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ABSTRACT 

 

Study of Midgut Bacteria in the Red Imported Fire Ant, Solenopsis invicta Büren  

(Hymenoptera: Formicidae). (May 2010) 

Freder Medina, B. S., Universidad Central “Marta Abreu” de Las Villas 

Co-Chairs of Advisory Committee: Dr. S. Bradleigh Vinson 

    Dr. Craig J. Coates 

 

Ants are capable of building close associations with plants, insects, fungi and 

bacteria. Symbionts can provide essential nutrients to their insect host, however, the 

development of new molecular tools has allowed the discovery of new microorganisms 

that manipulate insect reproduction, development and even provide defense against 

parasitoids and pathogens. In this study we investigated the presence of bacteria inside 

the Red Imported Fire Ant midgut using molecular tools and transmission electron 

microscopy. The midgut bacteria were also characterized by their morphology, 

biochemical activity, and antibiotic resistance profile. 

After isolation, culture, and characterization of these bacteria, the molecular 

analysis revealed ten unique profiles which were identified to at least the genus level, 

Enterococcus sp./durans, Klebsiella ornithinolytica, Kluyvera cryocrescens, Lactococ-

cus garvieae, Pseudomonas aeruginosa, Achromobacter xylosoxidans, Bacillus pumilus, 

Listeria innucua, Serratia marcescens, and an uncultured bacterium from the Entero-

bacteriaceae. New SEM and TEM techniques revealed a possible functional association 

of endosymbiotic bacteria with the insect host, and it also showed the absence of 
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bacteriocytes in the epithelial cells of the midgut. The PCR results, from the bacteria 

abundance and distribution studies, showed that Enterococcus sp., Kluyvera cryocres-

cens and Lactococcus garvieae are the most abundant species, but they are not 

consistently found in all sites throughout the southeastern United States.  

Kluyvera cryocrescens, Serratia marcescens, and an uncultured bacterium 

(isolate #38: Enterobacteriaceae) were genetically modified with the plasmid vector 

pZeoDsRed and successfully reintroduced into fire ant colonies. Strong fluorescence of 

DsRed was detected up to seven days after introduction. The transformed bacteria can 

still be rescued after pupal emergence; however most were passed out in the meconium. 

We further demonstrated that nurses contributed to the spread of the transformed 

bacteria within the colony by feeding the meconium to naive larvae.  

Although the role of midgut bacteria in the fire ant is still unknown, we have no 

indication that they cause any pathology. Studies emphasizing the role of these bacteria 

in fire ant physiology are still ongoing. These results are the foundation for a fire ant 

biological control program using endosymbiotic bacteria as vectors to introduce foreign 

genes that express proteins with insecticidal properties. 
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CHAPTER I 

INTRODUCTION: SYMBIOSIS AND THE RED IMPORTED FIRE ANT

 

 

Introduction 

An introduction to symbiosis and insects. In nature, organisms constantly 

interact with each other forming interspecific or intraspecific relationships. Intraspecific 

relations are defined by those involving organisms of the same species. Interspecific 

associations, also defined as symbiosis by Heinrich Anton de Bary in 1879, refers to as 

the living together of different organisms (Ahmadjian and Paracer 1986). Although a 

few years earlier in 1876,  Pierre Joseph van Beneden on his book “Animal parasites and 

messmates” had already used the terms commensalism, mutualism, and parasitism, it 

was not until the printed speech titled “Die Erscheinung der Symbiose” by de Bary that 

those categories were incorporated into the term symbiosis (Ahmadjian and Paracer 

1986). Commensalism is described as the type of association where one organism is 

neither harmed nor benefited. Mutualism is defined as when both symbionts are 

benefited, and parasitism when one is benefited at the expense of the other. To further 

complicate the matter, these relationships are not static and can change from one 

category to the other, being influenced by environmental and developmental factors 

within each organism (Ahmadjian and Paracer 1986, Bourtzis and Miller 2003).  

These complex relationships make it harder to classified symbiosis, after years of 

conflict there was a need to standardize these terms. Today, we still used the same terms 

                                                 

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developed in the 1800’s, but with the increasing knowledge, Symbionts are also 

classified as endosymbionts (living inside the host) or ectosymbionts (living outside the 

host). Or they can be referred as obligate or facultative depending on their ability to live 

with or without their host (Ahmadjian and Paracer 1986, Bourtzis and Miller 2003). 

After many years of investigation, symbiosis is becoming recognized as increasingly 

important, and more research is focused on the understanding of “Who is getting what 

from whom” (Hoffmeister and Martin 2003). 

Insect species dominate the earth’s landscapes, at least in part, due to their ability 

to digest a wide variety of food. A significant component of their success is the result of 

endosymbiotic associations with many microorganisms that live in internal organs, in 

many cases directly in the digestive system, thus playing an important role in host 

nutrition (Ahmadjian and Paracer 1986, Bourtzis and Miller 2003). Microorganisms can 

provide sources of critical nutrients such as essential amino acids, vitamins and lipids 

(Douglas 1998). With the development of new molecular tools, more endosymbionts 

have been identified and linked not only to digestive processes but also to developmental 

processes. Furthermore, some have been found to manipulate insect reproduction and 

even provide defense against parasitoids and pathogens (Werren 1997, Hurst et al. 1999, 

Stouthamer et al. 1999, Bourtzis and Miller 2003, Zientz et al. 2005, Brownlie and 

Johnson 2009, Haeder et al. 2009, Koukou et al. 2009, Vorburger et al. 2010).  

As mentioned before, symbiotic associations range from pathogenic to mutualis-

tic and from facultative to obligate (Lau et al. 2002) and symbionts are ubiquitously 

located in animal guts including many insects groups. For some insects, this relationship 
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had been studied to some extent, but for the majority, these associations are still 

unknown. Among those well studied, we find aphids with its primary and secondary 

endosymbionts, also cockroaches, termites, ants, flies, glassy-winged sharpshooters, 

triatomid bugs, weevils, among others (Buchner 1965, Goldberg and Pierre 1969, 

Ahmadjian and Paracer 1986, Aksoy et al. 1995, Baumann et al. 1995, Blattner et al. 

1997, Beard et al. 1998, Douglas 1998, Boursaux-Eude and Gross 2000, Sauer et al. 

2000, Bourtzis and Miller 2003, Moran et al. 2003, Moran et al. 2005). According to 

these authors, symbionts are commonly found in those insects feeding on poor and 

unbalanced diets, such as many blood and plant sap feeders.  

 In the classified genus proteobacteterium Buchnera sp., a symbiont of the pea 

aphid, the host typically consumes a single food source of sugar-rich phloem sap of 

higher plants which is generally poor in amino acids. The symbionts are thought to 

enable their hosts to survive on these restrictive diets by providing nutritional 

supplements such as amino acids and vitamins (Buchner 1965, Baumann et al. 1995, 

Blattner et al. 1997, Douglas 1998). Among insects, several systematic groups are 

frequently involved in symbiotic interactions with bacterial species, including: the genus 

Wigglesworthia, the well-characterized symbionts in testse flies (Aksoy et al. 1995, 

Chen et al. 1999), Candidatus baumannia, Cicadellinicola in Homalodisca coagulate 

(sharpshooters) (Moran et al. 2003) and Blattobacterium in cockroaches (Goldberg and 

Pierre 1969). These symbionts share a common ancestor and are systematically placed 

adjacent to the family Enterobacteriaceae (Autuori 1941, Kermarrec et al. 1986, Adams 
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et al. 2000). The potential use of these organisms for the biological control of insect 

pests has driven much of the current scientific research. 

Social insects, such as ants, develop numerous interactions with different species 

of microorganisms at individual and population levels. These interspecies interactions 

often involve bacteria and fungi (Boursaux-Eude and Gross 2000). Certain protobacteria 

and other bacteria not yet identified by molecular methods had been found in some 

species of ants (Douglas 1989, Douglas 1998). These groups of bacteria are known to 

form bacteriocytes (bacteria specific mycetocyte) in two different tribes, the Camponoti 

and Formicini both members of the subfamily Formicinae (Bolton 1994). The genus 

Camponotus is classified in the subfamily Formicinae, and is a textbook model for 

symbiosis. In all Camponotus species investigated so far, intracellular bacteria are 

present within the midgut, even in the ovaries, and these gram-negative rods are 

classified within a single genus named Candidatus blochmannia that has been 

intensively studied (Sauer et al. 2000, Sauer et al. 2002).   

Another well studied bacterium, Wolbachia sp., has been found in close 

association with 17% to 76% of all insects (Werren 1997, Jeyaprakash and Hoy 2000, 

Werren et al. 2008). In invertebrates, this bacterium can cause cytoplasmic 

incompatibility, parthenogenesis, and feminization of genetic males; they are also 

horizontally transmitted from mother to offspring (Werren 1997, Stouthamer et al. 

1999).  Particularly fire ants, in their natural South America habitat and in the United 

States, are also known to harbor this bacterium (Shoemaker et al. 2000, Dedeine et al. 

2005, Bouwma et al. 2006). 
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Compared to fairly abundant studies on the relationship of other insects with 

microorganisms, very little is known about the relationship between fire ants and their 

symbionts. Recently, Peloquin and Greenberg (2003) found that Solenopsis invicta, a 

member of the subfamily Myrmicinae, carry endosymbiotic bacteria in their midguts. 

This relatively small ant has been considered one of the major pests in the United States 

for the last 75 years. Today, they have adapted to highly disturb environments in the 

country side and in urban areas, and they have no intention of leaving the comfort of our 

parks, roads and backyards. Therefore, this research project aims at the use of newly 

developed molecular tools in the study of endosymbiotic bacteria from the fire ant 

midgut, with the purpose of finding a more effective and environmentally safe alter-

native in a biological control program against the red imported fire ant in the United 

States. 

History of Solenopsis invicta. It was 1929 in Alabama, when a florist and 

amateur entomologist from Mobile decided to go collecting insects in one of his “beetle 

trips” near the docks in the state port area. As he was searching for insects, he probably 

stumbled upon a different ant colony, and today, 70 years later, entomologists can still 

remember that day. His name, H. P. Löding was the first to discover the black imported 

fire ant, Solenopsis richteri Forel, near the docks in the port area of Mobile (Wilson 

1959, Callcott and Collins 1996). This darker form was thought to match a racial variant 

from Argentina and Uruguay (Wilson 1959) and soon after, a lighter reddish-brown 

variant had also appeared (red imported fire ant- RIFA), which resembled a fire ant 

population from northern Argentina and southern Bolivia. It is not until 1972, when 
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William F. Büren (Buren 1972) described the lighter form as a different fire ant species, 

Solenopsis invicta (Hymenoptera: Formicidae). A year later, in 1973, a master student 

named F. E. Lennartz from the University of Florida at Gainesville determined that the 

lighter reddish-brown fire ant came in a second introduction between 1933 and 1945 

(Wilson 1959, Lennartz 1973, Callcott and Collins 1996, Vinson 1997).  

Spread of S. invicta in the United States. In the late 1950’s, the red imported 

fire ant was already well adapted to their new environment on southeastern USA 

according to Wilson (Wilson 1959). Despite all the confusion on the early years of fire 

ant history, their time of arrival, origin, and taxonomy, one thing is for sure. “If left to 

spread unhampered, it will probably come to occupy most of the southeastern United 

States” (Wilson 1959). Edward O. Wilson was far from wrong in 1959. By 1975, S. 

invicta had already reached Texas, and they could be found from Texas to Florida up to 

North Carolina (Vinson and Sorensen 1986). Seventy years after their first incursion, 

there are five times more ants per acre in the United States than in the native habitats of 

South America (Calcaterra et al. 1999). The expansion of the RIFA in the USA is limited 

by humidity and temperature (Vinson and Greenberg 1986, Vinson 1997), but the real 

range can be much larger due to irrigation and current global warming. Today, over 56 

million acres of land in Texas alone are infested with these ants (Lard 2002), but their 

range has extended to North Carolina, South Carolina, Florida, Georgia, Alabama, 

Tennessee, Mississippi, Louisiana, Arkansas, Oklahoma, New Mexico, Arizona, and 

California, adding up to over 128 million hectares (Drees and Gold 2003). As they keep 
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spreading, predictions suggest they will occupy Nevada, Oregon, and Washington in the 

west, and Virginia, Maryland, up to Delaware in the east (Korzukhin et al. 2001). 

Many factors contributed to the rapid spread of these ants. Transporting nursery 

plants and grass from infested areas was probably the main spreading mechanism 

(Vinson and Greenberg 1986). Another means come from the fact that mature colonies 

can contain a large number of mature female and male alates (winged). These colony 

members are always ready waiting for a humid and warm day during the spring, 

summer, or fall, and just when winds are calm, they leave the colony and take off on 

their mating flights. Thousands of females and males rise up into the sky and disperse 

long distances for many miles (Banks et al. 1973, Wojcik 1983, Vinson and Greenberg 

1986, Vinson 1997). Immediately after landing, the newly mated females will search for 

a perfect location to start a new colony. As if this was not enough, during flooding after 

heavy rains, the colonies can form rafts that float down the rivers until they can grab 

onto a branch, grass, or debris on the river banks and move to infest new areas (Hays 

1959, Morrill 1974, Vinson and Greenberg 1986). And lastly, they are also moved by 

humans and human activities, especially after a mating flight, when thousands of RIFA 

queens are attracted to shiny surfaces landing on top of cars, trucks and trains (Vinson 

and Greenberg 1986). 

Economic impact of S. invicta. RIFA can form large colonies that contain 

thousands of adult workers, which are very aggressive and armed with a powerful sting. 

Although their venom has the potential to kill small animals, in humans they cause the 

formation of small pustules that in some instances can cause acute infections 
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occasionally becoming life threatening (Vinson 1997). The problems associated with the 

red imported fire ant are not only limited to humans, they can be classified as, medical, 

nuisance, agricultural, domestic animals, wildlife, environmental, industrial, economic, 

legal, and political (Vinson 1997). These facts determined that in five major cities in 

Texas, the cost of control and management of fire ants can exceed $580 million per year, 

with just $526 million corresponding to the household sector in the urban areas (Lard 

2002). In addition, in the Texan agriculture the costs add up to more than $90 million 

annually (Lard 2002).  

Thus far, S. invicta has proven to be a successful competitor with the ability to 

change entire ecosystems by displacing the native fauna (Porter and Savignano 1990, 

Tschinkel 1993, Vinson 1994, Simberloff 1997, Vinson 1997). They can out compete, 

displace, and/or kill a variety of pests and beneficial arthropods (Porter and Savignano 

1990, Stoker et al. 1995, Hu and Frank 1996, Forys et al. 2001, Cook 2003), including 

many natural enemies of economically important pests (Fleetwood et al. 1984, Lemke 

and Kissam 1988, Vinson 1997, Kaplan and Eubanks 2002). Vertebrates are mainly 

affected by these ants’ sting and venom effects. The venom toxins with its necrotizing 

properties can produce alteration of behavior, injury, severe allergic reactions that could 

lead to death in birds, cattle, fish, sea turtles, and even humans (Caro et al. 1957, Lockey 

1974, Rhoades 1977, Apperson and Adams 1983, Allen et al. 1994, Drees 1994, Drees et 

al. 1995, Stafford 1996, Contreras and Labay 1999, Allen et al. 2001, Parris et al. 2002). 

In addition, RIFA can have a devastating effect in important crops such as, corn, 
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sorghum, eggplants, peanuts, and soybeans (Adams 1983, Apperson and Powell 1983, 

Drees et al. 1991, Shatters and Vander Meer 2000, Vogt et al. 2001).  

Following E. O Wilson’s predictions in 1959, if a new environmentally safe and 

more effective control alternative is not developed soon, as fire ants keep spreading 

north and west, their damage will definitely lead to expenditure increases.  

Earlier control methods of S. invicta. Since its introduction in the 1930’s, the 

red imported fire ant (RIFA) has been a serious pest in the southeastern Unites States 

(Vinson and Sorensen 1986). In the early years of RIFA invasion calcium cyanide was a 

popular choice of control, and it was replaced in the 1950’s by heptachlor and dieldrin 

(Eden and Arant 1949, Sauer et al. 1982). But it is not until the 1960’s and 1970’s that 

new alternative methods were introduced, including baits containing mirex (Lofgren et 

al. 1975, Wojcik et al. 1975). Today these baits are still very popular, and only the active 

ingredients have been changed to chemicals like hydramethylnon (AMDRO) and 

fenoxycarb (LOGIC) (Phillips Jr and Thorvilson 1989, Collins et al. 1992, Van der Meer 

et al. 2002). 

According to Vinson and Greenberg (1986), there is a lot of controversy on how 

to control the RIFA. Even when some control programs may reduce the ant population, 

the long-term effects of insecticide use are uncertain (Vinson and Greenberg 1986). 

Early efforts for countrywide fire ant control began as far back as 1960 and were 

dependent on insecticides. Wetlands and nature reserves are environmental sensitive 

areas and among the prime fire ant habitats, however due to environmental risks they 

cannot be treated and therefore they serve as sources for re-infestation (Drees et al. 
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1996), which leads to failure of chemical control for fire ants. Today fire ant control is 

still heavily dependent on insecticides and the only way to maintain control is to apply 

insecticides one to two times a year (Drees 2002), at a cost of 6-12 billion dollars a year 

to treat all infested land. Furthermore, chemical insecticides are not biodegradable and 

residues pollute the environment.  

Alternative control methods of S. invicta. As mentioned, expense, risks of 

insecticide treatments, and the inability to treat environmentally sensitive land, all make 

biological control a valuable research option. Therefore, it is also very important to have 

knowledge of all the natural enemies of fire ants in the United States and in their native 

habitat. Previous studies have identified a large number of arthropod species from fire 

ant nests; however, the vast majority has transient and non-specific relationships with the 

ants (Collins 1992). Insect predators, parasitoids and parasites such as viruses, rickettsia, 

nematodes, fungi, microspodiria, and bacteria have also been identified and used for 

biological control in association with fire ants (Whitcomb et al. 1973, Bedding and 

Akhurst 1975, Bulla 1975, Nichols and Sites 1991, Aronson and Shai 2001). Among 

parasitoids, phorid flies (Pseudacteon spp.), wasps (Orasema spp.), and a parasitic ant 

(Solenopsis daguerri) are well known examples. Although microorganisms are less 

studied than parasitoids, a microsporidian (Thelohania solenopsae), and a fungus 

(Beauveria bassiana) are also well know examples (Morrison et al. 1997, Knutson and 

Drees 1998, Williams et al. 1999) used against RIFA. However, none of the above has 

proven successful so far, and they were viewed as part of a combined alternative for a 

successful RIFA control program (Drees et al. 1996).  
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Of all these natural enemies, microorganisms may offer the greatest hope for 

biocontrol (Taber 2000). This challenging task has not been extensively investigated due 

to its complexity. For example, Jouvenaz (1986) affirmed that microbiological control of 

fire ants must overcome: 1) the care given to the queens by the workers, 2) the low 

susceptibility of the queen, whose gut is almost free of microbes, 3) the filter protecting 

the ant’s digestive track and 4) the fire ants own control by fumigating their nests with 

venom (Jouvenaz 1986, 1990b). Another example of its complexity relates to the 

problem associated with the use of fungi, Beauveria bassiana to control fire ants and 

how the ant behavior affects its use was presented by Oi and Pereira (1993). The authors 

were able to determine that grooming removed the inocula from the ant body. The 

venom had antibiotic effects against the fungi and also necrophoresis and dispersal of 

infected ants prevented the transmission among nestmates. Bacteria play a key role in 

the biological control of insect pests and their possible advantages over the use of fungi 

is obvious, as bacteria live inside their host and propagate through direct contact among 

nest mates. The major species of bacteria involved in insect control are spore forming 

bacilli. One of the well-known examples is Bacillus thuringiensis, which has been used 

primarily for the control of both Diptera and Lepidoptera (Burges 1982).  

The complexity of the microbial communities in insects provides numerous 

opportunities for intervention for biological control purposes. Endosymbiont populations 

are normally in balance and controlled by their insect host, but this could be modified or 

provided with an advantage such that they become pathogenic to the host organism. 

Understanding these complex microbial communities has been greatly enhanced by the 
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development of molecular identification techniques based on the 16s rRNA subunit gene 

(Pace 1997). The 16s rRNA gene is a well-conserved, universal bacterial gene with 

constant and highly constrained functions that were established in the early stages of 

evolution and is relatively unaffected by environmental pressures (Woese 2000). This 

gene has been widely used as a molecular clock to estimate relationships among bacteria 

(phylogeny) and more recently, it has also become an important means to identify 

unknown bacteria to genus or species level (Sacchi et al. 2002). Analysis of the 16s 

rRNA gene can potentially be applied to identify all bacteria including those not able to 

grow in vitro. In contrast to traditional microbiological methods, it provides at least two 

primary advantages: a rapid turn-around time, and improved accuracy in identification 

(Springer et al. 1996). Alternatively, the genetic modification of a bacterial species could 

be used to alter the normal behavior and/or physiology of the host and thus can be 

exploited for insect control purposes. 

Following these intensive studies of symbiotic bacteria in insect species and with 

the recent developments in molecular biology and genetics, new approaches are being 

developed for biological control (Peloquin et al. 2000, Peloquin et al. 2002). Genetic 

engineering of well adapted symbiotic microorganisms, such as bacteria, can produce 

potential vectors for the introduction of specific genes into the fire ant genome. The 

possibility of biological control presented by this situation demands investigation, and 

their utilization for control of the RIFA populations depends on our ability to decipher 

complex biological, pathological, and epizootiological relationships between the 

microorganisms and their host (Jouvenaz 1986). 
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Alternative methods of fire ant control are desperately needed, particularly 

approaches that do not rely on the application of broad-based insecticides. As described 

before, the use of genetically modified bacteria that are associated with insect species is 

an emerging field of research that offers great promise. 

Control methods using genetically transformed bacteria. Although the use of 

symbiotic bacteria in a biological control approach have been investigated, the 

information is still limited. One example is the vector-symbiont intervention project in 

Chagas disease, where a bacterial endosymbiont called Rhodococcus rhodnii have been 

transformed to express an anti-tripanosomal agent in the midgut of Rhodnius prolixus 

(Beard et al. 1992, Beard et al. 1998). Another example involves the introduction of a 

DsRed fluorescent protein into a bacterium (Alcaligenes xylosoxidans denitrificans) 

found inside the glassy-winged sharpshooter (Homalodisca coagulate Say) and the 

reintroduction of the transformed bacterium into the host foregut (Bextine et al. 2004). 

A. xylosoxidans denitrificans is an endophytic symbiont of grapes that competes with 

Xylella fastidiosa (Grape Pierce’s disease pathogen) and colonizes the same area in the 

foregut of the glassy-winged sharpshooter. Therefore this bacterium is a good candidate 

for the delivery of an anti-Xylella agent (Bextine et al. 2004) 

Biology and behavior of Solenopsis invicta. In order to develop more effective 

alternatives for the control of S.invicta, we must understand their biology and behavior. 

In addition, particular attention must be paid to those elements of their biology and 

behavior with direct effects on the ant-bacteria interactions.  
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 As in all eusocial insects, the RIFA queen is at the center of the colony, and by 

the release of a pheromone complex she communicates with the rest of the colony thus 

maintaining its perfect balance. Fire ant colonies are classified as monogyne if there is 

only one queen and polygyne if more than one is present (Vinson 1997). Every day, each 

queen is able to lay hundreds of eggs with the ability to decide which eggs are fertilized 

becoming diploid workers and reproductive female, or not fertilized becoming haploid 

males. The tiny white eggs hatch within 7-10 days (Vinson 1997), and the larva goes 

through four different stages or instars before becoming pupa as described in detail by 

(Petralia and Vinson 1979). Depending on the temperature and caste, these four different 

instars last between 12-15 days (Vinson 1997). Worker pupae development can last 

between 9-16 days. The newly emerged lighter adults are referred to as callows and will 

darken within a couple of days (Vinson 1997). Adult ants vary in size; during the 

summer months, minor workers can live from 60 to 90 days, while major workers are 

able to live from 90 to 150 days. Overwintering ants can live longer, more than eight 

months, but queens can live up to seven years (Vinson 1997).  

One distinguishing characteristic of social insects is the division of labor in the 

colony, as it is in the case of fire ants. This division of tasks depends on the age and size 

of the worker, as well as colony needs. For instance, younger workers or nurses are in 

charge of tending the queens and brood; as they age, they become the reserve of the 

colony and their task is more of maintenance and defense. The older ants are the 

foragers, but this is not always a rule, usually the reserve of the colony can take over the 

other tasks in case it is needed (Vinson 1997).   
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 Feeding behavior is an important element in direct relation with the midgut 

bacteria. Fire ants are omnivorous and effective scavengers (Vinson 1997); therefore we 

can assume that their diet is not as poor as in other insects carrying symbionts. Adult 

workers can only consume liquids, and these are passed to other workers through 

trophallaxis (Vinson 1997).  Although workers collect solid and liquid food, only the 

liquids are ingested after passing through the filtering system in their pharynx. Any 

particles bigger than 0.88 µm are screened out, collected and compacted in the 

infrabuccal pocket forming the so called buccal pellet (Glancey et al. 1981, Vinson 

1997). 

 The first, second, and third larval instars are only fed liquid food by the nurses. 

The third instar larvae are a lot smaller in comparison to the fourth instar, this is due to 

the fact that fourth instar larvae are not only fed with liquids, but also with solid food, 

increasing their size very rapidly. These solid food that had been passed to the nurses 

inside the colony is placed as a buccal pellet in the antero-ventral pouch or praesaepium 

(Petralia and Vinson 1978). This structure is within the reach of the larval mandibles, 

and it is where an enzymatic digestion of proteins occurs (Petralia and Vinson 1978, 

1980b, Sorensen et al. 1983). From this information, we can say that the fourth instar 

larvae play a central role as the food processor in the fire ant colony, including the 

digestion of proteins. According to Vinson (1997) the digestion product from the fourth 

instar larvae, now in a more liquid stage, is highly nutritious and is collected by the 

nurses to feed the younger instars as well as the queen. After gathering the previous 

information, it is valid to make an important assumption; this might well explain why 
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previous control methods had failed, the fire ant behavior is so well adapted to protect 

their most precious member, that all the royal food must be filtered several times and 

well digested before reaching the queen.  

Anatomy of S. invicta. Electron microscopy had been used in the past to 

describe the ant’s anatomy, and in fewer cases, to investigate ant-microorganism 

association. In 2001, Arab and Caetano (Arab and Caetano 2001) studied the midgut 

ultrastructure in Solenopsis saevissima Forel. And just recently, the first report of an 

endosymbiont in the digestive track of ponerine ants was published by Caetano et al. 

(2009). 

Petralia and Vinson (Petralia and Vinson 1978, 1979, Petralia et al. 1980, Petralia 

and Vinson 1980a, b, Petralia et al. 1982) were among the first to use electron 

microscopy techniques to describe the ant external and internal anatomy. Based on their 

results, multiple factors suggested that only the fourth instar larvae can feed on solid 

food. According to Petralia and Vinson (1978), the head of the larvae of the first to third 

instars is positioned in a way that makes it impossible to reach the antero-ventral region, 

also their mandibles are not well defined and are not sclerotized. They also found that 

the fourth instar larvae have a special adaptation in the antero-ventral region that they 

called the food basket and its function is to hold the buccal pellet carried by the worker 

ants (Petralia and Vinson 1980b, Medina et al. 2007). In addition, the position of the 

head at this stage allows them to reach and consume the food deposited in the food 

basket; they also have well developed and sclerotized mandibles (Petralia and Vinson 
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1978). These adaptations are believed to play a role in the extra-oral digestion of 

proteins in the ventral pouch (Petralia and Vinson 1978). 

Internally, the larvae does not have the filtering system found in the adults 

(Petralia and Vinson 1980b), meaning that they will be able to ingest larger food 

particles (e.i. vegetable fibers, fungal spores, bacteria, etc) deposited in the food basket 

by the adult worker ants. Although Petralia and Vinson (Petralia and Vinson 1980a) 

gave abundant detailed of the entire digestive system, our focus is only on the midgut. 

The midgut is lined with columnar epithelial cells that secrete thick peritrophic 

membranes. The midgut of fire ants, as in many higher Hymenopterans, is closed, 

meaning that all of its content is released in the meconium, right before entering the 

pupal stage (Petralia and Vinson 1980a, Petralia et al. 1982). 

Regardless of all the information available today, there are no ultra-structural 

studies on the relationship between midgut bacteria and S. invicta, therefore our current 

project is the first attempt in the search for symbiotic bacteria inside the red imported 

fire ant midgut using SEM and TEM (Medina et al. 2007). This will provide knowledge 

about the relationship of bacteria with the ant host and possibly determine if any 

intracellular symbiont is present. 

Bacterial microbiology of S. invicta. Donald P. Jouvenaz was probably one of 

the first entomologists to explore the red imported fire ant-microorganisms interaction 

with means of biological control (Jouvenaz et al. 1977, Jouvenaz 1983, 1986, 1990c, 

Jouvenaz et al. 1996). Beckham et al. (Beckham et al. 1982) emphasized the need for 

bacteria surveys in ants, but it is not until 2003 that the first report of bacteria living 
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inside the fire ant midgut was published (Peloquin and Greenberg 2003). The authors 

confirmed the presence of bacteria in the midgut of the fourth instar reproductive larvae. 

Their results inspired our project, which became the second effort to study these bacteria 

in the midgut (Li et al. 2005), with the isolation, culture, molecular identification, 

morphological and biochemical characterization of ten different species of bacteria from 

the fourth instar larvae. Later, Lee et al. (2008) published another study using culture 

independent methods, therefore listing more bacteria species in colonies collected from 

three different geographical locations in Louisiana (Baton Rouge, Rosepine, and 

Bogalusa). In the same year, another group published their work on symbiotic bacteria 

isolated from the hemolymph of S. invicta (Gunawan et al. 2008).  And just recently, 

Tufts and Bextine (2009) isolated and identified bacteria from the hemolymph of the red 

imported fire ant queens and determined a possible vertical transmission of Bacillus 

cereus and Bacillus thuringienses in red imported fire ants.   

Dissertation objectives. Although there are many more uncultured bacteria 

species in the red imported fire ants, only those growing in vitro have the potential for 

genetic transformation. Consequently we sustained the main objective for our project, to 

study only those ten midgut bacteria described in my previous publication (Li et al. 

2005) with the purpose of selecting the best bacterial candidates for genetic 

transformation. This will potentially become part of a more effective and environ-

mentally safe approach in a biological control program against the red imported fire ant 

in the United States by future introduction of foreign genes that express proteins with 

specific insecticidal properties. 
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The following research project must be structured and organized in such way that 

facilitates the comprehension of the complex RIFA-bacteria interactions. All information 

is presented as follow. Chapter II: isolation, identification, and biochemical and 

morphological characterization of the bacteria from the red imported fire ant midgut. 

Chapter III: investigate the internal anatomy of the midgut and its relation to the 

bacteria, their abundance, and the presence of any specialized structures, such as 

mycetocytes, meaning the host dependency to an obligate symbiont. Chapter IV: 

determine the abundance and distribution of symbiotic bacteria in colonies collected in 

southeastern United States, with means to select the best bacteria candidates for genetic 

transformation. Chapter V: the transformation of selected bacteria by introducing a 

DsRed fluorescent gene, thus allowing tracking of the bacteria throughout the ant 

developmental stages and studying their possible function as well as their relationship to 

the ant host. This last objective will provide the means for the introduction of foreign 

genes with insecticidal properties into the fire ant. Chapter VI: discussion and 

conclusions, with emphasis on future work. 
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CHAPTER II 

ISOLATION, CHARACTERIZATION AND MOLECULAR IDENTIFICATION 

OF BACTERIA FROM THE RED IMPORTED FIRE ANT  

(Solenopsis invicta Büren) MIDGUT
*
 

 

Introduction 

The red imported fire ant, Solenopsis invicta, Büren (Hymenoptera: Formicidae) 

is native to the lowland areas of South America. After accidentally being introduced 

through the port of Mobile, Alabama in the 1930s (Vinson 1997), it has become one of 

the major pests in the United States. The red imported fire ant has spread throughout the 

Southeastern region of the USA. This dramatic spread has occurred through mating 

flights, colony movement, by rafting to new sites during periodic floods and by human 

activities (Vinson 1997). Seventy years after its first intrusion, there are five times more 

ants per acre in the United States than in the native habitats of South America 

(Calcaterra et al. 1999). The red imported fire ant results in serious health, economic, 

and environmental impacts to the communities it invades and causes billions of dollars 

of losses each year in urban and agricultural areas. In Texas alone, the damage and 

control costs exceed $90 million annually (Lard et al. 1999). Fire ant control is heavily 

dependent on insecticides and the only way to maintain control is to apply insecticides 

1–2 times each year, at an estimated cost of 6–12 billion dollars per annum to treat all 

                                                 
*
 Reprinted with permission from Li, H., F. Medina, S. B. Vinson, and C. J. Coates. 2005. Isolation, 

characterization, and molecular identification of bacteria from the red imported fire ant (Solenopsis 

invicta) midgut. J. Invertebr. Pathol. 89: 203-9. Copyright 2005 by Elsevier. 



21 

 

infested land (Drees 2002). Furthermore, the chemical insecticides used are not specific 

to fire ants and residues in the environment can impact non-target species. The expense 

of insecticides and environmental concerns leaves most infested land untreated and these 

areas boost the spread of the fire ant. Given the expense and hazard of insecticide 

treatments, as well as the presence of untreatable areas, the potential use of biological 

control for the fire ant is an important research avenue to pursue. 

The major species of bacteria involved in insect control are spore-

forming Bacilli with the best-known example being Bacillus thuringiensis, which has 

been used primarily for the control of Diptera and Lepidoptera (Burges 1982). Studies of 

symbiotic bacteria in insect species are allowing the development of new approaches for 

biological control. Symbiotic bacteria are ubiquitously located in animal guts with these 

symbioses ranging from pathogenic to mutualistic and from facultative to obligate (Lau 

et al. 2002). For Buchnera spp., the symbionts of the pea aphid, the host typically 

consumes a single food source of sugar-rich phloem sap of higher plants, which is 

generally poor in amino acids. The symbionts are thought to enable their hosts to survive 

on these restrictive diets by providing nutritional supplements such as amino acids and 

vitamins (Buchner 1965, Baumann et al. 1995, Blattner et al. 1997). Among insects, 

several systematic groups are frequently involved in symbiotic interactions with 

bacterial species, including: the genus Wigglesworthia, the well-characterized symbionts 

in testse flies (Aksoy et al. 1995, Chen et al. 1999), Cicadellinicola in Homalodisca 

coagulate (sharpshooters) (Moran et al. 2003) and Blattobacterium in cockroaches 

(Goldberg and Pierre 1969). These symbionts share a common ancestor and are 
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systematically placed adjacent to the family Enterobacteriaceae (Autuori 1941, 

Kermarrec et al. 1986, Adams et al. 2000). The potential use of these organisms for the 

biological control of insect pests has driven much of the current scientific research. 

The vector-symbiont intervention (VSI) project was initiated as a novel means of 

control for Chagas disease, an insect vector-borne disease that affects 16–18 million 

people in regions of South and Central America (Beard et al. 1992, Beard et al. 1998). 

The Chagas disease vector, Rhodnius prolixus, harbors the symbiotic bacte-

ria, Rhodococcus rhodnii. (Beard et al. 1992, Beard et al. 1998) found that the symbiotic 

bacteria could be genetically transformed to express an anti-trypanosomal agent in the 

gut. This discovery provides proof of principle for the use of symbionts as biological 

control agents. 

Social insects develop numerous interactions with different species of 

microorganisms at individual and population levels. These interspecies interactions often 

involve bacteria and fungi (Boursaux-Eude and Gross 2000). The genus Camponotus is 

classified in the same subfamily as the fire ant, Formicinae, and is a textbook model for 

symbiosis. In all Camponotus species investigated so far, intracellular bacteria are 

present within the midgut, with these gram-negative rods being classified within a single 

genus, Candidatus Blochmannia gen. nov. (Sauer et al. 2000, Sauer et al. 2002). 

Previous studies have identified a large number of arthropod species from fire ant nests, 

however, the vast majority have transient and non-specific relationship with ants 

(Collins 1992). Insect predators, parasitoids, and parasites such as viruses, rickettsia, 

nematodes, fungi, and bacteria have also been identified and used for biological control 
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in association with fire ants (Bedding and Akhurst 1975, Bulla 1975, Aronson and Shai 

2001). The red imported fire ant has now been a major pest in the United States for more 

than four decades. The effective and efficient control of fire ants remains a continuous 

challenge. Symbiotic bacteria found in other insect species may shed new light on the 

potential for biological control of the fire ant. The midguts of fourth instar reproductive 

fire ant larvae have been found to harbor bacteria (Peloquin and Greenberg 2003), 

providing an opportunity to identify host-specific bacteria for biological control of this 

pest species. Further studies of fire ant associated bacteria, particularly if obligate 

symbionts are found, may provide a long-term sustainable solution for fire ant biological 

control. 

An understanding of complex microbial communities has been greatly enhanced 

by the development of molecular identification techniques based on the 16s rRNA 

subunit gene (Pace 1997). The 16s rRNA gene is a well-conserved, universal bacterial 

gene with constant and highly constrained functions that were established in the early 

stages of evolution and is relatively unaffected by environmental pressures (Woese 

2000). This gene has been widely used as a molecular clock to estimate relationships 

among bacteria (phylogeny) and more recently it has also become an important means to 

identify unknown bacteria to genus or species level (Sacchi et al. 2002). Analysis of the 

16s rRNA gene can potentially be applied to identify all bacteria. In contrast to 

traditional microbiological methods, it provides at least two primary advantages: a rapid 

turn-around time and improved accuracy in identification (Springer et al. 1996). 

The long-term goal of our research is to use genetically modified bacteria as an



24 

 

alternative strategy for fire ant control. In this study, we describe the isolation and 

characterization of bacteria from the midguts of fourth instar fire ant worker larvae. 

Using PCR-RFLP (PCR followed by restriction fragment length polymorphism) and 

sequence analysis of the bacterial 16s rRNA gene, we identified ten bacterial isolates to 

at least the genus level. Antibiotic resistance profiles and biochemical activities were 

also determined for these species. This work provides the basis for a wider 

characterization of bacterial distributions in fire ant colonies and provides strains 

suitable for genetic manipulation to develop novel methods of fire ant control. 

Materials and Methods 

Red imported fire ant colonies. Red imported fire ant colonies used in this 

study were originally collected from different locations around Brazos County, Texas. 

These colonies were dug directly from the field along with soil and placed in 5 gallons 

plastic buckets, and then transported to the Entomology Research Laboratory (ERL) at 

Texas A&M University. After a day or two, the ants settled in and built new tunnels in 

the dirt inside the buckets; at this time, they were separated from the dirt using the drip-

flotation method (Jouvenaz et al. 1977) and then moved into plastic sweater boxes with 

the inner wall coated with Fluon® to prevent any escapes. Colonies were maintained in the 

rearing room at the ERL and fed ad libitum with honey water, meal worms, and frozen 

crickets. There was no obvious pathogenesis associated with any of the samples.  

Bacterial isolation and culture conditions. Several fourth instar worker larvae 

were randomly pulled from each colony, surface sterilized in 70% Et-OH, and then 

soaked in a 15% bleach solution (5.25% Sodium Hypochloride stock solution) for 1 
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minute, followed by 5 washes in sterilized ddH2O and one wash in sterilized Phosphate 

Buffered Saline (PBS). Each midgut sac was dissected out with sterilized probes, 

individually homogenized, diluted 1,000-10,000 fold, and then spread on Blood agar 

plates (containing 5% defibrinated sheep blood), Brain Heart Infusion (BHI) agar plates, 

and nutrient agar plates (Becton Dickinson, Sparks, MD). The PBS used for the last 

wash was also plated on the appropriate media as a negative control. After a 24 hour 

incubation period at 37°C, or 3 days at 29°C, representative colonies, according to their 

morphologies on the different culture media, were selected for further characterization. 

Colonies were re-streaked on BHI agar plates until a pure culture was obtained. 

Genomic DNA extraction. Well-isolated single colonies were selected and 

inoculated in liquid BHI media at 37°C for 16 hours with shaking at 300 rpm. Bacterial 

genomic DNA was isolated from the pure culture. Briefly, the cell pellet from a 1.5ml 

culture was re-suspended in 464μl TE buffer (100mM Tris-HCl and 10mM EDTA, pH 

8.0), then 30μl 10% SDS and 6μl proteinase K (10mg/ml) were added, mixed and 

incubated at 37°C for 2 hours with occasional mixing. The mixture was extracted once 

with 0.8 ml phenol-chloroform-isoamyl alcohol (25:24:1), and once with 0.8ml 

chloroform-isoamyl alcohol (24:1), and precipitated with 2.5 volumes of 100% Et-OH. 

After washing the DNA pellet with 70% Et-OH, the dried DNA pellet was re-suspended 

in 50μl of ddH2O. 

Bacterial 16s rRNA gene amplification and RFLP analysis. To amplify the 

bacterial 16s rRNA gene, the universal primers fD2 and rp2 described by Weisburg et al. 

(1991) were used. Polymerase chain reaction (PCR) amplification was performed in a 
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final volume of 100μl with the following reaction components: 50ng template DNA, 

2mM dNTPs, 1μM each primer, 3 units PCL DNA polymerase (Continental Lab 

Products, San Diego, CA), and 1x reaction buffer (2.5mM MgCl2). PCR amplification 

was performed in a MJ Research PTC- 200 Thermal Cycler (GMI, Inc., Ramsey, MN). 

The reaction conditions included an initial denaturation at 95°C for 2 min, followed by 

30 cycles of denaturation (1 min at 94°C), annealing (1 min at 55°C) and extension (2 

min at 72°C), with a final extension at 72°C for 5 min. The amplification products were 

separated by electrophoresis on a 1% agarose gel and purified using the QIAQuick PCR 

purification kit (Qiagen, Valencia, CA) according to the manufacturer’s instructions. The 

purified PCR products were digested with HaeIII and separated on a 2% agarose gel. By 

comparing the patterns revealed from the PCR-based RFLP, colonies showing the same 

restriction profile were grouped together. The bacterial isolates with similar HaeIII 

restriction patterns were analyzed using a second restriction enzyme RsaI. Based on 

these results, ten isolates were selected for further characterization by biochemical and 

DNA sequencing analysis. 

Biochemical characterization of bacterial isolates. Following the PCR-RFLP 

analysis, the ten selected isolates were identified according to Gram reaction (Gram stain 

set, Fisher Scientific Co., Swedesboro, NJ) and oxidase activity (Oxidase test sticks, 

Hardy diagnostics, Santa Maria, CA). MacConkey Agar Plates (Becton Dickinson, 

Sparks, MD) were used to investigate lactose formation. Brain Heart Infusion agar plates 

supplemented with 5% de-fibrinated sheep blood were used to test the hemolytic activity 

of the bacteria. Motility was observed on API-M medium (bioMerieux, Hazelwood, 
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MO). Differentiated oxidative or fermentative metabolism of glucose was tested on API-

OF medium. The following biochemical properties of the bacteria were determined 

using the commercial test system, Analytical Profile Indexes - API-20E (bioMerieux, 

Hazelwood, MO); arginine dihydrolase, citrate utilization, H2S production, urease 

hydrolysis, indole production, acetoin production, gelatinase hydrolysis, fermentation/ 

oxidation of glucose, mannitol, sorbitol and arabinose. The bacterial isolate no. 38 was 

also analyzed by gas chromatography (GC) fatty acid profiling, using the MIDI 

identification system in the Plant Disease Diagnostic Lab, at Texas A&M University, 

College Station, Texas. 

Antimicrobial susceptibility test. The antimicrobial susceptibilities of the 10 

selected isolates were determined using the disk diffusion test procedure (Kirby-Bauer) 

based on the consensus standard of the National Committee for Clinical Laboratory 

Standards (NCCLS) (Bauer et al. 1966); NCCL Standard, 1997. Mueller Hinton Agar 

(Meat infusion 2.0g/L, casein hydrolysate 17.5g/L, starch 1.5g/L, agar 13g/L) was used 

as the growth medium. Antibiotic impregnated disks were applied according to the 

recommendations of the manufacturer (Hardy Diagnostic Lab, Santa Maria, CA, USA). 

Briefly, Mueller Hinton Agar plates were swabbed with properly adjusted inoculum, and 

then the antimicrobial sensitivity test disks were applied. Plates were incubated at 35°C 

and the inhibition zones were measured after 16-18h. Isolates were considered as 

resistant (R), intermediate (I) and susceptible (S) following the disk diffusion zone 

diameter chart provided by the Hardy Diagnostic Lab. The following antimicrobial 

agents were used: Ampicillin (10μg), Chloramphenicol (30μg), Doxycycline (30μg), 
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Erthromycin (30μg), Gentamycin (10μg), Kanamycin (30μg), Nalidixic acid (30μg), 

Spectinomycin (100μg), Streptomycin (10μg) and Tetracycline (10μg). Antibiotic 

resistance to Zeocin™ was also tested by selecting a single colony of the isolated 

bacteria and streaking on an LB medium plate containing 25mg/L Zeocin™. Growth of 

the colonies was scored as resistant, non-growth of the bacteria was considered as 

susceptible, due to the lack of reference for Zeocin™ on the Hardy Disk™ chart. 

Isolate identification by 16s rRNA gene sequencing. Gel purified PCR 

products of the 16s rRNA gene fragments from the ten isolates were cloned directly into 

the TA cloning vector, Topo2.1 (Invitrogen, San Diego, CA) following the 

manufacturer’s instructions. The nucleotide sequences of the recombinant plasmids were 

determined using the ABI 3100 sequencer at the Crop Biotechnology Center, Texas 

A&M University. Near-full length gene sequence of the 16s rRNA gene was determined 

using the M13 forward and reverse primers and a custom designed internal primer. All 

sequences were assembled using the vector NTI software (Inc., InforMax, Bethesda, 

MD) and the 16s rRNA gene sequence of each isolate was compared with known 16s 

rRNA gene sequences in the GenBank database using the BLAST search algorithm 

(Altschul 1990). 

PCR screening to determine the distribution of the midgut bacteria. Near-

full length 16s rRNA gene sequences from ten isolates were aligned with vector NTI 

software for multiple sequence alignment. Primers were designed to species-specific 

regions for each bacterial isolate (Table 1). PCR amplification was performed on all ten 

isolates for each specific PCR primer pair to confirm specificity. Two of the fire ant 
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colonies were maintained in our laboratory and used as laboratory conditioned colony 

PCR-based screening. These were colony #3789 collected from Brazos County on 

August 29, 2003 and colony #3839 collected from Burleson County on October 16, 

2002. Another colony, from Burleson County, was collected two days before DNA 

extraction on April 16, 2004 and served as the field colony. Genomic DNA was 

extracted from 30-40 midguts of fourth instar larvae from the mentioned colonies. The 

fourth instar fire ant worker larvae were surface sterilized and the midgut sacs dissected 

as described previously. The extracted genomic DNA was purified using a phenol-

chloroform protocol (modified from (Hoelzel and Green 1992). Approximately 100ng 

genomic DNA was used as the PCR template, and partial sequences of the 16s rRNA 

gene were amplified with ten pairs of bacteria-specific PCR primers. 

Results 

Phenotypic characterization of isolates. Bacteria were cultured from the 

midgut of previously surface sterilized fire ant worker larvae. All isolates grew equally 

well on Brain Heart Infusion agar plates at 29°C and 37°C from the dissected gut 

homogenate. Most colonies grew up to 4 mm in diameter after 24 hours incubation at 

37°C, however, cultures also typically contained some colonies that were only 1/3 the 

diameter of the majority of colonies. β and γ -hemolysis was observed when grown 

differentially on Blood Agar plates. No colonies grew on the negative control plates, 

ruling out contamination during manipulation. According to growth characteristics and 

colony morphology, 36 well-isolated colonies were selected for further characterization 

and identification. 
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Table 1. Midgut bacteria specific PCR primers from the fourth instar worker larvae of 

red imported fire ants. 

 

Primer 

Name  

Size of 

Amplification 

(base pairs)  

Primer Sequence 

Bac4-5’    5’-GGC TCC AAA AGG TTA CCT CA-3’  

Bac4-3’  400 5’-ACT CTA GAG ATA GAG CTT CCC-3’  

Bac22-5’B    5’-AGG CCT TCG GGT TGT AAA GT-3’  

Bac22-3’C  850 5’-GTC GCT TCT CTT TGT ATG CG-3’  

Bac27-5’B    5’-CTG GGA ACG TAT TCA CCG TA- 3’  

Bac27-3’C  900 5’-AAA GTA CTT TCA GCG AGG AGG A-3’  

Bac36-5’B    5’-CAT GAT TCT TAT TTG AAA GAA GCA A -3’  

Bac36-3’B  900 5’-GTT TAT CAC CGG CAG TCT CAC -3’  

Bac38-5’    5’-TAC GAC TTC ACC CCA GTC ATG-3’  

Bac38-3’  500 5’-TCC ACA GAA GTT TCA GAG ATG A-3’  

Bac42-5’C    5’-CAC GCT ATC AGA TG AGC CTA A -3’  

Bac42-3’C  900 5’- TTG GCA ACC CTT TGT ACC GA-3’  

Bac48-5’    5’-TAC GAC TTC ACC CCA GTC ATG-3’  

Bac48-3’  450 5’-ATG CCG AAG AGA TTG GCA GTG-3’  

Bac101-5’    5’-GGA GCTTGCTCC CGG ATG TT-3’  

Bac101-3’  400 5’-TGC GAG CAG TTA CTC TCG CA-3’  

Bac102-5’    5’-AGC TTG CTT CTC TGT CGG TG-3’  

Bac102-3’B  500 5’-GAA GCT CTG TCT CCA GAG TG-3’  

Bac104-5’    5’-GCACAA GAG CTT GCT CTC-3’  

Bac104-3’  500 and 900  5’-TTG ATG AAC GTA TTA AGT TC-3’  

 

 

PCR amplification of the 16s rRNA gene and RFLP analysis. Bacterial 

genomic DNA was extracted from each of the 36 selected isolates and the bacterial 16s 

rRNA genes were amplified using universal primers. An approximately 1.5 kb fragment 

was produced in all cases, indicating that the amplification product was essentially the 

full length 16s rRNA gene. All amplified 16s rRNA products were digested with HaeIII 
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and separated on a 2% agarose gel. RFLP analysis resulted in 10 different restriction 

patterns for the amplified 16s rRNA gene products. Colonies showing the same RFLP 

pattern were grouped together and a representative of each group is shown (Fig. 1A). In 

the situation where the differences in restriction patterns between two groups were not 

clear, RsaI digestion was used to determine whether they belong to the same group or 

different groups (Fig. 1B). 

 

 
 

 

Fig. 1. PCR-RFLP profile of 16s rRNA genes from the midgut bacteria of the red 

imported fire ant obtained by HaeIII and RsaI digestion. (A) HaeIII restriction digestion 

of amplicons from the 16s rRNA genes of ten selected isolates (as numbered). MW= 

100bp molecular weight ladder. (B) RsaI restriction digestion of 16s rRNA amplicons 

from isolates 4, 101, 38, and 104. MW= 100bp molecular weight ladder. 

 

 

16s rRNA gene sequence analysis. An appropriately 1.5kb fragment of the 16S 

rRNA gene was obtained from all isolates using the universal bacteria primer set and the 

DNA sequence determined. The molecular identification using BLAST queries against 

the NCBI database (Table 2) indicated that the isolated bacteria from the fire ant midgut 
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belonged to 2 major groups. All the gram-positive bacteria, isolates 4, 36, 101, and 102, 

formed the first group- Bacilli. Based on these results, isolates 4 and 102 were identified 

to the genus level as likely Enterococcus and Listeria. Isolate 36 and 101 were identified 

to be most likely Lactococcus garvieae and Bacillus pumilus, respectively. The 

predominant bacterial group from the gram-negative bacteria was identified as 

protobacteria. Among all the gram-negative isolates, four belonged to the γ-subdivision. 

Isolates 27, 42, and 104 were most likely Kluyvera cryocrescen, Pseudomonas 

aeruginosa and Serratia marcescens, respectively, the S. marcescens we isolated here is 

a non-pigmentation strain (Data not shown).  

 

Table 2. NCBI BLAST results for the 16s rRNA gene sequence from the ten fire ant 

midgut bacteria isolates. 

 

BAC Bacteria Identification 
GenBank 

Accession No. 

BLAST Match 

Accession No. 

Identity 

(%) 

4 Enterococcus sp. AY946282 AY321376 99 

22 Enterobacter sp. AY946283 Z96078 99 

27 Kluyvera cryocrescens AY946284 AF310218 99 

36 Lactococcus garvieae AY946285 AY699289 99 

38 Uncultured bacterium AY946286 AJ487029 100 

42 Pseudomonas aeruginosa AY946287 AB126582 99 

48 Achromobacter xylosoxidans AY946288 AF411021 99 

101 Bacillus pumilus AY946289 AB020208 99 

102 Listeria sp. AY946290 AL596173 95 

104 Serratia marcescens AY946291 AB061685 99 

 

 

Isolate 22 was identified to the genus level as Enterobacter. Isolate 48 belonged 

to the β-subdivision, which was identified as Achromobacter xylosoxidans. The E-value 
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of all BLAST results was 0. The identities between the bacterial isolates and the 

GenBank entries from the NCBI database (Table 2) were at least 98% in all cases. The 

BLAST result for isolate 38 indicates an uncultured bacterium with respect to the NCBI 

database. Identification from gas chromatography (GC) fatty acid profiling and the API-

20E commercial kit resulted in an unreliable identification, indicating that isolate 38 has 

poor matches within the known bacterial databases, and may therefore be an unreported 

species. 

Biochemical characterization and antimicrobial susceptibility of bacterial 

isolates. As shown in Table 3, isolate 22, 27, 38, 42, 48, and 104 grow well on 

MacConkey agar after 24 hours incubation at 37°C, while others (isolates 4, 36, 101, and 

102) grew poorly, indicating that four of the ten isolates (4, 36, 101, and 102) are gram 

positive. These results were further confirmed by Gram-stain experiments. Out of six 

gram negative isolates, two (27 and 104) showed lactose fermentation on MacConkey 

agar plate, while the others (22, 38, 42, and 48) were colorless. This result revealed that 

isolates 22, 38, 42 and 48 are lactose non-fermenting strains. 

The hemolytic status of all isolates was also determined. Isolates 42 and 101 

showed a completely lysed clear zone around the colony on BHI Blood Agar plates, 

indicating they are β- hemolytic; isolates 4, 22, 27, 36, 38, 48, 102 and 104 showed non-

hemolysis (γ -hemolytic) on the blood plates. No α- hemolysis was observed among 

these isolates. 

In addition, all isolates were Oxidase negative except for isolates 42 and 48. 

Motility was observed for isolates 22, 27, 36, 38, 42, 48 and 104 on the API-M medium, 
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Table 3. Reactions and enzymatic activity results. Part of the biochemical characteri-

zation of ten bacteria isolates from the midgut of 4
th

 instar larvae in red imported fire ant 

workers. (+) positive reaction, (-) negative reaction. 

 

Reactions/Enzymatic Activity  Bacteria Isolates 

  4 22 27 36 38 42 48 101 102 104 

Motility + - - - - - - + + - 

MacConkey - + + - + + + - - + 

Cytochrome-Oxidase - - - - - + + - - - 

Arginine dihydrolase + + - + - + - - - - 

Citrate utilization - + - - - + + - - + 

H2S production - - - - - - - - - - 

Urease hydrolysis - - - - - - - - - - 

Indole production - - + - - - - - - - 

Acetoin production - + - + - - - - - - 

Gelatinase hydrolysis - - - - - + - + - + 

Glucose fermentation/oxidation + + + - + + - - + + 

Mannitol fermentation/oxidation - + + - - - - - - + 

Sorbtiol fermentation/oxidation - - - - - - - - - + 

Arabinose fermentation/oxidation - + + - - - - - - - 

 

 

while isolates 4, 101 and 102 were non-motile bacteria. Isolates 4, 22, 27, 36, 38, 102 

and 104 displayed a fermentative metabolism of glucose, while isolate 42 used oxidative 

metabolism of glucose, and isolate 48 and 101 were inert for metabolism of glucose. The 

biochemical properties of the isolates were also determined using the API- 20E kit, with 

the results of the biochemical tests summarized in Table 3. All isolates produced H2S 

and were urease hydrolysis negative. Except for isolate 27, the Indole reaction was 

negative for all isolates. Isolates 4, 27, 38, 42, 48, 101, 102, 104 were acetoin production 

negative. All isolates exhibit sorbitoil oxidation except isolate 104. Isolates 22 and 27 

use Arabinose fermentation while the others use arabinose oxidation. Results from the 
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arginine dihydrolase, citrate utilization, gelatinase hydrolysis, metabolism manner of 

glucose and mannitol tests demonstrated that the ten isolated bacteria are biochemically 

distinct.  

To determine the antibiotic susceptibility of the isolates, 11 antibiotic reagents 

were used (Table 4). Multiple-resistance phenotypes were observed among the ten 

isolates. Isolate 48 is resistant to all the antibiotics tested here except for intermediate 

resistance to Erythromycin.  

 

Table 4. Antibiotic resistance test results for each bacterium isolate. (R) resistant, (I) 

intermediate, and (S) Susceptible. 

Antibiotics\Bacteria Isolates 4 22 27 36 38 42 48 101 102 104 

Ampicillin  S  R  I  S  S  R  R  S  S  R  

Chloramphenicol  S  S  S  S  S  I  R  S  S  S  

Doxycycline  S  S  R  R  S  R  R  S  R  R  

Erythromycin  R  R  I  S  I  R  I  I  S  R  

Gentamicin  S  S  S  S  S  S  R  S  S  S  

Kanamycin  R  S  S  S  S  R  R  S  S  S  

Nalidixic Acid  R  S  S  R  S  R  R  I  R  S  

Neomycin  S  S  S  S  S  I  R  S  S  S  

Spectinomycin  S  S  S  S  R  S  R  S  I  S  

Streptomycin  S  S  S  S  S  I  R  S  S  S  

Tetracycline  S  S  R  R  S  R  R  S  R  R  

Zeocin  R  S  S  R  S  R  R  S  R  R  

 

 

The grade of resistance to Gentamicin, Kanamycin, Nalidixic Acid and 

Streptomycin was high, with no zones of inhibition around the disks. In contrast, isolate 

101 was susceptible on all the antibiotics except for intermediate resistance on 

Erythromycin and Nalidixic Acid. A similar result was observed for isolates 22 and 38, 
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which were susceptible on nine antibiotics and showed resistance or intermediate 

resistance on the other two (Ampicillin, Erythromycin resistance for isolate 22 and 

Erythromycin, Spectinomycin intermediate resistance for isolate 38). 

Distribution of the bacteria in the midguts among fire ant colonies. Based on 

the sequence alignment of the 16s rRNA genes from these 10 worker midgut bacteria, 

species-specific primers were designed and tested on all isolates for their specificity. The 

results revealed that the predicted band was only amplified from the specific isolates and 

was absent in others. We then examined the distribution of these ten isolates on two 

laboratory maintained colonies and one colony directly collected from the field by using 

PCR amplification with these ten pairs of specific primers. As shown in Fig. 2, an 

expected 0.9 kb amplification fragment from isolate 27, Kluyvera cryocrescens, was 

presented in all 3 colonies, suggesting that this bacterium is common throughout all the 

colonies. The same result was also observed with the primer set specific for isolate 42, 

Pseudomonas aeruginosa. Another bacterial isolate, 36, Lactococcus garvieae, was 

present in only one lab maintained colony and the colony from the field. For bacteria 

isolate 48, Achromobacter xylosoxidans, the expected 0.5 kb fragment of the partial 16s 

rRNA gene is amplified in the field colony, however it was absent from the selected lab 

maintained colonies. The expected size of amplification products were not generated 

from DNA extracts of fire ant midguts with the primer sets for isolates 4, 22, 38, 101, 

102, and 104, indicating that these bacteria may not be common in fire ant colonies. 

Discussion and Conclusions 

In this study, we isolated bacteria from 4th instar larval midguts of red imported 
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Fig. 2. Bacterial species-specific PCR screening of the midgut bacteria in red 

imported fire ant workers. From lab-maintained colonies and a field colony. (A), (B), 

(C), (D) Bacterial species-specific PCR screening for isolates 27, 36, 42 and 48, 

respectively. Lane 1, 100bp molecular size marker; Lane 2, Positive control for the 

specific bacteria; Lane 3, Negative control with ddH2O used as the template; Lane 4, 

Fire ant colony Burleson County #2; Lane 5, Fire ant colony #3789; Lane 6, Fire ant 

colony # 3839. 

 

 

 

fire ant workers. By using PCR-RFLP analysis of the 16s ribosomal RNA gene and 

DNA sequencing of this gene, we were able to group and identify several isolated 

bacteria to at least the genus level. We also characterized the morphologies, biochemical 

activities, and antibiotic resistance profiles of these bacteria. We were able to efficiently 

select candidate bacteria from thousands of colonies recovered from the midgut 

homogenate. The general approach is based on PCR amplification and RFLP finger 

printing of the 16s rRNA gene. A significant advantage of this protocol is that candidate 

bacterial isolates can be identified within 2–3 days, without prior characterization and 

conventional selection using routine biochemical tests, which generally take several 

weeks. A number of reports have demonstrated that 16s rRNA gene sequence analysis 

improves the identification of bacteria compared to conventional phenotypic methods 

and that the 16s rRNA gene system was superior to conventional phenotypic 
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identification (Tang et al. 2000, Bosshard et al. 2003). A growing number of studies 

have reported the use of 16s rRNA sequencing for the identification of bacteria and their 

phylogenetic relationships in insects, (Ohkuma et al. 1999, Moran et al. 2003, Peloquin 

and Greenberg 2003). In this study, the near full length 16s rRNA gene was used to 

identify the isolated bacteria. In applying this method, we isolated and grouped ten 

bacterial species from the fire ant midgut. 

Peloquin and Greenberg (Peloquin and Greenberg 2003) identified several gram-

positive bacteria from the midgut of fourth instar reproductive larvae. By using partial 

16s rRNA sequences, they identified two strains as Lactococcus garviae and 

Staphylococcus saprophyticus. In addition, they also grouped isolates to the 

genus, Enterococcus. In agreement with these findings, we also identified a strain as L. 

garviae and a strain to Enterococcus, indicating that they might be common to both the 

California and Texas fire ant samples. However, in contrast to (Peloquin and Greenberg 

2003), where only gram-positive bacteria were isolated, we also recovered several gram-

negative bacteria from the midgut of fourth instar worker larvae. Our study indicates that 

the isolated bacteria are closely related. Of the isolates, at least 40% belong to the γ-

subdivision of Proteobacteria, with one bacteria belonging to the β-subdivision, which is 

in agreement with the results from previous insect studies (Aksoy et al. 1995, Chen et al. 

1999). Recent molecular phylogenetic analysis of 16s rRNA genes also demonstrated 

that most insect symbionts belong to the Proteobacteria, primarily within the γ-

subdivision (Moran and Telang 1998). The closest relatives amongst symbionts are 

the Wigglesworthia spp., the endosymbiotic bacteria of the tsetse fly and Buchnera 
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aphidicola, the symbionts of aphids, which together form a large cluster of symbiotic 

organisms and have a common ancestor with the Enterobacteriaceae (Aksoy et al. 1995, 

Chen et al. 1999). 

Serratia marcescens is a bacterial species that commonly occurs in soil and water 

as well as animal intestines. Jouvenaz et al. (1996) fed fire ants food contaminated with 

this bacterial species to determine whether these bacteria were ingested. The 

pigmentation produced by the S. marcescens strain and lack of pathogenicity to the fire 

ants makes this strain an ideal candidate for feeding tests. In their experiments, they 

found that no bacteria were recovered from any of the queens and workers, indicating 

that all bacteria were effectively excluded from the gut. However, they found the 

bacteria in all midguts after feeding the fourth instar larvae with bacteria contaminated 

food. This result reinforced the finding that the pharyngeal filters of fire ant workers 

prevent particles greater than 0.88 ± 0.02 μm in diameter from passing, however the 

larvae do not filter these small particles (Glancey et al. 1981). In the present study, we 

successfully isolated a strain identified as a S. marcescens species. The fourth instar is 

the only stage that is fed solid food and the S. marcescens strain we isolated here is a 

non-pigmented strain. Whether the S. marcescens we isolated is from the soil or a food 

source is unknown. 

Kluyvera cryocrescens is a soil bacterium that is also found in the rumens and 

intestines of animals and humans (Farmer et al. 1981). Intestinal bacteria are important 

to the health of human beings; with similar functions being reported in insects (Tokuda 

et al. 2000), such as producing short-chain fatty acids from carbohydrates or 
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synthesizing amino acids. Based on these functions, it is expected that these bacteria 

may play a role in the nutritional physiology of their hosts. The midgut bacteria could be 

parasites living in the gut, relying on nutrients that host enzymes have digested (Vossen 

et al. 2004). While the role of these bacteria in the fire ant is unknown, we have no 

indication that they cause any pathology. Studies emphasizing the role of these bacteria 

in fire ant physiology will be addressed further. 

Just recently, after publishing the results from this project (Li et al. 2005), culture 

independent methods were also used to explore the midgut bacteria diversity in RIFA 

colonies from three different geographical locations near Baton Rouge, LA (Lee et al. 

2008). The authors identified a total of 68 different bacterial species from the RIFA 

midgut, with 36 species (52.9%) classified as uncultured bacteria. They also concluded 

that midgut bacteria were ubiquitous present in the three studied sites. Klebsiella sp., 

Enterobacter sp., a Proteobacterium, and an uncultured bacterium were the only species 

present in at least two of the sites (Lee et al. 2008). The results presented here (Chapter 

II), demonstrated that only ten of these 68 bacteria can be cultured in vitro, thus the only 

possible candidates for genetic transformation. 

In summary, we have described the isolation of bacteria from the fire ant midgut. 

Bacterial isolates were grouped by 16s rRNA gene analysis using PCR-RFLP and gene 

sequencing. The characterization and identification of bacteria from the fire ant are 

important steps towards investigating the roles they play in fire ant physiology and the 

possibility for them to be used in a biological control strategy for the fire ant. 

Furthermore, a subsection of these bacteria are easy to cultivate, genetically modify, and 
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reintroduce back into the fire ant host. Studies aimed at the development of a robust 

method to genetically engineer these gut bacteria and re-introduce them into the fire ant 

colony are under way. The bacteria studied here will be investigated for their use as 

shuttle vehicles for the introduction of foreign genes and the expression of foreign 

proteins in the fire ant, allowing the bacteria to be used as an alternative tool for the 

biological control of fire ants. 
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CHAPTER III 

APPLICATION OF SEM AND TEM IN MICROBIOLOGICAL STUDIES OF 

THE RED IMPORTED FIRE ANT (Solenopsis invicta Büren) MIDGUT
*
 

 

Introduction 

Throughout evolution insects have evolved alongside microorganisms; and in 

many cases, insects have developed internal and/or external specialized structures to 

keep and protect endosymbionts (Bourtzis and Miller 2003). External structures 

containing bacteria have been recently described in European beewolves (Goettler et al. 

2007). Internally, specialized cells called mycetocytes are known to harbor intracellular 

microorganisms regarded as obligate endosymbionts. These large cells are usually found 

lining the gut epithelium of the digestive track, in the Malpighian tubules, free in the 

haemocoel, or in the fat body, depending on the insect group (Douglas 1989). According 

to Douglas (1989), mycetocytes in the midgut are irregularly distributed among other 

bacteria free epithelial cells. But, in the specific case of bostrychid beetles, the 

mycetocytes are free in the midgut lumen while anchored to the wall through a filament 

of epithelial cells (Douglas 1989). 

The association between microorganisms and insects has been reported in 

multiple occasions (Bourtzis and Miller 2003), and mostly referred as of the pathogenic 

type in the early studies. A review titled “Endosymbionts of Insects” by Dasch et al. 

                                                 
*
 Reprinted with permission from Medina, F., E. A. Ellis, M. W. Pendleton, A. Holzenburg, S. B. Vinson, 

and C. J. Coates. 2007. Application of SEM and TEM in microbiological studies of the red imported fire 

ant (Solenopsis invicta Büren) midgut. Microsc. Microanal. 13: 234-235. Copyright 2007 by Cambridge 

University Press. 
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(1984) clearly demonstrates the interest of entomologists to investigate the relationship 

of endosymbionts with their insect host. In 1984, these authors recognized that our 

knowledge of symbionts has been limited by our inability to culture them. Therefore, all 

the efforts to investigate their distribution and abundance in different insect tissues had 

been based on staining, and on light and electron microscopy techniques (Dasch et al. 

1984). Insects that are dependent on their symbiont usually feed on restricted diets 

(Dasch et al. 1984, Douglas 1989), which can be divided into several groups, blood 

sucking, plant sap sucking, cellulose and store grain feeders, and complex diet feeders 

(Dasch et al. 1984). As members of the later group, ants of the species Camponotus 

ligniperda and Formica fusca were the first insects reported carrying an endosymbiotic 

bacterium in their ovarian tissues (Blochmann 1882).  

Microsporidia, yeasts, fungi, viruses, and bacteria, have all been identified from 

fire ants in the United States (Avery et al. 1977, Jouvenaz et al. 1977, Beckham et al. 

1982, Jouvenaz 1984, Jouvenaz et al. 1984, Jouvenaz 1986, 1990d, a, Jouvenaz and 

Kimbrough 1991, Shoemaker et al. 2000, Peloquin and Greenberg 2003, Li et al. 2005, 

Bouwma et al. 2006, Baird et al. 2007, Gunawan et al. 2008, Lee et al. 2008). Since the 

first report on bacteria living inside fire ants, no studies have attempted to elucidate the 

fire ant-endosymbiont relationship (Jouvenaz 1990c, Peloquin and Greenberg 2003). 

Therefore our main objective was to investigate the abundance, distribution, ecology, 

and, most importantly, the ant-bacteria interactions and their potential use for genetic 

transformation as means for biological control. To help understand the ant-bacteria 

interactions and ecology, we must determine whether these bacteria can be found as free 
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living organisms in the fire ant, or if they are contained or associated with any 

specialized cells or structures.  This last idea will provide proof that a true endosymbiont 

is present. For this purpose, Scanning Electron Microscopy (SEM) and Transmission 

Electron Microscopy (TEM) will provide the power and resolution that allows a visual 

search of the internal anatomy of fire ants as well as any bacteria cells.  

In the past, traditional methods failed to detect most microbes, especially 

bacteria. However, today not only the newly developed molecular tools have had an 

upper hand on the detection of microorganisms, but also advances in electron 

microscopy have played an important role on microbiological studies. This is due to the 

fact that most of endosymbiotic bacteria cannot be cultured in vitro and are only 

detectable by molecular methods (Douglas 1989, Corby-Harris et al. 2007) and by 

electron microscopy (Caetano et al. 2009). 

Electron microscopy has been used to describe the ant internal anatomy, and in 

fewer cases, to investigate ant-microorganism association. However, it has never been 

used to study the relationship between midgut bacteria and Solenopsis invicta. Petralia 

and Vinson (Petralia and Vinson 1978, 1979, Petralia et al. 1980, Petralia and Vinson 

1980a, b, Petralia et al. 1982) were among the first to use electron microscopy 

techniques to describe the ant external and internal anatomy. However, Jouvenaz and 

Ellis (Jouvenaz et al. 1984, Jouvenaz and Ellis 1986), investigated two microsporidia in 

fire ants using light microscopy and TEM. Also, Arab and Caetano (2001) studied the 

midgut ultrastructure in Solenopsis saevissima Forel. Finally, the first report of an 

endosymbiont in the digestive track of ponerine ants was recently published by Caetano 
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et al. (2009). Our current project is the first attempt to search for symbiotic bacteria 

inside the red imported fire ant midgut using SEM and TEM, thus investigating their 

relationship with the insect host. 

Materials and Methods 

 

Fire ant samples. Adult workers and fourth instar larvae were randomly selected 

from our laboratory reared colonies. These colonies were maintained in the Entomology 

Research Laboratory (ERL) as previously described in other chapters. Only healthier fire 

ant colonies, with plenty of brood in their nests, were selected for this investigation. 

Sample preparation. Samples consisting of adult worker ants and fourth instar 

larvae were exposed to osmium vapors before being sputter coated with palladium-gold 

(50:50) and then observed in a JEOL JSM-6400 SEM at an accelerating voltage of 15 

kV. Another group of samples was prefixed with osmium vapors followed by fixation in 

2.5% glutaraldehyde-2.5% acrolein in 0.1M sodium cacodylate buffer, pH 7.4. 

Specimens were then post-fixed in 1% osmium tetroxide, dehydrated in methanol to 

propylene oxide and then infiltrated and embedded in epoxy resin. Hundreds of micro-

sections were first examined under a light microscope, selecting the ones of most interest 

based on their location in the larval body (Fig. 3). The selected micro-sections were post 

stained with uranyl acetate and lead citrate and then examined in a JEOL 1200EX TEM 

at an accelerating voltage of 100 kV. 

 Results 

In all the samples observed under SEM and TEM, only free living bacteria was 
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Fig. 3. Light microscopy image of midgut cross section of a fourth instar larvae. 

ml, midgut lumen; me, midgut epithelium; arrows, showing the peritrophic envelopes 

(Reichert-BioStar Inverted microscope 100X). 

 

 

found within the midgut of the red imported fire ant. No specialized structures were 

identified at least in the midgut tissue or around the epithelial cells lining the gut. 

Some bacteria attach themselves to the peritrophic membranes in the midgut 

lumen. SEM images confirmed several structural adaptations of fire ant to a social 

lifestyle as shown in previous work (Petralia and Vinson 1978, 1979, Petralia et al. 1980, 

Petralia and Vinson 1980a, Petralia et al. 1982). Nevertheless, it also provided us with 

new ideas about possible sites where bacterial activity might play an important role for 

the ants. These new sites include the ventral pouch used for the extra-oral digestion of 

proteins by the fourth instar larvae, the salivary glands, salivary reservoir, and foregut 
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and hindgut of the digestive system, which are all known to harbor microorganisms in 

other insects. 

Images also provided us with a general structure of the midgut environment, the 

possible function of the peritrophic membrane in fire ants and their association with 

bacteria and other microorganisms. Fungal spores were also common in the midgut of 

ants, although we did not investigate further into this topic, it could definitely provide 

important information. 

Discussion and Conclusions 

 

Fire ants are social insects living in large colonies with a distinctive division of 

labor. Mature colonies are formed by a single (monogyne) or multiple (polygyne) 

queens, adult workers, adult reproductive females and males, eggs, first, second, third, 

and fourth instar larvae, pre-pupae, and pupae (Petralia and Vinson 1978, 1979, Vinson 

and Greenberg 1986, MacKay et al. 1990, Vinson 1997). Foragers, represented by the 

older workers, collect food and bring them to the nest where the younger adult workers 

(Fig. 4-1) are responsible of caring for and feeding the immature stages. Fire ant larvae 

go through four well defined stages of development as mentioned above (Petralia and 

Vinson 1979). A fully developed fourth instar larva (Fig. 4-2) is fed liquids and solid 

food by young worker ants. The food is brought as a buccal pellet (Fig. 4-3) and 

deposited in a ventral pouch (Fig. 4-4), where secreted enzymes and possibly bacteria 

help with the digestion of proteins (still under investigation).  

Extra-orally digested food is both consumed by the larvae and picked up by other 
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Fig. 4. Scanning and transmission electron microscopy images of RIFA. 1. Adult 

fire ant worker (JSM-6400 15kV X60). 2. Fourth instar larva (JSM-6400 15kV X85). 3. 

Mouth parts of an adult worker showing the buccal pellet (circled) held by the mandibles 

(md) (JSM-6400 15kV x370). 4. Antero-ventral view of the fourth instar larva (JSM-

6400 15kV x160). The solid food (circled) deposited on the ventral depression is 

extraorally digested by a mixture of saliva and enzymes. 5. Peritrophic envelope; these 

separate all the midgut content, including bacteria and other microorganisms, from the 

midgut epithelium (JEOL 1200EX TEM 100kV X25000). 6. Free living bacteria found 

inside the midgut sac of the larva. Some bacteria were directly attached to the peritrophic 

envelope; the function of which is still unknown (JEOL 1200EX TEM 100kV X10000). 

 

 

 

workers to feed the queens, therefore the great importance of fourth instar larvae as food 

processors in the colony. It is important to note, that at the larval stage and with each 

molt, the internal cavity or lumen of the midgut is lined with peritrophic envelopes or 

membranes forming multiple layers, probably each layer corresponding to each molt 
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(further investigation needed). These layers protect the epithelial cells not only from 

mechanical and chemical damage, but also from pathogens acquired with the food. Thin 

sections for TEM exposed part of the digestive system internal structure (Fig. 4-5), 

providing evidence of bacteria inside the midgut lumen (Fig. 4-6), and revealed a 

possible functional association of the bacteria with their insect host. It also showed that 

no specialized structures and only free living bacteria were found in the midgut. In adult 

ants, once again the pictures demonstrated that bacteria smaller than 0.8 µm (0.5 µm in 

our case) are able to reach the midgut. This is due to the presence of a filtering system in 

the adult workers (Glancey et al. 1981). 

The larval digestive system is closed (Petralia and Vinson 1980a), meaning that 

all ingested food remains in the midgut and it is only excreted in the meconium right 

before entering the pupal stage (Figs. 5 and 6). This also includes the bacteria within the 

midgut lumen (Medina et al. 2009) 

 

 
 

Fig. 5. Fourth instar larvae excreting the meconium right before entering the pre-

pupal phase. This picture was acquired with a Hitachi Tabletop Microscope TM-1000. 
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.  

 

Fig. 6. Close up image of the meconium. Image acquired with the Hitachi 

Tabletop Microscope TM-1000. 

 

 

The importance of bacteria in the spread of RIFA in the southeastern United 

States supports the potential uses of these bacteria as biological control agents. Results 

also confirm morphological adaptations of these ants to their social lifestyle, feeding 

behavior and potential association with symbiotic microorganisms. 
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CHAPTER IV 

 

GEOGRAPHICAL DISTRIBUTION OF THE RED IMPORTED FIRE ANT 

 

(Solenopsis invicta Büren) MIDGUT BACTERIA, SELECTED FOR GENETIC 

 

 TRANSFORMATION, IN SOUTHEASTERN UNITED STATES 

 

Introduction 

The potential use of bacteria in a biological control approach has been 

investigated to some extent in other insects, as shown in following examples. But, in the 

red imported fire ant, the information is still very limited. Further investigation is still 

needed before we can benefit from the full potential of endosymbiotic bacteria as a 

biological control agent. Fortunately, new developments in biotechnology may soon 

enable us to create new strains of microbial pathogens that are more virulent, easier to 

mass produce, and less sensitive to diverse climate conditions. 

Investigations on a widely spread bacterium, Bacillus sphaericus, revealed they 

can produce protein toxins which are lethal to mosquito larvae (Thanabalu and Porter 

1996). Chan et al. (1996) also demonstrated that the different toxins produced by this 

bacterium were particularly effective against certain mosquito species, proving its host 

specificity. The gram negative bacterium, Asticcacaulis excentricus, has been 

investigated as another potential candidate in a biological control program against 

mosquitoes due to their persistence, UV resistance, lack of toxin degrading proteases and 

low production costs (Liu et al. 1996). Another example comes from McKillip et al. 

(1997), after a successful culture and transformation of a midgut bacteria from the 
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leafroller, Pandemis pyrusana. Additionally, the bacterium, Enterobacter cloacae, had 

been transformed to express an ice nucleation gene (inaA), becoming another good 

candidate for a biological control program (Watanabe et al. 2000). There are two more 

examples worth mentioning. One is the vector-symbiont intervention project in Chagas 

disease, where Rhodococcus rhodnii have been transformed to express an anti-

tripanosomal agent in the midgut of Rhodnius prolixus (Beard et al. 1992, Beard et al. 

1998). And second, the introduction of a DsRed fluorescent protein into a bacterium 

found inside the glassy-winged sharpshooter and the reintroduction of the transformed 

bacterium into the host foregut (Bextine et al. 2004). 

Just recently, molecular and electron microscopy tools allowed us to explore the 

real potential of bacterial candidates for a biological control program against the red 

imported fire ant, Solenopsis invicta Büren (Peloquin and Greenberg 2003, Li et al. 

2005, Medina et al. 2007, Gunawan et al. 2008, Lee et al. 2008, Medina et al. 2009, 

Tufts and Bextine 2009).  Microbes are the most abundant life form on earth, but not all 

are best suited for genetic transformation and/or biological control of insect pests (El 

Husseini 2006).  

As our main purpose and by means of genetic transformation, the selected 

midgut bacteria will be use as a delivery agent to express a toxic gene product inside the 

red imported fire ant. But first, we must take into consideration certain characteristics 

that will make the midgut bacterium the best candidate (El Husseini 2006). Foremost, 

they must have a narrow host range specific to the red imported fire ant, not posing an 

environmental threat to humans and other animals, including the native ant populations. 
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Consequently, best bacteria candidates must be closely associated with their ant host; 

under this condition, a possible symbiotic association will be highly desirable. 

Candidates must adapt well to the climate conditions and ideally have a high 

reproductive potential with multiple generations per host. In addition, they must have a 

high infestation rate and ability to naturally infect new colonies. 

From the midgut of the fourth instar larvae of the red imported fire ants, we 

identified ten bacteria species. Including, Enterococcus sp./durans, Klebsiella 

ornithinolytica, Kluyvera cryocrescens, Lactococcus garvieae, Pseudomonas 

aeruginosa, Achromobacter xylosoxidans, Bacillus pumilus, Listeria innucua, Serratia 

marcescens, and an unidentified bacterium from the family Enterobacteriaceae (Li et al. 

2005). They were all well adapted to the environmental conditions inside the fire ant 

colonies, but they also readily grew in artificial media. This permitted their 

biochemically and morphologically characterization, and also testing for resistance 

against several antibiotics (Li et al. 2005). 

In our samples we found the presence of several gram-positive and gram-

negative bacteria. Among the later, some were closely related to each other, belonging to 

the γ-subdivision of Proteobacteria, and one bacterium in the β-subdivision. This seems 

exciting, due to the fact that most insect symbionts are members of the phylum 

Proteobacteria, primarily within the class γ-Proteobacteria (reviewed in Moran and 

Telang 1998). Supporting this idea, some well known symbiont members of this group, 

included: Arsenophonus spp., an endosymbiont of insects (Gherna et al. 1991, Hypsa 

and Dale 1997, Trowbridge et al. 2006), Buchnera spp. a symbiont of aphids (Munson et 



54 

 

al. 1991, Clark et al. 1992), and the endosymbiotic bacteria of the tsetse fly, 

Wigglesworthia spp. (Aksoy et al. 1995); Escherichia spp. is also a member of this 

group. 

Specifically from the midgut bacteria, we were able to find members of the 

Proteobacteria: Gammaproteobacteria: Enterobacteriales: Enterobacteriaceae, which 

included the following species: Klebsiella ornithinolytica (Sakazaki et al. 1989, Brenner 

et al. 2005), Kluyvera cryocrescens (Farmer et al. 1981, Brenner et al. 2005), Serratia 

marcescens (Grimont and Grimont 1978, Brenner et al. 2005), and an unidentified 

bacterium (isolate#38). Therefore close attention will be given to the distribution of 

these species in southeastern United States.  

Our hypothesis states that, if any of these midgut bacteria are consistently present 

in all red imported fire ant colonies, regardless of geographical location, it would be an 

excellent indicator of a symbiotic association. Therefore, those bacteria can become 

potential vectors of foreign genes in a control program against the red imported fire ant. 

For that purpose, several fire ant colonies from Texas, Louisiana, Mississippi, and 

Alabama (including the Mobile State Port) were collected and screened for the presence 

of the ten midgut bacteria. The abundance of each bacteria species will be determined, in 

addition to their exact geographical distribution from global positioning systems (GPS) 

data. 

These results will constitute the basis for a successful genetic transformation of 

only the best bacteria candidates. Future experiments will include the introduction of a 

gene to express a red fluorescent protein, and finally, the introduction of exogenous 
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genes with specific insecticidal properties (still under investigation). Results will 

potentially become part of a more effective and environmentally safe approach in a 

biological control program against the red imported fire ant in the United States. 

Materials and Methods 

 

Collecting sites. On August 2004, 17 different sites were sampled along the 

route from College Station, TX to Mobil, AL. These sites included the nearby areas to 

the docks at the Alabama State Port in Mobile, which is the point of entry for RIFA into 

the USA (Creighton 1930, Wilson 1959, Lennartz 1973). 12 more locations were 

sampled on a second trip in the summer of 2005 from College Station, TX to 

Brownsville, in south Texas. During the summer and fall of 2008, all the eight counties 

surrounding Brazos Valley, near Texas A&M University campus, were studied. Due to 

its proximity, the Brazos Valley area was more intensively sampled and its 14 collecting 

sites were grouped into eight counties. At least two to three fire ant colonies were 

collected per site on the other trips, and coordinates from a Global Positioning System 

(GPS) device were recorded for all the sites to map and track the bacteria populations. 

Maps were created with ArcView, Geographic Information Systems software developed 

by the Environmental Systems Research Institute (ESRI) in Redlands, California. 

Fire ant colonies. More than 80 fire ant colonies were collected from different 

sites in Texas, Lousiana, Mississippi, and Alabama including the port area in Mobile, Al. 

These colonies were dug directly from the field along with soil and placed in plastic 

buckets, then transported to the Entomology Research Laboratory (ERL) at Texas A&M 

University. Once the colonies settled and built new tunnels inside the buckets, they were 
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separated from the dirt using the drip-flotation method (Jouvenaz et al. 1977) and then 

placed inside plastic sweater boxes with the inner walls previously coated with Fluon®. 

Inside each tray, the nests or queen chambers were built of a Petri dish (different sizes) 

filled half way with dental stone (Castone®, Dentsply International Inc, York, PA), and 

with two holes drilled on the top plate for easy access. Colonies were ad libitum fed 

crickets, mealworm larvae and/or pupae, and 10% honey water solution every other day. 

Water was also readily available in the colony and supplied in a test tube with a cotton 

stopper. 

Sample processing. Immediately after separating the colonies from the dirt, 

several fourth instar larvae and adult workers were taken from each colony, placed in a 

2mL centrifuge vial, and properly labeled to identify their specific collecting site. These 

were surface sterilized following the methodology described by Li et al. (2005) and 

placed into new sterile vials, then dipped into liquid nitrogen for a few seconds and 

stored at -80°C. 

Midgut extraction. Following the procedures described by Li et al. (2005), 

midguts were extracted under sterile conditions inside a biological safety cabinet. With 

the aid of a dissecting microscope, the cuticle of the larva was carefully removed with 

forceps in a sterilized PBS solution to expose the midgut sac. To acquire enough DNA, a 

total of 20 larvae per sample were dissected. The 20 resulting midguts were then placed 

into a new vial; this procedure was repeated for all of the studied sites. 

DNA Isolation. Samples were thawed and quickly placed into a VWR® Screw-

Cap Microcentrifuge Tube 2.0mL with 20 to 30 glass beads (1.0mm- BioSpec Products 
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Inc.). Each tube is then placed in the MINI-BeadBeater™ BioSpec Products Inc. for 70 

seconds at 5000 rpm; when completely homogenized, it was transferred to an ice bin for 

DNA extraction. The Qiagen DNeasy Blood & Tissue Kit protocol for DNA isolation 

from gram-positive bacteria was slightly modified. The protocol included an incubation 

step at 56°C for 30 min after adding the proteinase K and Buffer AL, this timing was 

increased from 30 min to 1h. Such modification helped with the digestion of protein 

from the fire ant midgut tissue. The animal tissue (spin-column) protocol completed the 

bacterial DNA isolation, with another small change on step 7, where only 60µL of 

Buffer AE was used to increase the final DNA concentration. 

Primer design. Ten pairs of species-specific bacteria primers from RIFA 

midguts were designed by selecting distinct/unique regions of rDNA sequence after 

amplification with universal 16S rDNA primers and multiple sequence alignment 

software Vector NTI Suite 7 from Invitrogen (Li et al. 2005). However, two of the ten 

primer pairs (for Bac22 and Bac27) that were not at first species-specific were 

redesigned based on a unique base insertion or deletion on the 3’end of the primer and 

checked for specificity against all of the other midgut bacteria cultured in this study 

(Table 5).  The primers were then tested and confirmed for specificity against all ten 

midgut bacteria alongside negative and positive PCR controls (larval PBS and genomic 

DNA from midgut bacteria previously cultured from each of the ten species, 

respectively). After the specificity of the primers was confirmed, the primers were then 

used to test for the presence/absence of these bacteria in midguts of numerous fourth 

instar larvae collected from RIFA colonies throughout the southeastern United States. 
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Table 5. New set of species-specific bacteria primers from RIFA midguts. These were designed by selecting distinct/unique 

regions of rDNA sequence after amplification with universal 16S rDNA and tested for specificity.  

 

Primer Name 

Size of 

Amplification 

(base pairs) 

 Primer Sequence Bacteria Identification 

BAC4-5' 453 5'- TGG CTC CAA AAG GTT ACC TCA- 3' Enterococcus sp./durans 

BAC4-3'   5'- ACT CTA GAG ATA GAG CTT CCC- 3' 

 BAC22-5' 793 5'- CTT GTC GAT TGA CGT TAC CCC- 3' Klebsiella ornithinolytica  

BAC22-3'   5'- GTC GCT TCT CTT TGT ATG CG- 3' 

 BAC27-5' 957 5'- CTG GGA ACG TAT TCA CCG TA- 3' Kluyvera cryocrescens  

BAC27-3'   5'- AAA GTA CTT TCA GCG AGG AGG A- 3' 

 BAC36-5' 984 5'- CAT GAT TCT TAT TTG AAA GAA GCA A- 3' Lactococcus garvieae  

BAC36-3'   5'- GTT TAT CAC CGG CAG TCT CAC- 3' 

 BAC38-5' 500 5'- TAC GAC TTC ACC CCA GTC ATG- 3' Enterobacteriaceae   

BAC38-3'   5'- TCC ACA GAA GTT TCA GAG ATG A- 3' 

 BAC42-5' 1046 5'- CAC GCT ATC AGA TGA GCC TAA- 3' Pseudomonas aeruginosa  

BAC42-3'   5'- TTG GCA ACC CTT TGT ACC GA- 3' 

 BAC48-5' 450 5'- TAC GAC TTC ACC CCA GTC ATG- 3' Achromobacter xylosoxidans  

BAC48-3'   5'- ATG CCG AAG AGA TTG GCA GTG- 3' 

 BAC101-5' 406 5'- GGA GCT TGC TCC CGG ATG TT- 3' Bacillus pumilus  

BAC101-3'   5'- TGC GAG CAG TTA CTC TCG CA- 3' 

 BAC102-5' 958 5'- AGC TTG CTT CTC TGT CGG TG- 3' Listeria sp./innocua  

BAC102-3'   5'- GAA GCT CTG TCT CCA GAG TG- 3' 

 BAC104-5' 407 5'- GCA CAA GAG AGC TTG CTC TC- 3' Serratia marcescens  

BAC104-3'   5'- TTG ATG AAC GTA TTA AGT TC- 3' 

 27f 1432 5'- AGA GTT TGA TCM TGG CTC- 3' Universal Primers 16s rDNA 

1492r   5'- GGT TAC CTT GTT ACG ACT T- 3' 
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PCR reactions and gel electrophoresis. Each reaction (total volume: 25 µL) 

included a GoTaq® Green Master Mix 2X (12.5 µL) from Promega (Madison, WI) with 

a forward (2.5 µL) and a reverse primer (2.5 µL), PCR ready MilliQ water (Nuclease 

free), and 0.5 µL of the DNA template (concentration: 20ng/µL). Reactions were 

performed at the same time for each of the collecting sites to avoid any variations in the 

reaction preparation. Amplifications were performed in a Bio-Rad MyCycler, Personal 

Thermal Cycler programmed as follow: 2 min at 95 °C for one cycle, 1 min at 94°C, 1 

min at 55°C, and 2 min at 72°C for 30 cycles and a final 5 min at 72°C cycle. Gel 

electrophoresis was conducted in a 2% agarose gel, and stained with ethidium bromide. 

Bands in the gels were visualized with UV illumination and the digitally captured images 

were labeled and stored electronically. A 100bp DNA ladder marker from Promega 

(Madison, WI) was used for size comparisons. 

Results 

In this study, ten bacteria species previously studied by Li et al. (2005) were 

screened for their presence or absence in red imported fire ant colonies throughout the 

southeastern United States. Results from our first trip, from College Station, Texas to 

Mobile in Alabama, are summarized on Table 6. Notice that a sample collected on site 1 

(Vidor, TX) did not provide enough DNA (from midgut of 4
th

 instar larvae); nevertheless 

it was still included on the screening process. None of the ten species were detected on 

sites 5, 7, and 11. Gel electrophoresis results obtained for Kluyvera cryocrescens on that 

trip are shown on Fig. 7. The ethidium bromide stained bands are revealed after UV light 

exposure of the gels, each lane on the gel represents the 17 different collecting sites, plus 
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a positive and a negative control (Fig. 7).  Tables 7 and 8 summarize, in the same 

manner, the results from the gel images corresponding to the collecting trips to south 

Texas and Brazos Valley respectively. Notice again that on the south Texas trip (Table 

7), sites 3 and 11 did not provide enough bacterial DNA due to the small number of 4
th

 

instar larvae present in those colonies. The bacterium Lactococcus garvieae was 

abundant in the south Texas samples, gel electrophoresis results are shown on Fig. 8. An 

uncultured bacterium belonging to the Enterobacteriaceae family was also abundant in 

the Brazos Valley samples when compared to the other species at the same sites, gel 

electrophoresis results are shown on Fig. 9. 

Maps of the collecting sites and the bacterial populations were created with 

ArcView (GIS software, ESRI, Redlands, CA). Each map represents the exact 

geographical location for each collecting site in southeastern United States (Fig. 10) and 

Brazos Valley (Fig. 11). Some multiple sites may appear as a single red dot on the maps 

due to the fact that some sites were relatively near to each other and due to the large scale 

used on the maps construction.  

The distribution of bacteria was determined and results are shown for Mobile (Fig. 12), 

South Texas (Fig. 13), and Brazos Valley (Fig. 14). An overall value was also calculated 

for each bacteria species in southeastern United States (Fig. 15). To calculate the overall 

values, the total number of screened sites was adjusted to 34 because no genomic DNA 

from bacteria was detected in three of the 37 screened locations. 

Discussion and Conclusions 

 

In nature, the bacterial diversity is determined by numerous abiotic and biotic 
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Table 6. Bacterial distribution in RIFA colonies collected in 17 geographical locations from College Station, TX to Mobile, 

AL. Including collecting sites near the docks of the Alabama State Port, the RIFA point of entry to the USA. Samples 

collected on August 2008. BAC, bacterium isolate; +, Present; blank, absent.  

 

BAC Bacteria Identification 
Collecting Sites (College Station, TX - Mobile, AL)  Size 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 (base pairs) 

4 Enterococcus sp./durans   + + +   +   + + +     + + + + + 453 

22 Klebsiella ornithinolytica   +       +   +     
 

  
 

  
 

+   793 

27 Kluyvera cryocrescens   + + +   +   + + +   + + + + + + 957 

36 Lactococcus garvieae   + + +   +   + + + 
 

  + + +   + 984 

38 Enterobacteriaceae   +   +       +             +     500 

42 Pseudomonas aeruginosa   + +     +     +   
 

+ + + 
 

    1046 

48 Achromobacter xylosoxidans           +           + +         450 

101 Bacillus pumilus                     
 

  
 

  
 

    406 

102 Listeria sp./innocua                       +           958 

104 Serratia marcescens                     
 

  
 

  
 

    407 

16S Bacterial 16S Ribosomal DNA   + + + + + + + + + + + + + + + + 1432 
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Fig. 7. Gel electrophoresis results for Kluyvera cryocrescens (957 base pairs) from the trip to Mobile, AL. Lanes 1 

through 17 represent each collecting site; +C, positive control from pure culture; –C, negative control. 

100 bp 

DNA 

Marker 
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Table 7. Bacterial distribution in RIFA colonies collected in 12 geographical locations from College Station, TX to 

Brownsville, TX. Samples collected on July 2005. BAC, bacterium isolate; +, Present; blank, absent. 

 

BAC Bacteria Identification 
Collecting Sites (College Station, TX - Brownsville, TX) Size 

1 2 3 4 5 6 7 8 9 10 11 12 (base pairs) 

4 Enterococcus sp./durans + +     + +   + +     + 453 

22 Klebsiella ornithinolytica   
 

  
 

  
 

  
 

  
 

  + 793 

27 Kluyvera cryocrescens + +   +   + + +       + 957 

36 Lactococcus garvieae + +   
 

+ + + + + +   + 984 

38 Enterobacteriaceae   +       +             500 

42 Pseudomonas aeruginosa   
 

  +   
 

  +   +     1046 

48 Achromobacter xylosoxidans         +         +   + 450 

101 Bacillus pumilus   
 

  
 

  
 

  
 

  
 

    406 

102 Listeria sp./innocua                         958 

104 Serratia marcescens   
 

  
 

  
 

  
 

  
 

    407 

16S Bacterial 16S Ribosomal DNA + +   + + + + + + +   + 1432 
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Table 8. Bacterial distribution in RIFA colonies collected from eight adjacent counties in the Brazos Valley, TX. 

Geographical locations represent Brazos, Burleson, Washington, Grimes, Leon, Madison, Robertson, and Milam counties 

respectively. Samples were collected throughout the year 2008. BAC, bacterium isolate; +, Present; blank, absent. 

 

BAC Bacteria Identification 
Collecting Sites (Brazos Valley, TX) Size 

1 2 3 4 5 6 7 8 (base pairs) 

4 Enterococcus sp./durans + + + + + + + + 453 

22 Klebsiella ornithinolytica 

 

  

 

  

 

  

 

  793 

27 Kluyvera cryocrescens               + 957 

36 Lactococcus garvieae + + + + + + + + 984 

38 Enterobacteriaceae/unculture   +   +   + + + 500 

42 Pseudomonas aeruginosa 

 

  

 

  

 

  

 

  1046 

48 Achromobacter xylosoxidans                 450 

101 Bacillus pumilus 

 

  

 

  

 

  

 

  406 

102 Listeria sp./innocua                 958 

104 Serratia marcescens 

 

  

 

  

 

  

 

  407 

16S Bacterial 16S Ribosomal DNA + + + + + + + + 1432 
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Fig. 8. Gel electrophoresis screening results for Lactococcus garvieae (984 base 

pairs) from the South Texas trip. +C, positive control from pure culture; -C, negative 

control. 

 

 

 

    
 

Fig. 9. Gel electrophoresis screening results for Enterobacteriaceae/uncultured 

(≈500 base pairs) from the Brazos Valley. Sites 2, 4, 6, 7, and 8 showed a weak band on 

the gel, but they still screened as positive for the presence of that bacterium (isolate 38- 

Enterobacteriaceae). +C, positive control from pure culture; -C, negative control. 
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Fig. 10. Map of all collecting sites obtained with ArcView software (ESRI) from GPS data. A total of 43 sites covered 

an area from south Texas, near the border with Mexico, to the docks area in the State Port of Albama in Mobile. 
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Fig. 11. Map represents the 14 collecting sites within eight counties in the Brazos 

Valley, TX (Brazos, Burleson, Washington, Grimes, Leon, Madison, Robertson, and 

Milam) from GPS data. 

 

 

factors (Franklin and Mills 2003, Horner-Devine et al. 2004). The abiotic elements 

include, seasonal climate changes in temperature, relative humidity, and precipitations; 

also different types of soils with its physical properties, pH, chemistry, humidity, and 

organic matter content; and lastly, the pollutants from animal and human activities in 

particular. Among biotic factors, other bacteria are very important from the ecological 

standpoint, since they are able to keep certain bacteria in check or in perfect balance by 

restricting the growth of certain bacteria populations more than others. Antagonistic 

micro-organisms also present in the soils will inhibit or benefit certain species of 

bacteria. The plant composition of an ecosystem also carries its own array of specific 

microbes. Animals and humans, especially the later, also have an important impact on
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Fig. 12. Abundance of midgut bacteria in fire ant colonies collected from College 

Station, TX to Mobile, AL. All data are presented as a percentage of the total number of 

sites where that bacterium was present. For this trip, 17 sites equal 100%.  

 

 

 

 

 

 
 

Fig. 13. Abundance of midgut bacteria in fire ant colonies collected from College 

Station, TX to Brownsville, TX. All data are presented as a percentage of the total 

number of sites where that bacterium was present. For this trip, 10 sites equal 100%.  
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Fig. 14. Abundance of midgut bacteria in fire ant colonies collected from eight 

counties in the Brazos Valley, TX. All data are presented as a percentage of the total 

number of sites where that bacterium was present. For this trip, 8 counties equal 100%.  

 

 

 

 

 
 

Fig. 15. Abundance of bacteria found in the midgut of fourth instar larvae in fire 

ant colonies collected from southeastern United States. All data are presented as a 

percentage of the total number of sites where that bacterium was present. For this trip, 34 

sites equal 100%. 
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the bacteria composition through the environment (Horner-Devine et al. 2004).  In the 

case of fire ants, an omnivorous insect, the type of food available is also very important, 

directly affecting the bacterial fauna in the midgut lumen.  

According to Rosenzweig (1995), the habitat heterogeneity concept underlines 

the directly proportional relationship between number of species and sampling area. That 

is, the bigger the sampled area, the more species diversity would be found. Results 

definitely support this idea; 14 collecting sites in only eight adjacent counties in the 

Brazos Valley (Fig. 11), provided the smaller number of bacteria species for a given area 

with only 4 species represented (Fig. 14). However, the number of bacteria increased to 

7 species with only 12 collecting sites from south Texas, in part because of the larger 

sampling area extending from College Station to Brownsville (Fig. 10). This increase 

was even more evident in the Mobile trip where 8 bacteria species were isolated from 

fire ant colonies (Fig. 12), corresponding with the largest sampled area in southeastern 

United States (Fig. 10).  

The data from the Mobile and south Texas trips (Fig. 12 & 13), showed that the 

three most abundant species were Enterococcus sp./durans, Kluyvera cryocrescens, and 

Lactococcus garvieae, but when looking at the Brazos Valley sites (Fig. 14), Kluyvera 

cryocrescens was only present in 12.5% of the sites, and it was replaced by the 

uncultured bacterium of the family  Enterobacteriacea, found in 62.5% of the sites. 

Overall, Lactococcus garvieae was the most abundant of all, but it was only present in 

82.35% of all sites (Fig. 15). The second two most abundant species, Enterococcus sp. 

(79.41%) and Kluyvera cryocrescens (61.76%) were also inconsistently found (Fig. 15). 
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Bacillus pumillus and Serratia marcescens were not found at any of the sites (Fig. 15); 

however, these two missing bacteria species were isolated and cultured from RIFA 

midguts collected in Brazos county in our first publication (Li et al. 2005). This can be 

explained from the fact that some bacteria species found at much lower population 

densities are harder to detect, and when growing the bacteria in artificial media, these 

low population densities can rapidly increase.  

In summary, the midgut bacteria distribution in red imported fire ant colonies is 

determined by the ecosystem on which they develop, including its micro- and macro-

geographical variations (Franklin and Mills 2003, Horner-Devine et al. 2004, Bouwma 

et al. 2006, Remenant et al. 2009). Therefore, in this study conducted in Texas, 

Louisiana, Mississippi, and Alabama, the population distribution of a selected group of 

bacteria is very diverse and did not show a repetitive pattern even when sampled at a 

much larger scale in southeastern United States. Similar results have been shown in 

other insect groups such as in the well studied dipteran, Drosophila melanogaster 

(Corby-Harris et al. 2007). Although we could not conclude that there are obligate 

symbionts in the midgut of fire ants, we can assert that the entire bacterial community 

plays an important role in fire ant reproduction and overall fitness. Our recent 

experiments demonstrated that, after feeding fire ant queens with antibiotics and sterile 

food, they stopped laying eggs; but were able to recover after feeding them with the 

same type of food containing bacteria (unpublished data). 

This project was a continuation of our previous work (Li et al. 2005), and 

provided key information to reach our final goal of selecting the best bacteria candidates 



 

 

72 

7
2
 

for genetic transformation. The bacterial selection process was not only based on 

geographical distribution results, but also based in other factors including their 

biochemical and biological properties, as well as the bacteria background history.  

For example, Serratia entomophila, had been developed as a biological control 

agent against the grass grub (Costelystra zealandica), a pest of pastures in New Zealand 

(Federici 2007). According to the author, this bacterium is easy to grow and mass 

produced. The bacterium, Serratia marcescens, producing the red pigment called 

prodigiosin, is also a known pathogen of the Formosan subterranean termite, 

Coptotermes formosanus Shiraki (Connick 2001, Osbrink 2001), and other insects 

including hymenopterans (Grimont and Grimont 1978). In addition, Serratia marcescens 

have also been successfully used in previous feeding experiments with red imported fire 

ants (Jouvenaz et al. 1996). 

From the same family Enterobacteriaceae, the bacterium Enterobacter 

amnigenus, have been used as a host to express the cry4B gene of Bacillus thuringiensis, 

and toxic genes from B. sphaericus (Khampang et al. 1999) for mosquito control. As 

stated in the introduction, Enterobacter cloacae transformed with an ice nucleation gene 

have been used in biological control strategies (Watanabe et al. 2000).  

Although we chose only one of the most abundant species, Kluyvera 

cryocrescens, the other two selected species (Enterobacteriaceae/isolate #38 and Serratia 

marcescens) have both demonstrated to be good candidates for the introduction of 

foreign genes into the red imported fire ant colonies. 

 



 

 

73 

7
3
 

CHAPTER V 

GENETIC TRANSFORMATION OF MIDGUT BACTERIA FROM THE RED 

IMPORTED FIRE ANT, Solenopsis invicta Büren
*
 

 

Introduction 

Today the red imported fire ant has become one of the most important 

agricultural and urban pests in the United States (Vinson and Sorensen 1986, Vinson 

1997). In the five major Texan metroplexes alone, Lard (Lard 2002) estimated the 

annual cost for fire ant control to exceed 581 million dollars in 1998, while in the 

agricultural sector they exceeded 90 million dollars per year in 1999.  

Early efforts for countrywide fire ant control began as far back as 1960 and were 

dependent on insecticides. Among the prime fire ant habitats, wetlands and nature 

reserves are environmental sensitive areas and they cannot be treated due to 

environmental risks, therefore they serve as sources for re-infestation (Drees et al. 1996), 

which leads to failure of chemical control for fire ants. The use of other management 

strategies such as biological control is currently being investigated. The introduction and 

establishment of pathogens can potentially result in the suppression of fire ant 

populations and research on several biological control agents has been reported 

(Thorvilson et al. 1987, Drees et al. 1992, Durvasula et al. 1997, Porter 1998, Porter and 

Alonso 1999, Williams et al. 1999, Peloquin et al. 2000, Sauer et al. 2000, Peloquin et 

                                                 
*
 Reprinted with permission from Medina, F., H. Li, S. B. Vinson, and C. J. Coates. 2009. Genetic 

transformation of midgut bacteria from the red imported fire ant (Solenopsis invicta). Curr. Microbiol. 58: 

478-82. Copyright 2009 by Springer. 
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al. 2001, Bextine and Thorvilson 2002, Peloquin et al. 2002, Dotson et al. 2003). 

Recently, the use of symbiotic bacteria as biological control agents has been proposed 

and is considered a long-term sustainable solution (Durvasula et al. 1997, Beard et al. 

2002, Dotson et al. 2003, Bextine et al. 2004). One prominent example is the vector 

symbiont intervention (VSI) project that was initiated by Beard et al. (2002), see also 

(Durvasula et al. 1997, Dotson et al. 2003), to control Chagas disease. In studies aimed 

at evaluating the potential use of fire ant gut symbiotic bacteria for control applications, 

DsRed was used as a reporter gene for DNA introduction, a commonly used marker for 

transforming bacteria (Peloquin et al. 2000). 

        Symbiotic associations are widespread among invertebrates and it is estimated that 

at least 15-20% of all insects live in symbiotic relationships with microorganisms 

(Buchner 1965). According to our previous study of the red imported fire ant (Li et al. 

2005), we were able to culture at least ten different bacteria species from the midgut of 

the fourth instar larvae. Other uncultured species have also been identified from their 

midgut (Lee et al. 2008). Although the function and relationship of the gut bacteria with 

the ant host are still under investigation, they are excellent candidates for genetic 

transformation therefore a good alternative towards biological control applications. 

         In this research project we demonstrated that the some bacterial strains found in the 

midgut of the red imported fire ant, can be genetically transformed with a shuttle vector 

encoding DsRed. The results imply the use of the genetically transformed bacteria to 

monitor their natural spread and transmission within the colony, and suggest further 

investigation to exploit these species as potential biological control agents. 
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Materials and Methods 

Bacterial strains, recombinant plasmid and red imported fire ant colonies. 

Previously isolated strains, Kluyvera cryocrescens, Serratia marcescens, and isolate #38 

(Li et al. 2005), were re-streaked from glycerol stocks onto BHI media and incubated at 

37°C overnight. pZeoDsRed has been used previously for transforming insect associated 

bacteria (Peloquin et al. 2000, Peloquin et al. 2002). The red imported fire ant colonies 

used in this study were maintained at the Entomology Research Laboratory (College 

Station, TX).  

Competent cell preparation and bacterial transformation. Overnight cultures 

of K. cryocrescens, S.  marcescens and isolate #38 strains were re-inoculated into fresh 

low salt LB broth and incubated at 37°C with shaking until obtaining an OD590 of 0.56. 

The cells were chilled on ice and subjected to repeated washes in decreasing volumes of 

cold sterilized double distilled water and 10% glycerol solution until being finally re-

suspended in 1/500 of original volume of 10% glycerol. For transformation, 50µl 

aliquots of competent bacteria were mixed with 30ng of pZeoDsRed and subjected to 

electroporation (2.5 kV, 25 µF and 129Ω). After recovering at 37°C for 1hr with shaking 

in 1ml SOC, cells were plated on LB supplemented with 100mg/L Ampicillin and 

50mg/L Zeocin. Antibiotic-resistant colonies of the three transformed bacterial strains 

were examined for DsRed expression by observation with an Axiovot 100 fluorescence 

stereomicroscope equipped with a Rhodamine filter set (Carl Zeiss, Germany).  

Plasmid detection of pZeoDsRed in transformed bacterial strains. Plasmid 

DNA from the transformed bacteria was extracted using the Wizard® Plus SV Mini-
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preps DNA purification kit (Promega, Madison, WI) according to the manufacturer’s 

instructions. Undigested DNA was separated by gel electrophoresis on a 0.8% agarose 

gel. Plasmid DNA preparations from untransformed bacterial strains were used as 

controls. For Southern blot hybridization, approximately 1µg of plasmid DNA from each 

recombinant bacterial strain was digested with EcoRI, separated on a 0.8% agarose gel 

and transferred to a positively charged nylon membrane. Linearized pZeoDsRed was 

labeled with [P
32

]-α-dATP using the Prime-a-Gene®-labeling system (Promega, 

Madison, WI), according to the manufacturer’s protocols. Hybridizations were 

performed in aqueous hybridization buffer containing 5xSSC, 5x Denhart’s solution and 

1% SDS at 65°C overnight and then washed twice in 0.2xSSC, 0.1% SDS and once in 

0.1x SSC, 0.1% SDS at 65°C for 15min each. Autoradiography was performed by 

exposure to Kodak X-Omat film at -70°C.  

Plasmid stability test. The plasmid stability of pZeoDsRed in the three 

transformed bacterial strains was tested as described by Peloquin (2000) at both room 

temperature and 37°C.  

Re-introduction, detection and isolation of transformed bacteria in fire ant 

larvae. Six independent small fire ant colonies with fourth instar larvae and adult worker 

ants were prepared in artificial nests. Three colonies were selected to be fed with 

transformed bacteria, while the other three were fed with wild type untransformed 

bacteria. Bacterial cultures were grown at 37°C with shaking for 40hr (adding fresher 

medium after 16hr). Cells were collected and re-suspended in 10
-3

 volumes of fresh LB 

or 2xYT medium. Cell density was assayed by serial dilution of the bacteria and plating 
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on appropriate media. For each fourth instar larvae, a small droplet of bacterial solution 

was placed at the antero-ventral region, called “food basket” or praesaepium (Petralia 

and Vinson 1978), with the aid of a fine glass needle. Three days post feeding, 8-10 

larvae from each fire ant colony were surface sterilized in a 1.5 ml centrifuge tube by 

washing in 70% EtOH for 30 seconds, followed by two rinses in sterilized ddH2O and 

once in 300µl sterilized phosphate buffered saline (PBS). 150µl PBS from each tube was 

plated on LB+ Zeo
50

+Amp
100

 as a negative control. Larva, in the remaining 150µl PBS, 

were ground and plated on the same media for bacterial isolation. Surface sterilized 

larvae were also placed on glass slides and viewed with a MBIOII fluorescence 

microscope with a Rhodamine filter (Carl Zeiss, Germany). Images were acquired with a 

Carl Zeiss color digital camera and AxioVision 2.05 software system (Carl Zeiss, 

Germany). Similarly, seven days post-bacterial feeding, 8-10 newly emerged pupae were 

collected from each fire ant colony for sterilization, bacterial isolation and DsRed 

visualization as described above. 

        Upon pupation the larval gut and its contents are purged and expelled as meconium. 

The bacteria-fed larvae, pre-pupae and meconium were selected for UV-microscopy 

observations by following the protocol described above. Meconia were also collected, 

grounded and plated on LB+ Zeo
50

+Amp
100

 

medium for bacterial isolation. Some of the 

meconia containing the transformed bacteria were placed inside colonies with only wild 

type bacteria, in which adult worker ants followed their natural behavior of feeding 4
th

 

instar larvae with meconia. 8-10 larvae were selected three days post-meconial 

treatment, surface sterilized and bacterial isolation was performed by following the 
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protocol described above.  

Results 

Introduction and expression of the DsRed gene in fire ant midgut bacteria. 

The pZeoDsRed plasmid was introduced into K. cryocrescens, S. marcescens and isolate 

#38 strains by electroporation and DsRed was expressed in all three transformed strains. 

The transformation efficiency was 2.48x10
8
 cfu/µg DNA for K. cryocrescens and 

2.7x10
6
 cfu/µg DNA for S. marcescens, significantly higher than isolate #38, which was 

3.1x10
3
 cfu/µg DNA. The plasmid DNA was isolated and analyzed by agarose gel 

electrophoresis which revealed that the transformed bacterial strain contained an 

additional DNA fragment that co-migrated with intact pZeoDsRed plasmid. Southern 

blot DNA hybridization showed that only the transformed strains contained the 

hybridizing fragments. The DsRed florescence intensity in transformed cells of isolate 

#38 was higher than in K. cryocrescens and S. marcescens in either liquid culture or on 

agar plates with Zeocin and Ampicillin selection.  

Plasmid stability test. The stability of the pZeoDsRed plasmid in the fire ant 

midgut bacteria was assayed at both 37°C and 22-24°C, without Zeocin selection 

pressure. When transformed strains were maintained without antibiotic selection at 37°C 

for 48hr, all colonies of K. cryocrescens/ pZeoDsRed and isolate #38/ pZeoDsRed were 

fluorescence positive, indicating high stability (100%), while 98% of the S. marcescens/ 

pZeoDsRed colonies fluoresced following this incubation period. pZeoDsRed was stable 

without Zeocin selective pressure after subculture and growth for nine days at room 

temperature (22-24°C) in isolate #38, whereas the pZeoDsRed expression level in K. 
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cryocrescens was too low to observe in single colonies. However, the pZeoDsRed 

plasmid was still maintained in the transformed bacteria as confirmed by re-culturing the 

plate at 37°C, or re-streaking the colonies on LB+Zeo
50

 media. Stability of pZeoDsRed 

in the S. marcescens strain was low at room temperature without selection, with most of 

the colonies being non-fluorescent after nine days re-streaking on LB plates.  

Re-introduction of transformed midgut bacteria into fire ant colonies. 

Strains of K. cryocrescens, S. marcescens and isolate #38 carrying the pZeoDsRed 

plasmid were successfully re-introduced into the fire ant larvae by individually feeding a 

high cell density bacterial solution (10
10-12

 cfu/ml). The transformed bacteria survived in 

the fourth instar larvae with the DsRed being highly expressed in the midgut for 72 hrs 

post-feeding. 

After feeding the larva with the transformed bacteria, K. cryocrescens/pZeoDs-

Red, S. marcescens/pZeoDsRed, and isolate#38/pZeoDsRed, a strong DsRed fluorescen-

ce was observed at the larval stage and meconia for all the cases, compared to a low 

level of fluorescence in the pre-pupae (Fig. 16). Bacterial isolation from meconium 

obtained a large number of highly fluorescent bacterial colonies, confirming that most of 

the transformed bacteria came out with the meconium. Still, a small number of K. cryo-

crescens/ pZeoDsRed were successfully isolated from the pupae. DsRed-bacteria could 

not be isolated from the pupae in colonies fed with strain#38/ pZeoDsRed and S. 

marcescens/ pZeoDsRed, however, approximately 500 DsRed fluorescent positive colo-

nies were isolated from the pre-pupae in colonies fed with S. marcescens/ pZeoDs-Red. 

DsRed-bacteria were not isolated from the PBS solution (control), indicating a
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Fig. 16. Results from transformed bacteria feeding experiments in RIFA. Late 

fourth instar larvae (L) excretes the meconium (m), including most of the midgut 

bacteria, right before becoming prepupae (pp). Images A and B are the same 

photographs of individuals fed the wild type K. cryocrescens. Images C and D are the 

same photographs, this time of individuals fed the transformed K. cryocrescens / 

pZeoDsRed. No fluorescence at all can be seen in the wild type bacteria under the 

rhodamine filter (Image B), but it is highly expressed in the transformed bacteria (Image 

D). Notice the fluorescence levels in the meconium (m) after being excreted. Some 

transformed bacteria can still be isolated from the prepupae (pp) and pupae (not shown), 

see small fluorescent spots in the prepupae (pp) in image D. 
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successful surface sterilization protocol. 

The meconia produced in the transformed bacteria-fed colonies was collected 

and placed inside naive colonies to investigate a potential infection rate. Seventy-two 

hours after feeding, 8-10 surface sterilized larvae were used for bacterial isolation. The 

isolation resulted in 500 to 1,000 bacteria colonies with strong DsRed fluorescence on 

each of the samples. 

Discussion and Conclusions 

Among the ten bacteria species cultured from the fire ant midgut (Li et al. 2005), 

only three species, K.  cryocrescens, S. marcescens and isolate #38, were successfully 

transformed with a DsRed-encoding shuttle vector, pZeoDsRed. Although all three 

strains were successfully transformed with this vector, the transformation efficiencies 

and DsRed fluorescence levels were significantly different. For isolate #38, the 

transformation efficiency was significantly lower than that of the other two species, K. 

cryocrescens and S. marcescens. However, the expression of DsRed fluorescence was 

much higher in this species than in K. cryocrescens and S. marcescens. DsRed 

expression was higher at 37°C than at room temperature in the K. cryocrescens strain, 

however the pZeoDsRed plasmid was not lost during the lower temperature culture 

period and DsRed expression can be observed upon re-culturing at 37°C, or under 

antibiotic selection. pZeoDsRed was considerably stable in the absence of antibiotic 

selection at 37°C in all three isolated strains and was stable in K. cryocrescens and 

isolate #38 at room temperature. Possible explanations are that the growth and storage 

conditions evoke changes in the transformed population and that environmental 
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conditions could influence bacterial fitness. Expression differences could also be due to 

changes in protein secondary structure, post-translational modification of the hetero-

logous protein and the relative promoter strength in each species (Gerdes et al. 1986). 

        The use of genetically modified bacteria to combat the red imported fire ant is a 

potentially powerful tool. To reach this goal, we provide here some initial studies 

towards a possible field application for control of the fire ant. Firstly, bacteria which are 

closely associated with the fire ant midgut can be readily isolated and cultured in vitro. 

Secondly, a robust method for genetic
 
transformation of these bacteria exists, and 

genetically transformed bacteria can be maintained with minimal loss of the foreign gene 

both in vitro and in vivo. Also, genetically transformed bacteria can be
 

successfully re-

introduced and can survive in the fire ant for at least seven days. In addition, the normal 

function and maturation of the fire ant was apparently not affected by the genetic 

manipulation of the
 

midgut bacteria. Finally, we demonstrated that the infected 

meconium produced upon pupation of bacteria-fed larvae can be fed to uninfected larvae 

by worker ants, thus the transformed bacteria can be spread throughout the colony; even 

potentially reaching the reproductive queen.  

The successful introduction of the pZeoDsRed shuttle vector into fire ant midgut 

bacteria suggests that derivatives of this plasmid could serve as vectors for the 

expression of toxic proteins by these bacteria. This will allow the rapid screening of 

candidate effectors genes for use in fire ant control. We are now investigating candidate 

genes encoding toxic products for expression in K. cryocrescens, S. marcescens and 

isolate #38. 
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CHAPTER VI 

 

DISCUSSION AND CONCLUSIONS 

 

Alternative methods for the control of the red imported fire ant are desperately 

needed, particularly approaches that do not rely on the application of broad-based 

insecticides. As described in the Introduction, the use of genetically modified bacteria 

associated with insect species is an emerging field of research offering great promises. 

Prior to my first publications (Li et al. 2005, Medina et al. 2007), little research had been 

conducted on the relationship of red imported fire ants with endosymbiotic bacteria 

(Jouvenaz et al. 1977, Jouvenaz 1990c, b, Peloquin and Greenberg 2003). Only recently, 

within the past four years, entomologists are paying more attention to this association 

(Gunawan et al. 2008, Lee et al. 2008, Tufts and Bextine 2009).  

Until now, no research had attempted to genetically transform the Red Imported 

Fire Ant (RIFA) midgut bacteria for their reintroduction into RIFA colonies as a means 

of biological control. Therefore, this doctoral research project proposed a thorough 

investigation of the association between midgut bacteria and their RIFA host.  

Specifically, the objectives included: chapter II) isolation, culture, identification, and 

characterization of the midgut bacteria from the RIFA fourth instar larvae; chapter III) 

study the internal anatomy of the RIFA digestive system, and investigate bacterial 

abundance, and distribution, as well as the ant-bacteria interactions at the structural and 

ultra-microscopic level in the midgut; chapter IV) determine the abundance and 

distribution of RIFA bacteria in southeastern United States, and selection of best bacteria 

candidates for genetic transformation; and chapter V) genetically transform the selected 
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bacteria with a DsRed fluorescent protein, including their re-introduction into the RIFA 

colonies, and tracking and isolation of transformed bacteria from different RIFA 

developmental stages.  

After successful isolation and culture of bacteria living in the midgut of RIFA 

fourth instar worker larvae, the DNA was extracted from the pure bacteria cultures and 

analyzed by PCR-RFLP. The near-full length 16s ribosomal RNA gene and DNA 

sequencing results revealed the presence of the following ten cultured species from the 

midgut: Enterococcus sp./durans, Klebsiella ornithinolytica, Kluyvera cryocrescens, 

Lactococcus garvieae, Pseudomonas aeruginosa, Achromobacter xylosoxidans, Bacillus 

pumilus, Listeria sp./innocua, Serratia marcescens, and an uncultured bacterium from 

the family Enterobacteriaceae (Li et al. 2005). These bacteria were also characterized by 

their morphology, biochemical activity, and antibiotic resistance, thus providing 

important information for the selection of the best candidates for genetic transformation. 

Also, species specific primers were designed by Li et al. (2005) to later screen for the 

presence of these bacteria in field collected samples.   

The above results showed the presence of gram-negative and gram-positive 

bacteria in the midgut of worker larvae. Some of these bacteria were closely related to 

each other, and at least 40% belonged to the γ-subdivision of Proteobacteria with one 

bacterium in the β-subdivision. This increased my hope of finding a true symbiont, due 

to the fact that most insect symbionts are members of the phylum Proteobacteria, 

primarily within the class γ-proteobacteria (Moran and Telang 1998). 
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The following midgut bacteria species, Klebsiella ornithinolytica (Sakazaki et al. 

1989, Brenner et al. 2005), Kluyvera cryocrescens (Farmer et al. 1981, Brenner et al. 

2005), Serratia marcescens (Grimont and Grimont 1978, Brenner et al. 2005), and an 

uncultured bacterium are all members of the Proteobacteria (Gammaproteobacteria: 

Enterobacteriales: Enterobacteriaceae). These species can be found in the intestines of 

many organisms, including insects and humans, but also in soil, water, fruits, meats, 

eggs, vegetables, grains, flowering plants and trees. As noted, this group presents great 

heterogeneity in its ecology, host range, and pathogenic potential. Some members of this 

group are well known species, such as Escherichia spp., but most importantly, there are 

also well known insects symbionts. These include, Arsenophonus spp., an endosymbiont 

of insects (Gherna et al. 1991, Hypsa and Dale 1997, Trowbridge et al. 2006), Buchnera 

spp., a symbiont of aphids (Munson et al. 1991, Clark et al. 1992), and the 

endosymbiotic bacteria of the tsetse fly, Wigglesworthia spp. (Aksoy et al. 1995). These 

symbiotic bacteria form a large group with a common ancestor in the Enterobacteriaceae 

(Aksoy et al. 1995, Chen et al. 1999). 

 The genus Listeria, and specifically L. innocua (Firmicutes: Bacilli: Bacillales: 

Listeriaceae) is commonly found in soil, vegetation, wild and domesticated animals, 

humans, and food sources. Members of this genus also have the ability to survive 

extreme pH and temperature, as well as high salt concentrations. Some species are very 

common in fish, squids, crustaceans and other seafood. One species, Listeria 

monocytogenes, causes a severe food-borne disease called listeriosis (Seeliger and 

Schoofs 1977, Glaser et al. 2001). 
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From the genus Bacillus, B. pumilus (Firmicutes: Bacilli: Bacillales: Bacillaceae) 

was also isolated from the midguts. This genus is one of the most representative 

microorganisms in the soil (Parvathi et al. 2009). Due to their ability to form spores, they 

are highly resistant to extreme environmental conditions (Nicholson et al. 2000). For 

example, B. pumilus is one of the most abundant bacterial specie found in the interior 

and exterior surface of the International Space Station (La Duc et al. 2004). While some 

species have been isolated from the digestive track of insects, such as saw bugs and 

mosquito larvae, other Bacillus species have recently been found in the hemolymph of 

fire ants (Gunawan et al. 2008, Tufts and Bextine 2009).  

Another bacterium living in the midgut, Enterococcus sp./durans (Firmicutes: 

Bacilli: Lactobacillales: Enterococcaceae) had been isolated from milk and dairy 

products (Collins et al. 1984), and are tolerant to heat and desiccation. Although E. 

durans is found in the gastrointestinal track of humans and animals, it is not pathogenic 

(Sherman and Wing 1937, Devriese et al. 1987). 

The ubiquitous gram positive bacterium, Lactococcus garvieae (Firmicutes: 

Bacilli: Lactobacillales: Streptococcaceae), originally described as Streptococcus 

garvieae, was first isolated from cases of bovine mastitis. It is also found in human 

infections, blood, skin, urine, and wounds (Elliott et al. 1991), and had been isolated 

from various species of fish where it is considered a major pathogenic agent (Collins et 

al. 1983, Eldar et al. 1996). 

The common bacterium species, Pseudomonas aeruginosa (Proteobacteria: 

Gammaproteobacteria:  Pseudomonadales: Pseudomonadaceae) is widely distributed in 

http://www.gbif.net/species/13239774
http://www.gbif.net/species/13239774
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nature. Some members of this genus are pathogenic to humans, animals, or plants. In 

humans, they can be commonly found in wounds, burns, and urinary tract infections 

(Garrity et al. 2005). 

Lastly, another midgut bacterium isolated from the RIFA midgut, Achromobacter 

xylosoxidans (Proteobacteria: Betaproteobacteria: Burkholderiales: Alcaligenaceae), can 

be found in the water, soil, hospital environments, and in human clinical specimens as 

contaminants and/or pathological agents. Among human clinical specimens, they are 

found in blood, sputum, wounds, purulent ear discharge, spinal fluid, cerebral tissue, 

urine, feces, and, in a few cases, also from disinfectant solutions (Busse and Auling 

2005). This species is also important in the biodegradation of aromatic and halogenated 

compounds in nature (Boivin-Jahns et al. 1995). 

Although the role of these bacteria in the RIFA midgut is still under 

investigation, we have no indication that they cause any pathology. Studies emphasizing 

the role of these bacteria in fire ant physiology will be available in the future. Due to the 

history of insect symbiosis in the family Enterobacteriaceae, it offers great expectations 

for genetic transformation.   

The presence of 10 bacterial species in the midgut of fire ants left me with the 

question of whether there is or there is not a true symbiont. Therefore, I recognized the 

importance of finding specialized structures in relation to the bacteria in the midgut. 

Equally important was the need to determine their presence within the RIFA midgut 

tissues. By taking advantage of newly developed techniques in electron microscopy I 

studied the internal and external anatomy of the fire ant. I investigated the presence of 
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any specialized structures, such as mycetocytes (bacteriocytes), as an indicator of an 

obligate symbiont. I also determined the bacterial abundance and distribution inside the 

midgut, becoming the first application of SEM and TEM to study the bacteria-ant 

relationship in S. invicta. 

Thin sections for TEM exposed part of the digestive system’s internal structure, 

provided evidence of free living bacteria inside the midgut lumen, and revealed a 

possible functional association of the bacteria with their insect host. They also showed 

that bacteria are not contained within specialized structures in the epithelial cells of the 

midgut, discarding the possibility of a bacteriocyte-forming symbiont in the midgut. 

Once again, the TEM images demonstrated that bacteria were able to reach the midgut in 

adult worker ants. Due to the presence of a filtering system in the adult workers 

(Glancey et al. 1981) any particles > 0.9 μm in diameter would be filtered out, but in this 

case the midgut bacteria found were only 0.5 µm in diameter. These data supported the 

findings of Jouvenaz et al. (1990a, 1996). 

The importance of bacteria in the spread of RIFA in the United States and their 

potential use as biological control agents will require further investigation. Nevertheless, 

results confirmed the morphological adaptations of RIFA to its social lifestyle, feeding 

behavior and potential association with symbiotic microorganisms. 

The results clearly support the idea that in nature, the bacterial diversity is 

determined by numerous abiotic and biotic factors (Franklin and Mills 2003, Horner-

Devine et al. 2004) which also determine the habitat heterogeneity. The habitat 

heterogeneity concept (Rosenzweig 1995) states that the larger the screened 
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geographical area is, the more bacteria species would be found. For example, an analysis 

of the overall results revealed that the three most abundant species, Enterococcus 

sp./durans, Kluyvera cryocrescens, and Lactococcus garvieae, were found in > 60% of 

all sites, while only two species, Bacillus pumillus and Serratia marcescens were not 

found at any of the sites. On a smaller sampled area, corresponding to the “Texas trip”, 

Bacillus pumillus, Listeria sp./innocua, and Serratia marcescens were not found. 

Whereas in the smallest sampled area of Brazos Valley, Achromobacter xylosoxidans, 

Bacillus pumilus, Klebsiella ornithinolytica, Listeria innocua, Pseudomonas aeruginosa, 

and Serratia marcescens were not found at any site. Therefore, in this study conducted 

in Texas, Louisiana, Mississippi, and Alabama, the population distribution of the ten 

bacteria from the RIFA midgut was very diverse and did not show a repetitive pattern 

even when sampled at a much larger scale in southeastern United States. Although I 

could not conclude that there are obligate symbionts in the midgut of fire ants, we can 

assert that the entire bacterial community plays an important role in RIFA reproduction 

and overall fitness. Recent experiments demonstrated that, after feeding fire ant queens 

with antibiotics and sterile food, they stopped laying eggs; but were able to recover after 

feeding them with the same type of food containing bacteria (unpublished data). 

Results from the study of the abundance and distribution of RIFA midgut 

bacteria are important for selecting candidates for genetic transformation. Nevertheless, 

the bacterial species biology, and their biochemical and morphological characteristics 

are also equally important; all of them must be taken into consideration during the 

selection of the best candidates.  
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As noted previously, members of the family Enterobacteriaceae, might offer the 

best expectation as candidates. In addition, the history and biology of the bacteria is very 

important. For example, Serratia entomophila, has been studied as a biological control 

agent against Costelystra zealandica, a pest of pastures in New Zealand (Federici 2007). 

According to the author, this bacterium is easy to grow and mass produce. The 

bacterium, Serratia marcescens, producing the red pigment called prodigiosin, is a 

known pathogen of the Formosan subterranean termite, Coptotermes formosanus Shiraki 

(Connick 2001, Osbrink 2001), and other insects including hymenopterans (Grimont and 

Grimont 1978). Also, S. marcescens has been successfully used in previous feeding 

experiments with red imported fire ants (Jouvenaz et al. 1996). From the same family, 

Enterobacteriaceae, the bacterium Enterobacter amnigenus has been used as a host to 

express the Cry4B gene of Bacillus thuringiensis and toxic genes from B. sphaericus 

(Khampang et al. 1999) for mosquito control. Enterobacter cloacae is another bacterium 

that has been transformed with an ice nucleation gene and used in biological control 

strategies (Watanabe et al. 2000).  

Although I chose only one of the most abundant species, Kluyvera cryocrescens, 

the other two selected species (Enterobacteriaceae/isolate #38 and Serratia marcescens) 

have both demonstrated to be good candidates for the introduction of foreign genes into 

the red imported fire ant colonies. These three species, K. cryocrescens, S. marcescens 

and isolate #38 (Enterobacteriaceae), were successfully transformed with a DsRed-

encoding shuttle vector, pZeo-DsRed. These genetically transformed bacteria were fed 

to naïve larvae and monitored over time. My results demonstrated that RIFA workers 
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collected the meconia, containing the transformed bacteria, and fed them to larvae. The 

natural behavior of feeding meconia to 4
th

 instar larvae and to the queen/queens has 

proven to be very effective in the spread of transformed bacteria within the colony 

(Medina et al. 2009). Some of the transformed bacteria were recovered at the pupal 

stage, indicating that not all are excreted with the meconium.  

Based on results, it is important to determine and quantify to what extent 

transformed bacteria can reach the queen or queens when fed to a RIFA colony. Also, I 

must investigate how long these transformed bacteria can survive after reaching the 

RIFA adult stage. Moreover, future investigation must address the environmental risks 

of using transformed bacteria, and most importantly its effects on native ant 

communities. My ongoing research focuses on the role of midgut bacteria in RIFA 

reproduction and its effects over colony fitness. In feeding experiments, antibiotic 

treatments had a negative effect on egg production. Fire ant queens completely stopped 

laying eggs after feeding them antibiotics under sterile conditions. After 38 days, two 

selected fire ant colonies were fed with the same food, but unsterilized and containing 

bacteria, which resulted in a complete recovery of the queen’s egg laying capabilities 

until reaching the same level of brood production as in a control treatment. Further 

investigation of antibiotic effects will require multiple replications of each treatment and 

a thorough statistical data analyses. In addition, PCR screening of bacteria in the RIFA 

queens before and after antibiotic treatment will provide knowledge on how much 

antibiotics are affecting the bacterial populations, and thus queen reproduction.  
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The liquid part of the meconium has proven to increase egg production in the fire 

ant queen (Tschinkel 1995), therefore it is important to study the bacterial diversity in 

the meconia, and how this diversity is affected before and after antibiotic treatment. 

Based on the preliminary results from our antibiotic experiments, one could design an 

experiment to determine if any of the 10 midgut bacteria might actually be causing the 

effects on queen’s reproduction. This can be achieved first, by creating ten aseptic fire 

ant colonies (bacteria free) and independently feeding them with a specific bacterium 

from pure culture.    

During my research I made other observations which revealed that bacterial 

populations can change over time under laboratory conditions. This is determined by 

changes in RIFA’s diet; from a diverse bacterial community in the field, to the lack of 

diversity under laboratory conditions. My preliminary investigation demonstrated that 

some bacteria species were acquired through the diet in the laboratory (e.g. Listeria 

sp./innocua), while other species tended to disappear. Further investigation of these 

observations might explain one of the factors associated with the deterioration of the fire 

ant colony fitness under laboratory conditions. Supporting this idea, I observed the 

following effects on RIFA colonies previously fed with antibiotics in my experiments. 

After completion of the antibiotic experiments, these colonies were reintroduced into a 

rearing room and fed only with the regular diet (containing bacteria). Over time the 

queens not only recovered their ability to lay eggs, but also the colony’s fitness 

improved having a healthier appearance than other colonies of the same age. 
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To complement my research, the presence and role of bacteria in other tissues, 

using both molecular and electron microscopy tools must be investigated. It is especially 

important in those tissues because they are known to harbor symbionts in other insect 

groups. Particularly in RIFA, I suggest studying the hindgut tissue, the salivary glands 

and reservoir, the hemolymph, (Gunawan et al. 2008, Tufts and Bextine 2009), the 

ovaries, and fat bodies. The salivary glands and reservoir are directly involved in extra-

oral digestion of proteins, thus colony food processing, while highlights the important 

role of proteases. In the midgut, the attachment of some bacteria to specific molecules in 

the surface of the peritrophic envelopes indicates an association and a possible function. 

In Calliphora, these molecules are lectin proteins that bind to mannose carbohydrates, 

and according to Chapman (1998) some bacteria are known for binding to these sites. 

The function of this association is still unknown to science according to sources, and it 

was shown for the first time in RIFA in my research.   

To summarize, I have completed the identification and characterization of ten 

bacteria species which are closely associated with the fire ant midgut, these bacteria can 

be readily isolated and cultured in vitro. I have also investigated the internal structure of 

the fire ant midgut, and although there is no evidence of an obligate symbiont and/or 

specialized structures supporting endosymbiotic bacteria (bacteriocytes), they may still 

play an important role in fire ant digestion (under investigation). I have also, determined 

the distribution and abundance of the ten midgut bacteria species in fire ant colonies 

from southeastern United States. The results indicated a ubiquitous presence of the 

bacteria in the midgut of the red imported fire ant. 
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An effective method for genetic
 
transformation of bacteria was confirmed with 

 the transformation of three selected midgut bacteria species (Medina et al. 2009). These 

bacteria species can be genetically modified through the use of a transposable element 

vector that stably integrates transgenes into the bacterial chromosomes. The bacteria can 

be maintained with minimal loss of the foreign gene both in vitro and in vivo. My 

research demonstrated that transformed bacteria can be
 

successfully re-introduced and 

survive in the RIFA for at least seven days. No apparent changes on the normal function 

and development of RIFA were observed after the introduction of transformed midgut 

bacteria. Finally, the meconia produced upon pupation from transformed bacteria-fed 

larvae is collected by nurses in the colony and naturally fed to uninfected larvae, thus the 

transformed bacteria can easily spread throughout the colony and potentially reach the 

queen or queens.  

The use of genetically modified bacteria in a battle against the red imported fire 

ant is a potentially powerful tool. The current investigation provided preliminary results 

towards a biological control alternative in the red imported fire ant management program 

in the United Sates. 
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