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ABSTRACT 

 

Essays on the Effect of Climate Change on Agriculture  

and Forestry. (May 2010) 

Xavier Alfredo Villavicencio Córdova, B.A., Escuela Superior Politécnica del Litoral;  

M.S., Universidad de Chile 

Co-Chairs of Advisory Committee,   Dr. Bruce A. McCarl 
Dr. Ximing Wu 

 

 

In this dissertation, I study the effects of climate change on agricultural total 

factor productivity and crop yields and their variability. In addition, an examination was 

conducted on the value of select climate change adaptation strategies in forestry. Across 

the study, the climate change scenarios analyzed were based on the 2007 

Intergovernmental Panel on Climate Change Assessment Report. 

Climate change impacts on the returns to research investments were examined 

extending the work of Huffman and Evenson (2006), incorporating climatic effects. The 

conjecture is that the rate of return of agricultural research is falling due to altered 

resource allocations and unfavorable weather conditions, arising from the early onset of 

climate change. This work was done using a panel model of Agricultural Total Factor 

Productivity (TFP) for the forty-eight contiguous states over 1970–1999. Climatic 

variables such as temperature and amount and intensity of precipitation were added into 

the model. The main results are (1) climate change affects research productivity, varying 
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by region; (2) this effect is generally negative; (3) additional investments are needed to 

achieve pre-climate change TFP rates of growth; and (4) the predicted investment 

increases are on the order of 18%.  

The second inquiry involved the impact of historical climatic conditions on the 

statistical distributions of crop yields through mean and variability. This was done 

statistically, using historical yields for several crops in the US, and climate variables, 

with annual observations from 1960 to 2007. The estimation shows that climate change 

is having an effect on the first two moments of the distribution, concluding that crop 

yield distributions are not stationary. The implication is that risk analysis must consider 

means and volatility measures that depend on future climatic conditions. The analysis 

shows that future mean yields will increase, but volatility will also be greater for the 

studied crops. These results have strong implication for future crop insurance decisions.  

Finally, an examination was done on the value of select forestry adaptation 

strategies in the face of climate change. This work is motivated by the known fact that 

forestry sector is already heavily adapted to changing climatic conditions. Using the 

Forestry and Agriculture Sector Optimization Model for the United States (FASOM), I 

found that rotation age is the most effective adaptation strategy being worth about 60 

billion dollars, while changes in species and management intensity are worth about 1.5 

billion, and land use change between forestry to agriculture is worth about 200,000.  
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1. INTRODUCTION 

 

Climate change is beginning to have observable effects on global and regional 

temperatures and precipitation in terms of both average levels and variability.  In turn as 

a consequence it is having effects on agricultural inputs and outputs. 

Observations and forecasts as developed in the Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change (2007) include a number of potential effects 

that would affect the agricultural activities. There is a high consensus over some 

significant facts, which include: 

• Since 1750 Global atmospheric concentrations of GHG (greenhouse gases) carbon 

dioxide, methane and nitrous oxide have increased markedly as a result of human 

activities and now far exceed pre-industrial values as determined by measurements 

from ice core evidence over many thousands of years.  

• The global increases in carbon dioxide concentration are due primarily to fossil fuel 

use and land use change, while much of the methane and nitrous oxide are due to 

agriculture.  

• The understanding of anthropogenic warming and cooling influences on climate has 

improved in the last years, leading to very high confidence that the global average 

net effect of human activities since 1750 has been one of warming. Namely the IPCC 

states “Most of the observed increase in global average temperatures since the mid-

20th century is very likely (>90%) due to the observed increase in anthropogenic 

greenhouse gas concentrations”. 

_________________ 
This dissertation follows the style of the American Journal of Agricultural Economics. 
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• At continental, regional and ocean basin scales, long-term changes in climate have 

been observed. These include changes in  

o arctic temperatures and ice thickness,  

o precipitation amounts and the quantity coming from intense events,  

o ocean salinity,  

o wind patterns 

o aspects of extreme weather including droughts, heavy precipitation, heat 

waves and the intensity of tropical cyclones. 

Such effects are forecasted to become more severe into the future. Namely the 

projections of virtually all climate models predict that increasing emissions will cause 

the following effects 

• More intense heat waves that are more frequent and longer lasting  

• A global precipitation increase, but with general decreases in the subtropics 

• Increases in precipitation intensity when it rains but with longer periods between 

rainfall events  

• A tendency for drying of mid-continental areas during summer, meaning a greater 

risk of droughts in those regions 

• A projected sea level rise by 2099 of 0.18 to 0.59 meters plus additional rise due to 

Greenland and Antarctica ice melting. 

• An increase in hurricane peak wind intensities accompanied by an increase in the 

numbers of the most intense hurricanes 

• An incidence of fewer mid-latitude storms with a poleward shift of storm tracks 

• A change in the Atlantic Ocean Meridional Overturning Circulation (MOC) – with 

the Gulf Stream slowing down 
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These projections imply that past probability distributions are likely not directly 

usable as distributions of future variability and also increases the need for risk 

management. 

This dissertation will examine, in three essays, the effects of climate change on 

several agricultural related issues in a US context, including crop yields, rates of yield 

improvement and adaptation possibilities. In Sections 2 and 3, this will be done using 

econometric investigations to examine the dependency between crop yield variability 

and factor productivity with climate attributes. These attributes will include both means 

and items describing the distribution of temperature and precipitation.  

Adaptation possibilities will be examined in Section 4 given such changes using 

a partial equilibrium model for the U.S. forestry sector in which the new environmental 

conditions are taken into account. The projections of future effects on temperature and 

precipitation variability will be made based on scenarios from the IPCC reports.  

The objectives of this work are summarized as follows: 

• Develop several methods to address econometric estimations for climate change 

economics when dealing with non stationary variables. 

• Identify the determinants of agricultural factor productivity and calculate the 

required amounts of additional public investments to overcome the effects of 

climate change. 

• Determine whether climate change has altered the historical distribution of 

agricultural yields, affecting the crop mean yields and its volatility. Besides, 

present a methodology to simulate the effects of future climate on crop’s yield 

distributions. 
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• Establish the welfare value of different adaptation strategies in the forestry 

sector. Also, improve the existing forestry and agricultural sectorial model, in 

order to have a better tool for policy evaluation when facing decisions of climate 

change adaptation with limited resources. 
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2. CLIMATE CHANGE INFLUENCES ON AGRICULTURAL RESEARCH 

PRODUCTIVITY1 

 

2.1 Introduction 

The Intergovernmental Panel on Climate Change (IPCC) and others indicate that the 

elevated carbon dioxide and associated climate change will influence agricultural 

productivity (IPCC, 2007). An associated but to our knowledge unstudied factor is effect 

of climate change and forcing agents on productivity growth. Economists have long 

evaluated the returns to agricultural research (Huffman and Evenson, 2006b; Pardey et 

al., 2007) and in this study we examine the effects of climate change on agricultural 

productivity growth.  

Recently Pardey et al. (2007) argued that the rate of return as measured through a 

total factor productivity approach is falling. They speculate that this may be due to 

altered resource allocations and unfavorable weather conditions. One explanation for the 

unfavorable weather component may be the early onset of climate change and if this 

persists is both another manifestation of societal sensitivity to climate change and an 

area where adaptation investments may be needed as climate change proceeds (McCarl, 

2007). 

In this study we first econometrically investigate how temperature and various 

aspects of precipitation affect agricultural total factor productivity and then given those 

                                                 
1 This section is an extended version of: McCarl, B.A., X. Villavicencio, and X. Wu. 2009. “The Effect of 

Climate Change over Agricultural Factor Productivity: Some Econometric Considerations”. Presented in 
the Agricultural and Applied Economics Association 2009 Annual Meeting at Milwaukee, WI. 
Document available online at http://purl.umn.edu/49452. 
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results project the consequences of selected IPCC climate change scenarios and the 

amount of added investment needed to compensate for the research productivity loss. In 

particular, we investigate the following hypotheses:  

• Climatic conditions alter agricultural factor productivity returns of research 

investments. 

• Projected climate change alters these returns. 

• Higher levels of research investment will be needed under climate change in 

order to maintain the current rates of return of agricultural research (a measure of 

climate change adaptation costs). 

 

2.2 Public Investment in Agricultural Research 

Agricultural total factor productivity (TFP) can be defined as the ability or efficiency to 

produce agricultural outputs with a given amount of inputs such as labor, capital and 

materials (Huffman and Evenson, 2006b). It is usually measured as the ratio of product 

to one unit of equivalent input. Many studies have found that agricultural productivity is 

enhanced by public and/or private investments in agricultural research and development 

(Huffman and Just, 1994; Alston, Craig and Pardey, 1998; Huffman and Evenson, 

2006b). Since climate is another factor of production and findings such as those in 

McCarl, Villavicencio and Wu (2007) show that climate conditions can alter (positively 

or negatively) productivity it is not a great leap to hypothesize that TFP will be altered 

by climate. Furthermore since recent evidence in the IPCC WGI report shows a 

changing climate during the recent past this may be consistent with the observations of 

Pardey et al. (2007).  
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A number of studies have examined how research and development investments 

affect agricultural productivity. Huffman and Just (1994) used state productivity data for 

1948–1982 to show that federal formula funding has a larger impact on agricultural 

productivity than competitive grant funding, owing to the high transaction costs 

associated with external competitive grant programs. 

Extending that work Alston, Craig and Pardey (1998) alter the assumptions 

regarding the way the stock of knowledge affects factor productivity over time. In 

particular, using US agriculture productivity data and a more flexible model, they found 

that impact of R&D on productivity was exerted over a much longer time period than 

assumed in previous studies. They estimated that the estimated annual marginal rate of 

return to public agricultural R&D in the United States was less than 10 percent, much 

smaller than the rates of return typically reported in previous studies.  

Recently, Huffman and Evenson (2006a) investigated the impacts of public 

agricultural research capital, private agricultural research capital, and public agricultural 

extension capital on agricultural TFP using U.S. state level from 1970 through 1999.  

They found that both public agricultural research and agricultural extension have 

positive, significant impacts on state agricultural TFP. This study extends their work, 

exploring how climate conditions affect of the TFP contribution of agricultural research. 

 

2.3 Data 

In the estimation herein we use same data set as employed in Huffman and Evenson 

(2006a) augmented with state level climate data.  The Huffman and Evenson data set 
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consists of annual observations on research investments and productivity for the 48 

contiguous United States spanning from 1970 to 1999, encompassing 1,440 

observations2. These data therein include observations on  

• State agricultural total factor productivity (TFP),  

• Public agricultural research capital (RPUB), expressed in 1984 dollars,  

• Share of the public budget coming from federal formula funds (SFF), and federal 

grants and contracts (GR),  

• Stock of public extension capital (EXT),  

• Public agricultural research spill-in stock3 (RPUBSPILL),  

• Private agricultural research capital (RPRI), and  

• Regional dummies which group the states according to the Farm Production 

regions defined by the USDA Economic Research Service (ERS). 

We also assembled state-level climate data motivated by the findings in IPCC 

2007 and the climate variables used in similar studies.  In particular the IPCC reports 

hotter conditions and altered amounts of precipitation so we drew data on temperature in 

degrees Fahrenheit plus precipitation in inches from the National Oceanic and 

Atmospheric Administration (NOAA) National Climatic Data Center website (as used in 

previous agricultural studies such as Adams et al., 1999b; Cline, 2007). In addition, we 

used data on climate variability, precipitation intensity and altered incidence of droughts

                                                 
2 The model for this study include the 48 continental US states to have comparable results with Huffman 

and Evenson’s work. The methods used in this section are associated to a panel structure known as 
TSCS, a relatively “long” structure usually applied to countries of a region/the world, or states/provinces 
of a country (Baltagi, 2008; Beck and Katz, 1995). A procedure to evaluate the inclusion or not of some 
provinces or states is not usual in this framework.   

3 The impact on a given state of direct public agricultural research undertaken by other states in an area. 
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since these are highlighted in the IPCC materials. Summary statistics and definitions for 

all the variables are reported in Table 1. 

 

2.4 The TFP Growth Model  

Huffman and Evenson (2006a) - HE consider the following model for agricultural TFP 

(1) 

2
1 2 3 4

2
5 6 7

8 9 10

ln ln [ln ] [ln ]( )

[ln ] [ln ]( )
ln

ilt ilt ilt ilt ilt ilt

ilt ilt ilt ilt ilt

ilt ilt l l ilt

TFP RPUB RPUB SFF RPUB SFF

RPUB GR RPUB GR RPUBSPILL
EXT RPRI trend D u

β β β β

β β β
β β β δ

= + + +

+ + +
+ + + + +

 

where the subscript i and t indicate state and year respectively, and the subscript l 

represents the Farm production regions mentioned before.  

Those regions are: Northeast, Southeast, Central, North Plains, South Plains, 

Mountains, and Pacific. The Central region is left out of the estimation, as a baseline for 

comparison with the other ones. Since agricultural research capitals are derived using 

thirty five years of data, SFF and GR were lagged twelve years, and placed at the mid-

point of the total lag length. A linear trend was included in the model to account for the 

effect of exogenous or non observable technological progress.  

This model is expressed in a double-logarithmic functional form such that the 

estimated coefficient iβ  represents the elasticity of TFP with respect to variables of 

interest (RPUBSPILL, EXT, RPRI). The funding shares (SFF and GR) are multiplied 

with the public agricultural research capital (RPUB) such that the elasticity of TFP with 

respect to RPUB depends on the funding composition: 

(2) 2 2
2 3 4 5 6ln( ) / ln( ) ( ) ( )TFP RPUB SFF SFF GR GRβ β β β β∂ ∂ = + + + + .  
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Table 1. Variable Names, Definitions and Summary Statistics 

Name  Symbol  Mean (SD)  Description  

Total factor productivity  TFP  -0.205a (0.254)  Total factor productivity for the agricultural sector (Ball, Butault, and Nehring 2002)  

Public agricultural capital RPUB  16.129a (0.879)  The public agricultural research capital for an originating state. The summation of past research capital  

   investments in agricultural research within a state having an agricultural productivity focus (Huffman,  

   McCunn, and Xu 2006) in 1984 dollars (Huffman and Evenson 2005, pp. 106–07). Capital stock obtained  

   by summing past research expenditures with a two-through thirty-five-year lag and trapezoidal shaped  

   timing weights  

Budget share from federal  SFF1t-12  0.230 (0.112)  The share of the SAES budget from Hatch, Regional Research, McIntire-Stennis, Evans-Allen, and Animal  

     formula funds    Health (USDA), i.e., formula funds, lagged twelve years  

Budget share from state  SFF2t-12  0.521 (0.123)  The share of the SAES budget from state government appropriations (USDA), lagged twelve years  

     government appropriations    

Budget share from federal  SFFt-12  0.751 (0.132)  The share of the SAES budget from programmatic funding, SFF1t-12 + SFF2t-12  

     formula and state     

     appropriations     

Budget share from federal  GRt-12  0.096 (0.076)  The share of the SAES budget from the National Research Initiative, other CSRS funds, USDA contracts,  

     grants and contracts    grants and cooperative agreements, and non-USDA federal grants and contracts (USDA), lagged 12  years 

Public agricultural research  RPUBSPILL  17.763a (0.567)  The public agricultural research spillin stock for a state, constructed from state agricultural subregion data  

     capital spillin    (see Huffman and Evenson 1993, p. 195)  

Public extension capital  EXT  1.292a (0.976)  A state’s stock of public extension, created by summing for a given state the public full-time equivalent staff  

   Years in agriculture and natural resource extension, applying a weight of 0.50 to the current year and then  

   0.25, 0.125, 0.0625, and 0.031 for the following four years. The units are staff-years per 1,000 farms.  

Private agricultural capital  RPRI  6.076a (0.248)  A state’s stock of private patents of agricultural technology. Each state’s private agricultural research capital  

   in the national total of agricultural patents awarded to U.S. and foreign inventors for each year (Johnson  

   and Brown) obtained by weighting the number of private patents in crops (excluding fruits and vegetables  

   and horticultural and greenhouse products) and crop services, fruits and vegetables, horticultural and  

   greenhouse products, and livestock and livestock services by a state’s sales share in crops (excludes fruits,  

   vegetables, horticultural and greenhouse products), fruits and vegetables, horticultural and greenhouse  

   products and livestock and livestock products, respectively. The annual patent totals are two-through  

   eighteen-year lag using trapezoidal timing weights  
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Table 1 Continued 

Name  Symbol  Mean (SD)  Description  

Regional indicators Northeast   Dummy variable taking a 1 if state is CT, DE, ME, MD, MA, NH, NJ, NY, PA, RI, or VT  

 Southeast   Dummy variable taking a 1 if state is AL, FL, GA, KY, NC, SC, TN, VA, or WV  

 Central   Dummy variable taking a 1 if state is IN, IL, IA, MI, MO, MN, OH, or WI  

 North Plains   Dummy variable taking a 1 if state is KS, NE, ND, or SD  

 South Plains   Dummy variable taking a 1 if state is AR, LA, MS, OK, or TX  

 Mountains   Dummy variable taking a 1 if state is AZ, CO, ID, MT, NV, NM, UT, or WY  

 Pacific   Dummy variable taking a 1 if state is CA, OR, or WA  

Precipitation Precipitation 3.498a (0.508) Total yearly precipitation in inches 

Temperature Temperature 3.942a (0.146) Mean annual temperature in °F 

Precipitation Intensity Intensity -1.782a (0.225) Ratio of total amount of precipitation from the wettest month with respect to the yearly total. 

Trend  Trend   Annual time trend  
aNumbers reported in natural logarithms.  
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Similarly, the effect on TFP of a one percentage change in SFF (or GR) is not constant 

and it can include nonlinear impacts of funding composition: 

(3) 3 4ln( ) / ln( ) ( 2 ) lnTFP SFF SFF RPUBβ β∂ ∂ = +  

(4) 5 6ln( ) / ln( ) ( 2 ) lnTFP GR GR RPUBβ β∂ ∂ = + . 

In addition we used a lagged effect structure regarding the manner in which R&D 

expenditures alter following Huffman, McCunn and Xu (2006). In particular, we assume 

that the R&D effect follows the following trapezoidal pattern:  

• A initial gestation period of two years, during which the effects of research are 

negligible;  

• A second impact period for the next seven years where returns are assumed to be 

positive and increasing; 

• A mature, constant level which lasts six years;  

• A constant decline of the impact which eventually reaches zero value after 

twenty years.  

2.4.1 Incorporating Climate Effects 

To explore the impacts of climate conditions, we extend the HE model incorporating 

temperature, rainfall, and precipitation variables as follows:  

(5) 

2
1 2 3 4

2
5 6 7

8 9 10

11

ln ln [ln ] [ln ]( )

[ln ] [ln ]( )
ln [ln ]

ln

ilt ilt ilt ilt ilt ilt

ilt ilt ilt ilt ilt

ilt ilt l l l ilt l

i

TFP RPUB RPUB SFF RPUB SFF

RPUB GR RPUB GR RPUBSPILL
EXT RPRI trend D Temperature D

Precipitation

β β β β

β β β
β β β δ γ
β

= + + +

+ + +

+ + + + +
+ 12 lnlt ilt iltIntensity uβ+ +

 

Where 



 

 

13

• Temperature is a regional level measure in degrees Fahrenheit during the 

growing season and is interacted with a regional dummy variable to allow the 

model to reflect differentiated effects of temperature in each region because we 

hypothesize that a higher temperature can be harmful in some regions (the south), 

while it can be beneficial in others (the north).  

• Precipitation is total precipitation measured over the entire year 

• Precipitation Intensity is a measure of the intensity of precipitation. It is 

constructed as the ratio of total precipitation from the month with the highest 

relative to the amount of annual precipitation (this precipitation intensity measure 

ranges by construction from 1/12 –when rainfall is uniformly intense during the 

year– to 1 –when one month receives all of the yearly rain–). 

The precipitation and intensity measures were included without regional 

interactions because we believe that those variables would be more uniformly 

applicable.4  

 

2.5 Estimation Approach 

The data we had are in the form of a panel with a large number of periods (T) and a 

medium to large number of individuals (N). McCarl, Villavicencio and Wu (2008) 

suggest that time behavior of agricultural output may not be stationary because of 

climate change. As a consequence, risk analysis and predictions based on historical yield 

means and variance could be misestimated if we rely on a stationarity assumption. Thus 

we need to use methods that deal with issues such as non-stationarity, spurious 

regressions and cointegration. We first test the hypotheses of panel stationarity and 
                                                 
4 The regression results also suggest no interactions between regional dummies and Precipitation and 

Intensity. 
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cointegration. Based on the test results, we then adopt a panel error correction estimator 

to properly account for the presence of nonstationarity and cointegration issues. 

2.5.1 Testing for Panel Stationarity and Cointegration 

In a stationary stochastic process the joint probability distribution does not change when 

shifted in time. As a result, parameters of the variable such as the mean and variance, if 

they exist, do not change over time (Hamilton, 1994). Granger and Newbold (1974) 

showed that deterministic and stochastic trends in time series –a feature usually found in 

non stationary variables– can induce spurious correlation between variables. That means 

that we can obtain “false” correlations between non stationary variables that are 

increasing for different reasons and in increments that are uncorrelated (Banerjee et al., 

1993). A simple approach to correct this problem was to include into the estimated 

model a linear trend as an explanatory variable. However, spurious correlation can still 

be present after controlling for a linear time trend. Phillips (1986) stated that the t-

statistic for the time trend is generally inflated when the other variables are not 

stationary, making us wrongly believe that a trend is significant. 

In order to avoid spurious correlations, and obtain valid econometric estimations, 

it is necessary to test for stationarity of all the implied variables through a unit root test 

(Greene, 2003). Traditional unit root tests deal with testing one temporal series at a time. 

However, testing for unit roots in a panel structure is possible and will be done here. 

We use three versions of the panel unit root test. The Levin, Lin and Chu (LLC, 

2002) test examines the null hypothesis that each individual time series contains a unit 

root versus the alternative that each time series is stationary. This test provides a power 

http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Variance
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improvement over an individual unit root test over each cross section. However, it 

assumes independence across cross sections, which does not necessarily hold; and that 

all cross sections have or do not have a unit root (common coefficient restriction), which 

is rather restrictive. 

The Im, Pesaran and Shin (IPS, 2003) test relaxes LLC's common coefficient 

restriction, allowing heterogeneous coefficients for each cross section. Therein, the 

alternative hypothesis is that some cross sections have unit roots. Finally, we use a test 

proposed by Breitung (2000); that relies on the common coefficient restriction, but does 

not require a bias correction as LLC and IPS do, resulting in a test with greater power in 

the presence of individual trends. More details on the test specifications can be found in 

Appendix A. 

If variables are found to be non stationary, any estimated model using them will 

result in a spurious regression. However, if residuals from a model involving non 

stationary variables are stationary, we say that those variables are cointegrated and there 

is a long run relationship between them. Therefore, we are interested in testing the 

existence of cointegration when the model variables are non stationary. If cointegration 

exists, an estimation method known as Error Correction Model, described below will be 

required. 

In the conventional time series case, cointegration refers to the idea that for a set 

of variables that are individually non stationary, some linear combination (the model 

residuals for example) of these variables can be described as stationary. The vector of 

slope coefficients that gives this stationary combination is referred to as the 
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cointegrating vector, which is generally not unique, and needs to be normalized in some 

way. The following set of tests do not address issues of normalization or questions 

regarding the particular number of cointegrating relationships, but instead they are 

interested in the simple null hypothesis of no cointegration versus cointegration.  

One “natural” way to perform such a cointegration test is to take the residuals 

from a panel regression involving non stationary variables, and apply any of the 

aforementioned panel unit root tests. However, there are more sophisticated tests 

available which have more power, and deal with some particular structural issues that 

panels can exhibit. 

Cointegration tests also depend on the assumptions we set on the model, as do 

panel unit root tests. To check for consistencies on our results, we employed three 

cointegration tests: Kao (1999) DF and ADF tests, Pedroni (1999) test, and Westerlund 

(2007) test. The main feature of Kao and Pedroni tests is that they based on testing non 

stationarity for the residuals from a model estimated using non stationary variables. 

Meanwhile the distinctive aspect of Westerlund’s test is that it considers a structural 

estimation, and test the significance of a key parameter of the model to check for 

cointegration of the variables. More technical details can be found in Appendix A. 

2.5.2 Panel Error Correction Model 

In order to address non stationarity and cointegration problems, which are confirmed by 

our tests as reported in the next section, we will adopt the Panel Error Correction Model 

for estimation. An error correction model is a dynamic model in which the movement of 

the variables in any periods is related to the previous period's gap from long-run 
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equilibrium. Following Greene (2003), suppose that a simplified model in which two 

non stationary variables ty  and tz  are cointegrated, with a cointegrating vector ],1[ θ− . 

Then all three variables tyΔ , tzΔ , and )( tt zy θ−  are stationary. Therefore, the error 

correction model (ECM) 

(6) 1 1( )t t t t ty z y zγ λ θ ε− −Δ = Δ + − +  

describes the variation in ty  around its long-run trend in terms of the variation in tz  

around its long-run trend, and the error correction )( tt zy θ− , which is the equilibrium 

error in the model of cointegration. This model is obviously stable because the implied 

variables are stationary. There is a tight connection between cointegration and error 

correction model (ECM) in the sense that ECM is consistent only if the implied variables 

are cointegrated. The same assumption that we make to produce cointegration implies 

(and is implied by) the existence of an ECM. This result is known as the Granger 

representation theorem (see Hamilton, 1994). 

Taking the more general framework of a multivariate and heterogeneous panel 

model, the error correction equation can be expressed as: 

(7) 
1 1

1
1 0

( )
p q

it i it i it ij it j ij it j i it
j j

y y X y Xφ θ λ δ μ ε
− −

∗
− − −

= =

′ ′Δ = − + Δ + Δ + +∑ ∑  

where the parameter iφ  is the error-correcting speed of adjustment term. It is expected 

that 0<iφ , in which case there is evidence of cointegration. This means that the 

variables show a return to a long-run equilibrium. The vector iθ ′  represents the long-run 
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relationship between the variables, and the other estimated parameters ),( ijij δλ  

characterize the short-run dynamics of the implied variables. 

Pesaran, Shin and Smith (1999) proposed a Pooled Mean Group (PMG) 

estimator that combines both pooling and averaging: the estimator allows the intercept, 

short-run coefficients, and error variances to differ across the individuals but constrains 

the long-run coefficients to be equal across individuals. Since model (7) is nonlinear in 

the parameters, they developed a maximum likelihood method to estimate the 

parameters. The log likelihood function is 

(8) 2
2

1 1

1 1( , , ) ln(2 ) { ( )} { ( )}
2 2

N N

T i i i i i i i i
i i i

Tl y H yθ ϕ σ πσ φ ξ θ φ ξ θ
σ= =

′ ′ ′ ′= − − Δ − Δ −∑ ∑  

where iiiti Xy θθξ −= −1)( , iiiiTi WWWWIH )( ′−= , TI  is an identity matrix of order T , 

and ),,,,,,( 1111 +−−+−− ΔΔΔΔΔ= qititipititi XXXyyW …… . The estimators can be computed 

using the usual Newton-Raphson algorithm, which needs first and second derivatives of 

the likelihood function, or an iterative “back substitution” algorithm which requires only 

first derivative computations. More details are given in Pesaran, Shin and Smith (1999). 

 

2.6 Results 

The estimation method that Huffman and Evenson (2006a) used is the Prais-Winsten 

estimator defined in Beck and Katz (1995) and Greene (2003), which fits linear cross-

sectional time-series models when the disturbances are not assumed to be independent 

and identically distributed (i.i.d.). In their estimations the errors are allowed to be 

heteroskedastic and contemporaneously correlated across panels. Additionally, that
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estimator may allow the disturbances to be autocorrelated within the panel. Their results 

are displayed in Table 2, and are labeled Model 1. 

Our first alternative model ignored non stationarity issues, and used the Prais-

Winsten estimation methodology but included climate variables. Comparing our results 

(Table 2, Model 2) with those from Huffman and Evenson (2006a), we find that  

• The term for Public Capital multiplied by the shares of public budget coming 

from federal formula funds, and the squares of the shares from federal funds and 

grants: RPUB x SFF, RPUB x SFF2, and RPUB x GR2 are now not statistically 

significant.  

• The elasticity of TFP to Public Research Capital (which is the percent return 

from public R&D investments) is reduced from 0.139 to 0.089.5  

• The elasticity of TFP to Public Extension Capital is reduced from 0.110 to 0.077.  

• The effect of Public Research Capital Spill-in from near states (RPUBSPILL) 

becomes insignificant.  

• The elasticity effect of Private Agricultural Research Capital (RPRI) which was 

negative but not significant, now becomes significant and positive with a value of 

0.044. 

• Regarding the regional dummies individual effects, we find that with the Central 

region as benchmark, the Southeast and Pacific regions show a lower TFP level, 

while the Southern Plains exhibits a higher one. This is evidence of the existence 

of unobservable effects that affect the agricultural productivity at different 

degrees in each region. 

With respect to climate we find the main climatic variable effects are related to 

precipitation. Total Yearly Precipitation has a positive effect on Agricultural TFP, with 
                                                 
5 Calculated using equation (2), evaluated at the sample means for SFF and GR. 
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 Table 2. Panel Estimates Model of Agricultural Productivity 

Dependent variable: ln (Ag. Total Factor Productivity) Model 1  Model 2  Model 3 
 Coefficient p_value   Coefficient p_value   Coefficient p_value  
ln (Public Ag. Research Capital) 0.1306 0.000  0.0919 0.000  0.1100 0.000 
ln (Public Ag. Research Capital) × SFFt−12 0.0354 0.095  0.0235 0.259  -0.0019 0.907 
ln (Public Ag. Research Capital) × (SFFt−12)2 -0.0277 0.055  -0.0199 0.150  -0.0078 0.490 
ln (Public Ag. Research Capital) × GRt−12 -0.0345 0.003  -0.0302 0.007  -0.0239 0.010 
ln (Public Ag. Research Capital) × (GRt−12)2 0.0403 0.089  0.0303 0.191  0.0254 0.373 
ln (Public Extension Capital) 0.1104 0.000  0.0770 0.000  -0.0115 0.487 
ln (Public Ag. Research Capital Spilling) 0.0348 0.036  0.0284 0.110  0.5959 0.000 
ln (Private Ag. Research Capital) -0.0010 0.986  0.1075 0.044  -0.1342 0.004 
D1 (Northeast = 1) 0.0530 0.270  -0.4321 0.587    
D2 (Southeast = 1) 0.0045 0.900  -5.9156 0.000    
D3 (Central = 1)         
D4 (Northern Plains = 1) 0.1937 0.000  -0.4545 0.592    
D5 (Southern Plains = 1) 0.0621 0.132  3.8236 0.012    
D6 (Mountains = 1) 0.1147 0.022  -0.4957 0.590    
D7 (Pacific = 1) 0.0573 0.211  -5.9601 0.000    
Trend 0.0109 0.000  0.0125 0.000  -0.0006 0.845 
ln (Temperature) × D1    0.1204 0.266  -0.3196 0.005 
ln (Temperature) × D2    1.4404 0.000  -0.2313 0.198 
ln (Temperature) × D3    -0.0063 0.975  -0.0606 0.611 
ln (Temperature) × D4    0.1664 0.499  -0.0199 0.892 
ln (Temperature) × D5    -0.9155 0.019  -0.4020 0.162 
ln (Temperature) × D6    0.1661 0.171  0.1491 0.325 
ln (Temperature) × D7    1.5448 0.000  -0.1189 0.728 
ln Total Precipitation    0.0693 0.003  0.0868 0.000 
ln Precipitation Intensity    -0.0459 0.001  -0.0530 0.000 
Intercept -3.4178 0.000  -3.5704 0.000    

 Notes: Model 1 - Eq. (1). Prais-Winsten regression, correlated panels corrected standard errors.  
 Model 2 - Eq. (5). Prais-Winsten regression, correlated panels corrected standard errors, with climatic variables. 
 Model 3 - Eqs. (5) and (7). Long run equation, Pooled Mean Group Regression for non stationary heterogeneous panels, with climatic variables. 
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an associated elasticity of 0.069. Precipitation Intensity has a negative impact, showing 

an elasticity with a magnitude of -0.046. These results are consistent with our initial 

hypotheses.  

We also find statistical evidence that supports the idea of regionally 

differentiated effects of temperature on TFP. In particular, we find that for the Southeast 

and Pacific regions the statistical effect of higher temperature on factor productivity is 

positive, while it is negative for the Southern Plains. There is no conclusive evidence 

with respect to the other regions. Finally, we find evidence of a positive linear trend in 

the Agricultural TFP. 

However our unit roots tests lead us to question those results. When the null 

hypothesis can not be rejected for a given variable, the tests indicate that the variable is 

non stationary (Table 3). For the model with individual effects only, we can summarize 

our results in the following way6:  

• TFP is non stationary using all the available tests.  

• RPUB is found to be non stationary using Breitung and IPS tests, while LLC test 

supports stationarity.  

• RPUB x SFF is non stationary, using the LLC and Breitung tests at 95% of 

significance.  

• RPUB x SFF2 is non stationary using the LLC and Breitung tests.  

• RPUB x GR and RPUB x GR2 are found to be non stationary for LLC and IPS 

tests. 

                                                 
6 The unit root test was also performed for the first differences of all the series, confirming that those 

variables which are I(1) in levels, become I(0) in first differences.  
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Table 3. Panel Unit Root Test: Summary 

Sample: 1970 1999        
Cross Sections: 48        
 Individual effects  Individual effects & linear trends 
LTFP(a) Statistic P-value Obs.  Statistic P-value Obs. 
Null: Unit root (assumes common unit root process)      
Levin, Lin & Chu t*(b) 1.34 0.909 1329  -11.87 0.000 1367 
Breitung t-stat 2.70 0.997 1281  -1.28 0.100 1319 
        
Null: Unit root (assumes individual unit root process)      
Im, Pesaran and Shin W-stat  7.52 1.000 1329  -12.62 0.000 1367 
        
        
LRPUB        
Levin, Lin & Chu t* -8.34 0.000 1257  0.94 0.827 1265 
Breitung t-stat 1.57 0.941 1209  -8.01 0.000 1217 
Im, Pesaran and Shin W-stat  0.10 0.542 1257  -7.39 0.000 1265 
        
LRPUB × SF        
Levin, Lin & Chu t* -1.40 0.080 1353  -3.94 0.000 1350 
Breitung t-stat -1.06 0.145 1305  -3.86 0.000 1302 
Im, Pesaran and Shin W-stat  -2.45 0.007 1353  -5.43 0.000 1350 
        
LRPUB × SF2       
Levin, Lin & Chu t* -1.45 0.073 1354  -4.57 0.000 1356 
Breitung t-stat -1.58 0.057 1306  -3.73 0.000 1308 
Im, Pesaran and Shin W-stat  -2.85 0.002 1354  -5.89 0.000 1356 
        
LRPUB × GR        
Levin, Lin & Chu t* -0.63 0.265 1371  -2.38 0.009 1361 
Breitung t-stat -2.25 0.012 1323  1.50 0.933 1313 
Im, Pesaran and Shin W-stat  -0.45 0.326 1371  -2.38 0.009 1361 
        
LRPUB × GR2        
Levin, Lin & Chu t* -1.13 0.130 1357  -2.60 0.005 1352 
Breitung t-stat -1.97 0.025 1309  0.41 0.658 1304 
Im, Pesaran and Shin W-stat  0.78 0.783 1357  -1.99 0.024 1352 
        
LEXT        
Levin, Lin & Chu t* -8.57 0.000 1369  -7.52 0.000 1365 
Breitung t-stat -2.17 0.015 1321  -0.55 0.292 1317 
Im, Pesaran and Shin W-stat  -4.62 0.000 1369  -8.37 0.000 1365 
        
LRPUBSPILL        
Levin, Lin & Chu t* -6.87 0.000 1288  11.88 1.000 1281 
Breitung t-stat 3.96 1.000 1240  -10.45 0.000 1233 
Im, Pesaran and Shin W-stat  3.03 0.999 1288  0.26 0.601 1281 
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Table 3 Continued 

 Individual effects  Individual effects & linear trends 
 Statistic P-value Obs.  Statistic P-value Obs. 
LPRI        
Levin, Lin & Chu t* -27.50 0.000 1338  -24.92 0.000 1344 
Breitung t-stat -26.01 0.000 1290  0.45 0.675 1296 
Im, Pesaran and Shin W-stat  -26.05 0.000 1338  -25.92 0.000 1344 
        
LTEMP        
Levin, Lin & Chu t* -24.45 0.000 1373  -23.78 0.000 1356 
Breitung t-stat -22.90 0.000 1325  2.65 0.996 1308 
Im, Pesaran and Shin W-stat  -21.21 0.000 1373  -20.56 0.000 1356 
        
LPREC        
Levin, Lin & Chu t* -30.46 0.000 1372  -26.37 0.000 1366 
Breitung t-stat -18.68 0.000 1324  -3.56 0.000 1318 
Im, Pesaran and Shin W-stat  -28.49 0.000 1372  -24.58 0.000 1366 
        
LINTENS        
Levin, Lin & Chu t* -28.00 0.000 1385  -24.51 0.000 1377 
Breitung t-stat -19.79 0.000 1337  -7.43 0.000 1329 
Im, Pesaran and Shin W-stat  -28.65 0.000 1385  -26.71 0.000 1377 
 
aVariable definitions are explained on Table 1. All the variables are expressed in natural logs. 
bAll the presented tests assume asymptotic normality. 
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• EXT is stationary using all three tests.  

• RPUBSPILL is found to be non stationary using LLC and IPS tests.  

• RPRI is found to be stationary using all three tests. 

• The climatic variables Temperature, Precipitation and Intensity show a stationary 

pattern according to all tests that we considered7. 

The results above mentioned show us that some of the involved variables are in 

fact non stationary. One solution to this problem would be to take first differences to the 

non stationary variables and re-estimate the model. However, some information is lost in 

the differencing process. If the variables are cointegrated, we can still work with the non 

differenced variables and estimate an Error Correction Model (ECM), which is a richer 

specification that incorporates both the long-run relation and the short-run dynamics of 

the variables.  

After verifying that some of the variables are non stationary, we proceeded to 

perform several tests of cointegration (Table 4). Our results are quite consistent 

regardless the method we used: The test statistics are significant, rejecting the null 

hypothesis of no cointegration. All the variants of the Pedroni test report that the 

variables are cointegrated, with the exception of two cases: the panel v-stat for a model 

with individual effects, and the group rho-stat for a model with individual constants and 

trends; Kao cointegration tests are fully consistent with those findings. Westerlund 

Error-correction-based test yields mixed results: one “group” statistic suggest

                                                 
7 This result for temperature contradicts in some way the results of IPCC supporting that climate change is 

actually happening. This is happening because the data span of 30 years and only covering the US, is too 
short compared to the global analysis made by IPCC. However, the use of cointegration and ECM is still 
valid because other variables of the model are non stationary.  
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Table 4. Cointegration Test: Summary 

Sample: 1970 1999       
Cross Sections: 48       
       
Pedroni cointegration tests Constant  Constant & Trend  
 Statistic P-value  Statistic P-value  
panel v-stat -0.82 0.205  -3.76 0.000  
panel rho-stat -4.60 0.000  -2.45 0.007  
panel pp-stat -20.10 0.000  -23.80 0.000  
panel adf-stat -9.88 0.000  -9.69 0.000  
       
group rho-stat -2.22 0.013  -0.03 0.489  
group pp-stat -22.28 0.000  -26.89 0.000  
group adf-stat -8.24 0.000  -9.12 0.000  
**All reported values are distributed N(0,1) under null of unit root or no cointegration.  
**Panel stats are unweighted by long run variances.     
       
Kao cointegration tests                  Constant  Constant & Trend  
 Statistic P-value  Statistic P-value  
DFrho -31.88 0.000  -33.94 0.000  
DFt -17.59 0.000  -18.64 0.000  
**Stats are distributed N(0,1) under null of no cointegration.    
       
Westerlund cointegration tests       
Lags: 1 - 2 Average AIC selected lag length: 1.98   
Leads: 0 - 1 Average AIC selected lead length: .96   
 Constant Constant & Trend 
Statistic Value Z-value P-value Value Z-value P-value 
Gt -4.06 -11.71 0.000 -4.23 -10.39 0.000 
Ga -0.24 11.50 1.000 -0.13 13.81 1.000 
Pt -22.25 -6.80 0.000 -25.95 -7.75 0.000 
Pa -2.56 6.16 1.000 -1.99 9.57 1.000 
**Z-values are distributed N(0,1) under null of no cointegration.    
    
Pedroni tests: v-stat, non-parametric variance ratio statistic; rho-stat, non-parametric, analogous to the 
Phillips and Perron rho-statistic; pp-stat, non-parametric, analogous to the Phillips and Perron t-statistic; 
adf-stat, parametric, analogous to the Augmented Dickey-Fuller t-statistic. 
Kao tests: DFrho, Dickey-Fuller rho-statistic; DFt, Dickey-Fuller t-statistic. 
Westerlund tests: Gt, group mean statistic, parametric version; Ga, group mean statistic, semi-parametric 
version; Pt, panel statistic, parametric version; Pa, panel statistic, semi-parametric version. 
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cointegration, and the other one does not, while one “panel” statistic implies 

cointegration, and the other one rejects it. Our conclusion is that the statistical evidence 

supporting cointegration is very strong. 

With the cointegration and non stationary results at hand, we estimated the TFP model 

using an ECM framework. As explained before, we assume homogeneous coefficients 

for the long-run equation and heterogeneous coefficients for the short-run dynamic 

coefficients. Table 2, Model 3 only reports the long-run coefficients as they are 

compatible with the coefficients in the previous models. Notice that given the structure 

of the estimation method, the regional dummies cannot be identified in the ECM model. 

Using the ECM framework, more variables become non-significant which 

suggests that using a model without correcting for non stationarity can lead us to assign 

spurious statistical effects to some variables. Using the same formulas aforementioned,  

• The elasticity of Agricultural Total Factor Productivity (TFP) with respect to 

Public Agricultural research (RPUB) is now equal to 0.108, value that is in the 

midway between what we found with the previous two models and less than that 

found using the Huffman and Evenson model without considering cointegration 

and non stationary effects.  

• Public Extension Capital (EXT) is now not significant. 

• Capital spill-in effects become positive and significant, with an elasticity value of 

0.596, several times higher than the values obtained before.  

• The sign of the effect of Private Research Capital is now significantly negative, 

and its elasticity value is -0.134.  

In terms of the climate variables:  
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• The long-run relationship between temperature and TFP is not significantly 

different from zero for most regions, with the exception of a negative effect for 

the Southeast.  

• Precipitation and precipitation intensity are significant. Precipitation effect 

elasticity is 0.087, a value that is 25% greater than using Model 2. For 

precipitation intensity, we find that the associated elasticity is -0.053, which has 

the same sign as what found with Model 2, but with a 15% higher magnitude.  

Also note that when using an ECM there is no a significant linear trend effect 

that suggests an exogenous Agricultural TFP growth8.   

 

2.7 Effects of Climate Change 

Now let us examine what effects climate change has on agricultural TFP, the returns to 

R&D investments and the needed amount of additional research capital needed to 

maintain the current levels of productivity growth climate change.   

To characterize climate change we use the predictions of Temperature, 

Precipitation, and Precipitation Intensity from the United Nations Intergovernmental 

Panel on Climate Change (IPCC) Data Distribution Centre website.  Those predictions 

are based on scenarios from the IPCC Special Report on Emission Scenarios (SRES). 

That report identifies six scenario families for climate change that differentially 

characterize future human activity. From them, we used scenarios A1B, A2 and B1, 

which are described below.  

                                                 
8 Table 19 in Appendix B reports different model specifications for the two estimation procedures above 

mentioned. That new specifications comprise the removal of funding, and grant shares; and the 
separation of Mountains and Pacific regions in north and south sub regions. The obtained results are 
very similar in sign and magnitude to what we obtained in Table 2.   

http://www.ipcc.ch/
http://www.ipcc.ch/
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• The A1B scenario depicts a relatively more integrated world, characterized by: 

rapid economic growth; global population that reaches 9 billion in 2050 and then 

gradually declines; quick spread of new and efficient technologies; a convergent 

world - income and way of life converge between regions; extensive social and 

cultural interactions worldwide; and balanced emphasis on all energy sources, 

fossil and non-fossil.  

• The A2 scenario depicts a more divided world with the following characteristics: 

a world of independently operating, self-reliant nations; continuously increasing 

population; regionally oriented economic development; slower and more 

fragmented technological changes and improvements to per capita income.  

• Finally B1 depicts a more integrated world, that is more ecologically friendly 

with rapid economic growth as in A1, but with rapid changes towards a service 

and information economy; population rising to 9 billion in 2050 and then 

declining as in A1; reductions in material intensity and the introduction of clean 

and resource efficient technologies; and an emphasis on global solutions to 

economic, social and environmental stability.  

A number of research institutes performed climate simulations under these 

scenarios. For this article, we used the predictions of the Canadian Centre for Climate 

Modeling and Analysis (CCC) for the years 2020, 2050, and 2100. The CCC model 

predicts the world climate dividing the globe in a grid of 96 × 48 clusters with a size of 

3.75° of longitude × 1.875° of latitude, allowing us to obtain different predictions across 

the U.S. States. 

The coefficients estimated in Model 3 were used to make predictions for TFP 

assuming that the Public Agricultural Research Capital (RPUB), the public agricultural 
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research spill-in stock (RPUBSPILL), and the private agricultural research capital 

(RPRI) will rise at their current growth rates. 

First, we calculate the prediction of the TFP growth rate with and without climate 

change. The (baseline) state assumes climate remains at the average historical levels of 

the last 30 years. The state with climate change replaces the climate variables with the 

predictions of the CCC model under three climate change scenarios: A1B, A2, and B1. 

The results are reported on Table 5. We computed the TFP Annual Growth Rate for each 

State and then they were averaged by the Regions defined previously for climate 

scenarios for the years 2020, 2050 and 2100. Those values are reported in the first three 

columns of Table 5 only for the state with climate change.  

The following columns report the percentage reduction that the with climate 

change scenario alters the TFP Annual Growth Rate from the without climate change 

case. For example under the Scenario A1B, the Northeast region TFP Growth Rate with 

climate change in 2020 is 1.89% greater with climate change in 2020 under Scenario 

A1B. 

The main findings are that there are differential implication of climate change 

with some regions gaining in TFP Growth derived from climate change: by 2020 Pacific 

region will experience higher TFP Growth Rates under any of the Scenarios we have 

considered, with better outcomes under Scenarios A1B and A2 (around 13% and 10% 

higher). However those effects are reduced drastically in 2050 and 2100, giving negative 

but smaller effects under Scenarios A1B and B1 in 2050 and Scenario A2 in 2050 and 

2100. The negative effect of climate change over the South Plains regions is worth
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Table 5. TFP Growth Rates and Alterations due to Climate Change 

TFP Growth Rates  
Percent increase / reduction 

under climate change 
        
Scenario A1B 2020 2050 2100  2020 2050 2100 
Northeast 1.12  1.05  0.97   1.89 2.35 -3.32 
Southeast 1.09  1.01  0.97   0.65 -0.35 -3.07 
Central 0.99  1.03  0.97   -1.75 3.78 -1.41 
North Plains 1.05  1.03  0.97   9.59 6.91 -0.02 
South Plains 0.85  0.93  0.89   -22.32 -8.94 -11.20 
Mountains 1.13  1.01  0.99   10.69 1.35 0.92 
Pacific 1.14  0.98  0.98   13.70 -0.67 0.04 
National 1.06 1.01 0.96  1.37 0.93 -2.58 
        

   
Scenario A2 2020 2050 2100  2020 2050 2100 
Northeast 1.17  0.99  0.96   6.88 -3.74 -3.81 
Southeast 1.05  1.00  0.96   -3.41 -2.25 -3.30 
Central 0.98  0.99  0.95   -3.36 0.71 -2.95 
North Plains 0.94  0.98  0.96   -1.61 1.60 -0.84 
South Plains 0.69  0.87  0.88   -37.32 -15.42 -12.16 
Mountains 1.01  1.00  1.01   -1.23 0.79 3.24 
Pacific 1.10  0.97  0.96   10.00 -1.42 -2.20 
National 1.02 0.98 0.96  -3.22 -2.59 -2.92 
        

   
Scenario B1 2020 2050 2100  2020 2050 2100 
Northeast 1.09  0.98  0.98   -0.53 -3.90 -2.19 
Southeast 0.93  0.97  0.97   -14.74 -5.05 -2.29 
Central 1.00  0.95  1.00   -1.07 -3.41 1.89 
North Plains 1.01  0.96  0.98   5.48 -0.05 1.13 
South Plains 0.72  0.89  0.93   -33.78 -13.48 -7.30 
Mountains 1.06  1.01  0.98   4.49 2.07 0.03 
Pacific 1.03  0.98  0.99   3.42 -1.06 0.64 
National 0.99 0.97 0.98  -5.16 -3.54 -1.24 
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noting: there are consistently negative and large effects over TFP Growth Rate in 2020, 

going from 22% less in Scenario A1B to 37% less in Scenario A2. Those negative 

effects will be diminished in 2050 and 2100 but will remain in levels between 7% and 

15% less with climate change. 

For the Southeast the effects of climate change are generally negative with the 

only exception of Scenario A1B: in 2020 there is a 0.65% greater TFP Growth Rate, but 

turns to -0.35% and -3.07% in 2050 and 2100. For Scenario A2, the effects are around 

2% to 3% less, while Scenario B1 reports a higher negative effect, around -14% in 2020 

which fades to -5% and -2% in 2050 and 2100. The Central region reports the effects 

with smallest magnitudes ranging from a 3.78% greater to a 3.41% smaller TFP Growth 

Rates. Since there is no a clear pattern in the direction of the effect of climate change, 

the effects of climate change are not conclusive for this region. 

The North Plains region seems to be favored by climate change according to 

Scenarios A1B for 2020, 2050 and B1 for 2020 with an increase in the rate of TFP 

growth between 5 and 9%. For this region the effects of climate change in 2100 are 

negative for Scenarios A1B and A2 and positive for Scenario B1. However, those effects 

are of reduced magnitude compared those for 2020 and 2050. Finally, according to 

Scenarios A1B and B1, the Mountains region will experience an important positive 

effect on agricultural TFP growth (10% and 4%) in 2020, which remains positive but 

smaller for the subsequent years, between 0% and 2% higher with climate change.  

In summary, if we average all the effects at a National level, Scenario A1B 

suggest small benefits from climate change which are diminishing through time, 
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becoming harmful by year 2100. On the other hand, Scenarios A2 and B1 suggest 

negative effects at a national level which are also declining through time. 

Table 6 shows the equivalent effect of climate change on the returns to Public 

Agricultural Research Capital on Total Factor Productivity, defined as the percentage 

increase on TFP given by an increase of 1% on Agricultural Research Capital. The first 

three columns report the return with climate change, while the next three columns show 

the percentage change of public research returns comparing the situations with vs. 

without climate change. 

Under Scenario A1B the Northeast reports an increase of 1.89% on the rate of 

return for year 2020, and 2.35% for year 2050, while it experience a decrease in the rate 

of return of 3.32% for year 2100. The situation with Scenario B1 is an increase of 6.88% 

for 2020, and a decrease in the rate of return for 2050 and 2100 of around 3.8%. The 

Rate of return is decreased under Scenario B1 for 2020, 2050 and 2100. 

For year 2020 the highest increases in the rate of return is obtained in the North 

Plains (9.59%), Mountains (10.69%) and Pacific (13.70%) under Scenario A1B. For 

Scenario A2, the highest increases in the rate of return are reported in Northeast (6.88%) 

and Pacific (10%) regions. Under Scenario B1 and year 2020, the increase in the rate of 

return is not grater than 5.5% (North Plains). Regarding regions where the rate of return 

declines, we consistently find that for the South Plains it decreases between 22% (A1B) 

and 37% (B1). The Southeast also reports a decrease for Scenarios A2 (3.41%) and B1 

(14.74%). 
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Table 6. Effect of Climate Change on Public Agricultural Research Returns 

Return of Public Research 
Capital with Climate change  

Percent increase / reduction 
under climate change 

        
Scenario A1B 2020 2050 2100  2020 2050 2100 
Northeast 0.112 0.113 0.106  1.89 2.35 -3.32 
Southeast 0.111 0.110 0.107  0.65 -0.35 -3.07 
Central 0.108 0.114 0.108  -1.75 3.78 -1.41 
North Plains 0.121 0.118 0.110  9.59 6.91 -0.02 
South Plains 0.085 0.100 0.098  -22.32 -8.94 -11.20 
Mountains 0.122 0.112 0.111  10.69 1.35 0.92 
Pacific 0.125 0.109 0.110  13.70 -0.67 0.04 
National 0.112 0.111 0.107  1.37 0.93 -2.58 
        

   
Scenario A2 2020 2050 2100  2020 2050 2100 
Northeast 0.118 0.106 0.106  6.88 -3.74 -3.81 
Southeast 0.106 0.108 0.106  -3.41 -2.25 -3.30 
Central 0.106 0.111 0.107  -3.36 0.71 -2.95 
North Plains 0.108 0.112 0.109  -1.61 1.60 -0.84 
South Plains 0.069 0.093 0.097  -37.32 -15.42 -12.16 
Mountains 0.109 0.111 0.114  -1.23 0.79 3.24 
Pacific 0.121 0.108 0.108  10.00 -1.42 -2.20 
National 0.106 0.107 0.107  -3.44 -2.69 -2.95 
        

       
Scenario B1 2020 2050 2100  2020 2050 2100 
Northeast 0.109 0.106 0.108  -0.53 -3.90 -2.19 
Southeast 0.094 0.104 0.108  -14.74 -5.05 -2.29 
Central 0.109 0.106 0.112  -1.07 -3.41 1.89 
North Plains 0.116 0.110 0.111  5.48 -0.05 1.13 
South Plains 0.073 0.095 0.102  -33.78 -13.48 -7.30 
Mountains 0.115 0.112 0.110  4.49 2.07 0.03 
Pacific 0.114 0.109 0.111  3.42 -1.06 0.64 
National 0.104 0.106 0.109  -5.73 -3.60 -1.27 
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For year 2050 we find the following noticeable results: the greatest increase in 

the rate of return occurs in the North Plains (6.91%) for Scenario A1B, however for the 

other Scenarios the “wining” regions do not get an increase greater than 2%. For those 

regions that reduce the rate of return, the South Plains is the one with the highest 

reductions: from 8.94% (A1B) to 15.42% (A2).  

Regarding year 2100, the effects fade for the “wining” and “losing” regions. The 

regions that have an increase in the rate of return only report a small increase of around 

2% for all Scenarios. Meanwhile the South Plains shows a reduction that ranges from 

7.30% (B1) to 12.16% (A2). 

Using the procedures and computations abovementioned, we were able to 

calculate the required investments in Public Agricultural Research Capital in order to 

cancel the effect of climate change on TFP growth and attain its current “pre-climate” 

rates of growth. Table 7 shows the percentage and the relative change that the current 

rate of growth of public research capital must increase/decrease such that the 

negative/positive effect of climate change on agricultural TFP is eliminated.  

For that purpose we use the results from Table 5 as input, taking the reduction (or 

increase) in TFP growth rate given by climate change, and using the corresponding 

elasticity to calculate the needed amount of increase (or reduction) on RPUB growth rate 

that gives the negative of that amount of TFP growth reduction (or increase). 

The regions that need the higher needed increases in public research are those 

where climate change has a larger negative implication for the TFP Growth Rates, for 

example the South Plains region, which is the most affected area, needs to increase its
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Table 7. Percentage Increases in Investment Rates in Public Agricultural 

Research Capital to Adapt to Climate Change 

 Points of increase 
under climate change  

Percent increase 
under climate change 

        
Scenario A1B 2020 2050 2100  2020 2050 2100 
Northeast -0.22 -0.27 0.37  -11.29 -13.55 18.73 
Southeast -0.07 0.04 0.34  -3.59 2.02 17.27 
Central 0.19 -0.42 0.16  9.65 -21.09 7.82 
North Plains -1.03 -0.75 0.00  -51.56 -37.57 0.06 
South Plains 2.82 1.04 1.26  141.81 52.34 63.29 
Mountains -1.19 -0.14 -0.10  -59.90 -6.84 -4.91 
Pacific -1.46 0.10 0.01  -73.53 5.18 0.33 
National -0.11 -0.09 0.29  -5.75 -4.74 14.63 
        

       
Scenario A2 2020 2050 2100  2020 2050 2100 
Northeast -0.84 0.43 0.43  -42.42 21.69 21.52 
Southeast 0.41 0.26 0.37  20.83 12.98 18.59 
Central 0.38 -0.08 0.33  18.89 -3.89 16.35 
North Plains 0.17 -0.17 0.09  8.78 -8.75 4.57 
South Plains 4.62 1.78 1.36  231.99 89.44 68.59 
Mountains 0.16 -0.08 -0.36  8.06 -3.97 -17.86 
Pacific -1.00 0.19 0.25  -50.28 9.46 12.60 
National 0.41 0.30 0.33  20.43 15.27 16.48 
        

       
Scenario B1 2020 2050 2100  2020 2050 2100 
Northeast 0.07 0.45 0.25  3.72 22.62 12.38 
Southeast 1.79 0.58 0.26  89.94 29.11 12.82 
Central 0.11 0.38 -0.21  5.72 19.06 -10.47 
North Plains -0.58 0.01 -0.12  -29.06 0.30 -6.17 
South Plains 4.27 1.55 0.82  214.75 77.85 41.36 
Mountains -0.45 -0.23 0.00  -22.82 -11.67 -0.08 
Pacific -0.25 0.14 -0.06  -12.40 6.80 -3.19 
National 0.68 0.41 0.14  34.04 20.43 7.08 
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public research capital by 2.8 to 4 percentage points, which represent an increase of 140 

(Scenario A1B) to 231% (Scenario A2) of the current rate of growth of public research 

(around 2% by year). The Southeast is the other region that consistently reports the need 

of an increase in public research growth rate to overcome climate change effect on TFP, 

finding the greatest effects on Scenario B1, and the smallest effects on Scenario A1B. 

If we summarize the results at a national scale, Scenario A1B suggest an increase 

in public research capital only for year 2100, while Scenarios A2 and B1 indicate that 

we need to increase the current growth rates during all the periods of study, ranging from 

20% to 16% for Scenario A2, and from 34 to 7% for scenario B1. 

 

2.8 Conclusions 

We examine the impact of climate change on returns to research investments extending 

the work of Huffman and Evenson (2006). We estimated a panel model of agricultural 

productivity fitted to annual data for forty-eight contiguous states over 1970–1999. In 

this article we performed the following activities:  

We evaluate and account for problems due to non stationarity of some of the 

variables. We found statistical evidence that supports the use of an Error Correction 

Model for estimation. 

We include in the estimation climatic variables temperature, amount and 

intensity of precipitation, which result to be significant. 
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Based on our estimations, we conduct extensive simulations to demonstrate the 

impact of projected climate on agricultural TFP growth, and rates of return of public 

research. 

We find that the biggest effects are due to precipitation, where increases in it 

raises returns to research investments, but increases in intensity with more precipitation 

happening in shorter time periods diminishes returns to research investments.  On the 

other hand we find that temperature has a differentiated regional effect with negative 

implications in the southwest. 

Finally, we forecast the growth rates of agricultural research investments 

required in order to compensate the impact of climate change. Regionally we find that 

rates of return vary with positive effects in Northeast and Pacific, and negatives in South 

Plains and Southeast. If one wishes to adapt investments to achieve pre-climate TFP 

rates of growth, we find that around 18% increase is needed in the public research 

growth rate at a national level, with this again being regionally variable and the largest 

incidence needed in the South Plains and reductions occurring in the Mountains and 

Pacific regions. 
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3. CLIMATE CHANGE AND FUTURE ANALYSIS: IS STATIONARITY 

DYING?9 

 

3.1 Introduction 

Economists often do risk analysis in support of management decisions. Commonly, such 

analyses are based on probability distributions arising from historical data. Also 

commonly the distributions developed are based on at least a partial assumption of 

stationarity. For example it is common in water-based risk analysis that one assumes the 

distribution is entirely stationary and uses concepts like the 100 year drought. More 

generally in many risk analysis settings analysts typically use history to develop a 

distribution assuming that the mean is changing with time (proxying for technological 

progress along with monetary inflation) but that the variance is stationary.  

Climate change may alter the property of stationarity of the distribution (as 

asserted in a water setting by Milly et al. 2008). In particular, evidence exists that 

climate change will shift the mean (Mendelsohn et al 1994 among others) and variance 

(Chen et al. 2004) of crop yields, challenging the stationarity assumption. If this is true, 

risk analysis would need to use evolving distributions with non stationary means and 

variances along with possibly shifting higher order moments10. In this document, we 

consider this prospect extending the existing literature in several fronts. First, we review 

                                                 
9 This section is an extended version of: McCarl, B.A., Villavicencio, X., and Wu, X. 2008. “Climate 

Change and Future Analysis: Is Stationarity Dying?” American Journal of Agricultural Economics 
90(5): 1241–1247. 

10 However, Bessler (1982) argues that this fact also occurs without climate change, because technological 
change will induce non stationarity in the distributions too. 
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the climate change and stationarity concept and draw out the implications of prior 

findings for stationarity. Second we conduct a US agricultural yield based study 

investigating the implications of climate change on stationarity in a framework that 

allows both the mean and variance of crop yields to be affected not only by average 

climate conditions, but also climate variability. Third, we numerically investigate 

stationarity consequences of projected climate change simulating the impact of projected 

changes based on the IPCC climate change scenarios based on the parameters developed 

in our estimated models. Finally, we presents concluding comments. 

 

3.2 Background on Climate Change and Yields   

The influence of climate change on agricultural crop yields has been widely studied, as 

reviewed in documents such as the Intergovernmental Panel on Climate Change 

assessments (2007, 2001) or the U.S. National Assessment (Reilly et al. 2002). Many 

studies indicate that climate change alters mean yields (e.g., Adams et al. 1990; Reilly et 

al. 2002; Deschenes and Greenstone 2007) and/or land values (Mendelsohn, Nordhaus 

and Shaw, 1994). Chen, McCarl and Schimmelpfennig (2004) also indicate that in 

addition to climate change affecting mean yields, it will contribute to a change in crop 

yield variability, while Mearns, Rosenzweig and Goldberg (1992) provide crop 

simulation results to the same point. In particular, Chen, McCarl and Schimmelpfennig 

(2004) show that across the country that climate variation leads to statistically detectable 

alterations in yield variability. Specifically, they investigate the mean and variance of 

crop yields for corn, cotton, sorghum, soybeans and wheat by modeling them as 
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functions of climate conditions, agricultural land usage and other inputs, time trends and 

regional dummies using spatial analogue techniques.  

 A novelty of the Chen, McCarl and Schimmelpfennig (2004) study is that they 

employ an estimation method that allows statistical determination of the influence on 

climate on yield variability based on the concept of a stochastic production function, in 

particular the Just-Pope production function (Just and Pope 1978), wherein the variance 

of crop yield is allowed to be a flexible function of exogenous explanatory variables. 

Hence, both crop yield mean and variability are modeled in a unified framework. 

Conventional predictions of climate change impacts based on historical data 

often assume the series of the climate variables, such as temperature and precipitation, 

are stationary in the sense that their distribution is stable over an extended period that 

spans the observation period and the prediction period. A linear or quadratic time trend 

is often used to remove the likely secular evolution of the variable of interest. However, 

as suggested by Milly et al. (2008), not only did the average climate conditions change 

over time, there were substantial evolutions of their entire distribution as well. 

Consequently, the higher moments, such as the variance, skewness and kurtosis of the 

distributions of climate variables, also changed considerably over time. Thus, 

predications based on historical data, or mere adjustment for some change in the trend of 

average climate conditions, might not be reliably as they fail to take into account the 

evolution of the underlying distribution.  
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3.3 Model Specification 

 The Chen, McCarl and Schimmelpfennig (2004) study employs an estimation method 

based on the Just-Pope production function (1978) that allows statistical determination 

of the influence of climate on the stationarity of the crop yield mean and variance, and 

we will use that here but develop a richer specification. In particular we explicitly 

control for weather variability shifts. For temperature we use both its mean and variance 

during the growing season as exogenous variables. In addition we include average 

precipitation along with a precipitation intensity index and the Palmer Drought Severity 

Index (PDSI). Also, we  incorporate interaction between regions and weather conditions. 

We pool data from 1960 through 2007. We separate time invariant state-specific effects 

of the constructed panel. 

Estimation is based on the Just and Pope (1978) specification of a stochastic 

production function, which explicitly models the mean and variance - heteroskedaciticy 

effects of independent variables on the probability distribution of output. The production 

function has the following form:  

(9) ( , ) ( , )y f X h Xβ α ε= + , 

where: y is crop yield; ( )f ⋅  is an average production function; X  is a set of independent 

variables; and α  and β  are unknown parameters to be estimated. In addition, ( )h ⋅  is a 

functional form that accounts for explicit variable-dependent heteroskedasticity, 

allowing yield variability as a function of observed covariates. Under the assumption 

that the error term ε  is distributed with mean zero and unitary variance, 2 ( )h ⋅  is the 

yield variance. 
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Just and Pope (1978, 1979) described both a Maximum Likelihood Estimator 

(MLE) (1978) and a three-step, Feasible Generalized Least squares (FGLS) (1979) 

procedure for estimating the function. In turn, Just and Pope production functions have 

been traditionally estimated by the FGLS method. Saha et al. (1997) showed that the 

MLE is more efficient for small samples in Monte Carlo experiments; however, this 

method relies heavily on the correct specification of the likelihood function. For that 

reason, we decided to estimate the model using FGLS, following this procedure: 

1. Estimate the model by Ordinary Least Squares (OLS). Get the residuals. 

2. Regress the logarithm of squared residuals against X  as independent variables. 

3. Get the predicted values of those residuals, which are calculated as the 

antilogarithm of the predictions from step 2. They are consistent estimators of the 

variances. 

4. Estimate the original model by Weighted Least Squares (WLS) using the squared 

root of the variance predictions as weights. 

 

3.4 Data Set 

Our estimation was done over US crop yields by state for the crops corn, cotton, 

sorghum, soybeans, and winter wheat using annual observations from 1960 to 2007 

drawn from USDA-NASS website. Associated climate data were drawn from NOAA as 

discussed below. Yearly and state level data were used because of the availability of data 

on crop yields. The intertemporal and cross sectional variations of the constructed panel 

enable us to separate time invariant state-specific effects, time trends and the 

contribution of climate change to agricultural productivity. 
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Not all crops are grown in all states and the data for some crops are not always 

available information for given years at some states. When missing observations were 

present in a given state, we used the available data instead of deleting that state from the 

estimation, resulting in unbalanced panels in some cases.  

State-level climate data were obtained from the NOAA website. We used 

information on mean and standard deviation of temperature corresponding to the 

growing season: November to March for winter wheat, April to November for all other 

crops. For rainfall data, we used total yearly precipitation, to take into account the direct 

effect on the crop as well as inter-seasonal water accumulation into the soil. We also 

constructed a measure of the intensity of yearly precipitation, defined as the ratio of total 

precipitation from the month with the highest amount of precipitation to the yearly total. 

This measure can range by construction from 1/12 (uniformly intense during the year) to 

1 (one month gets all yearly rain).  

In addition, we included a yearly drought measure given by the Palmer Drought 

Severity Index (PDSI), which indicates the severity of a wet or dry spell. This index is 

based on the principles of a balance between moisture supply and demand. The index 

generally ranges from -6 to +6; with negative values denoting dry spells and positive 

values indicating wet spells. 

A linear and a quadratic trend were included in the model to incorporate the 

effect of technological progress with the possibility of decreasing marginal returns. 
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3.5 Estimation Results 

In this section we discuss in detail our estimation methods and results. We first test the 

hypothesis of panel unit roots, under which the classical inferences are generally invalid. 

This hypothesis is rejected. We then proceed to estimate the proposed model using the 

Fixed Effects model estimator for the stochastic production function.  

3.5.1 Panel Unit Roots 

The Just-Pope structure is estimated exploiting the time series cross sectional panel data 

structure present in the data set. This procedure allows us to measure the effect of the 

explanatory variables as well as state-specific effects that could affect the mean and 

variability of the crop yields. This kind of estimation relies on the assumption of 

stationarity, or integration of order zero I(0) of the involved series. Granger and 

Newbold (1974) showed that deterministic and stochastic trends in the series can induce 

spurious correlation between variables; as a result we can obtain correlations between 

variables that are increasing for different reasons. The inclusion of time trends to control 

for this issue may not solve the problem when spurious correlation is present (Phillips, 

1986).  

For these reasons it is necessary to test for non stationarity (unit root) for each 

variable of the model prior to estimating the model explained above. If a series is found 

to be non stationary, it must be differenced before being included in the model. 

Traditional unit root tests are used to deal with testing one temporal series at a time; 

however, relatively new tests are available to test for unit roots of all cross-sections 

using the panel structure as a whole. 
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The objective is to test whether a given series is non-stationary for all the 

individual units (states in our case). We assume that the series follows a general panel 

data model structure (for i states, and t periods): 

(10) , 1(1 ) , 1, , ; 1,it i i i i t ity y i N t Tφ μ φ ε−= − + + = =… … , 

where ity  represents the variable to be tested, iμ  is a state-specific constant, iφ is a state-

specific parameter, and itε  is an error term.  

This equation can be expressed as: 

(11) , 1it i i i t ity yα β ε−Δ = + + . 

We want to test if 1iφ =  for all i . The null hypothesis of unit root becomes:  

(12) 0 : 0 for all iH iβ = . 

We performed two kinds of panel unit root tests. Im, Pesaran and Shin (IPS, 

2003) proposed one in which the alternative hypothesis is that the series is stationary for 

some cross-sections (individuals) and not stationary for other cros-sections: 

1 1 1: 0, 1, , , 0, 1, ,i iH i N i N Nβ β< = = = +… … . In addition, Levin Lin and Chu (LLC, 

2002) proposed a test in which the alternative hypothesis is that the series is stationary 

for all the individuals, say 1 : 0, 1, ,iH i Nβ < = … . Both tests allow the inclusion of lags of 

ityΔ  into equation (11), which makes the test robust for serially correlated errors. Also, 

Im, Pesaran and Shin (2003) test has a ‘demeaned’ version which is robust when the 

disturbances are correlated across groups. In that case equation (11) becomes 

, 1it i i i t ity yα β ε−Δ = + + , where the tilde above the variables means that the cross sectional 

mean was subtracted from each variable. 
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In Table 8 we show the results for the three versions of the panel unit root test 

abovementioned, for each one of the variables used in the econometric model. Since 

these tests require the panel structure to be balanced, we deleted all states with missing 

observations. The way to construct those tests is explained with detail in the cited 

articles. All the tests explained above are distributed standard normal under the null 

hypothesis. Those are lower tail tests, thus the null hypothesis is rejected at 95% of 

confidence if the value of the test is less than -1.645. In the next section, the estimated 

models are not balanced panels in order to include the highest possible number of 

available observations. 

The results show that using the different test specifications, we consistently reject 

the null hypothesis that the series of the econometric model are I(1) for all the cross-

sections of the panel because with very few exceptions, all the t-statistics are less than 

the critical value of -1.645. There is not any single series that result to be non-stationary 

under the 3 tests simultaneously. In addition, the LLC test tells us that not only are the 

series stationary for a set of states as IPS shows, but also they are for the full set of states 

included in the sample. Thus, the panel unit root tests do not suggest differencing the 

data before the estimation.  

3.5.2 Panel Data Estimation 

We use the Fixed Effects estimation procedure for our panel data for two reasons. The 

primary reason is that the Fixed Effects model allows us to estimate a unit-specific effect 

for each state in the model. In addition, the Fixed Effects model does not require the 

restrictive assumption that the state-specific effect is independent of the included
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Table 8. Panel Unit Root Tests 

Equation Corn Cotton Sorghum Soybeans Wheat 
(N, T) (40,48) (16,34) (18,48) (29,48) (36,47) 

 Yields 
IPS -16.47 -5.38 -10.14 -17.44 -11.68 
IPSd -13.79 -6.81 -10.53 -17.08 -12.34 
LLC -13.11 -11.06 -15.91 -19.80 -14.13 

 Planted Acreage 
IPS -0.65 -1.43 -4.11 2.83 -3.89 
IPSd -4.21 -2.48 -4.57 2.14 -4.46 
LLC -2.85 -2.41 -6.59 -0.73 -6.57 

 Precipitation 
IPS -20.32 -10.23 -13.21 -19.18 -18.01 
IPSd -21.90 -11.73 -14.62 -20.76 -20.16 
LLC -22.10 -13.33 -19.68 -24.06 -21.14 

 Temperature 
IPS -22.06 -12.47 -13.90 -20.15 -18.53 
IPSd -21.07 -8.91 -13.49 -17.53 -21.25 
LLC -23.19 -13.39 -18.36 -21.95 -24.34 

 Std. Dev. Temperature 
IPS -24.84 -12.95 -15.06 -20.84 -17.58 
IPSd -25.35 -9.56 -14.24 -19.62 -19.72 
LLC -27.31 -12.55 -21.13 -23.97 -19.98 

 PDSI 
IPS -17.12 -9.88 -11.72 -15.94 -15.58 
IPSd -16.81 -8.82 -12.35 -15.51 -15.55 
LLC -18.50 -9.66 -13.05 -17.30 -17.27 

 Intensity 
IPS -23.51 -9.91 -13.96 -19.29 -21.59 
IPSd -22.58 -10.74 -14.32 -18.81 -20.36 
LLC -24.78 -17.42 -22.53 -26.22 -24.02 
Im, Pesaran and Shin ψ  (IPS, 2003); and Levin, Lin and Chu *t  
(LLC, 2002) Panel Unit Root Tests with 1 lag to account for serial 
correlation.  IPSd is the demeaned version of IPS that accounts for 
correlation across groups.  Both, ψ  and *t  are adjusted t-statistics 
distributed standard normal under the null hypothesis of non 
stationarity. 
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covariates as the Random Effects model does. State dummies are included in our 

regression to capture state-specific effects that are invariant over time. This procedure 

was applied in all the stages explained in previous sections: in the first stage OLS 

estimation, variance estimation, and second stage WLS estimation. This estimation 

procedure allows us to identify individual state effects over the mean yields as well as 

their variability, which is not possible using the FE method known as within estimator. 

In addition to the variables we described in the data section, we included the 

interaction between temperature and region, reasoning that the effect of higher 

temperatures is not uniform across regions. Similar interaction terms between 

precipitation and regional dummies were also included in alternative specifications. 

Since there appears to be little variation in the effects of precipitation across regions, we 

decided not to include them in the reported results. Our results, however, are not 

sensitive to this alternative specification. 

The final estimates of the parameters of the proposed stochastic production 

function are presented in Table 9, where the models are estimated by the Feasible 

Generalized Least Squares method and the standard errors have been adjusted 

appropriately to account for the first-stage variation. The functional form for the average 

yield equation is linear for both the independent and the dependent variables; meanwhile 

the variance equation is linear for the independent variables but the dependent variable 

appears logarithmically to assure positive predicted variances. To save space, the 

coefficients for the individual state dummies are not reported herein.  
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  Table 9. Yield Mean Regression – Second-staged WLS with Predicted Standard Deviations as Weights a 

 Corn  Cotton  Sorghum  Soybeans  Winter Wheat 
 Coef. z-test  Coef. z-test  Coef. z-test  Coef. z-test  Coef. z-test 

Acreage 0.002 6.48  -0.024 -4.10  0.003 10.31  0.001 11.05  0.000 2.35 
Precipitation 0.000 0.01  1.605 3.06  -0.027 -0.84  0.018 1.36  -0.200 -11.15 
Temperature -0.412 -1.47  0.784 0.12  -0.160 -0.36  0.585 6.22  0.085 1.26 

SD Temperature -3.478 -22.49  -37.988 -15.18  -2.334 -16.05  -1.002 -17.76  -0.198 -4.57 
Temp X D2 b -4.572 -8.18        -1.021 -5.89  0.427 3.98 
Temp X D3 -4.567 -11.72  -19.598 -2.64  -2.086 -4.23  -1.631 -11.81  -0.676 -7.24 
Temp X D4 0.206 0.49  32.523 2.21  -0.129 -0.23  -0.333 -2.32  -0.845 -5.29 
Temp X D5 -2.423 -4.41  -8.256 -1.11  -0.590 -1.18  -1.270 -9.24  -1.076 -9.47 
Temp X D6 3.688 8.42  -5.153 -0.62  -1.677 -2.82     0.300 2.64 
Temp X D7 7.992 11.53  30.497 2.31  0.636 0.98     0.516 2.33 

PDSI 0.898 7.48  -7.974 -4.16  0.558 4.81  0.496 10.22  0.266 4.50 
Intensity -41.638 -8.37  -273.033 -4.14  -9.579 -2.24  -17.427 -9.00  -8.408 -3.28 

Trend 1.881 39.82  11.559 7.22  0.850 21.12  0.139 8.09  0.426 18.09 
Trend^2 0.000 -0.41  0.002 0.08  -0.005 -5.92  0.003 8.80  0.003 6.51 
Constant 402.381 19.20  1858.600 7.83  204.715 12.84  101.612 13.19  63.546 17.82 

               
Number of obs 1920  579  940  1392  1732 
Model chi2 (df) 49376.59 (53)  13188.84 (30)  15674.12 (32)  14474.4 (40)  21225.22 (50) 

Prob > chi2 0.000  0.000  0.000  0.000  0.000 
a ( , )f X β  in Eq. (9). Dependent variable: yearly average crop yield by state. Independent variables: crop acreage, yearly amount of precipitation, yearly 
mean temperature, yearly standard deviation of temperature, PDSI (Palmer Drought Severity Index), and precipitation intensity. 
bRegional Interacted Dummies. D1 –Central- (IN, IL, IA, MI, MO, MN, OH, WI); D2 –Northeast- (CT, DE, ME, MD, MA, NH, NJ, NY, PA, RI, VT); 
D3 –Southeast- (AL, FL, GA, KY, NC, SC, TN, VA, WV); D4 -North Plains- (KS, NE, ND, SD); D5 -South Plains- (AR, LA, MS, OK, or TX); D6 –
Mountains- (AZ, CO, ID, MT, NV, NM, UT, WY); D7 –Pacific- (CA, OR, WA).    
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The average yield estimations show that climate affects average yields for cotton 

and winter wheat through a significant coefficient on precipitation, being positive for 

cotton and negative for winter wheat. This suggests that holding acreage and all other 

involved variables constant, a higher amount of total annual precipitation increases 

cotton yields, decreases winter wheat yields, and does not affect the other crops. 

Precipitation effects are also covered through the PDSI and intensity variables. The 

coefficient for PDSI is positive and significant for all crops except for average cotton. 

Since a higher PDSI implies better humidity conditions, the positive significance of the 

coefficient implies that mean yields respond favorably to lessened drought incidence. 

The parameter for precipitation intensity is significant and negative for all the crops. 

This suggests that a shift toward greater intensity –in terms of periods with high amounts 

of rain while the rest of the year is relatively dry– is harmful for the crops. This result, 

combined with what we get from precipitation alone, suggests that precipitation intensity 

and droughts are of greater concern than the annual amount of precipitation alone. 

For the independent variables related to temperature, a higher variability in 

temperature implies a decrease in the yields for all crops, which is consistent with the 

idea of the negative effect of more extreme events –higher maximums and lower 

minimums– on agriculture. The variable “Temperature” should be understood as the 

effect of temperature for the base region (Central), while the coefficients for all of the 

interaction terms reflect the differences between the temperature effects over a given 

region with respect to the Central region. Positive (negative) signs indicate a beneficial 

(harmful) effect of higher temperatures on crop yields. Notice that because some crops 
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are not grown in some regions, some of the regional dummy interaction terms do not 

appear in the cotton, sorghum, and soybeans equations. It is suggested that temperature 

has no significant effect over Central regions (positive for soybeans), with negative 

relative effects for the Southeast and Northeast regions (for NE the relative effect is 

positive for winter wheat). We get mixed results for the North Plains and negative 

relative effects for the South Plains (though the relationship is not significant for cotton 

and sorghum). Finally, the linear trend is positive and significant for all crops, while the 

quadratic term is negative for sorghum but positive for soybeans and wheat. This 

indicates the not unexpected results that temperature increases in the hotter areas (the 

South) are mainly detrimental while increases in the colder (northern) areas are mainly 

beneficial with the Central areas largely unchanged. 

We report the regression results of variance of the residuals from the first stage in 

Table 10. Regarding the variance equation, the interpretation of a positive coefficient 

implies that an increase in the associated variable leads to a higher yield variance. Notice 

that for cotton, the joint significance test implies a null effect of all the variables of that 

model, so cotton yields are found to have a stationary variance. Precipitation affects 

negatively the log variance of corn, sorghum, and soybeans. Higher temperature 

decreases log variance for soybeans in Central region, while it increases the relative 

volatility of corn and soybeans in the Northeast. For South Plains, higher temperatures 

increase log variance of soybeans yields. Finally, higher precipitation intensity seems to 

increase the log variance of sorghum yields. 
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Table 10. Log Yield Variance Regressions a 

 Corn  Cotton  Sorghum  Soybeans  Winter Wheat 
 Coef. t-test  Coef. t-test  Coef. t-test  Coef. t-test  Coef. t-test 

Acreage 0.000 -3.51  0.000 -0.26  0.000 1.17  0.000 -0.36  0.000 -2.19 
Precipitation -0.021 -1.63  0.009 0.38  -0.041 -2.36  -0.032 -2.15  0.006 0.45 
Temperature -0.080 -0.87  0.203 0.63  -0.254 -1.33  -0.270 -2.79  -0.063 -1.32 

SD Temperature 0.141 2.78  -0.012 -0.12  0.026 0.34  -0.010 -0.17  -0.021 -0.65 
Temp X D2 b 0.474 2.86        0.500 2.69  0.033 0.41 
Temp X D3 0.244 1.81  0.129 0.37  0.146 0.65  0.108 0.75  0.050 0.71 
Temp X D4 -0.100 -0.68  -0.124 -0.25  0.324 1.36  -0.039 -0.26  0.023 0.23 
Temp X D5 0.233 1.52  -0.040 -0.11  0.367 1.60  0.368 2.33  0.101 1.15 
Temp X D6 0.062 0.44  -0.338 -0.84  0.425 1.69     0.031 0.39 
Temp X D7 -0.179 -0.88  -0.910 -1.69  0.309 0.74     0.014 0.12 

PDSI 0.007 0.18  -0.020 -0.23  0.072 1.23  -0.024 -0.45  -0.047 -1.11 
Intensity 1.735 1.11  1.394 0.49  4.409 1.93  1.001 0.48  1.324 0.78 

Trend -0.028 -1.87  0.017 0.24  -0.041 -1.85  -0.018 -0.92  0.004 0.25 
Trend^2 0.001 1.85  0.000 0.07  0.001 2.61  0.001 2.18  0.000 0.93 
Constant -7.617 -1.02  -16.496 -1.48  10.890 1.16  14.628 1.77  1.947 0.69 

               
Number of obs 1920  579  940  1392  1732 

F (df1,df2) 5.08 (53,1866)  1.22 (30,548)  3.62 (32,907)  2.42 (40,1351)  3.50 (50,1681) 
Prob > F 0.000  0.196  0.000  0.000  0.000 

a ( , )h X α  in Eq. (9). Dependent variable: logarithm of squared residuals from first stage OLS. Independent variables: crop acreage, yearly amount of 
precipitation, yearly mean temperature, yearly standard deviation of temperature, PDSI (Palmer Drought Severity Index), and precipitation intensity. 
bRegional Interacted Dummies. D1 –Central- (IN, IL, IA, MI, MO, MN, OH, WI); D2 –Northeast- (CT, DE, ME, MD, MA, NH, NJ, NY, PA, RI, VT); 
D3 –Southeast- (AL, FL, GA, KY, NC, SC, TN, VA, WV); D4 -North Plains- (KS, NE, ND, SD); D5 -South Plains- (AR, LA, MS, OK, or TX); D6 –
Mountains- (AZ, CO, ID, MT, NV, NM, UT, WY); D7 –Pacific- (CA, OR, WA). 
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3.6 Simulation of Climate Change Impacts 

In this section we use simulation methods to evaluate the likely impacts of future climate 

changes. Parameters estimated from the above models are used in this simulation. We 

first investigate the potential impact of change in average intra-annual temperature and 

precipitation on future crop yield average and variability using projected climate changes 

from the Hadley and Canadian General Circulation Models (GCM) as used in the U.S. 

Global Climate Research Program’s (USGCRP) National Assessment. In particular, we 

fix the level of temperature, precipitation intensity and PDSI at the current level to set a 

benchmark.  

We next examine the combined effects of future average climate conditions and 

its variability on agricultural productivity.  To the best of our knowledge, existing 

climate studies do not project the magnitude of future climate variability but they do 

suggest it will increase. The simulations include the changes in average and variability 

of future climate conditions as inputs. For temperature variability, we used two kind of 

predictions: the constructed future temperature variability using GCM predictions as 

inputs; or assuming that future temperature variability will increase by 10% and 20% 

with respect to the current levels. 

The results for mean yields in year 2030 are summarized in Table 11 for all crops 

and regions. We observe that those results are similar regardless of the GCM used 

(Canadian or Hadley). The type of assumption about future climate variability does not 

affect the results in a large amount, except for he case of sorghum. If we follow the 

predictions of the GCMs for future temperature variability and the Canadian Model, we 
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find that future climate will affect mean yields positively for corn (between 10% higher 

in the South Plains and 32% in the Northeast), cotton (between -4% in South Plains and 

57% in North Plains), soybeans (from 10% in South Plains to 24 in Central), and winter 

wheat (from 19% in Pacific to 46% in South plains). The effect for sorghum is less 

optimistic, with changes in yields between -18% in the South Plains and 10% in North 

Plains. The results for Hadley Model are very similar. If we compare the results 

assuming 10% grater temperature variability versus 20% greater variability, the results 

suggest that a greater future temperature variability will imply a slight smaller increase 

in mean crop yields. 

The predictions for standard deviation of yields in year 2030 are reported in   

Table 12, using the same parameters of previous table. The results for the Canadian 

Model suggest that future climate will increase yield variability for all crops except 

cotton. Using the Hadley Model, almost all crops and regions report increases in 

variability. The magnitudes of the increases range from 56% in Central to 173% in South 

Plains higher variability for corn, from 131% in Central to  503% in Pacific for sorghum, 

77% in Central to 373% in Northeast for soybeans, and from 68 in Central to 169% in 

Northeast higher standard deviation for winter wheat. 

The results with a 10% and 20% higher temperature variability are similar to 

what we found using the GCM temperature predictions. Greater difference can be found 

for corn in South plains, Mountains and Pacific regions using the Canadian Model. The 

results from the last two tables show us that the GCM predictions of future temperature
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  Table 11. Percentage Change in Mean Yields Under Climate Change, Year 2030 

 CANADIAN  HADLEY 
 Corn Cotton Sorghum Soybeans W. wheat  Corn Cotton Sorghum Soybeans W. wheat 

            
Projected SD of Temperature as GCM predicts       
Central  21 26 2 24 31  21 28 1 26 27 
Northeast 32   18 23  29   28 25 
Southeast 31 21 -4 21 28  36 34 2 33 19 
N. Plains 29 57 10 23 38  26 50 6 21 34 
S. Plains 10 -4 -18 10 46  12 8 -15 26 41 
Mountain 18 10 -4  41  12 4 -17  45 
Pacific 15 7 -5  19  14 4 -7  19 
            
Projected SD of Temperature increased by 10%     
Central  22 28 3 25 29  22 30 3 27 26 
Northeast 32   18 23  30   28 26 
Southeast 40 34 9 31 28  39 39 7 36 20 
N. Plains 24 43 4 18 36  24 45 4 20 33 
S. Plains 26 33 6 28 45  24 38 4 40 40 
Mountain 23 17 8  40  22 17 7  42 
Pacific 23 18 5  19  24 18 6  19 
            
Projected SD of Temperature increased by 20%     
Central  20 23 0 23 29  19 24 -1 25 26 
Northeast 29   15 22  27   25 25 
Southeast 36 29 4 27 28  36 34 2 32 20 
N. Plains 21 33 0 15 35  21 35 0 17 32 
S. Plains 24 29 3 26 45  22 33 1 38 39 
Mountain 20 13 2  40  19 14 1  42 
Pacific 22 16 3  18  23 16 4  19 
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  Table 12. Percentage Change in Standard Deviation of Yields Under Climate Change, Year 2030 

 CANADIAN  HADLEY 
 Corn Cotton Sorghum Soybeans W. wheat  Corn Cotton Sorghum Soybeans W. wheat 

            
Projected SD of Temperature as GCM predicts       
Central  56 65 131 77 68  37 95 67 32 74 
Northeast 87   373 169  56   121 90 
Southeast 99 -9 302 234 123  34 19 108 93 120 
N. Plains 61 -1 326 257 86  58 12 233 178 87 
S. Plains 173 30 253 140 125  56 202 -2 -31 81 
Mountain 113 7 317  115  108 70 139  68 
Pacific 150 -33 503  162  223 -57 982  182 
            
Projected SD of Temperature increased by 10%     
Central  44 66 127 78 58  32 95 66 32 70 
Northeast 79   374 165  53   121 94 
Southeast 60 -8 287 240 125  25 20 106 93 129 
N. Plains 76 -1 333 255 77  65 12 235 177 80 
S. Plains 62 36 221 149 121  6 212 -9 -29 77 
Mountain 74 9 301  112  51 75 125  58 
Pacific 80 -31 468  161  124 -56 911  176 
            
Projected SD of Temperature increased by 20%     
Central  64 65 133 77 56  44 94 69 31 68 
Northeast 102   370 163  66   120 92 
Southeast 77 -9 294 237 124  34 19 109 93 127 
N. Plains 103 -3 345 251 75  82 11 241 176 78 
S. Plains 78 35 226 147 119  13 211 -8 -30 75 
Mountain 97 8 311  110  64 74 128  57 
Pacific 97 -31 477  160  138 -56 922  174 
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variability is somewhere between 10 and 20% higher than the current situation. 

Therefore, the assumptions of future variability seem to be appropriate. 

Finally, we show the effect of future climate on the participation probabilities for 

crop insurance in year 2030. This table is constructed using the results obtained in Coble 

et al. (1996). That study uses a probit analysis to study the determinants of crop 

insurance participation. Among the explanatory variables, there are expected market 

return and variance of market returns, which are function of expected average and 

variability of crop yields. Even though that study is made using Kansas wheat product 

data, we use that results to approximate the effect of the future yield distribution on the 

probability of acquiring crop insurance.  

The results are shown in Table 13. We are using both future mean and variability 

of yields as inputs and get the percentage increase in the probability of crop insurance 

participation. In Coble et al. (1996), the effect of higher mean yields is a reduction in the 

participation probability, while a higher yield variability leads to a increase in the 

participation probability. Our results suggest that the effect of a higher yield variability 

outweighs the effect of a higher yield mean for all crops except cotton. Using the Hadley 

Model, the increase in the participation probability is smaller for corn, sorghum and 

soybeans than using the Canadian Model. Assuming future climate variability as GCMs 

predict, corn participation probability increases from a 31% in Central to 160% in South 

Plains, from 108% in Central to 892% in Pacific for sorghum, from 48% in Central to 

534% in Northeast for soybeans, and from 38% in Central to 152% in Northeast for 

winter wheat. 



 

 

58

  Table 13. Percentage Change in Crop Insurance Participation Probabilities Under Climate Change, Year 2030 

 CANADIAN  HADLEY 
 Corn Cotton Sorghum Soybeans W. wheat  Corn Cotton Sorghum Soybeans W. wheat 

            
Projected SD of Temperature as GCM predicts       
Central  31 38 108 48 38  17 64 45 12 45 
Northeast 55   534 152  29   91 60 
Southeast 67 -10 384 252 94  11 3 84 61 92 
N. Plains 33 -14 430 291 53  31 -5 252 165 55 
S. Plains 160 19 293 117 92  33 203 3 -19 47 
Mountain 84 1 413  82  81 47 122  35 
Pacific 129 -15 892  144  235 -21 2928  170 
            
Projected SD of Temperature increased by 10%     
Central  22 38 104 49 31  13 64 44 12 41 
Northeast 48   538 147  27   91 63 
Southeast 30 -12 349 258 96  5 2 80 61 102 
N. Plains 47 -11 447 287 45  38 -4 257 164 49 
S. Plains 35 14 232 124 87  -3 212 -5 -22 44 
Mountain 45 1 378  79  27 48 101  28 
Pacific 51 -17 785  142  95 -24 2550  162 
            
Projected SD of Temperature increased by 20%     
Central  38 38 111 48 30  22 64 47 12 40 
Northeast 71   529 144  38   90 62 
Southeast 46 -11 365 255 94  12 3 84 61 100 
N. Plains 74 -9 473 282 44  53 -2 268 162 47 
S. Plains 49 14 242 123 85  2 210 -4 -22 43 
Mountain 67 1 399  77  38 48 106  27 
Pacific 68 -17 813  140  112 -24 2609  160 
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3.7 Conclusions  

In this study we investigate the impact of historical climate changes on the stationarity of 

the crop yield distribution, considering temperature, precipitation, variance of intra-

annual temperature, a constructed index of rainfall intensity, and the Palmer Drought 

Severity Index (PDSI). The regression results show that stationarity does not hold as we 

find that both the mean and the variance of crop yields evolved over time as function of 

key climatic variables. In turn the average climate conditions and their variability appear 

to contribute in a statistically significant way to not only average crop yields but to their 

variability as well. In particular we find that the mean of the crop yields are affected by 

the average temperature and precipitation. In addition, we also note that higher variances 

in climate conditions tend to lower average crop yield and inflate yield variability, 

although the magnitude of this effect varies across crops. The variability of precipitation, 

as measured by a rainfall intensity index and PDSI, is shown to have significant impact 

on crop yields as well.  

These results suggest that stationarity of yields is in fact a questionable assumption 

and that risk analysts should consider this when developing probabilistic models where 

climate plays an important direct or indirect role. It appears likely that climate change 

will increase the variability of crop yield distributions, and this means that historical 

distributions are going to need dynamic updating particularly since the pace of climate 

change is increasing as indicated by the recent IPCC reports. Stationarity is certainly 

dying and risk increasing, creating a demand for improved analysis under climate-related 

risk.  
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4. FORESTRY AND CLIMATE CHANGE: CALCULATING THE 

ECONOMIC COST OF NO ADAPTATION 

 

4.1 Introduction 

Forests cover almost 4 billion ha or 30% of global land; 3.4 billion m3 of wood were 

removed in 2004 from this area, 60% as industrial roundwood. Intensively managed 

forest plantations comprised only 4% of the forest area in 2005, but their area is rapidly 

increasing (2.5million ha annually). In 2007, these forests supplied about 39% of global 

roundwood; 11 this share is expected to increase to 44% by 2020. 

Forestry will be affected by climate change. The IPCC Third Assessment Report 

predicts increased global timber production. Simulations with yield models show that 

climate change can increase global timber production through location changes of forests 

and higher growth rates, especially when positive effects of elevated CO2 concentrations 

are taken into consideration. 

In the IPCC Fourth Assessment Report, further evidence is presented including: 

• Although models suggest that global timber productivity will likely increase with 

climate change, regional production will exhibit large variability. Mendelsohn 

(2003), analyzing production in California, projected that, at first (2020s), 

climate change will increase harvests by stimulating growth in the standing 

forest. In the long run, up to 2100, he argues that these productivity gains will be 

offset by reductions in productive area for softwoods growth. Climate change 

will also substantially impact other services, such as seeds, nuts, hunting, resins, 

                                                 
11 Information taken from http://faostat.fao.org. 
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plants used in pharmaceutical and botanical medicine, and in the cosmetics 

industry; these impacts will also be highly diverse and regionalized. 

• CO2 enrichment effects may be overestimated in models; models need 

improvement. New studies suggest that direct CO2 effects on tree growth may be 

revised to lower values than previously assumed in forest growth models.  

• In spite of improvements in forest modeling, model limitations persist. Most of 

the major forestry models don’t include key ecological processes. Development 

of Dynamic Global Vegetation Models (DGVMs), which are spatially explicit 

and dynamic, will allow better predictions of climate-induced vegetative changes 

by simulating the composition of deciduous and evergreen trees, forest biomass, 

production, and water and nutrient cycling, as well as fire effects. DGVMs are 

also able to provide Global Circulation Models (GCMs) with feedbacks from 

changing vegetation.  

There are still inconsistencies, however, between the models used by ecologists 

to estimate the effects of climate change on forest production and composition and those 

used to predict forest yield. Future development of the models that integrate both the Net 

Private Productivity (NPP) and forestry yield approaches (Nabuurs et al., 2002; Peng et 

al., 2002) will significantly improve the predictions. 

One approach for dealing with climate change is to adapt production operations 

so that firms can produce successfully under climate change (McCarl, 2007). The 

objective of this section is to calculate the associated values of known adaptation 

strategies in the forestry sector to gain insight into the relative value of various 

strategies. In particular we will disallow various strategies to see what their relative 

value is under data for altered growth under the climate scenarios reported in 2001 by 

the National Assessment Synthesis Team, of the US Global Change Research Program. 
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Adaptation is a fundamental and ongoing forestry sector activity. Production is 

highly dependent upon climate and other environmental forces. Such forces vary 

substantially over space. This environmental evolution dependence leads to large 

variations in place to place production conditions and mandates adaptation. For example, 

forests are at much greater risk of fire in some places than others with adjustments 

possible through management and prevention practices. 

Forest species choice and management regularly adapt to long run forces such as 

climate differences, pest presence, invasive species, and changes in government policies 

among numerous other forces. Managers can also adapt to short run forces such as pest 

and disease outbreaks, El Niño Southern oscillation events, drought cycles, and extreme 

event cycles among numerous other forces. 

It is clear that the forestry sector is already heavily adapted to climate conditions. 

Production occurs across the nation with highly productive systems occurring in areas 

with temperature and rainfall conditions much different than those projected under 

climate change. The climatic conditions between forestry US regions are much more 

different than the 1.4-1.6 degrees Celsius that is projected to be the consequence by 2030 

under the climate scenarios reported by IPCC. As a consequence, we can infer that 

forestry sector can adapt globally to climate change.  

Some of the basic forms of climate change adaptation in forestry sector that the 

persons who manage land, trees and facilities can take are 

• Tree species/varieties -- one can choose in the face of climate change to adapt by 

altering the mix of trees species employed for example growing trees which are more 
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heat tolerant. More generally this involves replacing some proportion of the tree 

species populating the land with alternative species that perform more suitably in the 

face of the altered climatic regime. Typically this involves adopting practices from 

areas that have historically exhibited warmer climates. Adaptation can also involve 

adoption of alternative varieties of the same trees that are more suitable in the face of 

the altered climate due to for example lower water needs, increased resistance to 

pests and diseases etc. 

• Tree management -- one can change the management of the items being grown.  

Trees and can be managed with increased inputs, altered rotation ages, thinning to 

mitigate fire risk, replanting, or altered pest management among other possibilities.  

Producers may also use seasonal climate forecasting to reduce production risk. 

• Moisture management -- climate change can decrease water availability, decrease 

soil moisture holding capacity and/or increased flooding/water logging. Adaptation 

may occur in the form of altering time of planting/harvesting to better match water 

availability, or changing species to more drought tolerant trees. 

• Pest and disease management – Climate change is likely to exacerbate pest and 

disease problems. Adaptation can occur through wider use of integrated pest and 

pathogen management, development and use of varieties and species resistant to 

pests and diseases, outbreak monitoring programs, prescribed burning and adjusting 

harvesting schedules. 

• Management of natural areas – Some forestry production relies principally on 

passively managed, natural ecosystems which may require more active management 
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under climate change to migrate in new better adapted species or deal with climate 

change enhanced pest, disease or fire risks. 

• Fire management – Forests are vulnerable to fire and climate change induced 

increases in fire risk.  Such risks may stimulate adaptive actions like salvaging dead 

timber, landscape planning to minimize fire damage, and adjusting fire management 

systems. 

• Land use or enterprise choice change -- climate change may alter the suitability of 

land or a region to such an extent that certain enterprises are no longer sustainable 

and that it may be desirable to adapt by changing the land use from trees to grazing 

land. In this case one would use the associated land, capital and labor resources in 

other productive enterprises outside of the forestry sector. 

The objective of this work is to calculate the value to the forestry sectors of 

particular adaptation strategies. In particular, I will compute the effects on aggregate 

welfare of the presence of a set of adaptation strategies. One of the reasons to calculate 

welfare implications with and without climate change adaptation is to see the relative 

value of particular approaches and identify approaches that might be promoted in 

outreach efforts. 

The kind of adaptation activities that will be restricted are: kind of species, 

rotation age, management intensity, and land transfers. These activities will be explained 

with more detail in subsequent sections.  
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4.2 Methodology 

In order to achieve the objectives of this study, I will adapt a mathematical programming 

model that includes the agricultural and forest sectors in a dynamic framework. The 

Forest and Agricultural Sector Optimization Model—Green House Gas version 

(FASOMGHG) is an intertemporal, price-endogenous, spatial equilibrium model 

depicting land transfers between the agricultural and forest sectors in the United States. 

The model simulates the allocation of land over time to competing activities in both the 

forest and agricultural sectors and the resultant consequences for the commodity markets 

supplied by these lands, and for net greenhouse gas emissions (GHG, not calculated in 

this study though). The model was developed to evaluate the welfare and market impacts 

of public policies that cause land transfers between the sectors and alterations of 

activities within the sectors. The equilibrium occurs where prices and production 

maximize the present value of aggregated producers’ and consumers’ surpluses in both 

sectors.  

The model solution portrays simultaneous market equilibrium over an extended 

time, typically 70 to 100 years on a five-year time step basis. The results from 

FASOMGHG yield a dynamic simulation of prices, production, management, 

consumption, GHG effects, and other environmental and economic indicators within 

these two sectors, under the scenario depicted in the model data. 

FASOMGHG’s key endogenous variables can include (if needed): 

• commodity and factor prices, 

• production, consumption, export and import quantities, 
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• land use allocations between sectors, 

• management strategy adoption, 

• resource use, 

• economic welfare measures,  

-- producer and consumer surplus,  
-- transfer payments, 
-- net welfare effects, 

• environmental impact indicators, 

-- GHG emission/absorption of carbon dioxide (CO2), methane (CH4), and 
nitrous oxide (N2O) 

-- surface, subsurface, and groundwater pollution for nitrogen, phosphorous, 
and soil erosion. 

 

To date, FASOMGHG and its predecessor model FASOM have been used to 

examine the effects of GHG mitigation policy, climate change impacts, public timber 

harvest policy, federal farm program policy, biofuel prospects, and pulpwood production 

by agriculture. It can also aid in the appraisal of a wider range of forest and agricultural 

sector policies as shown in Alig et al. (1998), Adams et al. (1999a), McCarl et al. 

(2000), among others. 

 

4.3 The Forest and Agricultural Sector Model (FASOM) Overview 

FASOM solves a multi-period, multi-market optimization problem by maximizing the 

present value of aggregated consumers’ and producers’ surpluses in the agricultural and 

forest sectors subject to resource constraints. The solutions reveal the prices and 

quantities of agricultural and forest markets in each period under the assumption that 
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producers and consumers have perfect knowledge of market responses at the beginning 

of the modeling period. The basic structure of FASOM follows the formulation in 

McCarl and Spreen (1980) in which the life of the activities, such as forest, is 

determined endogenously and production activities adjust over time. The model includes 

48 primary agricultural, 45 secondary agricultural commodities, and 8 forest products 

produced in 11 geographical regions. The agricultural sector activities are based on the 

agricultural sector model described in Chang, McCarl, and Adams (1989).  

4.3.1 Basic Structure of the Model 

This partial equilibrium model depicts commodity demand for multiple products without 

explicit supply for those products, but rather with a production process and factor supply 

for inputs. The model has exogenous factor supply and product demand curves, but 

implicit factor demand and product supply. Such a model can be expressed as follows. 
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This problem assumes that a number of different types of firms (β) are being 

modeled. Each firm has a finite set of production processes (k) which depict particular 

ways of combining fixed factors (j) with purchased factors (i) to produce commodities 

(h). The symbols in the formulation are:  Pdh(Zh) is the inverse demand function for the 
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hth commodity; Z h is the quantity of commodity h that is consumed; Psi (Xi) is the 

inverse supply curve for the ith purchased input; Xi is the quantity of the ith factor 

supplied; Qβk is the level of production process k undertaken by firm β; Chβk  is the yield 

of output h from production process k;  bjβk is the quantity of the jth owned fixed factor 

used in producing Qβk; aiβk is the amount of the ith purchased factor used in producing 

Qβk and Yjβ is the endowment of the jth owned factor available to firm β. 

The first line of this very simplified formulation is the objective function: 

maximize the area under the all the input supply curves minus the area under all the 

commodity demand curves (aggregate producers and consumers’ welfare). The first 

constraint (which is actually a set of similar constraints for each h) shows how we link 

the inputs with the productive processes. The second constraint links the production 

process with the final produced commodities. The last constraint relates the production 

processes with the required resources to perform those activities (land, labor, etc.).  

4.3.2 Forestry Model Elements 

In this section I describe key forest sector characteristics and the ways that the 

FASOMGHG model structure accommodates them. Forest stands grow at differential 

rates due to differences in management, site quality, ownership, climate, tree age and 

tree species. The FASOMGHG forest stand and inventory representation reflects these 

characteristics on current timberland and potentially afforested land in the contiguous 48 

states under private ownership (Alig et al. 1998).  Pubic lands are treated exogenously. 

Private timberland is characterized by:  
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• Geographic region (nine regions as defined below),  

• Type of land owner (private lands only- two owners) 

• Land use suitability for transfer to or from agriculture (5 groups),  

• Forest types (ten) as defined below,  

• Site productivity potential for wood volume growth (three levels) as defined 

below,  

• Management intensity (23 timber management regimes applied to the area) as 

defined below, and  

• Five-year age cohorts up to 100+ years of age.  

4.3.2.1 Regions 

FASOMGHG covers forest and agricultural activity across the conterminous US, 

broken into 11 market regions meshed with 63 subregions for agricultural sector 

coverage. The 11 larger regions are a consolidation of regional definitions that would 

otherwise differ if the forest and agricultural sectors were treated separately. They are 

shown on Table 14. The 11-region breakdown reflects the existence of regions for which 

there is agricultural activity but no forestry, and vice versa.  

Forest production occurs in 9 of the 11 regions used in FASOMGHG with the 

major timber producing regions being (a) the Pacific Northwest west of the Cascade 

Mountain Range (PNWW); (b) the South Central (SC) and (c) the South East (SE). 

National Forest timber and Canadian production are also represented but with exogenous 

harvest levels.  
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Table 14. FASOMGHG 11 Region Definitions 

Key Region States/Subregions 

CB Corn Belt All regions in Illinois, Indiana, Iowa, Missouri, Ohio 
NP Northern Plains Kansas, Nebraska, North Dakota, South Dakota 
LS Lake States Michigan, Minnesota, Wisconsin  
NE Northeast Connecticut, Delaware, Maine, Maryland, Massachusetts,   

New Hampshire, New Jersey, New York, Pennsylvania,  
Rhode Island, Vermont, West Virginia 

PNWE Pacific Northwest-east side Oregon and Washington, east of the Cascade mountain 
range 

PNWW Pacific Northwest-west side Oregon and Washington, west of the Cascade mountain 
range 

PSW Pacific Southwest All regions in California 
RM Rocky Mountains Arizona, Colorado, Idaho, Montana, Eastern Oregon, 

Nevada, New Mexico, Utah, Eastern Washington, Wyoming
SC South Central Alabama, Arkansas, Kentucky, Louisiana, Mississippi,  

Eastern Oklahoma, Tennessee, Eastern Texas (TxEast)  
SE Southeast Virginia, North Carolina, South Carolina, Georgia, Florida 
SW Southwest Western and Central Oklahoma, All of Texas but the 

Eastern  
Part -- Texas High Plains, Texas Rolling Plains, Texas 
Central Blacklands, Texas Edwards Plateau, Texas Coastal 
Bend,  
Texas South, TexasTrans Pecos 

 

4.3.2.2 Land Ownership 

The only forested stands explicitly represented are those owned by private parties. Two 

ownership classes are defined  

• Forest industry (FI) --private lands owned by companies or individuals operating 

wood manufacturing plants.  

• Non industrial private forest --private lands owned by individuals or companies 

who do not operate wood manufacturing plants.   

4.3.2.3 Land Use Suitability  

Five land suitability classes are used in tracking timberland:   
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FORONLY -- Timberland acres that are not suitable for conversion to agricultural 

uses;  

FORCROP -- Acres that begin in timberland but could be converted to crop land 

uses 

FORPAST -- Acres that begin in timberland but could be converted to pasture uses 

CROPFOR -- Acres that begin in crop land uses but are converted to timberland. 

All afforested crop land is in this category and after conversion into forest 

can be returned to agricultural crop land later in the model time frame.  

PASTFOR -- Acres that begin in pasture land uses but are converted to timberland. 

All afforested pasture land is in this category and after conversion into 

forest can be returned to agricultural pasture later in the model time 

frame.  

The classification name identifies the type of allowed land use changes. The 

second part identifies the type of use for which the land is potentially suited for 

conversion (crop, pasture, or forest only) and by the prior use (first part of name). For 

example, FORCROP is land that was in forest cover and is suitable for conversion to 

crop land. 

4.3.2.4 Forest Type  

Ten forest types are defined.  These are listed in Table 15. The definitions used in all 

regions but the SC, SE, and PNWW are limited to HARD and SOFT. In the SC and SE 

regions the definitions BOT_HARD, UP_HARD, NAT_PINE, OAK_PINE, and 

PLNT_PINE are used. The three definitions DOUG_FIR, OTH_SWDS, and 

HARDWOODS are used in the PNWW region. 
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4.3.2.5 Site Productivity 

Three site productivity types are defined.  These are based on a classification of 

forestland in terms of potential annual cubic-foot volume growth per acre at culmination 

of mean annual increment in fully-stocked natural stands (Smith et al. 2001). Specific 

productivity ranges can vary by region and an example for the South is given in Table 16 

below.  

Table 15. Forest Types  

Forest Type Description 
SOFT Broad softwood forest type 
HARD Broad hardwood forest type 
BOT_HARD Bottomland hardwood forest type in the South 
UP_HARD Upland hardwood forest type in the South 
NAT_PINE Natural pine forest type in the South 
OAK_PINE Oak-pine forest type in the South 
PLNT_PINE Planted pine forest type in the South  
DOUG_FIR Douglas-fir forest type in the PNWW region 
OTH_SWDS Representative softwood forest type, excluding Doug-fir 
HARDWOODS Composite hardwood forest type for the PNWW region 

 

Table 16. Timberland Site Classes for the South 

Site Class Cubic feet per acre per year 
LO 20-49 cubic feet 
MED 50-84 cubic feet 
HI 85+ cubic feet 

 

4.3.2.6 Management Intensity Classes 

The model allows several different levels of timber management intensity for newly 

regenerated timber stands.  These management intensity classes (MICs) were largely 

derived from the MICs developed for modeling by the Aggregate TimberLand Analysis 
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System (ATLAS) (Mills and Kincaid, 1992) in the 2000 RPA Timber Assessment 

(Haynes, 2003; Mills and Zhou, 2003). The number and type of MICs vary by region, 

forest type, and site class. The largest numbers are in the SC, SE and PNWW where the 

bulk of the nation's timber harvest originates. In other regions, two relatively low 

intensity levels of timber management are used that approximate the regional forms of 

timber management: passive (PASSIVE) -- depicting no management intervention of 

any type between timber harvests of naturally-regenerated aggregates; and low (LO) -- 

custodial timber management of naturally-regenerated aggregates (Adams et al., 1996).  

The management options in the South and PNWW regions involve a combination 

of harvest method -- (clearcut or partial cutting) and silvicultural practices including 

thinning. The management alternatives are listed in Table 17. 

4.3.2.7 Cohorts 

For an even-aged stand, a FASOMGHG stand is characterized by a range of ages for the 

trees therein. Even-aged stands are those where 70% or more of the tree stocking falls 

within a 30-year grouping. Five-year cohorts are used to classify even-aged stands, to 

provide indications about how long different stands have occupied the land.  In the South 

the first year of occupancy is commonly trees that are older as trees are transplanted in at 

older ages.  The cohorts for land occupancy are 0-4, 5-9, 10-14, 14-19 and so on in five-

year intervals up to 95-99 and 100+. No differentiation is done between age groups 

beyond 100 years. 
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Table 17. Forest Management Intensity Codes (MICs) Used 

MIC Code Description 
AFFOR Afforestation of bottomland hardwood (SE and SC) 
AFFOR_CB Afforestation of hardwood and softwood forest types (CB) 
LO Natural regeneration (or afforestation) with low management  
NAT_REGEN Natural regeneration with low management (PNWW) 
NAT_REGEN_PART_CUT_HI Partial cutting with high level of management (PNWW) 
NAT_REGEN_PART_CUT_LO Partial cutting with medium level of management (PNWW) 
NAT_REGEN_PART_CUT_MED Partial cutting with low level of management (PNWW) 
NAT_REGEN_THIN Natural regeneration with a commercial thin (PNWW) 
PART_CUT_HI Partial cutting with medium level of management (SE and SC) 
PART_CUT_HI+ Partial cutting with high level of management (SE and SC) 
PART_CUT_LO Partial cutting with low level of management (SE and SC) 
PASSIVE Passive management (minimal amount of management)  
PLANT Plant with no intermediate treatments (PNWW) 
PLANT_THIN Plant with medium level of management (PNWW) 
PLANT+ Plant with high level of management (PNWW) 
PLNT_HI Planted pine with high level of management (SE and SC) 

PLNT_HI_THIN Planted pine with commercial thin and high level of management  
(SE and SC) 

PLNT_LO_THIN Planted pine with commercial thin and no intermediate treatments 
(SE and SC) 

PLNT_MED Planted pine with medium level of management (SE and SC) 

PLNT_MED_THIN Planted pine with commercial thin and medium level of  
management (SE and SC) 

RESERVED Reserved from harvest 

SHORT_ROTSWDS Short rotation softwoods with high level of management (SE and 
SC) 

TRAD_PLNT_PINE Planted pine with no intermediate treatments (SE and SC) 
 

4.4 Imposing Climate Change Scenarios 

The analysis will be done under two Global Climate Change forecasts. These 

scenarios are drawn from the Forest Section of the US Global Climate Change Research 

Program National Assessment that was done in 2001, and are specifically discussed in 

Irland et al. (2001). 
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The range of scenarios considered alternate assumptions about 1) climate (the 

Hadley and the Canadian scenarios), 2) forest productivity (the TEMM and CENTURY 

biogeochemistry models), and 3) timber and agricultural product demand (determined by 

population growth and economic growth). 

The specific details for each scenario used in this work are:  

• Canadian Model with adaptation (cc_wt_adpt_avgg): assumes future climatic 

conditions as Canadian Global Circulation Model (GCM) predicts. The scenario 

allows adaptation in forestry using TEMM vegetive simulator, as well as 

adaptation for crops and agricultural related issues such as pests, water and 

livestock. Crop exports are assumed to follow an average of GCMs (GISS, 

UKMO, and Darwin), and climatic effects are assumed to happen in year 2030.  

• Hadley Model with adaptation (hc_wt_adpt_avgg): the same as the previous 

model, but using the Hadley GCM explained in previous sections of this work. In 

general, the results obtained are very similar regardless the GCM we used.  

 

4.5 How the Adaptation Model Works 

The model restricts whether particular adaptation options are available to the forestry 

sector through 4 types of constraints:  

4.5.1 Forest Type Adaptation Constraint (No Species Adaptation) 

The first restriction disallows the changing of species type thus eliminating the 

possibility of switching to more adapted types of trees. Suppose that a stand located in a 

particular region, of a particular owner, productivity site and period is cut. The agent’s 

replanting decisions could differ in many ways with respect to the previous stand’s 
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characteristics: we could replant trees using a different management intensity procedure, 

or we could replant trees that will be cut at a different age, or we can transfer land 

from/to agricultural uses. However, we are imposing a constraint that prevents the agent 

from changing the type of forest that is replanted. The constraints in the program look 

like the following: 

CONS_SUCCESSORGROUP(reg,pvtlogowner,site,period,successorgroup) $ (sum((class), 
          isnew3(reg,class,pvtlogowner,successorgroup,site)) 
          and yesfor gt 0 and yesxav2).. 
 
* acres from existing stands 
  sum(isexist(period,cohort,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy) 

$examine(policy), 
            FORPRDEXIST(period,cohort,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy)) 
 
* acres from reforested and afforested stands 
 + sum((oldperiod,when)$( date(oldperiod)+elapsed(when) eq date(period)), 
      sum(isnew(when,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy) 

$( examine(policy) and whendone(oldperiod,when)), 
            ( FORPRDNEW(oldperiod,when,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy) 
             +FORPRDNEWAFFOREST(oldperiod,when,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy) 
                    $(yesag and ardclasses("afforest",class))))) 
 
=l= 
 
* acres to reforest 
  sum(when$whendone(period,when), 
     sum(isnew(when,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy)$examine(policy), 
            FORPRDNEW(period,when,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy))). 

 

This constraint says that in a given period and site, and for a given variety of 

trees, the total amount of acres of new planting must be greater than or equal to the 

amount of acres that were just harvested in that site. All the other adaptation strategies 

are allowed (rotation age, or management intensity). 

The sets over which this constraint (and the next ones) is defined are  

reg -- log producing region 
pvtlogowner -- type of private owner 
site -- site productivity class 
period – period is which stand is cut 
succesorgroup -- forest type 
mgtintensity -- management intensity class 
cohort (when)-- tree age cohort 
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class -- land suitability for agriculture or forestry 
 

Notice from the constraint that the cut lands can come from existing stands and 

from previously replanted or afforested stands. The constraint also sums the land across 

all the dimensions that are allowed to be altered (rotation age, management intensity and 

land transfers).  

4.5.2 Management Intensity Constraint (No MIC Adaptation) 

The second restriction disallows the changing of Management Intensity Class (MIC) 

type thus eliminating the possibility of switching to more management. Using a similar 

structure, this constraint allows replanting trees altering the age of the future stands, the 

species, and the type of land used. The restriction that the constraint imposes is on the 

acres reforested by  kind of management intensity, which is set to be fixed from one 

rotation to the next one. In summary, the constraint states that the amount of acres 

planted by MIC in a given period and site is greater than or equal to the amount of 

harvested acres by MIC, with the possibility to alter all the other dimensions (forest type 

and age).    
 
. The constraint in the program is: 

*** NO MIC ADAPTATION *** 
 
CONS_MGTINTENSITY(reg,pvtlogowner,site,period,MgtIntensity) $ (sum((class,successorgroup), 
          isnew3(reg,class,pvtlogowner,successorgroup,site)) 
          and yesfor gt 0 and yesxav1).. 
 
* acres from existing stands 
  sum(isexist(period,cohort,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy)$examine(policy), 
            FORPRDEXIST(period,cohort,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy)) 
 
* acres from reforested and afforested stands 
 + sum((oldperiod,when)$( date(oldperiod)+elapsed(when) eq date(period)), 
      sum(isnew(when,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy)$( 
                examine(policy) and whendone(oldperiod,when)), 
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            ( FORPRDNEW(oldperiod,when,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy) 
             +FORPRDNEWAFFOREST(oldperiod,when,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy) 
                    $(yesag and ardclasses("afforest",class))))) 
 
=l= 
 
* acres to reforest 
  sum(when$whendone(period,when), 
     sum(isnew(when,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy)$examine(policy), 
            FORPRDNEW(period,when,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy))). 
 
 

4.5.3 Cohorts Constraint (No Rotation Age Adaptation) 

In this case, the constraint prevents the agent from changing the age of the forest stands. 

In other words, if a stand is cut at the age of 40 years, the next rotation will be when the 

new planted trees are 40 years old. This constraint implies that for a given site and 

period, the amount of acres by harvest age of new planting is greater than or equal to the 

acres by harvest age of old harvest. As before, we are allowed to change everything else: 

management intensity, species, and land use. The constraint is: 

*** NO ROTATION AGE ADADTATION *** 
 
CONS_ROTATIONAGE(reg,pvtlogowner,site,period,when) $ (sum((class,successorgroup), 
          isnew3(reg,class,pvtlogowner,successorgroup,site)) 
          and yesfor gt 0 and yesxav3).. 
 
* acres from existing stands 
  sum(isexist(period,cohort,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy)$( 
                 examine(policy) and (date(period)-today+TREEAGE(COHORT) eq HARVAGE(WHEN)+ 2.5)) , 
            FORPRDEXIST(period,cohort,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy)) 
 
 
* acres from reforested and afforested stands 
 + sum((oldperiod)$( date(oldperiod)+elapsed(when) eq date(period)), 
      sum(isnew(when,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy)$( 
                examine(policy) and whendone(oldperiod,when)), 
            ( FORPRDNEW(oldperiod,when,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy) 
             +FORPRDNEWAFFOREST(oldperiod,when,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy) 
                    $(yesag and ardclasses("afforest",class))))) 
 
=l= 
 
* acres to reforest 
 
     sum(isnew(when,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy)$ (examine(policy) and 
whendone(period,when)), 
            FORPRDNEW(period,when,reg,class,pvtlogowner,successorgroup,site,MgtIntensity,policy)). 
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4.5.4 Land Use Constraint (No Land Transfer Adaptation) 

This kind of constraint restricts the agent from changing the use of forest land. It states 

that the amount of land used for forestry must continue to be used in forestry with no 

outmigration. Constraint states that the amount of acres of new planting is greater than or 

equal to the acres of old harvested, by period and site. As before, we are allowed to alter 

all the other dimensions that the agent can change. The constraint looks in this way: 

*** NO LAND TRASFER TO AG ALLOWED *** 
 
CONS_LANDTRANSFER(reg,pvtlogowner,site,period) $ (sum((class,successorgroup), 
         isnew3(reg,class,pvtlogowner,successorgroup,site)) 
         and yesfor gt 0 and yesxav4).. 
 
* flow of forest land to ag 
  sum((class,successorgroup),FORSIDE_LAND_TOAG(reg,class,pvtlogowner,successorgroup,site,period) 
         $whentran(reg,class,pvtlogowner,site,"toag") 
         $(landcon gt 0 and yesag and yesfor )) 
 
=e= 
 
0. 

 

4.6 Results 

The study was done under the two GCM models to examine the value of the adaptation 

strategies. The results are depicted in Table 18 in terms of total reduction in welfare 

from a base situation in which there is no adaptation constraints. The welfare units are 

measured as the net present value of consumer and producer surpluses in 2004 US 

dollars. 

 The total economic costs of not allowing the abovementioned adaptation 

strategies are: 

• For no MIC adaptation on forests: around 1.26 billion dollars for Canadian and 

Hadley models. 
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• Also, when species adaptation is not possible, the cost for the society is around 1.26 

billion dollars. 

• In case that rotation age adaptation is not possible, we have a total cost of 60.3 

billion dollars, being this adaptation strategy the most expensive for the society when 

it is not allowed.  

• Also, the smallest cost for the society occurs when land transfer is not permitted, 

with a total cost of around 185,000 dollars. 

Table 18. Summary Welfare Report NPV in 2004$  

 
Canadian Model with adaptation

(cc_wt_adpt_avggcm) 
Hadley Model with adaptation 

(hc_wt_adpt_avggcm) 
Management 
Intensity 1,263,186,512 1,263,187,051 
Species 1,263,797,814 1,263,798,354 
Rotation Age 60,296,941,863 60,296,942,401 
Land Transfer 184,657 185,196 

 

Notice from the results that the magnitudes are very similar regardless the 

climate scenarios used in the model.12 

 

4.7 Conclusions 

This section estimates the value of various forest adaptation strategies. For this 

purpose, I imposed a set of constraints to a price-endogenous mathematical 

programming model of the Forestry and Agriculture Sector for the United States 

(FASOM) that disallow particular types of adaptation to see what they were worth. The 

main feature of this model is the ability to calculate disaggregated gains and losses for 

different economic sectors into the country as well as overseas.  

                                                 
12 Table 20 in Appendix C shows the details of percentage increase in production, prices, imports and 

exports of forestry products using each set of constraints. 
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The kinds of constraints imposed in this model are of four types: 1) no 

management intensity adaptation, 2) no species adaptation, 3) no rotation age adaptation, 

and 4) no land transfers adaptation. 

In global terms, the model calculates losses for the society when we do not allow 

the before mentioned adaptation strategies. The biggest society losses occur when 

rotation age adaptation is not allowed, with a cost of around 60 billion dollars. Then, we 

have constrained MIC and species adaptation strategies, with a cost of around 1.26 

billions. Finally, the restricted strategy with the slightest effect for society is land 

transfer, with a cost of around 180,000 dollars. 

Since adaptation is automated in the model, and agents are not necessarily able to 

perform full adaptation to climate change, a recommendation from these results is that 

policy makers should sponsor, through tutoring and resource allocation, those strategies 

which represent a greater gain for the society, the ones that are more costly when not 

allowed.  
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5. CONCLUSIONS, LIMITATIONS AND FURTHER RESEARCH NEEDS 

 

This dissertation examined the effects of climate change on agricultural and forestry 

issues. Specifically, using econometric models of panel data, and a spatial equilibrium 

model for the U.S. forestry sector, I examined 

• The effects of climate and projected climate change on crop yields examining 

their mean and variance. 

• The effects of climate and projected climate change on returns to research 

investments in technical progress in agriculture 

• The value of forest adaptation strategies in the face of climate change. 

More specifically in Section 2, I examined the impact of climate change on 

returns to research investments extending the work of Huffman and Evenson (2006), 

using a pooled cross-section time-series model of agricultural productivity for the forty-

eight contiguous states over 1970–1999. Climatic variables temperature, amount and 

intensity of precipitation result to be significant in the econometric model. 

Based on projected climate simulations, I found that climate change alters the 

rate of return to research. The biggest effects are due to precipitation, which increases 

returns to research investments. Besides higher rainfall intensity, where more 

precipitation happens in shorter time periods, decreases returns to research investments.  

On the other hand, I found that temperature has a differentiated regional effect with 

negative implications in the southwest.  
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I also forecasted the growth rates of agricultural research investments required in 

order to compensate for the impact of climate change. If one wishes to increase 

investments to adapt to climate change restoring pre climate change TFP rates of growth, 

around an 18% increase is needed at the national level. This varies by region, with the 

largest increase needed in the Southern Plains and reductions calculated as appropriate in 

the Mountain and Pacific regions. 

Section 3 reported on an investigation of the impact of climate on the stationarity 

of the crop yield distribution, considering temperature, precipitation, variance of intra-

annual temperature, a constructed index of rainfall intensity, and the Palmer Drought 

Severity Index (PDSI). I found that the mean of the crop yields are affected by the 

average temperature and precipitation. In addition, I also note that higher variances in 

climate conditions tend to lower average crop yield and inflate yield variability, although 

the magnitude of this effect varies across crops. The variability of precipitation, as 

measured by a rainfall intensity index and the Palmer Drought Index has a significant 

impact on crop yields as well.  

Finally, I examined the welfare value of alternative adaptation measures for 

forestry in adaptation to future climate change. For this purpose, I imposed a set of 

adaptation constraints on a price-endogenous mathematical programming model, the 

Forestry and Agriculture Sector Optimization Model for the United States (FASOM). 

The main feature of this model is the ability to simulate the forest and agricultural 

sectors, and yield estimates of the gains and losses for different economic sectors into 

the country as well as overseas. The nature of the constraints is related to not allowing 
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certain adaptation practices related to forestry activities, such as management intensity, 

type of species, age of rotation, and land transfers to agriculture and urban development. 

Adaptation strategies constraints in the model states that the amount of acres of 

new planting for a given MIC (type of forest or rotation age) must be greater than or 

equal to the amount acres of old harvest. This means that for a given period and site, the 

agent is not allowed to change the way he has been working with the forest stands. 

In global terms, the model calculates losses for the society when we do not allow 

the before mentioned adaptation strategies. The biggest society losses occur when 

rotation age is not allowed, with a cost of around 60 billion dollars. Then, we have 

constrained MIC and species adaptation strategies, with a cost of around 1.26 billion. 

Finally, the restricted strategy with the slightest effect for society is land transfer, with a 

cost of around 180,000 dollars.  

 

5.1 Limitations 

This work embodies a number of limitations which can be summarized as follows: 

• Section 2 works with an aggregate index of agricultural factor productivity. This 

could be problematic in the sense that different crops could respond in different ways 

to public research capital investments, and the aggregation could obscure such 

results. 

• Also, there is a need to decompose the regional effects into more disaggregate, more 

homogeneous regions to avoid the lack of significance in the estimations due to an 

excessive aggregation. 
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• Another limitation in the econometric part of this work is given by the endogeneity 

of the regressors. Particularly, public research investment is a variable that can be 

endogenous to the level of total factor productivity. This problem can cause the 

estimators to be biased.  

• A major problem in the econometric estimations is that in Section 2, the unit root test 

showed that temperature is a stationary variable. This occurs because of the short 

span of the data with respect to IPCC’s works. According to IPCC, temperature is a 

variable that has been increasing globally, which is precisely the argument of climate 

change, using data that covers a time span of more than 100 years. With a data set 

from 1970 to 1999, only for the continental US, it is not possible for the econometric 

tests to identify the sustained increase in temperature that IPCC has found. 

• In Section 3, the main limitations involve the method of estimation for the 

econometric model. Greene (2003) argues that Generalized Least Squares –GLS– 

method (2 stage least squares being a particular case) yields more efficient results 

than Ordinary Least Squares if the real structure of the underlying heteroscedasticity 

is known and modelled properly. However if unknown heteroscedasticity is 

incorrectly modelled, GLS estimation will likely yield more problems than the ones 

intended to be corrected. Since the structure of the variance equation is imposed as 

given, in case it is not modelled correctly the estimations could be biased. 

• Another issue is the lack of more disaggregated data, which could provide more 

information for the estimations. It would be more preferable to have access to 

county-level observations than to state-level observations. 

• A problem with the econometric estimations is the inability of the model to 

incorporate CO2 concentration (one of the major drivers of climate change) effects 

on climate change. This is because it is not possible to separate the effect of 

technological change from the levels of CO2 concentration. This happens because 

both variables are increasing through time. As a consequence, we can not identify 
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what part of Agricultural TFP increase is caused by innovation, and what part is due 

to more CO2, which is proven to make crops to grow faster. 

• In Section 4, the main limitation is the lack of a method to provide confidence 

intervals on the calculations for the welfare effects of the various adaptation 

strategies. Specifically, optimization models are deterministic as apposed to 

econometric models; therefore the obtained results are only point estimations. 

• Finally, one limitation is the fact that the results of mathematical programming 

models are highly dependent on the parameters of the model. These parameters are 

sometimes taken as given from other works; sometimes those parameters are 

calibrated or estimated using econometric methods, sometimes they are just 

assumed. Some problems could arise if those parameters are not constant through 

time, making the results somewhat sensitive to the choice of parameters.  

 

5.2 Suggestions for Further Research 

This work opens many possibilities for future research. In general, all the models could 

be refined with the availability of more data: with more time series observations or with 

more disaggregate observations –county level–. Each one of those cases gives new 

opportunities to use state-of-the-art panel data methods, which differ depending on the 

relative “length” or “width” of the panel structure. 

Another opportunity derived from this work is to study the effects on agricultural 

yields and volatilities of extreme events. Since those events do not occur frequently, an 

alternative methodology should be developed in order to take into account events that 

happen with low regularity, but with very strong effects. 
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One more possibility of future work is to develop a method to compute 

agricultural factor productivities by crop. If this could be done, it would give a lot of 

information about the effects of public research investment and would help to set 

priorities on crops for future investment driven by climate change. 

A suggestion for future research is the development of new tests and procedures, 

as an alternative to unit root tests, to account for climate change in variables such as 

temperature and precipitation. One suggestion is to develop a test of structural break in 

panels for the level/variance of the climatic variables. The idea is that those variables 

have had a “stable” mean or variance, which has changed at some moment of time. 

Another possibility is to include Bayesian methods to the unit root tests, incorporating 

somehow historical information from a longer time span, and establishing evolving 

parameters that follow a prior distribution.   

At last, one of the FASOM most important properties is its flexibility and 

capacity to be expanded incorporating more variables and equations. A natural extension 

of this work is to expand the model to include more species, markets and sectors. Also, 

we can expand the model to include new adaptation strategies, and to compute carbon 

sequestration under different forest adaptation scenarios. 
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APPENDIX A 

PANEL UNIT ROOT AND COINTEGRATION TESTS 

 

A.1 Panel Unit Root Tests 

A.1.1 Levin, Lin and Chu (LLC) Test 

Levin, Lin and Chu (2002) suggest a panel unit root test that examines the null 

hypothesis that each individual time series contains a unit root versus the alternative that 

each time series is stationary. The structure to be tested has a form similar to an 

Augmented Dickey-Fuller (ADF) test but is applied in a panel framework: 

(13) , 1 ,
1

, 1, 2, 3
ip

it i i t iL i t L mi mt it
L

y y y d mρ θ α ε− −
=

Δ = + Δ + + =∑  

where   

y  are the variables to be tested13 for unit roots,  

Δ  is the lag operator,  

ip  is the lag order, which is allowed to vary across cross sections and is 

determined in the test procedure, these terms are included to take into account 

heterogeneous serial correlation across cross sectional units;  

mtd  can take three values depending on the model specification: td1 ={empty 

set}, td 2 ={1} including an individual constant and td3 ={1, t} including an 

individual constant and an individual linear trend;  

ε  is an error term, and  

                                                 
13 Normal  panel model notation is used here where i = 1,…,N denotes cross section (state) and t = 1,…,T 

denotes time period (year).  
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miiLi αθρ ,,  are parameters to be estimated.  

The null hypothesis is 0:0 == ρρ iH  for all i while the alternative is 

0:1 <= ρρ iH  for all i. Levin, Lin and Chu (2002) show that their estimator ∗
ρt , which 

is a modified version of the t test for 0ρ = , is asymptotically distributed as )1,0(N .  

This test provides a power improvement over individual unit root test over each 

cross section. However, it assumes independence across cross sections, which does not 

necessarily hold; and that all cross sections have or do not have a unit root, which is very 

restrictive.  

A.1.2 Im, Pesaran and Shin (IPS) Test 

As stated above, the LLC test is restrictive in that it requires ρ  being homogeneous 

across individuals. Im, Pesaran and Shin (2003) permit a heterogeneous coefficient on 

1, −tiy , proposing an alternative testing procedure that averages the individual unit root 

test statistics. The estimated model is also the one given in equation (13). However, the 

null hypothesis is that each series in the panel has a unit root, 0:0 == ρρ iH  and the 

alternative hypothesis states that some individual series have unit roots while some are 

stationary, which can be expressed as 0:1 <iH ρ  for i = 1, 2,…, N1 and 0=iρ  for 

1 1, ,i N N= + … . 

The IPS t  statistic is defined as the average of all the N individual ADF 

statistics: 

(14) 
1

1
i

N

i
t t

N ρ
=

= ∑  
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where 
i

tρ  is the individual ADF t-statistic that tests 0:0 =iH ρ .  

Im, Pesaran and Shin (2003) show that when the lag order is non zero for some 

cross sections, and after a proper standardization of t , the resulting estimator, IPSt  is 

distributed as )1,0(N .14  Using Monte Carlo experiments, they found that the small 

sample properties of IPS test outperform those from LLC test and that both LLC and IPS 

tests present important size distortions when either N is small or N is relatively large 

with respect to T.  

A.1.3 Breitung Test 

Breitung (2000) finds that LLC and IPS tests suffer a remarkable loss of power if 

individual trends are included because a bias adjustment is needed. He suggests a test 

statistic that does not require bias correction, that he shows possesses greater power. The 

test involves performing the following pooled regression 

(15) , 1it i t ite vρ ε∗ ∗ ∗
−= +  

and then testing using the t-statistic for 0:0 =ρH . The terms ∗
ite  and ∗

−1,tiv  are corrected 

error terms defined in Breitung (2000), and the test is asymptotically distributed as 

)1,0(N . 

 

                                                 
14 For details on the construction and the asymptotic properties of the test, see Im, Pesaran and Shin 

(2003). 
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A.2 Panel Cointegration Tests 

A.2.1 Kao Tests 

This is a residual-based Dickey-Fuller (DF) kind of test. It is based on testing whether 

the residuals of the panel estimation are stationary or not. Kao (1999) proposed DF and 

ADF tests of unit root for the residuals ite  as a test for the null of no cointegration. The 

DF test is applied to the fixed effect residuals using this specification: 

(16) , 1ˆ ˆit i t ite e vρ −= + . 

We use two versions of the test which assume strong exogeneity of the 

regressors, those are: 

(17) 
ˆ( 1) 3
10.2

NT NDFρ
ρ − +

=  

and 

(18) 1.25 1.875tDF t Nρ= +  

where ρ̂  and ρt  are the estimated parameter of equation (16) and its t-statistic, 

respectively. The asymptotic distribution of the tests converges to a standard normal 

distribution )1,0(N  by sequential limit theory. 

A.2.2 Pedroni Tests 

Pedroni (1999) proposed several tests and critical values for the null hypothesis of panel 

cointegration, which allow a considerable degree of heterogeneity and endogenous 

regressors. Indeed, an important feature of these tests is that they allow not only the 

dynamics and fixed effects to differ across members of the panel, but also that they 
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allow the cointegrating vector to differ across members under the alternative hypothesis. 

These tests are applied over the regression residuals from the hypothesized cointegrating 

regression. In the most general case, this may take the form: 

(19) 1 1it i i i it Mi Mit ity t x x eα δ β β= + + + + +…  

where M  refers to the number of regression variables. Notice that this structure allows 

heterogeneity for the panel individuals at different levels: individual effects ( iα ), 

individual linear trends ( iδ ), and regressor coefficients ( miβ ). 

Pedroni (1997) derives the asymptotic distributions and explores the small 

sample performances of seven different statistics. Of these seven statistics, four are 

based on pooling along what is commonly referred to as the within-dimension, and three 

are based on pooling along what is commonly referred to as the between-dimension. For 

the within-dimension statistics the test for the null of no cointegration is implemented as 

a residual-based test of the null hypothesis 1:0 =iH γ  for all i, versus the alternative 

hypothesis 1:1 <= γγ iH  for all i, so that it presumes a common value for iγ  (the 

autoregressive coefficient of the estimated residuals). By contrast, for the between-

dimension statistics the null of no cointegration is implemented as a residual-based test 

of the null hypothesis 1:0 =iH γ  for all i, versus 1:1 <iH γ  for all i, so that it does not 

presume a common value for iγ  under the alternative hypothesis, allowing an additional 

source of potential heterogeneity across individual members of the panel. 
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A.2.3 Westerlund Tests 

Westerlund (2007) proposes four panel tests of the null hypothesis of no cointegration 

that are based on structural rather than residual dynamics. These structural kind of test 

does not impose any common factor restriction,15 which is a main reason associated to 

loss of power for residual-based cointegration tests. However, Westerlund tests are more 

restrictive than Pedroni’s residual-based tests in the sense that the former do not allow 

endogenous regressors in the model. 

The tests are based on the estimation of the following error correction equation: 

(20) 1 1
1 0

( )
i ip p

it i t i it i it ij it j ij it j it
j j

y d y x y x eδ α β α γ− − − −
= =

′ ′Δ = + − + Δ + Δ +∑ ∑  

where  

y is the dependent variable,  

x  is a vector of independent variables,  

),1( ′= tdt  is the set of deterministic components, and  

Δ  is the first difference operator.  

Notice from equation (20) that if y and x  are I(1) variables, their first 

differences are I(0); so for that equation to be stable, we need  11 −− ′− itiit xy β  to be 

stationary, or equivalently ity  and itx  must be cointegrated. From the estimated 

                                                 
15 Kremers, Ericsson and Dolado (1992) define common factor restriction to the fact that residual-based 

tests require the long-run cointegrating vector for the variables in their levels being equal to the short-
run adjustment process for the variables in their differences. 
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parameters, iα  is known as the error correction parameter, and iβ  is the long-run 

equilibrium relationship between ity  and itx . 

Westerlund (2007) states that if 0<iα , then there is error correction, which 

implies that ity  and itx  are cointegrated, whereas if 0=iα , there is no error correction 

and no cointegration. From the four statistics proposed by Westerlund, for two of them, 

referred as “panel” statistics ( τP  and αP ), the null and alternative hypotheses are 

formulated as 0:0 =iH α  for all i, versus 0:1 <= αα i
pH  for all i, which indicates that 

a rejection should be taken as evidence of cointegration for the panel as a whole. For the 

second pair, defined as “group” statistics ( τG  and αG ) the null hypothesis remains the 

same, while 0:1 <i
gH α  for at least some i, suggesting that a rejection should be taken 

as evidence of cointegration for at least one of the cross-sectional units. See details on 

test construction and asymptotic distributions of τP , αP , τG , and αG  in Westerlund 

(2007). 
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APPENDIX B 

ALTERNATIVE AG-TFP MODEL SPECIFICATIONS 

Table 19. Alternative Agricultural TFP Model Specifications 

Dependent Variable: Model 2  Model 3  Model 2  Model 3 
ln (Ag. Total Factor Productivity) Coefficient p_value  Coefficient p_value   Coefficient p_value  Coefficient p_value 
ln (Public Ag. Research Capital) 0.0900 0.000  0.0941 0.002  0.0841 0.000  0.0929 0.002 
ln (Public Extension Capital) 0.0718 0.000  -0.0235 0.168  0.0660 0.001  -0.0243 0.154 
ln (Public Ag. Research Capital Spilling) 0.0337 0.047  0.4937 0.000  0.0470 0.006  0.4953 0.000 
ln (Private Ag. Research Capital) 0.1095 0.040  -0.1358 0.004  0.1258 0.019  -0.1347 0.004 
D1 (Northeast) -0.2992 0.697     -0.4064 0.597    
D2 (Southeast) -6.0873 0.000     -6.2579 0.000    
D4 (Northern Plains) -0.3178 0.706     -0.4181 0.619    
D5 (Southern Plains) 3.7331 0.013     3.6181 0.016    
D6 (Mountains) -0.3416 0.698          
D7 (Pacific) -5.8040 0.000          
D6_1 (Mountains North)       -1.2427 0.361    
D6_2 (Mountains South)       0.0506 0.955    
D7_1 (Pacific North)       0.7708 0.652    
D7_2 (Pacific South)       -1.5932 0.626    
Trend 0.0127 0.000  0.0029 0.348  0.0126 0.000  0.0029 0.345 
ln (Temperature) × D1 0.1165 0.290  -0.2497 0.027  0.1374 0.219  -0.2498 0.027 
ln (Temperature) × D2 1.5126 0.000  -0.0536 0.807  1.5458 0.000  -0.0543 0.805 
ln (Temperature) × D3 0.0203 0.917  -0.0200 0.877  0.0099 0.959  -0.0192 0.881 
ln (Temperature) × D4 0.1654 0.483  -0.0320 0.843  0.1851 0.433  -0.0312 0.847 
ln (Temperature) × D5 -0.8618 0.023  -0.4812 0.065  -0.8418 0.027  -0.4811 0.065 
ln (Temperature) × D6 0.1557 0.194  -0.1129 0.497       
ln (Temperature) × D7 1.5330 0.000  0.0161 0.966       
ln (Temperature) × D6_1       0.3879 0.184  0.0288 0.904 
ln (Temperature) × D6_2       0.0486 0.692  -0.2587 0.272 
ln (Temperature) × D7_1       -0.1804 0.642  -0.1891 0.628 
ln (Temperature) × D7_2       0.5225 0.495  1.1413 0.283 
ln Total Precipitation 0.0706 0.003  0.0349 0.020  0.0755 0.001  0.0352 0.019 
ln Precipitation Intensity -0.0468 0.001  -0.0246 0.080  -0.0452 0.001  -0.0255 0.070 
Intercept -3.7073 0.000     -3.9227 0.000    

Notes: Model 2 - Eq. (5). Prais-Winsten regression, correlated panels corrected standard errors, with climatic variables. 
Model 3 - Eqs. (5) and (7). Long run equation, Pooled Mean Group Regression for non stationary heterogeneous panels, with climatic variables. 
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APPENDIX C 

FORESTRY ACTIVITY SUMMARY 

Table 20. Forestry Activity Summary 

  Scenario 

   cc_wt_adpt_avgg  hc_wt_adpt_avgg 

   Intensity Species Age Land  Intensity Species Age Land 

Forest Land  Remaining Exist  0.38 0.43 1.52 0.08 0.37 0.43 1.51 0.08
Forest Land  New on hand  96.33 91.27 -14.76 16.11 96.93 91.27 -14.76 16.11
Forest Land  Age of New on hand  0 0 0 0 0 0 0 0
Forest Management Harvested Exist Acres  -25.26 -28.66 -100 -5.31 -24.68 -28.49 -100 -5.08
Forest Management Afforested Acres  0 0 0 0 0 0 0 0
Forest Management Reforested Acres  652.73 618.46 -100 109.13 656.8 618.46 -100 109.13
Forest Management Deforested Acres to Dev  0 0 0 0 0 0 0 0
Forest Management Deforested Acres to Ag  -100 -100 -100 -100 -100 -100 -100 -100
Forest Rotation Age softwood  17.5 25.08 -100 -0.49 17.39 25.2 -100 -0.39
Forest Rotation Age hardwood  0.93 0.87 -100 -0.08 0.41 0.84 -100 -0.11
Forest Acres Exist Harvest - OP SOFT  -71.21 -81.94 -100 -13.46 -71.23 -81.81 -100 -12.85
Forest Acres Exist Harvest - OP HARD  -45.79 -46.95 -100 -23.15 -45.65 -47.08 -100 -23.34
Forest Acres Exist Harvest - FI SOFT  379.31 418.73 -100 36.37 379.31 418.73 -100 36.37
Forest Acres Exist Harvest - FI HARD  264.32 283.72 -100 125.43 269.21 283.72 -100 125.43
Forest Acres New Planting - OP existing  63.6 53.68 0 0 63.62 53.68 0 0
Forest Acres New Planting - FI existing  285.36 308.42 -100 109.13 289.35 308.42 -100 109.13
Forest Acres New Planting - All existing  96.33 91.27 -14.76 16.11 96.93 91.27 -14.76 16.11
Forest Total Harvest by MIC Average  -1.71 1.5 -100 1.34 -1.83 1.46 -100 1.29
Forest Total Harvest by MIC PLNT_MED  -100 18.69 -100 0 -100 18.69 -100 0
Forest Total Harvest by MIC LO  -20.92 -28.16 -100 -6.62 -20.17 -27.95 -100 -6.34
Forest Total Harvest by MIC PART_CUT_HI  -30.36 -23.89 -100 -1.85 -30.36 -23.89 -100 -1.85
Forest Total Harvest by MIC NAT_REGEN  -90.46 -62.21 -100 0 -90.46 -62.21 -100 0
Forest Inventory Existing softwood  0 0 0 0 0 0 0 0

Forest Inventory Existing hardwood  0 0 0 0 0 0 0 0
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Table 20 Continued 

  Scenario 

   cc_wt_adpt_avgg  hc_wt_adpt_avgg 

   Intensity Species Age Land  Intensity Species Age Land 
Forest Inventory Total softwood  0 0 0 0 0 0 0 0
Forest Inventory Total hardwood  0 0 0 0 0 0 0 0
Forest Inventory OP  0 0 0 0 0 0 0 0
Forest Product Prices SLUM  7.59 14.67 115.3 3.1 7.02 14.06 114.16 2.54
Forest Product Prices SPLY  4.42 9.5 72.99 1.82 3.52 8.56 71.51 0.94
Forest Product Prices OSB  0 0 184.64 0 0 0 184.64 0
Forest Product Prices HLUM  4.85 2.65 98.91 0.78 4.85 2.65 98.91 0.75
Forest Product Prices NEWSPRINT  2.23 5.24 5.86 0.19 2.25 5.25 5.87 0.2
Forest Product Prices UNCFREESHEET  3.17 3.57 48.58 0.81 3.18 3.58 48.6 0.83
Forest Product Prices UNCGROUNDWOOD  0 0 43.8 0 0 0 43.8 0
Forest Product Prices CGROUNDWOOD  0 1.01 39.84 0 0 0.99 39.84 0
Forest Product Prices TISSUE  0 0 8.12 0 0 0 8.12 0
Forest Product Prices KRAFTPKG  -0.01 -0.01 1.71 0.08 -0.01 -0.01 1.72 0.08
Forest Product Prices LINERBOARD  2.45 3.49 9.23 0 2.45 3.49 9.23 0
Forest Product Prices CORRUGMED  -0.2 -0.2 2.08 1.39 -0.13 -0.13 2.15 1.45
Forest Product Prices SBLBOARD  -0.12 -0.12 27.86 0.87 -0.08 -0.08 27.92 0.9
Forest Product Prices RECBOARD  0.02 0.04 0.41 0 0.02 0.04 0.41 0
Forest Product Prices CONSTPAPER  -0.09 -0.09 1.71 1.12 -0.02 -0.02 1.78 1.18
Forest Product Prices DISPULP  0.34 3.17 7.62 0.72 0.39 3.21 7.66 0.75

Forest Product Harvest PVT_SWSLOG_WOODS  -6.36 -10.63 -58.66 -2.56 -6.08 -10.36 -58.54 -2.27
Forest Product Harvest PVT_HWSLOG_WOODS  1.04 0.98 -70.75 -0.58 0.9 0.84 -70.79 -0.72
Forest Product Harvest PVT_SWPLOG_WOODS  -19.28 -25.25 -62.16 -4.38 -19.04 -25.03 -62.04 -4.1
Forest Product Harvest PVT_HWPLOG_WOODS  -2.51 0.18 -58.56 -1.14 -1.39 0.14 -58.58 -1.18
Forest Product Harvest PVT_SWFLOG_WOODS  -15.53 -20.38 -54.83 -2.54 -15.49 -20.35 -54.81 -2.51
Forest Product Harvest PVT_HWFLOG_WOODS  -20.76 -23.98 -65.39 -2.54 -20.04 -24.05 -65.42 -2.63
Forest Product Harvest softwood  -19.47 -27.06 -100 -5.13 -19.11 -26.75 -100 -4.72

Forest Product Harvest hardwood  -5.78 -4.35 -100 -2.36 -5.2 -4.47 -100 -2.49
Forest Product Harvest Clear Cut  -12.19 -14.98 -100 -3.66 -11.69 -14.87 -100 -3.53
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Table 20 Continued 

  Scenario 

   cc_wt_adpt_avgg  hc_wt_adpt_avgg 

   Intensity Species Age Land  Intensity Species Age Land 
Forest Product Harvest Thin + Partial Cut  3.86 4.09 16.98 1.49 3.86 4.09 16.98 1.49
Forest Product Harvest All Harvest  -7.12 -8.96 -63.05 -2.03 -6.78 -8.87 -63.02 -1.94
Forest Imports - canada HWPULP  0 0 0 0 0 0 0 0
Forest Imports - canada SWPULP  0 0 574.81 0 0 0 574.81 0
Forest Imports - canada OLDNEWSPAPERS  0 0 0 0 0 0 0 0
Forest Imports - canada OLDCORRUGATED  0 0 0 0 0 0 0 0
Forest Imports - canada WASTEPAPER  0 0 0 0 0 0 0 0
Forest Imports - canada PULPSUBSTITUTE  0 0 0 0 0 0 0 0
Forest Imports - canada HIGDEINKING  0 0 0 0 0 0 0 0
Forest Imports - canada NEWSPRINT  0 0 0 0 0 0 0 0
Forest Imports - canada UNCFREESHEET  0 0 0 0 0 0 0 0
Forest Imports - canada CFREESHEET  0 0 0 0 0 0 0 0
Forest Imports - canada UNCGROUNDWOOD  0 0 0 0 0 0 0 0
Forest Imports - canada CGROUNDWOOD  0 0 0 0 0 0 0 0
Forest Imports - canada TISSUE  0 0 0 0 0 0 0 0
Forest Imports - canada SPECIALTYPKG  0 0 0 0 0 0 0 0
Forest Imports - canada KRAFTPKG  0 0 0 0 0 0 0 0
Forest Imports - canada LINERBOARD  0 0 0 0 0 0 0 0
Forest Imports - canada CORRUGMED  0 0 0 0 0 0 0 0
Forest Imports - canada SBLBOARD  0 0 0 0 0 0 0 0
Forest Imports - canada RECBOARD  0 0 0 0 0 0 0 0
Forest Imports - canada CONSTPAPER  0 0 0 0 0 0 0 0
Forest Imports - canada DISPULP  0 0 0 0 0 0 0 0
Forest Imports - canada SWKMPULP  0 0 0 0 0 0 0 0
Forest Imports - canada HWKMPULP  0 0 0 0 0 0 0 0
Forest Imports - canada RECMPULP  0 0 0 0 0 0 0 0
Forest Imports - canada CTMPMPULP  0 3.61 3.61 0 0 3.61 3.61 0
Forest Imports - not canada SLUM  10.21 22.81 119.3 5.26 8.26 20.69 115.52 3.45
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Table 20 Continued 

  Scenario 

   cc_wt_adpt_avgg  hc_wt_adpt_avgg 

   Intensity Species Age Land  Intensity Species Age Land 

Forest Imports - not canada SPLY  0 0 0 0 0 0 0 0
Forest Imports - not canada HLUM  0 0 0 0 0 0 0 0
Forest Imports - not canada HWPULP  0 0 0 0 0 0 0 0
Forest Imports - not canada SWPULP  0 0 0 0 0 0 0 0
Forest Imports - not canada NEWSPRINT  0 0 0 0 0 0 0 0
Forest Imports - not canada UNCFREESHEET  0 0 0 0 0 0 0 0
Forest Imports - not canada CFREESHEET  0 0 0 0 0 0 0 0
Forest Imports - not canada UNCGROUNDWOOD  0 0 0 0 0 0 0 0
Forest Imports - not canada CGROUNDWOOD  0 0 0 0 0 0 0 0
Forest Imports - not canada TISSUE  0 0 0 0 0 0 0 0
Forest Imports - not canada SPECIALTYPKG  0 0 0 0 0 0 0 0
Forest Imports - not canada KRAFTPKG  0 0 0 0 0 0 0 0
Forest Imports - not canada LINERBOARD  0 0 0 0 0 0 0 0
Forest Imports - not canada CORRUGMED  0 0 0 0 0 0 0 0
Forest Imports - not canada SBLBOARD  0 0 0 0 0 0 0 0
Forest Imports - not canada RECBOARD  0 0 0 0 0 0 0 0
Forest Imports - not canada CONSTPAPER  0 0 0 0 0 0 0 0
Forest Imports - not canada DISPULP  0 0 0 0 0 0 0 0
Forest Imports - not canada SWKMPULP  0 0 0 0 0 0 0 0
Forest Imports - not canada HWKMPULP  0 0 0 0 0 0 0 0
Forest Imports - not canada RECMPULP  0 0 0 0 0 0 0 0
Forest Imports - not canada CTMPMPULP  0 0 0 0 0 0 0 0
Forest Manufacturing PVT_SWSLOG_MILL  -6.36 -10.63 -58.66 -2.56 -6.08 -10.36 -58.54 -2.27
Forest Manufacturing PVT_HWSLOG_MILL  -2.99 -3.07 -64.2 -0.73 -3.15 -3.23 -64.26 -0.89
Forest Manufacturing PVT_SWPLOG_MILL  -19.38 -25.36 -63.01 -4.47 -19.13 -25.14 -62.9 -4.19
Forest Manufacturing PVT_HWPLOG_MILL  -3 -0.61 -77.32 -1.49 -1.9 -0.64 -77.33 -1.52
Forest Manufacturing PVT_SWFLOG_MILL  0 0 0 0 0 0 0 0
Forest Manufacturing PVT_HWFLOG_MILL  0 0 0 0 0 0 0 0
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Table 20 Continued 

  Scenario 

   cc_wt_adpt_avgg  hc_wt_adpt_avgg 

   Intensity Species Age Land  Intensity Species Age Land 
Forest Manufacturing PUB_SWSLOG_MILL  0 0 0 0 0 0 0 0
Forest Manufacturing PUB_HWSLOG_MILL  0 0 0 0 0 0 0 0

Forest Manufacturing PUB_SWPLOG_MILL  0 0 0 0 0 0 0 0
Forest Manufacturing PUB_HWPLOG_MILL  -14.36 0 0 -3.99 -12.73 0 4.15 0
Forest Manufacturing IMP_SWSLOG_MILL  0 0 0 0 0 0 0 0
Forest Manufacturing IMP_HWSLOG_MILL  0 0 0 0 0 0 0 0
Forest Manufacturing EXP_SWSLOG  0 0 -3.72 0 0 0 -3.72 0
Forest Manufacturing EXP_HWSLOG  0 0 -75.95 0 0 0 -75.95 0
Forest Manufacturing SW_FUELLOG  0 0 0 0 0 0 0 0
Forest Manufacturing HW_FUELLOG  0 0 0 0 0 0 0 0
Forest Manufacturing SLUM  -5.61 -10.1 -61.47 -2.76 -5.3 -9.8 -61.34 -2.44
Forest Manufacturing SPLY  -2.87 -4.88 -41.6 -0.96 -2.87 -4.88 -41.6 -0.96
Forest Manufacturing OSB  0 -0.14 -16.7 0 0 -0.14 -16.7 0
Forest Manufacturing HLUM  -0.9 -0.9 -65.66 -0.9 -1.14 -1.14 -65.74 -1.14
Forest Manufacturing HPLY  0 0 -50.54 0 0 0 -50.54 0
Forest Manufacturing SWPANEL  0 0 0 0 0 0 0 0
Forest Manufacturing HWPANEL  0 0 0 0 0 0 0 0
Forest Manufacturing SWMISC  0 0 0 0 0 0 0 0
Forest Manufacturing HWMISC  0 0 0 0 0 0 0 0
Forest Manufacturing HWPULP  -25.39 -17.8 -40.48 0.58 -25.47 -17.91 -40.44 0.65
Forest Manufacturing SWPULP  -3.51 -4.53 -14.45 -2.16 -3.41 -4.44 -14.37 -2.07
Forest Manufacturing NEWSPRINT  -2.15 -2.15 -2.44 0 -2.15 -2.15 -2.44 0
Forest Manufacturing UNCFREESHEET  -1.02 -1.08 -18.29 0 -1.02 -1.08 -18.29 0
Forest Manufacturing CFREESHEET  0 0 -1.76 0 0 0 -1.76 0
Forest Manufacturing UNCGROUNDWOOD  0 0 -42.99 0 0 0 -42.99 0
Forest Manufacturing CGROUNDWOOD  0 -1.01 -16.72 0 0 -1.01 -16.72 0
Forest Manufacturing TISSUE  0 0 -2.58 0 0 0 -2.58 0
Forest Manufacturing SPECIALTYPKG  0 -0.7 -18.99 0 0 -0.7 -18.99 0
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Table 20 Continued 

  Scenario 

   cc_wt_adpt_avgg  hc_wt_adpt_avgg 

   Intensity Species Age Land  Intensity Species Age Land 
Forest Manufacturing KRAFTPKG  0 0 -2.19 0 0 0 -2.19 0
Forest Manufacturing LINERBOARD  -0.56 -1.06 -2.22 0 -0.55 -1.06 -2.22 0
Forest Manufacturing CORRUGMED  0 0 -1.03 -1.03 0 0 -1.03 -1.03
Forest Manufacturing SBLBOARD  0 0 -6.35 -0.83 0 0 -6.35 -0.83

Forest Manufacturing RECBOARD  0 0 -1.04 0 0 0 -1.04 0
Forest Manufacturing CONSTPAPER  0 0 -0.42 0 0 0 -0.42 0
Forest Manufacturing DISPULP  -0.11 -0.87 -1.63 -0.11 -0.11 -0.87 -1.63 -0.11
Forest Manufacturing SWKMPULP  3.5 3.5 6.77 0.12 3.5 3.5 6.77 0.12
Forest Manufacturing HWKMPULP  2.71 2.71 -4.23 -1.41 2.71 2.71 -4.23 -1.41
Forest Manufacturing RECMPULP  29.77 29.77 26.7 26.7 29.77 29.77 26.7 26.7
Forest Manufacturing CTMPMPULP  0 -100 -100 0 0 -100 -100 0
Forest Consumption SLUM  -2.04 -3.93 -28.41 -1.02 -2.04 -3.93 -28.41 -1.02
Forest Consumption SPLY  -3.13 -5.32 -45.31 -1.04 -3.13 -5.32 -45.31 -1.04
Forest Consumption OSB  0 -0.08 -9.32 0 0 -0.08 -9.32 0
Forest Consumption HLUM  -1.08 -1.08 -71.8 -1.08 -1.37 -1.37 -71.88 -1.37
Forest Consumption NEWSPRINT  -0.99 -0.99 -1.01 0 -0.99 -0.99 -1.01 0
Forest Consumption UNCFREESHEET  -0.96 -1.02 -16.81 0 -0.96 -1.02 -16.81 0
Forest Consumption CFREESHEET  0 0 -1.57 0 0 0 -1.57 0
Forest Consumption UNCGROUNDWOOD  0 0 -17.85 0 0 0 -17.85 0
Forest Consumption CGROUNDWOOD  0 -0.78 -12.44 0 0 -0.78 -12.44 0
Forest Consumption TISSUE  0 0 -2.28 0 0 0 -2.28 0
Forest Consumption SPECIALTYPKG  0 -0.73 -20.01 0 0 -0.73 -20.01 0
Forest Consumption KRAFTPKG  0 0 -1.89 0 0 0 -1.89 0
Forest Consumption LINERBOARD  -0.59 -1 -2 0 -0.58 -1 -2 0
Forest Consumption CORRUGMED  0 0 -0.97 -0.97 0 0 -0.97 -0.97
Forest Consumption SBLBOARD  0 0 -7.4 -0.96 0 0 -7.4 -0.96
Forest Consumption RECBOARD  0 0 -0.94 0 0 0 -0.94 0
Forest Consumption CONSTPAPER  0 0 0 0 0 0 0 0
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Table 20 Continued 

  Scenario 

   cc_wt_adpt_avgg  hc_wt_adpt_avgg 

   Intensity Species Age Land  Intensity Species Age Land 
Forest Consumption DISPULP  0 -0.95 -1.92 0 0 -0.95 -1.92 0
Forest Exports EXP_SWSLOG  0 0 0 0 0 0 0 0
Forest Exports EXP_HWSLOG  0 0 0 0 0 0 0 0
Forest Exports SLUM  0 0 0 0 0 0 0 0
Forest Exports SPLY  0 0 0 0 0 0 0 0
Forest Exports HLUM  0 0 0 0 0 0 0 0
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