
SEGMENTING HAND-DRAWN STROKES

A Thesis

by

AARON DAVID WOLIN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2010

Major Subject: Computer Science

SEGMENTING HAND-DRAWN STROKES

A Thesis

by

AARON DAVID WOLIN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Tracy Hammond
Committee Members, Andruid Kerne

Thomas Ioeger
Ann McNamara

Head of Department, Valerie Taylor

May 2010

Major Subject: Computer Science

iii

ABSTRACT

Segmenting Hand-Drawn Strokes. (May 2010)

Aaron David Wolin, B.S., Harvey Mudd College

Chair of Advisory Committee: Dr. Tracy Hammond

Pen-based interfaces utilize sketch recognition so users can create and interact

with complex, graphical systems via drawn input. In order for people to freely draw

within these systems, users’ drawing styles should not be constrained. The low-level

techniques involved with sketch recognition must then be perfected, because poor

low-level accuracy can impair a user’s interaction experience.

Corner finding, also known as stroke segmentation, is one of the first steps to

free-form sketch recognition. Corner finding breaks a drawn stroke into a set of

primitive symbols such as lines, arcs, and circles, so that the original stroke data

can be transformed into a more machine-friendly format. By working with sketched

primitives, drawn objects can then be described in a visual language, noting what

primitive shapes have been drawn and the shapes’ geometric relationships to each

other.

We present three new corner finding techniques that improve segmentation accu-

racy. Our first technique, MergeCF, is a multi-primitive segmenter that splits drawn

strokes into primitive lines and arcs. MergeCF eliminates extraneous primitives by

merging them with their neighboring segments. Our second technique, ShortStraw,

works with polyline-only data. Polyline segments are important since many domains

use simple polyline symbols formed with squares, triangles, and arrows. Our Short-

Straw algorithm is simple to implement, yet more powerful than previous polyline

work in the corner finding literature. Lastly, we demonstrate how a combination

technique can be used to pull the best corner finding results from multiple segmen-

iv

tation algorithms. This combination segmenter utilizes the best corners found from

other segmentation techniques, eliminating many false negatives (missed primitive

segmentations) from the final, low-level results.

We will present the implementation and results from our new segmentation tech-

niques, showing how they perform better than related work in the corner finding

field. We will also discuss limitations of each technique, how we have sought to over-

come those limitations, and where we believe the sketch recognition subfield of corner

finding is headed.

v

To me

vi

ACKNOWLEDGMENTS

Thanks to all of the members of the Sketch Recognition Lab for their helpful

feedback, especially Brandon Paulson, Joshua Johnston, and Paul Corey for early

thesis reviews. I’d like to thank my advisor, Dr. Tracy Hammond, for providing

valuable input during my tenure in the lab, as well as for her assistance with for-

mulating my thesis. Similarly, thank you to all of my committee members for their

advice and guidance during this process.

Finally, I’d like to thank my family for all of their support throughout these

years; I couldn’t have done this without you.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Pen-based Interfaces . 1

B. Corner Finding . 3

C. Complexity . 4

D. Contributions . 9

II BACKGROUND . 10

A. Sketch Recognition . 10

1. Gestures . 10

2. Templates . 13

3. Geometric Recognizers 16

4. Cognitive Basis . 19

B. Corner Finding . 20

1. Polyline Corner Finders 20

2. Multi-primitive Corner Finders 22

3. Direct Corner Finding Applications 30

4. Unsolved Problems . 32

C. Primitive Recognizers . 33

III MERGECF . 36

A. Motivation . 36

B. Implementation . 37

1. Curvature and Speed Values 37

2. Initial Fit . 38

3. Merging Segments . 41

4. Algorithm . 42

5. Intuition . 45

C. Results . 46

1. Accuracy Metrics . 50

D. Discussion . 53

1. Algorithm Speed . 54

E. Limitations and Future Work 55

1. Arc Issues . 55

viii

CHAPTER Page

2. Polyline Data . 58

3. Implementation . 59

4. Test Set . 59

5. Contributions . 62

6. Directions for Future Work 62

IV SHORTSTRAW . 63

A. Motivation . 63

B. Resampling . 64

C. Corner Finding . 67

1. Bottom-Up . 67

2. Top-Down . 68

D. Results . 70

E. Discussion . 71

1. Simplicity . 74

2. Complexity and Time 75

3. Potential Optimizations 76

4. Offline Possibilities . 76

5. Relation to Curvature 77

F. Extensions . 78

G. Contributions . 78

H. Limitations and Future Work 79

V COMBINING CORNER FINDERS 82

A. Motivation . 82

B. Implementation . 84

1. Step 1: Segmenters Used 85

2. Step 2: Subset Selection 85

3. Step 3: Training and Testing 91

4. Algorithm Summary 95

a. Single-stroke Segmentation 95

b. Training Algorithm 95

C. Results . 96

D. Discussion . 98

1. Thresholding . 99

2. Complexity and Time 100

3. Significance . 100

ix

CHAPTER Page

E. Gaining Intuition: Why Do We Need to Run Existing

Segmentation Algorithms? 101

F. Future Work . 105

G. Contributions . 106

VI CONCLUSION . 107

REFERENCES . 109

APPENDIX A: SHORTSTRAW PSEUDOCODE 118

APPENDIX B: ISTRAW . 126

A. Modifications . 126

1. Corners From Speed 126

2. Consecutive Collinear Tests 126

3. Hook Removal . 127

4. Addition of Curves . 128

B. Presented Results . 129

C. Discussion . 132

APPENDIX C: APPLICATIONS . 135

D. Geometric-based Recognizers 135

E. Corners as Features in Arrow Recognition 137

VITA . 141

x

LIST OF TABLES

TABLE Page

I Results for MergeCF and three baseline corner finders. The results

are for a set of 501 shapes drawn by six different users. The

average times, in milliseconds, were found by averaging over 20

runs. The metrics are discussed in Section C.1. 48

II Results comparing MergeCF with lines and arcs and MergeCF

with lines, arcs, and curves. 57

III Results for MergeCF and our baseline algorithms on polyline-only

data. There are 244 polyline-only strokes in our test set of 501 strokes. 57

IV Results for ShortStraw and our comparison corner finders. The

results are for a set of 244 polyline shapes drawn by six different

users. The average times, in milliseconds, were found by averaging

over 20 runs. 72

V Results for our corner subset selection algorithm (CSS) and the

six original finders we used. The results are for a set of 244 poly-

line shapes drawn by six different users. The average times, in

milliseconds, were found by averaging over 20 runs. 97

VI Results for our corner subset selection algorithm (CSS) without

using MergeCF as an original corner finder. We find these results

to have comparable performance to CSS with MergeCF, with the

added benefit of less segmentation time per stroke. 102

VII Results for modifications of the corner subset selection algorithm.

Here we have our original version (CSS), our subset selection tech-

nique applied to all points, and our subset selection technique

applied to an oversegmented set. 103

xi

TABLE Page

VIII Results comparing ShortStraw to IStraw on the 244 original poly-

line test strokes, as presented by Xiong and LaViola Jr. [59]. We

added a comparison to the ShortStraw algorithm we present in

this thesis. IStraw-C is IStraw with curve detection deactivated.

The 244 strokes were not tested with IStraw’s curve detection

turned on. The number of correct corners has been changed to

1841 from 1842 in the original paper; 1842 was a typo in Short-

Straw [58]. 131

IX Results comparing ShortStraw (from SBIM 2008 [58]) to IStraw

with curve detection. These values are for the 656 polyline strokes

in Xiong and LaViola Jr.’s dataset [59]. 131

X Results comparing ShortStraw (from SBIM 2008 [58]) to IStraw

with curve detection. These values are for the 1246 strokes in

Xiong and LaViola Jr.’s dataset [59]. The dataset contains both

polyline-only data (Fig. 57) and the line and curve data (Fig. 58). . 132

xii

LIST OF FIGURES

FIGURE Page

1 Examples of sketches in visual domains, such as circuit diagrams

1(a) and mathematics equations 1(b). These domains can be bet-

ter expressed through sketching than keyboard input. 2

2 Examples of pen-enabled devices. 3

3 The geometric recognizer process from drawn strokes 3(a) to the

recognized squares 3(d). Two different squares are first drawn by

users, the left square with only one stroke and the right square

with two strokes 3(a). The corners of these strokes are then found

3(b), and the strokes are broken down into primitive lines. These

lines are then evaluated using geometric constraints, such as if the

lines are of equal length or right angles to each other 3(c). When

both sketches from 3(a) are examined in this fashion, they appear

to be the same shape 3(d). 5

4 Each of these strokes has an additional segment due to noise. Each

false positive corner is at an inflection that generates a better

segmentation fit to the polygon with less error, but the corners

were unintended by the users. Removing these corners from the

final segmentation is a difficult task. 7

5 An example of a hook near the endpoint of a stroke. The hook

is the result of either pen-up or pen-down noise, which causes a

small jitter and rapid change of direction near the start or end of

a drawn stroke. 7

6 The same shape is drawn by two different users. The drawing

styles and noise levels are not similar, and the last line segment

in 6(b) could be difficult to classify as being necessary since it is

so small when compared to the other segments. 8

7 This stroke has an ambiguous segmentation. If the user intended

to draw a square, then the segmentation in 7(a) is correct. If they

tried to draw a pentagon, then the segmentation in 7(b) is correct. . 8

xiii

FIGURE Page

8 Palm’s Graffiti gesture system allowed users to write on a PDA

with a stylus and achieve high recognition results. The gesture

language mapped well to Roman characters, and the single-stroke

recognition allowed Palm devices to quickly and accurately classify

each stroke [14]. 11

9 Pen gestures are used for controlling a virtual reality environment [18]. 12

10 Above is an illustrative example of the Hausdorff distance. Sup-

pose we had a drawn stroke in red, dashed (A) and the template

above in blue, solid (B). The directed Hausdorff distance h(A,B)

would find the minimum values that a point in A is away from a

point in B; the maximum (showed here as a darker arrow) would

be the directed Hausdorff distance (Fig. 10(a)). The h(B,A)

value would be found in a similar fashion (Fig. 10(b)). Finally, the

maximum directed Hausdorff distance is found from the h(A,B)

and h(B,A) values (Fig. 10(c)). 14

11 Users could define and search for map markers with an image in

Wolin et al.’s JavaScript application [22]. In this example, a user

could search for the nearest McDonalds using the company’s dual

arch symbol. 15

12 Two examples of a geometric object and its corresponding shape

description [3]. On the left, an arrow is described as a shaft, head,

and constraints. The shaft and the head are formed with three

primitive lines. On the right, a family tree with a mother and

son connection uses the defined arrow description. In this family

tree example, more complex shapes like squares have already been

formed and recognized from simpler primitives. 17

13 A course of action infantry symbol. The symbol is composed of a

rectangle and two lines, where the lines form a cross (‘X’) in the

middle of the rectangle. 17

14 Part of the shape description for the military course of action sym-

bol, Infantry. The shape description specifies the primitives that

the shape contains (1 rectangle, 2 lines), as well as the constraint

interactions between the primitives. 18

xiv

FIGURE Page

15 A walkthrough of Douglas-Peucker’s algorithm. 21

16 A walkthrough of PaleoSketch’s polyline segmentation algorithm. . . 23

17 A drawn square, with its 4 corners marked with red points. The

direction and curvature graphs for this stroke are shown in Fig.

18(a) and 18(b), respectively. 24

18 Direction and curvature and graphs for the stroke in Fig. 17. 25

19 These stroke examples, A, B, and C, show how path length can

influence curvature values. Each of these examples are part of

some stroke, where the 3 points marked are sequential points used

to calculate the curvature of the indicated middle point. In these

cases, the window of points we use to calculate curvature isW = 1,

for simplicity. Without path length, all of the curvature values for

the middle point would be equal. But, if we examine these strokes,

we see that the spacing of the points matters for curvature. Sup-

pose we sample points at a constant rate. In A, the spacing of

the first and second points is so far apart that the third point

could be considered an artifact due to the user’s hand motions.

In B, the first and second point spacing has shrunk, giving more

weight to the curvature. Finally, in C, the spacing of the points

is relatively even, which indicates that the user’s stroke was more

steady at this section. In essence, we use the path length to try

and capture the user’s intention. 26

20 Yu and Cai’s error metric: feature area [40]. The feature areas

is the area of the drawn stroke to some optimal primitive. The

feature areas of lines, points, and arcs are shown here as dashed

sections. 27

21 The orthogonal distance squared error (ODSQ) is the summed,

squared error between every point on a given stroke segment with

the optimal representation, such as a perfect line or arc, fit to

that segment. The ODSQ is often normalized by either the stroke

segment length (Eqn. 2.6), or by the number of points in the

stroke segment (Mean-squared Error). 28

xv

FIGURE Page

22 A walkthrough of Sezgin’s segmentation algorithm. The walk-

through is for a polyline example so that the error metrics are

easily seen for each segmentation. The error values are calculated

using the normalized orthogonal distance squared error (Eqn. 2.6). . 29

23 Sezgin et al.’s algorithm first finds a polyline fit for a stroke, and

then it fits Bezier curves to the remaining segments. The images

here are taken from the original paper [41]. 29

24 Examples of local convexity and local monotonicity, as presented

by Kim and Kim [45]. 31

25 A typing gesture in Shark2 [49]. In this example, the user draws

the word “system”. 32

26 Pen gestures can be mapped to musical notes based on the number

of direction changes [51]. 32

27 Drawn strokes are beautified using Yu and Cai’s segmenter and

primitive recognizer [40]. 34

28 The same sketched square from Fig. 17, reprinted here. The

curvature and speed graphs for this stroke are shown in Fig. 29(a)

and 29(b). 39

29 Curvature and speed graphs for the stroke in Fig. 28. 40

30 Initial set of corners found for a stroke, which would split the

stroke into 9 primitive lines and arcs. False positives are circled. . . . 42

31 A visual walkthrough of the MergeCF segmentation algorithm. . . . 44

32 Initial set of corners found for a stroke consisting of an arc and a

line. Segment 2 is the smallest, unneeded segment and should be

merged with Segment 1. 45

xvi

FIGURE Page

33 Set of 23 symbols we used for testing. 6 users drew each of these

symbols up to 4 times each. 12 of the symbols contained both lines

and arcs (a), and 11 of the symbols contained only lines (b). Due

to some users quitting the study early and other data collection

issues, the total number of symbols collected was 501. Red dots

indicate the corners. 47

34 Examples of correctly classified symbols by MergeCF. These sym-

bols come from the set of 501 complex and polyline shapes drawn

by six users. The size ratio between the symbols has not been al-

tered, although each symbol is similarly scaled so that the entire

image will fit in the paper. 49

35 A stroke with examples of true positives, true negatives, false

positives, and false negatives highlighted. 50

36 Issues with segmenting arcs. 56

37 Sketched symbols from different, real-world domains. The do-

mains consist mainly consist of shapes formed from lines, poly-

lines, and ellipses. 60

38 Examples of military course of action (COA) symbols. The sym-

bols can be described using primitives and simple shapes such as

lines, ellipses, triangles, rectangles, diamonds, and dots. 61

39 The original points in 39(a) are varied in distance away from each

other, whereas the resampled points in 39(b) are interspaced evently. 64

40 An example demonstrating how the interspacing distance for the

resampled points is calculated. Note that we fit 80 points to the

diagonal in our implementation, but, for image clarity, we only fit

36 points to the diagonal in 40(d). 66

41 An example of “straws” in a stroke. The points (a-e) all have a

window of ±3 points. the distance at endpoints at these windows

forms a straw, with the shortest straws being at points (a), (c),

and (e). These points are considered corners. Points (b) and (d)

have straws that are close to the median straw length, so these

points are not initial corner candidates. 68

xvii

FIGURE Page

42 The 11 polyline symbols used during corner finder testing. These

symbols were drawn up to 4 times each by 6 different users, re-

sulting in 244 polyline strokes. 70

43 Examples of correctly classified symbols by ShortStraw. These

symbols come from the set of 244 polyline shapes drawn by six test

users. The size ratio between the symbols has not been altered,

although each symbol is similarly scaled so that the entire image

will fit in the paper. 73

44 The resampled points in this stroke are too far apart to accurately

find the correct corners in the small horizontal segments at the

bottom of this stroke. 80

45 Corner Subset Selection Process: (1) Take an input stroke, (2)

segment the stroke using six different techniques, (3) combine the

corners from all the techniques into one set, (4) pass the combined

corner pool to our subset selection algorithm, and (5) output the

best subset found. None of the original segmentations are correct,

but the final subset has the correct 6 corners. 84

46 This figure shows an example of the error between the original

stroke (gray stroke, black points), and a representation based on a

stroke’s corners (red lines). To calculate the mean-squared error,

the distances (black lines) between the original points and the

optimal polyline are squared, summed, and then averaged. 88

47 Mean-squared error (MSE) of the stroke in Fig. 45. As corners

are removed, the MSE has little change until critical corners are

removed. In this example, the correct number of corners is 6, so

critical corners are removed starting at i = 5. The segmentations

at i = 14, 10, 6, and 4 are shown here to illustrate how the subsets

change as the number of corners in a subset decreases. 89

48 This is the same data from Fig. 47, but with a log scale for the MSE. 89

xviii

FIGURE Page

49 ∆MSE described in Eqn. 5.2. This chart is for the stroke in Fig.

45, whose MSE plot is shown in Fig. 47. ∆MSE is essentially a

derivative of the mean-squared error, which deviates only slightly

until a critical corner is removed at i = 5. The ∆MSE from i = 6

to i = 5 is calculated to be 28.8. 90

50 An example of how Rbelow and Rabove are generated during training. . 92

51 Two Gaussian distributions are created from the Rbelow and Rabove

ratios for each set of training data. The optimal threshold is then

found to be at the intersection of these two Gaussians; in this

case, the threshold would be t∆MSE = 2.102. Note that Rbelow

is a much narrower Gaussian distribution than Rabove’s, and the

probability density for Rbelow goes to approximately 1.6. We chose

a smaller y-axis in order to highlight the intersection of Rbelow and

Rabove. 93

52 A subset of the 216 random polyline shapes used for training. The

polylines ranged from 2-line to 10-line shapes. The only drawing

constraints were the number of line segments in each polyline and

that the shape must be drawn with one stroke. Some users drew

common symbols (‘M’ and square), others drew common patterns

(zigzag), and a few drew random patterns of lines. 94

53 The 11 polyline symbols used during corner finder testing. These

symbols were drawn up to 4 times each by 6 different users, re-

sulting in 244 polyline strokes. 98

54 Issues with thresholding in our corner subset selection algorithm.

In both of these cases, the mean-squared error of the system would

rise considerably (i.e., above our found t∆MSE) if any corner was

removed. 99

55 An example of collinear line test issues in ShortStraw. In Short-

Straw, the A−B−F collinear test will eliminate a correct corner,

B, before the B − F −C tests remove the false positive, F . This

figure was created by Xiong and LaViola Jr. [59]. 127

xix

FIGURE Page

56 At each corner, ci, IStraw evaluates two angles, α and β, around

a window of resampled points. If ci is a correct corner, such as in

the figure on the left, β − α is close to 0. If ci is part of a curve,

then β − α is greater than 0. This figure was created by Xiong

and LaViola Jr. [59]. 128

57 The 11 polyline symbols used for testing in our ShortStraw evaluation. 129

58 The 10 line and curve symbols Xiong and LaViola Jr. collected.

This figure was presented in their SBIM 2009 paper [59]. 130

59 The ‘R’ symbol from Fig. 58 should have another corner where

the left vertical line and arc meet (circled here). This corner is

missing from the IStraw symbols due to Xiong and LaViola Jr.’s

recognition of “curvy” data, rather than curves. 134

60 Part of the shape description for the military course of action sym-

bol, Infantry. The shape description specifies the primitives that

the shape contains (1 rectangle, 2 lines), as well as the constraint

interactions between the primitives. 136

61 Two arrows can have different, arbitrary paths that indicate the

attack direction of units in course of action diagrams. 137

62 The three types of arrow heads we use segmentation to help recognize. 138

63 These two arrows, Task, Fix (63(a)) and Ground Supporting At-

tack (63(b)), differ only in the number of segments in the arrow’s

path. 139

64 These two arrows, Task, Follow and Assume (64(a)) and Task,

Follow and Support (64(b)), have a different number of segmenta-

tions in their tail. The number of segments, 5 and 6, respectively,

is one feature that helps classify the arrows. 139

1

CHAPTER I

INTRODUCTION

Computers today typically enforce interaction through direct-manipulation, WIMP-

based, and command-line interfaces. These interfaces require the user to explicitly

control objects on a screen through keyboard input and button presses. Although

these types of interactions work well in many environments, they have a poor mapping

to visual mediums.

Pen-based interaction, on the other hand, is a natural way for humans to commu-

nicate with computers within visual domains. For instance, UML diagrams [1], circuit

diagrams [2, 3], molecular structures [4], and even mathematical equations [5, 6] can

all be represented through pen-based input. By recognizing a user’s drawings, the

graphical structures and symbols can be inferred with little effort from the user. The

user simply has to sketch any symbols within the domain they are working in (Figure

1).

Unfortunately, as sketch recognition interfaces become more intelligent, the bur-

den of interaction and learning is placed on the algorithm developer. Instead of users

learning and adapting to a system, O’Connell et al. found that any errors are at-

tributed to the sketch recognition [7]. Therefore, in order for sketch recognition to

become widely accepted, the recognition itself must be close to perfect.

A. Pen-based Interfaces

People can communicate with computers through a multitude of pen-based input

devices, such as Palm PDAs [8], Wacom tablets and monitors [9], and Tablet PCs

The journal model is IEEE Transactions on Automatic Control.

2

(a) Circuit diagrams from [3]. (b) Mathematics equations from [5].

Fig. 1. Examples of sketches in visual domains, such as circuit diagrams 1(a) and

mathematics equations 1(b). These domains can be better expressed through

sketching than keyboard input.

(Fig. 2). These devices collect pen-data as a series of time-stamped coordinate points

in (x, y, t) tuples. Points are collected as soon as the pen is pressed down onto the

digitizing or touch-sensitive screen, and the recording stops once the user lifts their

pen up.

A single series of points, from pen-down to pen-up, is called a stroke. Strokes are

the building blocks for pen-based applications. At the lowest end, they can be used to

communicate information through invariable pen gestures that map to commands. At

a higher level, individual strokes can be combined together to form complex symbols

and shapes.

Sketch recognition is the study of how to classify gestures, symbols, and shapes,

as well as the interactions between the sketched components.

3

(a) A Cintiq 21UX Wacom interactive display
[9].

(b) A X200t tablet PC from
Lenovo [10].

Fig. 2. Examples of pen-enabled devices.

B. Corner Finding

Corner finding, also known as segmentation, fragmentation and cusp detection, is one

of the first steps to sketch recognition and is the focus of this thesis.

To fully support the claim that sketch recognition allows natural and intuitive

interaction (i.e., free-form), users should be able to draw in any style they choose.

Yet, there are an infinite number of ways to draw even a simple symbol, and, as

system developers, we do not want to create a template for every drawing approach.

Instead, we want to find the basic components of a symbol and transform the user’s

drawing into these components.

Corner finding is a critical step in free-form sketch recognition because the tech-

nique breaks strokes into their simplest building blocks called primitives. These primi-

tives can then be recombined to form more complex shapes, much like how steel beams

4

can form a complex structure for a building. The most common primitives are lines,

arcs, and curves, but primitives can also be more complex shapes like ellipses, spirals,

or helixes [11].

The technique is called corner finding because it divides the stroke at the corners

between primitives; similarly, it is also called segmentation because it splits a stroke

into primitive segments.

To illustrate why corner finding is useful, suppose a user draws the two symbols

in Fig. 3(a). Both symbols are squares, yet they are drawn using a different number

of strokes. Finding the corners of each stroke allows us to describe each symbol in

terms of four primitive lines (Fig. 3(b)). More complex shape descriptions are then

avoided, such as trying to account for a square drawn with two or three strokes.

Sketch recognizers can then apply sets of rules to the four lines in order to

determine a shape. The recognizer can find that the four lines are perpendicular and

of equal length (Fig. 3(c)), and the recognizer then classifies each symbol as a square

based on the primitives within the symbol and the geometric constraints satisfied.

More information on how these recognizers work is discussed in Background, Chapter

II, Section A.3.

The main point to take away from this example is that corner finding is necessary

to have large-scale, free-sketch recognition systems. As the number of strokes in a

symbol grows, such as in the Figure 1 sketches, corner finding becomes a necessity

since there are too many symbol variations to account for alone.

C. Complexity

Corner finding is a difficult problem and worthy of research. People draw in many

different styles and speeds, which can introduce varying amounts of noise into stroke

5

(a) Two squares drawn by a user; each
square is drawn differently.

(b) The corners are found within all of
the strokes.

(c) The primitive lines are examined un-
der square constraints.

(d) The two shapes are both recognized
as squares.

Fig. 3. The geometric recognizer process from drawn strokes 3(a) to the recognized

squares 3(d). Two different squares are first drawn by users, the left square

with only one stroke and the right square with two strokes 3(a). The corners

of these strokes are then found 3(b), and the strokes are broken down into

primitive lines. These lines are then evaluated using geometric constraints,

such as if the lines are of equal length or right angles to each other 3(c). When

both sketches from 3(a) are examined in this fashion, they appear to be the

same shape 3(d).

6

data. In order to create a corner finder that can work for a variety of users, we need

to:

• Reliably sample point data for strokes, ensuring that the user’s intended stroke

inflections are captured.

• Filter noise from strokes, removing any unwanted pen fluctuations while not

eliminating any important information.

• Find the perceived corners, picking only the points that are correct corners

while avoiding noise-induced segmentations.

• Ensure that corner finders run in real-time.

Each of these items is problematic when creating segmenters. Stroke-capturing

devices have different resolutions and sampling rates, so a corner finder designed using

data from one digitizing pad could be overtrained to that particular sampling rate and

have thresholds that do not work well for slower or faster sampled strokes. Likewise,

a higher sampling resolution could provide more reliable pen data, but it can also

introduce more noise from unintended pen movements. Any small jiggle or shake of

a pen can produce sharp inflections that appear to be corners (Fig. 4). A common

problem with stroke sampling is the introduction of “hooks” at the beginning and

end of stroke capturing, where the placing-down or lifting-up of a stylus will cause

sharp inflections to be captured (Fig. 5).

We also cannot simply assume that some segments, such as small sections near

the endpoints, are unintended. For instance, in the shapes in Fig. 6, the small

segment near the endpoint was deliberately drawn. In many of these cases, a stroke

could be segmented differently even by human recognizers (Fig. 7). Distinguishing

between these intended strokes and unwanted noise is a very difficult problem.

7

(a) (b) (c)

Fig. 4. Each of these strokes has an additional segment due to noise. Each false positive

corner is at an inflection that generates a better segmentation fit to the polygon

with less error, but the corners were unintended by the users. Removing these

corners from the final segmentation is a difficult task.

Fig. 5. An example of a hook near the endpoint of a stroke. The hook is the result of

either pen-up or pen-down noise, which causes a small jitter and rapid change

of direction near the start or end of a drawn stroke.

Lastly, segmentation algorithms must run in real-time since they are only one

component (and often the first step) in sketch recognition systems. The algorithms

must be able to efficiently segment strokes composed of hundreds of points, which

eliminates the usage of highly-accurate, but slow, dynamic programming approaches.

8

(a) A shape with 9 segmentations: 3 line
segments, 1 arc segment, and 4 more
line segments.

(b) The same shape as in 6(a), but with
a more ambiguous segment near the
endpoint. In this case, the last, small
line segment could easily have been clas-
sified as an unintended hook.

Fig. 6. The same shape is drawn by two different users. The drawing styles and noise

levels are not similar, and the last line segment in 6(b) could be difficult to

classify as being necessary since it is so small when compared to the other

segments.

(a) (b)

Fig. 7. This stroke has an ambiguous segmentation. If the user intended to draw

a square, then the segmentation in 7(a) is correct. If they tried to draw a

pentagon, then the segmentation in 7(b) is correct.

9

D. Contributions

This thesis benefits the sketch recognition community by addressing many corner

finding problems:

• We will demonstrate that smaller segments are more likely to be a result of

noisy data, and we eliminate them by merging smaller segments with their

larger neighbors. (Chapter III)

• We introduce the notion that segmentating strokes into polylines (as opposed

to multiple primitives such as lines and arcs) is sufficient for sketch recognition.

(Chapter III)

• We implement a fast and efficient corner finder, ShortStraw, that is more accu-

rate that other polyline corner finders. (Chapter IV)

• We provide simple, elegant, and easily understandable pseudocode for our Short-

Straw corner finder, allowing sketch application developers to quickly incorpo-

rate segmentation techniques. (Appendix A)

• We address the problem that different corner finder techniques often find dif-

ferent segmentations. By using an ensemble learning approach to merge results

from multiple segmentation algorithms, we are able to choose a better overall

segmentation for a stroke. (Chapter V)

• We analyze both the benefits and drawbacks of each segmentation technique we

introduce, and we mention how the work can be extended in future segmentation

research.

10

CHAPTER II

BACKGROUND

A. Sketch Recognition

There are many techniques and algorithms used for recognizing sketches. The tech-

niques range from being inflexible to allowing unconstrained drawing, and they ac-

commodate single-stroke to multi-stroke input.

1. Gestures

The simplest sketch recognition solutions work with constrained, single-stroke ges-

tures. Gestures are highly-constrained pen drawings that correspond to basic sym-

bols or commands. Rubine introduced single-stroke pen gestures as an alternative to

direct manipulation interfaces [12]. Rubine analyzed stroke data and extracted a set

of features from the series of x, y, and time values recorded. His small, but robust,

feature set included 13 features such as the total gesture length, the total curvature

of the gesture, and the maximum drawing speed of the gesture. Rubine’s technique

then trains a linear classifier on a set of gestures to classify, creating a feature key for

each gesture. When a user creates a new stroke, the 13 features of the stroke are first

extracted, and the new stroke’s feature vector is compared against all of the features

keys. The new input stroke is then classified according to the gesture the stroke’s

feature vector is closest to in the 13-dimension feature space. Newer research by Long

et al. has improved the feature sets used during gesture classification [13].

Gesture recognition is important to the sketch recognition community because it

allows strokes to be easily classified using a simple set of features. The ease of imple-

mentation of the classifier also allows many application developers to utilize sketched

11

Fig. 8. Palm’s Graffiti gesture system allowed users to write on a PDA with a stylus

and achieve high recognition results. The gesture language mapped well to

Roman characters, and the single-stroke recognition allowed Palm devices to

quickly and accurately classify each stroke [14].

gestures as an alternative to pure direct-manipulation interfaces. Palm Computing’s

Graffiti handwriting system is one of the more well-known examples of gesture recog-

nition. Graffiti classifies a single-stroke gesture alphabet that has a decent mapping

to its Roman character counterpart [14, 15] (Fig. 8).

Besides using gestures as symbols and alphabets, gestures allow users to perform

commands with a stylus, sans keyboard input. Landay and Myers utilized editing

gestures in a prototyping application called SILK [16]. SILK users can sketch an in-

terface layout with a stylus, and gestures for copying, deleting, and grouping sketched

components are available. A follow-up sketch design application, DENIM, uses simi-

lar editing gestures [17]. Bimber et al. use 2D pen gestures to control a virtual reality,

3D environment [18]. Their set of gestures controls object creation, editing, selection,

and context menus (Fig. 9).

12

(a) A 3D virtual reality environment with
2D pen-based interaction. Here, the user
controls the environment with a pen selec-
tion of objects.

(b) The set of 2D gestures available to the user. Some of the gestures are for
content editing, while others are for environment control.

Fig. 9. Pen gestures are used for controlling a virtual reality environment [18].

13

2. Templates

Image template matching is also an important sketch recognition technique and is

more impervious to symbol drawing style than feature-based algorithms, such as

Rubine’s approach [12]. In template matching, a given set of strokes is converted into

a pixelated image, and this image is then compared to a set of template images. The

drawn image is classified as the template that it is a closest match to, given some

evaluation algorithm and metrics. The actual number of drawn strokes is typically

unconstrained, but templates themselves must be very unique, since subtle changes

are difficult to detect in templates.

The Hausdorff distance has been widely used to evaluate image-template matches.

Eqn. 2.1 defines the directed Hausdorff distance between the sets of points A and

B as the maximum of the minimum neighbor distances between a point a ∈ A and

all points in B. In other words, h(A,B) finds the maximum distance bound for a

point a ∈ A to be away from a point b ∈ B. The point distance equation can be any

distance function, such as Euclidean distance.

Eqn. 2.2 is referred to as the Hausdorff distance and calculates the maximum of

the directed Hausdorff distances between the point sets A and B. Fig. 10 provides a

graphical walkthrough of the algorithm.

h(A,B) = max
a∈A

min
b∈B
||a− b|| (2.1)

H(A,B) = max(h(A,B), h(B,A)) (2.2)

Huttenlocher et al. use the Hausdorff distance model to compare complex 2D

images, including the ability to match partial images [19]. Dubuisson and Jain propose

the use of a modified Hausdorff distance to match templated images while avoiding

14

(a) Directed Hausdorff distance,
h(A,B). A is the dashed, red path and
B is the solid, blue path. The maximum
of the minimum pair distances is shown
as the darker arrow.

(b) Directed Hausdorff distance,
h(B,A). The maximum of the min-
imum pair distances is shown as the
darker arrow.

(c) The final Hausdorff distance, taken
to be the maximum value from h(A,B)
and h(B,A).

Fig. 10. Above is an illustrative example of the Hausdorff distance. Suppose we had

a drawn stroke in red, dashed (A) and the template above in blue, solid (B).

The directed Hausdorff distance h(A,B) would find the minimum values that

a point in A is away from a point in B; the maximum (showed here as a

darker arrow) would be the directed Hausdorff distance (Fig. 10(a)). The

h(B,A) value would be found in a similar fashion (Fig. 10(b)). Finally, the

maximum directed Hausdorff distance is found from the h(A,B) and h(B,A)

values (Fig. 10(c)).

15

Fig. 11. Users could define and search for map markers with an image in Wolin et

al.’s JavaScript application [22]. In this example, a user could search for the

nearest McDonalds using the company’s dual arch symbol.

outlier issues presented in a regular Hausdorff distance function [20].

Kara and Stahovich use three separate image comparison techniques, including

Dubuisson’s Hausdorff distance metric, to match drawn strokes with defined templates

[21]. More recently, the Hausdorff distance metric was applied to recognizing symbols

drawn in a JavaScript application mimicking an iPhone interface [22]. The applet

showed how sketched symbols can be used to mark and search for locations on Google

Maps (Fig. 11).

Wobbrock et al.’s $1 recognizer is a cross between gesture-based recognition and

template matching [23]. $1’s core algorithm is template matching: it takes a drawn

stroke and compares it to a set of template symbols, choosing the symbol that has the

least error between the stroke and the template. $1 is rotation and scale invariant,

but it also has some constraints not normally associated with template matching

algorithms, chiefly that strokes must be drawn in a gesture-like manner with a given

start point and drawing pattern. The main benefit of $1 is that the recognizer is easy

to implement, and Wobbrock et al. provide pseudocode for the algorithm.

16

3. Geometric Recognizers

Geometric recognizers provide the most unconstrained multi-stroke recognition. In

a geometric recognizer, shapes are defined as a set of primitives and constraints

[3, 24, 25]. The constraints can evaluate how primitives are connected, the angle

two primitives form, the distance between two primitives, if one primitive contains

(encloses) another, etc. Fig. 12 shows how SketchREAD handles geometric recog-

nition, and Fig.13 and 14 show an example of a military course of action shape to

recognize and the description of the shape.

In order to have free-form geometric recognition, user-drawn strokes are broken

into their primitive components via corner finding algorithms and primitive recogniz-

ers. The resulting set of primitives is then evaluated against each shape description

available. The drawn shape is scored against a shape description’s component and

connective constraints, and the resulting shape description values are used to deter-

mine a ranking of possible shapes that the drawn primitives satisfy. For example, if

a user drew 1 rectangle and 2 lines, the shape might satisfy the shape description for

Fig. 13. Yet, if the user drew 1 circle and 2 lines, the shape description in Fig. 14

would not be satisfied.

Due to geometric recognizers’ reliance on primitives, improving corner finding

provides the greatest benefit to these types of recognition systems.

17

Fig. 12. Two examples of a geometric object and its corresponding shape description

[3]. On the left, an arrow is described as a shaft, head, and constraints. The

shaft and the head are formed with three primitive lines. On the right, a family

tree with a mother and son connection uses the defined arrow description. In

this family tree example, more complex shapes like squares have already been

formed and recognized from simpler primitives.

Fig. 13. A course of action infantry symbol. The symbol is composed of a rectangle

and two lines, where the lines form a cross (‘X’) in the middle of the rectangle.

18

<?xml version="1.0" encoding="UTF-8"?>
<shapeDefinition name="infantry" description="Infantry">

<componentList>
<!-- the frame [rectangle] -->
<component name="rectangle" type="Rectangle" />

<!-- the infantry -->
<component name="posLine" type="Line" />
<component name="negLine" type="Line" />

</componentList>

<constraintList>
<!-- CONTAINS RELATIONSHIPS -->
<constraint name="Contains">

<param component="rectangle" />
<param component="posLine" />

</constraint>

<constraint name="Contains">
<param component="rectangle" />
<param component="negLine" />

</constraint>

<!-- LINE ORIENTATIONS -->
<constraint name="PositiveSlope">

<param component="posLine" />
</constraint>

<constraint name="NegativeSlope">
<param component="negLine" />

</constraint>

<!-- SIZE RELATIONSHIPS -->
<constraint name="SameSize">

<param component="posLine" />
<param component="negLine" />

</constraint>
. . .

</constraintList>
</shapeDefinition>

Fig. 14. Part of the shape description for the military course of action symbol, In-

fantry. The shape description specifies the primitives that the shape contains

(1 rectangle, 2 lines), as well as the constraint interactions between the prim-

itives.

19

4. Cognitive Basis

Many sketch recognition ideas stem from theories concerning how the brain processes

images. One of the more basic vision and sketch recognition techniques is template

matching, where an input stroke or sketch is compared to a known pattern for clas-

sification [2, 23]. In cognition, this process is referred to as the template matching

theory. The templates and input might be rotated, translated, scaled, or reflected

to achieve match equivalence [26, 27], but the overall theory does not account for

complex visual recognition such as fragmented images or the fact that humans would

need hundreds of thousands of templates in order to match patterns [28].

The feature analysis theory of human cognition is more applicable to general

sketch recognition processing. In the feature analysis theories, visual objects have

distinctive features that make the object unique. For instance, letters are composed

mainly of horizontal, vertical, and angled lines with various component interactions

and constraints [29]; geometric sketch recognizers work in a similar fashion [25]. By

looking at the features of an object, the entire object can be understood. This idea

that objects are recognized as sets of features is reinforced through neuroscience.

Hubel and Wiesel showed how brain cells in the visual cortex are activated only when

presented with certain visual stimulus [30]. A horizontal bar of light might trigger

an electronic impulse in one cell, but the same cell would receive no impulse when a

vertical bar of light was shown.

20

B. Corner Finding

1. Polyline Corner Finders

Polyline corner finders have used a variety of techniques to estimate a polygon rep-

resentation of stroke data. These techniques seek to model a stroke using the least

number of line segments, maximizing each segment’s length and minimizing the over-

all fit error. Some of these techniques include performing a linear search across the

line, finding points that deviate heavily from the direction of the line [31, 32], search-

ing for the minimum least-squares error given some metric and constraints [33, 34],

and using machine learning algorithms [35].

Douglas and Peucker’s segmenter is a widely used polyline corner finding algo-

rithm [36]. The algorithm was created in 1973 to simplify cartography map represen-

tations. Storing the map contour representations as a series of small lines is preferable

to storing every point in the map. Their algorithm starts by creating a line, L, be-

tween the first point of the stroke (anchor) and the last point (floater). If the stroke

between the anchor and the floater is a line, then the anchor is moved to the current

floater. Otherwise, the algorithm finds the point along the stroke between the anchor

and floater that is the maximum distance away from L. This new point is added to

the list of corners and becomes the new floating point. A new line is found between

the anchor and the new floater, and the process is repeated, recursively. When the

anchor and floater are the same point (i.e., the last point of the stroke), then the

algorithm terminates. The algorithm is shown visually in Fig. 15).

The Douglas-Peucker algorithm has spawned many other polyline corner finders

seeking to improve upon its technique [37, 38, 39].

The primitive recognizer PaleoSketch uses a similar line-test algorithm to find

corners in polylines [11]. PaleoSketch’s polyline segmenter works by sequentially

21

(a) User draws a polyline stroke. (b) The anchor (star) and floater (cir-
cle) are chosen as the endpoints of the
stroke. The optimal line between the
anchor and floater is shown as a dashed
line.

(c) The point on the original stroke that
is farthest away from the optimal line
is found (square). If this point is far
enough away from the optimal line, it is
a potential corner.

(d) The furthest point from step 15(c)
now becomes the new floater, and a
new point furthest from the new opti-
mal lines is found.

(e) The potential corner from 15(d) was
not far enough away from the optimal
line. The anchor point is moved to the
floater’s position, and the floater point
is reset to the end of the stroke. The
previous anchor point is considered a
corner (diamond).

(f) The process from 15(c) to 15(e) is
repeated until the anchor point reaches
the end of the stroke. At this point,
all five corners for this stroke have been
found.

Fig. 15. A walkthrough of Douglas-Peucker’s algorithm.

22

running line tests (Fig. 16). The algorithm starts by initializing point indexes a and

b to be 0 and 1, respectively. The stroke segment between point pa and pb is checked

to see whether it passes a line test. If so, then b = b+ 1, and the process is repeated.

If the segment between pa and pb does not pass a line test, then pb−1 is considered a

corner and a = b− 1 and b = b. This process continues until b is equal to the number

of points in the stroke (i.e., the last point).

2. Multi-primitive Corner Finders

Sketch recognition often tries to find the corners of complex strokes that contain

multiple primitives, not just lines. The most common technique to segment complex

strokes involves finding the curvature at each point in the stroke and then choosing

the points that satisfy some curvature constraints [40, 41, 42].

Taking the points of a stroke as a data series, we can find the curvature at a point

by calculating the second derivative of the data. The first derivative of a stroke is

the direction at each point, which is the angle of the stroke between each consecutive

pair of points (Eqn. 2.3, Fig. 17 and 18(a)) [40]. The variable i is the index of a

point in a stroke, such that p0 ≤ pi ≤ pN ∈ stroke.

directioni = arctan

(
yi+1 − yi

xi+1 − xi

)
(2.3)

The second derivative is the change in direction across a window of points, also

known as curvature (Eqn. 2.4, Fig. 18(b)).

curvaturei =

∑k+W−1
k=i−W |directionk+1 − directionk|
pathLength(i−W, i+W)

(2.4)

Fig. 17 and 18 show an example shape and its direction and curvature graphs.

An equation to calculate the path length of a stroke (i.e., the distance of the

23

(a) User draws a polyline stroke. (b) The segment between the points at
index a (star) and b (circle) is sent to
a line test. The test passes, and b is
increased by 1.

(c) After a few loops, the line test be-
tween a and b continues to pass, and b
continues to move through the stroke.

(d) The line test between pa and pb fails

(e) Add pb−1 to a set of corners and set
a = b − 1 and b = b. Previously found
corners are labeled with diamonds.

(f) The process from 16(b) to 16(e) is
repeated until b reaches the end of the
stroke. At this point, all five corners for
this stroke have been found.

Fig. 16. A walkthrough of PaleoSketch’s polyline segmentation algorithm.

24

stroke between points at indices a and b) is also provided in Eqn. 2.5. The path

length is used in the calculation of curvature to reduce the influence of stroke scale

on curvature values; a large direction change over a small distance is more indicative

of a curvature change than the same direction changes over a larger path length (Fig.

19).

pathLength(a, b) =
b−1∑
i=a

√
(xi+1 − xi)2 + (yi+1 − yi)2 (2.5)

It is important to note that curvature and speed data can also be applied to

polyline corner detection [43].

Fig. 17. A drawn square, with its 4 corners marked with red points. The direction

and curvature graphs for this stroke are shown in Fig. 18(a) and 18(b),

respectively.

25

(a) Direction graph. The direction of the stroke is relatively
constant 4 times, which is when the 4 lines of the square are
being drawn. The direction changes rapidly at the corners. The
x-axis is the path length of the stroke, in pixels.

(b) Curvature graph. The curvature peaks five times during the
stroke’s drawing, once at each endpoint of the stroke, and once
for each internal corner. The peaks at the endpoints are due
to noise from when the user starts and stops drawing; they are
referred to as “hooks” and will be discussed later.

Fig. 18. Direction and curvature and graphs for the stroke in Fig. 17.

26

Fig. 19. These stroke examples, A, B, and C, show how path length can influence

curvature values. Each of these examples are part of some stroke, where

the 3 points marked are sequential points used to calculate the curvature of

the indicated middle point. In these cases, the window of points we use to

calculate curvature is W = 1, for simplicity. Without path length, all of the

curvature values for the middle point would be equal. But, if we examine

these strokes, we see that the spacing of the points matters for curvature.

Suppose we sample points at a constant rate. In A, the spacing of the first

and second points is so far apart that the third point could be considered

an artifact due to the user’s hand motions. In B, the first and second point

spacing has shrunk, giving more weight to the curvature. Finally, in C, the

spacing of the points is relatively even, which indicates that the user’s stroke

was more steady at this section. In essence, we use the path length to try and

capture the user’s intention.

27

Fig. 20. Yu and Cai’s error metric: feature area [40]. The feature areas is the area

of the drawn stroke to some optimal primitive. The feature areas of lines,

points, and arcs are shown here as dashed sections.

Yu and Cai created a corner finder that uses direction and curvature information

to find the corners of a stroke [40]. The authors first try to fit a single primitive (line,

arc, or circle) to the entire stroke. An arc is defined as a portion of a circle. If the

primitive fit has too large an error, then the stroke is split at the point of highest

curvature. The two resulting segments are then fit to primitives again, and the process

is repeated until the entire error of the system is below a predefined threshold. Their

system also introduces the idea of feature area, or the area of a drawn stroke segment

in relation to a beautified version of the same segment (Fig. 20).

Sezgin et al. use the notion of pen speed to help determine stroke corners [41].

In their system, points of high curvature and low pen speed are considered corner

candidates. The idea of using a user’s drawing speed for segmentation has been

around since the 1970s [44], where corners are found when the user slows down the

pen. After Sezgin et al. obtain an initial collection of curvature and speed corners,

28

Fig. 21. The orthogonal distance squared error (ODSQ) is the summed, squared error

between every point on a given stroke segment with the optimal representa-

tion, such as a perfect line or arc, fit to that segment. The ODSQ is often

normalized by either the stroke segment length (Eqn. 2.6), or by the number

of points in the stroke segment (Mean-squared Error).

their system greedily picks either the best curvature or speed corner, one at a time,

and creates a new corner fit for the stroke using the picked corner and the previous

corner fit. The best corner is determined by whichever corner lowers the error of the

system the the most, where error is determined as the orthogonal distance squared,

normalized by the stroke segment length (Fig. 21, Eqn. 2.6):

Error =
1

|S|

N∑
i=0

(pi − opti)2 (2.6)

This process of adding the best curvature or speed corner candidate to create a

new fit is continued, and then a final polyline corner fit is chosen as the fit with the

least amount of corners and an error below some developer-defined threshold (Fig.

22). After the polyline fit is generated, Sezgin et al. try to fit Bezier curves to

segments that are not recognized as being lines (Fig. 23).

Kim and Kim propose new curvature metrics in their corner finding system [45].

These metrics, local convexity and local monotonicity, measure the curvature in the

same direction at a point. Convexity is computed by summing all of the curvatures

29

(a) Error = 159 (b) Error = 146

(c) Error = 141 (d) Error = 1.04

Fig. 22. A walkthrough of Sezgin’s segmentation algorithm. The walkthrough is for a

polyline example so that the error metrics are easily seen for each segmenta-

tion. The error values are calculated using the normalized orthogonal distance

squared error (Eqn. 2.6).

Fig. 23. Sezgin et al.’s algorithm first finds a polyline fit for a stroke, and then it fits

Bezier curves to the remaining segments. The images here are taken from the

original paper [41].

30

of the same sign within a window (Fig. 24(a)) , whereas local monotonicity looks

at decreasing curvatures of the same sign around a point (Fig. 24(b)). Kim and

Kim also have a different measure for the curvature at a point. Their system first

resamples the points of a stroke to be equidistant from one another. Since the distance

between consecutive points is now constant, a point’s curvature value does not have

to take into account path length changes, so the curvature at each point is equal to

the direction change at that point.

The corner finders previously mentioned all require developer set thresholds for

different properties, such as curvature and speed thresholds or the interspacing dis-

tances for resampled points. Other corner finders avoid relying on hard-coded vari-

ables. Bandera et al. use a multi-pass algorithm to detect the curvature, or contour,

scale for strokes of various sizes [46]. Other segmenters find the optimal noise-filtering

scale to segment a stroke [47, 48]. This technique increasingly applies Gaussian filters

to curvature data, and, as the filters smooth the data, the number of detected corners

drops. The optimal scale is determined to be where the number of corners reduced

by increasing the smoothing factor tapers off.

3. Direct Corner Finding Applications

Some applications can benefit directly from corner finding without relying on sketch

recognition. Keyboard input on small-scale, mobile devices is a significant issue, and

the ATOMIK keyboard and SHARK software seeks to add another input option for

people using pen-based devices [49, 50]. A virtual keyboard is displayed to the user,

and the user “gestures” over the keyboard to type, hitting every letter they want with

their stroke. The location and movement of the gesture are used to determine the

intended word (Fig. 25). Although the SHARK system does not currently use corner

finding as explained, the addition of finding the key points and changes in a stroke’s

31

(a) Local convexity. The local convex-
ity sums the direction values of the same
size around a given point, with the re-
gion of support bounded by some con-
stant k. Here, with k = 1, the local con-
vexity at point pi is equal to the sum of
the direction values at pi−1, pi, andpi+1.
Since pi−1 has the opposite sign of pi, the
convexity at point pi is ci = 90 + 50 =
140. This convexity region of support is
denoted by the dashed boundary, and
the full region of support is the solid
rectangle.

(b) Local monotonicity. The direction
values for the points are di−1 = 75,
di = 30, and di+1 = 75. The local
monotonicity sums the direction for de-
creasing curvatures of the same sign,
so the local monotonic curvatures are
ci−1 = 105, ci = 30, and ci+1 = 75. The
local convexities at these points would
be ci−1 = 105, ci = 180, and ci+1 = 75,
for a supporting window of k = 1.

Fig. 24. Examples of local convexity and local monotonicity, as presented by Kim and

Kim [45].

direction could provide a benefit to the system.

Corners can also be used as features during stroke classification. Gestures cor-

responding to musical notes can encode information in sharp direction changes (i.e.,

corners) of a stroke [51]. These direction changes were used to indicate note duration

(Fig. 26). Corners are also used as a feature in MARQS when searching for previous

sketches [52] and by Patel et al. to help identify sketched strokes belonging to shape

32

Fig. 25. A typing gesture in Shark2 [49]. In this example, the user draws the word

“system”.

Fig. 26. Pen gestures can be mapped to musical notes based on the number of direction

changes [51].

versus strokes composing text [53].

Other applications for corner finding are discussed in Appendix C.

4. Unsolved Problems

All segmenters can be improved in their segmentation accuracy. Since segmentation

is often the first step toward recognizing a sketch, any errors in segmentation can

percolate through a system and cause larger symbol and sketch errors.

No current corner finder has also found a good solution to finding the correct

33

corners and filtering incorrect corners due to noise. Sezgin et al. [41] and Stahovich

[42] augment curvature-based approaches by using pen-speed, and, although this

process does help pinpoint relevant corners, it can also be an additional source of

noise. As Stahovich noted in his paper, false corners can be introduced if a user has

a more constant drawing style than average, such as a trained calligrapher. In these

cases, the user’s more constant pen-speed causes even small speed fluctuations to

introduce more false positive corners.

Most segmenters also use empirically found thresholds [11, 36, 40, 41, 42, 45].

Although these thresholds work well on each author’s tested data, they can be suscep-

tible to hardware changes (such as an increased sampling rate in digitizing pads), dif-

ferent user styles, or different domains. Instead, any segmentation thresholds should

be trainable so that developers can easily find the correct threshold for a system.

Multiple primitive segmentation is also an unsolved problem. Some corner finders

try to handle segmenting a stroke into both lines and arcs [40, 41, 42, 45], but multiple-

primitive corner finder accuracies tend to be much worse than polyline corner finders.

It is also debatable as to whether the construction of primitives should be left to

low-level, primitive recognition, one step above segmentation.

We will address each of these problems during the motivation sections of our own

segmenters (Chapters III-V), describing where the current segmenters are lacking and

how our research has improved the field.

C. Primitive Recognizers

Primitive shape recognition and segmentation are often synergistic. Yu and Cai use

the pen input’s direction graph to segment a stroke into primitive lines, but they

also utilize the direction graph to determine other basic primitives, such as circles

34

Fig. 27. Drawn strokes are beautified using Yu and Cai’s segmenter and primitive

recognizer [40].

and rectangles [40]. These primitives can then be beautified by replacing the original

stroke segments with the optimal representation (Fig. 27). Sezgin et al. have a similar

idea; they mention how recognition can be accomplished using simple, hand-crafted

templates for primitives [41].

Hershberger and Snoeyink [37] and Hse et al. [54] also fit primitives to stroke

segments in order to find the corners of a stroke for beautification purposes. Hersh-

berger’s algorithm is an extension of the Douglas-Peucker algorithm for line simpli-

fication [36]. Hse et al. fit both line segments and elliptical arcs to symbols using

dynamic programming techniques [54].

Paulson’s recent work took segmentation and primitive recognition one step fur-

ther. The primitive recognizer, PaleoSketch, uses a trivial polyline segmentation along

with finely-tuned heuristics in order to segment complex shapes [11]. PaleoSketch first

breaks a given stroke into a series of line segments. Then, PaleoSketch analyzes the

resulting segmentation using heuristics such as the number of line segments, the di-

rection changes in the segments, and how the segments fit to an optimal shape (such

35

as fitting the polyline to an ellipse or helix).

36

CHAPTER III

MERGECF

One of our first attempts to improve stroke segmentation involved strokes composed

of both lines and arcs [55]. We present a multi-pass corner finding algorithm called

MergeCF that is based on continually merging smaller stroke segments with similar,

larger stroke segments in order to eliminate false positive corners. MergeCF provides

a substantial improvement over three benchmark corner finders.

A. Motivation

MergeCF work was inspired by the work of Sezgin et al. [41] and Stahovich [42].

These segmenters use curvature and speed values to segment a stroke. Sezgin et al.’s

algorithm finds an initial set of corners that oversegments a stroke, and then they

rank each corner based on some curvature metrics and greedily add the best corners,

one at a time, to a final set of corners. Once the final set of corners has a fit error

less than some developer-defined threshold, the algorithm stops and the final set of

corners is returned.

Sezgin et al.’s greedy algorithm relies on the assumption that the correct corners

to add to the system will always be ranked highest according to their metrics. Since

the algorithm cannot backtrack and remove an added corner from the final set, the

ranking metric must be perfect and rank every correct corner above every incorrect

corner. We found that this ranking metric was susceptible to any noise or jitters in

the user-drawn stroke, and MergeCF was created to try and account for this noise.

Stahovich also used pen speed and curvature to detect corners [42]. Unlike Sezgin

et al.’s approach, Stahovich relies more heavily on chosen thresholds for average speed

and curvature. Stahovich’s algorithm does not build a fit greedily but seeks to remove

37

false positives by merging segments together. Their algorithm has many constraints

as to when segments can be merged: strokes must be less than 20% of the length of

their neighbors in order to be merged, merged pairs of strokes must be of the same

primitive type, and the merged fit error must be no more than 10% than the fit

errors of the two individual segments. When analyzing strokes, we found that these

constraints are too rigid; we designed MergeCF to handle more general data.

B. Implementation

MergeCF utilizes curvature and speed differences within a stroke to obtain an initial

corner segmentation for the stroke. We then repeatedly merge smaller stroke segments

with longer segments, and, if the fit for the merged segment is less than 50% more

than the sum of the individual segment errors, we eliminate the corner between the

two segments.

1. Curvature and Speed Values

Our curvature and speed values are based on the equations given by Stahovich [42]

and Yu and Cai [40]. These equations were discussed in Background chapter of this

thesis, Chapter II, but are reproduced here.

The distance between two points is the Euclidean distance between the points,

and the path length across a series of points pa, pa+1, . . . , pb is taken to be the sum of

the Euclidean distances between each pair of points (Eqn. 3.1).

pathLength(a, b) =
b−1∑
i=a

√
(xi+1 − xi)2 + (yi+1 − yi)2 (3.1)

where xi and yi are the respective x and y values of the point, pi.

Curvature values for a point at stroke index i are taken to be the change in

38

direction (Eqn. 3.2) across a window of points, divided by the path length across the

window (Eqn. 3.3).

directioni = arctan

(
yi+1 − yi

xi+1 − xi

)
(3.2)

curvaturei =

∑k+W−1
k=i−W |directionk+1 − directionk|
pathLength(i−W, i+W)

(3.3)

Speed at a point, pi, is calculated as the path length change across the point,

divided by the time (t) difference (Eqn. 3.4).

speedi =
pathLength(i− 1, i+ 1)

ti+1 − ti−1

(3.4)

2. Initial Fit

After we compute the curvature and speed values for each point, we find an initial set

of corners by taking points that are local maxima (for curvature) and local minima

(for speed), with respect to set curvature and speed thresholds. Our curvature local

maxima are the greatest curvature values at a peak in the curvature graph; each

maxima is bounded by the points at which the peak positively crosses the threshold

until it decreases below the threshold. The local minima are found in a similar fashion.

Curvature and speed corners are found separately and then combined into one set of

corners.

In this implementation, our thresholds were set to find points that are local

maxima above the average curvature and local minima below 90% of the average

speed. An example of these thresholds in action can be seen in Fig. 28 and 29. These

thresholds were found empirically using a set of 157 line and arc shapes. Empirically

derived thresholds are common in segmentation algorithms [11, 36, 40, 41, 42, 45].

39

Our usage is justified given the existence of a separate dataset that we found our

thresholds on before we begin testing.

In order to reduce the effects of noise, we iterate through the initial set of corners

and check for points that are close together in proximity. If two corners are less than

15 pixels apart, then we remove the corner with the smallest curvature from the initial

fit. We also remove corners closer than 10 pixels to the endpoints since these are most

likely due to noise from stroke hooks from unwanted pen movements during pen-down

and pen-up events.

Fig. 28. The same sketched square from Fig. 17, reprinted here. The curvature and

speed graphs for this stroke are shown in Fig. 29(a) and 29(b).

40

(a) Curvature graph. The average threshold is shown as a horizontal, red line.
5 local maxima (marked with red points) are above this threshold and are
possible corners.

(b) Speed graph. The speed threshold of 0.90 × avgSpeed is shown as a hor-
izontal, red line. 10 local minima (marked with red points) are below this
threshold and are possible corners.

Fig. 29. Curvature and speed graphs for the stroke in Fig. 28.

41

3. Merging Segments

Our initial corner fit tends to contain a few extraneous points that overfit the stroke.

The main algorithm involved with our corner finding system is designed to eliminate

these false positives, and MergeCF works on the assumption that corners surrounding

the smallest segments are those more likely to be false positives overfitting the data.

The algorithm first finds the smallest stroke segment, checks if the segment can

be merged with any of its neighbors, and then merges the segment with the best

neighboring segment. The best segment is determined to be the segment that has the

least primitive fit error (either line or arc) when combining the two segments.

The fit error calculations we use come from PaleoSketch [11]. The two primitives

our system handles are lines and arcs, and the PaleoSketch primitive recognizer cal-

culates line and arc fit errors by finding the mean squared error and the feature area

error [40] for each segment.

We use a line test to discern which primitive fit to use for each segment. Lines

must to pass a ratio test, where the test takes the Euclidean distance length between

the two points and divides the value by the path length between the points [41, 42].

If this ratio is greater than a set threshold, then the segment is a line. If the ratio

is less than the threshold, then the segment is considered an arc. The appropriate

primitive fit errors are then computed. In our algorithm, the line ratio test threshold

is equal to 0.95.

As an example, Fig. 30 shows a symbol with an initial corner fit containing three

false positives (the circled points) and numbered stroke segments. Merging segment

5 with segment 4 would still result in an arc fit error that is not too much higher than

the either segment 4 or 5’s original error. Yet, merging segment 5 with segment 6

would produce a very high primitive error for either lines or arcs. Therefore, the best

42

Fig. 30. Initial set of corners found for a stroke, which would split the stroke into 9

primitive lines and arcs. False positives are circled.

segments to merge are 4 and 5, and the circled point in between the two segments is

removed from the corner set.

4. Algorithm

A more formal definition of our algorithm is as follows:

1. Calculate the path length of each segment between corners.

2. Calculate the average path length of the segments.

3. Sort the segments from step 1 in ascending order, based on the path lengths.

4. For each segment s shorter than the average segment:

(a) Determine whether the segment is a line or an arc, using the line ratio test.

Calculate the primitive fit error of the segment, FitErrors.

43

(b) Perform line ratio tests and calculate the appropriate fit errors of the seg-

ments to the left and to the right of segment s, if there are any. These are

FitErrors−1 and FitErrors+1, respectively.

(c) Calculate the primitive fit error of the joined segments s− 1 and s, which

we will call FitErrorleft. Also, calculate FitErrorright from s and s+ 1.

(d) If FitErrorleft < FitErrorright and FitErrorleft < 1.5 ∗ FitErrors−1 +

FitErrors, then remove the corner between s−1 and s. Otherwise, preform

similar checks for the right side of the segment.

5. Repeat steps 1-4, but, after each run, multiply the average segment by the

number of runs. This steadily increases our “segment shorter than” threshold.

Stop repeating once every segment is shorter than this threshold.

The threshold of 1.5 in step 4(d) was found by examining a set of training data.

We analyzed our data and discovered that having the merged segment error be no

more than 50% greater than the sum of the individual segment errors gave produced

good segmentations.

MergeCF’s algorithm underperforms when trying to merge two line segments.

The primitive fit error for two individual line segments tends to be much lower than

the fit error for the joined segments. After running the above algorithm, we iterate

through our remaining segments and check specifically for two consecutive lines. If

both lines have similar slopes, we merge the two segments together by eliminating

the corner between them.

To provide further clarity for how our algorithm works, a visual walkthrough is

presented in Fig. 31.

44

(a) Original points of the stroke. (b) Corners found using curvature and
speed thresholds. Some points pass
both curvature and speed tests.

(c) Sort the segments by length. (d) Check whether segment 1 can be
merged with segments 2 or 4.

(e) Merge segments 1 and 4, eliminating
the corner between them.

(f) Repeatedly check and merge seg-
ments until no more can be merged.
This is the last merge before the algo-
rithm terminates.

Fig. 31. A visual walkthrough of the MergeCF segmentation algorithm.

45

5. Intuition

Our decision to merge the smallest segments first works because of the inherent way

that symbols are drawn. Complex (multiple-primitive) and polyline stroke symbols

tend not to have segments that have extreme variance in length. Therefore, very

small stroke segments attached to much longer segments are typically noisy data that

should be removed. This is especially true of the small stroke hook segments near the

endpoints.

If an initial corner fit contains few false negatives (i.e., missing corners), then the

any error in the segmentation can be assumed to be from false positives. Now, if we

assume that all of the stroke segments are drawn at the same scale (i.e., relatively

same length), then any false positives would split a stroke segment of average length

into smaller pieces. Therefore, the merging algorithm should start by examining

the smallest stroke segments since they are most likely to contain false positives as

end points. Continually increasing the threshold that determines which segments are

small ensures that all stroke segments will eventually be evaluated.

Another reason why we want to merge smaller segments first is due to the way

fit errors are calculated. Suppose a stroke consisting of an arc and a line has the

initial fit shown in Fig. 32. If the algorithm started by merging the largest segments

Fig. 32. Initial set of corners found for a stroke consisting of an arc and a line. Segment

2 is the smallest, unneeded segment and should be merged with Segment 1.

46

first, then segment 2 would be merged with Segment 3 since the error calculation

for the line consisting of 2 and 3 is not substantially different than the line error for

Segment 3 alone. In fact, Segment 2 can be considered a hook of Segment 3 since it

is substantially smaller. A much better option would be to merge Segment 1 and 2

together to form a slightly larger arc. To avoid the problem of merging Segment 2

and 3 we let the smallest segments decide their best merging options.

C. Results

MergeCF was developed around a training data set consisting of 157 unistroke shapes

drawn by five users taking a sketch recognition course at Texas A&M. The algorithm

was tested on a different set of data based on the symbols presented by Kim and Kim

[45]. This test set consisted of 501 complex shapes and polylines, each drawn with a

single stroke (Fig. 33). During the collection of both data sets, users were asked to

sketch a given shape with easily defined corners.

Results were gathered on three other corner finders as well, Sezgin et al.’s al-

gorithm [41], Stahovich’s algorithm [42], and Kim and Kim’s algorithm [45]. We

implemented each of these algorithms as presented in their respective papers, and we

tested all of the corner finders on the same data sets.

The results in Table I show how our algorithm outperforms the baseline cor-

ner finding algorithms from Sezgin et al., Stahovich, and Kim and Kim. Correctly

classified examples of our test shapes can be seen in Fig. 34.

47

(a) Multiple-primitive, complex symbols with lines and arcs.

(b) Polyline symbols.

Fig. 33. Set of 23 symbols we used for testing. 6 users drew each of these symbols up

to 4 times each. 12 of the symbols contained both lines and arcs (a), and 11

of the symbols contained only lines (b). Due to some users quitting the study

early and other data collection issues, the total number of symbols collected

was 501. Red dots indicate the corners.

48

Table I. Results for MergeCF and three baseline corner finders. The results are for

a set of 501 shapes drawn by six different users. The average times, in mil-

liseconds, were found by averaging over 20 runs. The metrics are discussed in

Section C.1.

MergeCF Sezgin Stahovich Kim

False Positives 233 300 2081 233

False Negatives 113 384 161 479

True Positives (Correct Corners) 3299 3028 3251 2933

True Negatives 124,951 124,884 123,105 124,951

Total Correct Corners 3412 3412 3412 3412

Accuracy 0.997 0.995 0.983 0.994

All-or-Nothing Accuracy 0.667 0.415 0.0818 0.327

F-measure 0.950 0.898 0.744 0.892

Sensitivity (a.k.a. Recall) 0.967 0.887 0.953 0.860

Precision 0.934 0.910 0.610 0.926

FDR 0.066 0.090 0.390 0.074

Avg. time for all 501 strokes (ms) 30,200 162 430 336

Avg. time per stroke (ms) 60.3 0.323 0.858 0.670

All-or-nothing / Avg. time per stroke 0.0111 1.28 0.0953 0.488

49

Fig. 34. Examples of correctly classified symbols by MergeCF. These symbols come

from the set of 501 complex and polyline shapes drawn by six users. The

size ratio between the symbols has not been altered, although each symbol is

similarly scaled so that the entire image will fit in the paper.

50

Fig. 35. A stroke with examples of true positives, true negatives, false positives, and

false negatives highlighted.

1. Accuracy Metrics

We use different metrics to determine the performance of each corner finder. In the

table, false positives are extraneous, unnecessary corners in a segmentation, whereas

false negatives are missed corners (Fig. 35). The following equations are described

using true positives (TP), false positives (FP), true negatives (TN), and false negatives

(FN).

The first metric is the corner finder’s sensitivity or recall, also known as “correct

corners found” accuracy [41]. This accuracy is calculated by dividing the number

of correct corners found by the total number of correct corners that a human would

perceive (Eqn. 3.5). This metric is also known as recall in some literature.

51

TP/(TP + FN) (3.5)

This sensitivity metric does not discount false positives and only penalizes for

false negatives. Therefore, a system that returns every point possible as a corner

would achieve a perfect 1.00 sensitivity since all of the correctly perceived corners

would be found. Another problem with using the metric is the ability to count

end points as corners. Technically, the end points of a stroke could be considered

segmentation points since they are used for generating the primitives, and in some

cases the end point of a stroke could be shifted if there are large, noisy hooks that

do not accurately represent the primitives. These end points are typically given, so

counting them as corners can artificially inflate the segmenter’s sensitivity.

Traditional accuracy is the second metric we use to compare corner finders (Eqn.

3.6).

accuracy =
TP + TN

TP + FP + FN + TN
(3.6)

The main issue with this traditional accuracy equation is the use of true negatives,

which are incorrect corners that were not found by the segmenter. Strokes can have

hundreds or thousands of points, but only a few of these points are corners. Therefore,

the number of true negatives is quite large in comparison to the other variables,

causing the Eqn. 3.6 accuracy to be close to 1.00 as the number of true negatives

grows. Even worse, as the number of points in the test set increases, the overall

accuracy for every segmenter approaches 1.00 and makes the calculation irrelevant.

We use a different accuracy measure to counteract the issues in sensitivity and

accuracy: all-or-nothing accuracy. All-or-nothing implies that only the minimum

number of corners to segment a figure are found in order for a stroke to be considered

52

correctly segmented. In other words, for a stroke to be counted a correct stroke it

must have no false positives or negatives. This accuracy is calculated by taking the

number of correctly segmented strokes divided by the total number of strokes. For

corner finding, all-or-nothing accuracy is a more important accuracy measurement

since any recognition errors can frustrate users, and we do not want users to become

agitated if their strokes they do not segment correctly. From a user’s point of view,

the computer is either correct or it is wrong, and we wanted to model this behavior

in our results.

We we also measure the number of true positives expected in each segmentation

through precision:

TP/(FP + TP) (3.7)

and we measure the false discovery rate (FDR) for each segmenter, which determines

what percentage of false positives expected in a segmentation. It is the opposite of

precision:

FP/(FP + TP) (3.8)

An F-measure can be calculated using the precision and recall scores for each

segmenter (Eqn. 3.9). The F-measure is often used in information retrieval systems,

such as Internet searching, where the number of irrelevant documents for a query is

much higher than the number of relevant documents. Segmenters behave in a similar

manner; there are significantly more points in a stroke that are not corners than points

that are corners. The F-measure then calculates performance based on a weighted

average of the precision and recall values for a segmentation.

53

F1 = 2 · precision · recall
precision+ recall

(3.9)

Finally, we have a metric that divides the all-or-nothing accuracy by the average

time taken per stroke. This metric provides us with a measure of how well a segmenter

performs while penalizing longer run-times.

D. Discussion

Our corner finder significantly improves corner detection over the three benchmark

systems in our all-or-nothing accuracy measure. MergeCF finds fewer false positives

and negatives than our Sezgin et al., Stahovich, and Kim and Kim implementations,

and the all-or-nothing accuracy is over twice that of the previous best corner finders’.

MergeCF performs better than the other corner finders for a few reasons. Sezgin

et al.’s algorithm assumes that the best corners, or the correct ones, will always be

ranked higher than any false positives. This assumption is often invalid on complex

shapes where minor speed differences and line noise can greatly affect the the author’s

corner metrics. Noisy arcs are the main culprit in this issue and produce many false

positives along subtle bumps or peaks in the arc. Also, since Sezgin et al.’s algorithm

chooses the fit with the least number of corners below a certain threshold, it is often

the case where correct corners are missing from the final segmentation if the threshold

is too high for a shape. If the majority of the corner fits are below the threshold,

then the corner fit with the least number of corners can be a poor choice.

Stahovich’s algorithm produces many false positives. Although Stahovich’s em-

pirical thresholds for merging and splitting worked well for their testing hardware

and dataset, we found the thresholds to be much too strict. The thresholds rarely

allowed the merging segments that needed to be combined, and the algorithm often

54

split segments that should have remained whole. MergeCF’s thresholds for merging

are much more lenient, but it is also our technique to sort strokes by length before

we begin merging that helps out algorithm avoid many of these false positives.

Kim and Kim’s corner finding algorithm produces many false positives and false

negatives, mainly due to sensitive thresholds present in their system. Their algorithm

oversmooths the data by using resampled points as well as smoothing curvature met-

rics, and when the data is too smooth, points with a high curvature have only slightly

higher curvature values than points with average curvature, causing false positives.

Similarly, oversmoothed data causes corners at obtuse angles between primitives to

be missed.

To summarize, MergeCF avoids the issues of these baseline corner finders by:

• Having an initial fit with few false negatives

• Evaluating individual corners and segments at a local level

• Using inherent properties of false positives to examine short segments first

• Performing multiple passes through the segments to ensure that each segment

is eventually evaluated and merged if necessary.

1. Algorithm Speed

We ran real-time tests on each of the segmenters to compare their relative speeds. The

time values in Table I are in milliseconds and were averaged over 20 full runs of the

test data. We performed 20 runs so that any influence of background computational

processes would be lessened. Each time value counts only the segmentation time of

the stroke; the times to load the stroke and switch to the next file are not included in

the calculation. The time calculations were performed using a Mac Pro with a pair

55

of quad-core, 2.8GHz Intel Xeon processors with 10.0 GB of RAM, running on OS X

10.6.2.

MergeCF ran at approximately 60 ms per stroke, which is slower than the other

segmentation algorithms by two orders of magnitude, but it still provides real-time

segmentation for each stroke. 60 ms per stroke is much faster than a human’s reaction

time, so the stroke can be segmented before any perceivable lag.

The all-or-nothing accuracy over average time per stroke metric also shows that

MergeCF does not provide the best performance with respect to time. MergeCF’s

metric value is 0.0111, an order of magnitude lower than the best, Sezgin et al.’s

value of 1.28. Yet, MergeCF does have a 50% increase in all-or-nothing accuracy over

Sezgin et al.’s algorithm on the test set.

E. Limitations and Future Work

Although MergeCF improves segmentations considerably, there are still a few key

issues with the algorithm.

1. Arc Issues

First, merging two smaller arcs together can be difficult since arcs are classified as

sections of circles, and the error associated with arcs tends to be high. Appending

two slightly offset arcs often produces a shape that has a considerably higher error

than either of the individual arcs (Fig. 36(a)).

Another issue with trying to segment primitives into arcs is that arcs are often

noisy. Users often draw arcs with sharper points of curvature than intended (Fig.

36(b)). These sharp points are difficult to remove from the final set of corners due to

their high curvature, and the arc merging issues discussed above prevent the points

56

(a) Merging two arcs together can often
be difficult, since appending two arcs
can often fit an elliptical or spiral shape
better than a circle.

(b) Arcs often contain sharper points of
curvature than the user intended, such
as the two arcs in the bottom portion of
this symbol.

Fig. 36. Issues with segmenting arcs.

from being removed.

We tried to prevent this jump in error by introducing an additional primitive:

curves. A Bezier curve could be created to approximate two adjacent arc segments,

and if the curve fits the segments well, then the corner between the segments would

be eliminated. The primitive recognizer we use from [11] already has a definition for

curves, so we modified our main merging algorithm to handle the error associated with

these primitives. Unfortunately, segmenting lines, arcs, and curves produced slightly

poorer segmentations (Table II). The all-or-nothing accuracy decreases slightly when

adding curves, but the number of negatives greatly increases. These results do not

bode well for segmenting many primitives at once.

57

Table II. Results comparing MergeCF with lines and arcs and MergeCF with lines,

arcs, and curves.

MergeCF MergeCF with Curves
False Positives 233 188

False Negatives 113 225
True Positives (Correct Corners) 3299 3187

True Negatives 124,946 124,996
Total Correct Corners 3412 3412

Accuracy 0.998 0.997
All-or-Nothing Accuracy 0.667 0.647

Sensitivity (a.k.a. Recall) 0.971 0.934
Precision 0.954 0.944

FDR 0.046 0.056

Table III. Results for MergeCF and our baseline algorithms on polyline-only data.

There are 244 polyline-only strokes in our test set of 501 strokes.

MergeCF Sezgin Stahovich Kim
False Positives 24 29 799 22

False Negatives 3 162 12 242
True Positives (Correct Corners) 1838 1679 1830 1599

True Negatives 56,620 56,615 55,844 56,622
Total Correct Corners 1841 1841 1841 1841

Accuracy 1.00 0.997 0.986 0.995
All-or-Nothing Accuracy 0.914 0.594 0.135 0.443

F-measure 0.992 0.946 0.818 0.923
Sensitivity (a.k.a. Recall) 0.998 0.912 0.993 0.868

Precision 0.987 0.983 0.696 0.986
FDR 0.013 0.017 0.304 0.014

58

2. Polyline Data

On the opposite end of the spectrum, we tested MergeCF on the polyline-only data

in our test set (Fig. 33(b)). Out of the 501 strokes in our test set, 244 of them

are polyline only. MergeCF performed admirably on this data, having an all-or-

nothing accuracy of 0.914 (Table III). The second best accuracy, from Sezgin et al.’s

algorithm, was less than half that of MergeCF’s.

The results from Table III indicate that MergeCF performs much better on poly-

line data than on line and arc data. In fact, the all-or-nothing accuracy on the 257

line-arc symbols in our test set is 0.431, which is less impressive than the all-or-

notthing accuracy of 0.667 on the entire 501 symbols.

Furthermore, PaleoSketch has shown that accurate primitive recognition can

occur when using only a polyline segmentation [11]. In PaleoSketch, each available

primitive (line, arc, curve, ellipse, etc.) tries to fit itself to a given stroke and returns

an error based on its fit. A decision tree then returns the best primitive mapping

to a stroke. One aspect of the decision tree involves segmenting each stroke using a

polyline segmenter and using the number of segments returned to help classify the

stroke. For instance, a stroke must have more than 3 polyline segments in order to

be considered as a possible arc.

Therefore, PaleoSketch can also handle polylines and complex symbols by using

only a simple polyline segmenter. As long as the polyline segmenter can find the

correct points at which two primitives meet, PaleoSketch can then recursively try

different combinations of primitive fits on the resulting groups of segments until a

decent fit is found, similar to how Yu and Cai perform segmentation [40].

59

3. Implementation

MergeCF is relatively difficult to implement. PaleoSketch uses multiple line and

arc tests in order to calculate the primitive fit errors. Since MergeCF has very high

accuracy on polyline data compared to complex, line-arc data, we might be performing

too much work to accurately segment strokes into polylines.

4. Test Set

Finally, the symbols we use to test MergeCF are the same symbols used by Sezgin et

al. [41] and Kim and Kim [45]. We used these symbols to have better comparability

in our testing against other algorithms, but the symbols themselves are made to be

more difficult than the typical symbols sketch recognition domains require.

Graphical, diagramatic domains are often composed of symbols formed with

simple polygons (triangles, rectangles, starts), ellipses, and connectors (lines, arrows).

For instance, family trees contain rectangles, ellipses, lines, and arrows [3, 56] (Fig.

37(a)). Chemistry symbols contain capital letters, polylines, and lines [4] (Fig. 37(b)).

Even a more difficult domain, such as course of action diagrams, are composed of

rectangles, diamonds, polylines, lines, ellipses, waves, and arrows (Fig. 38). In each

of these domains, there are no symbols that reach the complexity of the line-arc

symbols we test on.

We are not saying that testing on a difficult test set like Fig. 33 is a problem. In

fact, we want to show that our corner finding algorithms perform well in extreme sit-

uations. But, if real-world diagram data is sketched using polylines and ellipses, then

we should focus on those aspects of segmentation first. We should, therefore, work to

improve polyline accuracy to be almost perfect in these extreme cases; PaleoSketch

can then handle any ellipses.

60

(a) Family tree data, presented by Cates and Davis [56].

(b) Chemistry symbols, presented by Ouyang and Davis
[4].

Fig. 37. Sketched symbols from different, real-world domains. The domains consist

mainly consist of shapes formed from lines, polylines, and ellipses.

61

Fig. 38. Examples of military course of action (COA) symbols. The symbols can be

described using primitives and simple shapes such as lines, ellipses, triangles,

rectangles, diamonds, and dots.

62

5. Contributions

In summary, MergeCF contributes to the sketch recognition community by:

• Creating a multiple primitive recognizer that outperforms the current baselines.

• Efficiently eliminating false positive corners by merging the smallest stroke seg-

ments first.

• Demonstrating how primitive recognizers can be used to improve stroke seg-

mentations.

6. Directions for Future Work

After we analyzed MergeCF, we came to a few conclusions about corner finding:

1. It is hard to produce acceptable corner finding accuracies when working with

multiple primitives.

2. The more primitives being segmented, the more difficult segmentation becomes.

3. Symbols in real-world data often focus on polylines and other simple primitives.

More extreme cases like those found in our test set are rarer, but necessary if

we want to push the field past basic diagram recognition.

4. Segmenting a stroke into polylines and then using a primitive recognizer, such

as PaleoSketch, might be a better solution than segmenting strokes directly into

multiple primitives.

It is for these reasons that our later corner finders focused solely on polyline

segmentation. The next algorithm we will present, entitled ShortStraw, moves to

both simplify and improve upon previous polyline-only techniques while retaining

the high polyline accuracy levels we can achieve with MergeCF.

63

CHAPTER IV

SHORTSTRAW

ShortStraw is designed to be simple to understand and easy to implement. As such,

the entire algorithm can be discussed in detail in the paper, and pseudocode for the

algorithm is also presented in Appendix A.

A. Motivation

We transitioned to working with polyline segmentation algorithms after we discovered

the limitations of multi-primitive segmenters to be quite expansive (See Chapter III,

Section E).

We built MergeCF while taking the Fall 2007 Sketch Recognition course at Texas

A&M. During this time, many of the graduate students struggled with the implemen-

tation of algorithms like Sezgin et al. [41] and Kim and Kim [45]. The curvature and

primitive fit calculations were not always easy to understand or implement.

We wanted to (1) make a segmentation algorithm that was easy to implement

and (2) make the algorithm still perform better than previous work. Similar to how

Wobbrock et al. created an easy-to-use template matching algorithm with $1 [23],

we wanted to provide sketch recognition students, researchers, and developers with

simple but powerful techniques to segment strokes.

The algorithm we created, entitled ShortStraw, is founded on the concept that

curvature in polylines can be approximated with little computation. Like Wobbrock

et al. and Kim and Kim, we discovered that resampling points in a stroke allowed us

to reduce segmentation complexity. The next few sections will explain ShortStraw in

detail.

64

(a) Original points of the stroke (b) Resampled points of the stroke

Fig. 39. The original points in 39(a) are varied in distance away from each other,

whereas the resampled points in 39(b) are interspaced evently.

B. Resampling

The first step to ShortStraw involves resampling the points of a stroke to be evenly

spaced apart (Fig. 39). Resampling points is necessary in ShortStraw, for reasons

that will be discussed in Section IV.C.1.

The algorithm for resampling points is based on the algorithm presented in $1

[23]. Although the resampling algorithm remains the same, we determine the inter-

spacing distance of the resampled points differently.

In ShortStraw, points are resampled based on the diagonal length of the stroke’s

bounding box. The interspacing distance is equal to the diagonal divided by a con-

stant factor (Fig. 40). In our implementation, this constant was empirically deter-

mined to be 80. We found that increasing the value caused too much noise, whereas

decreasing the constant created oversmoothed strokes.

65

In essence, this interspacing distance is an indication of the scale of a stroke.

Human perception of what constitutes a significant change in a symbol varies with

scale [57, 48], and we wanted to support drawing at different scales.

We impose a lower-bound on our resample spacing of 0.5 pixels. In some cases, if

a user drew a dot or accidentally tapped the screen, the resample size could be close

to 0.0 and caused infinite loops.

The original points of the stroke can be resampled once we have calculated the

interspacing distance, S. First, an empty set of points, called resampled, is created

to store any new resampled points. The first point in the original point set, points0,

is then appended to resampled. A distance holder D is initialized to 0.

The main algorithm is as follows:

1. The Euclidean distance d between two consecutive points, pointsi−1 and pointsi,

is added to D.

2. If D is less than the interspacing distance S, then we increment i by 1 and

repeat from step (1).

3. Otherwise:

(a) Create a new point q that is located approximately S Euclidean distance

away from the last resampled point. qx and qy are calculated to be (S −

D)/d distance between pointsi−1 and pointsi.

(b) Append q to resampled, and insert q before pointsi.

(c) Repeat from step (1) without incrementing i.

The main algorithm loop terminates when i > |points|. The algorithms for

both the interspaced distance calculation and the point resampling can be found in

Appendix A.

66

(a) A stroke is drawn by a user. (b) The bounding box for the stroke is
computed.

(c) The bounding box diagonal is com-
puted.

(d) A constant number of points is fit-
ted to the bounding box diagonal. The
spacing between these points is then
taken as the resample spacing for the
entire stroke.

Fig. 40. An example demonstrating how the interspacing distance for the resampled

points is calculated. Note that we fit 80 points to the diagonal in our im-

plementation, but, for image clarity, we only fit 36 points to the diagonal in

40(d).

67

C. Corner Finding

ShortStraw finds corners using both a bottom-up and top-down approach. The

bottom-up approach attempts to build corners from primitive information, whereas

the top-down approach looks at higher-level patterns to determine possible insertion

or deletion of corners.

1. Bottom-Up

ShortStraw finds corners in a stroke based on the length of the “straws”. A straw for

a point at pi is computed as:

strawi = |pi−W , pi+W | (4.1)

where W is the constant size of the window and |pi−W , pi+W | is the Euclidean distance

between the points pi−W and pi+W . As a stroke starts to bend at a corner, the straws

between points will begin to shorten, and the local minimum straw at point index k

is a likely corner.

To find the initial corner set, all the straws are first computed for points pW to

p|points|−W . The median straw size is then found and a threshold t is set to be equal

to the 0.95×median. For each strawk ∈ straws, if strawk is a local minimum below

the threshold t, then k is a corner. We set the window size W = 3. These numerical

values were empirically determined to be the most effective at helping locate correct

corners. An example of finding corners from straws is seen in Fig. 41.

From these equations, it follows that the straw length must remain relatively

constant throughout the stroke in order for the correct corners to be found. Resam-

pling the points of a stroke assures that our algorithm will have a static straw length

for the majority of the stroke, whereas the straws of non-resampled points (such as

68

Fig. 41. An example of “straws” in a stroke. The points (a-e) all have a window of ±3

points. the distance at endpoints at these windows forms a straw, with the

shortest straws being at points (a), (c), and (e). These points are considered

corners. Points (b) and (d) have straws that are close to the median straw

length, so these points are not initial corner candidates.

in Fig. 39(a)) would be highly variant.

2. Top-Down

After the initial set of corners is found by taking the shortest straws, some higher-level

processing is run on the stroke to find missed corners and remove false positives.

ShortStraw first checks to see if each consecutive pair of corners passes a line

test. Two points at indices a and b pass a line test if the chord distance and the

path distance between the two points are relatively equal. We represent this equality

through the ratio:

r =
Distance(points, a, b)

Path-Distance(points, a, b)
(4.2)

69

where 0.0 ≤ r ≤ 1.0, since the squared distance between the two points will never be

greater than the squared path distance. If the ratio in Eqn. 4.2 is above a developer-

set threshold, then the segment between the points at a and b is considered to be a

line. This line test is the same one that we used in MergeCF. In our system, this

threshold is set to 0.95 (See Appendix A for the functions to compute Distance,

Path-Distance, and the Is-Line test).

If the stroke segment between any two consecutive corners cm and cn does not

form a line, then there must be additional corners in-between cm and cn. Missing

corners are assumed to be approximately halfway between the cm and cn. Since these

potential corners are below the original threshold t, the threshold is relaxed and the

new corner to add is taken to be the point with the minimum straw that is in the

middle half of the stroke segment. This process of adding corners is repeated until

all of the stroke segments between pairs of consecutive corners are lines.

A collinear check is then run on subsets of triplet, consecutive corners. If the

three corners are collinear, then the middle corner is removed from the corner set.

This process checks and removes false positives. Three consecutive corners cl, cm, and

cn are deemed collinear if the stroke segment between cl and cn passes an Is-Line

test.

Finally, we check for hooks near the endpoints of the stroke. If we find corners

close to the endpoints, then we assume that they were the result of hook noise and

remove them. We determine the distance at which we stop checking for hooks based

on the equation:

hookThreshold = min(Get-Diagonal(points)× 0.10, 15) (4.3)

In Eqn. 4.3, we use the bounding box diagonal of the stroke to determine the

70

Fig. 42. The 11 polyline symbols used during corner finder testing. These symbols

were drawn up to 4 times each by 6 different users, resulting in 244 polyline

strokes.

relative scale and size of the stroke in question. If a stroke is very large, then it is

possible that the user had a relatively large hook near the endpoints. We bound the

hook threshold to be between 0 ≤ hookThreshold ≤ 15 pixels so that we do not

remove correct corners as the stroke’s diagonal distance grows.

It is important to note that the final corners returned are from the resampled

points. If a domain requires the original points of a stroke to be used, a developer

implementing ShortStraw can map resampled corners to original points simply by

taking each corner found and searching for the closest original point to that corner.

D. Results

To test ShortStraw, we used the polyline data from the data set collected for MergeCF

(Fig. 33). These polyline symbols are reproduced in Fig. 42 and are based on the

71

symbols tested by Kim and Kim [45]. A single set of these 11 symbols contains 37

right, 16 obtuse, and 12 acute angles. This test set consists of 244 polyline strokes.

For direct polyline corner finder comparisons, we implemented Douglas-Peucker’s

algorithm using their “Method 2” algorithm [36], and we tested PaleoSketch’s polyline

segmenter [11].

We also tested an implementation of Sezgin et al.’s corner finder since it is a base-

line for many sketch recognition algorithms [41], Kim and Kim’s algorithm since our

dataset was based off the images in their paper [45], and MergeCF for a comparison

to our previous work.

Each of these baseline algorithms was implemented to provide the best accuracy

possible. This required us to implement some functionality not mentioned in the

original papers. All of the algorithms have filters to remove close or overlapping

corners.

We used two the same two accuracy metrics, correct corners accuracy and all-

or-nothing accuracy, described in Chapter III, Section 1. The results from our tests

can be found in Table IV, and examples can be seen in Fig. 431.

E. Discussion

ShortStraw has a substantial improvement over our four baseline corner finders: Dou-

glas and Peucker’s, PaleoSketch’s, Sezgin et al.’s, and Kim and Kim’s. The all-or-

1Our results for ShortStraw here are different than the results originally presented
in our SBIM 2008 paper [58]. Since the writing of the original ShortStraw paper, we
have tweaked the ShortStraw threshold values, specifically the increase of the number
of points on the resampled diagonal from 40 to 80. We also added the ability to check
for hooks, or extraneous corners located at the end of a stroke. These tweaks improved
segmentation accuracy on our newer, real-world datasets and translated well to our
older SBIM test set. These changes were implemented locally before an improvement
to ShortStraw, entitled iStraw [59] was either known or published (See Section F,
Appendix B). The ShortStraw algorithm reflects these changes in Appendix A.

72

T
ab

le
IV

.
R

es
u
lt

s
fo

r
S
h
or

tS
tr

aw
an

d
ou

r
co

m
p
ar

is
on

co
rn

er
fi
n
d
er

s.
T

h
e

re
su

lt
s

ar
e

fo
r

a
se

t
of

24
4

p
ol

y
li
n
e

sh
ap

es

d
ra

w
n

b
y

si
x

d
iff

er
en

t
u
se

rs
.

T
h
e

av
er

ag
e

ti
m

es
,

in
m

il
li
se

co
n
d
s,

w
er

e
fo

u
n
d

b
y

av
er

ag
in

g
ov

er
20

ru
n
s.

S
h
or

tS
tr

aw
D

ou
gl

as
-P

eu
ck

er
P

al
eo

S
ez

gi
n

K
im

M
er

ge
C

F

F
al

se
P

os
it

iv
es

6
86

26
29

22
24

F
al

se
N

eg
at

iv
es

28
20

17
8

16
2

24
2

3

T
ru

e
P

os
it

iv
es

(C
or

re
ct

C
or

n
er

s)
18

13
18

21
16

63
16

79
15

99
18

38

T
ru

e
N

eg
at

iv
es

56
,6

38
56

,5
58

56
,6

18
56

,6
15

56
,6

22
56

,6
20

T
ot

al
C

or
re

ct
C

or
n
er

s
18

41
18

41
18

41
18

41
18

41
18

41

A
cc

u
ra

cy
0.

99
9

0.
99

8
0.

99
7

0.
99

7
0.

99
5

1.
00

A
ll
-o

r-
N

ot
h
in

g
A

cc
u
ra

cy
0.

88
1

0.
81

6
0.

70
5

0.
59

4
0.

44
3

0.
91

4

F
-m

ea
su

re
0.

99
1

0.
97

2
0.

94
2

0.
94

6
0.

92
3

0.
99

2

S
en

si
ti

v
it

y
(a

.k
.a

.
R

ec
al

l)
0.

98
5

0.
98

9
0.

90
3

0.
91

2
0.

86
8

0.
99

8

P
re

ci
si

on
0.

99
7

0.
95

5
0.

98
5

0.
98

3
0.

98
6

0.
98

7

F
D

R
0.

00
3

0.
04

5
0.

01
5

0.
01

7
0.

01
4

0.
01

3

A
v
g.

ti
m

e
fo

r
al

l
24

4
st

ro
ke

s
(i

n
m

s)
22

8
34

87
2

64
15

6
11

,8
00

A
v
g.

ti
m

e
p

er
st

ro
ke

(i
n

m
s)

0.
93

4
0.

13
9

3.
57

0.
26

2
0.

63
9

48
.4

A
ll
-o

r-
n
ot

h
in

g
/

A
v
g.

ti
m

e
p

er
st

ro
ke

0.
94

3
5.

07
0.

19
7

2.
27

0.
69

3
0.

01
89

73

Fig. 43. Examples of correctly classified symbols by ShortStraw. These symbols come

from the set of 244 polyline shapes drawn by six test users. The size ratio

between the symbols has not been altered, although each symbol is similarly

scaled so that the entire image will fit in the paper.

74

nothing accuracy for ShortStraw is over 15% better than that of the second-best

baselines, our Douglas-Peucker implementation and PaleoSketch segmenter, over 25%

better than Sezgin et al.’s algorithm, and almost twice that of our Kim and Kim’s

implementation. Furthermore, ShortStraw greatly improves upon the correct corners

accuracy metric; our algorithm has less false positives and negatives than the other

segmenters.

The only exception to ShortStraw’s improvement is with MergeCF. Our MergeCF

algorithm outperforms ShortStraw, but this performance comes at a cost.

1. Simplicity

MergeCF is a much more complicated algorithm than ShortStraw, combining curva-

ture techniques from Sezgin et al. [41] and primitive recognition from PaleoSketch

[11]. The PaleoSketch primitive recognizer uses multiple error fit techniques, such

as least-squared regression and feature area [40]. Although some of these techniques

could be culled from MergeCF if we tweak the algorithm to only work with poly-

lines, the core algorithm is still more complex than Sezgin et al.’s algorithm, which

many graduate students in the Fall 2007 Sketch Recognition class at Texas A&M had

difficulty implementing.

The implementation of ShortStraw, on the other hand, is very simple, and we

provide the entire algorithm in Appendix A. We had a sophomore undergraduate

student unfamiliar with sketch recognition read our paper and code our algorithm.

After completion, the student mentioned that the algorithm was “fairly easy to im-

plement”, and the entire time to read the paper, understand the algorithm, finish the

implementation, and debug and test the code took the undergraduate took only 5-6

hours.

PaleoSketch’s segmenter and the Douglas-Peucker algorithm are also relatively

75

simple to implement, but ShortStraw improves upon their accuracy.

2. Complexity and Time

ShortStraw has some other benefits that have not been previously mentioned. Short-

Straw is not computationally intensive, so it can be easily used on mobile devices

such as PDAs or touch-screen cell phones. A quick analysis of ShortStraw shows that

resampling the points takes only O(n) time and O(n) memory. Calculating the straws

for each point also runs in O(n) time, as well as finding the initial corner fit. The

only two sections of the algorithm that do not run in linear time include calculating

the median straw length (which can run as quickly as O(n log n) with an efficient

sorting algorithm), and the Post-Process-Corners function, which runs in time

O(cn) where c is the number of corners found in the stroke. In the very unlikely

case that every stroke point is a corner (c = n) AND all of the corners were missed

during initial processing (requiring each stroke point to be added as a corner via the

Halfway-Corner function that searches for a corner under relaxed constraints),

this function, and, thus, the entire algorithm, has a worst case scenario of O(n2)

running time.

We again evaluated the approximate runtime of our various segmenters. Douglas-

Peucker is the fastest segmenter, running at approximately 0.139 millisecond per

stroke. ShortStraw runs at around two-thirds of a millisecond per stroke. The

MergeCF and PaleoSketch segmentation algorithms are the the slowest, but they

still runs in real-time.

With ShortStraw, we also have a decent All-or-nothing Accuracy / Avg. Time

per Stroke metric at 1.42. This indicates that the segmentation performance we

achieve with ShortStraw is not counterbalanced by a long run-time.

76

3. Potential Optimizations

To further reduce ShortStraw’s computation time, the Euclidean distance measure-

ment for calculating the straw length can be replaced with a squared distance mea-

surement. This eliminates the need to perform over n square root calculations since

the actual length of the straw is not important, only the straw’s relation to the me-

dian straw length. We refrain from performing that step in the description of the

algorithm to make the explanation easier to conceptualize for quick understanding

and implementation. All additional distance calculations after the straws are com-

puted, such as the path distance calculations in the Is-Line function, must then use

the squared distance measurement as well to remain in the same scale as the straws.

The Path-Distance equation can also be optimized. Since the points are resam-

pled, the path distance to any one point is equal to the resampled spacing multiplied

by the point index. We discovered that with very long strokes this calculation can

produce some unwanted noise, due to double precision and rounding issues.

These optimizations are not entirely necessary since the algorithm runs in real-

time for our data set, but some sketch recognition domains and real-world applications

might require very large stroke segmentation or large batch segmentation, and we

want to show that ShortStraw is a robust baseline segmenter that can be fine-tuned

for different scenarios.

4. Offline Possibilities

Another important aspect of ShortStraw is that the corner finding algorithm does

not use any temporal information. Our corner finder could therefore be used in

conjunction with systems that reconstruct strokes from static, offline images [60, 61],

whereas the algorithm in [41] relies on speed information to locate corners.

77

In these offline cases, the ordering of the points in the stroke must be preserved

in order for ShortStraw to function correctly. The work by Rajan, a previous member

of the Texas A&M Sketch Recognition Lab, maintains stroke point ordering [61].

5. Relation to Curvature

Both Sezgin and Kim’s corner finders are designed to work with complex fits as well

as polylines, whereas ShortStraw is designed only for polylines. Our algorithm is not

designed to work well with arc and curvy segments since the median straw length of

strokes with high curvature vary widely.

Although ShortStraw does not explicitly use the word “curvature”, each straw

or chord length is in essence a simplified form of curvature. Instead of calculating

curvature as the change in tangent across a series of points, a straw is a more naive

representation for how bent a series of points are. If we were to redescribe our

algorithm in terms of curvature, on a global scale we resample using a large number

of points, and then we progressively “compute curvature” over an expanse of 7 points

(our straws). The intuition behind the improvement gained from this algorithm

compared to other algorithms is that we are able to effectively smooth the stroke to

remove noise without the common problem of removing corner precision:

• Smooths out noise: Both resampling and computing straw lengths across 7

points cause the algorithm to be less susceptible to the pixelized noise commonly

prevalent in stroke points.

• Keeps corner precision: Because the resampled stroke still contains a large

number of points, and, because the system progressively computes the straw

lengths by moving only one resampled stroke point at a time, the algorithm is

able to keep the corner precision which is usually lost during stroke smoothing.

78

F. Extensions

ShortStraw has already had an impact in the sketch recognition community. At the

University of Central Florida, Dr. LaViola had students code ShortStraw during a

homework assignment in his Fall 2008 class on pen-based user interfaces [62]. During

this class, one of Dr. LaViola’s students, Yiyan Xiong, used ShortStraw as a base

for a new algorithm, entitled iStraw. iStraw tweaked ShortStraw’s thresholds and

introduced the ability to handle curved segments in the segmenter [59]. With Xiong’s

additions, the accuracy for polyline segmentation climbed to almost perfect accuracy.

The results from iStraw are important because they (1) show that the results from

the ShortStraw algorithm are reproducible, (2) show that ShortStraw is extensible,

and (3) show that the original curvature metrics in ShortStraw work well across many

different users, data sets, and hardware.

Although iStraw performs better than ShortStraw, the algorithm itself is much

more complicated than ShortStraw’s. This sacrifices implementation speed and sim-

plicity for higher segmentation accuracy; depending on the situation, either option

can be preferred. A larger discussion of iStraw can be found in Appendix B.

G. Contributions

ShortStraw provides numerous benefits and improvements over other polyline corner

finders.

• ShortStraw is more accurate than most current segmenters when analyzing poly-

line strokes.

• ShortStraw runs in real-time, and the segmenter is faster than MergeCF, which

is the only corner finder we compared to that has a better all-or-nothing accu-

79

racy than ShortStraw on polyline data.

• ShortStraw is easy to code, and the entire algorithm is provided in Appendix

A.

H. Limitations and Future Work

Finally, we wanted to highlight the various limitations of the ShortStraw algorithm.

The primary hindrance to ShortStraw’s accuracy is the reliance on global thresholds.

The main thresholds in our system are the use of 80 points for calculating the resam-

pled bounding box diagonal, the Is-Line test threshold of 0.95, and the straw size

threshold of 0.95×median.

In our published paper on ShortStraw [58], the resampled bounding box thresh-

old was set to 40 points. Since the writing of that paper, our lab has worked on

a real-world application of sketch recognition with course of action diagrams. We

tweaked our resampling threshold to be at 80 points. This new threshold better ac-

counts for the course of action data (Fig. 38), and, in combination with our hook

detection addition, it resulted in a better all-or-nothing accuracy metric on our offi-

cial testing set. These results demonstrated that the best thresholds for ShortStraw

are dependent on the training set and domain we use. Researchers implementing

ShortStraw should therefore tweak this threshold to work with the dataset they wish

to segment.

Another issue with the way we choose our resampling threshold is that we are

assuming that drawn strokes do not vary heavily in scale. ShortStraw’s resampling

does not work well when we have strokes where the length of the stroke segments

fluctuates wildly, such as the stroke in Fig. 44. In this case, the stroke’s larger scale

causes the resampled points to be spread out, which produces issues when ShortStraw

80

Fig. 44. The resampled points in this stroke are too far apart to accurately find the

correct corners in the small horizontal segments at the bottom of this stroke.

tries to find the corners for the small horizontal segments. We could always set the

resample spacing of a stroke to be a small constant, such as forcing points to be 1

pixel apart, but then we find many additional corners due to noise.

To counteract global thresholds, we tried to account for local changes and outliers

by using a fraction of the median straw length. Although the median value is locally

determined, the value 0.95 is still constant across all data and domains. Again, we do

not claim that 0.95 is the best general threshold across all domains; we simply found

that 0.95 was a sufficient threshold for ours.

ShortStraw’s window of ±3 points is one more global threshold that could pos-

sibly be eradicated. In Teh and Chin’s corner finder [63], they vary the window for

81

each point examined during corner finding calculations. Although having a scaling

window can increase the accuracy for finding points that are corners, ShortStraw was

designed to be as simple as possible while still providing high polyline accuracy.

Thresholding issues are prevalent across all corner finders. No one segmenter has

golden thresholds that work for every dataset, but ShortStraw’s thresholds are easy

for developers to fine-tune and tweak. Nonetheless, after creating both MergeCF and

ShortStraw, we realized that no single solution will accurately segment every stroke.

This conclusion led us to our next work: combining results from multiple segmenters.

82

CHAPTER V

COMBINING CORNER FINDERS

A. Motivation

Both of our previous algorithms, MergeCF and ShortStraw, relied on empirically

found thresholds that worked well for our real-world data, such as course of action

diagrams, and our test set. Empirically found thresholds are common in segmentation

algorithms [11, 36, 40, 41, 42, 45], but, after building two corner finders that required

some manual tweaking of threshold values, we wanted to move toward completely

trainable segmentation algorithms.

During our research of previous corner finding algorithms, we noticed that most

segmenters employ a single, specific technique. These algorithms work well for most

cases, but each has a notable weakness in detecting certain corners. For instance,

some polyline corner finders employ a linear search along a stroke to find points

that deviate heavily from the direction of the current stroke direction [11, 31, 32].

These types of corner finders work well for strokes that contain sharp, acute angle

changes, but more obtuse direction changes are harder to detect. Polyline corner

finders that use local curvature values, such as [58], also suffer from this obtuse angle

issue. Other polyline corner finders use simple trigonometry techniques to recursively

detect points that deviate the most from the current polyline representation [36, 37].

These techniques work well for non-intersecting strokes, but intersecting strokes can

cause some false positives to be found.

More complex corner finders try to distinguish between multiple primitives such

as lines, arcs, and curves. The main techniques for detecting the corners of multiple-

primitive strokes are to use curvature values at points [40, 41, 42, 45, 55] and finding

83

points of low pen speed [41, 42, 55]. Noise is the main issue of these corner finders; lo-

cal or global thresholds for curvature and speed corner choosing are highly susceptible

to outliers.

After analyzing MergeCF and ShortStraw, we realized that no one method will

be a silver bullet that would preform best in all cases. In fact, Wolpert’s work in No

Free Lunch theorems state that if an optimization algorithm performs better than

average in a certain class of problems, then it will perform worse in another class of

problems [64, 65].

We have seen no method to combine multiple corner finder techniques. The

closest algorithm is Sezgin et al.’s algorithm that picks the “best” corners found from

the speed and curvature of the stroke [41]. Points of slow speed are considered to

be corners since users slow down when changing direction; likewise, points of high

curvature are considered corners. The algorithm ranks each speed and curvature

corner by a metric and then greedily picks the next best corner. This is in essence a

sequential forward search algorithm for feature subset selection where the corners are

features. This technique often introduces errors into the final segmentation due to

the choice of objective function (ranking speed and curvature points individually) and

the inability to backtrack. Our approach extends using subset selection techniques in

segmentation by both improving the objective function using a global mean-squared

error criteria and allowing for both forward and backward searching.

There are many feature subset selection techniques, the most basic of which are

forward and backward searches [66]. These searches greedily add or remove the best or

worst features, respectively. Better results can be obtained by allowing both forward

and backward searching, such as by using dynamic programming techniques [67],

beam searches, or branch-and-bound algorithms [68]. We use a sequential floating

backward selection (SFBS) algorithm to utilize both forward and backward searching,

84

Fig. 45. Corner Subset Selection Process: (1) Take an input stroke, (2) segment the

stroke using six different techniques, (3) combine the corners from all the

techniques into one set, (4) pass the combined corner pool to our subset

selection algorithm, and (5) output the best subset found. None of the original

segmentations are correct, but the final subset has the correct 6 corners.

and, since we should not have hundreds or thousands of corners per stroke, we do not

need to use more bounded approximation algorithms.

B. Implementation

We created our corner combination algorithm to segment polyline stroke data. These

polyline segmentation techniques can then be used to build multiple-primitive recog-

nizers, such as in PaleoSketch [11].

To combine corners from multiple segmenters we use a feature subset selection

85

algorithm where the features are the corners; we coined this technique “corner subset

selection”. A mean-squared error objective function is used in the algorithm. The

overall process is outlined in Fig. 45, and the following sections describe the steps in

detail.

1. Step 1: Segmenters Used

Our algorithm starts by taking all of the corners found from five segmentation algo-

rithms: ShortStraw [58], Douglas-Peucker [36], PaleoSketch’s segmentation algorithm

[11], Sezgin et al.’s [41], Kim and Kim’s [45], and MergeCF. The first three segmenters

(Douglas-Peucker, ShortStraw, and PaleoSketch’s) are polyline corner finders that

rely on simplified line tests to determine if a segment between two corners is a line.

These finders are often susceptible to missing corners at obtuse angles and finding

extraneous corners at segments that have noisy “bumps” (See Fig. 45 segmentations).

The other three segmenters are multiple-primitive segmenters that try to split

strokes into lines and arcs. Sezgin et al.’s use of speed helps find subtle corners

where the user slowed down their drawing. The local curvature values in Kim and

Kim’s algorithm can often find corners that the other, global-threshold algorithms

have missed.

The results from all six segmentation algorithms are combined together, and

duplicate corners are removed.

2. Step 2: Subset Selection

Feature subset selection is a technique used for dimensionality reduction in pattern

classification problems. Pattern classification often uses data that was gathered in

high-dimension feature-spaces, where each feature contributes one dimension to the

space. Transforming these spaces into lower dimensions is a key component of pattern

86

classification research, since using fewer dimensions can allow classification algorithms

to train and run in less time.

Feature subset selection techniques find the most significant dimensions of a

feature-space, allowing researchers to use fewer dimensions while producing compa-

rable classification accuracies. In a sequential forward selection (SFS) algorithm, the

subset of features, FS, we will select starts empty. Features are greedily added from

the entire set of features, F , to this subset, one at a time, based on an objective

function that measures the performance of the system on a set of training data. The

objective function calculates if adding a feature fi ∈ F to FS will improve the sys-

tem’s performance. The feature that improves the system’s performance the most

is added to our subset, and the process continues until no features remain. During

this procedure, the algorithm stores a copy of every different subset we create and

the performance measure of that subset. The final subset of features in is then de-

termined based on the feature subset that maximizes the system’s performance and

minimizes the number of features.

The key component to feature subset selection is that it is a greedy algorithm.

This makes the algorithm less accurate than a dynamic programming approach, but

it also allows dimensionality reduction to occur in real-time.

There are other approaches to subset selection. In our implementation, we use a

sequential floating backwards selection (SFBS) technique that starts with the entire

set of features (FS = F) and greedily removes the feature in FS that contributes the

least to the system’s performance. At each step, we can also add a previously removed

feature back into FS if the performance of the system will increase; bookkeeping

techniques prevent the constant removal and addition of the same feature. The ability

to “float” and reintroduce removed features helps alleviate some issues caused by

greedy selection. Again, every subset and its corresponding performance is recorded,

87

and the subset that maximizes the performance while minimizing the number of

features is chosen.

In our subset selection step, corners themselves are the features to select a subset

from. In essence, the corners of a polyline stroke are a feature-space that describe

the polyline stroke, and we want to reduce the number of corners so that we have

maximize the polyline description while minimizing the error of the polyline fit.

To determine which corner to remove, the corner subset selection algorithm uses

an objective function that looks at the mean-squared error (MSE) between the actual

stroke segments and the optimal polyline created through linking consecutive corners.

The mean-squared error of a segment is computed as the average difference be-

tween every closest vertical pair of points in the original stroke and optimal polyline,

squared (Eqn. 5.1, Fig. 46, 47, and 48). In the MSE equation, pi represents a point in

the original stroke at index i, opti is the closest vertical point on the optimal polyline,

and N is the number of original points.1

MSE =
1

N

N∑
i=0

(pi − opti)2 (5.1)

The corner that affects the mean-squared error the least is then removed from

the current subset. A copy of the subset is stored for future reference, and the process

continues on the remaining corners. The endpoints of the stroke are omitted from

consideration.

At each step the corner subset selection algorithm also determines if adding a

previously removed corner back into the system will be better than removing another

corner. If the mean-squared error for the system is reduced when adding a corner

1We used the term “performance” when discussing objective functions in the Fea-
ture Subset Selection Overview. Error is the other side of the same metric. Overall,
we want to maximize performance and minimize error.

88

Fig. 46. This figure shows an example of the error between the original stroke (gray

stroke, black points), and a representation based on a stroke’s corners (red

lines). To calculate the mean-squared error, the distances (black lines) be-

tween the original points and the optimal polyline are squared, summed, and

then averaged.

back to the system, then the corner is replaced. It’s important to note that this

step occurs often due to the nature that oversegmented strokes tend to have a lower

mean-squared error than strokes with fewer segments.

The algorithm terminates once the only two corners remaining are the endpoints

of the stroke. The best subset occurs at the “elbow” of the mean-squared errors,

where the mean-squared error for removing a point suddenly jumps (Fig. 47 and

48). Because we want our algorithm to handle strokes at different scales, and because

strokes with at larger scales typically have higher mean-squared errors than strokes

at smaller scales, we normalize the subset data by looking at the change in mean-

squared error, ∆MSE, instead of the error itself. We first find the ∆MSE between

the subset with i + 1 corners and the subset with i corners (Eqn. 5.2). This change

89

Fig. 47. Mean-squared error (MSE) of the stroke in Fig. 45. As corners are removed,

the MSE has little change until critical corners are removed. In this example,

the correct number of corners is 6, so critical corners are removed starting at

i = 5. The segmentations at i = 14, 10, 6, and 4 are shown here to illustrate

how the subsets change as the number of corners in a subset decreases.

Fig. 48. This is the same data from Fig. 47, but with a log scale for the MSE.

90

Fig. 49. ∆MSE described in Eqn. 5.2. This chart is for the stroke in Fig. 45,

whose MSE plot is shown in Fig. 47. ∆MSE is essentially a derivative of

the mean-squared error, which deviates only slightly until a critical corner is

removed at i = 5. The ∆MSE from i = 6 to i = 5 is calculated to be 28.8.

in error is calculated for all i = C,C − 1, C − 2, ..., 3, where C is the total number of

combined corners that we started with. We stop at i = 2 since the final two corners

are endpoints and will never be removed.

∆MSEi+1,i =
MSEi

MSEi+1

(5.2)

Initially, the mean-squared error remains almost constant as erroneous corners

are removed, so ∆MSEi+1,i is close to 1.0. When a crucial corner is removed from the

subset, ∆MSE should jump significantly (Fig. 49). Therefore, we found a threshold

t∆MSE where the first instance of ∆MSE > t∆MSE would indicate that we are severely

91

affecting the mean-squared error of the system and have already found the best subset.

3. Step 3: Training and Testing

The correct number of line segments in each stroke is known during the training

process. For each shape, after all the subsets are found during the SFBS process, the

∆MSE is calculated for the change in error from the first oversegmented subset to

the correct subset, and from the correct subset to the first undersegmented subset.

For example, if the correct number of corners to segment a shape into equals n,

then n + 1 is the first oversegmented subset, and n − 1 is the first undersegmented

subset. Each training shape’s ∆MSEn+1,n and ∆MSEn,n−1 values are stored during

the training process in separate collections, Rbelow and Rabove, respectively. These

collections indicate that the ∆MSE value’s are either below than a possible threshold

value or above a possible threshold value (Fig. 50).

The median of each collection is found, and then the median absolute devia-

tion (MAD) is computed (Eqn. 5.3). These median values are then substituted for

the mean and standard deviation, respectively, when computing a regular Gaussian

distribution for Rbelow and Rabove.
2

MAD = median(|Ri −median(R)|) (5.3)

In Eqn. 5.3, R is the set of data (in our case, the ∆MSEs), and Ri is one value

in R. The MAD is then the median of every Ri ∈ R differenced with the median of

2We originally used the mean and standard deviation of Rbelow and Rabove to com-
pute Gaussian distributions, but we found large fluctuations in these values based
on the data chosen for training and testing. If we trained using k-fold cross valida-
tion, this corresponded to large differences in thresholds between folds (such as some
thresholds being orders of magnitude larger than others) and eventually led to inac-
curate training. Using the median and median absolute deviation helped stabilize the
trained thresholds and produced reliable results.

92

(a) The first training example’s ∆MSE’s below and above a correct segmentation are
calculated and stored in their respective collections.

(b) Training continues, storing every ∆MSE around a correct number of corners into
their respective collections. Note that i = 11 has removed two correct corners and
added one incorrect corners, due to this segmentation having a lower MSE than if the
algorithm only removed one correct corner. We allow this by using SFBS instead of a
one-directional searching algorithm

Fig. 50. An example of how Rbelow and Rabove are generated during training.

93

Fig. 51. Two Gaussian distributions are created from the Rbelow and Rabove ratios for

each set of training data. The optimal threshold is then found to be at

the intersection of these two Gaussians; in this case, the threshold would

be t∆MSE = 2.102. Note that Rbelow is a much narrower Gaussian distribution

than Rabove’s, and the probability density for Rbelow goes to approximately

1.6. We chose a smaller y-axis in order to highlight the intersection of Rbelow

and Rabove.

R itself. This is similar to how standard deviations are calculated, but with medians

instead of means.

The threshold, t∆MSE is determined to be at the point where the Gaussian prob-

ability densities for the two ∆MSE distributions are equal (Fig. 51). This process is

equivalent to a likelihood ratio test that finds the best decision boundary minimizing

the Bayes risk between two choices.

Intuitively, we can classify every subset with a ∆MSE below the threshold as

94

Fig. 52. A subset of the 216 random polyline shapes used for training. The polylines

ranged from 2-line to 10-line shapes. The only drawing constraints were the

number of line segments in each polyline and that the shape must be drawn

with one stroke. Some users drew common symbols (‘M’ and square), others

drew common patterns (zigzag), and a few drew random patterns of lines.

oversegmented, and all subsets after r has jumped above t∆MSE to be undersegmented.

The subset before ∆MSE > t∆MSE is the best subset of corners that perceptually

segments the stroke into polylines.

To calculate the threshold, t∆MSE, we train our corner subset selection algorithm

on a set of 216 polyline strokes. The strokes were randomly drawn by 6 different users

and range in difficulty from having only 2-line polylines to having 10-line polylines

(Fig. 52). After training, we found the ∆MSE threshold, t∆MSE = 1.99.

95

4. Algorithm Summary

Below are algorithm summaries for segmenting a single stroke and for the training of

the t∆MSE threshold.

a. Single-stroke Segmentation

1. Calculate corners from multiple segmentation algorithms.

2. Merge all corners from the segmenters into one set.

3. Pass the full set of corners into the SFBS algorithm.

(a) Calculate the MSE for the current set of corners. Store this value in an

array, MSE. Store the subset in a list, subset.

(b) Remove the corner that affects the MSE the least.

(c) Check if adding a previously removed corner will reduce the MSE.

i. If so, add the previous corner back into the set of corners.

ii. If not, continue removing corners.

4. Calculate the ∆MSEi+1,i for each MSEi/MSEi+1.

5. Find the first ∆MSE that is above t∆MSE. Return the corresponding s ∈ subset

that corresponds to this ∆MSE. This is the set of corners used to segment the

stroke. If no ∆MSE is above t∆MSE, return the first subset we found, subset0.

b. Training Algorithm

1. For a set of known training data, run the CSS process (above algorithm) on

each stroke.

96

(a) Since we know the number of segments in each piece of training data,

we know the MSE at which the stroke should be segmented correctly.

For instance, suppose the correct number of corners in a segmentation

is n. Then the ∆MSE at which a large increase is seen should be at

MSEn−1/MSEn.

(b) Store MSEn/MSEn+1 in Rbelow

(c) Store MSEn−1/MSEn in Rabove

2. Calculate the median absolute deviation (MAD) of Rbelow and Rabove. Use the

median and distributions as Gaussians.

3. Find the ∆MSE value at which the two distributions for Rbelow and Rabove

intersect (i.e., a Bayes likelihood test). This value is the threshold, t∆MSE.

Note that the training algorithm can be run using any pattern recognition train-

ing techniques, such as training on a separate set of data, using k-fold cross validation,

leave-one out, or bootstrapping.

C. Results

Our algorithm was tested on a set of the same set of 244 polyline strokes that we

tested MergeCF and ShortStraw on (Fig. 53). This testing set is different than our

training set.

The results for our corner subset selection algorithm compared to the five indi-

vidual algorithms are organized in Table V. Each of the five baseline algorithms were

implemented by ourselves, so the resulting accuracies may not match those of the

original papers. The ground-truth segmentation was determined by human recogniz-

ers, where a correct segmentation is determined to be perceptually correct. Because

97

T
ab

le
V

.
R

es
u
lt

s
fo

r
ou

r
co

rn
er

su
b
se

t
se

le
ct

io
n

al
go

ri
th

m
(C

S
S
)

an
d

th
e

si
x

or
ig

in
al

fi
n
d
er

s
w

e
u
se

d
.

T
h
e

re
su

lt
s

ar
e

fo
r

a
se

t
of

24
4

p
ol

y
li
n
e

sh
ap

es
d
ra

w
n

b
y

si
x

d
iff

er
en

t
u
se

rs
.

T
h
e

av
er

ag
e

ti
m

es
,

in
m

il
li
se

co
n
d
s,

w
er

e
fo

u
n
d

b
y

av
er

ag
in

g
ov

er
20

ru
n
s.

C
S

S
S

h
or

tS
tr

aw
D

ou
gl

as
-P

eu
ck

er
P

al
eo

S
ez

gi
n

K
im

M
er

ge
C

F

F
al

se
P

os
it

iv
es

22
6

86
26

29
22

24

F
al

se
N

eg
at

iv
es

0
28

20
17

8
16

2
24

2
3

T
ru

e
P

os
it

iv
es

(C
or

re
ct

C
or

n
er

s)
18

41
18

13
18

21
16

63
16

79
15

99
18

38

T
ru

e
N

eg
at

iv
es

56
,6

25
56

,6
38

56
,5

58
56

,6
18

56
,6

15
56

,6
22

56
,6

20

T
ot

al
C

or
re

ct
C

or
n

er
s

18
41

18
41

18
41

18
41

18
41

18
41

18
41

A
cc

u
ra

cy
1.

00
0.

99
9

0.
99

8
0.

99
7

0.
99

7
0.

99
5

1.
00

A
ll

-o
r-

N
ot

h
in

g
A

cc
u

ra
cy

0.
92

2
0.

88
1

0.
81

6
0.

70
5

0.
59

4
0.

44
3

0.
91

4

F
-m

ea
su

re
0.

99
4

0.
99

1
0.

97
2

0.
94

2
0.

94
6

0.
92

3
0.

99
2

S
en

si
ti

v
it

y
(a

.k
.a

.
R

ec
al

l)
1.

00
0.

98
5

0.
98

9
0.

90
3

0.
91

2
0.

86
8

0.
99

8

P
re

ci
si

on
0.

98
8

0.
99

7
0.

95
5

0.
98

5
0.

98
3

0.
98

6
0.

98
7

F
D

R
0.

01
2

0.
00

3
0.

04
5

0.
01

5
0.

01
7

0.
01

4
0.

01
3

A
v
g.

ti
m

e
fo

r
al

l
24

4
st

ro
ke

s
(i

n
m

s)
15

,5
00

22
8

34
87

2
64

15
6

11
,8

00

A
v
g.

ti
m

e
p

er
st

ro
ke

(i
n

m
s)

63
.5

0.
93

4
0.

13
9

3.
57

0.
26

2
0.

63
9

48
.4

A
ll

-o
r-

n
ot

h
in

g
/

A
v
g.

ti
m

e
p

er
st

ro
ke

0.
01

46
0.

94
3

5.
07

0.
19

7
2.

27
0.

69
3

0.
01

89

98

Fig. 53. The 11 polyline symbols used during corner finder testing. These symbols

were drawn up to 4 times each by 6 different users, resulting in 244 polyline

strokes.

the data we were working with consisted of polylines, the segmentations were fairly

obvious. For any segmentations that were not obvious, we had more than one person

outside of our authors examine the data and provide their input as to whether the

segmentation was correct.

We use the same accuracy metrics for analyzing our combination algorithm:

correct corner accuracy (with and without endpoints) and all-or-nothing accuracy.

D. Discussion

Our corner subset selection algorithm performs better than any of the individual

algorithms in most accounts. The combination algorithm finds less false negatives,

more correct corners and, most importantly, has a higher all-or-nothing accuracy than

99

(a) (b)

Fig. 54. Issues with thresholding in our corner subset selection algorithm. In both

of these cases, the mean-squared error of the system would rise considerably

(i.e., above our found t∆MSE) if any corner was removed.

any of the six combined segmenters.

Overall, the corner subset algorithm succeeds at combining the hard-to-find cor-

ners of the other segmenters, picking those that only contribute the most to the global

mean-squared error reduction of the optimal fit. One example is seen in Fig. 45, where

no one technique finds the correct all-or-nothing fit, with some fits finding more cor-

ners than necessary and others finding too few.

1. Thresholding

The largest errors seen with our corner subset selection algorithm are false positives

in the final segmentation. These are due to mean-squared ratio threshold errors (Fig.

54).

This issue with thresholding errors is an important limitation of our combination

algorithm. The No Free Lunch theorems we mentioned during our motivation for

creating CSS state that if an algorithm performs better on one set of test cases, it

100

will perform worse on others [64, 65]. Although we used this as a motivation for

combining the corners from different algorithms, the fact is that any combination or

ensemble algorithm also falls under this theorem’s grasp. Merging the results from

different algorithms will not automatically eliminate thresholding issues, and it can

introduce new ones. But, approaching segmentation from the subset selection angle

will be beneficial to segmentation performance.

Another issue with the corner subset selection algorithm is that all of the correct

corners must be found by the original techniques. Our segmenter does not find any

additional corners, so any false negatives that are present in all six original segments

will automatically be false negatives in our corner subset selection algorithm.

2. Complexity and Time

Our CSS algorithm is by far the slowest of the segmentation algorithms we run, and

it takes an average of 63.5 ms to segment a stroke. The large runtime is due to the

algorithm computing segmentations from all 6 of our comparison segmenters before

the subset selection process can even begin.

The CSS algorithm does run in real-time for each stroke, since we can still seg-

ment a stroke before a human could perceive a visual lag.

3. Significance

The all-or-nothing accuracy results between CSS and MergeCF are not statistically

significant (χ2 = 0.208, p > 0.5). But, when we eliminate MergeCF from the CSS

algorithm, we can retrain the system and do find significant results (Table VI).

The t∆MSE for CSS without MergeCF did not change to three significant figures,

so t∆MSE = 1.99.

In this case, our all-or-nothing accuracy of 0.926 for CSS without MergeCF is

101

statistically significant from the next best, ShortStraw’s 0.881 (χ2 = 4.73, p < 0.05).

The other benefit from not using MergeCF is that the average time per stroke de-

creases from 63.5 ms to 15.2 ms. Thus, CSS without MergeCF has better performance

than MergeCF while also taking less time to segment each stroke.

These results indicate that there might be an optimal set of segmenters to use

with the CSS algorithm. The subset selection technique will only work well when

there are no false negatives in the initial, pooled set of corners from other segmenters.

If we can have a set of segmenters that complement each other well and do not have

many false negatives, then we can reduce the time it takes to segment a stroke using

CSS while retaining all of the algorithm’s accuracy benefits.

E. Gaining Intuition: Why Do We Need to Run Existing Segmentation Algorithms?

Our CSS algorithm starts with a selection of corners gathered by existing corner

finders. One question that has been asked is: Why not just start with all points and

perform CSS on that, thus eliminating the need to run on multiple corner finders?

We tried this very technique, and the results from this implementation are shown

in Table VII under the “CSS with All Points” column. After training, we found our

t∆MSE for this system to be 2.718. Our final all-or-nothing accuracy was 0.0, and

the number of false positives we found was enormous and on the average of 107 false

positives per stroke. Also, rather than causing a speedup (by preventing the need to

call multiple segmentation algorithms), using every point actually dramatically slows

down segmentation from real-time to approximately 4 seconds a stroke. This shows

that our method of calling multiple recognizers is both more accurate and faster than

applying it to all points.

When we analyzed the data to determine why this happened, we realized that

102

T
ab

le
V

I.
R

es
u
lt

s
fo

r
ou

r
co

rn
er

su
b
se

t
se

le
ct

io
n

al
go

ri
th

m
(C

S
S
)

w
it

h
ou

t
u
si

n
g

M
er

ge
C

F
as

an
or

ig
in

al
co

rn
er

fi
n
d
er

.

W
e

fi
n
d

th
es

e
re

su
lt

s
to

h
av

e
co

m
p
ar

ab
le

p
er

fo
rm

an
ce

to
C

S
S

w
it

h
M

er
ge

C
F

,
w

it
h

th
e

ad
d
ed

b
en

efi
t

of
le

ss

se
gm

en
ta

ti
on

ti
m

e
p

er
st

ro
ke

.

C
S
S

(w
/o

M
er

ge
C

F
)

S
h
or

tS
tr

aw
D

ou
gl

as
-P

eu
ck

er
P

al
eo

S
ez

gi
n

K
im

F
al

se
P

os
it

iv
es

21
6

86
26

29
22

F
al

se
N

eg
at

iv
es

0
28

20
17

8
16

2
24

2

T
ru

e
P

os
it

iv
es

(C
or

re
ct

C
or

n
er

s)
18

41
18

13
18

21
16

63
16

79
15

99

T
ru

e
N

eg
at

iv
es

56
,6

25
56

,6
38

56
,5

58
56

,6
18

56
,6

15
56

,6
22

T
ot

al
C

or
re

ct
C

or
n
er

s
18

41
18

41
18

41
18

41
18

41
18

41

A
cc

u
ra

cy
1.

00
0.

99
9

0.
99

8
0.

99
7

0.
99

7
0.

99
5

A
ll
-o

r-
N

ot
h
in

g
A

cc
u
ra

cy
0.

92
6

0.
88

1
0.

81
6

0.
70

5
0.

59
4

0.
44

3

F
-m

ea
su

re
0.

99
4

0.
99

1
0.

97
2

0.
94

2
0.

94
6

0.
92

3

S
en

si
ti

v
it

y
(a

.k
.a

.
R

ec
al

l)
1.

00
0.

98
5

0.
98

9
0.

90
3

0.
91

2
0.

86
8

P
re

ci
si

on
0.

98
9

0.
99

7
0.

95
5

0.
98

5
0.

98
3

0.
98

6

F
D

R
0.

01
1

0.
00

3
0.

04
5

0.
01

5
0.

01
7

0.
01

4

A
v
g.

ti
m

e
fo

r
al

l
24

4
st

ro
ke

s
(i

n
m

s)
37

10
22

8
34

87
2

64
15

6

A
v
g.

ti
m

e
p

er
st

ro
ke

(i
n

m
s)

15
.2

0.
93

4
0.

13
9

3.
57

0.
26

2
0.

63
9

A
ll
-o

r-
n
ot

h
in

g
/

A
v
g.

ti
m

e
p

er
st

ro
ke

0.
06

09
0.

94
3

5.
07

0.
19

7
2.

27
0.

69
3

103

T
ab

le
V

II
.

R
es

u
lt

s
fo

r
m

o
d
ifi

ca
ti

on
s

of
th

e
co

rn
er

su
b
se

t
se

le
ct

io
n

al
go

ri
th

m
.

H
er

e
w

e
h
av

e
ou

r
or

ig
in

al
ve

rs
io

n
(C

S
S
),

ou
r

su
b
se

t
se

le
ct

io
n

te
ch

n
iq

u
e

ap
p
li
ed

to
al

l
p

oi
n
ts

,
an

d
ou

r
su

b
se

t
se

le
ct

io
n

te
ch

n
iq

u
e

ap
p
li
ed

to
an

ov
er

se
gm

en
te

d

se
t.

C
S
S

C
S
S

w
it

h
A

ll
P

oi
n
ts

C
S
S

w
it

h
O

ve
rs

eg
m

en
ta

ti
on

F
al

se
P

os
it

iv
es

22
26

04
0

43

F
al

se
N

eg
at

iv
es

0
0

1

T
ru

e
P

os
it

iv
es

(C
or

re
ct

C
or

n
er

s)
18

41
18

41
18

40

T
ru

e
N

eg
at

iv
es

56
,6

25
30

,6
04

56
,6

01

T
ot

al
C

or
re

ct
C

or
n
er

s
18

41
18

41
18

41

A
cc

u
ra

cy
1.

00
0.

55
5

0.
99

9

A
ll
-o

r-
N

ot
h
in

g
A

cc
u
ra

cy
0.

92
2

0.
00

0.
85

7

A
v
g.

ti
m

e
fo

r
al

l
24

4
st

ro
ke

s
(i

n
m

s)
15

,5
50

96
5,

00
0

69
,8

00

A
v
g.

ti
m

e
p

er
st

ro
ke

(i
n

m
s)

63
.5

39
50

28
6

104

using all of the points initially causes the mean-squared error of the stroke to be 0.0,

since each initial segment in the stroke will be composed of two consecutive points.

Therefore, removing possible corners from the stroke segmentation causes large spikes

in the mean-squared error ratio, and our training process cannot find a good, stable

threshold.

A subtle modification to the “all points” approach would be to use one corner

finding technique to heavily oversegment the stroke. This oversegmentation would

have significantly fewer points to send to our subset selection algorithm, but it should

still have a high probability of containing the correct corners. To do this, we found an

initial set of corners using a modification of ShortStraw where we loosen the thresholds

to produce more false positives. The results from this oversegmentation can be seen

in Table VII under the “CSS with Oversegmentation” column.

The CSS with Oversegmentation algorithm performs better than CSS with All

Points, but it performs worse than the original CSS algorithm, and, ironically, it even

performs worse than ShortStraw alone. The oversegmentation approach suffers from

the same issues as using every point: the starting segmentation can have a very low

mean-squared error, which can cause some large jumps in the mean-squared ratio.

Even with loosening the ShortStraw thresholds, we still will run into issues where

ShortStraw is simply not good at finding certain corners. The algorithm also runs

much slower than the original CSS algorithm, and encroaches on running longer than

real-time for single-stroke processing, where real-time would indicate that the user

perceives no lag or delay in recognition.

Thus, Table VII shows the benefits of our CSS algorithm and why first running

existing segmenters plays such an important part in the success of our algorithm.

105

F. Future Work

The combination technique that we use to improve segmentation accuracy can also be

extended to other recognition techniques. For instance, if a sketched diagram is drawn

with many strokes and is composed of multiple symbols and connectors, running dif-

ferent recognition algorithms on the sketch could find different overall interpretations.

Our subset selection algorithm could find the best overall sketch interpretation, given

an objective function that models the likelihood of the components found by different

algorithms.

We also envision enhancing the subset selection’s mean-squared error approach by

incorporating probabilities of corners. If many segmenters find the same (or similar)

points as corners, then those corners should have a lower chance of being removed

from the final segmentation. Corners that are only introduced by a single segmenter

would have a greater chance of being false positives. Using this information could

hopefully eliminate the few false positives we find in our final segmentations.

Even though we shifted our focus toward polyline segmentation, we briefly exam-

ined how our algorithms could find corners in strokes that contain both lines and arcs.

The main issue with this extension is that the mean-squared error objective function

does not work well when evaluating multiple-primitive segmentations; what a user

perceptually sees as an arc might be better segmented into a series of polylines based

on mean-squared error. Similarly, polylines that are more obtuse, such as in octagons,

are often segmented into a seemingly random series or arcs. Further work is needed

to discover what objective functions can be used for combining multiple-primitive

segmentation results.

106

G. Contributions

Our combination approach to segmentation

• Trainable segmentation technique

• Improves upon individual segmentation techniques in all of our tested metrics,

finding less false positives, false negatives, and has a greater all-or-nothing ac-

curacy

• Has great extensibility potential through new objective functions or additional

segmenters

107

CHAPTER VI

CONCLUSION

We have presented three new techniques for corner finding. Our three segmenters are

uniquely different from each other and show how we have progressed the field of corner

finding in multiple primitive segmentation, polyline segmentation, and combining

algorithms.

In MergeCF, our multiple primitive segmentation algorithm helped reduce the

amount of noise in a stroke by removing the smallest segments. We showed that

the improvement over previous multi-primitive segmentation algorithms is substan-

tial, but the issues we documented with multiple primitive segmentation were too

substantial to ignore. When more types of primitives were added to the MergeCF

segmentation algorithm, the number of false positives and negatives increased and

the all-or-nothing accuracy decreased. After analyzing MergeCF and discussing al-

ternatives, such as PaleoSketch’s post-segmentation primitive recognizer, we came to

the conclusion that polyline segmentation should be sufficient.

Our new polyline segmenter introduced was entitled ShortStraw. ShortStraw

has the benefit of being both a powerful polyline corner finder and simple to code.

The algorithm uses a polyline-specific form of curvature based on chord lengths. The

all-or-nothing accuracy of ShortStraw was much higher than other segmenters, but

we realized that the algorithm does have a few shortcomings, specifically in that the

found thresholds might not be sufficient for every domain.

After creating two new segmentation techniques and implementing many corner

finders from previous work in the field, we decided to approach the problem of seg-

mentation from a new direction. Instead of trying to create a segmentation algorithm

that produced very high accuracy in all cases, we wanted to utilize every segmentation

108

algorithm’s corner finding capabilities. We created a combination algorithm based on

a feature subset selection technique found in pattern recognition. Our Corner Sub-

set Selection algorithm picks the best corners from each segmenter and outperforms

every individual algorithm’s accuracy, finding many fewer false negatives and having

an all-or-nothing accuracy above 92%.

Our results show a steady progression in segmentation accuracy. The sketch

recognition community will greatly benefit from our work, as already evidenced by

the modifications of ShortStraw presented at SBIM 2009 [59].

109

REFERENCES

[1] T. Hammond and R. Davis, “Tahuti: A geometrical sketch recognition system

for UML class diagrams,” in Papers from the 2002 AAAI Symposium on Sketch

Understanding, Stanford, California, March 2002, pp. 59–68.

[2] L. B. Kara and T. F. Stahovich, “Sim-U-Sketch: A sketch-based interface for

SimuLink,” in Proceedings of the Working Conference on Advanced Visual In-

terfaces, 2004, pp. 354–357.

[3] C. Alvarado and R. Davis, “SketchREAD: A multi-domain sketch recognition

engine,” in Proceedings of the 17th Annual ACM Symposium on User Interface

Software and Technology, 2004, pp. 23–32.

[4] T. Y. Ouyang and R. Davis, “Recognition of hand drawn chemical diagrams,”

in Proceedings of the 22nd National Conference on Artificial Intelligence, 2007,

pp. 846–852.

[5] J. LaViola, Jr. and R. Zeleznik, “MathPad2: A system for the creation and

exploration of mathematical sketches,” ACM Transactions on Graphics, vol. 23,

no. 3, pp. 432–440, 2004.

[6] R. Zeleznik, T. Miller, C. Li, and J. Laviola, Jr., “MathPaper: Mathematical

sketching with fluid support for interactive computation,” in Proceedings of the

9th International Symposium on Smart Graphics, 2008, pp. 20–32.

[7] T. O’Connell, C. Li, T. S. Miller, R. C. Zeleznik, and J. LaViola, Jr., “A

usability evaluation of AlgoSketch: A pen-based application for mathematics,”

in Proceedings of the 6th Eurographics Symposium on Sketch-Based Interfaces

and Modeling, 2009, pp. 149–157.

110

[8] Palm Inc., “Palm website,” http://www.palm.com, September 2009.

[9] Wacom, “Wacom website,” http://www.wacom.com, September 2009.

[10] Lenovo, “Lenovo website,” http://www.lenovo.com, September 2009.

[11] B. Paulson and T. Hammond, “PaleoSketch: Accurate primitive sketch recog-

nition and beautification,” in Proceedings of the 13th International Conference

on Intelligent User Interfaces, 2008, pp. 1–10.

[12] D. Rubine, “Specifying gestures by example,” in Proceedings of the 18th Annual

Conference on Computer Graphics and Interactive Techniques, 1991, pp. 329–

337.

[13] A. C. Long, Jr., J. A. Landay, L. A. Rowe, and J. Michiels, “Visual similarity

of pen gestures,” in Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, 2000, pp. 360–367.

[14] Palm Computing, “Suddenly Newton understands everything you write,” Pen

Computing Magazine, p. 9, January 1995.

[15] I. S. Mackenzie and S. X. Zhang, “The immediate usability of Graffiti,” in

Proceedings of Graphics Interface, 1997, pp. 129–137.

[16] J. A. Landay and B. A. Myers, “Interactive sketching for the early stages of user

interface design,” in Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, 1995, pp. 43–50.

[17] M. W. Newman, J. Lin, J. I. Hong, and J. A. Landay, “DENIM: An informal

web site design tool inspired by observations of practice,” Human-Computer

Interaction, vol. 18, no. 3, pp. 259–324, 2003.

111

[18] O. Bimber, L. M. Encarnaçao, and A. Stork, “A multi-layered architecture for

sketch-based interaction within virtual environments,” Computers & Graphics,

vol. 24, pp. 851–867, 2000.

[19] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, “Comparing im-

ages using the Hausdorff distance,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 15, no. 9, pp. 850–863, 1993.

[20] M.-P. Dubuisson and A. K. Jain, “A modified Hausdorff distance for object

matching,” in Proceedings of the 12th International Conference on Pattern

Recognition, 1994, pp. 566–568.

[21] L. B. Kara and T. F. Stahovich, “An image-based trainable symbol recognizer

for sketch-based interfaces,” Computers & Graphics, vol. 29, no. 4, pp. 501–517,

2005.

[22] A. Wolin, B. Eoff, and T. Hammond, “Search your mobile sketch: Improving

the ratio of interaction to information on mobile devices,” in Papers from the

2009 Intelligent User Interfaces Workshop on Sketch Recognition, 2009.

[23] J. O. Wobbrock, A. D. Wilson, and Y. Li, “Gestures without libraries, toolkits

or training: A $1 recognizer for user interface prototypes,” in Proceedings of

the 20th Annual ACM Symposium on User Interface Software and Technology,

2007, pp. 159–168.

[24] M. Gross, “The electronic cocktail napkin: A computational environment for

working with design diagrams,” Design Studies, vol. 17, no. 1, pp. 53–69, January

1996.

112

[25] T. Hammond and R. Davis, “LADDER, a sketching language for user interface

developers,” Computers and Graphics, vol. 28, pp. 518–532, 2005.

[26] S. E. Palmer, Object Perception: Structure and Process, chapter Reference

Frames in the Perception of Shape and Orientation, pp. 121–163, Erlbaum,

1989.

[27] S. E. Palmer, Vision Science: Photons to Phenomenology, MIT Press, 1999.

[28] D. Groome, An Introduction to Cognitive Psychology: Processes and Disorders,

Psychology Press, 1999.

[29] E. J. Gibson, Principles of Perceptual Learning and Development, Prentice Hall,

1969.

[30] D. H. Hubel and T. N. Wiesel, “Brain mechanisms and vision,” Scientific

American, vol. 241, no. 3, pp. 150–162, 1979.

[31] J. Sklansky and V. Gonzalez, “Fast polygonal approximation of digitized

curves,” Pattern Recognition, vol. 2, no. 5, pp. 327–331, 1980.

[32] K. Wall and P.-E. Danielsson, “A fast sequential method for polygonal approx-

imation of digitized curves,” Graphical Models and Image Processing, vol. 28,

no. 2, pp. 220–227, November 1984.

[33] B. K. Ray and K. S. Ray, “Determination of optimal polygon from digital curve

using L1 norm,” Pattern Recognition, vol. 26, no. 4, pp. 505–509, April 1993.

[34] Yoshisuke K. and W. A. Davis, “Polygonal approximation by the minimax

method,” Computer Graphics and Image Processing, vol. 19, no. 3, pp. 248–

264, July 1982.

113

[35] P.-C. Chung, C.-T. Tsai, E.-L. Chen, and Y.-N. Sun, “Polygonal-approximation

using a competitive hopfield neural-network,” Pattern Recognition, vol. 27, no.

11, pp. 1505–1512, November 1994.

[36] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number

of points required to represent a digitized line or its caricature,” Cartographica:

The International Journal for Geographic Information and Geovisualization, vol.

10, no. 2, pp. 112–122, 1973.

[37] J. Hershberger and J. Snoeyink, “Speeding up the Douglas-Peucker line-

simplification algorithm,” in Proceedings of the 5th International Symposium

on Spatial Data Handling, 1992, pp. 134–143.

[38] L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and J. S. Snoeyink, “Ap-

proximating polygons and subdivisions with minimum link paths,” International

Journal of Computational Geometry and Applications, vol. 3, pp. 383–415, 1993.

[39] S.-T. Wu, M. Roćıo, and G. Márquez, “A non-self-intersection Douglas-Peucker

algorithm,” in Brazilian Symposium on Computer Graphics and Image Process-

ing, Oct. 2003, pp. 60–66.

[40] B. Yu and S. Cai, “A domain-independent system for sketch recognition,” in

Proceedings of the 1st International Conference on Computer Graphics and In-

teractive Techniques in Australasia and South East Asia, 2003, pp. 141–146.

[41] T. M. Sezgin, T. Stahovich, and R. Davis, “Sketch based interfaces: Early pro-

cessing for sketch understanding,” in Papers from the Workshop on Perceptive

User Interfaces, 2001.

[42] T. F. Stahovich, “Segmentation of pen strokes using pen speed,” in Papers

114

from the 2004 AAAI Symposium on Making Pen-Based Interaction Intelligent

and Natural, 2004.

[43] P. Agar and K. Novins, “Polygon recognition in sketch-based interfaces with

immediate and continuous feedback,” in Proceedings of the 1st International

Conference on Computer Graphics and Interactive Techniques in Australasia

and South East Asia, 2003, pp. 147–150.

[44] C. F. Herot, “Graphical input through machine recognition of sketches,” in

Proceedings of the 3rd Annual Conference on Computer Graphics and Interactive

Techniques, 1976, pp. 97–102.

[45] D. H. Kim and M.-J. Kim, “A curvature estimation for pen input segmentation

in sketch-based modeling,” Computer-Aided Design, vol. 38, no. 3, pp. 238–248,

2006.

[46] A. Bandera, C. Urdiales, F. Arrebola, and F. Sandoval, “Corner detection by

means of an adaptively estimated curvature function,” Electronics Letters, vol.

36, no. 2, pp. 124–126, 2000.

[47] A. Rattarangsi and R. T. Chin, “Scale-based detection of corners of planar

curves,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

14, no. 4, pp. 430–449, April 1992.

[48] T. M. Sezgin and R. Davis, “Scale-space based feature point detection for dig-

ital ink,” in Papers from the 2004 AAAI Symposium on Making Pen-Based

Interaction Intelligent and Natural, 2004, pp. 145–151.

[49] S. Zhai, P.-O. Kristensson, and B. A. Smith, “In search of effective text input

interfaces for off the desktop computing,” Interacting with Computers, vol. 17,

115

no. 3, pp. 229–250, 2005.

[50] P. O. Kristensson and S. Zhai, “Shark2: A large vocabulary shorthand writing

system for pen-based computers,” in Proceedings of the 17th Annual ACM

Symposium on User Interface Software and Technology, 2004, pp. 43–52.

[51] W. Buxton, R. Sniderman, W. Reeves, S. Patel, and R. Baecker, “The evolution

of the SSSP score editing tools,” Computer Music Journal, vol. 3, no. 4, pp.

14–25, 1979.

[52] B. Paulson and T. Hammond, “MARQS: Retrieving sketches learned from a

single example using a dual-classifier,” Journal on Multimodal User Interfaces,

vol. 2, no. 1, pp. 3–11, July 2008.

[53] R. Patel, B. Plimmer, J. Grundy, and R. Ihaka, “Ink features for diagram

recognition,” in Proceedings of the 4th Eurographics Workshop on Sketch-Based

Interfaces and Modeling, 2007, pp. 131–138.

[54] H. Heloise, M. Shilman, and A. R. Newton, “Robust sketched symbol fragmen-

tation using templates,” in Proceedings of the 9th International Conference on

Intelligent User Interfaces, 2004, pp. 156–160.

[55] A. Wolin, B. Paulson, and T. Hammond, “Sort, merge, repeat: An algorithm

for effectively finding corners in hand-sketched strokes,” in Proceedings of the

6th Eurographics Symposium on Sketch-Based Interfaces and Modeling, 2009,

pp. 93–99.

[56] S. Cates and R. Davis, “A new approach to early sketch processing,” in Papers

from the 2004 AAAI Symposium on Making Pen-Based Interaction Intelligent

and Natural, October 2004, pp. 29–34.

116

[57] O. Veselova and R. Davis, “Perceptually based learning of shape descriptions,”

in Proceedings of the 19th National Conference on Artificial Intelligence, San

Jose, California, 2004, pp. 482–487.

[58] A. Wolin, B. Eoff, and T. Hammond, “ShortStraw: A simple and effective

corner finder for polylines,” in Proceedings of the 5th Eurographics Symposium

on Sketch-Based Interfaces and Modeling, June 2008, pp. 33–40.

[59] Y. Xiong and J. LaViola, Jr., “Revisiting ShortStraw: Improving corner finding

in sketch-based interfaces,” in Proceedings of the 6th Eurographics Symposium

on Sketch-Based Interfaces and Modeling, 2009, pp. 101–108.

[60] Y. Qiao and M. Yasuhara, “Recovering dynamic information from static hand-

written images,” in Proceedings of the 9th International Workshop on Frontiers

in Handwriting Recognition, 2004, pp. 118–123.

[61] P. Rajan and T. Hammond, “From paper to machine: Extracting stokes from

images for use in sketch recognition,” in Proceedings of the 5th Eurographics

Workshop on Sketch-Based Interfaces and Modeling, June 2008, pp. 41–48.

[62] J. LaViola, Jr., “CAP 6938 topics in pen-based user interfaces: Assignment 2,”

http://www.eecs.ucf.edu/courses/cap6938/fall2008/penui/handouts/asgn2.pdf,

September 2008.

[63] C. H. Teh and R. T. Chin, “On the detection of dominant points on digital

curves,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

11, no. 8, pp. 859–872, 1989.

[64] D. H. Wolpert, “The lack of a priori distinctions between learning algorithms,”

Neural Computation, vol. 8, no. 7, pp. 1341–1390, October 1996.

117

[65] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,”

IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, April

1997.

[66] T. Marill and D. Green, “On the effectiveness of receptors in recognition sys-

tems,” IEEE Transactions on Information Theory, vol. 9, no. 1, pp. 11–17, 1963.

[67] C. Y. Chang, “Dynamic programming as applied to feature subset selection in

a pattern recognition system,” in Proceedings of the ACM Annual Conference,

1972, pp. 94–103.

[68] W. Siedlecki and J. Sklansky, Handbook of Pattern Recognition and Computer

Vision, chapter 1.3.1 On Automatic Feature Selection, pp. 63–87, World Scien-

tific Publishing Co., 1993.

118

APPENDIX A

SHORTSTRAW PSEUDOCODE

This section contains the full algorithm for ShortStraw in object-oriented pseu-

docode. The variable points contains a sequential series of (x, y) points, whereas

corners contains a set of indices that reference points. For example, corneri = j

indicates that pointj is the ith corner found. Arrays start at index 0.

Main body where the corner finding functions are called. Takes in a

series of original, non-resampled points and returns the corners for the

resampled points.

Input: A series of original, non-resampled points

Output: The corners for the resampled points

Main(points)

1: S ←Determine-Resample-Spacing(points)

2: resampled←Resample-Points(points, S)

3: corners←Get-Corners(resampled)

4: return corners

119

Determines the bounding box diagonal of the points

Input: A series of points

Output: The bounding box diagonal size for the points

Get-Diagonal(points)

1: topLeft.x← Minx(points)

2: topLeft.y ← Miny(points)

3: bottomRight.x← Maxx(points)

4: bottomRight.y ← Maxy(points)

5: diagonal← Distance(bottomRight, topLeft)

6: return diagonal

Determines the interspacing pixel distance between resampled points

Input: A series of points

Output: The interspacing distance for the resampled points

Determine-Resample-Spacing(points)

1: diagonal← Get-Diagonal(points)

2: S ← max(diagonal/80.0, 0.5)

3: return S

120

Resamples the points in a stroke to be interspaced S pixel distance away

from each other

Input: A series of points and an interspacing distance

Output: The resampled points

Resample-Points(points, S)

1: D ← 0

2: resampled← points0

3: for i← 1 to |points| do

4: d← Distance(pointsi−1, pointsi)

5: if D + d ≥ S then

6: q.x← pointsi−1.x+ ((S −D)/d)× (pointsi.x− pointsi−1.x)

7: q.y ← pointsi−1.y + ((S −D)/d)× (pointsi.y − pointsi−1.y)

8: Append(resampled, q)

9: Insert(points, i, q)

10: D ← 0

11: else

12: D = D + d

13: end if

14: end for

15: return resampled

121

Finds the resampled points that correspond to corners within the stroke

Input: A series of resampled points

Output: The resampled points that correspond to corners

Get-Corners(points)

1: corners← ∅

2: Append(corners, 0)

3: W ← 3

4: for i← W to |points| −W do

5: strawsi ← Distance(pointsi−W , pointsi+W)

6: end for

7: t← Median(straws)× 0.95

8: for i← W to |points| −W do

9: if strawsi < t then

10: localMin← +∞

11: localMinIndex← i

12: while i < |straws| and strawsi < t do

13: if strawsi < localMin then

14: localMin← strawsi

15: localMinIndex← i

16: end if

17: i← i+ 1

18: end while

19: Append(corners, localMinIndex)

20: end if

21: end for

122

22: Append(corners, |points|)

23: corners← Post-Process-Corners(corners, straws)

24: return corners

Checks the corner candidates to see if any corners can be removed or

added based on higher-level polyline rules

Input: A series of resampled points, an initial set of corners, and the

straw distances for each point

Output: A set of corners post-processed with higher-level polyline rules

Post-Process-Corners(points, corners, straws)

1: continue← False

2: while ¬continue do

3: continue← True

4: for i← 1 to |corners| do

5: c1 ← cornersi−1

6: c2 ← cornersi

7: if ¬Is-Line(points, c1, c2) then

8: newCorner ← Halfway-Corner(straws, c1, c2)

9: Insert(corners, i, newCorner)

10: continue← False

11: end if

12: end for

13: end while

14: for i← 1 to |corners| − 1 do

15: c1 ← cornersi−1

123

16: c2 ← cornersi+1

17: if Is-Line(points, c1, c2) then

18: Remove(corners, cornersi)

19: i← i− 1

20: end if

21: end for

22: hookThreshold← min(Get-Diagonal(points)× 0.10, 15)

23: while |corners| > 1 and Distance(points0, corners1) < hookThreshold do

24: Remove(corners, corners1)

25: end while

26: while |corners| > 2 and Distance(points|points|−1, corners|corners|−2) < hookThreshold

do

27: Remove(corners, corners|corners|−2)

28: end while

29: return corners

Finds a corner roughly halfway between point indices a and b

Input: The straw distances for each point, two point indices a and b

Output: A possible corner between the points at a and b

Halfway-Corner(straws, a, b)

1: quarter ← (b− a)/4

2: minV alue← +∞

3: for i← a+ quarter to b− quarter do

4: if strawsi < minV alue then

5: minV alue← strawsi

124

6: minIndex← i

7: end if

8: end for

9: return minIndex

Computes the Euclidean chord distance between the points at indices a

and b

Input: A series of points and two indices, a and b

Output: The Euclidean (chord) distance between the points at a and b

Distance(points, a, b)

1: ∆x← pointsb.x− pointsa.x

2: ∆y ← pointsb.y − pointsa.y

3: return
√

∆x2 + ∆y2

Computes the Euclidean path distance between the points at indices a

and b

Input: A series of points and two indices, a and b

Output: The path (stroke segment) distance between the points at a

and b

Path-Distance(points, a, b)

1: d← 0

2: for i← a to b− 1 do

3: d← d + Distance(pointsi, pointsi+1)

4: end for

125

5: return d

Determines if the stroke segment between the points at indices a and b

form a line

Input: A series of points and two indices, a and b

Output: A boolean for whether or not the stroke segment between

points at a and b is a line

Is-Line(points, a, b)

1: threshold← 0.95

2: distance← Distance(pointsa, pointsb)

3: pathDistance← Path-Distance(points, a, b)

4: if distance/pathDistance > threshold then

5: return True

6: else

7: return False

8: end if

126

APPENDIX B

ISTRAW

Xiong and LaViola Jr. extended our ShortStraw algorithm [58] when creat-

ing their own segmenter, IStraw [59]. The IStraw authors analyzed ShortStraw and

wanted to make two main modifications: (1) improve aspects of ShortStraw to ac-

count for some of the algorithm’s limitations, and (2) add curvature segmentation to

the algorithm.

A. Modifications

IStraw introduced modifications to ShortStraw that enhanced the accuracy of the

corner finder. Many of the modifications were small, such as changing a threshold

slightly. We will discuss only the main additions here.

1. Corners From Speed

IStraw adds points of low speed to the corner set, similar to Sezgin et al. [41] and

Stahovich [42]. The speed information is computed on resampled points, which means

that the speed of each resampled point must be extrapolated from the original point

data.

2. Consecutive Collinear Tests

When ShortStraw runs collinear tests on point triplets, it is possible that the algo-

rithm can remove a correct corner. After an initial segmentation, ShortStraw runs

collinear tests to see if a series of three points forms a line; if so, then we remove

127

Fig. 55. An example of collinear line test issues in ShortStraw. In ShortStraw, the

A−B−F collinear test will eliminate a correct corner, B, before the B−F−C
tests remove the false positive, F . This figure was created by Xiong and

LaViola Jr. [59].

the middle point because it is unneeded. ShortStraw can sometimes remove an unin-

tended, correct corner due to the line thresholds being too lenient.

The example that Xiong and LaViola Jr. provided is shown in Fig. 55. The

collinear tests will first start by examining A − B − F . A − F forms a line segment

under relaxed threshold choices, which would cause the correct corner, B, to be

removed from the final segmentation. To compensate for this error, IStraw runs

two sets of collinear tests. The first run has stricter Is-Line thresholds so that the

A− B − F collinear test is less likely to remove B. The second test relaxes the line

test thresholds to be equal to their original ShortStraw values.

3. Hook Removal

In some cases, ShortStraw might find corners close to the endpoints of the stroke.

These corners are considered part of noisy hooks in a stroke, and IStraw removes

them. Note that in the version of ShortStraw presented in this thesis, we also remove

hooks.

128

Fig. 56. At each corner, ci, IStraw evaluates two angles, α and β, around a window of

resampled points. If ci is a correct corner, such as in the figure on the left,

β − α is close to 0. If ci is part of a curve, then β − α is greater than 0. This

figure was created by Xiong and LaViola Jr. [59].

4. Addition of Curves

IStraw additionally checks for curve primitives. IStraw originally segments a stroke

into polylines by using ShortStraw (with IStraw’s additional modifications). The

algorithm then checks whether each corner, ci ∈ corners, is part of a curve by exam-

ining a window of points around the corner. Fig. 56 demonstrates this process. The

two chords A− ci and B− ci form angle α. The chords D− ci and E − ci form angle

β. If β − α is approximately equal to 0, then the points A, D, and ci are collinear;

similarly, B, E, and ci are collinear. If β − α is greater than 0, then the points

are not collinear and ci is part of a curve. The threshold, ta, for which β − α > ta

implies that ci is a curve was empirically determined by Xiong and LaViola Jr. to

be between 14 and 33 degrees. The threshold is dynamically chosen by the function

ta = 10 + 800/(α + 35).

129

Fig. 57. The 11 polyline symbols used for testing in our ShortStraw evaluation.

B. Presented Results

Xiong and LaViola Jr. had multiple evaluations of their IStraw algorithm. Their

first evaluation compared ShortStraw with IStraw using our test set of 244 polyline

strokes, from the 11 symbols shown in Fig. 57. Xiong and LaViola Jr. also collected

data from 15 additional users at the University of Central Florida. The data the users

drew included the symbols in Fig. 57 and Fig. 58. This new dataset contained 656

polyline strokes and 590 strokes containing curvature, for a total of 1246 strokes.

Note that Xiong and LaViola Jr. compared their results to our SBIM 2008 paper

on ShortStraw [58], not the ShortStraw algorithm with slight modifications presented

in this thesis.

The results from various comparisons are arranged in Tables VIII, IX, and X.

130

Fig. 58. The 10 line and curve symbols Xiong and LaViola Jr. collected. This figure

was presented in their SBIM 2009 paper [59].

131

Table VIII. Results comparing ShortStraw to IStraw on the 244 original polyline test

strokes, as presented by Xiong and LaViola Jr. [59]. We added a compar-

ison to the ShortStraw algorithm we present in this thesis. IStraw-C is

IStraw with curve detection deactivated. The 244 strokes were not tested

with IStraw’s curve detection turned on. The number of correct corners

has been changed to 1841 from 1842 in the original paper; 1842 was a typo

in ShortStraw [58].

ShortStraw (SBIM) ShortStraw (Thesis) IStraw
False Positives 32 6 2

False Negatives 38 28 1
Correct Corners 1804 1815 1840

Total Correct Corners 1841 1841 1841
Correct Corners Accuracy 0.979 0.984 0.999
All-or-Nothing Accuracy 0.741 0.881 0.998

Table IX. Results comparing ShortStraw (from SBIM 2008 [58]) to IStraw with curve

detection. These values are for the 656 polyline strokes in Xiong and LaViola

Jr.’s dataset [59].

ShortStraw (SBIM) IStraw
False Positives 32 1

False Negatives 93 21
Correct Corners 5059 5131

Total Correct Corners 5152 5152
Correct Corners Accuracy 0.983 0.996
All-or-Nothing Accuracy 0.838 0.968

132

Table X. Results comparing ShortStraw (from SBIM 2008 [58]) to IStraw with curve

detection. These values are for the 1246 strokes in Xiong and LaViola Jr.’s

dataset [59]. The dataset contains both polyline-only data (Fig. 57) and the

line and curve data (Fig. 58).

ShortStraw (SBIM) IStraw
False Positives 8326 29

False Negatives 127 58
Correct Corners 8497 8566

Total Correct Corners 8624 8624
Correct Corners Accuracy 0.985 0.993
All-or-Nothing Accuracy 0.441 0.940

C. Discussion

IStraw does better than ShortStraw in all of these cases, and it has very high (above

0.94) all-or-nothing accuracy for every dataset used. The original ShortStraw algo-

rithm from SBIM 2008 performs well against Xiong and LaViola Jr.’s new dataset

of polyline symbols. ShortStraw performs poorly on curvature symbols, since it is a

polyline only algorithm.

The IStraw segmenter’s all-or-nothing accuracy results are impressive for the

data. Their accuracy is the highest we have seen reported, and Xiong and LaViola Jr.

should be commended for this work. Yet, their results do not undermine ShortStraw’s

(or MergeCF’s or Corner Subset Selection’s) inherent value. Correct corners accuracy

is equivalent to recall, and all of the algorithms perform similarly in this metric.

IStraw’s main drawback compared to ShortStraw is in code complexity. One of

ShortStraw’s main benefits was that it could be coded very quickly by even novices

to sketch recognition. IStraw has many additional components, some of which have

undefined thresholds (i.e., speed thresholds for slow corners were never given), and

133

the algorithm has no accompanying pseudocode.

Many of the changes from ShortStraw to IStraw were minor, such as small thresh-

old tweaks or using the mean straw length to calculate the straw threshold instead

of the median. These changes can improve ShortStraw in certain situations, but

any minor threshold changes will improve segmentation on some cases while hurting

segmentation on others. This is another example application of the No Free Lunch

theorems [64, 65]. The major adjustments in IStraw do demonstrate a remarkable

improvement in the segmentation accuracy, and it would be beneficial in future pa-

pers from Xiong and LaViola Jr. to know which modification (corners from speed,

consecutive collinear tests, or hook removal), provided the greatest impact to polyline

segmentation.

The curvature data that IStraw handles is not necessarily curve primitives. In

the sketch recognition literature, a curve is typically defined as a sequence of points

that can be modeled with a Bezier curve of some order [41]. The data in Fig. 58 has

some curvature sequences like helixes that can not be easily described mathematically.

Instead, we can say that IStraw handles “curvy” data, which is different than curves.

Curvy data can provide a perceptually correct segmentation for many symbols, such

as the bottom left symbol in Fig. 58. But, it can also lead to some awkward seg-

mentations. For instance, the ‘R’ symbol does not have a corner connecting the left

vertical line to the ‘R’s arc (Fig. 59). Depending on the domain the segmenter is

being used in, the distinction between “curves” and “curvy” might be insignificant

or highly important. Application developers need to be aware of this difference, but,

if the issue is inconsequential, then IStraw is a very alluring segmenter.

Lastly, we wanted to reiterate our Corner Subset Selection’s benefits. Although

we do not report as high all-or-nothing accuracies as IStraw, our subset selection

technique is fully trainable and has great extensibility. IStraw (and other ShortStraw-

134

Fig. 59. The ‘R’ symbol from Fig. 58 should have another corner where the left vertical

line and arc meet (circled here). This corner is missing from the IStraw

symbols due to Xiong and LaViola Jr.’s recognition of “curvy” data, rather

than curves.

based techniques) are sure to be weak segmenters of some domains and symbols. In

these cases, other corner finders might fare better, and the subset selection technique

can accommodate these issues by using many different segmentation algorithms. Our

Corner Subset Selection segmenter can also be trained to be either user-specific or

domain-specific; all the algorithm needs is training data for the user or domain in

question.

135

APPENDIX C

APPLICATIONS

Corner finding can be used in a variety of applications, as mentioned during

Chapter II. Here, we will mention how the Sketch Recognition Lab at Texas A&M

Univesity uses corner finding.

D. Geometric-based Recognizers

The main focus of our work has been to use corner finding as a low-level step in large

sketch recognition systems. The system that we use in the lab is entitled SLOTH,

and it is an extension of the geometric-based system (See Chapter II.A.3) presented

in LADDER [25]. SLOTH has four steps during sketch recognition:

1. Segment a stroke (or set of strokes) using polyline segmenters.

2. Send the segmentations into PaleoSketch for low-level primitive recognition.

3. Try to build shapes from the resulting set of primitives. For each shape descrip-

tion in a domain:

(a) Check whether a shape descriptions has the required component primitives

(the <componenentList> section in Fig. 60).

(b) If so, then evaluate the primitives using the defined constraints (the

<constraintList> section).

(c) Calculate a confidence score for the shape based on how well the shape’s

primitives obey the constraints.

136

<?xml version="1.0" encoding="UTF-8"?>
<shapeDefinition name="infantry" description="Infantry">

<componentList>
<!-- the frame [rectangle] -->
<component name="rectangle" type="Rectangle" />

<!-- the infantry -->
<component name="posLine" type="Line" />
<component name="negLine" type="Line" />

</componentList>

<constraintList>
<!-- CONTAINS RELATIONSHIPS -->
<constraint name="Contains">

<param component="rectangle" />
<param component="posLine" />

</constraint>

<constraint name="Contains">
<param component="rectangle" />
<param component="negLine" />

</constraint>

<!-- LINE ORIENTATIONS -->
<constraint name="PositiveSlope">

<param component="posLine" />
</constraint>

<constraint name="NegativeSlope">
<param component="negLine" />

</constraint>

<!-- SIZE RELATIONSHIPS -->
<constraint name="SameSize">

<param component="posLine" />
<param component="negLine" />

</constraint>
. . .

</constraintList>
</shapeDefinition>

Fig. 60. Part of the shape description for the military course of action symbol, In-

fantry. The shape description specifies the primitives that the shape contains

(1 rectangle, 2 lines), as well as the constraint interactions between the prim-

itives.

137

4. Choose the shape that has the best confidence score.

In SLOTH, segmentation is a key component in performing recognition. Without

segmentation, users would need to draw each primitive separately in order for the

system to build shapes from primitives. With segmentation, users can draw multiple

primitives in a single stroke, and corner finding with PaleoSketch allows us to separate

and recognize the drawn primitives.

E. Corners as Features in Arrow Recognition

We also use segmentation as a feature when creating domain-specific algorithms. A

recent project for DARPA had the Sketch Recognition Lab recognize military course of

action symbols. Many of the symbols in the course of action data can be recognizable

by a geometric-based system. That is, the symbols have a well-defined structure.

Some symbols in the course of action data do not have a rigid structure. For

instance, arrows can have arbitrary paths which are difficult to describe (Fig. 61).

We created an arrow-specific recognizer that uses corners as a feature for recogni-

tion. We used segmentation to distinguish between arrow heads based on the number

of segments each arrow head had. With only 2 segments (i.e., 3 corners), we discerned

Fig. 61. Two arrows can have different, arbitrary paths that indicate the attack direc-

tion of units in course of action diagrams.

138

(a) An arrow with a stan-
dard, ‘V’ arrow head.

(b) An arrow with a trian-
gular arrow head.

(c) An arrow with an out-
lined arrow head.

Fig. 62. The three types of arrow heads we use segmentation to help recognize.

an arrow head to be a standard ‘V’ shape. With 3 segments that formed a closed

polygon, we classified an arrow head as being triangular. Finally, there were outline

arrow heads that were typically segmented into 6 primitive lines (Fig. 62).

We also use segmentation to distinguish between types of arrows. In course of

action diagrams, a Task, Fix arrow and a Ground Supporting Attack arrow are similar

except for the arrow’s path (Fig. 63). We can use the number of polyline segments

in an arrow’s path in order to differentiate between the two arrows.

Similarly, in Task, Follow and Assume and Task, Follow and Support arrows, the

tail end of the arrow differs by only one segment (Fig. 64). We utilize the number

of segments (along with our arrow head prediction and other features), in order to

confidently recognize these arrows.

The simplicity of these approaches is that with only segmentation and some

rudimentary constraints, we were able to create a domain-specific recognizer to use

within a more complicated system. When low-level techniques like segmentation

become more reliable and accurate, developers can use the number of corners in a

139

(a) A Task, Fix arrow. (b) A Ground Supporting Attack arrow.

Fig. 63. These two arrows, Task, Fix (63(a)) and Ground Supporting Attack (63(b)),

differ only in the number of segments in the arrow’s path.

(a) A Task, Follow and Assume arrow. (b) A Task, Follow and Support arrow.

Fig. 64. These two arrows, Task, Follow and Assume (64(a)) and Task, Follow and

Support (64(b)), have a different number of segmentations in their tail. The

number of segments, 5 and 6, respectively, is one feature that helps classify

the arrows.

140

stroke as an additional feature that can improve recognition.

141

VITA

Aaron David Wolin received his B.S. in Computer Science from Harvey Mudd

College in May 2007. He entered the graduate department of Texas A&M the same

year, earning a Master’s degree in Computer Science in May 2010. His interests

include pen-based computing, pattern recognition, and HCI.

Aaron can be reached at the Department of Computer Science and Engineering,

Texas A&M University, TAMU 3112, College Station, TX 77843-3112. His email

address is awolin@gmail.com.

