
 
 

 

 

 

TRANSPORT PROPERTIES OF NANOCOMPOSITES 

 

 

A Thesis 

by 

VINAY NARAYANUNNI  

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

 

May 2010 

 

 

Major Subject: Mechanical Engineering 

 

 



 
 

 

 

 

TRANSPORT PROPERTIES OF NANOCOMPOSITES 

 

 

A Thesis  

by 

VINAY NARAYANUNNI  

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

Approved by: 

Chair of Committee,  Choongho Yu 
Committee Members, Dong Hee Son 
                                          N K Anand 
Head of Department, Dennis O’ Neal 

 

May 2010 

 

Major Subject: Mechanical Engineering 

 



iii 
 

ABSTRACT 

 

Transport Properties of Nanocomposites. (May 2010) 

Vinay Narayanunni, B.Tech., National Institute of Technology 

Chair of Advisory Committee: Dr. Choongho Yu 

 
 Transport Properties of Nanocomposites were studied in this work. A Monte 

Carlo technique was used to model the percolation behavior of fibers in a 

nanocomposite. Once the percolation threshold was found, the effect of fiber dimensions 

on the percolation threshold in the presence and absence of polymer particles was found. 

The number of fibers at the percolation threshold in the presence of identically shaped 

polymer particles was found to be considerably lower than the case without particles.  

Next, the polymer particles were made to be of different shapes. The shapes and sizes of 

the fibers, as well as the polymers, were made the same as those used to obtain 

experimental data in literature.  The simulation results were compared to experimental 

results, and vital information regarding the electrical properties of the fibers and fiber-

fiber junctions was obtained for the case of two stabilizers used during composite 

preparation – Gum Arabic (GA) and Poly(3,4-ethylenedioxythiophene) 

poly(styrenesulfonate) (PEDOT:PSS). In particular, the fiber-fiber connection 

resistances, in the case of these 2 stabilizers, were obtained. A ratio between the fiber 

path resistance and the total connection resistance, giving the relative magnitude of these 

resistances in a composite, was defined. This ratio was found through simulations for 
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different fiber dimensions, fiber types and stabilizers. Trends of the ratio with respect to 

composite parameters were observed and analyzed, and parameters to be varied to get 

desired composite properties were discussed. This study can serve as a useful guide to 

choose design parameters for composite preparation in the future. It can also be used to 

predict the properties of composites having known fiber dimensions, fiber quality and 

stabilizing agents. 
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NOMENCLATURE 
 

Variables 

cf  Critical volume fraction 

f    Volume fraction of the conductive phase 

ct  Conductive exponent 

2L  Normalized fiber length 

D  Normalized fiber diameter  

x   Cartesian co-ordinate along x direction 

y   Cartesian co-ordinate along y direction 

z   Cartesian co-ordinate along z direction
              

t  Scalar parameter less than or equal to L  

            s Scalar parameter less than or equal to L 

u     Distance vector between two fibers 

F Square of the distance between the fibers 

d Distance between two fibers 

N     Total number of fibers 

n Number of connections 

R Resistance 

l    Length of percolation path 

A    Fiber area 
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Length Length of the composite 

Area   Area of the composite face 

Greek symbols 

σ  Electrical conductivity  

α    Zenith angle of fiber  

θ    Azimuth angle of the fiber  

π  Pi  

Subscripts 

1 Corresponding to fiber arm 1 

2 Corresponding to fiber arm 2 

m Variable taking values 1 or 2 

n Variable taking value 1 or 2 

i Corresponding to fiber i 

j Corresponding to fiber j  

0 Corresponding to initial or minimum value 

min Minimum 

c Connection 

f Fiber 

fp  Fiber path 

Total Total 

Composite Composite 
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Ratio Ratio 

Superscripts 

i Corresponding to fiber i 

j                                   Corresponding to fiber j 

Acronyms 

GA Gum Arabic 

PEDOT: PSS Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) 

CNT Carbon nanotube 

TIM Thermal interface material 

UPR                         Unsaturated polyester resin 

SEM                            Scanning electron microscopy 

MC                              Multiplicative congruential 

CVF                             Critical volume fraction  

 

 

 

 

 

 

 
 

 



x 
 

TABLE OF CONTENTS 

                                                                                                                                      Page 

ABSTRACT ..................................................................................................................... iii 

DEDICATION ................................................................................................................... v 

ACKNOWLEDGEMENTS ............................................................................................. vi 

NOMENCLATURE ........................................................................................................ vii 

TABLE OF CONTENTS ................................................................................................... x 

LIST OF FIGURES ........................................................................................................ .xii 

LIST OF TABLES ....................................................................................................... ..xiv 

1. INTRODUCTION .......................................................................................................... 1 

1.1 Carbon nanotube (CNT) network polymer composites ........................................... 1 
       1.1.1 Applications and prospects ............................................................................ 5 
       1.1.2 Objectives ...................................................................................................... 5 

2. LITERATURE REVIEW ............................................................................................... 7 

3. METHODOLOGY ....................................................................................................... 12 

3.1 Implementation of the code ................................................................................... 20 

4. RESULTS AND DISCUSSION................................................................................... 22 

4.1 Effect of fiber length .............................................................................................. 22 
4.2 Effect of aspect ratio .............................................................................................. 28 
4.3 Effect of the matrix ................................................................................................ 30 

5. CONCLUSION ............................................................................................................ 44 



xi 
 

Page 

REFERENCES ................................................................................................................. 45 

VITA................................................................................................................................. 48 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 
 



xii 
 

LIST OF FIGURES 
Page 

Figure 1  Change in electrical conductivity with fiber volume fraction ............................ 4 

Figure 2  CNT represented as an arm shaped fiber ......................................................... 12 

Figure 3  Fiber parameters defined by a global and a local coordinate system ............... 13 

Figure 4  Fibers distributed randomly in a unit cube ....................................................... 15 

Figure 5  Different types of connections between fibers ................................................. 16 

Figure 6  Distance between the ith and the jth fibers ...................................................... 17 

Figure 7  Critical volume fraction versus normalized fiber lengths for different fiber 
diameters ......................................................................................................... 23 

 
Figure 8  Power law fitting for fiber with D=.02 ............................................................. 24 
 
Figure 9  Number of connections in the percolation cluster versus L for D=.02 ............ 26 

Figure 10  Number of connections in the percolation cluster versus L for D=0.0125 .... 27 

Figure 11  Number of connections in the percolation cluster versus L for D=0.005 ...... 27 

Figure 12  Critical volume fraction versus fiber aspect ratio .......................................... 28 

Figure 13  Logarithm of critical volume fraction versus logarithm of the aspect ratio ... 29 

Figure 14  Critical volume fraction versus normalized fiber length for a polymer 
particles size of 1 micron ............................................................................... 31 

 
Figure 15  Critical volume faction versus normalized fiber length for different      

polymer particle (cube) sizes ......................................................................... 32 
 
Figure 16  Composite filled with cuboids of different dimensions representing     

polymer particles ........................................................................................... 33 
 
Figure 17  Length of the percolation pathway in the fiber percolation cluster................ 34 

Figure 18  Stabilizer coating between the fibers ............................................................. 36 



xiii 
 

Page 
 
Figure 19  Rf/ncRc versus critical volume fraction for different fiber dimensions      

when the stabilizer is GA ............................................................................... 38 
 
Figure 20  Rf/ncRc versus critical volume fraction for different fiber dimensions      

when the stabilizer is PEDOT: PSS ............................................................... 38 
 
Figure 21  Fiber dimensions near Rf/ncRc=1 with GA as stabilizer ............................... 39 

Figure 22  Fiber dimensions near Rf/ncRc=1 with PEDOT: PSS as stabilizer ............... 41 

Figure 23  Rf/ncRc for different fiber lengths at fixed diameters for composites          
with GA as stabilizer ..................................................................................... 42 

 

                                       

 

 

 

 

                 

      

                  

 



xiv 
 

LIST OF TABLES 

Page 

Table 1  Fiber number and CVF at different diameters for L=0.1 .................................. 25 

Table 2  Fiber number and CVF at different diameters for L=0.2 .................................. 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

1. INTRODUCTION 

1.1 Carbon nanotube (CNT) network polymer composites 

At present, the efficiencies of thermoelectric devices are not competent enough 

to completely replace conventional power generation and refrigeration systems. In spite 

of this, thermoelectric devices are popular due to their simple structure, lack of moving 

parts, noiseless operation and higher power densities (power per unit weight or volume) 

than conventional power sources. The inability to increase thermoelectric efficiencies 

over the past years, have led researches to search for new materials and devices that have 

better power densities. For instance, if conventional thermoelectric materials were to be 

replaced by polymers, there is potential for the power density to be increased by 

approximately six or seven times due to the low density of polymers( 31.2 /g cm≈ ).[1] 

Polymers are cheap and easy to manufacture. Polymers also have low thermal 

conductivities. This is a very desirable property to increase the thermoelectric figure of 

merit. On the down side, polymers have extremely low electrical conductivities which 

can drastically decrease the thermoelectric efficiency. Due to the high power densities, it 

may still be profitable to use polymers, and, the use of polymer composites may be the 

solution to the problem of low efficiency. 

Composites are structures made of materials which maintain their identities even 

after the component is formed fully. The properties of the composites will be a  

____________ 
This thesis follows the style of International Journal of Heat and Mass Transfer. 
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combination of the properties of its individual constituents. The constituent materials can 

be of two types. The ‘matrix’ and the ‘reinforcement’. The matrix material surrounds 

and supports the reinforcement materials. The reinforcement materials have physical 

properties which make up for the inferior properties of the matrix and enhance the 

properties of the composite.  

The matrix in the polymer composite is the polymer. Different kinds of 

reinforcements can be used along with the polymer. There are a variety of materials 

which can serve as reinforcements. High electrical conductivity is a mandatory 

requirement of the reinforcement material in order to counter the low electrical 

conductivity of polymers, consequently increasing the figure of merit. Metals, Carbon 

nanotubes etc. are possible candidates. Metals have high density, and hence tend to 

increase the weight of the composites. The inclusion of metals also makes the 

composites less flexible. Carbon nanotubes on the other hand, are light weight and this 

helps to maintain the high power density. Carbon nanotubes also have high strength and 

flexibility.  

Carbon nanotubes were discovered by Iijima in 1991.[2]Carbon nanotubes 

posses many desirable properties. They have extremely high tensile strength and 

Young’s modulus. They have high electrical and thermal conductivities and good optical 

properties. Carbon nanotubes are generally classified into single walled and multiwalled 

nanotubes. Single walled nanotubes consist of a single graphite sheet seamlessly 

wrapped into a cylindrical tube. Multiwalled nanotubes comprise an array of such 
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nanotubes that are concentrically nested. CNTs have many applications. They are being 

used in electrochemical devices, for hydrogen storage, field emission devices, 

nanometer-sized electronic devices, sensors and probes.[3] 

The reinforcements can be in the form of particles, whiskers (very fine single 

crystals), short fibers, long fibers etc. Long fibers make it difficult to produce complex 

shapes of composites containing them. If the reinforcements are particles, there is lack of 

connection between them which diminishes the electrical conductivity. Short fibers are 

ideal for establishing good connection between the fibers without compromising on the 

weight, flexibility and the ability to be made into different shapes.  

Polymer matrix composites embedded with conducting fibers are known to 

exhibit an insulator to conductor transition at a certain volume fraction of fibers 

((volume of fibers)/ (Total composite volume)) called the critical volume fraction fc. 

This is also known as the percolation threshold and is understood by the percolation 

theory.[4] Figure 1 gives a representation of this effect. 
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Figure 1  Change in electrical conductivity with fiber volume fraction 

Materials having high electrical conductivities usually have high thermal 

conductivities. The same is true in the case of carbon nanotubes. High thermal 

conductivity leads to a low thermoelectric figure of merit. Experimental studies have 

shown that the thermal conductivity does not increase as steeply as the electrical 

conductivity at the percolation threshold. Carbon nanotubes in the form of short fibers 

embedded in the polymer are one dimensional nanomaterials. Since the dimensions are 

of the order of nanometers, the contact area between the connected fibers is very low. 

The low contact area is detrimental to effective heat transfer, but the electrons travel 

from one fiber to another leading to effective electrical transport. So, the high value of 
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electrical conductivity and relatively low value of thermal conductivity tends to increase 

the thermoelectric figure of merit. 

1.1.1 Applications and prospects   
 

 Polymer matrix composites are popular in the aerospace industry due to their 

stiffness lightness and heat resistance. They are also being used as Thermal Interface 

Materials (TIMs) which connect semiconductor chips and electronic components to a 

heat sink. Gel type polymer TIM systems embedded with carbon fibers are popular as 

they conform well to the surface irregularities of the chip and the heat sink, resulting in 

uniform heat transfer and very low thermal resistance. Since these TIMs are polymers, 

they also help to protect the chips from mechanical stresses, by acting as a shock 

absorber. As mentioned before, CNT network polymer composites can serve as light 

weight, thermoelectric materials.  

1.1.2 Objectives 
 

 Create a computational model which initially creates a virtual volume 

representing the volume of the CNT network polymer composites; embeds the virtual 

volume with CNT fibers using the Monte-Carlo technique and then develops connection 

criteria between the fibers to ensure the presence of a CNT fiber network inside the 

polymer capable of transporting electricity and heat across the composite. Find the 

volume fraction of fibers in the composite needed to reach percolation threshold (Critical 

Volume Fraction) for different fiber lengths, fiber diameters and fiber aspect ratios. Find 
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the number of fiber connections in each case and use established equations to find 

electrical conductivity of the composites. 
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2. LITERATURE REVIEW 

Experimental studies on electrical conductivity of conducting fiber in polymer 

composites suggest that the electrical conductivity follows power law dependence with 

respect to fiber concentration.[1, 5-11] Percolation theory has been successful in 

explaining this phenomenon. The basic concept of percolation theory lies in the 

determination of how a given set of sites (nano fibers in this case) is interconnected by 

means of a bonding criterion.[12] The network of interconnected sites is termed as a 

cluster. If the cluster connects the ends of the composite, then it is termed as a 

percolation cluster and it forms a pathway for electrical conduction. The minimum 

concentration of fibers needed to form this kind of pathway is called the percolation 

threshold or the critical volume fraction. The electrical conductivity of the fiber network 

composite after the percolation threshold is given by[4, 13] 

( )ctc o cf fσ σ= −                                                                                                               (1) 

 Here cσ  is the total conductivity of the polymer composite. oσ  is the pre-

exponential constant, which normally is equal to the conductivity of the conductive 

phase (nano fiber in this case). f is the volume fraction of the conductive phase and cf  

is the critical volume fraction of the conductive phase. ct  is the conductive exponent. 

The goal of this work is to develop a computational model to explain percolation and 

electrical conductivity in CNT network polymer composites.  

 The Monte Carlo technique[14, 15] is a popular technique used to solve 

percolation problems and is used in this work. The technique relies on the use of random 



8 
 

numbers which makes it an effective tool to simulate the random arrangement of fibers 

in the polymer. Once the random fibers are created, a connection criterion between them 

is defined. All the connected fibers are checked to see if they form a percolation cluster 

which enables energy transport. 

 The groundwork for solving percolation problems using the Monte Carlo 

technique was laid in 1974 by Pike and Seager.[12] They did a 2 D study and the fibers 

were modeled as sticks of zero width and a fixed length. A constant number of sticks 

were embedded in the volume representing the composite and the length of the stick was 

varied to find the minimum length leading to percolation. The number of bonds per site; 

that is, the number of connections per stick was also found out.  Balberg et al. in 1983 

developed a model based on the work of Pike and Seager.[16] They made the 2D system 

isotropic by randomly orienting the sticks and also made the length of the sticks unequal. 

The cluster resistance was also obtained as a function of stick length. Du et al. in 2005 

did a 2D Monte Carlo study of CNT composite percolation conductivity using a zero 

width stick system.[9] They found that the electrical conductivity follows a power law 

not only with concentration, but also the alignment angle of the sticks. Natsuki et al. in 

2005 assigned a finite width to the sticks and performed a 2 D study using Monte Carlo 

technique to find the percolation behavior in fiber reinforced composites.[17] Critical 

volume fraction was reported as a function of fiber aspect ratio and orientation angle of 

the fiber. Wu et al. in 2006 did a 2 D Monte Carlo study similar to Natsuki’s work and 

obtained the solution of percolation problem on oriented short-fiber composites which 

was used to explain experimental electrical conductivity data of CNT/Unsaturated 
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polyester resin (UPR) nanocomposites.[7] The critical volume fraction as a function of 

aspect ratio and the electrical conductivity as a function of volume fraction of the fibers 

are reported. The possibility of electrical conduction through the fibers by electron 

hopping and electron tunneling is also discussed.   

3 D studies are expected to give a much more realistic picture when comparing 

with experimental data. Sur et al. in 1976 did Monte Carlo studies of percolation 

phenomena for a simple cubic lattice, applicable mainly to disordered binary alloys.[18]  

The earliest 3 D Monte Carlo study applicable to fiber composites was done by Balberg 

et al. in 1984.[19] The effects of aspect ratio of the sticks and macroscopic anisotropy on 

the percolation threshold were reported. Taya et al. in 1987 did a 3 D percolation study 

to predict the in-plane electrical conductivity of misoriented short fiber composites. The 

sticks were considered to be capped cylinders. Percolation threshold as a function of 

aspect ratio and electrical conductivity as a function of volume fraction for different 

aspect ratios were reported. Lee and Kim in 1995 did a study on the percolation behavior 

and electrical conductivity in unidirectional composites made of short conductive fibers 

in insulating matrix by Monte Carlo simulation as a function of aspect ratio, volume 

fraction and angle. The lengths of the fibers were kept fixed in one case and normally 

distributed in another case. It was found that the percolation threshold is independent of 

the fiber length distribution. Ounaies et al. in 2003 did a 3 D percolation study 

considering the fibers as cylinders to explain the electrical properties of single wall 

carbon nanotube reinforced polyimide composites.[8] Foygel et al. in 2005 did a 3 D 

Monte Carlo percolation study of carbon nanotube composites and suspensions by 
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considering the fibers as randomly oriented sticks.[20] The critical volume fraction as a 

function of length of fiber, diameter of fiber and aspect ratio of fiber were reported. The 

electrical conductivity as a function of the fiber volume fraction was also reported.   

The works mentioned above modeled the fibers as straight sticks. This is rarely 

the case in reality as seen in the SEM images.[1, 6, 7] The CNTs are flexible and they 

remain twisted curled, entangled and compressed in the composites. Yi et al. in 2004 

developed a 3 D Monte Carlo model which took into consideration the effect of fiber 

waviness on the percolation threshold.[21] It was found that the percolation threshold 

increased with the curl ratio of the fiber. A general methodology for characterizing non-

straight finite width fibers including kinked or curly fibers was developed. Three 

different fiber shapes; sinusoidal, triangular and rectangular were studied and it was 

found that the percolation threshold does not vary much between these fiber shapes if 

their curl ratio remained the same. Although this model is more effective in modeling 

nanofibers than the stick model, it is mathematically complex. Dalmas et al. in 2006 did 

a 3 D numerical simulation using finite element method to find electrical conductivity in 

entangled fibrous networks in order to be compared with experimental electrical 

conductivity data of multi wall nanotube polymer nanocomposites.[6] A study on the 

effect of aspect ratio and critical volume fraction for straight and tortuous fibers was 

done. Although this is a more accurate representation of the real scenario and a better 

model than the straight stick system, the size in width of the fibers was ignored.   
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The fiber models of Yi et al. and Dalmas et al. may be difficult to execute when 

the polymer particles in the composite has also to be taken care of during the simulation. 

Gao and Ma in 2008 developed a 3 D Monte Carlo model which took into account both 

the fiber thickness and fiber flexibility. Although this model is simple and simulates the 

real scenario efficiently, the effect of polymer particles in the composite was not 

considered.[22]  

There has not been much work done to simulate the properties of fiber polymer 

composites which take into account the effect of polymer particles. In this work, the 

presence of polymer particles in the composites is considered and Gao’s model is 

adopted to explain the properties of CNT network polymer composites.  
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3. METHODOLOGY 

 The modeling of the percolation phenomena in CNT network polymer 

composites involves two steps. In the first step, the CNT fibers are modeled and 

randomly placed in a non-dimensional cube of unit length. This random placement 

represents the actual arrangement of fibers in the composite. The second step involves 

developing a connection criterion between the fibers. This connection criterion allows 

the determination of fiber networks and ultimately in the detection of percolation 

clusters in the composite.  

 The CNT fiber is modeled as shown in Figure 2[22]. The fiber has two segments 

of length L and diameterD . The two segments or the arms of the fiber can pivot about 

the connection point at the centre.  

 

 

Figure 2  CNT represented as an arm shaped fiber 
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The position, shape and orientation of the fibers are defined by means of a global 

and local coordinate system as shown in Figure 3.[22]  

 

 

Figure 3  Fiber parameters defined by a global and a local coordinate system 

 

 The center or the vertex of the ith fiber ( , , )i i ix y z  is defined with respect to the 

global Cartesian coordinate system. A local spherical coordinate system is attached to 

the fiber with the center of the coordinate system coinciding with the center of the fiber. 

The zenith angles 1
iα and 2

iα define the position of arms 1 and 2 respectively in the vertical 
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plane. The azimuth angles 1
iθ and 2

iθ define the horizontal position of arms 1 and 2 

respectively. Any point ( , , )x y z  on arm 1 is given by  

1 1

1 1

1

cos sin

sin sin

cos

i i
i

i i
i

i
i

xx

y y t
z z

θ α

θ α

α

   
    = +     

     
     

                                                                                          (2) 

 Similarly, any point ( , , )x y z  on arm 2 is given by  

2 2

2 2

2

cos sin

sin sin

cos

i i
i

i i
i

i
i

xx

y y t
z z

θ α

θ α

α

   
    = +     

     
     

                                                                                          (3) 

 
 t  is a scalar parameter, which less than or equal to half the fiber length. The 

length of the representative volume element (RVE), that is, the average size of the CNT 

polymer composite is used as the normalizing parameter. So, the volume representing 

the composite becomes a cube of unit length. The fibers are randomly distributed in this 

unit cube as shown in Figure 4.[22] Here, [0,1]ix ∈ , [0,1]iy ∈ , [0,1]iz ∈ , [0, ]t L∈ ,

1 [0, ]iα π∈ , 1 [0, 2 ]iθ π∈ , 2 [0, ]iα π∈ and 2 [0, 2 ]iθ π∈ . ix , iy , iz , 1
iα , 2

iα and 1
iθ are generated 

randomly.  If 1
iθ is less than or equal toπ , then, 2

iθ  is given by 1
iθ +π . If 1

iθ  is greater 

thanπ , then 2
iθ  is given by 1

iθ -π . The diameter D  and the length L  are user defined. 

Thus the fiber is defined by six random numbers. In order to generate random numbers, 

a multiplicative congruential (MC) random number generator is adopted. 
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Figure 4  Fibers distributed randomly in a unit cube 

 In addition to the six random numbers which define the parameters of the fiber, 

the fiber is also assigned a fiber number and a cluster number. The fiber number is 

assigned to identify the fiber and the cluster number is meant to mark the percolation 

cluster or network to which the fiber belongs. 

 Percolation pathways are formed when fibers intersect with each other and from 

a network connecting the ends of the composite. Generally, three kinds of connections 

are possible between fibers as shown in Figure 5. These are body to body, end to end, 

and end to body. 
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Figure 5  Different types of connections between fibers 

 It has been shown that the fraction of end to end, and end to body connections as 

compared to the total number of connections is very less. Moreover, these two types of 

connections take more time to model than the body to body connections.[22] In this 

work only the body to body connections are taken into consideration while modeling the 

percolation phenomena. 

 Consider the connection between two fibers say the ‘ith fiber’ and the ‘jth fiber’. 

Let the ‘jth fiber’ be represented by equation (4) 

cos sin

sin sin

cos

j j
n nj

j j
j n n

j
j n

xx

y y s
z z

θ α

θ α

α

   
    = +     

     
     

                                                                                        (4) 

 Here [0, ]s L∈ . Figure 6 represents fiber i and fiber j and the distance between 

them at random points t  and s on fiber i and fiber j respectively. 

 

a b c
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Figure 6  Distance between the ith and the jth fibers 

The square of the distance between a point on the ith fiber and a point on the jth 

fiber is obtained from equations (2), (3) and (4) given by  

F u u= ⋅                                                                                                                            (5) 

 

Here u is given by  

1

2

3

( cos sin cos sin )

( sin sin sin sin )

( cos cos )

i i j j
i j m m n n

i i j j
i j m m n n

i j
i j m n

u x x t s e

y y t s e

z z t s e

θ α θ α

θ α θ α

α α

= − + −

+ − + −

+ − + −

                                                                (6) 
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Here 1, 2m =  and 1, 2n = . From equation (5) and equation (6), we obtain 

2 2
1 2 3 4F t C t C ts s C S C= + + + + +                                                                                     (7)

1

2

3

2 2 2
4

2 cos sin 2 sin sin 2 cos

2[sin sin cos( ) cos cos ]

2 cos sin 2 sin sin 2 cos

( ) ( ) ( )

, ,

i i i i i
m m m m m

i j i j i j
m n m n m n

j j j j j
n n n n n

i j i j i j

C x y z

C

C x y z

C x y z

x x x y y y z z z

θ α θ α α

α α θ θ α α

θ α θ α α

= ∆ + ∆ + ∆

= − − +

= − ∆ − ∆ − ∆

= ∆ + ∆ + ∆

∆ = − ∆ = − ∆ = −

                                                 (8) 

 F is the square of the distance between the fibers. F is a function of the variables 

t and s . We are interested in the points on the two fibers, that is the values of t and s  

which give the minimum value of F . For this we differentiate F each with t and s  set 

the resultants equal to zero.  

1 22 0
F

t C C s
t

∂
= + + =

∂
                                                                                                     (9) 

3 22 0
F

s C C t
s

∂
= + + =

∂
                                                                                                                                                  (10) 

 Simultaneous solution of equations (9) and (10) gives  

1 2 3
0 2

2

2
4

C C C
t

C
−

=
−

                                                                                                              (11) 

3 1 2
0 2

2

2
4

C C C
s

C
−

=
−

                                                                                                                                                                  (12) 

 For 0t and 0s  to represent the points on the fibers representing the minimum 

distance between them, it is necessary that the conditions given in equation (13) are also 

satisfied.  
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2 2 2 2
2

2 2 20, ( )( ) ( ) 0.
F F F F
t t s t s

∂ ∂ ∂ ∂
> − >

∂ ∂ ∂ ∂ ∂
                                                                              (13) 

 From equation (7) , it is clear that  

2

2 2 0
F
t

∂
= >

∂
                                                                                                                                                          (14) 

and 

2 2 2
2 2

22 2( )( ) ( ) 4 0
F F F

C
t s t s

∂ ∂ ∂
− = − >

∂ ∂ ∂ ∂
                                                                                                                     (15) 

Equation (14) and equation (15) hold as long as the fibers are not parallel to each 

other, that is as long as i i
m nα α≠ ; i j

m nθ θ≠ . So in the case of non parallel fibers, F has a 

minimum value for values of 0t and 0s  given in equations (11) and (12) respectively.  

 In this work, the random number generator produces numbers with a large 

number of decimal places. So, the chances of having considerable number of parallel 

fibers during the simulation are very less. Using the values of 0t and 0s , the minimum 

distance, mind for non parallel fibers is calculated as 

2 2 2
1/22 4 1 3 1 2 3 4

min 2
2

4
( )

4
C C C C C C C C

d
C

+ + − −
=

−
                                                                    (16) 

 If the minimum distance is less than or equal to the diameter of a fiber, then the 

fibers are assumed to be connected. To be more precise, the ith and the jth fiber are said 

to be connected, when mind D≤ along with the conditions, 00 t L≤ ≤  and 00 s L≤ ≤ .  
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3.1 Implementation of the code 

A Fortran 90 code is executed with the system supported by the supercomputing 

facility at the Texas A and M University. The simulation is done within a space enclosed 

by a unit cube as mentioned before. The random numbers generate the fiber parameters 

and the fibers are distributed in the cubic space. Fiber numbers from 1 to N are assigned 

to the fibers, where N is the total number of fibers. In the beginning, the cluster number 

of each fiber is set to be equal to the fiber number of that fiber. As the next step, two 

arrays are defined. One of them stores the fiber numbers at the top boundary of the 

composite and the other stores the fiber numbers at the bottom boundary of the 

composite. Next, the connectivity between the fibers is checked in a systematic manner. 

The first fiber is taken and it is checked for connectivity with the second fiber. If they 

are connected, then, the cluster number of the second fiber is set as the cluster number of 

the first fiber. Irrespective of whether the first and the second fiber are connected, the 

first fiber is next checked for connectivity with the third fiber and so on till the Nth fiber. 

This process is done for all the N fibers. In general, the fiber I is checked with fiber i+1 

for connectivity and if they are connected, then both the fibers are assigned the lower 

cluster number among the two. So in a connected network or a percolation pathway, all 

the fibers in the cluster will have the same cluster number. Percolation or the formation 

of a pathway connecting the top and bottom of the composite is detected by checking if 

the cluster number of any of the fibers at the top of the composite and any of the fibers at 

the bottom of the composite are same. The Critical Volume Fraction (CVF) is the 
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fraction of total fiber volume to the total composite volume at the instance of the first 

percolation. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 



22 
 

4. RESULTS AND DISCUSSION 

 In all the simulations, the representative volume element (RVE) is taken to be of 

size 20 mµ . L is the normalized half fiber length normalized with the size of the RVE. D 

is the normalized diameter normalized with respect to the size of the RVE. So, the 

volume fraction of the fibers is given as 22 / 4NL Dπ . The critical volume fraction (CVF) 

is obtained when N is the number of fibers at the percolation threshold. The CVF 

depends on the fiber dimensions and the number of fibers. 

4.1 Effect of fiber length 

 The length of the fiber plays an important role in determining the CVF. Figure 7 

shows the variation of the critical volume fraction with respect to the lengths at fixed 

diameter of the fiber. The lengths of the fibers considered in this case are 4 mµ , 5 mµ , 6

mµ , 7 mµ  and 8 mµ  which yield L values of .1, .125, .15, .175 and .2 respectively. The 

diameters considered are 100nm, 250nm and 400nm which yield D values of .005, .0125 

and .02 respectively. Results are taken for 10 runs of the program for each of these fiber 

dimensional parameters. Average values obtained from these 10 repetitions.  

 It is seen from Figure 7 that the critical volume fraction decreases with increasing 

fiber length for a given diameter. This trend is consistent with previous works, for 

instance with Foygel’s work.[20] This trend also seems logical because, with  
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Figure 7  Critical volume fraction versus normalized fiber lengths for different fiber 
diameters 

 
increasing length, the fibers have more reach and are able to connect with other fibers 

more easily. So the number of fibers needed to make the percolation pathway is lesser.  

 The critical volume fractions follow a power law relation with respect to length. 

Figure 8, shows a power law fitting for fibers with D=.02 and different lengths. 
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Figure 8  Power law fitting for fiber with D=.02 

 

It can also be observed that for the same length, the critical volume fraction 

increases with the diameter of the fiber. Table 1 and Table 2 represent the critical fiber 

numbers and the critical volume fractions for different diameters at L=0.1 and L=0.2 

respectively. It can be observed that the critical fiber number decreases as the fiber 

diameter increases. This is because; the higher diameters enable better connection 

between the fibers, thus reducing the fibers needed to reach the percolation threshold. On 

the other hand the CVF increases with increasing diameter. This is because of the 

dominance of the D2 term in the expression for the critical volume fraction. 
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Table 1  Fiber number and CVF at different diameters for L=0.1 

D=.005 D=.0125 D=.02 

Fiber# CVF Fiber# CVF Fiber# CVF 

8630 
9800 
10800 
10600 
10600 
10600 
8600 
10900 
10700 
11200 

0.0339 
0.0385 
0.0424 
0.0416 
0.0416 
0.0416 
0.0338 
0.0428 
0.042 
0.044 

4790 
4720 
4810 
4590 
4770 
4700 
4900 
4690 
4840 
4620 

0.1176 
0.1158 
0.1181 
0.1127 
0.1171 
0.1154 
0.1203 
0.1151 
0.1188 
0.1134 

2780 
2910 
2900 
2910 
2850 
2910 
3180 
2880 
3010 
2240 

0.1747 
0.1828 
0.1822 
0.1828 
0.1791 
0.1828 
0.1998 
0.181 
0.1891 
0.1407 

 

Table 2  Fiber number and CVF at different diameters for L=0.2 

D=.005 D=.0125 D=.02 

Fiber# CVF Fiber# CVF Fiber# CVF 

1300 
1370 
1110 
1300 
1280 
1150 
1220 
1250 
1340 
1070 

0.0102 
0.0108 
0.0087 
0.0102 
0.0101 
0.009 
0.0096 
0.0098 
0.0105 
0.0084 

430 
660 
800 
570 
710 
720 
520 
520 
650 
760 

0.0211 
0.0324 
0.0393 
0.028 
0.0349 
0.0353 
0.0255 
0.0255 
0.0319 
0.0373 

420 
310 
370 
540 
450 
290 
470 
410 
450 
490 

0.0528 
0.039 
0.0465 
0.0679 
0.0565 
0.0364 
0.0591 
0.0515 
0.0565 
0.0616 
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 The fiber length also plays an important role in determining the number of 

connections in the percolation cluster. The number of connections in percolation clusters 

are determined and plotted for different lengths at fixed diameters as shown in Figure 9,  

Figure 10 and Figure 11. 

 

 

Figure 9  Number of connections in the percolation cluster versus L for D=.02 
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Figure 10  Number of connections in the percolation cluster versus L for D=0.0125 

 

 

Figure 11  Number of connections in the percolation cluster versus L for D=0.005 
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 For all the diameters considered, the number of connections decreases as the 

length of the fiber increases. This is because of the lower number of fibers and hence 

lower fiber connections needed in the pathway to attain percolation. 

4.2 Effect of aspect ratio 

 The aspect ratio 2L/D of the fiber plays an important role in determining the 

critical volume fraction of the fiber. The CVFs of the fibers are plotted against the aspect 

ratios by keeping the length fixed in each case as shown in Figure 12. 

 

 

Figure 12  Critical volume fraction versus fiber aspect ratio 

The critical volume fraction decreases dramatically with increasing aspect ratio. 

Since the length is fixed, the critical volume fraction decreases with decreasing diameter. 
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In the previous section, the CVF was mainly determined by the critical fiber number 

which tends to change with fiber length. Here, the CVF is dependent on the square of the 

diameter. So even though the critical fiber number increases with decrease in the 

diameter due to difficulty in fiber to fiber connection; the decrease in diameter is the 

dominant factor and influences the CVF to a greater extent.  In general, a linear 

relationship exists between logarithm of critical volume fraction and the logarithm of the 

aspect ratio.[22] Figure 13 shows the plot between the logarithm of the CVF and the 

logarithm of the aspect ratio.  

 

 

Figure 13  Logarithm of critical volume fraction versus logarithm of the aspect ratio 
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al.[20] The critical fiber numbers of low aspect ratio fibers are relatively large and it 

becomes computationally cumbersome to perform these simulations. This is where the 

linear behavior becomes useful. The linear behavior between the logarithm of the aspect 

ratio and the logarithm of the critical volume fraction helps to predict the critical volume 

fractions at low aspect ratios.    

4.3 Effect of the matrix 

  In the simulations and the results discussed above, the fibers were randomly 

dispersed throughout the volume representing the composite. In reality, this is not the 

case due to the presence of the matrix phase, which in our case is the polymer part. In 

the preparation stage of the polymers, usually, there is a solution with the polymers and 

the fibers. The fibers do not penetrate the particles and during the drying process, the 

fibers get trapped in the interstitial space between the polymer particles. In order to 

simulate the effect of the matrix part in the composite, identical cubes were put into the 

volume representing the composite. 

 The fibers were placed only in the interstitial space between the cubes. The 

critical volume fraction of fibers as a function of normalized fiber length for a polymer 

particle size of 1 micron is shown in Figure 14. 

 



31 
 

 

Figure 14  Critical volume fraction versus normalized fiber length for a polymer particles 
size of 1 micron 

 

 The critical volume fractions in Figure 14 are much less than the critical volume 

fractions in Figure 7 for the same fiber dimensions. This is a predictable result. As the 

fibers are compressed in the space between the polymers, there is a greater probability 

for inter-fiber connection. This leads to a lower value of critical volume fraction for the 

simulations in which the polymer particles are considered. It is also seen that the power 

law works here as well, to explain the relation between the critical volume fractions and 

the fiber lengths at a fixed fiber diameter. 
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Figure 15  Critical volume faction versus normalized fiber length for different polymer 
particle (cube) sizes 

 

The critical volume fractions for a fixed fiber diameter of 250nm, when lengths are 4 

microns, 5 microns, 6 microns, 7 microns and 8 microns for different polymer particle 

sizes are shown in Figure 15.  The critical volume fractions at a fixed length for all the 

lengths decrease with increasing particle size. As the volume of the composite is fixed, 

increasing the particle size results in lower volume available for the fibers to occupy and 

hence increases their connection probability. This leads to lower volume fractions.  

 In real composites, the polymer particles are rarely of identical dimensions and 

the CNTs are highly compacted in the interstitial spaces as seen in the SEM the work of 

Yu et al.[1]  
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 To make the simulations closer to reality, the polymer particles were modeled as 

rectangular cuboids as shown in Figure 16 with its edge lengths being generated by 

random numbers. 

 

 

Figure 16  Composite filled with cuboids of different dimensions representing polymer 
particles  

 

 The fibers were placed between intersecting surfaces of any rectangular cuboids. 

This gives a reliable simulation of the compact packing seen in real composites. Since 

the model is stepped up closer to reality, real polymer and fiber parameters were 

incorporated into the simulation. Data and parameters from experimental works of Yu et 

al. are used for the simulation.[1, 23] In the initial simulations, fiber length was set as 2 

microns (L=.05) and the fiber diameter is set to be equal to 10nm (D=.0005). The edge 

length of a polymer varies from .14 microns to .35 microns following a normal 

distribution with an average edge length of 650 nm.  
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 In addition to the critical volume fraction, the path length and the number of 

connections of the percolation cluster are also calculated. The path length is the actual 

path the electrons travel through the cluster to reach from one end to the other end of the 

composite to cause electrical conduction. The fibers and path length of a percolation 

cluster is shown in Figure 17. 

 

Figure 17  Length of the percolation pathway in the fiber percolation cluster 

 The percolation pathway has a resistance due to the connections between the 

fibers and a resistance due to the fibers. These two are considered to be resistances in 

series.  Let cn be the number of connections in the cluster and let cR be the unknown 

resistance to current flow due to fiber connection. Let fR be the resistance of the fiber 

pathway.  
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 Here, fρ , fpl  and fA  are the resistivity, path length and the area respectively of 

the CNT fiber in the composite. The total resistance TotalR is given by  

Total f c cR R n R= +                                                                                                             (18) 

 The total resistance of the composite can be found by taking both the path length 

resistance and the polymer resistance to be in parallel.   

1 1 1

Composite Total PolymerR R R
= +                                                                                              (19) 

The resistance of the polymer is usually several orders of magnitude higher than the 

resistance of the fiber path. So in essence, the resistance of the composite is 

approximately the same as that of the resistance of the fiber path. The electrical 

conductivity of the sample, σ is obtained as 

Composite

Total Composite

Length

R Area
σ =                                                                                          (20) 

Here CompositeLength and CompositeArea are the edge length and face area of the RVE 

respectively. The expression for the electrical conductivity can be equated to the 

experimental data to obtain the value of cR . cR is taken to be the same for all the 

connections and it is heavily influenced by factors like degree of connectivity of fibers, 

the stabilizing agent used in the preparation of the composite and on the polymer used. 

 Two sets of experimental data matching the parameters of the simulations are 

available. In the first set, the stabilizer used during the preparation of the composite is 
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Gum Arabic (GA).[1] In the other experimental data, the stabilizer used during 

composite preparation is Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) 

(PEDOT:PSS).  

The role of GA which acts as the stabilizer in the preparation of the CNT 

polymer composite is shown in the work of Yu et al. [23] shows. The CNTs are 

dispersed in water in the form of entangled bundles. The GA attacks the CNTs which are 

bundled together and separates them by forming a GA coating on the surfaces of the 

CNTs. This makes the CNTs more uniformly distributed and helps them to get into the 

interstitial spaces between the polymers more effectively and uniformly.  

 The role of PEDOT: PSS as a stabilizer in the preparation of CNT polymer 

composite is also shown in the work of Yu et al.[23]  

 The stabilizer coating on the fibers has a big impact on the contact resistance 

between fibers.  

 

 

Figure 18  Stabilizer coating between the fibers 
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 Figure 18 shows a schematic of stabilizer coating (GA or PEDOT: PSS) present 

between two fibers, influencing the contact resistance between. The contact resistance of 

GA has generally been observed to be greater than the contact resistance of PEDOT: 

PSS.  

Experimental data are used to find the cR values when the stabilizers used are GA 

and PEDOT: PSS. cR value obtained for the case of GA is 51.76 10× Ω . cR value obtained 

for the case of PEDOT:PSS is 29.04 10× Ω . cR values are consistent with values in 

literature.[24]  

  Once the value of cR  is found out, TotalR and σ  for composites with given fiber 

dimensions, fiber quality and polymer particles can be found through simulations for that 

particular cR . CVFs, path lengths and the number of connections in a cluster are found 

for fiber diameters of 2nm, 10nm, 50nm, 75nm and 100nm; and for fiber lengths of 4 

microns, 6 microns, 8 microns and 10 microns. The ratio of the total resistance of the 

fiber path and the total contact resistance for these different fibers is calculated as ratioR  

/ ( )ratio f c cR R n R=                                                                                                           (21) 

 ratioR is a very significant quantity. It gives the relative magnitude of fiber and the 

connection resistance in a composite. It is the factor which decides if the composite is 

fiber resistance dominated or connection resistance dominated. ratioR of a composite can 

be varied to change its thermoelectric properties. From the simulation results, ratioR  is 

seen to depend on parameters like the fiber dimensions, type of fiber and the stabilizer 
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used. ratioR as a function of the critical volume fraction for the different fibers is shown 

for the case of the two stabilizers GA and PEDOT:PSS in Figure 19 and Figure 20 

respectively. 

 

 

Figure 19  Rf/ncRc versus critical volume fraction for different fiber dimensions when the 
stabilizer is GA 

 

 

Figure 20  Rf/ncRc versus critical volume fraction for different fiber dimensions when the 
stabilizer is PEDOT: PSS 

 



39 
 

 In general, it is seen that ratioR decreases with an increase in the critical volume 

fraction. The critical volume fraction increases along the X-axis due to an increase in 

diameter and a decrease in the length of the fiber. So, the ratioR in effect decreases 

because of an increase in diameter and a decrease in length. This seems logical as an 

increase in the diameter and a decrease in the length causes the numerator of ratioR , that 

is, fR to decrease. Decrease in the fiber length leads to an increase in the number of 

connections. So a decrease in length has an effect of increasing the denominator in the 

ratio. The figure also depicts the fiber resistance dominated regime and connection 

resistance dominated regime and the crossover point between the two.  

 

Figure 21  Fiber dimensions near Rf/ncRc=1 with GA as stabilizer 

Figure 21 gives the dimensions of the fibers in the composites with GA as the 

stabilizer which have an ratioR around 1. It is seen that the ratio becomes 1 for a diameter 
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of 10nm and a length which is in between 8 micron and 10 micron. For instance, if a 

composite is to be made with ratioR =1, using GA as the stabilizer, CNT fibers having a 

diameter of 10nm and length between 8micron and 10microns have to be used. For 

fibers with diameters less than 10nm, the ratio can be made less than or equal to one by 

decreasing the length of the fiber. As seen in the figure, for fibers with a diameter of 

2nm, the length has to be reduced below 4nm to bring the ratio equal to or less than 1. If 

the length and diameter of the fiber are fixed quantities, for example, for commercially 

available fibers, then the two ways of changing the ratio are changing the stabilizer or 

using a fiber with different electrical conductivity. For instance, the fiber with diameter 4 

microns and length 2nm, falls in the fiber resistance dominated regime. If the dimensions 

of this fiber are to be kept constant, then the best way to increase the overall conductivity 

of the composite would be to change the fiber to highly conductive metallic nanowires 

etc. as opposed to the use of a different stabilizer which would have a relatively 

negligible impact. On the other hand, if the fiber that can be used is limited to CNT 

fibers due to composite property constraints, commercial availability etc.; then the 

electrical properties can be improved by lowering its length or increasing its diameter.  

For a point in the connection resistance dominated regime, for instance fibers 

with a diameter of 10nm and length 2 micron; if the dimensions of the fiber cannot be 

changed, the best option would be to use a better stabilizer to bring the ratio closer to 

one.    
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Figure 22  Fiber dimensions near Rf/ncRc=1 with PEDOT: PSS as stabilizer 

 A similar analysis can be done for the case when PEDOT: PSS is the stabilizer as 

shown in Figure 22. Since the cR value is relatively smaller than the case of GA, the 

dominance of the effect of the stabilizer is small and there is a greater range of fiber 

dimensions which results in an ratioR close to 1. The ratio becomes 1 in for 50nm 

diameter for a fiber length in between 4 microns and 6 microns. For 75nm diameter, it 

becomes 1 for lengths in between 6 microns and 8 microns. For 100nm diameter, the 

transition happens at approximately 8 microns. It is also interesting to note that the ratio 

is 1 at higher values of diameters as compared to the case of GA where it was around 

10nm. This shows that better conducting fibers, stemming from higher diameters are 

required to compete with the low junction resistance in the case of PEDOT: PSS.  

 Here again, for a point with fiber diameter of 100nm and fiber length of 

10microns, that is a point in the fiber resistance dominated regime, to increase the 
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composite conductivity, it would be a good idea to use fibers with lower resistance, if the 

dimensions cannot be altered. If the dimensions are flexible, the electrical conductivity 

can be enhanced by decreasing the fiber length or increasing the fiber diameter. On the 

other hand, for a point in the connection resistance dominated regime, for instance the 

point with fiber diameter of 100nm and fiber length of 6 microns; the electrical 

properties can be enhanced more effectively by decreasing the resistance of the 

stabilizer.  

 

Figure 23  Rf/ncRc for different fiber lengths at fixed diameters for composites with GA as 
stabilizer 

 

 The role of fiber dimensions on the relative effects of fiber resistance and the 

junction resistance is seen more clearly from Figure 23.  For a D=2nm, 2L has to be 

brought lower than .2 to reach the unity ratio. At the same time, for D=10nm, and 2L=.2 

a jump in the ratio below 1 can be made by increasing the fiber diameter or by 
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improving the electrical conductivity of the fiber. For D=50nm and 2L=.25, it is better to 

use a stabilizer with lower connection resistance to bring the ratio close to 1. A similar 

behavior as in Figure 23 is also shown in the case of PEDOT: PSS.  

 The results obtained here showing the relation between fiber dimensions, type of 

fiber and the stabilizer used during fiber preparation can prove to be a valuable asset to 

experimentalists working on, and making polymer fiber composites to modify the 

properties for different applications. The results can be used by experimentalists as a 

guide to select design parameters like fiber dimensions, fiber quality and stabilizer to 

make composites of desired electrical properties. 
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5. CONCLUSION 

 A three dimensional model for determining the critical volume fractions and 

other percolation related parameters for CNT network polymer composites was 

developed. The effect fiber dimensions like fiber length and fiber aspect ratio on the 

critical volume fraction was studied. Initially fiber critical volume fractions were 

investigated for a volume representing the composite containing only the fillers that is 

the CNT fibers. In the next stage identical cubes representing polymer particles were 

introduced into the volume. The effect of polymer particle sizes was studied. The 

polymer particles were in the next stage modified to cuboids to closely represent the 

actual shape of the polymers and the CNT fibers were distributed in the interstitial 

spaces between the particles. Simulations were performed using this model and the 

results were compared with experimental data to obtain the average connection 

resistance between the fibers for the case two different stabilizers, GA and PEDOT: PSS. 

These values were utilized to calculate the relative contribution of fiber resistance and 

the connection resistance to a composite’s electrical conductivity. The effect of fiber 

dimensions, stabilizer used during composite preparation and fiber type were studied 

systematically and trends were established. These trends are expected to provide 

valuable information required to tweak electrical properties of composites in 

experimental studies. 
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