the missing data in the training data are neither provided in the literature nor 

measured in the experiments.  Therefore, it is legitimate to assume the missing 

mechanism in the training data is at least MAR. 

To assess the model with MAR missing data, MI approach is suitable to apply.  

Compared with other methods, MI gives consistent, asymptotically efficient, and 

asymptotically normal estimation (Allison 2002).  In MI, for example to deal with 

missing data in UPV, UPV is regressed on cf  and other variables x , with the complete 

data.  Thus, the following regression is obtained, 
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 0 c UPVUPV f      βx  (5.4) 

where 0 ,  , and vector β  are the model parameters, and UPV  is the estimated standard 

deviation of the model error.  The imputation is to make random draws from the 

distribution obtained from Eq. (5.4).  Additionally, the imputation can also consider the 

variability in the model parameters.  Typically, the imputation in MI is based on 

multivariate normal model.  However, it has been found that the imputation is still good 

enough even if some of variables do not have normal distribution (Schafer 1997).  For 

one chain of MI, it continues until the probability distributions of the variables with 

missing data convergence.  After the imputation is complete, the methods for complete 

data (such as Bayesian updating) can be used to assess the regression model shown in 

Eq. (5.2).  Due to the random imputation, every time the estimation of interests is 

different.  With m  separate chains of iterations, the variability across the chains needs to 

be considered to adjust the standard deviations.  For example, the estimated standard 

deviation of model parameter j , 
j

 , can be calculated by 

 2 2 2
, ,

1
j j jw b

m
S S

m   
   (5.5) 

where 2
,j wS , is the average variance within the imputation chains, and 2

,j bS  is the 

variance from the between imputation chains.  As stated in Schafer and Olsen (1998), 

only three to five imputation chains are sufficient for many applications.  Thus three MI 

chains of iterations are generated in this study. 
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5.3.4 Assessment of proposed regression model 

To explore the correlation of cf  with SonReb measurements and other concrete 

properties, first as many predictors as possible are used in Eq. (5.2).  Based on the data 

in Group 1, a full model is first developed with 15 predictors with variables UPV , RN , 

weight , ca , sa , wc , SP , FA , sl , age , air , TA , water , /UPV RN , and 

4 3log( )UPV RN .  The definition of those predictors can be found in Table 5-1.  The first 

13 variables are the SonReb measurements and concrete properties.  The last two 

variables are chosen from literatures that are used in regression models suggested by 

others. They are included so that the proposed full model can be considered general.  In 

order to choose the right transformation, multivariate generalization of the Box-Cox 

procedure (Box and Cox 1964) is adopted to transform cf  and all the predictors 

simultaneously to joint normality.  A Bayesian updating rule (Box and Tiao 1992) is 

used to estimate the posterior statistics of the model parameters j  and   in Eq. (5.2). 

The validation of the full model with 15 predictors is first checked with 

diagnostic plots shown in Figure 5-1.  The diagnostic plots (Sheather 2009) include plots 

of the residuals and of the roots of the standardized residuals vs. the fitted values, a 

normal Q-Q plot of the standardized residuals, and a plot of standardized residuals vs. 

the corresponding leverages.  The first two diagnostic plots are used to check the 

homoskedasticity assumption, the normal Q-Q plot is used to check the normality 

assumption, and the last diagnostic plot can help identify outliners and bad leverage 

points.  As seen in Figure 5-1, the plots of residuals give no discernible pattern, Q-Q 
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plots shows the evidence of normality, and no outliners and leverage pointes are 

detected.  Thus, the validation of the full model is ensured.  Furthermore, marginal 

model plots (Cook and Weisberg 1997) are used to check that each variable is modeled 

correctly in the full model. 
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Figure 5-1.  Diagnostic plots of the proposed model 
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Note that in order to interpret the multivariable regression model, there is an 

implicit assumption that is the predictors should be interrelated.  When strong linear 

relationship exists among the predictors, there exists a multicollinearity problem that 

often leads to poor estimations of model parameters.  Several methods can be used to 

detect multicollinearity.  One thorough investigation is to exam variance inflation factor, 

VIF , and the jVIF  for predictor ( )j jh x  is defined as 

 
2

1

1j
j

VIF
R




 (5.6) 

where 2
jR  square of the correlation coefficient obtained from the regression of ( )j jh x  

on other predictors.  The VIF  values exceeding 5 indicate the issue of multicollinearity 

problem29, which is found in the full model in this study. 

To manage the multicollinearity in the full model, an all possible subsets model 

selection process is adopted in this study to remove the redundancy.  The use of model 

selection provides a way to obtain an unbiased and parsimonious model without losing 

accuracy so that the model is not over- or under-fitting.  Moreover, it shows the insight 

of how variables contribute to the prediction.  The all possible subsets model selection 

uses the adjusted 2R  ( 2
adjR ), the Akaike’s information criterion ( AIC ) (Akaike 1974), 

the corrected Akaike’s information criterion ( CAIC ) (Hurvich and Tsai 1989), and the 

Bayesian information criterion ( BIC ) (Schwarz 1978).  The quantity 2
adjR  is defined as 
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   

 

2

, ,
2 1

2

, ,
1

ˆ, 1
1

ˆ, 1

s

s

N

cp i c i s p
i

adj N

cp i c i s
i

f f N N
R

f f N





    
 

   





x Θ

x Θ

 (5.7) 

where ,
ˆ( , )cp if x Θ  predicted value estimated by proposed model with the mean vector 

of model parameters Θ̂ , ,c if  actual value, , ,
1

/
sN

c i c i s
i

f f N


  the sample mean of ,c if , 

sN   number of data, and pN   number of predictors.  The criteria of AIC , CAIC , and 

BIC  measure how well the model fits the data using the trade-off between the 

complexity of the model and the model accuracy.  They are expressed as 

  2ln 2 pAIC L N    Θ  (5.8) 

 
  2 2 3

2
p p

C
s p

N N
AIC AIC

N N

 
 

 
 (5.9) 

    2ln lnp sBIC L N N    Θ  (5.10) 

where ( )L Θ the maximum of the likelihood function for the estimated model, and with 

the two assumptions (homoskedasticity and normality) in the model shown in Eq. (5.2), 

( )L Θ  can be calculated by 

    log 2 log
2 2 2

s s s

s

N N NRSS
L

N


 
    

 
Θ  (5.11) 

where RSS  residual sum of squares.  A higher value of 2
adjR  and lower values of AIC , 

CAIC , and BIC  indicates a better model. 
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In the all possible subsets model selection, the subset size varies from 1 to 15 in 

this study, a most desirable model for one subset is identified by maximizing 2
adjR  and 

minimizing the other three criteria.  Thus 15 potential models, each for one subset, are 

obtained.  Then, the values of 2
adjR , AIC , CAIC , and BIC  are used to choose the best 

model.  Note that maximizing 2
adjR  and minimizing AIC , CAIC , and BIC  across all the 

subsets to select the overall best model can give different answers because of different 

judging criteria.  The test data from Group 3 are also used to check the statistical 

significance (p-value) of the coefficients of the predictors.  The models that have at least 

one p-value 0.05  are considered to be over-fitting the data.  Finally, a partial F-test 

(Sheather 2009) helps to ensure the most parsimonious model. 

 

Table 5-2.  Posterior statistics of the parameters in the proposed regression model using 
Group 1 data 

Parameter Mean 
Standard 
deviation 

Correlation coefficient 

0  1  2  3  4  

0  –1.85E+00 2.42E–01 1 

1  6.63E–04 9.29E–05 0.71 1 

2  2.16E–02 1.26E–03 –0.34 –0.11 1 

3  2.98E+01 1.79E+00 –0.87 –0.88 –0.01 1 

4  1.42E–01 4.14E–02 –0.64 –0.53 –0.09 0.55 1 

  0.4412 – – – – – – 

 
 
 

As a result of applying the model selection, the final formulation of the regression 

model is obtained 
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  2.0 3.0 0.5
0 1 2 3 4 logy RN UPV wc age                (5.12) 

where cy f .  Note that the transformations power for cf  and the variables are 

obtained from power transformation followed by the Box-Cox procedure (Box and Cox 

1964).  Table 5-2 shows the posterior statistics of j  ( 1, 2,3,4j  ) and  .  The age of 

concrete is easily obtainable and the water-cement ratio, wc , is usually specified in the 

construction specification.  However, if wc  cannot be found, other NDT techniques that 

are sensitive to wc  may need to be incorporated to conduct the prediction. 

 

Table 5-3.  Updated posterior statistics of the parameters in the proposed regression 
model using Group 2 data 

Parameter Mean 
Standard 
deviation 

Correlation coefficient 

0  1  2  3  4  

0  –3.06E+00 1.50E–01 1 

1  2.71E–04 4.87E–05 0.55 1 

2  2.44E–02 1.07E–03 –0.19 0.02 1 

3  3.70E+01 1.02E+00 –0.81 –0.72 –0.29 1 

4  2.41E–01 1.64E–02 –0.57 –0.53 –0.23 0.49 1 

  0.5192 – – – – – – 

 
 
 

With the developed model, additional data from Group 2 can be easily 

incorporated to update the model parameters in Eq. (5.12) using Bayesian updating rule.  

The previous obtained posterior statistics in Table 5-2 now become the prior statistics in 

this updating.  The updated posterior statistics using the data in Group 2 is shown in 

Table 5-3.  The updated posterior means of j  are similar with the ones in Table 5-2.  

The decrease in the updated posterior of standard deviations suggests that the new data 
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helps to reduce the statistical uncertainties in the model.  Additionally, a little increase in 

σ is reasonable since the model is updated to accommodate the additional data.  Figure 

5-2 (left) gives the predictions after the Group 2 data is incorporated.  With a perfect 

prediction, the dots should line up along the 1:1 solid line, however, the scatters with the 

1:1 line in the Figure 5-2 (left) indicates that the prediction is fairly well nearly without 

bias.  The dashed lines give the region of mean prediction ± 1 standard deviation. 
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Figure 5-2.  Prediction of Eq. (5.12) model (left) and Eq. (5.13) model (right) using 
training data 

 
 

Alternatively, the authors also access a regression model with respect to only 

SonReb measurements for the cases if age of concrete and water-cement ratio cannot be 

obtained, which is expressed as 

 2.0 3.0
0 1 2y RN UPV          (5.13) 
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Table 5-4 gives the statistics of j  ( 1, 2,3,4j  ) and   for Eq. (5.13).  The model error 

  is increased by about 55% compared with the regression model shown in Eq. (5.13), 

indicating that the additional terms, wc  and age , greatly reduce the statistical 

uncertainties in the prediction.  This observation can be found in Figure 5-2 (right) as 

well, where the scatter using Eq. (5.13) is much larger than the one with Eq. (5.12).  

Accordingly, it further shows that the model selection produces the parsimonious model 

(Eq. (5.12)) with high accuracy. 

 

Table 5-4.  Posterior statistics of the parameters in the regression model shown in Eq. 
(5.13) using training data 

Parameter Mean 
Standard 
deviation 

Correlation 
coefficient 

0  1  2  

0  1.26E+00 1.29E–01 1 

1  1.52E–03 4.99E–05 –0.19 1 

2  3.52E–02 1.56E–03 –0.85 –0.32 1 

  0.8024 – – – – 

 
 
 
5.4 Evaluation of Proposed Regression Model 

As mentioned previously, it is worthwhile to summarize and check the performance of 

many different formulations suggested by different investigators.  Table 5-5 shows the 

summary of those different formulations.  While the appearances of the formulation 

seems very different, they all can be considered as linear forms only with different 

transformations on cf  and SonReb measurements.  To evaluate the performances of the 

proposed model in this study and the previously developed models, several comparisons 
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are conducted in the following.  For the sake of convenience, the proposed model shown 

in Eq. (5.12) is denoted as M0, and Eq. (5.13) is denoted as M0a. 

 

Table 5-5.  A summary of regression formulations developed by different researchers 

Model Formulation 

M1 (Tanigawa et al. 1984; Ramyar and Kol 1996) 0 1 2cf t t R t UPV    

M2 (Bellander 1979) 3
0 1 2cf t t R t UPV    

M3 (Samarin and Meynink 1981) 4
0 1 2cf t t R t UPV    

M4 (Hobbs and Kebir 2007) 2
0 1 2 3cf t t R t UPV t UPV     

M5 (Wiebenga 1968; Arioğlu and Manzak 1991; 
Sriravindrajah et al. 1988) 0 1 2log cf t t R t UPV    

M6 (Arioğlu and Köylüoğlu 1996; 
Kheder 1999) 0 1 2log log logcf t t R t UPV    

M7 (Arioğlu 1994) 3 4
0 1log [ log( )]cf t t R UPV    

M8 (Postacioglu 1985) 0.5 1 1
0 1 2 ( )cf t t R t UPV R       

 
 
 

To be fair in the comparison, the regression formulations shown in Table 5-5 are 

refitted using the training data from Groups 1 and 2.  Then the diagnostic plots and 

marginal model plots that have been used to check the proposed model in the previous 

section are also used to check the validity of the refitted models.  Only the valid models 

should be used to do the further comparison with the proposed model.  As a result, M1, 

M3, M5, and M6 are shown to be valid models, while others are failed in satisfying 

homoskedasticity and normality assumptions and/or having variable modeled 

incorrectly.  Figure 5-3 shows the predictions obtained from M1, M3, M5, and M6 vs. 

the true values when the training data is used for calibration.  The dashed lines shows 

mean prediction ± 1 standard deviation of the prediction for the corresponding model. 
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Figure 5-3.  Prediction of M1, M3, M5, and M6 suggested by other researchers vs. the 

true values using training data 
 
 

Three ways of comparison are conducted in this study.  One is to use a measure 

called Mean Absolute Percentage Error (MAPE), one is to use an evidence ratio (ER) in 

an CAIC  test, and the other one is to use plots of predictions.  MAPE, as an intuitive 

measure of the accuracy of models, is defined as 
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

x Θ
 (5.14) 

Evidence ratio (Motusky and Christopoulos 2004), ER, provides information about how 

much more likely the model with lower CAIC  to be correct.  This ratio is suitable to 

compare two models when the models are not nested and can be obtained by 

 0.5 CAICER e   (5.15) 

where CAIC  absolute difference between CAIC  values of two models.  The lower ER 

value is, more likely the model with lower value of CAIC  is preferred.  The MAPE and 

ER values for each model are shown in Table 5-6.  The proposed model M0 gives the 

lowest value of MAPE, indicating that M0 is more accurate than others in an average 

sense.  When ER is calculated, it is found M0 has much lower value in CAIC  compared 

with the other four models.  Correspondingly the ER values using either training data or 

test data are extremely large, thus the evidence is overwhelmingly in favor of M0.  When 

the alternative model M0a is compared with M1, M3, M5, and M6, the prediction 

obtained by M0a is not worse if it is not better.  When the water-cement ratio and the age 

of the concrete is not obtainable, M0a is still preferred since the transformations used in 

M0a are the same as M0 and it has been shown that M0a better satisfies the 

homoskedasticity and normality assumptions than M1, M3, M5, and M6. 

Figure 5-4 shows the comparison of the predictions using M0, M1, M3, M5, and 

M6 with test data.  The region of mean prediction ± 1 standard deviation of the 

prediction from the proposed model is shown as dashed lines.  It is observed that the 
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proposed model gives the best fit to the test data.  On the other hand, the models 

suggested by other researchers tend to overestimate cf , even after these models are 

calibrated and give unbiased prediction for the training data as shown in Figure 5-3.  

This observation further shows that the proposed model is robust to give much better 

prediction when using test data that are different from the training data.  Additionally, 

the most predictions by the proposed model are fall into the interval of mean ± 1 

standard deviation (dashed lines in Figure 5-4), indicating a confident estimation. 

 

Table 5-6.  A comparison of valid predictive regression models 

Model 0t  1t  2t  3t  4t  
MAPE (%) Evidence Ratio 

Training 
data 

Test 
data 

Training 
data 

Test 
data 

M0 –3.06 0.00027 0.024 37.04 0.24 13.08 13.73 – – 

M0a 1.26 0.00015 0.035 – – 19.76 27.38 – – 

M1 –109.09 1.32 22.52 – – 24.18 29.86 4.47E+201 2.72E+24 

M3 –32.88 1.31 0.072 – – 21.62 32.54 7.33E+161 4.10E+37 

M5 –0.71 0.033 0.72 – – 19.91 25.52 1.02E+166 1.91E+35 

M6 –4.66 1.06 3.07 – – 20.30 26.09 5.17E+164 4.98E+30 
 
 

5.5 Conclusions 

In this study, a probabilistic multivariable linear regression model is developed to predict 

compressive strength, cf , using a combined NDT method of ultrasonic pulse velocity 

(UPV) and rebound number (RN), as known as SonReb.  In the model assessment, 

Bayesian model updating is used to obtain the posterior statistics of model parameters 

and can be used to update the model parameters when new additional data become 

available.  The model selection that is used to develop unbiased and parsimonious 
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models gives us the insight of how the variables contribute to the prediction, instead of 

treating all variables important as the artificial intelligence does.  As a result, additional 

to SonReb measurements, water-cement ratio and age of concrete are found important 

and selected in the proposed model.  Moreover, this study uses multiple imputation (MI) 

to handle missing data so that the information that collected from literature is used as 

much as possible.  Overall, this study presents a general guideline for developing a 

statistically valid multivariable linear regression. 

The existence of model error in the proposed formulation is used to capture the 

inaccuracy of the model form due to NDT measurement errors, environmental effects, 

and other concrete conditions and properties that are not considered.  The simplicity 

formulation of the proposed model makes it suitable to implement to other applications 

such as structural reliability analysis. 

The combined method, SonReb, is advantageous because UPV and RN have 

different sensitivities to some parameters that are important to the prediction of cf .  For 

example, Trtnik et al. (2009) concluded that aggregate cannot be ignored in order to 

obtain accurate prediction.  However, as suggested in the proposed model that aggregate 

type is not included because it has significant influence on UPV but not much on RN.  

Thus, SonReb reduces the number of variables that are needed compared with the case 

when only one NDT method is used. 

In the model performance evaluation, test data is used to compare the prediction 

of the proposed model and the predictions of four regression models suggested by other 

researchers.  It is concluded that the prediction of the developed model performs best 
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either for the training data and the test data.  This conclusion further shows that the 

general guideline proposed in this study can develop a well-performed model. 
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Figure 5-4.  Comparison of predictions of compressive strength using different 
regression models vs. the true values 
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6. CASE STUDY 

 

6.1 Introduction 

Incorporating in-place structural properties to the reliability analysis can give more 

accurate estimates of the actual performance of the bridge.  However, limited study has 

been done in this area.  Estes and Frangopol (2003) and Estes et al. (2003) proposed to 

update the reliability of a bridge based on the results from visual inspections, targeting 

some specific limitations of deterioration models.  Zhao et al. (1994), Byers et al. (1997), 

and Zhang and Mahadevan (2000) incorporated the information from NDT to fatigue 

reliability.  Zheng and Ellingwood (1998a; b) used the results from NDT to update the 

distribution of the crack size, considering the interaction of corrosion and 

fatigue/fracture damage.  These research efforts are limited to corrosion and/or fatigue 

induced deterioration.  However, for an existing bridge, besides corrosion and/or fatigue, 

many other causes can lead to the deterioration.  Peil and Mehdianpour (1999) and Peil 

(2003) described an approach to predict directly the remaining life of a bridge based on 

monitoring data.  However, this is only an empirical approach and it does not use rules 

of mechanics. 

The previous sections describe a framework to identify the actual conditions of a 

bridge in the field using global and local NDT methods and then to use the results from 

NDT to estimate the reliability of a existing RC bridge condition in the seismic zones.  

The RC bridge reliability is evaluated by seismic fragilities.  Seismic fragility is defined 

as the conditional probability of the seismic demand attaining or exceeding a specified 



 

 

151

capacity given certain earthquake intensity levels, S .  The framework can be illustrated 

by the flowchart shown in Figure 6-1. 

 
 

 
Figure 6-1.  Flowchart of the proposed fragility estimate using NDT 

 
 
 
6.2 Case Study 

6.2.1 Introduction of the numerical bridge 

In this Section, a numerical bridge which is a 3D FEM build in OpenSees (McKenna and 

Fenves 2000) is used to illustrate the proposed framework that is shown in Figure 6-1.  

The numerical model simulates a typical box-girder RC highway bridge with one single-

column bent and a pile foundation.  This bridge configuration is shown in Figure 3-1.  In 

the FEM, the box-girder superstructure is modeled by elastic beam elements with a total 

of 73 elements (numbered from left to right).  The column is modeled using non-linear 

beam-column elements with a total of 20 elements (numbered from bottom to top) using 

fiber cross sections including P-∆ effects.  Seat-type abutment is assumed in the 

longitudinal direction.  The interactions between the abutment and the soil are modeled 

using elastic spring elements that follow the model developed by Maroney et al. (1994).  
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It is assumed an initial gap of 152.4 mm in the longitudinal direction and no gap in the 

transverse direction.  The interaction between the pile and the soil is modeled using 

bilinear elastic-perfectly plastic springs.  The stiffness for the pile springs varies with 

different soil types.  Mackie and Stojadinović (2003) give the properties of springs based 

on the USGS (U.S. Geological survey) soil classification.  

 
 

Table 6-1. Design parameters for the preliminary (identified) FEM of the bridge 

Design Parameter Value or Mean COV Distribution

Degree of skew,   0o − − 

Span (the shorter one), 1L  30.480 m 1% Lognormal

Column height, cH  6.706 m 1% Lognormal

Reinforcement nominal yield strength, yf  344.74 MPa 5% Lognormal

Transverse reinforcement nominal yield strength, yhf  275.79 MPa 5% Lognormal

Concrete compressive strength of deck, ,c df  34.47 MPa 
(40.17 MPa) 

7.7%† Lognormal

Concrete compressive strength of column, ,c cf  34.47 MPa 
(43.72 MPa) 

21.4%† Lognormal

Square root of concrete compressive strength of column 

Elements 15 and 16, ,c damf  
5.87 MPa 

(5.49 MPa) 
0.9%‡ 

13.9%†† 
Normal 

Longitudinal reinforcement ratio (column), l  3.59% − − 

Transverse reinforcement ratio (column), s  1.06% − − 

Additional bridge dead load, tw  10% self–weight 25% Normal 

Pile soil stiffness, soilK  (USGS) C − − 

Abutment stiffness in the trans. direction, ,abut tK  88.42 kN/mm 
85.28 kN/mm 

3.4%† Normal 

Two–span ratio, 2 1/L L  1.25 − − 

Column concrete cover, cover 0.038 m 10% Lognormal
†Identified from Bayesian model updating 
‡Identified using SonReb with regression model Eq. (4.12) 
††Identified using SonReb with regression model Eq. (4.13) 
 
 
 

With the information described above, the design parameters for the preliminary 
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FEM are given in Table 6-1.  A target baseline is constructed the same way as 

preliminary FEM but with different values in ,c df , ,c cf , and ,abut tK .  The ratios between 

the preliminary values and the values in target baseline are shown in Table 6-2.  

Furthermore, local damages are introduced into this target baseline.  In this illustration, 

one damage scenario is studied which is simulated by reducing cf  of column Elements 

15 and 16 by 20%, i.e., their equivalent flexural stiffnesses are reduced about 10%.  The 

compressive strength of Elements 15 and 16 are denoted by ,c damf .  The FEM with 

reduced local column elements can be considered as a selected damaged bridge in the 

field.  Note that in reality, the structural properties of the target baseline and the 

damaged FEM are unknown.  The values of ,c df , ,c cf , ,abut tK  in the target baseline are 

chosen to be different from the preliminary FEM so that how they can be identified from 

preliminary values using NDT can be illustrated.  The local damage is introduced in the 

damaged FEM so that the application of global NDT to find damage locations and the 

application of local NDT to identify the local characteristics of structural properties can 

be illustrated. 

 
 

Table 6-2.  Parameter ratios between the baseline values and the preliminary values 

Parameters 
Preliminary 

FEM 
Target 

baseline

Identified baselines 

mean std. 

, ,( ) / ( )c d b c d pf f  1.0 1.2 1.2589 0.2690 

, ,( ) / ( )c c b c c pf f  1.0 1.2 1.1560 0.0886 

, ,( ) / ( )abut t b abut t pK K 1.0 1.5 1.5069 0.0505 
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6.2.2 Applying global NDT 

6.2.2.1 Conduct a vibration test on the damaged FEM 

A vibration test is conducted first on the damaged FEM by applying a pulse force at 

node 15 of the bridge deck.  The pulse force is applied in X, Y, and Z three directions so 

that the bridge modes in different directions can be excited.  The acceleration responses 

are recorded at every 6 nodes on the deck and every other node on the column, which 

simulates 13 accelerometers are evenly put on the deck and 10 accelerometers on the 

column.  To simulate the measurement error, Gaussian white noises with zero means and 

the standard deviations equal to 1% of the amplitude of the acceleration responses is 

used.  Furthermore, 10 s is used as the recording time and 0.005 s is used as the sampling 

time.  Such vibration test is repeated 10 times, and thus 10 sets of responses are 

recorded.   
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6.2.2.2 Determine measurement error and modeling error in TDD 

Following the modal parameter identification method, TDD (Kim et al. 2005), 10 sets of 

modal parameters can be extracted from the 10 sets of acceleration responses.  Note that 

the errors in the extracted modal parameters come from two sources: one is propagated 

from the measurement error in the vibration tests, and the other one is due to the 

modeling error in TDD process.  Section 4 gives the details of accounting for the effects 

due to these two errors.  To assess the effect due to the measurement error, 1000 sets of 

acceleration responses at the same measurement noise level are generated using a 

bootstrap method based on the 10 sets of recorded responses.  To assess the modeling 

error due to TDD, 400 FEMs with the same configurations as the preliminary FEM are 

generated by varying ,c df , ,c cf , ,abut tK .  The reason for choosing the sampling size of 

400 is discussed in Section 4.  In this study, the first five modes are used and they are 

first three deck modes in Z directions ( i  1z , 2z , 3z ) and first two deck modes in Y 

directions ( i  1y , 2y ), as shown in Figure 6-2.  Here 
if

e  and 
iφ

e  denote the modeling 

errors in the i th modal frequencies and mode shape due to the TDD process.  The mean 

and standard deviation of 
if

e , ef  and ef , are found as shown in Table 6-3. 

 
 

Table 6-3.  Estimate of modeling errors in modal frequencies 

Parameter 
Mode 

1z  2z  3z  1y  2y  

Mean error (Hz) 0.0011 0.0038 0.0017 0.0039 -0.0027 

Std. deviation of error (Hz) 0.0212 0.0160 0.0110 0.0179 0.0110 
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Note that in this specific illustration, the mode shapes of the column are of 

interest.  Following the procedures in Section 4, the linear regression models for the 

modeling errors of the column mode shapes are found as, 

    1

, 1 1, 1 2 1, 1 2 1 2 0, 1 1, 1 2 1z z z z z z z z z z zf f          φe φ φ I φ ε  (6.1) 

  , 2 1, 2 1 0, 2 1, 2 1 2z z z z z z z       φe φ I φ ε  (6.2) 

  , 1 1, 1 2 0, 1 1, 1 2 1y y y y y y y       φe φ I φ ε  (6.3) 

  , 2 1, 2 1 0, 2 1, 2 1 2y y y y y y y       φe φ I φ ε  (6.4) 

where  ,  , and   are the model parameters that are given in Table 6-4, I  a vector 

with all one entries,    normal random variables with zero mean and unit variance, and 

ε a vector of normal random variables with zero mean and unit variance.  Additionally, 

the modeling error for the mode shape of mode i  3z  is not assessed because the column 

deformation is in the axial direction for this mode, which does not reflect the flexural 

stiffness of the column.  Thus it has no contribution in DIM to detect the damage 

locations on the column. 

 

6.2.2.3 Identify baseline using Bayesian model updating 

The next step of the global NDT is to update the preliminary FEM with the modal 

frequencies obtained from the vibration test on the damaged FEM.  Table 6-5 compares 

the mode frequencies of the preliminary FEM, the target baseline, the identified baseline, 

and the damaged FEM.  The differences between the values in the preliminary FEM and 

the ones in the damaged FEM indicate that preliminary FEM needs to be updated.  The 
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chosen parameters should be sensitive to the vibration measurement data and enable the 

correction of the recognized uncertainties (Friswell and Mottershead, 1995).  With the 

mode frequencies used for the model updating, the posterior PDF of the chosen 

parameters m x { ,c df , ,c cf , ,abut tK }, ( )mp x , can be obtained by Bayesian model 

updating through 

      m m mp L p x F x x  (6.5) 

where 1[ ( ) ( )d ]m m mL p   F x x x , ( )mp x prior PDF of mx , and ( )mL F x likelihood 

function and can be calculated by 

    
  2

2 2 2
,

2
,,

ˆ
1

exp
22

j j j f j

m
j f jf j

j

f f f
L



 

         
 


F x  (6.6) 

where it assumes that the prediction error, 2 2 2ˆ( ) /j j j jf f f   , between the square of the 

frequency predicted using FEM, ˆ
jf , and the square of the corresponding target frequency, 

jf , follows a normal distribution.  The target frequencies are the modal frequencies 

extracted from the vibration data obtained from the vibration test on the damaged FEM.  

The target frequencies for the Bayesian model updating is the extracted frequencies from 

the vibration data obtained from a vibration test on the damaged FEM.  In Eq. (6.5), one 

could use a noninformative prior that is a locally uniform distribution (Box and Tiao 

1992).  As mentioned before, using the modal frequencies can help construct an accurate 

baseline because damage at local level has insignificant effects on the modal frequencies, 
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which can be confirmed by the closeness between the modal frequencies of the target 

baseline and the ones of the damaged FEM as shown in Table 6-5. 

 
 

Table 6-4.  Statistics of the model parameters 

1  1  0  1    

1z  
mean -9.93E-03 8.63E-03 4.19E-05 1.28E-03 1.63E-09 
cov† -1.93E-02 2.19E-02 - - - 

2z  
mean 2.54E-03 - 1.23E-04 3.05E-03 1.43E-08 
cov† 1.56E-02 - - - - 

1y  
mean 1.41E-03 - 1.44E-06 1.32E-03 3.72E-10 
cov† 1.06E-02 - - - - 

2y  
mean -3.00E-03 - 1.53E-05 1.60E-03 1.10E-09 
cov† -5.79E-03 - - - - 

† cov = coefficient of variation = standard deviation / mean 

 
 
 

Table 6-5.  Comparison of modal frequencies (Hz) 

Mode 
Preliminary† 

FEM 
Target† 
baseline 

Damaged 
FEM‡ 

Identified baseline 

Mean St. Dev. 

1z  2.4752 2.5009 2.5415 2.5049 0.0221 

2z  3.2977 3.4484 3.4213 3.4309 0.0566 

3z  4.7685 4.9970 4.9853 4.9673 0.0886 

1y  2.3623 2.7673 2.7370 2.7759 0.0393 

2y  3.8474 4.6464 4.6921 4.6517 0.0616 
† frequencies obtained from modal analysis 
‡ frequencies obtained from TDD

 
 
 

As the results of the model updating, the modal frequencies from the target 

baseline agree well with the identified baseline as found in Table 6-5.  Similarly, the 

updated parameters ratios from identified baseline come to an agreement with the ones 

in the target baseline shown in Table 6-2.  Those observations conclude that the 
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preliminary FEM has been updated successfully. 

 

6.2.2.4 Identify damage locations by DIM 

With the mode shapes from the identified baseline, and mode shapes extracted from the 

vibration data obtained from a vibration test on the damaged FEM, DIM is applied to 

identify the damage locations on the column.  If the column is divided into small 

segments along the height (in this case, 10 segments with the same length are divided), 

for the i th segment, DIM calculates a corresponding damage index, iDI .  Then, a 

corresponding normalized damage index can be calculated by ( ) /i i DI DIZ DI    , 

where DI  and DI  refer to the mean and standard deviation of iDI .  To identify the 

damage location, a threshold value needs to be selected.  When a threshold i  is chosen, 

the probabilities that the DIM indicates damage ( iID ) and does not indicating damage 

( iNID ) in a component i  can be defined as, 

     # i i
i i i

of cases where Z
P ID P Z

n

 
    (6.7) 

     # i i
i i i

of cases where Z
P NID P Z

n

 
    (6.8) 

where n number sets of mode shapes that are extracted from vibration tests.  As 

described before, there are 1000 sets of acceleration responses at the same measurement 

noise level are generated, which gives 1000 sets of mode shapes for the damaged FEM.  

Thus, 1000n   in this numerical study. 
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Figure 6-3 gives the damage index of each segment for the simulated damage 

case under measurement noise level of 1%, considering the measurement error and 

modeling error in TDD.  The variability of the damage index as shown in Figure 6-3 

indicates that the influences of the modeling and measurement errors on DIM are not 

negligible.  To determine probability of damage detection, three different threshold 

values are used, as shown in Figure 6-4.  As discussed in Section 4, a lower value of 

threshold gives a higher probability of correct detection for the damaged elements but 

also higher probability of false detection for the undamaged elements.  On the other 

hand, a higher value of threshold lowers the false detection of undamaged elements but 

also the correct detection of damaged elements.  Comparing the results in Figure 6-4 

with the results in Section 4, one can find that with the same level of measurement noise 

and about the same level of damage severity, the probability of the correct detection for 

the damaged elements is much lower for this illustration even when the threshold is low.  

This is due to the fact that in DIM, the structural component is assumed as Euler-

Bernoulli beam; however, the bridge column in this study has almost 4:1 slender ratio 

which may not quite well satisfy the assumption of an Euler-Bernoulli beam.  Again, as 

found in Section 4, for the undamaged element adjacent to the end of the column, the 

probability of false detection is high, which is partially due to the use of spline 

interpolation for calculating the mode shape curvature in DIM. 
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Figure 6-3.  Z values (solid line: mean, dotted line: mean ± 1 1standard deviation) for 
the bridge column elements with under 1% measurement error 
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Figure 6-4.  Probability of damage detection for the bridge column elements under 1% 
measurement error 

 

 
6.2.3 Applying local NDT 

In the suspected damage area that is identified by the global NDT, the local NDT can be 

applied in order to detect the damage severity.  In this numerical study, it is legitimate to 
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assume SonReb with the regression models of Eq. (4.12) or Eq. (4.13) can provide an 

unbiased estimation for the compressive strength in the damaged element, ,c damf .  

However, the model errors are different in Eq. (4.12) or Eq. (4.13).  Thus, one can 

assume that with Eq. (4.12) the estimate for ,c damf  has a mean of 5.753 MPa  and a 

standard deviation of 0.5192 MPa , while the estimate for ,c damf  using Eq. (4.13) has 

the same mean but the standard deviation of 0.8024 MPa . 

 

6.2.4 Assessing fragilities 

6.2.4.1 Importance Measure 

To account for the inherent randomness of the structural properties in the fragility 

estimate for the damaged FEM, some quantities are considered as random variables and 

their statistic information is shown in Table 6-1.  Note that the statistic information about 

the quantities ,c df , ,c cf , ,abut tK  and ,c damf  are obtained from NDT.  As pointed out in 

the previous section, there are different ways to estimate fragility depending on the 

treatment of the uncertainties.  Therefore, it is worthy to first look at the contributions of 

each random variable to the variability in the limited function as shown in Eq. (3.13).  

This can be done by comparing important measures of random variables (Der 

Kiureghian and Ke 1995).  A vector of importance measures, γ , for a vector of random 

variables, y , defined by 

 
* *

* *

,

,

T

T

T





u y

u y

α J SD
γ

α J SD
 (6.9) 
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where { , }r y x , α  a row vector of the negative normalized gradient of limit state 

function evaluated at the design point (the most likely failure point) in the standard 

normal space u  transformed from the original space y , * *,


u y
J  the Jacobian of the 

probability transformation from the original space y  to the standard normal space u  at 

the design point, and  SD standard deviation matrix of equivalent normal variables y  

that can be calculated from * *

* *

,
( )   

u y
y y J u u  at the design point.  The entries in 

SD  corresponds to the square root of the diagonal entries of the covariance matrix 

* * * *, ,
( )T 

u y u y
Σ J J .  The larger of the absolute value of importance measure is, the larger 

effect of that corresponding random variable has on the variability of the limit state 

function.  In other words, one can ignore the uncertainties contributed from those 

random variables that have relative small importance measures. 

As the demand models are conditioning on the earthquake intensity measures, 

PSA  and PGV , one can choose different levels of PSA  and PGV  to check whether the 

importance measures changes.  Herein, three cases are considered: Case 1 with 

/ 0.5PSA g   and 1 / 0.5cPGV T H  , Case 2 with / 1.0PSA g   and 

1 / 1.5cPGV T H  , and Case 3 with / 3.0PSA g   and 1 / 2.5cPGV T H  .  Those 

values of PSA  and PGV  are chosen so that different level of failure probabilities are 

included.  Table 6-6 lists the importance measures of the random variables for the 

deformation and shear fragility estimates.  For the deformation failure mode, C  and 

D  are two most important variables, and 0  and 2  are the next important ones.  The 
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variability contributed from rx  can be ignored.  For the case of shear failure mode, Cv , 

Dv , 0v  , and 2v  are the most important variables, the variability from ,c cf  and ,c damf  

should be considered as well.  The above observations hold true for all three cases with 

different levels of earthquake intensity measures. 

These observations found in Table 6-6 further tell us the importance of 

appropriately accounting for uncertainties in the probabilistic capacity and demand 

models, especially the model errors that are used to describe the error due to the inexact 

model form.  Furthermore, when the importance measures for the parameters of rx  are 

compared, accurately obtaining ,c cf  and ,c damf  for the shear fragility is necessary.  Thus, 

the efforts should be made to obtain accurate estimation of ,c cf  and ,c damf , such as to 

adopt reliable NDT techniques. 



 

 

166

 
Table 6-6.  Importance measures for deformation and shear failure modes 

 deformation shear 
 symbol Case 1 Case 2 Case 3 symbol Case 1 Case 2 Case 3 

model 
parameters 
in capacity 

model 

, 1C   –0.1522 –0.1555 –0.1582 – – – – 

, 2C   –0.0689 –0.0703 –0.0716 , 1C v  –0.1754 –0.1825 –0.1879 

, 3C   –0.0635 –0.0649 –0.0661 , 2C v  –0.1578 –0.1656 –0.1724 

,C   0.0536 –0.0010 –0.0514 ,C v  0.0298 0.0089 –0.0177 

,C   –0.5807 –0.5927 –0.6091 ,C v  –0.6591 –0.6581 –0.6526 

model 
parameters 
in demand 

model 

, 0D   0.2608 0.2665 0.2712 , 0D v  0.2966 0.3085 0.3176 

, 1D   –0.0537 –0.0490 –0.0332 , 1D v  –0.0475 –0.0446 –0.0315 

, 2D   –0.4001 –0.3446 –0.2465 , 2D v  –0.4283 –0.3755 –0.2723 

, 3D   –0.0401 0.0240 0.0552 , 3D v  –0.0420 0.0256 0.0595 

, 4D   0.0521 0.0533 0.0542 , 4D v  0.0000 0.0000 0.0000 

, 5D   0.0081 0.0689 0.1612 , 5D v  0.0077 0.0672 0.1593 

,D   0.6242 0.6380 0.6493 ,D v  0.3994 0.4155 0.4278 

geometric 
and 

material 
parameters 

1L  –0.0026 –0.0006 0.0016 1L  –0.0065 –0.0104 –0.0180 

cH  –0.0048 –0.0725 –0.0088 cH  –0.0146 –0.0154 –0.0180 

yf  –0.0450 –0.0446 –0.0507 yf  0.0346 0.0520 0.0849 

,c cf  –0.0260 –0.0216 –0.0111 ,c cf  –0.2110 –0.2388 –0.2863 

tw  0.0164 0.0144 0.0096 tw  0.0018 0.0048 0.0108 

yhf  0.0004 0.0001 –0.0010 yhf  –0.0701 –0.0719 –0.0716 

cover  0.0066 0.0061 0.0063 cover  –0.0020 –0.0040 –0.0081 

,c damf  –0.0008 –0.0003 0.0012 ,c damf  0.1521 0.1576 0.1603 

,c df  –0.0001 0.0000 0.0001 ,c df  0.0007 0.0008 0.0002 

,abut tK  0.0000 0.0000 0.0000 ,abut tK  –0.0001 0.0000 –0.0001 

 

 
6.2.5 Fragility estimates 

The marginal distribution of θ  in Eqs. (2.1) and (3.1) is multi-variate t  distribution, 

which can be approximately considered as Normal distribution since the number of data 

used for accessing θ  is large.  With the variability in the structural properties being 
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ignored, which has been verified by the importance analysis, the capacity (Eq. (2.1)) and 

demand (Eq. (3.1)) are multivariate normally distributed because they are linear 

combinations with the components that have univariate normal distributions.  Thus, the 

fragility estimates for deformation and shear failure modes can be written as, 

   , ,

2 2
, ,

1 C k D k

C k D k

F
 

 

   
  

s
 

            ,k v  (6.10) 

where ( )   cumulative distribution function (CDF) of a standard normal random 

variable, ,C k  and ,D k mean estimates of the capacity and demand models for the thk  

failure mode, and ,C k  and ,D k  standard deviation estimates of the capacity and 

demand models for the thk  failure mode.  Since the capacity and demand are the linear 

functions of normal distribution random variables, ,C k  and ,D k   can be calculated 

straightforwardly when considering the variability from θ  and the model errors ,C k k   

and ,D k k  .  If the variability in ,c cf  and ,c damf  needs to be accounted, the first order 

second moment approximation (FOSM) can be applied. 

Similarly, the fragility for the deformation-shear bi-variate failure mode can be 

calculated by 

   , , , ,
2 2 2 2 2

, , , ,

1 , ,C D C v D v
v

C D C v D v

F  


 

   


   

    
   

s
   

 (6.11) 

where 2 ( )   is the bi-variety CDF of two standard normal random variables, and 

v  the correlation between g  and vg .  If the capacity and demand models are 
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statistically independent, then v  can be calculated by 

 
  
, , , , , ,

2 2 2 2
, , , ,

C v C C v D v D D v
v

C D C v D v

   


 

     


   




    
 (6.12) 
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Figure 6-5.  Deformation fragilities of the target damaged FEM (solid lines), the 
preliminary FEM (large dashed lines), and the identified damaged FEM (small dashed 

lines) 
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Figure 6-6.  Shear fragility of the target damaged FEM (solid lines), the preliminary 
FEM (large dashed lines), and the identified damaged FEM (small dashed lines) 
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Figure 6-7.  Bi-variate fragility of the target damaged FEM (solid lines), the preliminary 
FEM (large dashed lines), and the identified damaged FEM (small dashed lines) 
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Figures 6-5 to 6-7 show the fragilities for deformation, shear, and bi-variate 

failure modes.  Notice that the change in the variability of the shear demand models 

results in the discontinuities in fragility contour lines in shear and bi-variate fragilities 

because different weights are used for shear demand model assessment.  Each contour 

represents a fragility level in the range of 0.1 to 0.9 for a given pair of normalized 

/PSA g  and 1 / cPGV T H .  Note that in reality, the exact values of the structural 

properties of the target damaged FEM are unknown, thus the true fragility is unknown.  

However, in this numerical study, the properties of the target damaged FEM are known, 

therefore one can use the corresponding fragility to check the accuracy of the fragilities 

using the identified FEM. 

In Figures 6-5 to 6-7, the solid line denotes the fragilities of the target damaged 

FEM, the dash-dotted line represents the fragility based on the preliminary values, and 

the dotted lines shows the fragility based on the identified FEM using the NDT methods.  

The difference between the solid lines and the dash-dotted lines are shown that using the 

preliminary values can not reflect the bridge performance correctly especially when the 

intensity measures become higher for the deformation and bi-variate fragilities where 

this difference becomes more obvious.  On the other hand, the solid lines and the dotted 

lines are consistently close to each other indicating that the fragilities using the identified 

structural properties obtained from NDT are accurate enough to reflect the true 

performance of the bridge. 

 
6.3 Conclusions 

In this Section, the framework proposed by this dissertation is illustrated by a RC bridge 
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with a single-column bent.  A damage scenario is modeled by reducing compressive 

concrete strength of two elements in the column.  The global NDT is applied first to 

identify the damage area and then a specific local NDT, SonReb (a combination of 

ultrasonic pulse velocity and rebound number tests) is used to assess the compressive 

strength of concrete in the suspected damage area.  With the identified structural 

properties obtained from NDT, the probabilistic capacity and seismic demand are 

assessed.  Accordingly, the fragilities are updated through reliability analysis. 

To access the effects of each random variable on the variance of the limit state 

function, importance analysis is conducted.  As the results of the importance measure, 

the variance from model parameters of the probabilistic capacity and demand models 

have much more impact on the fragility estimates than the variance brought in by the 

structural properties.  Based on this finding, the fragility estimate can be assessed by a 

closed form, which saves much computation time by avoiding using any conventional 

reliability analysis.  Additionally, the importance analysis shows that the concrete 

compressive strength of the column is important among the structural properties for the 

shear fragility estimate, and the properties of the superstructures are shown to be not 

significant.  This is due to the fact that the failure is respect to the failure of the column.  

Furthermore, the result of the illustration shows that the proposed framework can 

successfully provide up-to-date structural properties and accurate fragility estimates. 
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7. CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusions 

In this dissertation, an adaptive reliability analysis of RC bridges was developed based 

on the proposed probabilistic capacity models and demand models.  The structural 

properties obtained from a combination of global and local NDT methods were used to 

capture the actual deterioration of bridges over time.  The proposed framework accounts 

for the prevailing uncertainties in the capacity models and demand model, and the 

measurement and modeling errors in the NDT process.  Avoiding the use of 

deterioration models, the proposed adaptive framework has three advantages: 

 it takes into account all sources of information (sensed data, rules of mechanics, 

experimental data, and measurement errors), instead of using assumed values as 

conventional reliability analysis usually tends to do; 

 it accounts for all causes of deterioration and is not limited to specific degrading 

mechanisms;  

 the information obtained from damage detection using NDT can be used to 

predict future degradation and service life of an RC bridge by calibrating the 

existing damage models. 

The proposed work not only provides accurate information about current health 

conditions of RC bridges, but also provides important information to deal with the 

problems of maintenance, repair and rehabilitation.  Moreover, while the focus of the 

proposed work is on bridges, the same technology will be available for other civil 
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engineering systems including locks, walls, buildings, pipelines, dams, tunnels, seaports, 

highways, railroads, and power generation stations.  Additional advancements with 

respect to the current research are also proposed in terms of the interpretation and use of 

the data from NDT.  The permanent monitoring of bridges will foster the creation of a 

database of the damage history of the system, which is not only important for accurate 

assessment of the reliability and better prediction of the service-life prediction of a 

system but also for developing optimal lifetime reliability-based maintenance strategies 

for bridges. 

 

7.2. Future Work 

My future research interests will continue in two interrelated directions: structural 

reliability and the application of NDT and structural health monitoring (SHM).  In the 

near term, I plan to expand the framework developed in this dissertation to other types of 

structures such as different classes of RC bridges and steel bridges.  I also plan to apply 

the developed framework to evaluate the safety of transportation networks using the up-

to-date structural properties of the individual bridges. 

Although NDT and SHM techniques are developed to assess the in-situ 

properties of existing structures, an accurate deterioration model is still needed to predict 

future structure performance.  I plan to better understand the deteriorating behavior of 

structural materials.  My focus will be to incorporate the uncertainties in the material 

itself and in the factors that trigger the deterioration process.  The application of 

stochastic process and spatial statistics will be used to pursue this area.  I am also 
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interested in developing probabilistic demand models for natural hazards, such as 

earthquakes, floods, and hurricanes, and man-made hazards like vehicle impact.  In the 

model development, one needs to consider not only the uncertainties from the 

infrastructure itself but also the stochastic characteristics of the hazards.  Modeling using 

discrete stochastic processes is suitable for this purpose. 

Today, the development of NDT and SHM technologies for evaluating existing 

or newly built structures have now attained some degree of maturity.  However, the 

implementations of these technologies and their applications have many challenges, 

which open many new research areas to explore.  Particularly, I am interested in 

evaluating the reliability of different NDT methods and the accuracy of damage 

detection methods, considering the measurement and modeling uncertainties.  

Understanding where errors might occur and how the errors propagate will help us 

appropriately use the identified values of structural properties.  I am also interested in 

performance-based SHM.  For a given number of sensors, optimizing the sensor layout 

should be determined by minimizing the uncertainties in the identified model parameters 

and providing the most valuable information for the structural performance analysis.  

With the constraint of the available funding and the importance and sensitivity of the 

monitoring data used to evaluate structural performance, the optimal number and 

configuration of sensors can be obtained. 

In addition to these specific interests, I am also interested in working more 

broadly on reliability of complex systems, structural behavior under stochastic 

excitations, risk assessment, and decision making under uncertainty.   
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APPENDIX A 

 

Table A.1.  Parameters in the deformation capacity model 

Parameter Mean 
Standard 
Deviation 

Correlation Coefficient 

, 1C   , 2C   , 3C   ,C 

, 1C   0.675 0.105 1.0    

, 2C   0.631 0.133 −0.27 1.0   

, 3C   −57.5 10.1 −0.63 −0.39 1.0  

,C   0.4 0.045 −0.39 −0.06 −0.13 1.0 

 
 
 
Table A.2.  Parameters in the shear capacity model 

Parameter Mean 
Standard 
Deviation 

Correlation Coefficient

, 1C v  , 2C v  ,C v  

, 1C v  18.3 1.45 1.0   

, 2C v  −0.47 0.078 −0.87 1.0  

,C v  0.185 0.018 −0.04 −0.02 1.0 

 
 
 
Table A.3.  Parameters in the bivariate deformation-shear capacity model 

Parameter Mean 
Standard 
Deviation

Correlation Coefficient 

, 1C  , 2C  , 3C  ,C  , 1C v  , 2C v  ,C v  C  

, 1C   
 

0.597 0.116 1.00        

, 2C   
 

0.787 0.179 −0.40 1.00       

, 3C   
 

−56.44 11.071 −0.60 −0.34 1.00      

,C   
 

0.415 0.048 −0.20 0.17 0.09 1.00     

, 1C v  
 

17.039 1.519 0.00 −0.02 0.04 −0.05 1.00    

, 2C v  
 

−0.446 0.081 0.06 −0.14 0.03 0.05 −0.84 1.00   

,C v  
 

0.196 0.019 0.09 0.03 −0.11 0.15 −0.12 0.12 1.00  

C  
 

−0.463 0.152 0.15 −0.22 0.03 −0.09 0.13 0.00 −0.10 1.00 
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APPENDIX B 

 
Table B. 1. The design parameters for the 60 bridge configurations 

Scenario 
Design Parameter 

  1L  cH  /c sD D  yf  
cf   l  s  tw  soilK  abutK  2 1/L L  

1 13.220 64.068 21.759 0.916 40.000 6.136 0.013 0.004 0.552 D F 1.085 
2 46.780 76.271 17.661 1.062 77.288 4.695 0.022 0.010 0.243 A C 1.280 
3 29.492 96.610 27.749 0.670 93.136 5.881 0.023 0.010 0.607 D D 1.364 
4 55.932 112.881 24.597 1.296 49.322 4.610 0.024 0.005 0.508 D A 1.153 
5 27.458 175.932 23.651 0.759 58.644 5.458 0.038 0.011 0.287 A F 1.432 
6 36.610 155.593 28.380 0.704 53.983 6.729 0.036 0.008 0.706 C B 1.051 
7 35.593 80.339 28.064 0.983 71.695 4.780 0.023 0.004 0.728 C F 1.390 
8 54.915 149.492 28.695 1.229 85.678 6.390 0.018 0.008 0.320 A D 1.008 
9 26.441 141.356 24.281 0.927 43.729 3.169 0.015 0.007 0.210 B A 1.322 

10 4.068 88.475 32.163 0.938 89.407 3.847 0.027 0.009 0.122 A F 1.042 
11 50.847 66.102 27.119 1.185 92.203 3.254 0.031 0.007 0.386 D C 1.314 
12 45.763 145.424 20.814 1.173 54.915 4.949 0.012 0.009 0.695 B A 1.246 
13 56.949 131.186 30.586 0.849 79.153 3.000 0.019 0.008 0.298 A F 1.458 
14 22.373 125.085 16.715 1.308 62.373 6.814 0.018 0.008 0.419 B E 1.034 
15 23.390 173.898 20.183 0.894 78.220 3.085 0.024 0.011 0.397 B E 1.017 
16 33.559 167.797 30.902 1.073 91.271 3.678 0.033 0.007 0.265 B A 1.127 
17 11.186 118.983 27.434 1.117 82.881 3.508 0.011 0.006 0.673 A D 1.212 
18 39.661 137.288 34.369 1.330 60.508 5.966 0.021 0.004 0.486 A B 1.373 
19 34.576 60.000 35.000 1.285 67.034 5.034 0.017 0.009 0.464 B D 1.178 
20 3.051 159.661 33.424 0.681 61.441 5.627 0.028 0.007 0.453 D E 1.475 
21 10.169 94.576 23.336 0.815 52.119 4.271 0.030 0.006 0.596 A B 1.000 
22 19.322 100.678 31.217 0.860 45.593 5.119 0.030 0.009 0.739 A D 1.449 
23 9.153 92.542 24.912 1.274 64.237 7.576 0.019 0.010 0.530 C A 1.466 
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Table B. 1. (cont.) The design parameters for the 60 bridge configurations 

Scenario 
Design Parameter 

  1L  cH  /c sD D  yf  
cf   l  s  tw  soilK  abutK  2 1/L L  

24 0.000 116.949 23.966 1.263 80.085 5.288 0.012 0.005 0.232 D D 1.424 
25 6.102 72.203 19.868 1.017 81.017 5.542 0.032 0.008 0.651 B G 1.356 
26 2.034 147.458 26.803 1.050 65.169 4.864 0.038 0.005 0.254 D A 1.254 
27 53.898 121.017 33.739 1.129 94.068 6.475 0.031 0.010 0.640 A B 1.415 
28 21.356 110.847 30.271 0.827 53.051 7.661 0.010 0.010 0.684 C C 1.161 
30 47.797 82.373 25.542 0.737 68.898 6.305 0.035 0.008 0.100 B F 1.093 
31 37.627 163.729 17.346 1.106 69.831 7.153 0.040 0.010 0.188 C B 1.229 
32 58.983 108.814 22.390 1.084 70.763 4.017 0.039 0.009 0.717 B F 1.059 
33 38.644 70.169 18.607 0.994 47.458 8.000 0.037 0.006 0.353 C B 1.136 
34 7.119 98.644 22.075 0.782 48.390 3.932 0.036 0.011 0.431 C C 1.220 
35 52.881 151.525 29.641 1.140 50.254 3.763 0.039 0.009 0.408 C E 1.483 
36 24.407 114.915 26.488 1.095 57.712 7.746 0.035 0.010 0.144 C G 1.347 
37 32.542 123.051 22.705 0.793 67.966 3.424 0.034 0.005 0.309 D G 1.237 
38 1.017 74.237 26.173 0.692 90.339 5.797 0.016 0.006 0.111 B A 1.186 
39 40.678 153.559 20.498 1.207 55.847 6.559 0.029 0.004 0.166 C E 1.331 
40 31.525 84.407 17.031 0.715 73.559 7.237 0.017 0.008 0.574 A G 1.144 
41 12.203 102.712 31.532 0.972 40.932 7.831 0.020 0.007 0.177 B B 1.305 
42 41.695 106.780 18.292 1.039 83.814 6.644 0.029 0.011 0.629 D A 1.169 
43 5.085 86.441 25.858 1.319 41.864 5.373 0.026 0.007 0.442 B G 1.339 
44 44.746 180.000 34.685 0.804 87.542 6.051 0.021 0.004 0.133 D C 1.102 
45 15.254 104.746 33.108 1.028 59.576 3.339 0.014 0.009 0.276 D G 1.076 
46 8.136 127.119 31.847 1.218 88.475 7.492 0.033 0.006 0.375 A G 1.271 
47 20.339 161.695 19.553 1.252 63.305 3.593 0.025 0.005 0.618 C A 1.441 
48 51.864 135.254 18.922 0.950 86.610 6.898 0.028 0.005 0.563 A C 1.288 
49 18.305 143.390 21.129 0.838 46.525 5.712 0.020 0.005 0.364 A G 1.381 
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Table B. 1. (cont.) The design parameters for the 60 bridge configurations 

Scenario 
Design Parameter 

  1L  cH  /c sD D  yf  
cf   l  s  tw  soilK  abutK  2 1/L L  

50 25.424 171.864 29.956 1.162 81.949 4.525 0.011 0.011 0.342 D D 1.398 
51 14.237 129.153 32.793 1.241 75.424 6.220 0.034 0.009 0.541 C B 1.025 
52 60.000 68.136 29.325 0.905 42.797 5.203 0.025 0.009 0.497 D E 1.203 
53 42.712 165.763 23.020 0.961 51.186 7.322 0.026 0.010 0.585 B G 1.110 
54 57.966 90.508 34.054 0.726 74.492 4.356 0.022 0.006 0.475 B C 1.068 
55 49.831 62.034 25.227 1.006 76.356 7.915 0.014 0.005 0.221 C C 1.297 
56 48.814 139.322 17.976 0.771 56.780 6.983 0.016 0.008 0.331 C E 1.492 
57 43.729 157.627 16.400 0.748 84.746 4.102 0.013 0.006 0.155 B D 1.195 
58 30.508 133.220 21.444 1.196 95.000 7.068 0.015 0.007 0.750 D F 1.500 
59 17.288 78.305 32.478 0.883 66.102 4.441 0.037 0.006 0.199 A C 1.407 
60 16.271 177.966 19.237 0.871 72.627 7.407 0.032 0.007 0.519 D E 1.263 
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APPENDIX C 
 
Table C. 1.  Ground motion records for SMSR in Group 1 

Record ID Event and Time M R GM USGS 

P0552 Chalfant Valley 1986/07/21 14:42 6.2 23 A - 
P0359 Coalinga 1983/05/02 23:42 6.4 29.6 A - 
P0370 Coalinga 1983/05/02 23:42 6.4 27.7 A - 
P0165 Imperial Valley 1979/10/15 23:16 6.5 26.5 A B 
P0191 Imperial Valley 1979/10/15 23:16 6.5 26 A B 
P0448 Morgan Hill 1984/04/24 21:15 6.2 16.2 A A 
P0538 N. Palm Springs 1986/07/08 09:20 6 25.8 A A 
P0612 Whittier Narrows 1987/10/01 14:42 6 26.8 A - 
P0341 Coalinga 1983/05/02 23:42 6.4 29.6 B - 
P0344 Coalinga 1983/05/02 23:42 6.4 28.4 B - 
P0347 Coalinga 1983/05/02 23:42 6.4 29.9 B - 
P0213 Livermore 1980/01/24 19:00 5.8 29.8 B B 
P0215 Livermore 1980/01/24 19:00 5.8 21.7 B C 
P0216 Livermore 1980/01/24 19:00 5.8 17.6 B C 
P0462 Morgan Hill 1984/04/24 21:15 6.2 22.7 B B 
P0464 Morgan Hill 1984/04/24 21:15 6.2 16.2 B B 
P0606 Whittier Narrows 1987/10/01 14:42 6 23.3 B - 
P0631 Whittier Narrows 1987/10/01 14:42 6 27 B B 
P0639 Whittier Narrows 1987/10/01 14:42 6 28.5 B C 
P0697 Whittier Narrows 1987/10/01 14:42 6 29.3 B B 
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Table C. 2.  Ground motion records for SMLR in Group 1 

Record ID Event and Time M R GM USGS 

P0550 Chalfant Valley 1986/07/21 14:42 6.2 33.4 A - 
P0559 Chalfant Valley 1986/07/21 14:42 6.2 40.6 A - 
P0327 Coalinga 1983/05/02 23:42 6.4 38.4 A - 
P0357 Coalinga 1983/05/02 23:42 6.4 34.4 A - 
P0358 Coalinga 1983/05/02 23:42 6.4 31.8 A - 
P0364 Coalinga 1983/05/02 23:42 6.4 32.3 A - 
P0214 Livermore 1980/01/24 19:00 5.8 31 A B 
P0477 Morgan Hill 1984/04/24 21:15 6.2 44.1 A E 
P0537 N. Palm Springs 1986/07/08 09:20 6 43.8 A - 
P0554 Chalfant Valley 1986/07/21 14:42 6.2 36 B - 
P0325 Coalinga 1983/05/02 23:42 6.4 40.5 B - 
P0353 Coalinga 1983/05/02 23:42 6.4 38.8 B - 
P0354 Coalinga 1983/05/02 23:42 6.4 41 B - 
P0355 Coalinga 1983/05/02 23:42 6.4 47 B - 
P0365 Coalinga 1983/05/02 23:42 6.4 34.6 B - 
P0456 Morgan Hill 1984/04/24 21:15 6.2 31.4 B B 
P0518 N. Palm Springs 1986/07/08 09:20 6 35.3 B B 
P0522 N. Palm Springs 1986/07/08 09:20 6 34.9 B B 
P0694 Whittier Narrows 1987/10/01 14:42 6 32.6 B B 
P0705 Whittier Narrows 1987/10/01 14:42 6 30.1 B B 
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Table C. 3.  Ground motion records for LMSR in Group 1 

Record ID Event and Time M R GM USGS 

P0734 Loma Prieta 1989/10/18 00:05 6.9 21.8 A - 
P0749 Loma Prieta 1989/10/18 00:05 6.9 17.9 A E 
P0498 Nahanni, Canada 1985/12/23 6.8 16 A - 
P0885 Northridge 1994/01/17 12:31 6.7 26.8 A A 
P0915 Northridge 1994/01/17 12:31 6.7 22.7 A A 
P0937 Northridge 1994/01/17 12:31 6.7 24.5 A B 
P0059 San Fernando 1971/02/09 14:00 6.6 27 A - 
P0076 San Fernando 1971/02/09 14:00 6.6 24.2 A B 
P0077 San Fernando 1971/02/09 14:00 6.6 23.5 A A 
P0084 San Fernando 1971/02/09 14:00 6.6 19.1 A - 
P0090 San Fernando 1971/02/09 14:00 6.6 27.5 A - 
P0738 Loma Prieta 1989/10/18 00:05 6.9 19.9 B B 
P0746 Loma Prieta 1989/10/18 00:05 6.9 24.2 B C 
P0791 Loma Prieta 1989/10/18 00:05 6.9 18.1 B - 
P0906 Northridge 1994/01/17 12:31 6.7 23.7 B B 
P0910 Northridge 1994/01/17 12:31 6.7 23.9 B C 
P0950 Northridge 1994/01/17 12:31 6.7 20 B B 
P0994 Northridge 1994/01/17 12:31 6.7 26.2 B B 
P0056 San Fernando 1971/02/09 14:00 6.6 24.9 B B 
P0078 San Fernando 1971/02/09 14:00 6.6 20.3 B B 
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Table C. 4.  Ground motion records for LMLR in Group 1 

Record ID Event and Time M R GM USGS 

P0880 Landers 1992/06/28 11:58 7.3 42.2 A A 
P0768 Loma Prieta 1989/10/18 00:05 6.9 30.6 A A 
P0771 Loma Prieta 1989/10/18 00:05 6.9 44.8 A A 
P0774 Loma Prieta 1989/10/18 00:05 6.9 36.3 A C 
P0926 Northridge 1994/01/17 12:31 6.7 36.1 A A 
P0965 Northridge 1994/01/17 12:31 6.7 37 A - 
P0969 Northridge 1994/01/17 12:31 6.7 32.3 A B 
P0970 Northridge 1994/01/17 12:31 6.7 34.6 A B 
P1011 Northridge 1994/01/17 12:31 6.7 41.7 A A 
P0731 Spitak, Armenia 1988/12/07 6.8 30 A - 
P0811 Cape Mendocino 1992/04/25 18:06 7.1 33.8 B B 
P0740 Loma Prieta 1989/10/18 00:05 6.9 43 B B 
P0750 Loma Prieta 1989/10/18 00:05 6.9 34.7 B B 
P0763 Loma Prieta 1989/10/18 00:05 6.9 43.4 B - 
P0793 Loma Prieta 1989/10/18 00:05 6.9 39.9 B B 
P0903 Northridge 1994/01/17 12:31 6.7 31.3 B B 
P0923 Northridge 1994/01/17 12:31 6.7 35.2 B B 
P0973 Northridge 1994/01/17 12:31 6.7 32.3 B - 
P1014 Northridge 1994/01/17 12:31 6.7 43.4 B A 
P0085 San Fernando 1971/02/09 14:00 6.6 38.9 B B 
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Table C. 5.  Ground motion records for NF in Group 1 

Record ID Event and Time M R GM USGS 

P0806 Cape Mendocino 1992/04/25 18:06 7.1 8.5 A A 
P0873 Landers 1992/06/28 11:58 7.3 1.1 A A 
P0733 Loma Prieta 1989/10/18 00:05 6.9 11.2 A A 
P0760 Loma Prieta 1989/10/18 00:05 6.9 10.3 A - 
P0770 Loma Prieta 1989/10/18 00:05 6.9 6.1 A - 
P0449 Morgan Hill 1984/04/24 21:15 6.2 0.1 A - 
P0995 Northridge 1994/01/17 12:31 6.7 8 A - 
P0996 Northridge 1994/01/17 12:31 6.7 8 A A 
P0034 Parkfield 1966/06/28 04:26 6.1 9.9 A B 
P0691 Whittier Narrows 1987/10/01 14:42 6 9 A A 
P1043 Kobe 1995/01/16 20:46 6.9 0.6 B B 
P0745 Loma Prieta 1989/10/18 00:05 6.9 5.1 B B 
P0764 Loma Prieta 1989/10/18 00:05 6.9 11.6 B B 
P0453 Morgan Hill 1984/04/24 21:15 6.2 11.8 B B 
P0928 Northridge 1994/01/17 12:31 6.7 8.2 B B 
P1021 Northridge 1994/01/17 12:31 6.7 14.6 B C 
P0032 Parkfield 1966/06/28 04:26 6.1 9.2 B C 
P0082 San Fernando 1971/02/09 14:00 6.6 2.8 B - 
P0624 Whittier Narrows 1987/10/01 14:42 6 12.1 B - 
P0706 Whittier Narrows 1987/10/01 14:42 6 10.5 B C 
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Table C. 6.  Ground motion records for SMSR in Group 2 

Record ID Event and Time M R GM USGS 

P0345 Coalinga 1983/05/02 23:42 6.4 29.5 C - 
P0346 Coalinga 1983/05/02 23:42 6.4 29.9 C - 
P0348 Coalinga 1983/05/02 23:42 6.4 28.1 C - 
P0361 Coalinga 1983/05/02 23:42 6.4 29.5 C - 
P0520 N. Palm Springs 1986/07/08 09:20 6 15.8 C B 
P0525 N. Palm Springs 1986/07/08 09:20 6 29.8 C B 
P0604 Whittier Narrows 1987/10/01 14:42 6 25.5 C B 
P0617 Whittier Narrows 1987/10/01 14:42 6 17.1 C C 
P0625 Whittier Narrows 1987/10/01 14:42 6 19 C C 
P0647 Whittier Narrows 1987/10/01 14:42 6 22.7 C C 
P0698 Whittier Narrows 1987/10/01 14:42 6 27.5 C B 
P0555 Chalfant Valley 1986/07/21 14:42 6.2 18.7 D - 
P0323 Coalinga 1983/05/02 23:42 6.4 25.5 D - 
P0352 Coalinga 1983/05/02 23:42 6.4 29.2 D - 
P0406 Coalinga 1983/07/22 02:39 5.8 17.4 D - 
P0153 Coyote Lake 1979/08/06 17:05 5.7 15.6 D B 
P0154 Coyote Lake 1979/08/06 17:05 5.7 17.2 D B 
P0164 Imperial Valley 1979/10/15 23:16 6.5 23.8 D C 
P0173 Imperial Valley 1979/10/15 23:16 6.5 15.5 D C 
P0450 Morgan Hill 1984/04/24 21:15 6.2 15.1 D C 

 



 

 

197

Table C. 7.  Ground motion records for SMLR in Group 2 

Record ID Event and Time M R GM USGS 

P0328 Coalinga 1983/05/02 23:42 6.4 43.9 C - 
P0340 Coalinga 1983/05/02 23:42 6.4 31 C - 
P0367 Coalinga 1983/05/02 23:42 6.4 41 C - 
P0152 Coyote Lake 1979/08/06 17:05 5.7 31.2 C C 
P0217 Livermore 1980/01/24 19:00 5.8 37.7 C C 
P0535 N. Palm Springs 1986/07/08 09:20 6 32 C B 
P0667 Whittier Narrows 1987/10/01 14:42 6 30.8 C B 
P0689 Whittier Narrows 1987/10/01 14:42 6 37.7 C C 
P0549 Chalfant Valley 1986/07/21 14:42 6.2 44.9 D - 
P0551 Chalfant Valley 1986/07/21 14:42 6.2 37.2 D - 
P0324 Coalinga 1983/05/02 23:42 6.4 41.6 D - 
P0337 Coalinga 1983/05/02 23:42 6.4 36.4 D - 
P0189 Imperial Valley 1979/10/15 23:16 6.5 31.7 D C 
P0447 Morgan Hill 1984/04/24 21:15 6.2 32.5 D C 
P0455 Morgan Hill 1984/04/24 21:15 6.2 30.3 D B 
P0512 N. Palm Springs 1986/07/08 09:20 6 43.3 D C 
P0527 N. Palm Springs 1986/07/08 09:20 6 38.2 D - 
P0539 N. Palm Springs 1986/07/08 09:20 6 44.4 D - 
P0599 Whittier Narrows 1987/10/01 14:42 6 38.9 D B 
P0623 Whittier Narrows 1987/10/01 14:42 6 35 D B 
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Table C. 8.  Ground motion records for LMSR in Group 2 

Record ID Event and Time M R GM USGS 

P0810 Cape Mendocino 1992/04/25 18:06 7.1 18.5 C B 
P0817 Landers 1992/06/28 11:58 7.3 19.3 C B 
P0889 Northridge 1994/01/17 12:31 6.7 20.8 C B 
P0890 Northridge 1994/01/17 12:31 6.7 19.6 C B 
P0891 Northridge 1994/01/17 12:31 6.7 24 C B 
P0916 Northridge 1994/01/17 12:31 6.7 22.3 C C 
P0933 Northridge 1994/01/17 12:31 6.7 17.7 C B 
P0975 Northridge 1994/01/17 12:31 6.7 22.8 C B 
P0058 San Fernando 1971/02/09 14:00 6.6 25.8 C - 
P0808 Cape Mendocino 1992/04/25 18:06 7.1 23.6 D B 
P0814 Landers 1992/06/28 11:58 7.3 23.2 D B 
P0818 Landers 1992/06/28 11:58 7.3 24.2 D B 
P0865 Landers 1992/06/28 11:58 7.3 21.2 D B 
P0881 Landers 1992/06/28 11:58 7.3 24.9 D C 
P0732 Loma Prieta 1989/10/18 00:05 6.9 28.2 D C 
P0737 Loma Prieta 1989/10/18 00:05 6.9 16.1 D C 
P0742 Loma Prieta 1989/10/18 00:05 6.9 28.2 D C 
P0743 Loma Prieta 1989/10/18 00:05 6.9 21.4 D B 
P0884 Northridge 1994/01/17 12:31 6.7 25.5 D C 
P0905 Northridge 1994/01/17 12:31 6.7 25.7 D B 
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Table C. 9.  Ground motion records for LMLR in Group 2 

Record ID Event and Time M R GM USGS 

P0907 Northridge 1994/01/17 12:31 6.7 32.8 C B 
P0918 Northridge 1994/01/17 12:31 6.7 36.3 C C 
P0921 Northridge 1994/01/17 12:31 6.7 38.3 C C 
P0924 Northridge 1994/01/17 12:31 6.7 42 C C 
P0999 Northridge 1994/01/17 12:31 6.7 39.2 C C 
P0807 Cape Mendocino 1992/04/25 18:06 7.1 44.6 D B 
P0860 Landers 1992/06/28 11:58 7.3 36.1 D B 
P0773 Loma Prieta 1989/10/18 00:05 6.9 36.1 D - 
P0778 Loma Prieta 1989/10/18 00:05 6.9 32.6 D C 
P0896 Northridge 1994/01/17 12:31 6.7 40.7 D C 
P0904 Northridge 1994/01/17 12:31 6.7 30.9 D C 
P0912 Northridge 1994/01/17 12:31 6.7 37.9 D B 
P0914 Northridge 1994/01/17 12:31 6.7 30 D C 
P0920 Northridge 1994/01/17 12:31 6.7 42.4 D C 
P0929 Northridge 1994/01/17 12:31 6.7 34.2 D B 
P0931 Northridge 1994/01/17 12:31 6.7 35.1 D B 
P0938 Northridge 1994/01/17 12:31 6.7 42.5 D C 
P0942 Northridge 1994/01/17 12:31 6.7 35.7 D B 
P0944 Northridge 1994/01/17 12:31 6.7 38.4 D C 
P0946 Northridge 1994/01/17 12:31 6.7 44.2 D C 
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Table C. 10.  Ground motion records for NF in Group 2 

Record ID Event and Time M R GM USGS 

P0190 Imperial Valley 1979/10/15 23:16 6.5 11.1 C C 
P0816 Landers 1992/06/28 11:58 7.3 11.6 C B 
P0744 Loma Prieta 1989/10/18 00:05 6.9 4.5 C C 
P0454 Morgan Hill 1984/04/24 21:15 6.2 3.4 C C 
P0528 N. Palm Springs 1986/07/08 09:20 6 10.1 C B 
P0541 N. Palm Springs 1986/07/08 09:20 6 7.3 C A 
P0988 Northridge 1994/01/17 12:31 6.7 14.6 C B 
P1005 Northridge 1994/01/17 12:31 6.7 7.1 C C 
P0636 Whittier Narrows 1987/10/01 14:42 6 11.4 C B 
P0648 Whittier Narrows 1987/10/01 14:42 6 13.5 C C 
P0809 Cape Mendocino 1992/04/25 18:06 7.1 9.5 D C 
P0553 Chalfant Valley 1986/07/21 14:42 6.2 9.2 D - 
P0368 Coalinga 1983/05/02 23:42 6.4 8.5 D - 
P0006 Imperial Valley 1940/05/19 04:37 7 8.3 D C 
P0160 Imperial Valley 1979/10/15 23:16 6.5 12.9 D - 
P0736 Loma Prieta 1989/10/18 00:05 6.9 14.4 D C 
P0451 Morgan Hill 1984/04/24 21:15 6.2 14.2 D C 
P0452 Morgan Hill 1984/04/24 21:15 6.2 12.8 D C 
P0530 N. Palm Springs 1986/07/08 09:20 6 8.2 D B 
P0893 Northridge 1994/01/17 12:31 6.7 13 D C 
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