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ABSTRACT

Improving Network Reliability:

Analysis, Methodology, and Algorithms. (May 2010)

Graham Broadt Booker, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Alexander Sprintson

The reliability of networking and communication systems is vital for the nation’s

economy and security. Optical and cellular networks have become a critical infras-

tructure and are indispensable in emergency situations. This dissertation outlines

methods for analyzing such infrastructures in the presence of catastrophic failures,

such as a hurricane, as well as accidental failures of one or more components. Ad-

ditionally, it presents a method for protecting against the loss of a single link in a

multicast network along with a technique that enables wireless clients to efficiently

recover lost data sent by their source through collaborative information exchange.

Analysis of a network’s reliability during a natural disaster can be assessed by

simulating the conditions in which it is expected to perform. This dissertation con-

ducts the analysis of a cellular infrastructure in the aftermath of a hurricane through

Monte-Carlo sampling and presents alternative topologies which reduce resulting loss

of calls. While previous research on restoration mechanisms for large-scale networks

has mostly focused on handling the failures of single network elements, this disserta-

tion examines the sampling methods used for simulating multiple failures. We present

a quick method of finding a lower bound on a network’s data loss through enumera-

tion of possible cuts as well as an efficient method of finding a tighter lower bound

through genetic algorithms leveraging the niching technique.

Mitigation of data losses in a multicast network can be achieved by adding re-

dundancy and employing advanced coding techniques. By using Maximum Rank
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Distance (MRD) codes at the source, a provider can create a parity packet which is

effectively linearly independent from the source packets such that all packets may be

transmitted through the network using the network coding technique. This allows

all sinks to recover all of the original data even with the failure of an edge within

the network. Furthermore, this dissertation presents a method that allows a group of

wireless clients to cooperatively recover from erasures (e.g., due to failures) by using

the index coding techniques.
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CHAPTER I

INTRODUCTION

Communication networks have become critical to modern life. They are used in day

to day activities as well as in emergencies. These networks come in many forms, be it

cellular networks allowing mobile voice and data communication as well as backbone

networks allowing fast data exchange between stationary nodes. Due to similarities

in architecture, these networks face similar challenges such as connectivity, reliability,

and latency while serving a user base who simply desires fast, cheap, and reliable

communications.

One scenario where users present such demands on a network is the expectation

of a functional cellular network in the presence of a disaster. In addition to users’ de-

mands, emergency services personnel also need cellular networks to serve as a backup

to their own communications equipment as was the case after Hurricane Katrina [1].

These networks are also vulnerable to damage from the same source, causing failures

in wireless and wired networks [2]. Therefore, evaluation of the reliability of such a

network in the presence of a disaster and methods for mitigating the effects of the

damage are important research topics. Such networks can also suffer damage without

the presence of a disaster due to random failures.

Users also desire a functioning network in every day usage. Long haul computer

networks suffer damage from construction equipment, storms, ships anchors, and

other causes. The FCC estimates that a long haul fiber cable suffers from 3 cuts for

every 1000 miles every year with the repair averaging 14 hours [3]. Such networks are

often over-provisioned or use 1+1 protection to prevent losses from such events [4].

The journal model is IEEE Transactions on Automatic Control.
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While such protections do reduce the impact of disconnects, numerous links may be

cut at the same time leading to degraded performance, as demonstrated in Egypt and

India in early 2008 [5]. It is important to be able to analyze such a network in order

to determine its weak points and the likelihood of data loss. With such a tool, one can

study potential improvements in light of the network’s overall reliability. Providers

can also employ some techniques to reduce the impact of small network failures.

In some uses of a broadcast network, providers would like to have the ability for

a node to recover data immediately without the need for the source to retransmit any

data. For example, many users may be collectively viewing a live broadcast where

late data is effectively missing data. This can be accomplished through network

coding to provide path diversity in a broadcast channel [6, 7]. With this technique,

a provider can broadcast data to multiple clients with instantaneous recovery from

a single edge failure anywhere within the network without the provider taking any

action. Additionally, clients can help each other to recover missing data.

If a set of clients are able to communicate with each other, they can employ

cooperative data exchange algorithms to fill in each other’s gaps in the data [8]. In

several situations, clients may have a cheaper or faster communication with each

other than with the source for the data. An example is cellular phones fetching the

same data through a cellular tower, but the phones can also communicate with each

other through a WiFi connection, which is faster than the cellular link. In this setup,

the users of each phone would wish for their phones to make the minimal number

of additional transmissions necessary to accomplish the task, so finding the optimal

number of broadcast packets is an important problem.

This dissertation is organized as follows. Chapter II studies the cellular network

in a virtual city and its performance in the presence of a hurricane. Chapter III

presents techniques for analyzing the reliability of long-haul networks with rare but
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catastrophic failure events. Chapter IV provides a technique to broadcast multiple

packets through a network and withstand a single edge failure. Chapter V gives a

method where nodes interested in common data may cooperate with each other to fill

in gaps in reception without intervention from the data’s source. Finally, Chapter VI

summarizes these approaches and their significance.
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CHAPTER II

ESTIMATING CELLULAR NETWORK PERFORMANCE DURING

HURRICANES

A. Introduction

Cellular networks serve a critical role during and immediately after hurricanes. They

allow citizens to communicate with emergency services if land-line communication sys-

tems have been lost, and they allow families to communicate and organize response

plans. Cellular networks have also been used as a backup communication system for

emergency personnel when their primary systems fail. For example, during Hurri-

cane Katrina police radio bands failed due to power outages, combined with a lack

of fuel for backup generators among other reasons [1]. However, cellular communi-

cation systems are not highly reliable during hurricanes. During recent hurricanes,

cellular towers have been damaged and backup generators have failed or run out of

fuel, rendering the attached communication equipment inoperable [1, 2]. In addition,

microwave and optical fiber-optic links between cellular towers and backbone systems

have also failed, rendering that portion of the system equally inoperable [2]. Esti-

mating the reliability of cellular networks during hurricanes is an important problem,

and methods are needed that incorporate the effects of failures in multiple nodes

and links together with the effects of changes in network traffic during and immedi-

ately after a hurricane. At the same time, these methods must utilize appropriate

models of the reliability of cellular towers, antennae, and support equipment such as

backup generators during hurricanes. The building blocks of an approach for estimat-

ing cellular network reliability are available; yet developing an accurate and efficient

estimation model remains a challenge. The first building block includes structural
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reliability analysis methods for modeling the performance of cellular communication

towers under hurricane wind loadings, fault trees, event trees, and other reliability

analysis methods for modeling the performance of individual cellular nodes (e.g. a

tower, antennae, an external power source, and a backup power source). The second

building block includes traffic models for estimating the subscriber traffic and call

arrival rate at each cellular tower. The last building block includes simulation tech-

niques for estimating the performance of the cellular system over wide geographical

areas. These techniques should accurately simulate the routing and restoration pro-

tocols that determine the network availability for given physical states of the system.

In this chapter we show how this interdisciplinary set of approaches can be combined

to develop an integrated approach for assessing cellular network reliability during

hurricanes. We demonstrate this approach using a synthetic cellular network. This

chapter is organized as follows. Section B provides an overview of relevant past work.

Section C presents our integrated modeling approach together with the case study

system that we use to demonstrate the approach. Section D discusses the results for

this case study area. Section E summarizes our approach and its performance.

B. Background

1. Cellular Network Performance and Modeling

A typical cellular network is comprised of a set of cellular towers, each of which

covers a specific area [9]. A tower’s coverage is roughly hexagonal in shape with a

radius of about 6.44 km (4 mi). Towers also communicate with each other via two

possible methods. The first is the use of buried fiber-optic links between the tower

and the local switching station. This method is the most reliable and provides the

ability to carry the most calls, but it is also the most expensive. A less expensive
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alternative is the use of microwave dishes attached to towers. In this case, each

communication link includes two dishes directed at each other. This method can

still carry a large volume of calls, but it requires far less investment in terms of

infrastructure. In general, the communications network between towers is structured

in a hierarchical fashion originating from the local switching station. There are four

basic requirements that must be in place for a user to make a successful cellular call.

First, the user must be within the coverage area of a tower. Second, the tower must

have sufficient available bandwidth to accept the call. Third, there must be residual

capacity along the route between towers and switching stations to the recipient of the

call. Finally, the recipient must be able to accept the call (i.e., be within coverage area

that has a tower with capacity remaining or be on a connected land-line with available

bandwidth). If a tower loses a microwave dish, or if a microwave dish is misaligned,

then it will not be able to use that link to communicate with another tower. Similarly,

a cut to a fiber-optic link or damage to the communication equipment might result

in a loss of connectivity. A tower that cannot communicate with other towers or a

switching station will be unable to accept calls, regardless of whether its users can

communicate with the tower. The same holds true if a tower’s links are operating at

capacity, in which case no new users can place calls unless another user hangs up.

Lastly, if a tower collapses or loses all power, then it cannot handle any calls, nor can

it forward calls to other towers. Survivability issues of mobile wireless networks have

been the subject of several studies (see e.g., [10], [11], and references therein). The

important performance metrics of survivable cellular networks include call blocking

probability, lost user load, forced call termination probability, and call setup delay.

The common approaches for modeling the performance of cellular network include

development of a simulation model that accurately captures a realistic failure scenario.

Such models typically assume that the calls arrive to the system according to a Poisson
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process and the calls have exponentially distributed holding times.

2. Structural Reliability Modeling

One of the critical aspects of estimating the reliability of a cellular communications

network during a hurricane is estimating the reliability of the structures (towers) that

support the cellular antenna. These structures can be prone to failure during high

wind events such as hurricanes. Structural reliability analysis [12, 13, 14] provides

a natural approach for estimating the failure probability as a function of the wind

load on a cellular tower. In general, both the wind load and resistance of a tower is

uncertain. Letting fL(l) be the PDF for the wind load experienced at a given cellular

tower and FR(r) be the CDF for the resistance of that cellular tower, the probability

of failure for wind load w is given by:

p(f |w) =

∫
x

fL(x)FR(x)dx (2.1)

The resistance of the structure is estimated using appropriate structural analysis

methods such as finite element analysis. There are a number of approaches available

for approximating the results of Equation 2.1 once the distributions of the load and

resistance are estimated, including analytical approximations such as first and second

order second moment methods as well as simulation-based approaches. The results

of this type of analysis are generally presented as a fragility curve that shows the

probability of failure of the structure as a function of the applied load.

For the purposes of demonstrating the integrated approach for estimating the

reliability of a cellular network during a hurricane, we will use the fragility curves

shown in Figure 1. These fragility curves are at the level of individual failure modes

(e.g., foundation failure) rather than at the level of a complete cellular tower site
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Fig. 1. Example Fragility Curves Used in Case Study.

because, as discussed above, different failure modes have different implications for

the functionality of the cellular site. For example, loss of cellular antenna at a given

tower would prevent that tower from receiving or broadcasting calls, but it would

still be able to relay calls from other towers if its microwave dish or fiber-optic link

were functional. However, if the tower experiences structural failures, it would not

be able to service incoming calls, outgoing calls, or relay calls through its microwave

dish, but it would still be able to serve as a relay through its fiber-optic cable if

the necessary power supply and supporting equipment were functional. The fragility

curves in Figure 1 were not derived from analysis but rather based on engineering

judgment, and they are for the purposes of demonstrating the approach only.
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3. Hurricane Wind Field Modeling

Once the fragility curves have been defined for each failure mode of the cellular sites,

the input loading is needed. For a hurricane, this requires the estimates of the wind

speeds that would be experienced at each cellular site. We used a three-second gust

wind speed, a common measure of hurricane wind intensity, as our measure of wind

speed at a given cellular site. For the purposes of this case study, we based our wind

field estimates on wind speed data estimated for Hurricane Ivan as it made landfall.

The wind speed at each cellular site was estimated based on the hurricane wind field

model developed by Huang et al. [15], and is the same model that was used in studies

of power outages during hurricanes in both the Carolinas [16] and the Gulf Coast

region [17]. In this hurricane wind field model, reconnaissance flight data is used

to develop a gradient-level wind estimation model based on Georgiou’s wind field

model [18] and the hurricane decay model of Vickery and Twisdale [19]. This model

produces an estimate of the gradient-level wind speed throughout the duration of a

hurricane at the center of each cellular service area. This estimated wind speed was

then converted to a “surface wind speed”, the wind speed estimated at a height of 10

m in an assumed open exposure location, by using a multiplicative gradient-to-surface

conversion factor. The gradient-to-surface conversion factor was taken to be 0.72 for

sites more than 10 km from the coast, 0.80 for sites within 10 km from the coast, and

0.90 for sites adjacent to the sea as suggested by Rosowsky et al. [20]. We did not

attempt to use different conversion factors based on records of local land cover types.

We also did not correct for local topography effects because we did not have enough

detailed information to include this in the model.
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4. Reliability and Simulation Modeling

The combination of failure-mode level fragility curves and hurricane wind estimates

provides the basis for estimating likelihoods of different types of losses of service for

each cellular site within a given area. However, the failure-model level information

must still be combined into site-level estimates of cellular site performance. Proba-

bilistic Risk Analysis (PRA) provides a natural approach for this estimation. There

exist three primary types of failures at each cellular site in a cellular communication

network during hazardous wind loadings such as hurricanes. These include: (1) the

inability of cellular towers to handle phone calls due to lack of network availability,

(2) microwave dish failure (or misalignment), and (3) damage to fiber-optic links.

Among these types of failures there exist six physical system states that contribute to

each mode failure. These include, but are not limited to: (1) structural cellular tower

collapse, (2) failure of tower foundation, (3) loss of onsite and offsite power, (4) loss

of microwave dish, and (5) loss of cellular antenna. Figure 2 provides the fault tree

for each of the three failure types, and shows how their system states lead to each

of these types of failure. Figure 2(a) is the fault tree for cellular phone call failure,

meaning that a cellular call cannot be handled by a cellular site. Figure 2(b) shows

the fault tree for microwave dish failure. If the microwave dish fails, the cellular site

cannot relay calls to other towers through its microwave dish. Finally, Figure 2(c)

shows the fault tree for fiber-optic link failure. A fiber-optic link failure would prevent

a cellular site from relaying calls via its fiber-optic cable. In all three fault trees, “s”

is the event failure of the cellular tower structure itself, “f” is the event failure of the

cellular tower foundation, “on” is the event loss of onsite power, “off” is the event

loss of offsite power, “a” is the event loss of the cellular antenna at the site, and “m”

is the event loss of microwave dish.
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Fig. 2. Fault Tree for Failures.

The fault trees in Figure 2 were developed based on an expert assessment of the

failure modes for each of the three main types of failure of a cellular tower site. Note

that the only redundancy that exists is in the power supply. We have assumed that

off-site power and on-site power are in parallel and that their availability is not time-

dependent. It is also likely that in many cases, off-site power would be lost during a

hurricane [16, 17, 21]. Assuming that on-site power is not time-dependent ignores the

reality that fuel stored on-site for on-site power are limited, and refueling cellular sites

may prove prohibitively difficult in some locations after a hurricane in which there

is heavy damage to transportation infrastructure. The on-site power supply, when

functional, generally has enough fuel for several hours of operation. In this chapter

we focus on the hours immediately after a hurricane in which cellular call traffic is

generally both heaviest and most urgent as individuals and organizations respond to

the hurricane. Beyond this initial period, additional analysis of the duration that

backup power can be maintained would be needed, including the size of the fuel

supply and the availability of the site for refueling.
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5. Integrated Modeling Approach

The methods discussed above – cellular network performance modeling, structural

reliability analysis, hurricane wind field modeling, and probabilistic risk analysis –

provide the basis for an integrated approach for modeling the reliability of cellular

network performance during future hurricanes. The process consists of the following

steps:

1. Simulate a hurricane wind field corresponding to characteristics of the hurricane

of concern using the wind field simulation models introduced above.

2. Estimate the probability of each failure mode for each of the three types of

failures occurring at each cellular site based on the simulated wind speed.

3. Estimate the probability of a cellular site experiencing each of the three types

of failure – inability to handle calls, inability to relay calls via microwave dish,

and inability to relay calls via fiber-optic cables – based on the PRA discussed

above.

4. Simulate a system state for a set of failure types experienced at each cellular

site in the system through Monte Carlo simulation based on the PRA results.

5. For each simulated system state, simulate the performance of the cellular system

of the region of interest over time after a hurricane makes landfall.

If multiple hurricane scenarios such as randomly generated storms are required,

then the process above can be repeated for each of the simulated storms.
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Fig. 3. Mesopolis Topography.

C. Case Study Network

We used the synthetic city Mesopolis as our case study for demonstrating the inte-

grated modeling approach [22]. Mesopolis is a synthetic city representing a coastal

city with a population of approximately 125,000. It was developed at Texas A&M

University to serve as a test bed for developing methods used for assessing infrastruc-

ture performance. Our choice of a synthetic city was driven by the lack of availability

of real cellular topologies. We extended the basic Mesopolis testbed by designing

a cellular communication system based on a standard pattern of hexagonal cellular

coverage. As shown in Figure 3, the Mesopolis topographical characteristics include

two longitudinal ridges that extend into a double peninsula at the northern face. A

valley exists between the two ridges, with a river flowing along the valley center and

into the ocean, forming a delta at the outlet.

Because cellular networks are typically laid out in hexagonal patterns, a cellular
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Fig. 4. Mesopolis Cellular Coverage.

system based on a hexagonal grid was developed for Mesopolis. Each hexagon was

given a radius of 6.44 km (4 mi), typical of current cellular systems. The grid was

then rotated and moved to place a large series of towers on top of the ridges, as well

as providing coverage for the bay. The resulting cellular grid is shown in Figure 4.

Mesopolis does have an assumed development timeline that influenced how the

different portions of the city were designed, and we designed the cellular network to

be sensitive to this. For example, the cellular switching station was placed in the older

part of the city at the location of the telephone company. Towers that are located

in this same area are connected with fiber-optic connections to the switching station.

Nearby towers which are not connected via fiber-optic are connected with microwave

dishes to the nearest connected tower. This creates a tree of connections originating

at the switching station and moving out to connect all towers in Mesopolis. This

configuration is illustrated in Figure 5(a).

For the given communication system design for Mesopolis, if a single connection

is lost, one or more towers will be out of service. While this may be realistic, it is not
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(a) Tree Layout (b) Mesh Layout

(c) Outer Optical Ring

Fig. 5. Test Layouts of the Mesopolis Cellular System.

resilient to failure. In order to study methods for improving the network’s reliability,

additional microwave links were added on the outside of the network, denoted by

the hashed lines. This made the network double-connected, meaning it required a

minimum of two connection failures in order for a tower to lose communications.

In addition to studying the effect of adding minimal redundancy, we also examined

different network ‘design’ scenarios. First, we tested the original and redundant

networks with unlimited bandwidth on each link to remove the effect bandwidth on

the overall system. Second, we artificially made each microwave link in the original

network invulnerable to the effects of wind so we could see what effect the microwave
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Fig. 6. Hurricane Wind Field Used in Case Study. Darker Hexagons Indicate Stronger

Wind Fields.

links had on the system. Third, we tested alternative topologies by extending the

original network to a full mesh network by adding microwave links from every tower

to each of its neighbors as illustrated in Figure 5(b). Finally, we tested an optical

network connecting towers on opposite sides of the coast through the towers on outside

of Mesopolis as shown in Figure 5(c).

For the purposes of our case study, we superimposed the hurricane wind field

estimates over Mesopolis based on estimated wind data from Hurricane Ivan. We

did this by rotating the wind field 180 degrees so that the hurricane approached the

city from the north and then estimated the maximum three-second wind speed at the

centroid of each cellular hexagon. The resulting wind estimates are shown in Figure 6.
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Fig. 7. Average Failure Rates for All Scenarios.

D. Results

We simulated the behavior of the cellular network across a series of failures. Each

tower may lose its cellular antennae, microwave dishes, fiber-optic links, or any com-

bination therein. The set of these failures across all towers defines a network’s state.

By utilizing the fragility curves in Figure 1 and the wind speed model in Figure 6,

we calculated estimates of failure event probabilities for each tower. Finally, from the

fault trees in Figure 2, we defined the state of the network. Running this simulation

5,000 times gave us 3,383 unique states for the network.

The cellular network for Mesopolis was modeled using the OPNET Modeler R©[23],

and each unique state was simulated for a 2.5 hour duration. We simulated the same

states in all our scenarios to compare the results. We collected statistics for each

network element, including how many calls were made per minute and how many

failed per minute. A call may fail if network elements are broken, such that there

is no route from the caller to the destination. In addition, a call may also fail if
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some element on the path to a destination is too busy to accept another call. The

graph in Figure 7 shows the average call failure rate in each network topology. The

results suggest that the original tree structure with invulnerable microwave links is

the network with the lowest call failure rate but that the optical outer ring network

and the microwave mesh network perform nearly as well. The original tree network,

the network representing a realistic cellular network system, performs the worst of the

considered systems by a large margin, and even if the bandwidth limitations on this

network are removed its performance does not increase appreciably. When judged

based on the average call failures per minute, the extra redundancy offered by the op-

tical outer ring and mesh networks offers a significant increase in system availability

in a post-hurricane situation. The graph in Figure 8 shows each topology’s average

call failure rate over time. It is important to note that some calls may fail due to a

momentary network overload without any failure, as can be seen in the no damage

case in Figure 8(a) which has a momentary peak at 1.4 hours. The results in Figure 8

reflect those in Figure 7 in that for all topologies, the network quickly achieves it

steady-state performance in terms of the number of calls failing per minute. The one

exception to this is for the double-connected tree topology where there is an initial

increase in the number of failed calls per minute. This is due to redundant links

providing a longer backup bath than the primary path. As future calls are made, the

longer paths being used as backup paths become capacity-limited, leading to more

dropped calls.

We also analyzed the percentage of call failures by tower as shown in Figure 9

where we can see which towers experienced the highest failure rate. Figure 9 shows

that the towers along the coast experienced the highest failure rate, which is expected

because they would have suffered the highest winds. Towers with the longest route
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(a) No Failure

!

(b) Tree Topology

!

(c) Double Connected Tree
Topology

!

(d) Invulnerable Microwave

!

(e) Unlimited Tree Topology

!

(f) Unlimited Double Con-
nected Tree Topology

!

(g) Mesh Topology

!

(h) Optical Outer Ring

Fig. 8. Average Call Failure Rates.
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to the central office (e.g., those on the outer edges of the city) also experienced a

higher failure rate, since any link failure along this path could result in its inability

to contact other towers.

The double-connected network greatly mitigated the effect of long chains of links

where any one failure could result in the failure of the last tower. Figures 7 and

8 show that these additional links decrease the call failure rate when compared to

the tree topology, but in the first half hour the failure rate increases while longer

call paths saturate the bandwidth on links. In order to determine how well the tree

topology could be improved, we tested it while not allowing any microwave links

to fail. Since failed microwave links are responsible for most of the failed calls in

the tree topology, this network is expected to perform the best. Figures 7 and 8

confirmed this expectation with this new network yielding the lowest call failure rate

of the tested networks. When we analyzed the tree topology and double-connected

topology where all links had unlimited bandwidth, we noticed that the tree topology

saw very little benefit from the increased bandwidth. This is because a vast majority

of its failures are due to a loss of connectivity, not lack of bandwidth. The double-

connected network saw benefit from the increased bandwidth because when failure

occurs, some towers will route calls through different towers than when a failure does

not occur. In this network, some of the call failures result from a tower sharing its

bandwidth with additional towers, increasing the demand on remaining links. This

can be seen in Figure 8 where the call failure rates in the double-connected topology

increase over time until network links are saturated, but the rate does not increase

when the bandwidth is not limited. The mesh topology improved the network’s

performance over the redundant links in the double-connected network as shown in

Figures 7 and 8. This is expected both due to the increase in redundant links as well
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(h) Optical Outer Ring

Fig. 9. Calls Failed Per Tower; Black Represents a 10% Failure Rate.
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as the increase in bandwidth. The optical outer ring improved performance more

than other topology changes. Since the optical link is more reliable than microwave

links and carries more bandwidth, this is expected to have the greatest improvement.

This topology achieved a failure rate within 10% of the scenario where microwave

links were not allowed to fail.

E. Discussion and Conclusions

Our results show that the reliability of cellular networks during hurricanes can be eval-

uated using an interdisciplinary approach that combines structural reliability analy-

sis, probabilistic risk analysis, network traffic modeling, and simulation. The methods

provide a basis for both assessing the reliability of an existing network in a compu-

tationally feasible manner and for assessing improvements in network performance

associated with changes in network topology. Our results also suggest that increasing

path redundancy in some form can significantly increase the reliability of cellular net-

works during hurricanes. A microwave neighbor-to-neighbor mesh configuration and

the addition of an optical fiber ring around the perimeter of the network are particu-

larly effective forms of providing redundancy for our case study network. The results

of this work should provide a basis for assessing the reliability of existing cellular

networks in hurricane prone areas as well providing a basis for assessing proposal to

improve these systems through topological modifications.
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CHAPTER III

EFFICIENT TRAFFIC LOSS EVALUATION FOR TRANSPORT BACKBONE

NETWORKS

A. Introduction

Communication networks play an important role in many social and economic ac-

tivities. Interruptions in data transmission and exchange, even for a short period of

time, may suspend critical operations and lead to a significant loss of revenue. In

this chapter we focus on the resilience and survivability of fiber optic networks which

serve as a backbone of the modern communication infrastructure.

Due to their ubiquitous deployment, optical networks are prone to failures. While

a considerable effort has been devoted to improving the physical protection of under-

ground and underwater cables, fiber cuts occur at a significant rate. Since each optical

link has a very high capacity (up to several terabits per second), and usually transmits

data from multiple connections, a link failure may result in a significant loss of traf-

fic. As a consequence, the survivability of optical networks has become an important

research direction with numerous protection techniques proposed and implemented

over the last decade. In particular, there are two types of dedicated protection which

are widely used in practice: 1+1 protection and 1:1 protection [4]. In 1+1 protection,

each connection is allocated two link-disjoint paths such that the data is transmitted

on both paths from the source to destination. In the case of a failure of a link in

the primary path, the destination node switches over to the secondary path. In 1 : 1

protection schemes, the backup path is not used unless the primary path fails.

While 1+1 and 1 : 1 protection techniques can handle single edge failures, some

traffic may be lost in the case of multiple link failures. As demonstrated by connection
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losses in Egypt in early 2008, simultaneous link failures, while rare, can still occur

at a non-negligible rate. Thus, assessing the reliability and survivability of optical

networks is of major importance for service providers. Accordingly, in this chapter

we present efficient tools and techniques for computing the expected loss of traffic

(ELT) in optical networks with 1+1 protection. Our study employs both traditional

methods based on Monte Carlo simulations as well as analytical methods based on

cut set enumeration. To facilitate the computational process, we also employ artificial

intelligence methods based on genetic algorithms. Our simulation results show that

the proposed methods accurately estimate traffic loss in practical settings.

B. Background and Prior Work

Computing the failure probability of a network is a classical problem in the reliabil-

ity theory (see e.g., [24, 25, 26, 27, 28, 29, 30, 31, 32, 33] and references therein).

The traditional methods rely on the Monte-Carlo simulations [28]. A randomized

fully-polynomial time approximation scheme (FPRAS) for the all-terminal network

reliability problem has been presented in [34].1 Karp and Luby [25] presented a gen-

eral framework for the construction of Monte Carlo algorithms for estimating the

failure probability of a multiterminal planar network. Liu and Trivedi [29] proposed

several measures of network survivability. Samaan and Singh [30, 31, 32, 33] proposed

genetic algorithms for analyzing the reliability of power networks.

Analyzing availability and reliability of optical networks has also received a sig-

nificant attention from the research community [35, 36, 37, 38, 39, 40]. Jereb [36]

presented an overview of the main directions of network reliability analysis. Jereb

1An FPRAS is a randomized algorithm that given a parameter ε finds, with high
probability, an ε-approximate solution in time that is polynomial in the input size
and 1/ε. A ε-approximate solution is a solution which is accurate within a relative
error of ε.
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et. al. [35] investigated the effectiveness of stratified sampling in WDM networks.

Levendovszky et. al. [37] introduced several statistical algorithms for network reliabil-

ity analysis based on adaptive approximation and deterministic radial basic function

(RBF) method. A heuristic search algorithm inspired by evolutionary methods for

all terminal reliability design problem has been proposed in [38]. Clouqueur and

Grover [41] have presented methods for the availability analysis of several restoration

mechanisms for mesh networks.

C. Model

We model the optical network, N , by a connected undirected graph, G(V,E). The

set of nodes, V of G, represents the routers and switches, while the set of edges, E

of G, represents the communication links. For each edge, ei ∈ E, we denote c(ei) as

the capacity of edge ei, i.e., the maximum amount of traffic flow that can be routed

through ei. A cut, C ⊆ E, in graph G(V,E) is a set of edges whose removal results in

a partition of G into at least two components. We say that a cut C separates nodes

v and u if every path from v to u includes at least one edge in C.

For each edge, ei ∈ E, we also associate a certain probability of failure, p(ei).

The probability of failure may depend on several factors, such as link location, the

length of the optical fiber, geographic area, etc. We assume that all edge failures

are independent and all nodes in the network are perfectly reliable. We also assume

that the probabilities of link failure are given and we use them as input to our al-

gorithms. Methods for determining the reliability of optical cables are discussed in

several previous studies (see e.g., [42, 43]).

In our model, the network supports a connection between each pair of distinct

nodes in V . We use Z as the set of such connections and M(v, u) as the amount of
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traffic generated by the connection (v, u) ∈ Z. For clarity, we assume M(v, u) > 0

for each pair (v, u).

1. Network Reliability and Traffic Loss

A network state is captured by a vector, x = (x1, · · · , xm), such that xi = 0 if edge

ei is operational, while xi = 1 if edge ei is faulty. We use X as the set of all possible

system states. We also use F (x) ⊆ E as the set of faulty edges in state x ∈ X. For

each state x ∈ X we use p(x) as the probability of x.

The network reliability R(N) is defined as follows:

R(N) =
∑
x∈X

p(x) · I(x), (3.1)

where I(x) ∈ {0, 1} is the indicator function, such that I(x) = 0 if the network is

disconnected in state x and I(x) = 1 if it is connected. The network is said to be

disconnected in state x if there are two nodes, v and u, such that v is not reachable

from u at this state.

Let L(v,u)(x) be the amount of traffic lost by connection (v, u) at state x. The

total amount of traffic L(x) which cannot be routed at state x is defined as:

L(x) =
∑

(v,u)∈Z

L(v,u)(x). (3.2)

The expected loss of traffic L(N) of the network N is defined as follows:

L(N) =
∑
x∈X

p(x) · L(x). (3.3)

The traffic loss model described above assumes that all connections have identical

availability requests. The model can be extended to support availability-differentiated

connections by introducing a cost, c(v,u), of losing a unit of flow for each connection,
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(v, u) ∈ Z. We then will use a weighted traffic loss L̄(x) instead of L(x) for computing

the value of L(N), where L̄(x) is defined as follows:

L̄(x) =
∑

(v,u)∈Z

c(v,u) · L(v,u)(x). (3.4)

Since the goal of the restoration strategy is to minimize the values of L(x) for

each state x, it will favor the connections with high values of c(v,u). In this chapter, we

focus on settings with identical availability requests, i.e., c(v,u) = 1 for all (v, u) ∈ Z.

The main problems considered in this chapter can be formulated as follows.

Problem NR (Network Reliability) Given a communication network, N , rep-

resented by a graph, G(V,E), with failure probability, p(ei) specified for each edge,

ei ∈ E, compute the value of R(N).

Problem ELT (Expected Loss of Traffic) Given a communication network, G(V,E),

represented by a graph, G(V,E), edge failure probabilities, p(ei), capacities, c(ei), a

routing strategy, and a protection strategy, determine the expected loss of traffic L(N).

Problem NR has been the subject of many studies in the reliability theory (see

e.g., [34] and references therein). The problem belongs to the complexity class #P

which is associated with counting solutions to problems in NP . It was shown that

this problem is #P complete; that is, this problem is as hard as any other problem

in this class. Since the complexity class #P is at least as intractable as NP , it is

very unlikely that there exist any polynomial time solutions. However, Problem NR

admits an FPRAS, i.e., it is possible to estimate the value of R(N) to within a relative

error of 1 ± ε with high probability in polynomial time with respect to |V | and 1/ε

[34]. Note that computing the expected loss of traffic is a more general problem than

Problem NR.
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2. Routing and Protection Strategies

In general, the methods presented in this chapter can be used with any routing

algorithm. In our test case, we use 1 + 1 protection scheme and employ the following

routing strategy: For each connection, (v, u) ∈ Z, we find two edge-disjoint paths,

P 1
(v,u) and P 2

(v,u), that have the minimum total number of hops. The paths are found

by using the algorithm from Suurballe and Tarjan [44]. Next, we reserve M(v, u)

units of bandwidth on all edges that belong to P 1
(v,u) and P 2

(v,u). We assume that

network is over-provisioned by the factor of two, that is, for each edge, ei ∈ E, the

capacity, c(ei), of ei is at least two times the total amount of bandwidth reserved on

e. Over-provisioning is a commonly used technique for improving network reliability

and robustness (see e.g., [40]).

For each faulty state, x ∈ X, we restore all connections, (u, v) ∈ Z, for which both

paths P 1
(v,u) and P 2

(v,u) include failed edges. We denoted the set of such connections as

S. All other connections will continue to send data through the one or two disjoint

paths computed in the initial routing stage. We restore all failed connections in a

sequential order. For each such connection, (v, u), we find a shortest path between v

and u that has residual capacity of at least M(v, u). In this case, L(x) includes the

total amount of traffic which cannot be rerouted. If the restoration strategy supports

availability differentiation, it will first restore connections (v, u) that have high cost

c(v,u) of loosing traffic.

Integer Programming Approach

A better solution can be obtained by using the integer programming approach. Let

S ⊆ Z be a set of connections, (v, u), for which both paths P 1
(v,u) and P 2

(v,u) include

failed edges. For each edge, ei ∈ E, we denote r(ei) as the residual capacity of ei, i.e.,
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the difference between the capacity c(ei) of ei and the total bandwidth reservations

made by connections that do not belong to S. We also denote ρ as the portion of

the required traffic flow of each connection in S that can be rerouted. The following

integer linear program determines the maximum value of ρ.

Maximize ρ

Subject to:∑
e∈(w,u)

ue(v,u) = 1 for (v, u) ∈ S

∑
e∈(j,w)

ue(v,u) −
∑

e∈(w,j)

ue(v,u) = 0 for (v, u) ∈ S

and w ∈ V \ {v, u}∑
(v,u)∈S

ue(v,u) · ρ ·M(v, u) ≤ r(e) for e ∈ E

ue(v,u) ∈ {0, 1} for (v, u) ∈ S and e ∈ E

Here, ue(v,u) is the indicator variable that specifies whether the connection (u, v)

will be rerouted through edge e. The maximum value ρ∗ of ρ can be found through

binary search that evaluates, at each step, the feasibility of the integer linear con-

straints by using Integer Programming. With this approach, the loss of traffic at state

x is equal to (1− ρ∗)
∑

(v,u)∈ZM(v, u) if ρ∗ < 1 and zero otherwise.

D. Cut Enumeration

The standard methods for estimating network reliability are built around Monte Carlo

sampling methods. In Section G we show that, under certain conditions, Monte Carlo

methods can be efficiently used for Problem ELT as well. However, the Monte Carlo

sampling methods suffer from relatively slow convergence rate due to a large variance

of the corresponding estimator. In particular, if the probabilities of edge failures are

small, the vast majority of randomly picked assignments will produce states with no
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traffic loss, resulting in high computational time.

The basic idea is to enumerate high-probability cuts that disconnect the net-

work into two components. As shown in [45] the number of such cuts is relatively

small. Minimum two-way cuts can be efficiently enumerated by using the algorithm

presented in [46]. This algorithm can be modified to produce cuts with decreasing

probability of failure.

Let C = {C1, . . . , Ck} be the set of k cuts with highest probability of failure. We

say that a cut Ci ∈ C is failed in state x if Ci ⊆ F (x). Clearly, a failure of a cut

results in a loss of traffic since no rerouting strategy can reroute traffic when no route

exists. The goal of our algorithm is to compute the expected loss of traffic L̂(N) due

to the failure of cuts in C.

To define L̂(N) formally, we need to introduce the following definitions for each

state x ∈ X:

1. C(x) ⊆ C - set of failed cuts in state x, i.e.,

C(x) = {Ci ∈ C | Ci ⊆ F (x)};

2. Z(x) ⊂ Z - set of connections {(v, u)} disconnected by cuts in C(x), i.e.,

Z(x) = {(v, u) | ∃Ci ∈ C(x) : Ci separates v and u};

3. L̂(x) - the amount of traffic lost due to failed cuts in C(x), i.e.,

L̂(x) =
∑

(v,u)∈Z(x)

M(v, u).

The value of k is selected in such that the total contribution of other cuts to

the expected traffic loss is negligible. Our experimental results show that accurate



31

estimation can be achieved with as little as 1000 cuts. Note that if there are no upper

bounds on edge capacities or if the network is sufficiently over-provisioned, then

L̂(N) =
∑
x∈X

p(x) · L̂(x)

provides a good estimate of L(N). In fact, Our numerical results show a 2% difference

between L̂(N) and L(N) when the network is over-provisioned by the factor of 4.

As mentioned above, our goal is to accurately estimate the value of L̂(N). Note

that the total traffic loss due to a failure of a cut Ci ∈ C can be efficiently computed;

however, counting expected traffic loss due to all cuts in C poses challenges because

of the correlations between them. Accordingly, we use the DNF counting techniques

described in [45] for accurate estimation of L̂(N).

The formal description of Algorithm Cut Enumeration is presented in Fig-

ure 10. The algorithm consists of two phases. The first phase (Steps 1-5 of the

algorithm) computes, for each cut Ci ∈ C, the expected traffic loss Ti due to a failure

of cut Ci. This is done by first identifying the set of connections Zi whose end-

points are separated by Ci and then computing the total traffic generated by these

connections. Parameter T computed in Step 5 is an upper bound on L̂(N) because

the dependencies of cuts in C cause some traffic to be counted multiple times. The

purpose of the second phase (Steps 6-13 of the algorithm) is to compute the value of

random variable Y , which is an unbiased estimator of L̂(N) with small variance. The

variance of Y depends on the number of iterations, n, which is given to the algorithm

as input. The rest of this section is devoted to establishing the correctness of the

algorithm.

The following theorem shows that random variable Y is an unbiased estimator

for L̂(N).
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Algorithm Cut Enumeration (n)
1 For i← 1 to k do
2 Zi ← {(v, u) | Ci separates v and u};
3 M(Zi)←

∑
(v,u)∈Zi

M(v, u)

4 Compute the expected traffic loss Ti from connections due
to a failure of cut Ci:
Ti ←M(Zi) ·

∏
e∈Ci

pe.

5 T ←
∑
Ci∈C

Ti

6 For i← 1 to n do
7 Pick a cut Cj ∈ C with probability

Tj

T
.

8 Pick a connection (v, u) ∈ Zj with probability M(v,u)
M(Zj)

9 Pick a failure state x in which all edges that belong to Cj are faulty
and the state of all other edges is chosen at random according to their
probability of failure.

10 Find all cuts Cl ∈ C that satisfy the following two conditions:
(a) Cl ⊆ F (x)
(b) Cl separates v and u

11 τi ← the number of cuts found in Step 10

12 Yi ← T
τi

13 Y ←
∑n

i=1 Yi
n

14 Return Y

Fig. 10. Algorithm Cut Enumeration

Theorem 1 Random variable Y is an unbiased estimator for L̂(N).

Proof: It is sufficient to show that the value of Yi, i = 1, · · · , n, computed in

Step 12 of the algorithm is an unbiased estimator of L̂(N).

First, we analyze the probability that the algorithm chooses a connection (v, u)

and a state x in Steps 8 and 9. Steps 7-9 of the algorithm imply that this probability

is equal to ∑
Cj :Cj∈F (x)

Tj
T
· M(v, u)

M(Zj)
· p(x)∏

e∈Cj
pe

=
∑

Ci:Cj∈F (x)

M(v, u) · p(x)

T
=

=
τi ·M(v, u) · p(x)

T

(3.5)
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if (v, u) ∈ Z(x) and zero otherwise. The first equality is obtained by substitution

of Tj (see Step 4), and the second equality is obtained by noticing that all additive

terms are equal and that the number of additive terms is equal to τi.

Next, we compute the expectation E[Yi] of Yi as follows

E[Yi] =
∑
x∈X

∑
(v,u)∈Z

Pr[x and (v, u) are picked] · Yi =

=
∑
x∈X

∑
(v,u)∈Z(x)

p(x) ·M(v, u) =
∑
x∈X

p(x)
∑

(v,u)∈Z(x)

M(v, u)

=
∑
x∈X

p(x) · L̂(x) = L̂(N).

The first equality is a definition of the expected value of Yi. The second equality is

obtained by using the expression obtained in Equation (3.5). The third equality is

obtained by taking the common factor p(x) outsize the summation. The forth and

fifth equalities follow from the definitions of L̂(x) and L̂(N), respectively.

Next, we show that the standard deviation σ(Yi) of Yi for i = 1, · · · , n is bounded.

Lemma 2

σ(Yi)

E(Yi)
≤ k.

Proof: Let α = T
k

. Note that 1 ≤ τi ≤ k. Since Yi = T
τi

(see Step 12) it holds

that α ≤ Yi ≤ α · k, and, in turn, E(Yi) ≥ α. This means that the random variable

Yi deviates from its mean by at most k · α. Hence, the standard deviation of Yi is

bounded by k · α. Since E(Yi) ≥ α it holds that σ(Yi)
E(Yi)

≤ k.

We conclude that by sampling Yi a sufficient number of times (n = O(k
2

ε2
)) and

outputting the mean, we can obtain an approximation of L̂(N) with high accuracy.

Lemma 3 If the Algorithm Cut Enumeration is applied with n = O(k
2

ε2
) then it
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holds that

Pr
[
|Y − L̂(N)| ≤ ε · L̂(N)

]
≥ 3

4
,

Proof: The Chebyshev inequality implies that

Pr
[
|Y − L̂(N)| ≤ ε · L̂(N)

]
≥
(
σ(Y )

εE[Y ]

)2

.

Since E[Yi] = E[Y ] and σ(Y ) = σ(Yi)√
n

it holds that(
σ(Y

εE[Y ]

)2

=

(
σ(Yi)

ε
√
nE[Yi]

)2

.

By Lemma 2 implies that σ(Yi)
E(Yi)

≤ k. Hence, for n ≥ 4k2

ε2
it holds that(

σ(Y )

ε
√
nE[Y ]

)2

≥ 3

4

and the lemma follows.

The probability Pr[|Y − L̂(N)| ≤ ε · L̂(N)] can be increased by taking a larger

number of samples.

E. Genetic Algorithms

The primary use of a genetic algorithm is to find an optimal or near-optimal solution

for an optimization problem. A genetic algorithm is a simulation of evolution where

the rule of survival of the fittest is applied to a population of individuals. In the

basic genetic algorithm [47], an initial population is created randomly. Population

individuals, called chromosomes, are then evaluated by applying some function or

formula. A new population is selected from the old one based on the fitness value

of the individuals. Genetic operators are then applied to the newly selected popula-

tion to create the next generation. The most commonly used genetic operators are

crossover and mutation. The process is repeated from one generation to another until
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3 7 9 10 14

Fig. 11. Sample Chromosome.

a stopping criterion is reached.

In this study, we use a genetic algorithm to find states of the network that incur

large amount of traffic loss. Since we are only assuming edge failures, we define each

state x ∈ X of the network as a variable-length array of faulty edges. Edges are sorted

by increasing indexes and no repetition is allowed. The example shown in Figure 11

shows a chromosome that corresponds to a state in which edges 3, 7, 9, 10, and 14

have failed.

Each chromosome in our genetic algorithm represents a single state. The fitness

f(x) of each chromosome corresponding to state x is defined by the probability, p(x),

of x if x incurs a loss of traffic and 0 otherwise. This means that the most fit

chromosomes correspond to the most likely states which still result in a loss of traffic.

Typically, a genetic algorithm is initialized with random values, and allowed to

search for the most fit individual. In our model, we are not interested in the most

fit individual, but rather the set of most fit individuals. Accordingly, instead of

examining the final outcome of the algorithm, we look at all individuals examined by

the algorithm across all generations. We use a hash table that records all individuals

processed by the algorithm so far. Entries in the hash table are indexed by the

state, and contain the amount of traffic loss and the probability of that state. The

use of a hash table also allows us to accelerate the algorithm because when a state
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is encountered a second time, we can simply return the result we computed the in

previous evaluation, eliminating the need to perform the flow calculations again.

To prevent the algorithm from converging on a single individual, we employ

the niching technique on the chromosome space [48]. With niching, we penalize a

chromosome’s fitness if it is closer than a certain threshold, Q, to the individuals in

the same generation. Specifically, let X be the individuals discovered by the algorithm

in a particular generation. For any two individuals, x and y, we denote d(x, y) as the

Hamming distance between x and y. Then, the new fitness function f̂(x) is defined

as follows:

f̂(x) =
f(x)

m∑
y∈X

g(x, y)

, (3.6)

where

g(x, y)) =

 1−
(
d(x,y)
Q

)2

if d(x, y) < Q

0 otherwise.
(3.7)

In addition to a custom representation for individuals, we also designed custom

operations for mutate and crossover. We defined the mutate operation to randomly

modify a single edge’s index to another index. If the new index is already in the

chromosome, the duplicate is simply removed. The mutation operator also randomly

adds new indexes to the chromosome and removes existing indexes. This allows the

chromosome to both decrease and increase in size. The crossover operation randomly

swaps indexes between two chromosomes. If one chromosome is longer than another,

the crossover is done over the first l edge indexes, where l is the length of the shorter

chromosome, and the longer chromosome’s remaining indexes are randomly spread

between the two chromosomes.

When the genetic algorithm terminates, the hash table contains all states seen by
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the genetic algorithm. Through enumerating the states contained in the hash table,

we estimate the expected amount of traffic lost. Specifically, let Xh ⊆ X be the set of

all states stored in the hash table. We can obtain a lower bound on L(N) as follows:

L(N) ≥
∑
x∈Xh

p(x) · L(x). (3.8)

F. Monte Carlo Method

Monte Carlo simulation has long been the standard approach for estimating network

reliability. In general, Monte Carlo simulations suffer from inefficient run times due

to sampling non-failure states with high probability. We mitigated this effect by

employing a hash table that stores all states encountered so far, similarly to that

used by our genetic algorithm. As a result, the speed of the simulation has been

significantly improved, which allowed us to execute billions of runs on a fast machine.

In addition to increasing the speed, the hash table also adds the advantage of tracking

every state which was visited. By the nature of a Monte Carlo simulation, the most

likely states will be visited more often, and as such will be contained within the hash

table with high probability. This means we can establish lower and upper bounds on

the estimated traffic loss by enumerating the visited states.

We can determine a lower bound from the Monte Carlo simulation in the same

manner as in Section E. An upper bound can be defined by examining each flow in

the original network. If we disallow restoration, then a flow (v, u) will be lost if and

only if each of its paths P 1
(v,u) and P 2

(v,u) has at least one failed edge. The probability

that a path has at least one failed edge can be computed as follows:

pf
(
P i

(u,v)

)
= 1−

∏
e∈P i

(u,v)

(1− p(e)) i ∈ {1, 2}. (3.9)

An upper bound, Lu(N), on L(N) can be obtained by assuming that the entire traffic
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demand M(u,v) is lost.

Lu(N) =
∑

(u,v)∈Z

M(u,v) · pf
(
P 1

(u,v)

)
· pf

(
P 2

(u,v)

)
. (3.10)

This upper bound can be improved by enumerating states. If a state has a connection

where both paths are cut, and it is able to reroute at least part of the traffic, then

this is a state where Equation (3.10) is over counting L(N). Let N(x) be the total

amount of all traffic that can be rerouted at state x (from all affected connections).

Then, we can obtain the following tighter upper bound on L(N):

L̂u(N) = Lu(N)−
∑
x∈Xh

p(x) ·N(x). (3.11)

G. Numerical Study

In this section, we present the results of our simulation study. For our simulations, we

used the Pan European Network depicted in Figure 12(a) [49]. This network has 28

nodes and 41 edges ranging in length from 218km to 1500km. Using the estimate of 3

cuts per year for every 1000 miles, and a repair time of 14 hours [3], we assumed that

the instantaneous probability of failure of edge e ∈ E is 3/1000∗ 14
24∗365

∗l(e) where l(e)

is the length of e. Under this assumption, the probabilities of edge failures in the Pan

European Network are in the range of 6.5 ∗ 10−4 to 4.5 ∗ 10−3. In this study, we ran

our Monte Carlo simulations for 2 billion runs and our Cut Enumeration examined

the 1000 most likely cuts. We ran our genetic algorithm for a total of 600 generations

and a population size of 200 individuals.

We found that in 2 billion runs of the Monte Carlo simulation, the upper bound

was less than 2% above the lower bound as shown in Figure 12(b). The lower bound

seemed to converge faster than the upper bound, with the current estimate more
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(a) Pan European Network.
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(b) Monte Carlo Simulation.

Fig. 12. The Test Case and the Simulation Results.

closely following the lower bound. It is important to note that the Monte Carlo

simulation is not constrained to providing an estimate within these bounds, but rather

it will provide an accurate estimate with high probability given enough runs.

We can place probabilistic bounds on the mean due to the large number of runs.

The first is through the Chebyshev’s inequality. By setting the left hand side of

the equation to 5%, and solving for ε, we can find a 95% confidence bound for the

mean. Figure 13(a) shows this confidence bound for the Monte Carlo simulation in

comparison to the absolute bounds found through the states in the hash table.

If we assume that the mean is normally distributed, as per the Central Limit

Theorem, we can calculate a tighter 95% confidence intervals. Figure 13(b) shows

this tighter confidence interval. Here the lower confidence bound is tighter than the

absolute bound in earlier runs, but the absolute bound converges more quickly than

the confidence bound.

The bound provided by the cut enumeration technique was 1.443639·10−2, which
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Fig. 13. Simulation Results.

is 18% below the bound found by Monte Carlo. While the cut enumeration technique

does not yield a tight bound, it yields it very quickly. The genetic algorithm found a

lower bound of 1.734051 ·10−2, which is 1.7% below the bound found by Monte Carlo.

Next, we reduced the probability of failure of each edge a factor of 32 to see

its effect on the simulation. As shown in Figure 14(a), the upper and lower bounds

converge much more slowly than the original. This can be explained by the fact that

the reduction of probabilities has reduced the probability of cuts resulting in traffic

loss therefore they are less likely to be explored. The genetic algorithm yielded a

slightly higher bound that Monte Carlo, and took considerably less time.

We further reduced the probability of failure of each edge by 128. As shown in

Figure 14(b), the Monte Carlo simulation still has a large range of values to explore.

Both the cut enumeration technique and genetic algorithm provide a higher lower

bound than the Monte Carlo simulation, with the genetic algorithm being the higher

of the two.

On a 3.2GHz Xeon machine, the genetic algorithm took about 60 seconds re-
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Fig. 14. Simulation Results With Smaller Probabilities.

gardless of the probability of failure. Running Monte Carlo 2 billion times took

approximately 3500 seconds. With the original edge probability, the Monte Carlo

achieved a better lower bound than the genetic algorithm after 148 million samples

which took 270 seconds. In both cases where we reduced the probability, we allowed

Monte Carlo to execute for 2 billion runs, taking over 3500 seconds each time, and it

never achieved the lower bound found by the genetic algorithm.

H. Conclusion

In this chapter we presented efficient methods for evaluating the traffic loss in back-

bone transport networks. We have presented efficient algorithms for evaluation of

the expected loss of traffic (ELT). Such a measure is of major importance to service

providers since the loss of traffic results in reduced revenues and loss of customer sat-

isfaction. The first method is based on the direct application of Monte Carlo sampling

techniques to the problem at hand. The second method is based on combinatorial

techniques, specifically enumeration of minimum cuts. The third method employes
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genetic algorithms together with the niching technique.

Our results show that Monte Carlo algorithms are efficient for networks with

a small probability of an edge failure, but their performance falls sharply as the

probability of edge failure is reduced. Enumeration of minimum cuts provides a fast

lower bound in all cases. The genetic algorithm provides a separate lower bound

which is more accurate than the minimum cut enumeration in low probability cases,

which are typical in practical settings.
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CHAPTER IV

DESIGN OF EFFICIENT ROBUST NETWORK CODES FOR MULTICAST

CONNECTIONS

A. Introduction

In recent years, a significant effort has been devoted to improving the resilience of

communication networks to failures and increasing their survivability, but edge fail-

ures are frequent in communication networks due to the inherent vulnerability of the

communication infrastructure [50]. With the dramatic increase in data transmission

rates, even a single failure may result in vast data losses and cause major service

disruptions for many users. Accordingly, there is a significant interest in network

recovery mechanisms that enable a continuous flow of data from the source to the

destination with minimal data loss in the event of a failure.

In this chapter, we consider the problem of establishing reliable multicast connec-

tions across a communication network with uniform and non-uniform edge capacities.

Our goal is to provide instantaneous recovery from single edge failures. The instan-

taneous recovery mechanisms ensure continuous flow of data from the source to the

destination node, with no interruption or data loss in the event of a failure. Such

mechanisms eliminate the need for packet retransmissions and rerouting. Instanta-

neous recovery is typically achieved by sending packets over multiple paths in a way

that ensures that the destination node can recover the data it needs from the received

packets. The three major methods for achieving instantaneous recovery are dedicated

path protection scheme [50], diversity coding [51], and network coding [6, 7, 52, 53, 54].

However, only the network coding technique can achieve the optimum in terms of the

maximum number of packets that can be sent reliably from the source s to all termi-
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Consider the multicast network depicted in Figure 15 which needs to deliver two

packets per communication round from the source node s to two destination nodes t1

and t2. In this example, the source node s needs to deliver two packets, p1 and p2 per

a communication round, to each terminal with each edge’s capacity is as indicated. In

this network, edges (s, v1) and (s, v2) can send two packets per communication round,

while all other edges can send only one packet per communication round. Here, α is

an element of a finite field different from one. The network code requires a field of

size at least three. The figure shows an encoding scheme that delivers two packets p1

and p2 to terminals t1 and t2 over a single round such that both destination nodes can

decode the packets sent by the source node in any single edge failure scenario. Note

that without the encoding operation at the intermediate nodes v3 and v5, it would

not be not possible to send two packets with instantaneous recovery.
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Related Work

The network coding technique has been introduced in the seminal paper of Ahlswede

et al. [6]. Initial work on network coding has focused on multicast connections. It was

shown in [6] that the maximum rate of a multicast network is equal to the minimum

total capacity of a cut that separates the source from a terminal. This maximum

rate can be achieved by using linear network codes [55]. Koetter and Médard [7]

developed an algebraic framework for linear network codes. Ho et al. [56] showed

that the maximum rate can be achieved by using random linear network codes. Jaggi

et al. [57] proposed a deterministic polynomial-time algorithm for finding feasible

network codes in multicast networks. Network coding algorithms resilient to malicious

interference have been studied in [58], [59], and [60]. Comprehensive surveys on the

network coding techniques are available in the recent books [61, 62], and [63].

The idea of using network coding for instantaneous recovery from edge failures

was first described by Koetter and Medard [7]. They showed that if the network

has a sufficient capacity to recover from each failure scenario (e.g., by rerouting)

then instantaneous recovery from each failure scenario can be achieved by employing

linear network codes. Ho et al. [52] presented an information-theoretic framework

for network management in the presence of edge failures. Using network coding for

reliable communication was also discussed in [53] and [54]. References [64] and [65]

describe practical implementations of network coding and demonstrate its benefits

for improving reliability and robustness in communication networks.

1. Our Contribution

In this chapter we propose efficient algorithms for construction of robust network

codes over small finite fields. We consider two major cases. In the first case, we
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assume that all edges of the network have uniform capacity, while the second case

allows the capacity of network edges can vary. For the first case we present an efficient

network coding algorithm that identifies a robust network code over a small field. The

algorithm takes advantage of special properties of Maximum Rank Distance (MRD)

codes [66]. For the second case, we focus on settings in which the source node needs to

deliver two packets per time unit to all terminals. We show that in this case, a special

topological properties of robust coding networks can be exploited for constructing a

network code over a small finite field.

A robust network code for multicast networks can be established through the

standard network coding algorithm presented in [57]. However, this algorithm is de-

signed to handle arbitrary failure patters and, as a result, requires a field size of O(|E|)

in the case of single edge failures, where E is the set of network edges. In contrast,

our scheme requires a small field size (O(k), where k is the number of terminals),

which does not depend on the size of the underlying communication network. The

size of the finite field is a very important factor in practical implementation schemes

[64] as it determines the amount of communication and computational overhead. In

addition, the computational complexity of our algorithm is smaller than that of the

existing solutions.

B. Model

1. Multicast Network

We consider a multicast network, N, that uses a directed acyclic graph, G(V,E), to

send data from the source, s, to a set, T , of k destination nodes, {t1, . . . , tk} ⊂ V .

The data is delivered in packets, each an element of a finite field, Fq = GF (q). We

also assume that the data exchange is performed in rounds, such that each edge,



47

e ∈ E, can transmit c(e) packets per communication round. We assume that c(e) is

an integer number and refer to it as the capacity of edge e. At each communication

round, the source node needs to transmit h packets, R = (p1, p2, . . . , ph)
T , from the

source node, s ∈ V , to each destination node, t ∈ T . We refer to h as the rate of

the multicast connection. It was shown in [6] and [55] that the maximum rate of the

network, i.e., the maximum number of packets that can be sent from the source, s, to

a set, T , of terminals per time unit, is equal to the minimum capacity of a cut that

separates the source, s, from a terminal, t ∈ T . Accordingly, we say that a multicast

network, N, is feasible if any cut that separates s and a terminal, t ∈ T , has at least

h edges. We say that a coding network, N, is minimal if any network formed from N

by removing an edge or decreasing the capacity of an edge is no longer feasible. It is

easy to verify that the capacity of each edge in a minimal network is bounded by h.

2. Coding Networks

For clarity of presentation, we define an auxiliary graph, Ĝ(V,A), formed by the net-

work graph G(V,E) by substituting each edge, e ∈ E, by c(e) parallel arcs that have

the same tail and head nodes as e; each arc can transmit one packet per communi-

cation round. We denote A(e) ⊆ A as the set of arcs that correspond to edge e. In

what follows we only refer to packets sent in the current communication round. The

packets sent in the subsequent rounds are handled in a similar manner.

A network code is defined by associating each arc, a(v, u) ∈ A, in the network

with a local encoding function fa. The local encoding function specifies the packet

transmitted by arc a as a function of the packets available at or received by the tail

node of a in the current communication round. More specifically, for each outgoing

arc, a(s, u) ∈ A, of the source node s, fa is a function of the original h packets, P,

i.e., fa : Fh → F. For any other arc, a(v, u) ∈ A, v 6= s, fa is a function of the packets
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received by node v in the current round, i.e., fa : Fl → F, where l is the number of

incoming arcs of v in Ĝ. A network code, C, is a set of encoding functions associated

with the arcs in A, i.e, C = {fa | a ∈ A}. In a linear network code all packets are

elements of a finite field and all local encoding functions are linear functions over that

field.

3. Robust Coding Networks

As mentioned in the introduction, we assume that only one of the edges in the network

can fail at any time. Since a failed edge, e, cannot transmit packets, we assume that

the encoding function fa of each arc, a ∈ A(e) is identically equal to zero, i.e., fa ≡ 0.

To guarantee instantaneous recovery, it is sufficient to ensure that for each edge

failure, there exists a set of h linearly independent packets received by t.

We distinguish between two types of robust networks codes. In strongly robust

network codes, the local encoding coefficients of all arcs in A remain the same, except

for the arcs A(e) that correspond to the failed edge, e, which are assigned zero encod-

ing coefficients. In weakly robust network codes, the arcs that are located downstream

of the failed edge, e, are allowed to change their encoding coefficients, while all the

encoding coefficients that correspond to other edges must remain the same.

Definition 4 (Strongly Robust Network Code) A network code, C, is said to

be strongly robust if for each e ∈ E it holds that the network code C′ formed from C

by assigning zero encoding coefficients to arcs in A(e) is feasible.

We proceed to discuss weakly robust network codes. When an edge, e(v, u) ∈ E,

fails, the set of nodes in the network can be divided into two subsets, V ′e and V ′′e . The

set V ′′e includes all descendants of the node, u, whose head is e, while the set V ′e =
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Fig. 16. A Coding Network With a Failed Edge e.

V \V ′′e includes all ancestors of the node v, whose tail is e, as well as all other nodes not

included in V ′′e . Figure 16 shows an example of a cut (V ′e , V
′′
e ) in a coding network.

We assume that node u can detect the failure of edge e and notify its immediate

descendants, which in turn can change their encoding coefficients so that each affected

terminal will be able to decode the original packets. Changing encoding coefficients

for the nodes in V ′′e can be done with minimum penalty because the information about

the failure can be attached to the packets that carry the information. In contrast, in

order to modify the network code for arcs that originate from nodes in V ′e we need to

send special control messages, which will incur additional delay.

Definition 5 (Weakly Robust Network Code) A network code, C, is weakly

robust to single edge failures if for each edge, e ∈ E, there exists a feasible code

C′ that satisfies the following three conditions:

1. The encoding coefficients of all arcs that originate from nodes in V ′e have the
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the same encoding coefficients in C′ as in C (except arcs in A(E))

2. The global encoding coefficients for all arcs in A(e) have zero encoding coeffi-

cients

3. Each terminal t ∈ T can decode the original packets.

4. Necessary Condition

A necessary condition for existence of robust network codes (both weakly and strongly

robust) is that for each e ∈ E a network, Ge, formed from G by removing e, must

admit an (s, t)-flow of value h. This condition is equivalent to

min
C

 ∑
e∈E(C)

c(e)− max
e∈E(C)

c(e)

 ≥ h, (4.1)

where the minimum is taken over all (s, t)-cuts, C(V1, V2), that separate s and t in

G, and E(C) is the set of edges that belong to C, i.e., the set of edges that connect a

node in V1 to a node in V2. In [7] it was shown that this condition is also sufficient for

providing instantaneous recovery from edge failures. Moreover, it was shown that the

instantaneous recovery can be achieved by using linear network codes. Therefore, we

refer to a graph G(V,E) that satisfies this condition as a feasible graph or network.

C. Strongly Robust Codes for Networks With Uniform Capacities

In this section we assume that all edges of the network have uniform capacity c, i.e.,

each edge can send exactly c packets per time unit. We present an efficient algorithm

that can construct a robust network code over a finite field of size O(k). We observe

that without loss of generality, we can assume that the capacity of each edge is one

unit. A feasible network code for unit capacity edges can be extended into the case in

which the capacity of each edges is equal to c by combining c communication rounds
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into a single round. Accordingly, for the rest of this section, we assume that all edges

have unit capacity.

In [57], it was shown that communications at rate h with instantaneous recovery

from single edge failures is possible if and only if for each edge, e ∈ E, it holds that

the network G′(V ′, E ′) formed by the removal of e from G(V,E), contains at least h

edge-disjoint paths from the source, s, to each terminal node, t ∈ T . This implies

that a necessary and sufficient condition for the feasibility of the network, N, is the

existence of h+ 1 edge-disjoint paths between s and each t ∈ T .

Our approach can be summarized as follows: First, we generate a special parity

check packet, referred to as ph+1. This packet is a linear combination of the original

packets and is constructed as described in Section 1. Then, we use a standard network

coding algorithm due to Jaggi et al. [57] for sending R̂ = {p1, p2, . . . , ph, ph+1} packets

from s to T .

The standard algorithm will treat the packets in R̂ as generated by independent

random processes. The algorithm ensures that, in the normal network conditions,

each destination node receives h+ 1 independent linear combination of the packets in

R̂. The following lemma shows that after a single edge failure, each destination node

receives at least h linearly independent combinations of packets in R̂.

Lemma 6 Upon an edge failure, each terminal t ∈ T receives at least h linear com-

binations of packets in R̂.

Proof: Since we assume that all edges are of unit capacity, so each edge in the

network can be represented by a single arc. For each arc, a ∈ A, we define the global

encoding vector

Γe = [γe1 . . . γeh+1]
T ∈ Fh+1

q ,

that captures the relation between the packet, pa, transmitted on arc a and the
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original packets in R̂:

pe =
h+1∑
i=1

pi · γei . (4.2)

Let t be a terminal in T . We define the transfer matrix, Mt, that captures the

relation between the original packets, R, and the packets received by the terminal

node, t ∈ T , over its incoming edges. The matrix Mt is defined as follows:

Mt =

[
Γa1

t
Γa2

t
. . . Γah+1

t

]
, (4.3)

where Et = {a1
t , . . . , a

h+1
t } is the set of incoming arcs of terminal t.

Let a′ be a failed arc. A failure of a′ might result in a change of the the transfer

matrix Mt. We note that the new network matrix M̂t can be written as:

M̂t = Mt − Γa′Ta′ ,

where Ta′ is an 1 × h matrix that depends on the location of arc a′ in the network.

Note that Γa′Ta′ is an (h + 1) × (h + 1) matrix of rank no more than one. The

subadditivity property1 of rank implies that the rank of M̂t is at least h.

1. Creating Parity Check Packet

Lemma 6 implies that in the event of any single edge failure, each terminal node re-

ceives at least h independent linear combinations of the packets in {p1, p2, . . . , ph, ph+1}.

Since packet ph+1 is a linear combination of h original packets R = {p1, p2, . . . , ph},

each destination nodes receives, in fact, h linear combinations of R. Accordingly, our

goal is to construct packet ph+1 in such a way that each destination node receives

h independent linear combinations of R. This will allow each destination node to

1The subadditivity property of rank implies that Rank(X + Y ) ≤ Rank(X) +
Rank(Y ).
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decode the original packets.

For clarity of presentation we first focus on the case of h = 2. In this case we

have two original packets, p1 and p2, and one parity check packet p3 = γ1 · p1 +γ2 · p2.

Suppose that a terminal t ∈ T receives two linearly independent combinations of p1,

p2, and p3.

There are three different forms of packets a sink may receive, differing by their

coefficients for packet p3. In the first case, a sink receives two packets which both

have zero coefficients for p3. In this case, decoding of p1 and p2 is trivial. If one

packet has a non-zero coefficient for p3, and the second has a zero coefficient for p3,

we can express the packets as in Equation 4.4 below by dividing the first packet by

its coefficient for p3:

 β1 β2 1

β3 β4 0

×

p1

p2

p3

 , (4.4)

where β1, . . . , β4 are coefficients that belong to Fq. By substituting p3 = γ1 ·p1 +γ2 ·p2

we get:  (β1 + γ1) (β2 + γ2)

β3 β4

×
 p1

p2

 . (4.5)

We wish to find values for γ1 and γ2 such that matrix

R =

 (β1 + γ1) (β2 + γ2)

β3 β4


is of full rank. In particular, our goal is to select the values of γ1 and γ2 in such a

way that the determinant

det(R) = β1β4 − β2β3 + γ1β4 − γ2β3
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of R is not equal to zero. Since no constraints are made on the encoding coefficients

used in the multicast network code, det(R) must not be zero for all possible choices of

β1, . . . , β4 where the terminal receives two linearly independent vectors. It is easy to

verify that this cannot be done if γ1 and γ2 belong to the same field, Fq, as β1, . . . , β4.

Accordingly, in our approach we select γ1 and γ2 in an extension field of Fq and

construct the parity check packet p3 using an MRD code [66].

In an MRD code, one uses a vector of elements in GF (q) to create an element

in an extension field. A vector of N elements from GF (q) can be treated as an

element in GF (qN) where GF (qN) is an extension field of GF (q). A (n,m) MRD

code over GF (qN) takes m information symbols and generates n encoded symbols.

It is capable of correcting n − m rank erasures, or otherwise stated, can recover m

information packets from any m linearly independent combinations of the encoded

packets [66]. Since we are interested in recovery of the packets of p1 and p2 from any

two linearly independent packets originating from p1, p2, and p3, a (3, 2) MRD code

is sufficient. Such a code can be constructed using the following parity check matrix

[67]:

H =

[
α α2 1

]
,

where α is the primitive element of GF (q3). Using H, we can set p3 = −αp1 −

α2p2. Note that this way we are forced to work in the extension field, GF (q3), of

Fq = GF (q). This implies that the original packets p1, p2, p3 must belong to GF (q3)

as well. This can be achieved by combining three communication rounds into a single

round and treating a vector of size three in GF (q) as a single element of GF (q3).

If we re-examine R, we see that elements from GF (q) are mixed with elements

from GF (q3). Since GF (q3) is constructed as an extension field of GF (q), β1, . . . , β4

can be treated as elements from a subset of GF (q3) which behave as elements from
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GF (q). This implies that β1β4 − β2β3 belongs to GF (q), and αβ4 − α2β3 might also

be in GF (q) if α − α2 ∈ GF (q). However, this is not the case since

[
1 α α2

]
is

a valid MRD code[66]. Therefore,

det(R) = β1β4 − β2β3 + αβ4 − α2β3

is equal to zero only if β3 = β4 = 0, which contradicts our assumption that the

destination node receives two linearly independent vectors.

Lastly, we consider the case where both received vectors contain non-zero coeffi-

cients of p3, as in Equation 4.6. Through Gaussian elimination, the two vectors can

be subtracted to construct vectors as in Equation 4.4, and by using the argument

described above we can show that packets p1 and p2 can be recovered as well.

 β1 β2 1

β3 β4 1

×

p1

p2

p3

 . (4.6)

2. General Case

We turn to consider a more general case of h > 2. Since we need to only recover from

a single failure, we need to find a (h+ 1, h) MRD code. For this case, we can use the

parity check matrix [66]:

H =

[
α α2 . . . αh 1

]
(4.7)

over the field GF (qh+1), with

ph+1 = −
h∑
i=1

αipi. (4.8)

We summarize our results by the following theorem:
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Theorem 7 The proposed scheme achieves an instantaneous recovery from any single

edge failure.

Proof: Follows directly from the properties of MRD codes [66].

D. Network With Non-Uniform Capacities

In this section, we assume that different network edges may have different capacities.

We focus on a special case in which only two packets need to be delivered from the

source to all terminals at each communication round. The design of robust network

codes for h = 2 in the context of unicast connections has been studied in [68]. In

this work, we build on the results of [68] for constructing a robust network code for

multicast connections.

Let G(V,E) be a minimum robust coding network, i.e, a feasible robust network

such that the removal of an edge or a reduction in the capacity of an edge results

in a violation of its feasibility. Note that the capacity of any edge, e ∈ E, is at

most two. For each terminal, t ∈ T , let Gt(Vt, Et) to be a subgraph of G(V,E) that

contains a minimum coding network with respect to terminal t. That is, Gt(Vt, Et)

only contains edges of G(V,E) that are necessary to guarantee the conditions defined

by Equation 4.1 for terminal t. Furthermore, any reduction of the capacity of edges

in Gt(Vt, Et) will result in a violation of this condition for at least one of the (s, t)

cuts.

For each t ∈ T , we denote At as the set of arcs that correspond to edges in Et. In

[68] it was shown that it is possible to construct a robust unicast network code over

GF (2). In this code, each arc transmits either one of the original packets, p1 and p2,

or their sum, (p1 + p2). For each t ∈ T we denote such network code as Ct. We use

Ct to divide At into three disjoint subsets A1
t , A

2
t , and A3

t , where all the arcs in Ait
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carry the same packet.

To extend this to multicast, we construct a set of f = 3k linearly independent

vectors Φ = {Φ1,Φ2, . . . ,Φf} of the original two packets over GF (q).

We divide the arcs in A into f different subsets A1, ..., Af such that for each

subset, Ai all arcs in Ai belong to the same subsets, Ajt , for all t when the the arc

belongs to At. That is, for any two arcs, a1 and a2, in Ai and for each terminal t

such that a1, a2 ∈ At, both a1 and a2 belong the same subset, say Ajt , of At. Then

each subset Ai is associated with a linearly independent vector, Φi, from GF (q). We

construct a code for which it holds that the global encoding coefficient of each arc in

Ai is equal to Φi. It is easy to verify that such a network code is feasible, i.e., it is

possible to select the set of local encoding coefficients that satisfy this property. The

proof is based on the fact that for h = 2, any two linearly independent packets are

sufficient for constructing any linear combination in Φ. Also, it is easy to verify that

the code has a weakly robust property.

We construct the multicast code by creating a vector of t elements, each element

taking on any of 3 values, for each arc a ∈ A. We map elements in A1
t to have a value

of 1 in index t. The same is true for A2
t and A3

t being mapped to 2 and 3 respectively.

If a 3 At, its value at index t is not constrained. Each unique vector corresponds to a

subset, Ai, which is assigned to codeword Φi. Codewords are assigned in topological

order, assigning any non-constrained values any feasible values.

Lemma 8 The multicast code construction is a feasible multicast code

Proof: First we consider coding nodes within the network. If incident arcs to

a coding node contain two linearly independent packets, then any packet may be

constructed for outgoing arcs. If all incoming arcs contain the same packet, then we

show that the outgoing packets are the same under code construction. We need only
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consider constrained indexes on an outgoing arcs, i.e. indexes where Ct 6= 0 since

non-constrained entries may take on any value. Since the incoming arcs contain the

same packet, the arcs must contain a single codeword or the 0 packet in Ct. In Ct,

the outgoing packets may only contain the same codeword, or the 0 packet. In both

cases, the same incoming multicast packet is valid. Lastly, the case where an incoming

arc contains the 0 packet is the same as a network where the incoming arc does not

exist. Next we consider packets received by each sink. For each sink t ∈ T , Ct

guarantees at least arcs a1 and a2 whose head is t, carry linearly independent packets

in the unicast case. These two arcs belong to different subsets, Ait and Ajt , and belong

to different sets, Ak and Al, by construction. Since these two sets corresponds to

different codewords, Φk and Φl, they are linearly independent.

Lemma 9 The multicast code construction is weakly robust

Proof: First we note in any case where two arcs contain linearly independent

packets in Ct, they also contain linearly independent packets in the multicast code.

Second, we note that each Ct results in two linearly independent packets received by

t in the presence of a single edge failure. We define C′t to define the global coding

coefficients in the unicast code after an edge failure. Note, only descendants of the

failed edge contain different coefficients in Ct and C′t. In our multicast code, we

change the packet on the failed edge to the 0 packet and substitute C′t for Ct. Since

descendants of the failed edge can be informed of the failure with received packets,

they can make such a substitution. Lastly, since C′t is feasible, the multicast code is

still feasible in the presence of a single edge failure, making it weakly robust.
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E. Conclusion

In this chapter, we considered the problem of establishing reliable multicast connec-

tions across a communication network. For the case of uniform edge capacities, we

presented an efficient network coding algorithm based on the MRD codes that re-

quires a small finite field O(k). For the case of non-uniform capacities, we focused on

a special case of h = 2 and showed that it is also possible to construct a robust code

over a small field. Future research includes the construction of network codes with

non-uniform capacities and transmission of more than two packets per communication

round.
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CHAPTER V

A RANDOMIZED ALGORITHM AND PERFORMANCE BOUNDS FOR

CODED COOPERATIVE DATA EXCHANGE

A. Introduction

The ever-growing demand of mobile wireless clients for large file downloads and video

applications is straining cellular networks in terms of bandwidth provision and net-

work cost. Inspired by the Internet paradigm where peer-to-peer (P2P) content de-

livery systems are more efficient than a server-client based model, one solution to

address these issues is to allow the mobile clients to cooperate and exchange data

directly among each other.

In this chapter, we consider the problem of the information exchange between a

group of wireless clients. Each client initially holds a subset of packets and needs to

obtain all the packets held by other clients. Each client can broadcast the packets in

its possession (or a combination thereof) via a noiseless broadcast channel of capacity

one packet per channel use. Assuming that clients can cooperate with each other and

are fully aware of the packets available to other clients, the aim is to minimize the

total number of transmissions needed to satisfy the demands of all clients.

For example, Fig. 17 shows three wireless clients that are interested in obtaining

three packets of m bits each, x1, x2 and x3 ∈ GF (2m). The first, second and third

clients have already obtained packets {x2, x3}, {x1, x3} and {x1, x2}, respectively, i.e.,

each of these clients misses one packet. A simple cooperation scheme would consist

of three uncoded transmissions. However, this is not an optimal solution since the

clients can send coded packets and help multiple clients with a single transmission.

The number of transmissions for this example can be decreased to two by letting the
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c1

c2c3

x2, x3

x1, x3x1, x2

x2 + x3

x1

Fig. 17. Coded Data Exchange Among Three Clients.

first client send x2 + x3 and the second client send x1.

The problem we consider may appear in many practical settings. For example,

consider a wireless network in which some clients are interested in the same data (such

as a popular video clip or an urgent alert message). Initially, the entire data is avail-

able at a base station and is broadcast to the interested clients. The communication

link between the base station and the mobile clients can be not only expensive, but

also unreliable or sometimes even non-existent, which causes some clients to receive

only a portion of the data. In particular, partial reception can be caused by channel

fading or shadowing, connection loss, network saturation, or asynchronous client be-

havior such as in P2P systems. Despite partial reception, whenever the whole data

is collectively known by the interested clients, they can help each other to acquire

the whole data using short-range client-to-client communication links or cooperative

relaying which can be more affordable or reliable.

In this chapter we investigate theoretical aspects of such client cooperation and

are interested in finding efficient data exchange strategies which require minimum
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total number of transmissions. This problem was introduced by Rouayheb et al.

in [8] where lower and upper bounds on the minimum number of transmissions were

presented, in addition to a data exchange algorithm. Building on [8], we propose an

optimal data exchange algorithm based on random linear coding over a large field

and then show how coding can be done over a smaller field, once the number of

transmissions from each client is known.

A closely-related problem is that of Index Coding [69, 70, 71] in which different

clients cannot communicate with each other, but can receive transmissions from a

server possessing all the data. Gossip algorithms [72] and physical layer coopera-

tion [73] are also related concepts which are extensively studied in the literature.

B. System Model

Consider a set of n packets, X = {x1, . . . , xn}, to be delivered to k clients belonging

to the set C = {c1, . . . , ck}. The packets are elements of a finite alphabet which will

be assumed to be a finite field, F, throughout this chapter. At the beginning, each

client knows a subset of packets denoted by Xi ⊆ X, while the clients collectively

know all packets in X, i.e., ∪ci∈CXi = X. We denote X i = X \ Xi as the set of

packets required by client ci. We assume that each client knows the index of packets

that are available to other clients.1

The clients exchange packets over a lossless broadcast channel with the purpose

of making all packets in X available to all clients. The data is transferred in commu-

nication rounds, such that at round i one of the clients, say cj, broadcasts a packet,

pi ∈ F, to the rest of the clients in C. Packet pi may be one of the packets in Xj, or

a combination of packets in Xj and the packets {p1, . . . , pi−1} previously transmitted

1This can be achieved by exchanging packet indices at the beginning of data ex-
change. The indices can also be piggybacked on the data packets to reduce overhead.
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over the channel. Our goal is to devise a scheme that enables each client ci ∈ C

to obtain all packets in X i while minimizing the total number of transmissions. Our

schemes use linear coding over the field F. As discussed in Section D below, restricting

ourselves to linear coding operations does not result in loss of optimality.

With linear coding, any packet, pi, transmitted by the algorithm is a linear

combination of the original packets in X, i.e.,

pi =
∑
xj∈X

γji xj,

where γji ∈ F are encoding coefficients of pi.We refer to the vector γi = [γ1
i , γ

2
i , . . . , γ

n
i ]

as the encoding vector of pi. The i-th unit encoding vector that corresponds to the

original packet xi is denoted by ui = [u1
i , u

2
i , . . . , u

n
i ], where uii = 1 and uji = 0 for

i 6= j. We also denote Ui as the set of unit vectors that corresponds to packets in Xi.

Note that we are restricting the transmission by client cj to being a linear combination

of packets initially known to client cj and ignoring packets already broadcasted on

the channel. It can be shown that this will have no effect on the optimality of the

algorithm.

Let ni = |Xi| be the number of packets initially known to client ci. The num-

ber of unknown packets to client ci is therefore, n̄i = |Xi| = n − ni. We denote

nmin = min1≤i≤k ni as the minimum number of packets known to a client. The corre-

sponding client or clients where ni = nmin form a subset Cmin of C.

A client ci is said to have a unique packet xj if xj ∈ Xi and xj /∈ X` for all ` 6= i.

A unique packet can be broadcast by the client holding it in an uncoded fashion at

any stage without any penalty in terms of optimality. Without loss of generality, we

can assume that there are no unique packets in the system. Additionally, without

loss of generality, we assume that all k clients initially have distinct packet sets.
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Algorithm Information Exchange (k, n, Γ, C)
1 For i← 1 to k do
2 Yi = 〈{Γx | x ∈ Xi}〉
3 While there is a client i with dimYi < n do
4 While ∃ci, cj ∈ C i 6= j, such that Yi = Yj do
5 C = C \ {ci}
6 Find a client ci with a subspace Yi of maximum dimension

(If there are multiple such clients choose an arbitrary one of them)
7 Select a vector b ∈ Yi such that b /∈ Yj for each j 6= i

8 Let client ci broadcast packet b · (x1, . . . , xn)T

9 For ` = 1← 1 to k do
10 Yi ← Yi + 〈{b}〉

Fig. 18. Algorithm Information Exchange

We note that the results of this chapter can be applied, with minor modifications,

to settings where initial data available to clients include linear combinations of the

packets in X. However, these settings are beyond the scope of this chapter.

C. Deterministic Algorithm for Three Clients

1. Optimality Proof

Algorithm Information Exchange presented by Rouayheb et al. in [8] shown in

Figure 18, is optimal for two and three clients with slight modification. In the case of

two clients, each client must transmit the other client’s compliment set. It is easy to

show that the proposed algorithm accomplishes this task. When run on three clients,

the algorithm must be modified to transmit all unique packets first. Since the original

algorithm assumes unique packets, their presence can interfere with its optimality if

they are not initially handled. See the example in Subsection 3 below with four

clients as a demonstration. For clarity, we assume that Algorithm Information

Exchange contains this modification.
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We first allow the transmission of all unique packets. A unique packet, in terms

of vector spaces, we defined as a packet which is orthogonal to all other packets held

by other clients. Then, the algorithm proceeds in rounds or iterations, starting with

iteration 0. The three clients are assigned labels a, b, and c.2 Then, we define the

vector space spanned by clients a, b, and c at iteration i as Ai, Bi, and Ci, respectively.

For clarity, we remove any vector space which is shared by all clients, A0 ∩ B0 ∩ C0.

The remaining subspace is defined as N = Ai + Bi + Ci, which is the space spanned

by the combination of all vectors in Ai, Bi, and Ci.

We define four sets of subspaces:

Wi = Ai ∩Bi ∩ Ci, (5.1)

Ai = Bi ∩ Ci ∩ A⊥i , (5.2)

Bi = Ai ∩ Ci ∩B⊥i , (5.3)

Ci = Ai ∩Bi ∩ C⊥i , (5.4)

where Y ⊥ denotes the subspace orthogonal to subspace Y . Intuitively, Ai, Bi,

and Ci denote subspaces unknown to clients Ai, Bi, and Ci, respectively. Thus,

dim(Ai) + dim(Ai) = n and the same holds for Bi and Ci.

Initially A0 = B0 ∩ C0, B0 = A0 ∩ C0, C0 = A0 ∩ B0 and W0 = 0. By

definition Ai ∩Bi = 0, Ai ∩ Ci = 0, and Bi ∩ Ci = 0 Also, since no subspace

is known to only a single client, Ai = Bi + Ci + Wi, Bi = Ai + Ci + Wi, and

Ci = Ai+Bi+Wi. Since Ai, Bi, Ci, and Wi form non-overlapping subspaces, it holds

that dim(N) = dim(Ai) + dim(Bi) + dim(Ci) + dim(Wi).

2As explained below, clients are assigned labels at the beginning of each iteration.
A client might have different labels in different iterations.
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Without loss of generality, for each i = 0, 1, 2, . . . , we assume that:

dim(Ai) ≥ dim(Bi) ≥ dim(Ci). (5.5)

Indeed, we can always rename clients in the beginning of each iteration such that

Equation 5.5 is satisfied.

In analysis of this problem, instances of the problem can be separated into two

sets based on whether an inequality, which bears similarity to the triangle inequality,

is satisfied:

dim(A0) ≤ dim(B0) + dim(C0). (5.6)

First we show that the algorithm is optimal when the triangle inequality is not

met.

Lemma 10 Algorithm Information Exchange is optimal for three clients when

dim(A0) > dim(B0) + dim(C0).

Proof: When dim(A0) > dim(B0) + dim(C0), a trivial lower bound on the num-

ber of packet transmissions is dim(A0) as A0 contains the subspace initially unknown

to client a.

We prove that for at each iteration i of the algorithm it holds that

dim(Ai) > dim(Bi) + dim(Ci).

The condition of the lemma implies that this is true at for i = 0.

Suppose that this condition is true for iteration i, we prove that it is true for

iteration i + 1. Algorithm Information Exchange requires at each iteration the

client with the highest packet count transmits a packet which is new to each other

client. Then, client c will transmit a packet pi that must satisfy the following three

conditions:
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pi ∈ Ai +Bi,

pi /∈ Ai,

pi /∈ Bi (5.7)

That is, pi must be within the subspace known to c, but also outside the subspace

known to both clients a and b individually. Since Ai and Bi define a subspace unknown

to clients a and b respectively, and packet pi has been transmitted to clients a and b,

it holds that:

Ai+1 = Ai ∩ p⊥i ; (5.8)

Bi+1 = Bi ∩ p⊥i ; (5.9)

This implies that dim(Ai+1) = dim(A)− 1 and dim(Bi+1) = dim(B)− 1, hence

it holds that dim(Ai+1) > dim(Bi+1) + dim(Ci+1).

Algorithm Information Exchange will repeat the above until Bi = Ci = 0.

At this point, Bi = Ci, so clients b and c can now be treated as a single client

and dim(Ai) = dim(A0) − i. The combined client transmits the remaining space

in Ai, requiring i transmissions, making the total number of transmissions equal to

dim(Ai) + i = dim(A0)− i+ i = dim(A0), which achieves the lower bound.

Next we must consider the case where the triangle inequality in Equation 5.6 is

true. Before we consider this case, we must present some lemmas about the dimen-

sionality of subspaces as the algorithm proceeds:

Lemma 11 If the condition dim(Ai) ≤ dim(Bi) + dim(Ci) holds, then dim(Ai) > 0

and dim(Bi) > 0, unless dim(Ai) = dim(Bi) = dim(Ci) = 0

Proof: Assume that dim(Ai) = 0. Then for the inequality to hold, dim(Bi) +
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dim(Ci) = 0, so dim(Ai) = dim(Bi) = dim(Ci) = 0. Assume that dim(Bi) = 0.

Then, for the inequality to hold dim(Ci) ≥ dim(Ai), which contradicts Equation 5.5

unless dim(Ai) = dim(Bi) = dim(Ci) = 0.

Lemma 12 If the condition dim(Ai) ≤ dim(Bi) + dim(Ci) holds, then dim(Ai+i) +

dim(Bi+i)+dim(Ci+i) = dim(Ai)+dim(Bi)+dim(Ci)−2 and dim(Wi+1) = dim(Wi)+

2.

Proof: From Lemma 11, we know dim(Ai) > 0; dim(Bi) > 0. As long as

dim(Ai) > 0; dim(Bi) > 0, client c will transmit a packet pi as defined in Equation 5.7,

and Ai+1 and Bi+i are defined as in Equations 5.8 and 5.9. Therefore,

dim(Ai+i) + dim(Bi+i) + dim(Ci+i) = dim(Ai) + dim(Bi) + dim(Ci)− 2

and dim(Wi+1) = dim(Wi) + 2.

Next we show that if triangle inequality in Equation 5.6 holds, then for i =

1, 2, . . . it will hold that dim(Ai) ≤ dim(Bi)+dim(Ci) until the algorithm hits one of

two specific states. In these states, all clients either have 1 or 0 packets remaining. In

the latter case, the algorithm is done where in the former, two transmissions remain,

as shown in Lemma 14.

Lemma 13 If Equation 5.6 holds, then Algorithm Information Exchange will

maintain dim(Ai) ≤ dim(Bi) + dim(Ci) until dim(Ai) = dim(Bi) = dim(Ci) = d

where d = 1 or d = 0.

Proof: Suppose that dim(Ai) ≤ dim(Bi) + dim(Ci) holds. After a transmis-

sion in round i, we have dim(Ai+1) = dim(Ai) − 1, dim(Bi+1) = dim(Bi) − 1, and

dim(Ci+1) = dim(Ci) since a single packet has been transmitted by client c to clients a
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and b. If dim(Ai) 6= dim(Ci), then 1 was subtracted from each side and the inequality

dim(Ai+1) ≤ dim(Bi+1) + dim(Ci+1) holds.

If dim(Ai) = dim(Ci), this implies dim(Ai) = dim(Bi) = dim(Ci) and it holds

that dim(Ci+1) > dim(Ai+1) and dim(Ci+1) > dim(Bi+1). If we set d = dim(Ai) =

dim(Bi) = dim(Ci), the resulting inequality is d ≤ d− 1 + d− 1, which is only false

if d ≤ 1.

Lemma 14 Algorithm Information Exchange is optimal for dim(Ai) = dim(Bi) =

dim(Ci) = 1, requiring 2 transmissions.

Proof: If dim(Ai) = dim(Bi) = dim(Ci) = 1, then a trivial lower bound is 2

transmissions. A client must transmit in the next round, and that client cannot learn

any new information. Therefore, that client needs at least one additional round to

learn any new packets.

Algorithm Information Exchange will select the client with the greatest

dimensionality to make a transmission. In this case, all clients have the same dimen-

sionality, so without loss of generality, assume client c transmits. Then dim(Ci+1) = 1

and dim(Ai+1) = dim(Bi+1) = 0. At this point, clients a and b now contain all pack-

ets within their subspace since the dimensionality of Ai+1 and Bi+1 is 0, and client c

is missing only one dimension since dimensionality of Ci+1 is 1. The algorithm will

pick either client a or client b to make a transmission to client c, transmitting the

final dimension of Ci+1. After 2 transmissions, all clients contain all packets, which

achieves the lower bound.

Next we wish to prove how the algorithm behaves in the general case where

triangle inequality in Equation 5.6 is true. There are two cases, depending on

whether dim(N) is even or odd. If dim(N) is odd, the algorithm will continue until

dim(A) = dim(B) = dim(C) = 1, as shown in Lemma 15. If dim(N) is even, then
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the algorithm will complete with dim(A) = dim(B) = dim(C) = 0, as shown in

Lemma 16. Finally we show that in both of these cases, the number of transmissions

is optimal in Lemma 17.

Lemma 15 If Equation 5.6 is true and dim(N) is odd, then in execution of Al-

gorithm Information Exchange dim(Ai) = dim(Bi) = dim(Ci) = 1 with i =

dim(N)−3
2

.

Proof: From Lemma 13, we know that inequality dim(Ai) ≤ dim(Bi) + dim(Ci)

holds until dim(Ai) = dim(Bi) = dim(Ci) = d; d = {0, 1}. Furthermore from

Lemma 12, we know that as long as Equation 5.6 holds, dim(Ai)+dim(Bi)+dim(Ci) =

dim(N) − 2 ∗ i, so dim(Ai) + dim(Bi) + dim(Ci) is odd for all i at least until

dim(Ai) = dim(Bi) = dim(Ci) = d; d = {0, 1}. If d = 1, then the number of

transmissions to this point is dim(N)−3
2

from Lemma 12. Assume that the inequality

dim(Ai) ≤ dim(Bi) + dim(Ci) holds until dim(Ai) = dim(Bi) = dim(Ci) = 0, then

dim(Ai−1) + dim(Bi−1) + dim(Ci−1) = 2 since two sets must each be reduced in di-

mensionality by 1 as long as Equation 5.6 holds. Since 2 is even, this contradicts

Lemma 12.

Lemma 16 If Equation 5.6 is true and dim(N) is even, then in execution of Algo-

rithm Information Exchange dim(Ai) = dim(Bi) = dim(Ci) = 0 for i = dim(N)
2

.

Proof: From Lemma 13, we know that inequality dim(Ai) ≤ dim(Bi) + dim(Ci)

holds until dim(Ai) = dim(Bi) = dim(Ci) = d; d ∈ {0, 1}. Thus, by Lemma 12, it

holds that dim(Ai) + dim(Bi) + dim(Ci) = dim(N)− 2 ∗ i. This implies that d 6= 1.

Therefore, Equation 5.6 holds until dim(Ai) = dim(Bi) = dim(Ci) = 0, which, by

Lemma 12, occurs at iteration i = dim(N)
2

.
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Lemma 17 Algorithm Information Exchange is optimal for three clients when

dim(A0) ≤ dim(B0) + dim(C0).

Proof: When dim(A0) ≤ dim(B0) + dim(C0), one can define a lower bound of⌈
dim(N)

2

⌉
since dim(N) packets must be shared and in any given round, and at most

2 clients can learn a single packet.

If dim(N) is even, we know from Lemma 16 that Algorithm Information

Exchange takes dim(N)
2

transmissions, which achieves the lower bound.

If dim(N) is odd, we know from Lemma 15 that Algorithm Information

Exchange takes dim(N)−3
2

transmissions to reach the point where dim(Ai) = dim(Bi) =

dim(Ci) = 1, and from Lemma 14 requires two additional transmissions to complete.

This totals dim(N)−3
2

+ 2 = dim(N)+1
2

transmissions. Since dim(N) is odd, the total

transmissions made is
⌈

dim(N)
2

⌉
, which achieves the lower bound.

Theorem 18 Algorithm Information Exchange is optimal for three clients

Proof: Follows from Lemmas 10, and 17.

2. Upper Bound

In the general case, clients will merge as their subspaces become identical. At some

point, the algorithm will pass through a point where only three unique client subspaces

exist.

Theorem 19 With a network containing n packets, and an optimal packet exchange

of α packets, Algorithm Information Exchange will transmit no more than 19
16
α

packets.

Proof: Define γ as the number of packets transmitted in Algorithm Informa-

tion Exchange. Define n0 as the lowest number of packets known by any client
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when the algorithm starts. Define n1 as the lowest number of packets known by any

client at the point when there are three unique subspaces. Define β = n− n1.

In the case where Algorithm Information Exchange has three unique sub-

spaces and the triangle inequality in Equation 5.6 is not met, then the client with

the highest packet count has at least the same number of packets as every other

client combined. Therefore, it, and other clients in the same set, must have been

transmitting to reach this point. This would require n1 − n0 transmissions. From

Lemma 10, this requires an additional n − n1 transmissions to complete, totaling

n− n0 transmissions. This is a lower bound, so in this case it is optimal.

When Algorithm Information Exchange has three unique subspaces and

Equation 5.6 is met, there have been at most 4
3
(n1 − n0) transmissions, since there

exists at least four clients prior to this point, and the client with the least num-

ber of packets receives at least three packets out of every four transmissions. From

Lemma 17, this requires an additional 3
2

transmissions to complete. The total packet

count is

γ ≤ 4

3
(n1 − n0) +

3

2
β =

4

3
(n− β − n0) +

3

2
β =

4

3
(n− n0) +

1

6
β.

Since Equation 5.6 is true, then α ≥ 3
2
β, so γ ≤ 4

3
α + 1

4
α = 19

16
α.

3. Example with 4 Clients

While the modified algorithm by Rouayheb et al. is optimal for 3 clients, it is not

optimal for 4 clients. Consider the example in Figure 19. In this example, a client

knows all packets below the line, while it wants all packets above the line.

Consider the case where client 1 transmits first (since it has the most number of

packets), and chooses to transmit the packet c + d. This packet is beneficial to all
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a,b
c,d,e,f

d,e,f
a,b,c

c,e,f
a,b,d

a,b,c,d
e,f

Client 1 Client 2

Client 3 Client 4

Fig. 19. Example Multicast Exchange With 4 Clients and 6 Packets.

other clients. With this new information, clients 2 and 3 are able to decode packets d

and c respectively, making these two client posses identical information. Next, client

1 transmits packet e+ c+ d, which again is beneficial to everyone. At this point, the

combined client 2 and 3 has the most information, so it chooses to transmit a, and

since it has the same packet count as client 1, it still chooses to transmit and it sends

b. Again, these two packets are beneficial to all other clients. Lastly, the combined

client 2 and 3 needs packet f , and so it is transmitted by client 1. This results in a

total of 5 transmissions.

Consider the schedule where client 2 transmits a+c, client 3 transmits b+d, then

client 1 transmits a+e, followed by b+f . This schedule meets all the requirements for

all clients in 4 transmissions. Additionally, if client 4 is removed from this problem,

the algorithm by Rouayheb et al. without modification could behave in the same

manner as it did with 4 clients. In this case, when client 4 is removed, packets e and
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f are unique to client 1, which is why the modification to Algorithm Information

Exchange is required.

It is important to note that with three clients, after the transmission of unique

packets and the subsequent removal of knowledge common to all clients from the

problem, every packet is known to exactly 2 clients. When the same conditions are

imposed on 4 clients, packets are known to either 2 or 3 clients. This provides some

intuition as to why the algorithm is optimal for 3 clients, but not necessarily optimal

for 4. In addition, the sub-optimality of the transmissions in the above example is

due to a poor transmission choice for the first packet rather than a poor choice in

which client should transmit first.

D. A Randomized Algorithm

In this section, we present a randomized algorithm for the problem at hand. Our

algorithm assumes a large finite field F of size q and provides an optimal solution

with high probability. Later in the section will show that the size of the field can be

reduced to O(k), without increasing the total number of transmissions.

For clarity, we describe and analyze the behavior of the algorithm in terms of

encoding vectors, rather than original packets. That is, instead of saying that a packet

pi =
∑

xj∈X γ
j
i xj has been transmitted, we say that we transmit the corresponding

encoding vector γi = [γ1
i , γ

2
i , . . . , γ

n
i ].

The algorithm operates in rounds. Assume that in round i, the encoding vector

γi is transmitted by client cj. Then, the transmitted vector γi is a random linear

combination of the unit vectors in Uj, i.e., γgi = 0 for xg /∈ Xj; other elements of γi

are selected at random from the field F. We denote Γi = {γ1, . . . , γi} as the set of

encoding vectors that have been transmitted up to and including round i.
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The steps performed by the algorithm can be summarized as follows:

1. For i← 1, 2, . . . , n do:

(a) Select a client cj for which the set Uj ∪ Γi−1 is of maximum rank, i.e.,

j = arg max
cj∈C
{rank(Uj ∪ Γi−1)};

(b) Create a new encoding vector γi, such that γgi = 0 for xg /∈ Xj, otherwise

γgi is a random element of field F.

(c) If for each cl ∈ C it holds that rank(Ul ∪ Γi) = n, go to Step 2.

2. Return i encoding vectors {γ1, . . . , γi}

We proceed to analyze the correctness and optimality of the algorithm. Consider

an iteration i of the algorithm. We denoteOPTi as the optimal number of packets that

still need to be transmitted after round i,i.e. in addition to the first i transmissions,

in order to satisfy the demands of all the clients.

Lemma 20 With probability at least 1− n
q
, it holds that OPTi = OPTi−1 − 1

Proof: Recall that the set Γi−1 = {γ1, . . . , γi−1} contains the packets that have

been transmitted so far. Let Qi−1 be an optimal set of encoding vectors required to

complete the information transfer. That is, Qi−1 includes OPTi−1 encoding vectors

such that (i) each vector is a linear combination of Ul for some cl ∈ C; (ii) for each

client cl ∈ C it holds that the set Γi−1 ∪Qi−1 ∪ Ul is of rank n.

Let µ = rank(Uj ∪ Γi−1) be the rank of the set of encoding vectors available to

client cj at the beginning of iteration i. We observe that OPTi−1 is at least n−µ+ 1.

This follows from the fact that cj is the client that has the maximum rank at the

beginning of iteration i. If there exists a client with strictly lower rank than µ, then
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this client would require at least n − (µ − 1) transmissions. Otherwise, if all clients

have the same rank, then the required number of transmissions is also at least n−µ+1

since the first client to transmit still needs n − µ transmissions to complete. This

argument is similar to the lower bound in [8]. Thus, there exists at least one packet,

v, that can be removed from Qi−1 to give Q̃i−1 = Qi−1 \{v} such that Γi−1∪Q̃i−1∪Uj

remains of rank n.

Let cl be a client in C \ {cj}. We prove that with probability at least 1 − n
q

it holds that Γi−1 ∪ Q̃i−1 ∪ Ul ∪ pj is of rank n. Note that the rank of vector set

Sl = Γi−1 ∪ Q̃i−1 ∪ Ul is at least n− 1. We only need to consider the case in which Sl

is of rank n− 1 since a client with Sl of rank n is unaffected by the removal of packet

v. Let ζl be the normal vector to the span of Sl. In what follows, we show that ζl and

γi are not orthogonal with high probability, i.e, the inner product 〈ζl, γi〉 between ζl

and γi is not equal to zero with probability at least 1− n
q
. This will suffice to prove

the claim that Γi−1 ∪ Q̃i−1 ∪ Ul ∪ pj is of rank n with probability at most 1− n
q
.

Note that ζl can be written as

ζl =
∑
ug∈Uj

βgug +
∑
ug∈Uj

βgug,

where U j is the set of unit encoding vectors that correspond to Xj = X \Xj.

We show that there exists ug ∈ Uj such that βg 6= 0. If we suppose that it is

not the case, then ζl can be expressed as ζl =
∑

ug∈Uj
βgug. Note that for each

ug ∈ U j, the span of Γi−1 ∪ Q̃i−1 must include a vector vg = ug +
∑

ut∈Uj
γtut. Since

vg is orthogonal to ζl, this implies that βg is equal to zero for each ug ∈ U j. This,

contradicts the fact that ζl is not identical to zero.

Recall that γi is a random linear combination of vectors in Uj, i.e., γi =
∑

ug∈Uj
γgi ug

where γgi are random coefficients over a field F. Therefore, inner product 〈ζl, γi〉 can
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be written as

〈ζl, γi〉 =
∑
ug∈Uj

βgγ
g
i .

Let Û be a subset of Uj such that for each ug ∈ Û it holds that βg 6= 0. We

have showed above that the set Û is not empty. Thus, 〈ζl, γi〉 =
∑

ug∈Û βgγ
g
i . Since

for each ug ∈ Û , γgi is a random variable chosen independently of {βg ug ∈ Û} the

probability that 〈ζl, γi〉 is equal to zero is at most 1
q
.

By using the union bound we can show that the probability that 〈ζl, γi〉 = 0

for some client cl ∈ C is bounded by n
q
. Thus, with probability at least 1 − n

q

for each client cl ∈ C it holds that Γi−1 ∪ Q̃i−1 ∪ Ul ∪ pj is of rank n. Therefore,

after iteration i of the algorithm, the information transfer can be completed within

OPTi−1 − 1 transmissions by using vectors in Γi−1 ∪ Q̃i−1 ∪ Ul.

Theorem 21 The algorithm computes, with probability at least 1 − n2

q
, an optimal

solution for the data exchange problem, provided that the size q is larger than n.

Proof: Let OPT the be the optimum number of transmissions required to solve

the information exchange problem. Note that OPT0 = OPT . By Lemma 20, after

each iteration, the number of required transmissions reduces by one with probability

at least (1− n
q
). Thus, the information transfer will be completed after OPT iterations

with probability at least

(1− n

q
)OPT ≥ (1− n

q
)n ≥ 1− n2

q
,

where the last inequality holds for q > n.

By selecting a sufficiently large q (i.e., q ≥ 4n2), we can guarantee that the

probability of success is at least 3/4. Probability of success can be amplified to be
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Fig. 20. Example Multicast Graph for 4 Clients and 5 Packets.

arbitrary close to 1 by performing multiple iterations and choosing the iteration that

yields the minimum number of transmissions.

Corollary 22 For any ε > 0 the algorithm can find an optimal solution to the in-

formation exchange problem with probability at least 1− ε in time polynomial in the

size of the input and log(ε).

1. Reducing the Field Size

We can now construct a multicast problem as shown in Figure 20 to reduce the

required field size to |F| ≥ k. The multicast setting consists a source node s and of

4 layers. The first layer has n nodes corresponding to n source packets. The source

node s is connected by link to each node in layer 1. Layer 2 comprises k nodes

corresponding to k clients. An existing edge eij between node i in the first layer and

node j in the second layer means that client cj knows packet xi. Client nodes in layer

2 are connected to a single node, w, in layer 3, where the edge capacity bj represents
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the number of transmissions from cj determined by the algorithm. And finally, w

distributes coded packets to all k destination client nodes with edge capacities equal

to b =
∑k

j=1 bj. Obviously, client cj is interested in all n source packets but also has

side information Xj, which can also be represented by direct edges from the second

to the last layer with capacities equal to nj. This is a standard multicast problem of

transmitting n packets from the source node s to k destinations. Using the results in

[57], we can find a network coding solution to the problem as long as |F| ≥ k.

We have thus shown that with linear coding we can achieve the optimal number

of transmissions and achieve the capacity of the equivalent multicast problem. Hence,

linear coding is sufficient for the information data exchange problem.

E. Conclusion

We presented a randomized algorithm that finds an optimal solution for the coop-

erative data exchange problem with high probability. While the algorithm gives a

solution over a relatively large field, we showed that the field size can be reduced,

through an efficient procedure, without any penalty in terms of the total number of

transmissions. We also proved that the deterministic algorithm by Rouayheb et al.

in [8] is optimal for three clients as well as a proof that this algorithm’s chosen client

transmission order is part of an optimal solution.
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CHAPTER VI

CONCLUSION

This dissertation demonstrates that the reliability of a network contains many factors.

Some networks need to be able to survive a natural disaster, such as a cellular network

which needs to carry emergency calls, and others need to be able to survive random

day to day failures. Even in the presence of failures, a sender can transmit its data

in a manner so that clients can recover from limited failures. Clients may even work

together to help each other recover data lost to some clients but retrieved by others.

In the analysis of the cellular infrastructure, this dissertation shows that the

reliability can be evaluated using the combination of analysis of structural reliability

in a hurricane, network and traffic modeling, and simulation. This technique provides

a method for both assessing the reliability of the system as well as a framework to

test alternative topologies. Through the addition of some increased redundancy, the

reliability of the system can be significantly increased. Constructing a mesh network

out of microwave dishes or adding a fiber link across the network’s leaves showed a

significant increase in the network’s availability during in the aftermath of a hurricane.

When examining the simulation techniques for analysis of rare events, this dis-

sertation presented two efficient methods for analysis of a network’s expected loss of

traffic (ELT). Compared to a Monte Carlo technique which was significantly acceler-

ated through the use of a hash table, these techniques showed significant improvement

in speed. The cut enumeration provided a fast lower bound on the amount of traffic

lost, but it only counted cases where a network was disconnected. In cases where

a few links are cut, and traffic is rerouted, network traffic lost due to congestion

is missed by this technique. The used of genetic algorithms with niching provide

a tighter bound while still presenting its results more quickly than the Monte Carlo
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technique. In cases of low probability, both of these techniques provided results which

were also more accurate.

In the multicast problem, this dissertation provides a method for encoding parity

packets which are effectively linearly independent of its source packets. This allows

such parity packets to be transmitted in a coding network along with its source packets

without concern of generating a packet which is identically 0. With this technique,

one can establish a multicast connection to k clients which can withstand the failure

of a single edge in the network without any action on the part of the source in response

to the failure.

When clients in a multicast problem can communicate with one another in a

broadcast channel, they are able to fill in gaps themselves if another client has the

required data. This dissertation presents a technique where clients make random

transmissions over a very large field which will be optimal with very high probability.

Furthermore, after each client’s transmission count is known, the field size can be

reduced without affecting the transmission count. It also shows that the previously

proposed algorithm is optimal for 3 clients, and that an optimal solution exists with

the same transmission order proposed by this algorithm.

We rely on networks for our modern communications. Techniques, like those

presented in this dissertation, can help to improve a network’s reliability by providing

the means to quickly analyze a complex system. In addition, providers can use

techniques presented here to increase the reliability of their content delivery even

when a network failure occurs during transmission. Also users can cooperate with

one another to better their experience by fill in each other’s gaps in shared content.
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