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ABSTRACT

Kernelization and Enumeration:

New Approaches to Solving Hard Problems. (May 2010)

Jie Meng, B.S.; M.S., Fudan University

Chair of Advisory Committee: Dr. Jianer Chen

NP-Hardness is a well-known theory to identify the hardness of computational prob-

lems. It is believed that NP-Hard problems are unlikely to admit polynomial-time algorithms.

However since many NP-Hard problems are of practical significance, different approaches

are proposed to solve them: Approximation algorithms, randomized algorithms and heuris-

tic algorithms. None of the approaches meet the practical needs. Recently parameterized

computation and complexity has attracted a lot of attention and been a fruitful branch of

the study of efficient algorithms. By taking advantage of the moderate value of parameters

in many practical instances, we can design efficient algorithms for the NP-Hard problems in

practice.

In this dissertation, we discuss a new approach to design efficient parameterized al-

gorithms, kernelization. The motivation is that instances of small size are easier to solve.

Roughly speaking, kernelization is a preprocess on the input instances and is able to signifi-

cantly reduce their sizes.

We present a 2k kernel for the cluster editing problem, which improves the previous

best kernel of size 4k; We also present a linear kernel of size 7k + 2d for the d-cluster

editing problem, which is the first linear kernel for the problem. The kernelization algorithm

is simple and easy to implement.
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We propose a quadratic kernel for the pseudo-achromatic number problem. This

implies that the problem is tractable in term of parameterized complexity. We also study

the general problem, the vertex grouping problem and prove it is intractable in term of

parameterized complexity.

In practice, many problems seek a set of good solutions instead of a good solution.

Motivated by this, we present the framework to study enumerability in term of parameterized

complexity. We study three popular techniques for the design of parameterized algorithms,

and show that combining with effective enumeration techniques, they could be transferred

to design efficient enumeration algorithms.
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CHAPTER I

INTRODUCTION

The NP-Hardness theory [46] provides a foundation for the study of hardness of compu-

tational problems, in the next section we introduce the NP-Hardness theory and popular

approaches to solve them.

A. NP-Hard problems

Many computational problems are polynomial-time solvable, i.e. instances of the problem

can be solved by algorithms in time bounded by a polynomial in the size of the instances.

The shortest path problem is a good example. For a graph G, a path is a sequence of

vertices in G and any consecutive pair of vertices are adjacent, the length of the path is the

number of the vertices. The shortest path problem asks for the shortest path between

two vertices u and v in a given graph G. We know that the shortest path problem can

be solved by Dijkstra’ algorithm in almost linear time, [30], so the problem is polynomial-

time solvable. On the other hand, no polynomial-time algorithm is known for the longest

path problem, which asks for the longest simple path in the input graph. The definitions

of the two problems are similar, but they have different complexity. In order to identify the

hardness of the computational problems, NP-Hardness theory is introduced. [46].

Many computational problems are optimization problems. [73] Given an instance of

the optimization problem, it seeks the “best” solution to that instance. For example, the

shortest path problem asks for the shortest path between two vertices u and v in a given

graph G. However, a decision problem simply asks for a “Yes” or “No” answer to a given

instance. For example, is there a path of length at most k connecting u and v in G. A

The journal model is Theoretical Computer Science.
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decision problem is “easier” in the sense that if the shortest path between u and v is present,

by checking the length of the path, one can easily figure out if there is a path of length

at most k. The decision problems are closely related to the optimization problems, we can

put bound on the solution to construct the decision problems, as in the example above.

Although the NP-Hardness theory studies the decision problems, often it contributes to the

optimization problems as well.

A decision problem is polynomial-time solvable if there is an algorithm which can com-

pute the answer to the instances in polynomial time. And a decision problem P is polynomial-

time verifiable if there is an algorithm A such that:

∙ Given an instance s and a proof for s, A could verify whether s is a Yes-instance of P ;

∙ The runtime of A is bounded by a polynomial in the size of s;

For example, the k-path problem asks if there is a path of length at least k in the given

graph G. The longest path in G can be used as a proof, the algorithm simply verifies if it is a

path in G and has at least k vertices, then outputs the answer. Roughly speaking, problems

in P are polynomial-time solvable, and problems in NP are polynomial-time verifiable. The

original definition of P and NP are different, problems in P are deterministic Turing ma-

chine polynomial time solvable, and problems in NP are non-deterministic Turing machine

polynomial time solvable. In this dissertation, we adopt the more “algorithmic” definitions.

Reader who are interested in Turing machine are referred to the book. [78]

A polynomial-time reduction algorithm is a transformation algorithm A, given an in-

stance p of a decision problem P , in polynomial time of the size of p, A could produce an

instance q of Q such that p is a Yes-instance of P if and only if q is a Yes-instance of Q.

We say that P is polynomial-time reducible to Q. Under many occasions, this reduction is

also called “Cook Reduction”. The importance of the reduction is as follows: if there is an

algorithm A′ which can solve Q, one could also solve P by the following procedure.
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1. Transform instances of P to instances of Q by the algorithm A;

2. solve instances of Q by A′.

Thus if Q is polynomial-time solvable, so is P , whereas if P is “hard”, Q must be hard

too. We say that P is no harder than Q.

Now we are ready to present the NP-Hardness theory, recall that a problem is in NP

if it is polynomial-time verifiable and a problem is in P if it is polynomial-time solvable.

Obviously P is a subset of NP, since problems in P can be solved in polynomial time without

any proof. However, whether P is a proper subset of NP is the most famous open problem

in theoretical computer science, worthy of million dollars bonus. TheNP-Hard problems are

problems to which all problems in NP are polynomial-time reducible, i.e. problems in NP

are no harder than any NP-Hard problem. Furthermore, a problem is NP-Complete if it is

NP-Hard and is in NP. NP-Complete problems are considered as the hardest problems in

NP, and are believed not in P.

The satisfiability problem was first proved to be NP-Complete, [30]. After that many

problems are proved NP-Hard by reducing known NP-Hard problems to these problems.

Garey and Johnson’s book [46] provides a comprehensive list of the well-known NP-Complete

problems. If any NP-Complete problem is polynomial-time solvable, P = NP. The hypothesis

that P ∕= NP is a foundation of the hardness theory: NP-Hard problems are believed not

polynomial-time solvable. Unfortunately many NP-hard problems are important in practice,

different approaches are proposed to solve them. For example, approximation algorithms,

randomized algorithms and heuristic algorithms. In the following we briefly introduce these

approaches.
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1. Approximation algorithm

For the NP-Hard problems, we believe that it is hard to develop polynomial-time algorithms

to compute the optimal solutions to them. However, it is still possible to compute near-

optimal solutions to them efficiently. A polynomial-time algorithm A is an approximation

algorithm if A could produce near-optimal solutions to some NP-Hard problem. We say that

A has an approximation ratio r(n) if given an instance of size n, the cost C of the optimal

solution is within a factor of the cost C ′ of the approximate solution returned by A, more

precisely,

max { C
C ′
,
C ′

C
} ≤ r(n).

We illustrate the approach by providing an approximation algorithm for the vertex

cover problem. An instance of the vertex cover problem is a graph G, and it asks for

a subset of vertices so that its removal also removes all edges in G. The algorithm is simple,

1. Arbitrarily pick an edge [u, v], include u and v in the solution and remove them from

G;

2. Repeat the process above until there is no edge in G.

We can prove that the simple algorithm can produce solution at most twice as big as the

optimal solution: for any edge [u, v], either u or v must be included in the optimal solution,

otherwise the edge [u, v] will not be covered. By including both u and v, we obtained a

solution of size at most twice of the optimal solution. For more details about approximation

algorithms, readers are referred to the book. [85]

2. Randomized algorithm

In addition to the regular input, some algorithms employ extra random strings to compute

the optimal solutions. An algorithm is called a randomized algorithm if it takes an extra
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random string as input. In general two kinds of randomized algorithms are developed, Monte

Carlo algorithms and Las Vegas algorithm.

A randomized algorithm is called Monte Carlo algorithm if it runs a fixed number

of steps for all inputs and produces a correct answer with bounded probabilities. A Las

Vegas algorithm guarantees the correct answers, but the runtime is a random variable whose

expectation can be bounded. For more details, reader are referred to the book. [72]

Heuristic algorithms are often provided to compute acceptable solutions to practical

instances, it is possible that the heuristic algorithms have bad performance in theory. In

many applications, heuristic algorithms present good solutions, but the solutions are not

always good. A simple example is an algorithm for the vertex cover problem: Repeatedly

include the vertex adjacent to most vertices into the solution until all edges are covered. It

is possible that the algorithm produces a good solution, but not necessarily the optimal.

B. Parameterized computation

None of the approaches above meet the practical needs: in practice sometimes it is neces-

sary to efficiently compute exact solutions. The theory of parameterized computation and

complexity is recently developed to deal with the NP-Hard problems, we try to overcome

the hardness of the NP-Hard problems and design practically efficient algorithms. For many

problems in industry and applications, an observation is that in practice they contain moder-

ate values of parameters. By taking the advantage of the small parameters, we could design

efficient algorithms for these problems. The readers are referred to the book [35] for more

details of parameterized computation and complexity.

In this section, we will introduce the parameterized complexity and computation. The

following is the definition of the parameterized problem.

Definition A parameterized problem Q is a decision problem (i.e. a language) that is
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a subset of Σ ∗ ×N , where Σ is a fixed alphabet and N is the set of all natural numbers.

Thus, each element of Q is of the form (x, k), where the second component, i.e. the natural

number k, is the parameter.

We point out that the form of instances of parameterized problems is quite natural.

Taking the vertex cover problem as an example, an instance of the decision version of

the vertex cover decision problem contains a graph G as input, and ask if there is a set of

k vertices in G whose removal also removes all edges in G. The classical definition matches

the form of the parameterized definition.

Similar to P versus NP in the classical complexity theory, we show that with moderate

value of parameters, some problems can be solve efficiently, for example, the vertex cover

problem can be solved in time O∗(1.2738k) [24]. 1 On the other hand, we believe that some

problems can not be solved in time ∣x∣o(k), for example, the clique problem [25]. To further

classify the hardness of the NP-Hard problems, we introduce the fixed-parameter tractability

and intractability.

1. Fixed-parameter tractability and intractability

Definition A parameterized problem is fixed-parameter tractable (FPT) if instances (x, k)

of the problem can be solved by a parameterized algorithm in time f(k)∣x∣O(1), where f is

a recursive function, k is the parameter and x is the input. Denote by FPT the class of all

fixed-parameter tractable problems.

In this dissertation, we focus on the design of fixed-parameter tractable algorithms for

1We note that the O*() notation may omit insignificant polynomial factors for simplicity
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the NP-hard problems. With the moderate values of parameters, the runtime of fixed-

parameter tractable algorithms is actually polynomials in the size of the input, which are

considered as effective algorithms in general. Many problems have fixed-parameter tractable

algorithms, for example, the vertex cover problem we mentioned above, and the feed-

back vertex set problem, which admits an algorithm of runtime O∗(5k) [26].

However, there are some NP-Hard problems which we believe do not admit fixed-

parameter tractable algorithms, in the following we define the intractability of the parame-

terized problems, which, similar to NP-Hardness in classical complexity theory, identifies the

hard problems in parameterized complexity. Before we present the definition, we introduce

a group of satisfiability problems.

A circuit C of n variables is a directed acyclic graph, in which each node of in-degree 0

is an input gate and is labeled by either a positive literal xi or a negative literal x̄i, where

1 ≤ i ≤ n. All other nodes in C are called gates and labeled by a Boolean operator either

AND or OR. A designated gate of out-degree 0 in C is the output gate. The circuit C

computes a Boolean function in a natural way. The size of the circuit C is the number of

nodes in C, and the depth of C is the length of a longest path from an input gate to the

output gate in C. The circuit C is a Πt-circuit if its output is an AND gate and its depth is

bounded by t. An assignment � to the input variables of the circuit C satisfies C if � makes

the output gate of C have value 1. The weight of an assignment � is the number of variables

assigned value 1 by � .

The parameterized problem weighted satisfiability on Πt-circuits, abbreviated

WCS[t], consists of the pairs (C, k), where C is a Πt-circuit and k is the parameter, and

C admits a satisfying assignment of weight k. The parameterized problem weighted cnf

formula satisfiability, abbreviated WCNF-SAT, consists of the pairs (F, k), where F

is a CNF Boolean formula and k is the parameter such that the formula F has a satisfying

assignment of weight k. Finally, the weighted cnf 3-sat problem, abbreviated WCNF-
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3SAT, is the WCNF-SAT problem whose instances satisfy a further condition that every

clause in the CNF Boolean formula F contains at most three literals.

Extensive studies on the problem WCNF-3SAT and the problems WCS[t], for all t > 1,

show that they are unlikely in FPT . To identify more hard parameterized problems, we

introduce a new type of reduction for parameterized problems.

Definition A parameterized problem Q is FPT-reducible to a parameterized problem Q′

if there is an algorithm that on a given instance (x, k) of Q produces an instance (x′, k′) of

Q′ in time O(f(k)∣x∣O(1)), where k′ ≤ g(k), and f and g are recursive functions, such that

(x, k) is a yes-instance of Q if and only if (x′, k′) is a yes-instance of Q′.

The FPT reduction is transitive, and preserves the fixed-parameter tractability, i.e. if

the problem Q′ admits a FPT algorithm, and Q is FPT-reducible to Q′, we can construct a

FPT algorithm for Q by reducing the instances of Q to instances of Q′ and solving them.

Definition The class W [1] consists of all parameterized problems that are FPT-reducible

to the problem WCNF-3SAT. For each integer t > 1, the class W [t] consists of all parame-

terized problems that are FPT-reducible to the problem WCS[t].

This gives us the fixed-parameter intractability hierarchy, the W-hierarchy {W [t]∣t ≥ 1}:

FPT ⊆ W [1] ⊆ W [2] ⊆ . . . ⊆ W [t] ⊆ . . .

From the definition above, we obtain a natural complete problem for each of the level

in the W-Hierarchy, i.e. WCNF-3SAT is W [1]-complete, and WCS[t] is W [t]-complete for

t > 1. Other problems are proved fixed-parameter intractable [35], for example, the clqiue

problem is shown in W [1], and the dominating set problem is shown in W [2]. Even these
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problems can be solved in O(f(k)nk) by trivial enumeration algorithms, it has shown that

they are unlikely to be solved in time f(k)no(k) [25].

Our main working hypothesis is that FPT ∕= W [i], ∀i ≥ 1.

2. Kernelization

Kernelization is a new technique to design fixed-parameter tractable algorithms, and has

been an important contribution of parameterized computation. The technique is motivated

by the fact that small size instances are easier to solve, in general kernelization is regarded

as ”preprocessing” or ”data-reducing”. The formal definition is the following:

Definition A kernelization algorithm for a parameterized problem P is an algorithm A,

given an instance (x, k) of P as input, the output of A is another instance (x′, k′) of P , such

that

∙ (x, k) is a Yes-instance of P if and only if (x′, k′) is a Yes-instance;

∙ The runtime of A is bounded by a polynomial over ∣x∣+ k;

∙ ∣x′∣ ≤ f(k), k′ ≤ k, where f is a recursive function;

For an instance (x, k) of P , A produces a kernel x′ of x with the size bounded by f(k),

we say that P admits a kernel of size f . Obviously if we bound the instance size by a

function f(k), we could solve it in time O(g(f(k)) + p(∣x∣ + k)), where g is the runtime of

any algorithm for problem P , and p() is the runtime of the kernelization algorithm, so P is

in FPT . Moreover the following theorem shows that all problems in FPT have kernels.

Theorem B.1 [34] Let Q be a parameterized problem, Q is fixed-parameter tractable if and

only if Q has a kernel.
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We can illustrate the kernelization algorithms by providing a kernel for the line cover

problem. The input of the line cover problem is a set of n points in a given plane, it asks

for k lines which cover all the points. The problem is fundamental and we can show that a

simple algorithm can reduce the size of the instances to k2.

We enumerate all lines connecting pairs of points in the input set: if the line can cover

more than k points, we include it in all optimal solutions, and remove points it covers. If the

input set has more than k2 points left, the instance is a No-instance; Otherwise we obtain a

small instance with no more than k2 points. The proof is as follows: if a line covers at least

k + 1 points, it must be included in all optimal solutions. Otherwise we need at least k + 1

lines to cover the k+ 1 points that it covers; After the preprocessing, no line can cover more

than k points. If there is a solution consisting of k lines, they can cover at most k2 points.

We have shown that simple ideas can reduce the instance size significantly. Moreover

kernelization closely relates to the development of approximation algorithms. For example,

the vertex cover problem has a 2k kernel. Simply including all vertices in the kernel

in the solution, we obtain an approximation algorithm with ratio 2 for the vertex cover

problem. Thus any improvement on the kernel will lead to a better approximation algorithm.

On the other hand, it is well-known that problems in the class MIN F+ Π1 and MAX NP

have polynomial-time approximation algorithms with constant factors, Kratsch [63] shows

that problems in the two classes admit polynomial kernels for their natural decision version,

which improves the result of Cai and Chen [19] that problems in the two classes are in FPT .

And this result is strengthened by Bodlaender et al. [15]. The following theorem appears

in [13].

Theorem B.2 Let g be a fixed integer. Let P be a CMSO-expressible property of graphs

and vertex sets. Consider a problem Q, whose input consists of a graph G = (V,E) of Euler-

genus at most g, a set of vertices Y ⊆ V , and an integer k. Suppose Q is compact or the

complement of G is compact.
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1. If Q is of the form: ∃S ⊆ Y : ∣S∣ ≤ k
⋀
P (G,S), then Q has a kernel of size O(k2).

2. If Q is of the form: ∃S ⊆ Y : ∣S∣ = k
⋀
P (G,S), then Q has a kernel of size O(k3).

3. If Q is of the form: ∃S ⊆ V : ∣S ∩ Y ∣ ≥ k
⋀
P (G,S), then Q has a kernel of size O(k2).

Lower bound results on kernelization are also proposed, Chen et al. [23] show linear

lower bounds on certain parameterized problems, for example, the planar vertex cover

problem does not have a kernel size smaller than 4k/3. Recently the idea of or-composition

algorithms is proposed to prove that certain parameterized problems do not have kernel of

size bounded by a polynomial in k, in another word, the problem does not have a polynomial

kernel. We show the approach as follows.

Conjecture (Or-distillation conjecture [14]). Let P be an NP-Complete problem, there is

no algorithm A, which takes m instances of P as input, and output an instance of P , such

that:

∙ The runtime of A is bounded by a polynomial in m + n, where m is the number of

instances in the input, and n is the maximum size of the instances;

∙ The output of A is a Yes-instance of P if and only if one of the instances in the input

is a Yes-instance.

Fortnow et al. [43] show that if the Or-distillation conjecture fails, NP ⊆ coNP/poly.

Definition An or-composition algorithm A for a parameterized problem P works as follows:

A takes r instance ((x1, k), (x2, k), . . . , (xr, k)) of P as input, and output an instance (x′, k′)

of P , such that:
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∙ the runtime of A is bounded by a polynomial in
∑

1≤i≤r ∣xi∣+ k;

∙ k′ is bounded by a polynomial in k;

∙ (x′, k′) ∈ P if and only if ∃i, 1 ≤ i ≤ r and (xi, k) ∈ P .

Or-composition algorithm is the key to prove the lower bound on polynomial kernel size.

We show the details in the following theorem.

Theorem B.3 [14] P is a parameterized problem, its classical version is NP-Complete and

P has an or-composition algorithm; If P admits a kernel of size bounded by a polynomial in

k, the or-distillation conjecture fails

We can illustrate the approach by proving that the k-path problem does not admit

a polynomial kernel. A path in an input graph is a sequence of vertices where any pair of

consecutive vertices are adjacent, a path is of length k if it contains k vertices. The k-path

problem is defined as follows: given an input graph G and an integer k, it asks if there is a

path of length k in G. We can easily construct an or-composition algorithm for the problem,

given r input instances ((G1, k), (G2, k), . . . , (Gr, k)), the algorithm simply output the union

of the r graphs (G1

∪
G2

∪
. . .
∪
Gr, k). The runtime of the algorithm is

∑
1≤i≤r ∣Gi∣ + k,

and the graph G1

∪
G2

∪
. . .
∪
Gr has a path of length k if and only if there is an instance

graph in the input which has a path of length k.

C. This dissertation

In this dissertation, we discuss the new approach to design fixed-parameter tractable al-

gorithms, kernelization; We also propose the framework to study the enumerability of pa-
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rameterized problems and introduce the concept of the fixed-parameter enumerable (FPE)

problems.

1. Kernelization

We present improved kernels for several problems, including the cluster editing problem,

the d-cluster editing problem and the pseudo-achromatic number problem.

In Chapter II, we present a 2k kernel for the cluster editing problem, which improves

the previous known 4k kernel size [53]. The cluster editing problem is NP-Hard [81], has

been studied by groups in biological research [28, 32, 80]. The cluster editing problem

takes a graph as input, and asks if one can insert/delete at most k edges in the graph to

transfer the graph to a union of disjoint cliques. Given the critical clique graph, we define the

editing degree of vertices. Roughly speaking, the editing degree of a vertex v is the number of

inserted/deleted edges adjacent to v which are applied to make the cluster a disjoint clique,

the cluster consists of vertices including v, one of its adjacent critical clique and neighbors of

that critical clique. We develop several reduction rules to reduce the size of the input graph

so that the resulting graph contains no more than 2k vertices.

In Chapter III, we present a linear kernel for the d-cluster editing problem , which

is a variant of the cluster editing problem, and in addition requires that the resulting

graph consists of exactly d disjoint cliques. The d-cluster editing problem is harder

than the original one in the sense that we can solve the cluster editing problem by an

algorithm for the d-cluster editing problem with the value of d varying from 1 up to ∣x∣,

the size of the input.

We introduce the class-partition of an input graph, and show that the optimal solution to

the d-cluster editing problem can be computed from a class-partition by simply splitting

or combining some classes. Based on the observation above, we present a linear kernel

of size 7k + 2d for the problem. Furthermore, we present a branch-and-search algorithm,
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and combining it with spliting/combining algorithms we develop the first fixed-parameter

tractable algorithm for the d-cluster editing problem.

In Chapter IV, we proposed a quadratic kernel for the pseudo-achromatic number

problem, which is a variance of the famous graph coloring (chromatic number) prob-

lem. The problem is that if we can color the vertices of a given graph with different colors

so that in any pair of groups of vertices colored by the same color, there is at least one edge

connecting two vertices, one in each group. The maximum number of colors we can use to

color the graph is the pseudo-achromatic number of the graph.

We develop a kernel for this problem, this implies that the pseudo-achromatic num-

ber problem is fixed-parameter tractable. The techniques used to develop the kernel are

elegant and of independent interest. We also study the generalization of the pseudo-

achromatic number problem, the vertex grouping problem. Although the special

subproblem is in FPT, we show that the general problem is fixed-parameter intractable.

2. Enumeration

In practice, many problems seek a set of good solutions instead of a good solution. Motivated

by this, we present a framework to study the enumerability of parameterized problems.

Unlike algorithms for the counting problems, the outputs of the enumeration algorithms are

a set of good solutions instead of the number of total solutions. Especially the counting

version of the k-path problem is fixed-parameter intractable, however we can still efficiently

enumerate solutions of the k-path problem.

We define the class of fixed-parameter enumerable (FPE) problems. Solutions to the

parameterized problems in FPE can be efficiently enumerated. FPE is a proper subset of

FPT , to explore the connection of them we study three popular techniques for the design

of fixed-parameter tractable algorithms – branch-and-search, color coding and tree decom-

position. We show that cooperating with effective enumeration techniques, they could be
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transferred to design efficient enumeration algorithms.
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CHAPTER II

AN IMPROVED KERNEL FOR THE CLUSTER EDITING PROBLEM

The cluster editing problem for a given graph G and a given parameter k asks if one

can apply at most k edge insertion/deletion operations on G so that the resulting graph

is a union of disjoint cliques. The problem has attracted much attention recently because

of its applications in bioinformatics. In this section dissertation, we present a polynomial

time kernelization algorithm for the problem that produces a kernel of size bounded by 2k,

improving the previously best kernel of size 4k for the problem.

A. Introduction

The cluster editing problem is formulated as follows: given a graph G and a parameter

k, is it possible to apply at most k edge insertion/deletion operations so that the resulting

graph becomes a union of disjoint cliques?

The cluster editing problem arises from many application areas [61]. In particular, it

has been recently studied by a number of research groups in biological research [28, 32, 80].

An example of this line of research is the analysis of gene expression data, in which a

critical step is to identify the groups of genes that manifest similar expression patterns. The

corresponding problem in algorithmic research is the gene clustering problem [80]. An

instance of the gene clustering problem consists of a set of genes, and a measure of

similarity of genes. A threshold can be used to differentiate the similarity of the genes. The

goal is to partition the genes into clusters that achieve both homogeneity (genes in the same

cluster are highly similar) and separation (genes from different clusters have low similarity)

criteria.

Therefore, when an instance of the gene clustering problem is given, and a measure
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threshold is provided, we can represent the instance as a graph G, whose vertices correspond

to the genes and whose edges correspond the high similarity between the genes. Ideally, if

the similarity measure is perfect and the measure threshold is precise, the graph G should

be a union of disjoint cliques. Unfortunately, the nature of biological research provides

biological data by which the graph G can only be ”close” to a union of disjoint cliques. This

motivates the algorithmic research of the cluster editing problem, which tries to ”correct”

a small number k of similarity pairs (i.e., apply a small number k of edge insertion/deletion

operations on the graph G) so that the resulting graph becomes a union of disjoint cliques.

There have been extensive algorithmic research on the cluster editing problem.

The optimization version of the problem was first studied by Ben-dor, Shamir and Yakhini

[18]. Shamir, Sharan, and Tsur [81] proved that the problem is NP-hard. Approximation

algorithms for the problem have been studied. The currently best polynomial time approxi-

mation algorithm for the problem has an approximation ratio 2.5 [88]. It is also known that

the problem is APX-complete, thus it is unlikely that the problem has a polynomial time

approximation scheme [20].

Given the fact that the parameter k is small in the applications of bioinformatics,

research on parameterized algorithms and complexity for the cluster editing problem

has become active recently [38, 40, 47, 48, 53, 81]. The first parameterized algorithm of time

O(2.27k +n3) for the cluster editing problem was developed in [48], which was improved

to O(1.92k + n3) [47], current the best parameterized algorithm takes time O(1.82k + n3)

[11]. A research direction closely related to the parameterized algorithms is the study of

the kernelization of the problem. We say that the problem cluster editing has a kernel

of size g(k) if there is a polynomial-time algorithm that reduces an instance (G, k) of the

problem to an equivalent instance (G′, k′) where the graph G′ has at most g(k) vertices.

Gramm et al [48] showed that the cluster editing problem has a kernel of size 2k2 + k.
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Fellows [38] announced an improved kernel of size 24k for the problem, and conjectured that

a kernel of size bounded by 6k for the problem should exist. The conjecture was confirmed

later in [40]. The kernel size for the cluster editing problem was further improved to 4k

by Guo [53] based on the idea of critical cliques [70, 33].

In this section, we develop a new polynomial-time kernelization algorithm that provides

a kernel of size 2k for the cluster editing problem, which improves the previous best

result.

B. Reduction rules

We start with necessary definitions. A clique K in a graph G is a subgraph of G that is

a complete graph. A disjoint clique is a clique K in which no vertex is adjacent to any

vertex not in K. For a vertex v, denote by N(v) the set of vertices that are adjacent

to v. For a subset S of vertices, denote by G[S] the subgraph of G that is induced by

S, by N(S) the set of vertices that are not in S but adjacent to some vertex in S, i.e.,

N(S) =
∪

v∈S N(v)− S, and by N2(S) the neighbors of N(S) that are not in S ∪N(S), i.e.,

N2(S) = N(N(S))− (S ∪N(S)).

Definition A critical clique K in a graph G is a clique such that for all vertices u and v in

K, N(v)−K = N(u)−K, and K is maximal under this property.

It has been proved [70] that every vertex in a graph G belongs to a unique critical

clique. Therefore, the vertices of the graph G are uniquely partitioned into groups such that

each group induces a critical clique. The critical clique graph Gc of the graph G is defined

as follows. Vertices of Gc correspond to critical cliques in G, and two vertices in Gc are

adjacent if the union of the corresponding critical cliques in G induces a larger clique in G.
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It is known [58] that for a given graph G, the critical clique graph Gc of G can be constructed

in linear time. For a critical clique K, in case there is no confusion, we also denote by K the

vertex set of the critical clique.

A solution to a graph G for the cluster editing problem is a sequence of edge inser-

tion/deletion operations that converts G into a collection of disjoint cliques. The solution to

the graph G can be represented by a partition P = {C1, C2, . . . , Cℎ} of the vertex set of G,

where each vertex subset Ci (called a cluster of P) becomes a disjoint clique after the edge

insertion/deletion operations of the solution. An optimal solution to G is a solution that

uses the minimum number of edge insertion/deletion operations.

Proposition B.1 ([53]) Let K be a critical clique in a graph G. Then in any optimal

solution P to G, the critical clique K is entirely contained in a single cluster of P.

According to Proposition B.1, no edge whose both ends are in the same critical clique

needs to be considered when we are looking for an optimal solution to a given graph.

Let K be a critical clique in a graph G and suppose that we want to make K ∪N(K)

a disjoint clique. Then we need to add edges between vertices in N(K) if the edges are

missing, and delete edges that have one end in N(K) and the other end not in K ∪N(K).

Motivated by this, we introduce the following definition.

Definition Let K be a critical clique in a graph G and let v ∈ N(K), the editing degree

pK(v) of v with respect to K is defined to be the number of vertex pairs {v, w1}, where

w1 ∈ N(K) − {v} and [v, w1] is not an edge, plus the number of edges [v, w2], where

w2 ∕∈ K ∪N(K).

Let S be a vertex subset in a graph G, by making S a disjoint clique, we mean to

perform the following edge operations to make S a disjoint clique: adding edges between
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pairs of vertices in S that are not adjacent, and deleting edges that are between a vertex in

S and a vertex not in S.

Now we are ready to describe our reduction rules. Let (G, k) be an instance of the

cluster editing problem, and let K be a critical clique in G.

Reduction Rules

Rule 1 if ∣K∣ > k, then make K ∪N(K) a disjoint clique, remove K ∪N(K) from G, and

decrease k by p, where p is the number of edge operations that make K ∪ N(K) a

disjoint clique;

Rule 2 if ∣K∣ ≥ ∣N(K)∣ and ∣K∣+∣N(K)∣ >
∑

v∈N(K) pK(v), then make K∪N(K) a disjoint

clique, remove K ∪N(K) from G, and decrease k by p, where p is the number of edge

operations that make K ∪N(K) a disjoint clique;

Rule 3 if ∣K∣ < ∣N(K)∣ and ∣K∣ + ∣N(K)∣ >
∑

v∈N(K) pK(v), and if there is a vertex

u ∈ N2(K) with ∣N(u) ∩ N(K)∣ > (∣K∣ + ∣N(K)∣)/2, then insert necessary edges

among vertices in N(K) to make K ∪N(K) a clique, remove edges between N(K) and

N2(K)− u, and decrease k accordingly.

In the remaining of this section, we verify that the above rules are all ”safe”, i.e., the

edge operations applied by each of rules are entirely contained in an optimal solution to the

graph G for the cluster editing problem.

Lemma B.2 Rule 1 is safe.

Proof. Suppose that an optimal solution P to the graph G uses no more than k edge

operations to make G a collection of disjoint cliques. By Proposition B.1, the critical clique

K must be entirely contained in a single cluster C in the optimal solution P . If any vertex
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v1 in N(K) is not in C, then the solution P would have to delete at least the ∣K∣ > k edges

between v1 and K, contradicting the assumed number of edge operations by P . On the

other hand, if any vertex v2 not in N(K) is in C, then the solution P would have to insert

at least the ∣K∣ > k edges between v2 and K, again contradicting the assumed number of

edge operations by P . Therefore, the cluster C in P must consist of exactly the vertices in

K ∪N(K), and all edges operations applied by Rule 1 are contained in the optimal solution

P .

C1

C3

C2

K N1 RN2

C2 −N2 N3 C3 −N3

P

K N1 RN2

C2 −N2 N3 C3 −N3

P ′

Fig. 1. The critical clique K and the solutions P and P ′

Now we consider Rules 2 and 3. For this, let K be a critical clique in the graph G, and

let P = {C1, C2, . . . , Cℎ} be an optimal solution to the graph G, where Ci, 1 ≤ i ≤ ℎ, are

the clusters in P . By Proposition B.1 and without loss of generality, we can assume K ⊆ C1.

Let Ni = Ci ∩N(K) for 1 ≤ i ≤ ℎ. Note that some Ni can be empty. Let R = C1−K −N1

(see the left figure in Figure 1 for an illustration, where ℎ = 3).

We also define another solution P ′ to the graph G based on the above notations: P ′ =

{K ∪ N(K), R, C2 − N2, . . . , Cℎ − Nℎ} (see the right figure in Figure 1 for an illustration),

and will compare the number of edge operations of the solutions P and P ′.

Besides the edge operations that are common to P and P ′, the solution P does the

following edge operations:
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P-operation

(1) inserting missing edges between K and R;

(2) deleting all edges between Ni and K for i ≥ 2;

(3) inserting missing edges between N1 and R.

(4) inserting missing edges between Ni and Ci −Ni for i ≥ 2; and

(5) deleting all edges between Ni and Nj, for i ∕= j, 1 ≤ i, j ≤ ℎ,

while the solution P ′ does the following edge operations:

P ′-operation

(1’) deleting all edges between N1 and R;

(2’) inserting missing edges between Ni and Nj, for i ∕= j, 1 ≤ i, j ≤ ℎ; and

(3’) deleting all edges between Ni and Ci −Ni, for i ≥ 2.

Lemma B.3 Let G be a graph and let K is a critical clique in G with ∣K∣ ≥ ∣N(K)∣, and

for all v ∈ N(K), pK(v) ≤ ∣K∣. Then there is an optimal solution to G that has K ∪N(K)

as a cluster.

Proof. By the definitions, there is no edge between K and R in the graph G. Thus, the

P-operation set (1) contains exactly ∣K∣ ⋅ ∣R∣ edge insertion operations. Also by definition,

each vertex in N(K) is adjacent to every vertex in K in the graph G. Thus, the P-operation

set (2) contains exactly ∣K∣(∣N2∣ + ⋅ ⋅ ⋅ + ∣Nℎ∣) edge deletion operations. In conclusion, the

solution P contains at least ∣K∣(∣R∣+ ∣N2∣+ ⋅ ⋅ ⋅+ ∣Nℎ∣) edge operations that are not in the

solution P ′.

Now the P ′-operation set (1’) contains at most ∣N1∣ ⋅ ∣R∣ ≤ ∣K∣ ⋅ ∣R∣ edge deletion

operations (here we have used the lemma assumption ∣N(K)∣ ≤ ∣K∣). The number of edge
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operations in the P ′-operation sets (2’) and (3’) is bounded by

∑
v∈N2∪⋅⋅⋅∪Nℎ

pK(v) ≤ ∣K∣(∣N2∣+ ⋅ ⋅ ⋅+ ∣Nℎ∣),

here we have used the lemma assumption pK(v) ≤ ∣K∣ for all v ∈ N(K). Also note that∑
v∈N2∪⋅⋅⋅∪Nℎ

pK(v) includes all operations in set (2’) that insert missing edges between N1

and Nj for j ≥ 2. In conclusion, the solution P ′ contains at most ∣K∣(∣R∣+ ∣N2∣+ ⋅ ⋅ ⋅+ ∣Nℎ∣)

edge operations that are not in the solution P .

By the above comparison, we conclude that the number of edge operations in the solution

P ′ is not larger than that in the solution P . Since P is an optimal solution and P ′ contains

K ∪N(K) as a cluster, the lemma is proved.

Note that for each vertex v in N(K), where K is a critical clique, we can always assume

that pK(v) ≥ 1. In fact, if pK(v) = 0, then N(K) would consist of a single critical clique and

K ∪N(K) would make a disjoint clique in the graph G. Thus, in this case, we can directly

reduce the problem instance (G, k) to the smaller instance (G− (K ∪N(K)), k).

Corollary B.4 Rule 2 is safe.

Proof. By the conditions of Rule 2, ∣K∣ ≥ ∣N(K)∣ and
∑

v∈N(K) pK(v) ≤ ∣K∣+∣N(K)∣−1.

For each vertex v in N(K), we have

pK(v) =
∑

u∈N(K)

pK(u)−
∑

u∈N(K), u∕=v

pK(u) ≤
∑

u∈N(K)

pK(u)− (∣N(K)∣ − 1)

≤ (∣K∣+ ∣N(K)∣ − 1)− (∣N(K)∣ − 1) = ∣K∣,

here we have used the fact pK(v) ≥ 1 for all v. Thus, under the conditions of Rule 2, all

conditions of Lemma B.3 are satisfied so by the lemma, there is an optimal solution that

has K ∪N(K) as a cluster. Therefore, the edge operations of Rule 2 are all contained in an
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optimal solution to the graph G. In consequence, Rule 2 is safe.

Now only Rule 3 remains.

Lemma B.5 Let K be a critical clique with ∣K∣ < ∣N(K)∣ and
∑

v∈N(K) pK(v) < ∣K∣ +

∣N(K)∣. There is an optimal partition P such that K ∪ N(K) is entirely contained in a

single cluster in P.

Proof. Again let P = {C1, C2, . . . , Cℎ} is an optimal solution to the graph G, and let

P ′ = {K ∪ N(K), R, C2 − N2, . . . , Cℎ − Nℎ}, as described in Figure 1. If P ′ is an optimal

solution to G, then the lemma is proved. Thus, we suppose that P ′ is not an optimal solution

to G.

By the lemma assumption
∑

v∈N(K) pK(v) < ∣K∣+ ∣N(K)∣, we have

∑
v∈N(K)−N1

pK(v) =
∑

v∈N(K)

pK(v)−
∑
v∈N1

pK(v)

≤ (∣K∣+ ∣N(K)∣ − 1)− ∣N1∣ = ∣K∣+ (∣N(K)∣ − ∣N1∣)− 1. (2.1)

Note that the total number of missing edges between Ni and Nj for i ∕= j is up-

per bounded by
∑

v∈N(K)−N1
pK(v). Therefore, the total number of existing edges between

N(K)−N1 and K and between Ni and Nj for i ∕= j is at least

(∣K∣+ ∣N1∣)(∣N(K)−N1∣)−
∑

v∈N(K)−N1

pK(v)

≥ (∣K∣+ ∣N1∣)(∣N(K)−N1∣)− (∣K∣+ (∣N(K)−N1∣)− 1).

This gives a lower bound on the number of edges deleted by the P-operation sets (2) and (5).

With the ∣K∣ ⋅ ∣R∣ edge insertion operations in the P-operation set (1), we conclude that the

solution P contains at least (∣K∣+ ∣N1∣)(∣N(K)−N1∣)− (∣K∣+(∣N(K)−N1∣)−1)+ ∣K∣ ⋅ ∣R∣

edge operations that are not contained in the solution P ′. On the other hand, the total
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number of edge operations in the P ′-operation sets (1’)-(3’) that are not in P is upper

bounded by
∑

v∈N(K) pK(v). Since P ′ is not an optimal solution to G, we must have

(∣K∣+ ∣N1∣)(∣N(K)−N1∣)− (∣K∣+ (∣N(K)−N1∣)− 1) + ∣K∣ ⋅ ∣R∣

<
∑

v∈N(K)

pK(v) ≤ ∣K∣+ ∣N(K)∣ − 1,

which gives

∣K∣(∣N(K)−N1∣+ ∣R∣ − 2) + ∣N(K)∣(∣N(K)−N1∣ − 1) < ∣N(K)−N1∣2 + ∣N(K)−N1∣ − 2.(2.2)

We first consider the case ∣R∣ > 0. Then we must have ∣N1∣ > 0: if ∣N1∣ = 0, the

P-operation set (1) would have been unnecessary and the solution P would have not been

an optimal solution to G. Therefore, in this case, we have

∣K∣(∣N(K)−N1∣ − 1) + (∣N(K)−N1∣+ 1)(∣N(K)−N1∣ − 1)

≤ ∣K∣(∣N(K)−N1∣ − 1) + (∣N(K)−N1∣+ ∣N1∣)(∣N(K)−N1∣ − 1)

≤ ∣K∣(∣N(K)−N1∣+ ∣R∣ − 2) + ∣N(K)∣(∣N(K)−N1∣ − 1)

< ∣N(K)−N1∣2 + ∣N(K)−N1∣ − 2.

The last inequality has used the inequality (2.2). However, This cannot hold true unless

∣N(k) − N1∣ = 0, i.e., N(k) = N1. Thus, in this case, we have K ∪ N(K) ⊆ C1 and the

lemma is proved.

This leaves us with the remaining case ∣R∣ = 0. As we have analyzed above, the

solution P contains at least (∣K∣ + ∣N1∣)(∣N(K) − N1∣) − (∣K∣ + (∣N(K) − N1∣) − 1) edge

operations that are not contained in the solution P ′ (note that ∣R∣ = 0). On the other

hand, the total number of operations in the P ′-operation sets (2’) and (3’) is bounded by∑
v∈N(K)−N1

pK(v) ≤ ∣K∣+(∣N(K)−N1∣)−1, where we have used the inequality (2.1). Thus

(noting that the P ′-operation set (1’) is empty because ∣R∣ = 0), the total number of edge
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operations in P ′ that are not in P is bounded by ∣K∣+ (∣N(K)∣ − ∣N1∣)− 1. Since P ′ is not

optimal, we must have

(∣K∣+ ∣N1∣)(∣N(K)−N1∣)− (∣K∣+ (∣N(K)−N1∣)− 1) < ∣K∣+ (∣N(K)∣ − ∣N1∣)− 1. (2.3)

We show that the inequality (2.3) can never hold true.

If ∣N1∣ = 0, then all the ∣K∣ ⋅ ∣N(K)∣ edges between K and N(K) should be deleted in

the solution P . By the lemma assumption ∣N(K)∣ > ∣K∣ ≥ 1, we have

∣K∣ ⋅ ∣N(K)∣ ≥ ∣K∣+ ∣N(K)∣+ 1 ≥
∑

v∈N(K)

pK(v).

Since
∑

v∈N(K) pK(v) upper bounds the total number of edge operations that are in P ′ but

not in P , the above inequality would imply that P ′ is an optimal solution, contradicting our

assumption.

If ∣N(K) − N1∣ = 1, then the inequality (2.3) would give ∣N1∣ < ∣K∣, which implies

∣N(K)∣ = ∣N1∣ + ∣N(K) − N1∣ = ∣N1∣ + 1 ≤ ∣K∣, contradicting the lemma assumption

∣N(K)∣ > ∣K∣.

Finally, if ∣N(K)−N1∣ ≥ 2 and ∣N1∣ > 0, then from the inequality (2.3), we would have

(∣N(K)−N1∣ − 2)∣K∣ < ∣N(K)−N1∣ − 2, which is again impossible.

This verifies that either P ′ is an optimal solution that has K ∪ N(K) as a cluster, ,

or the optimal solution P has a cluster that contains K ∪ N(K). The lemma now follows

directly.

In fact, we can derive a result that is stronger and more precise than Lemma C.3.

Lemma B.6 Let K be a critical clique with ∣K∣ < ∣N(K)∣ and
∑

v∈N(K) pK(v) < ∣K∣ +

∣N(K)∣. There is an optimal partition P that either has K ∪ N(K) as a cluster, or has a

cluster that contains K ∪M(K) plus a single vertex u, such that ∣N(u) ∩ N(K)∣ > (∣K∣ +

∣N(K)∣)/2.
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Proof. As we have proved in Lemma C.3, either the solution P ′ in Figure 1 that has

K ∪ N(K) as a cluster is an optimal solution, or the optimal solution P in Figure 1 has a

cluster C1 that contains K ∪N(K) plus a vertex subset R.

There are at most
∑

v∈N(K) pK(v) ≤ ∣K∣+ ∣N(K)∣−1 edges between R and N(K) in G,

since
∑

v∈N(K) pK(v) is an upper bound on the number of edges between N(K) and N2(K).

To construct a disjoint clique induced by C1, at least ∣R∣ ⋅(∣K∣+ ∣N(K)∣)−(∣K∣+ ∣N(K)∣−1)

edges are inserted. Since P is optimal, to construct two disjoint cliques induced by R and

C1 − R is at least as expensive as that of constructing the disjoint clique induced by C1.

Therefore,

∣K∣+ ∣N(K)∣ − 1 ≥ ∣R∣ ⋅ (∣K∣+ ∣N(K)∣)− (∣K∣+ ∣N(K)∣ − 1),

which gives ∣R∣ ⋅ (∣K∣ + ∣N(K)∣) ≤ 2(∣K∣ + ∣N(K)∣ − 1). This cannot be true for ∣R∣ ≥ 2.

Therefore, we must have ∣R∣ ≤ 1. If R = {u}, the number of vertices in N(K) that are

adjacent to u is larger than the number of vertices in K ∪N(K) that are not adjacent to u,

i.e., ∣N(u)∩N(K)∣ > ∣K∣+∣N(K)∣−∣N(u)∩N(K)∣. This gives immediately ∣N(u)∩N(K)∣ >

(∣K∣+ ∣N(K)∣)/2.

Moreover, u is the only vertex with ∣N(u)∩N(K)∣ > (∣K∣+ ∣N(K)∣)/2: otherwise there

would be more than 2((∣K∣ + ∣N(K)∣)/2) edges between N(K) and N2(K), which already

exceeds the upper bound
∑

v∈N(K) pK(v) ≤ ∣K∣+ ∣N(K)∣ − 1.

Now we are ready for Rule 3.

Corollary B.7 Rule 3 is safe.

Proof. By the conditions in the rule, ∣K∣ < ∣N(K)∣ and
∑

v∈N(K) pK(v) < ∣K∣+ ∣N(K)∣.

By lemma C.3, there is an optimal solution P in which a cluster C1 contains the entire
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K ∪ N(K). Moreover, by Lemma C.4, there is at most one vertex u in G that satisfies

∣N(u)∩N(K)∣ > (∣K∣+ ∣N(K)∣)/2 and the vertex u is the only possible other vertex in the

cluster C1. Since all edge operations in Rule 3 are contained in the optimal solution P , the

rule is safe.

In reduction rule 3, there are two cases: If no vertex u exists in N2(K) with

∣N(u)
∩
N(K)∣ > (∣K∣ + ∣N(K)∣)/2, K

∪
N(K) is a cluster in an optimal partition, we

can safely remove K
∪
N(K) from G; On the other hand, if there is a vertex u with

∣N(u)
∩
N(K)∣ > (∣K∣ + ∣N(K)∣)/2, we can remove K from G by calling the pendulum

algorithm with (G, k, u) as input. We will present the details of the algorithm after the

kernelization algorithm.

C. The kernelization algorithm

In this section, we present the kernelization algorithm and prove its correctness. Given an

input graph G and a parameter k, our kernelization algorithm is the following:

Kernelization Algorithm

Step 1 Repeatedly reduce G according to the reduction rules, until they are not applicable;

Step 2 If the resulting graph G′ contains more than 2k vertices, output ”No”; Otherwise

output G′;

The following theorem proves the correctness of the kernelization algorithm.

Theorem C.1 (G, k) is an instance of the cluster editing problem, if the reduction

rules are not applicable on G, G must contain no more than 2k vertices, otherwise there is

no solution for G.
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Proof. Let P be an optimal partition for G, P = {C1, C2, C3, . . . , Cℎ}. We can easily

construct a solution of size no larger than k based on P . We say that a vertex v is touched if

we inserte/delete at least one edge adjacent to v to obtained the disjoint cliques induced by

P , and untouched otherwise; ∀v ∈ V (G), p(v) denotes the number of inserted/deleted edges

adjacent to v.

We divide clusters in P into two sub-collections: P1 contains clusters in which all

vertices are touched, P2 contains other clusters. Since clusters in P1 contains only touched

vertices, p(v) ≥ 1 for any touched vertex v, so the size of the clusters in P1 is
∑

C∈P1
∣C∣ ≤∑

v∈C,C∈P1
p(v).

For a cluster C in P2, C contains a set K of untouched vertices, we claim that the

induced graph on K is a critical clique. Since we do not insert/delete any edges adjacent

to vertices in K, the induced graph on K must be a clique, otherwise C does not become a

disjoint clique after applying the solution, it is a contradiction. And if there are two vertices

in u, v ∈ K with N(u)−K ∕= N(v)−K, to make C a disjoint clique, we have to insert/delete

at least one edge adjacent to either u or v, and one of the vertices becomes touched, it leads

to another contradiction, and proves our claim. Furthermore, the cluster C contains all

vertices in K
∪
N(K) but no other vertices, since we do not insert/delete any edges adjacent

to K to make C a disjoint clique.

For a cluster C in P2, C = K
∪
N(K), K is a vertex subset and the induced

graph on K is a critical clique. Vertices in K are untouched and vertices in N(K) are

touched. Since the reduction rules are not applicable, we have ∣C∣ = ∣K∣ + ∣N(K)∣ ≤∑
v∈N(K) pK(v) =

∑
v∈N(K) p(v) =

∑
v∈C p(v), the last two quality hold because by the def-

inition of editing degrees, p(v) = pK(v) for v ∈ N(K) and p(v) = 0 for v ∈ K. Thus∑
C∈P2

∣C∣ ≤
∑

v∈C,C∈P2
∣p(v)∣
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In both cases, we bound the size of clusters by
∑

v∈V (G) p(v), and at most k edge

insertion/deletion operations are applied,
∑

v∈V (G) p(v) is bounded by 2k, so is the number

of vertices in G, it completes our proof.

D. The pendulum algorithm

In this section, we present the pendulum algorithm(Figure 2), it is applied with rule 3, and

is of independent interest.

Algorithm Pendulum Algorithm

Input: (G, k, u): G is the input graph, and k is the parameter, u is a vertex in G such
that K is a critical clique in G, N(K) is a critical clique and N2(K) = {u}

Output:A graph G′ and a parameter k

1. If ∣K∣ ≥ ∣N(K)∣, remove K
∪
N(K) from G, let k′ = k − ∣N(K)∣;

2. If ∣K∣ < ∣N(K)∣, remove K from G and delete ∣K∣ vertices from N(K), let
k′ = k − ∣K∣.

3. Let G′ be the resulted graph, return G′ and k′.

Fig. 2. Pendulum algorithm

Lemma D.1 The pendulum algorithm is correct.

Proof. We prove lemma C.5 by showing that there is an solution of size k for G if and

only if there is a solution of size k′ for G′.

If ∣K∣ ≥ ∣N(K)∣, and N2(K) = {u}, ∀v ∈ N(K), pK(v) = 1 ≤ ∣K∣. By theorem B.3,

there is an optimal partition which contains K
∪
N(K) as a cluster, the algorithm is correct.

If ∣K∣ < ∣N(K)∣, similarly ∀v ∈ N(K), pK(v) = 1,
∑

v∈N(K) pK(v) = ∣N(K)∣ <

∣N(K)∣ + ∣K∣. By lemma C.3 and C.4, there is an optimal solution consisting of k in-

sertion/deletion operations, and the optimal partition P containing a cluster S so that
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K
∪
N(K) ⊆ S ⊆ K

∪
N(K)

∪
{u}.

Let R be the set of removed vertices in N(K) by the pendulum algorithm, ∣R∣ = ∣K∣.

We construct an partition P ′ of vertices in G′ by replacing S by S ′ = S −K −R in P , and

we can show that it costs k′ = k−∣K∣ many edge operations to construct the disjoint cliques

induced by P ′, there are two cases:

(i) If u is in S, the solution induced by P contains ∣K∣ edges insertion operations to connect

u and K, which are not in the solution induced by P ′;

(ii) If u is not in S, the solution induced by P contains ∣K∣ edge deletion operations to

disconnect u and R, which are not in the solution induced by P ′.

In both cases, we obtain a solution of size k′ = k − ∣K∣ for G′ by removing ∣K∣ edge

operations from the solution induced by P .

On the other hand, suppose P ′ is an optimal partition of vertices in G′, based on P ′,

a solution of size k′ = k − ∣K∣ can be easily constructed. N(K) is a critical clique in G,

N(K)−U is also a critical clique in G′, by proposition B.1, N(K)−U is entirely contained

in a cluster S ′ in P ′.

We can show that S ′ is a subset of (N(K)−U)
∪
{u}. Suppose that D = S ′− (N(K)−

U) − u ∕= ∅. To make S ′ a disjoint clique, edges between D and N(K) − U are inserted,

∣D∣∗∣N(K)−U ∣ many edge insertion operations are applied. On the other hand, to construct

disjoint cliques induced by N(K)−U and D
∪
{u}, ∣N(K)−U ∣ many edges between u and

N(K)−U are deleted. Since ∣D∣ ∗ ∣N(K)−U ∣ ≥ ∣N(K)−U ∣, replacing S ′ by N(K)−U and

D
∪
{u}, we obtain a new optimal partition, which contains a cluster S ′, and S ′ is a subset

of (N(K)− U)
∪
{u}.

We construct a partition P of vertices in G by replacing S ′ by S = S ′
∪
K
∪
U , and

show that the solution induced by P contains k edge insertion/deletion operations. There
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are two cases:

(i) S ′ contains u, in addition to the solution induced by P ′, there are ∣K∣many edge insertion

operations to connect u and K to construct disjoint cliques induced P .

(ii) S ′ does not contain u, in addition to the solution induced by P ′, there are ∣K∣ many

edge deletion operations to disconnect u and R to construct disjoint cliques induced

by P .

In both cases, we show that the solution induced by P consists of k edge inser-

tion/deletion operations and it complete the proof.

E. Final remarks

The clustering editing problem arises from biological research. In the section, we study

the its feasibility in term of parameterized complexity. We present a 2k kernel for the

problem, it improves the previous best kernel of size 4k. We introduce the concept of editing

degree of vertices, which play a key role in the kernelization algorithm and the analysis of

the algorithm. Our kernelization algorithm is simple and easy to implement in practice.
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CHAPTER III

AN IMPROVED KERNEL FOR THE D-CLUSTER EDITING PROBLEM

The d-cluster editing problem is a variance of the cluster editing problem which,

in addition, requires that the resulting graph consists of a union of d disjoint cliques. We

present a polynomial-time kernelization algorithm for the problem that produces a linear

kernel of size bounded by 7k + 2d, improving the previously best kernel size (d + 2)k + d.

We also propose a fixed-parameter tractable algorithm for the problem.

A. Introduction

The general cluster editing problem is formulated as follows: given a graph G and a

parameter k, is it possible to apply at most k edge insertion/deletion operations on G so

that the resulting graph becomes a union of disjoint cliques? The d-cluster editing

problem further requires that the resulting graph contains a union of d disjoint cliques.

In the chapter, we study the parameterized complexity of the d-cluster editing

problem. The d-cluster editing problem arises from certain biological applications [6, 51]

where the number d of gene clusters in gene partition is known in advance (e.g., in the study

of K-means [80]). Formally, an instance of the d-cluster editing problem consists of a

graph G and a parameter k, and is asking for at most k edge insertion/deletion operations

that convert the graph G into a union of exactly d disjoint cliques. The d-cluster editing

problem is NP-hard [81]. Moreover, it is easy to see that the general cluster editing

problem can be reduced to the d-cluster editing problem by solving the latter for all d,

0 ≤ d ≤ n. Therefore, an improved parameterized algorithm for the d-cluster editing

problem may directly imply an improvement on parameterized algorithms for the general

cluster editing problem. On the other hand, it is not clear whether the d-cluster
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editing problem can be reduced to the cluster editing problem. Guo, based on the idea

of critical cliques, presented a polynomial time constructible kernel of size (d + 2)k + d for

the d-cluster editing problem [53], which implies that the d-cluster editing problem

is fixed parameter tractable when both d and k are used as parameters.

The major difficulty for reducing the d-cluster editing problem to the cluster

editing problem is that when the number of disjoint cliques in the resulting graph for a

solution to the cluster editing problem is significantly different from d, it is unclear

what is the relationship between this resulting graph and the graph resulted from a desired

solution for the d-cluster editing problem. To overcome this difficulty, we introduce a

new concept of class-partitions of a graph G, which is a partition of the vertices in G into

classes. Our key observation on the d-cluster editing problem is that for each desired

solution S of the d-cluster editing problem, there is a class-partition C such that the

solution S can be obtained from C by simple split or combination of the classes in C.

Therefore, a fixed parameter algorithm for the d-cluster editing problem can proceed

by enumerating the class-partitions, followed by a dynamic programming procedure that

implements a proper split/combination process on each obtained class-cluster. Based on

this technique, we obtain a kernelization algorithm that gives a kernel of size 7k+ 2d for the

d-cluster editing problem, improving the previous kernel size (d+ 2)k + d [53].

The technique also enables us to derive a fixed parameter algorithm of running time

O∗(max{2.56k, 2k+d})1 for the d-cluster editing problem.

B. Key lemmas

We first present necessary definitions. A clique K is a subgraph of graph G and is complete.

A disjoint clique K is a clique in which no vertex is adjacent to any other vertex not in K.

1We note that the O∗() notation may omit certain insignificant polynomial factors
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For a vertex v, denote by N(v) the set of vertices that are adjacent to v. For a subset S of

vertices, denote by G[S] the subgraph of G that is induced by S, by N(S) the set of vertices

that are not in S but adjacent to some vertex in S, i.e., N(S) =
∪

v∈S N(v) − S, and by

N2(S) the neighbors of N(S) that are not in S∪N(S), i.e., N2(S) = N(N(S))− (S∪N(S)).

Definition ([70]) A critical clique K in a graph G is a clique such that for all vertices u

and v in K, N(v)−K = N(u)−K, and K is maximal under this property.

A critical clique graph Gc of G is a graph such that nodes in Gc are critical cliques in

G, and two nodes are adjacent in Gc if and only if the subgraph in G induced by the two

cliques is a larger clique. Lin et al. [70] proved that every vertex in a graph G belongs to a

unique critical clique, therefore the critical clique graph of G is well defined. And it is known

[58] that the critical clique graph of a graph can be constructed in linear time. The critical

clique graph is an important part in the kernelization algorithm. For a critical clique K, in

case there is no confusion, we also denote by K the vertex set of the critical clique.

A solution to the d-cluster editing problem is a sequence of edge insertion/deletion

operations that can convert G into a collection of disjoint cliques. The vertex sets of the

disjoint cliques is a partition S of vertices in G, S = {C1, C2, . . . , Cd}, a cluster is a vertex

subset in S. Given a solution, the partition can be easily derived and vice versa. An optimal

solution is a solution that uses the minimum number of edge insertion/deletion operations,

and an optimal d-partition is obtained from an optimal solution. Let S be a vertex subset

of G, by making S a disjoint clique, we mean to perform the following edge operations to

make S a disjoint clique: adding edges between pairs of vertices in S that are not adjacent,

and deleting edges that are between a vertex in S and a vertex not in S.

Now we are ready to present the useful lemmas to derive the kernel.
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Lemma B.1 G is a graph and K is a critical clique in G. Suppose that S = {C1, C2, . . . , Cd}

is an optimal d-partition in G, there is at most one cluster Ci in the partition S such that

K
∩
Ci is a proper nonempty subset of Ci.

Proof. We prove this lemma by contradiction. Let Cx and Cy are vertex subsets in S,

1 ≤ x < y ≤ d so that Kx = Cx

∩
K and Ky = Cy

∩
K are proper nonempty subsets of Cx

and Cy respectively. We will derive a new d-partition of G, from which we obtain a solution

with less edge operations. This contradicts the fact that S is an optimal d-partition.

Let Nx = N(Kx)
∩
Cx and Ny = N(Ky)

∩
Cy, and Rx = Cx − Kx − Nx, Ry = Cy −

Ky −Ny. To make Cx and Cy disjoint cliques, we need to apply

∣Kx∣ ∗ ∣Ky∣+ ∣Kx∣ ∗ ∣Ny∣+ ∣Ky∣ ∗ ∣Nx∣+ ∣Kx∣ ∗ ∣Rx∣+ ∣Ky∣ ∗ ∣Ry∣+M. (1)

many edge insertion/deletion operations. We only concern the edge operations on K or

related to K, and M denote the number of the others.

There are two cases: ∣Nx∣ − ∣Ny∣ ≤ ∣Rx∣ − ∣Ry∣ and ∣Nx∣ − ∣Ny∣ > ∣Rx∣ − ∣Ry∣. In the

first case, we construct a new d-partition S ′, in which Cx and Cy are replaced by Nx

∪
Rx

and K
∪
Ny

∪
Ry, denoted by C ′x and C ′y. To make C ′x and C ′y disjoint cliques, the number

of edge operations is:

(∣Kx∣+ ∣Ky∣) ∗ ∣Nx∣+ (∣Kx∣+ ∣Ky∣) ∗ ∣Ry∣+M

=∣Kx∣ ∗ ∣Nx∣+ ∣Ky∣ ∗ ∣Nx∣+ ∣Kx∣ ∗ ∣Ry∣+ ∣Ky∣ ∗ ∣Ry∣+M. (2)
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(1)-(2):

∣Kx∣ ∗ ∣Ky∣+ ∣Kx∣ ∗ ∣Ny∣ − ∣Kx∣ ∗ ∣Nx∣+ ∣Kx∣ ∗ ∣Rx∣ − ∣Kx∣ ∗ ∣Ry∣

=∣Kx∣ ∗ ∣Ky∣+ ∣Kx∣ ∗ (∣Ny∣ − ∣Nx∣+ ∣Rx∣ − ∣Ry∣)

=∣Kx∣ ∗ ∣Ky∣+ ∣Kx∣ ∗ ((∣Rx∣ − ∣Ry∣)− (∣Nx∣ − ∣Ny∣))

>0

Thus to convert G into the graph consisting a disjoint union of d cliques whose vertex

sets are exact S ′, we will apply less edge operations than we derive the new graph from S.

In the seconde case, ∣Nx∣−∣Ny∣ > ∣Rx∣−∣Ry∣, we construct a new d-partition S ′, similarly

Cx and Cy are replaced by K
∪
Nx

∪
Rx and Ny

∪
Ry, denoted by C ′x and C ′y. To make C ′x

and C ′y disjoint cliques, the number of edge operations is:

(∣Kx∣+ ∣Ky∣) ∗ ∣Ny∣+ (∣Kx∣+ ∣Ky∣) ∗ ∣Rx∣+M

=∣Kx∣ ∗ ∣Ny∣+ ∣Ky∣ ∗ ∣Ny∣+ ∣Kx∣ ∗ ∣Rx∣+ ∣Ky∣ ∗ ∣Rx∣+M. (3)

(1)-(3):

∣Kx∣ ∗ ∣Ky∣+ ∣Ky∣ ∗ ∣Nx∣ − ∣Ky∣ ∗ ∣Ny∣+ ∣Ky∣ ∗ ∣Ry∣ − ∣Ky∣ ∗ ∣Rx∣

=∣Kx∣ ∗ ∣Ky∣+ ∣Ky∣ ∗ (∣Nx∣ − ∣Ny∣+ ∣Ry∣ − ∣Rx∣)

=∣Kx∣ ∗ ∣Ky∣+ ∣Ky∣ ∗ ((∣Nx∣ − ∣Ny∣)− (∣Rx∣ − ∣Ry∣))

>0

Therefore in both cases, we construct a new d-partition, from which we apply less

edge operations to convert G into a graph consisting of a union of d disjoint cliques, this

contradicts the fact that S is optimal d-partition.
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Intuitively, Lemma B.1 claims that for any graph G, S = {C1, C2, . . . , Cd} is an optimal

d-partition of the vertices in G, K is a critical clique such that there exists Ci with K
∩
Ci ⊂

Ci, then for all other Cj with j ∕= i, either K
∩
Cj = ∅ or Cj ⊆ K.

Our main contribution in this paper is the following concept and its applications to

fixed-parameter tractable algorithms for the d-cluster editing problem.

Definition Let G be a graph. A class-partition of the graph G is a partition P =

{V1, V2, . . . , Vℎ} of the vertices in G such that:

∙ For all i, the subgraph G[Vi] of G induced by the vertex subset Vi is connected;

∙ Each critical clique in G is entirely contained in a single vertex subset Vi in P .

The importance of class-partitions of a graph G lies in the fact that for each optimal

d-partition S of a graph G, there is a class-partition P of G such that the vertex subsets in

S can be obtained from the vertex subsets in P by simple set split or set combination. First

we will introduce two important definitions before we present the lemma.

Definition Let G be an input graph, S = {S1, . . . , Sd} be an optimal d-partition of the

vertices in G.

1. Si is a cluster in S such that the induced graph G[Si] is disconnected, we call Si a

combining cluster;

2. Sj is a cluster in S such that Sj contains a proper subset of some critical clique K, we

call Sj a splitting cluster.
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Combining subsets are obtained by combining some subsets in a class-partition, and

Splitting subsets are obtained by splitting some subsets in a class-partition.

Lemma B.2 S = {C1, C2, . . . , Cd} is an optimal d-partition of the vertices in an input graph

G. Ci is a vertex subset in S,

∙ If Ci is a splitting subset, Ci contain a proper subset of a critical clique K,

∣Ci

∩
N(K)∣ > ∣Ci −K −N(K)∣;

∙ If Ci is a combining subset, all critical cliques intersecting with Ci are entirely contained

in Ci.

Proof. We prove the lemma by contradiction. Suppose that ∣Ci

∩
N(K)∣ ≤ ∣Ci −K −

N(K)∣. Ci contains a proper subset of a critical clique K, by lemma B.1, there is another

subset Cp ∈ S, s.t. Cp ⊂ K.

To make Ci and Cp disjoint cliques, edges between Ci

∩
K and Ci − K − N(K) are

inserted, and edges between Ci

∩
K and Cp are deleted, the number of edge operations is

∣Ci

∩
K∣ ∗ ∣Ci −K −N(K)∣+ (∣Ci

∩
N(K)∣+ ∣Ci

∩
K∣) ∗ ∣Cp∣+M (4)

Similarly we concern the edge operations on K or related to K and M denotes the number

of other edge operations.

Let C ′p = Cp

∪
(Ci

∩
K) and C ′i = Ci −K. To make C ′p and C ′i disjoint cliques, edges

between Ci

∩
K, Cp and Ci

∩
N(K) are removed, the number of edge operations is

∣Ci

∩
N(K)∣ ∗ (∣Ci

∩
K∣+ ∣Cp∣) +M (5)

many edge operations are applied.
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(4)− (5) = ∣Ci

∩
K∣ ∗ ∣Cp∣+ ∣Ci

∩
K∣ ∗ (∣Ci −K −N(K)∣ − ∣Ci

∩
N(K)∣)

> 0

Replacing Ci and Cp by C ′i and C ′p, we obtain a new d-partition S ′ of G, the solution

derived from S ′ contains Less edge operations, it contradicts the optimality of S.

We can prove part (ii) by contradiction too. Ci is a combining subset, and contains a

proper subset of a critical clique K. By lemma B.1, there is another vertex subset Cp ∈ S

with Cp ⊂ K.

Ci is a combining subset, the induced graphG[Ci] is disconnected, w.l.o.g. G[Ci] contains

two connected components, G[X] and G[Y ] respectively, X contains the proper subset of K.

Since Ci contains a proper subset of K, by proof of part (i), ∣Ci

∩
N(K)∣ > ∣Ci −K −

N(K)∣ > ∣X −K −N(K)∣, the last inequality holds since vertices in Y are not adjacent to

K, Ci−K −N(K) = (X −K −N(K))
∪
Y . To make X

∪
Cp and Y disjoint cliques, edges

between Ci

∩
K, Cp and X −K −N(K) are inserted. The number of edge operations is

(∣Ci

∩
K∣+ ∣Cp∣) ∗ ∣X −K −N(K)∣+M.(6)

Similarly we only concern edge operations on K or related to K, and M denotes the number

of other edge operations.

On the other hand, to make Ci and Cp disjoint cliques, edges between Cp and

Ci

∩
(K
∪
N(K)) are removed, and edges between Ci

∩
K and X−K−N(K), Y are inserted,

the number of edge operations is

∣Cp∣ ∗ (∣Ci

∩
K∣+ ∣Ci

∩
N(K)∣) + ∣Ci

∩
K∣ ∗ (∣X −K −N(K)∣+ ∣Y ∣) +M.(7)

(6)− (7) < 0, since ∣Ci

∩
N(K)∣ > ∣X −K −N(K)∣. So replacing Ci and Cp by C ′i and
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C ′p, we obtain a new d-partition S ′, and the solution derived from S ′ consists of less edge

operations than S, it is a contradiction.

In the following lemma, we show the relation between an optimal d-partition and class-

partition.

Lemma B.3 Let S = {C1, C2, . . . , Cd} be an optimal d-partition of the vertices in a graph

G, there is a class-partition P = {V1, . . . Vℎ} of vertices in G such that:

1. if ℎ < d, then each vertex subset Ci in S is entirely contained in a vertex subset Vj in

P;

2. if ℎ ≥ d, then each vertex subset Ci in S is a union of some vertex subsets in P.

To construct disjoint cliques induced by P, less edge operations are applied than to construct

disjoint cliques induced by S.

Proof. Let S = {S1, S2, . . . , Sd} be an optimal d-partition, we can prove that S can

contain either combining subsets, or splitting subsets, but not both, i.e. there do not exist

two clusters Si and Sj in S such that Si is a splitting cluster and Sj is a combining cluster.

Si contains a proper subset of a critical clique K, by lemma B.1, there is a cluster Sp ∈ S

with Sp ⊂ K. And w.l.o.g. suppose that there are two connected components G[X] and

G[Y ] in G[Sj], X
∪
Y = Sj.

Replacing Si, Sp and Sj by Si

∪
Sp, X and Y , we obtain a new d-partition S ′ of vertices

in G. By lemma B.2, to construct critical cliques induced by Si

∪
Sp is less costly than Si

and Sp. Also since G[X] and G[Y ] are not connected, we save the edge insertion operations

to connect disjoint cliques induced by X and Y . To construct critical cliques induced by X

and Y is less costly than cluster induced by Sj = X
∪
Y . S ′ is a better d-partition than S,

it contradicts the optimality of S.
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If S contains combining clusters, we can construct a class partition P by replacing each

combining cluster by the vertex subsets of the connected components in the induced graph

on the cluster. To construct disjoint cliques induced by P , we save many edge insertion

operations. Less edge operations are applied to construct disjoint cliques induced by P than

S.

If S contains splitting subsets, for a cluster Si containing a proper subset of some critical

clique K, by lemma B.1, other clusters are either subsets of K, or do not contain vertices in

K. We merge the cluster which are subsets of K with Si and obtain a new vertex subset.

By lemma B.2, it is less costly to construct the disjoint clique induced by the new vertex

subset. We repeat the process for all splitting clusters and critical cliques, and obtain a

class-partition P , to construct disjoint cliques induced by P is less costly than S.

The Lemma B.3 has double meaning. If the optimal d-partition contains only combining

clusters, no critical clique is split. We could compute the optimal solution based on the

critical clique graph Gc. On the other hand, if the optimal d-partition contains only splitting

subsets, we can apply the reduction rules on G to reduce the size of G. Combining both

cases, a kernel is derived.

C. A kernel of size 7k + 2d

A kernelization for a NP-Hard problem is a “preprocessing” on the instances of the problem

to reduce the instances’ sizes significantly. In particular, the size of the resulting instances can

be bounded by a function of the parameter. In practice, parameters have moderate values,

so we could develop practically efficient algorithms for the small instances. Kernelization is

an important contribution of parameterized complexity and computation.

In the section we present a kernel of the d-Cluster Editing problem. The kernel has

two parts: one part is a weighted graph and the other is unweighted, so that if G admits a



43

solution of size k if and only if there is a solution of weight k to one of the instances. The

size of kernel can be bounded by a linear function of k and d.

As shown in lemma B.3, there are two cases for the optimal d-partition S for G, the first

case is that S contains combining clusters, the second is that S contains splitting clusters.

The first part of the kernel corresponds to the first case, where S contains combining clusters.

By lemma B.3, any critical clique K is entirely contained in some cluster. It inspires us

that the first part of kernel is simply the critical clique graph Gc of G, which is weighted on

both vertices and edges. A node in Gc corresponds to a critical clique in G, its weight is the

size of the critical clique. And the weight of an edge is simply the product of the weights of

the two endpoints. The following lemma provides an upper bound on the size of Gc.

Given a solution for an input graph G, we call a vertex v touched if we delete or insert

an edge adjacent to v, otherwise we call it untouched. Similarly a critical clique is touched if

we delete or insert edges adjacent to it.

Lemma C.1 The size of the critical clique graph Gc can be bounded by 2k + d.

Proof. Suppose S is an optimal d-partition for G, an optimal solution can be easily

derived from S. Each cluster in S contains at most one untouched critical clique as a subset:

to make the union of two critical cliques a disjoint cliques, one must insert/delete edges

adjacent to one of them, for they have at least one different neighbor besides themselves.

Thus the total number of untouched critical cliques is at most d.

Each edge operation connects/disconnects at most two critical cliques; and a touched

critical clique is adjacent to at least one inserted/deleted edge. So there are at most 2k

touched critical cliques. Overall at most 2k + d many critical cliques are in S, so the size of

Gc could be bounded by 2k + d.

In the second case, S contains splitting clusters. By lemma B.3, the induced graph
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G[Si] on any cluster Si is connected. We apply reduction rules to G to reduce its size.

Recall that in chapter II, we present the definition of the editing degree of a vertex, roughly

speaking, For a vertex v and a critical clique K, v ∈ N(K), the editing degree pK(v) of v

respect to K is the number of inserted/deleted edges adjacent to v to make K
∪
N(K) a

disjoint clique.

Reduction Rules

Rule 1 If there is a critical clique K of G with ∣K∣ > k, we make K
∪
N(K) a disjoint

clique and reduce k accordingly.

Rule 2 K is a critical clique with ∣K∣ ≥ ∣N(K)∣ and ∣K∣+ ∣N(K)∣ >
∑

v∈N(K) pK(v), delete

edge between N(K) and N2(K), reduce k accordingly.

Rule 3 Let C = {C1, C2, . . . Cℎ} be the collection of isolated cliques in G, ℎ ≤ d, the cliques

are sorted by the size. Remove cliques {Cj+1, . . . , Cℎ} from G where
∑j

i=1 ∣Ci∣ ≥ d,

but
∑j−1

i=1 ∣Ci∣ < d, reduce d by ℎ− j.

Corollary C.2 Rule 1 is safe.

Proof. The correctness of Rule 1 is obvious, since ∣K∣ > k, to connect a vertex not in

N(K) with K, or remove a vertex in N(K) from K, at least k + 1 edge insertion/deletion

operations are applied. It can not make a solution, so Rule 1 is safe.

Lemma C.3 Given an input graph G, suppose S is an optimal d-partition, which contains

only splitting clusters. P is the class-partition obtained by lemma B.3; For all critical cliques

K with ∣K∣ ≥ ∣N(K)∣ and ∣K∣+ ∣N(K)∣ >
∑

v∈N(K) pK(v), K
∪
N(K) make a vertex subset

in P.
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Proof. We can prove it by contradiction, suppose P contains two subsets Vi and Vj, and

K a subset of Vi, Vi
∪
N(K) and Vj

∪
N(K) are non-empty proper subsets of N(K) and

Vi −K −N(K) ∕= ∅, w.l.o.g. N(K) ⊂ Vi
∪
Vj. It has been proved in chapter II, comparing

the number of edge operations to make the subsets K
∪
N(K), Vi−K−N(K) and Vj−N(K)

disjoint cliques and to make Vi and Vj disjoint cliques, the former needs less number of edge

operations.

We could construct a new class-partition P ′ by replacing Vi and Vj by K
∪
N(K),

Vi−K−N(K) and Vj−N(K). By splitting the same vertex subsets we obtain a d-partition

S ′ from P ′. obviously the solution derived from S ′ includes less edge operations than S, it

is a contradiction.

Thus to apply reduction, we remove the critical cliques K with ∣K∣ ≥ ∣N(K)∣ and

∣K∣ + ∣N(K)∣ >
∑

v∈N(K) pK(v). To obtain the optimal d-partition, vertex subsets in the

class-partition are split. We could bound the size of vertex subsets to be split by Rule 3.

Corollary C.4 Rule 3 is safe.

Proof. C is a collection of isolated cliques in G. To transfer G to a collection of d cliques,

it may be necessary to split some disjoint cliques in G to generate exact d cliques.

The greedy approach is the following: pick the smallest disjoint clique and remove one

vertex from it, repeat the process, until we obtain d disjoint cliques. Obviously the greedy

approach works for disjoint cliques, and at most j cliques is split with
∑j

i=1 ∣Ci∣ ≥ d to

generate exact d cliques. Rule 3 is correct.

By reduction rule 1, all critical cliques K with ∣K∣ > k are removed. So ∣Ci∣ ≤ k ∀i.

Since
∑j−1

i=1 ∣Ci∣ < d,
∑j

i=1 ∣Ci∣ < d+ k.
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Lemma C.5 By applying reduction rule 1, 2 and 3, the size of the resulting graph is reduced

to 5k + d.

Proof. By applying reduction 1, 2 and 3, the resulting graph consists of a collection of

isolated cliques and a subgraph with no critical clique K with ∣K∣ > k, or ∣K∣ ≥ ∣N(K)∣

and ∣K∣ + ∣N(K)∣ >
∑

v∈N(K) pK(v), by the corollary above, the size of the isolated cliques

is bounded by k + d; We will show that the size of subgraph G′ can be bounded by 4k.

after applying an optimal solution, G′ is transferred to ℎ disjoint cliques where ℎ ≤ d.

Let S = {S1, S2, . . . Sℎ} be the vertex set of the disjoint cliques. In S, similarly vertices is S

are either touched or untouched. Since one edge operation can ”touch” two vertices, and at

most k edge operations are applied, the number of touched vertices is at most 2k.

K is an untouched critical clique and K ⊆ Si, as shows in chapter II, Si = K
∪
N(K).

There are two cases: if ∣K∣ ≥ ∣N(K)∣, by reduction rule 2, ∣K∣ ≤
∑

v∈N(K) pK(v)−∣N(K)∣ <∑
v∈N(K) pK(v); If ∣K∣ < ∣N(K)∣, by the definition of pK(v), pK(v) ≥ 1 ∀v ∈ N(K), ∣K∣ <

∣N(K)∣ ≤
∑

v∈N(K) pK(v). In both cases, the size of the size of untouched cliqueK is bounded

by
∑

v∈N(K) pK(v). Since at most k edge operations are applied,
∑

v∈N(K),Kisuntoucℎed pK(v)

is bounded by 2k, so is the size of untouched vertices. Put it all together, the resulting graph

contains at most 5k + d vertices.

Theorem C.6 The d-Cluster Editing problem admits a kernel of size at most 7k + 2d.

D. A FPT algorithm for the d-cluster editing problem

Branch-and-search approach is a powerful tool to design exact algorithms. In the section, we

propose a fixed-parameter tractable algorithm for the d-cluster editing problem based

on this approach.
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1. The branch-and-search algorithm

In the following we present the key lemma for the branch-and-search algorithm.

Lemma D.1 G is a connected graph, and for any pair of vertices u and v in G, there is at

most one vertex w, so that w is connected to either of u and v, but not both. G is a clique,

or almost a clique with at most one missing edge.

Proof. Suppose u, v and w are vertices in G, w is adjacent to u, but not v. We will show

that G is almost a clique with one missing edge (w, v).

w must connect to all common neighbors of u and v. Otherwise suppose there is a

vertex x which is adjacent to u and v, but not adjacent to w. There are two possible cases:

if u connects to v, consider the pair (u, w), u is adjacent to v and x, but w is adjacent

to neither, it is not possible; If u does not connect to v, considering the pair (w, v), w is

adjacent to u, v is not, and v is adjacent to x, but w not, it is not possible either. Thus w

is adjacent to all common neighbors of u and v.

u and v must be connected. Otherwise suppose u and v are not connected, let x be a

common neighbor of u and v. Considering the pair (x, v), x is adjacent to u and w, but v

is adjacent to neither, it is not possible. Thus u and v are connected.
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All the common neighbors of u and v must be connected. Otherwise suppose x and y

are two common neighbors of u and v, and x and y are not connected. Considering the pair

(x, v), x is adjacent to w, v is not; v is adjacent to y, but x not. It is not possible. Thus all

common neighbors of u and v are connected.

And there is no vertex which is adjacent to neither u nor v. Otherwise, suppose there is

a vertex z which is adjacent to neither u or v. There are two possible cases: If z is connected

to w, for the pair (w, u), w is connected to z, but u not, u is connected to v but w not. It

is not possible. if z is not connected to w, then for the pair (u, z), u is connected to w and

v, but z is connected to neither, it is not possible either.

Overall the graph G would be a clique with a missing edge (w, v). It finishes the proof.

In the following, we present the branch-and-search algorithm. For a four-tuple

{u, v, w, z}, w and z are adjacent to either u or v, but not both. There are two cases:

(u, v) ∈ E, (v, w) ∈ E and (u, w) /∈ E, and (v, z) /∈ E and (u, z) ∈ E, we call

{u, v, w, z} type I four-tuple; Or (u, v) ∈ E, (v, w) ∈ E and (v, z) ∈ E, and (u, w) /∈ E

and (u, z) /∈ E, we call {u, v, w, z} type II four-tuple. In the Figure 3 and Figure 4, we

illustrate the type I and II four-tuples and possible ways to eliminate them.
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Fig. 3. Type-I four-tuple and possible branches

Fig. 4. Type-II four-tuple and possible branches

By lemma D.1, if no such four-tuple exists in G, each connected component in G is

almost a clique with at most one missing edge.

We list possible way to eliminate four-tuples of type I in the branch-and-search algo-

rithm, which is shown in Figure 5 four types of type II can be eliminated in the similar way,

we omit the details.

Theorem D.2 The branch-and-search algorithm can enumerate all possible class-partitions

of G.

Proof. By lemma D.1, every connected component of G contain no such four-tuple
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Algorithm BranchAlgo

Input: a graph G = (V,E), A is a set of edges;
Output: a collection of vertex partitions of G.

1. If
∑

e∈A !e > k, where !e is the weight of e, return ”No solution”;

2. In all connected components in G, if there is no four-tuple (u, v, w, z) of type I
and II

2.1 Insert the missing edges in each connected components in G, add the edge
to A; If

∑
e∈A !e > k, return ”No solution”;

2.2 P is the the partition derived from G, where vertices in each connected
component make a vertex subset in P , return P ;

3. If there is a four-tuple (u, v, w, z) of type I
3.1 recursively call BranchAlgo(G − (u, v), A

∪
{(u, v)}), let the returned

collection be ℒ1;
3.2 recursively call BranchAlgo(G− (v, w)− (u, z), A

∪
{(v, w), (u, z)}), let

the returned collection be ℒ2;
3.3 recursively call BranchAlgo(G+ (u, w) + (v, z), A

∪
{(u, w), (v, z)}), let

the returned collection be ℒ3;
3.4 recursively call BranchAlgo(G− (u, z) + (u, w), A

∪
{(u, z), (u, w)}), let

the returned collection be ℒ4;
3.5 recursively call BranchAlgo(G − (v, w) + (v, z), A

∪
{(v, w), (v, z)}, let

the returned collection be ℒ5.

4. Return the union of the collections of partitions.

Fig. 5. The branch-and-search algorithm to list class-partitions.
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{u, v, w, z} of type I and II, G consists of a collection of disjoint cliques, each clique misses

at most one edge. Insert the missing edges to G, G is a collection of disjoint cliques.

{u, v, w, z} is a four-tuple of type I, if u and v are in different disjoint cliques in the final

graph, edge (u, v) will be removed from G. If u and v are in the same disjoint clique, there

are four subcases,

(i) w and z are in the same cluster with u and v, edges (u,w) and (v, z) are inserted to G;

(ii) w and z are in different cluster than u and v, edges (u, z), (v, w) are removed from G;

(iii) w is in the same cluster with u and v, but z is not, edge (u, z) is removed and edge

(u,w) is inserted;

(iv) z is in the same cluster with u and v, but w is not, edge (v, w) is removed, edge (v, z)

is inserted.

In the branch-and-search algorithm, there are five branches, each branch corresponds

to a case above, we don’t miss a possible partition.

The running time of the branch algorithm can be bounded by the function T (k) = T (k −

1) + 4T (k− 2) +O(n), since in case 1, k is reduced by 1; And in case 2, 3, 4, 5, k is reduced

by 2. Solving it, the running time function is O∗(2.56k1), where k1 is the number of edge

operations applied in branch-and-search algorithm.

For each class-partition P , if P contains less than d vertex subsets, we apply the splitting

algorithm to split subsets in P ; Otherwise we apply the combining algorithm to combine

subsets in P .

2. The splitting algorithm

The input of the splitting algorithm is a graph G containing ℎ disjoint clique with ℎ < d,

k is the parameter. The vertex set of each clique in G makes a vertex subset in a partition
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P . The output of the algorithm is a graph with d disjoint cliques. The greedy algorithm is

present in the following:

1. Pick the smallest cluster with at least two vertices, remove one vertex from the cluster,

reduce k accordingly. Tie are broken arbitrarily;

2. Repeat step 1, until either we obtain d clusters, return ”Yes”, or k ≤ 0, return ”No

solution”.

Before proving the correctness of the splitting algorithm, we present a useful lemma.

Lemma D.3 Given a graph G, G contains ℎ disjoint cliques with ℎ < d. Applying least

number of edge deletion operations, G is converted to a new graph G′ containing d disjoint

cliques. There is at most one clique with at most two vertices in G′, which is a proper subset

of a clique in G.

Proof. We could prove it by contradiction. Suppose there are two cliques C1 and C2 in

G′ which are proper subsets of cliques in G, and ∣C1∣ ≥ 2, ∣C2∣ ≥ 2. W.l.o.g. we assume that

∣C1∣ ≥ ∣C2∣.

By undoing the edge deletion operation to remove one vertex from C1, and remove

one vertex from C2, we obtain a new graph G′′. The difference between edge operations to

convert G to G′ and edge operations to convert G to G′′ is that the former contains ∣C1∣

edge deletion operation to remove one vertex from C1, and the later contains ∣C2∣ − 1 edge

deletion operation to remove one vertex from C2. ∣C1∣ > ∣C2∣−1, it contradicts the fact that

G′ is obtained by deleted least number of edges in G.

Based on the lemma above, we prove that the greedy approach is correct.

Theorem D.4 The splitting algorithm is correct.
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Proof. G contains ℎ disjoint cliques, denoted by {C1, C2, . . . Cℎ}. The cliques are sorted

by the size.

G′ contains d cliques and is obtained by deleting the least number of edges from G, Ci

is the smallest cluster which is not modified in G′. If Ci is also not modified by the splitting

algorithm, G′ is same graph returned by the splitting algorithm. Since all cliques Cj with

j < i are split in G′, by lemma D.3, all except one cliques with index smaller than i are

completely split. On the other hand the splitting algorithm split cliques Cj with j < i to

obtain d cliques, so
∑
j < i∣Cj∣ ≥ d. Splitting cliques with j < i already producing d cliques,

so cliques Ct with t > i are not split in G′. G′ is the same graph returned by the splitting

algorithm.

If Ci is modified by the splitting algorithm, p vertices are removed from Ci where

p ≤ ∣Ci∣ − 1, clusters Cx with x < i are completely split by the splitting algorithm as well,∑
x<i ∣Cx∣ < d. On the other hand, there must be a cluster Cj with j > i, and at least p

vertices are removed from Cj in G′. The different edge deletion operations between ones

returned by the splitting algorithm and ones to convert G to G′ are that, the former remover

p vertices from Ci and the later remove p vertices from Cj. Since j > i, it takes more edge

deletion operations to remove p vertices from Cj from Ci.

In both cases, we could prove that the edges deleted by the splitting algorithm is no

more than the number of edge deletion operations to convert G to G′, G′ is obtained by

deleting the least number of edges from G, so the splitting algorithm is correct.

3. The combining algorithm

In the following, we present the combining algorithm. The input of the combining algorithm

is a graph G containing ℎ disjoint cliques with ℎ > d, and an integer k, we insert at most k
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edges to convert G to a union of d critical cliques.

Since at most k edges can be inserted, applying one insertion operation, the number of

clusters is reduced by at most one. If ℎ > d+ k, there is no solution for G. We can assume

that ℎ ≤ d+ k.

We can show that the it is a NP-Hard problem that given ℎ cliques, insert least number

of edges to convert them to d cliques, this can be proved by reducing the Partition problem

to it. We present a O∗(2ℎ) algorithm in Figure 6

D is a table with 2ℎ rows and d columns, where S contains a collection of clusters out

of the ℎ clusters, D(S, t) is the minimum set of edges inserted to transfer S to t clusters; If

S contains less than t clusters, C is empty.

Algorithm CombiningAlgo

Input: G: a collection of ℎ clusters with d < ℎ ≤ d+ k;
Output: d clusters

1. D(S, 1) is the number of edges inserted to make S a complete graph.
2. for i =2 to d, do

For all S, S ⊆ G do
D(S, i) = minS′⊆S{D(S ′, 1) +D(S − S ′, i− 1)}.

3. return D(T, d).

Fig. 6. Combining algorithm to merge cliques

Corollary D.5 The combining algorithm computes the least number of edge insertion oper-

ation to convert G to d cliques.

To transfer G to d clusters, we insert edges to convert a set S ′ of cliques to a clique,

and convert the rest graph to d − 1 cliques. We enumerate all possible sets S ′ to compute

the optimal solution. The combining algorithm is correct.
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The running time of combining algorithm is O(
∑

i

(
ℎ
i

)
∗ 2i) = O(3ℎ), and it can be

further improved by applying Mobius transformation [12].

Lemma D.6 By applying Mobius transformation, the running time of combining algorithm

is reduced to O∗(2d+k)

Proof. We compute the table column by column. Since for any S ⊆ G, D(S, 1) can be

computed in time O∗(2ℎ), in the following, we compute D(S, t) for t = 2, . . . , d.

Define function f(S) = D(S, 1) and g(S) = D(S, t− 1), so

D(S, t) = (f ∗ g)(S) = min
U,V⊆S

U
∪

V =S
U

∩
V =∅

f(U) + g(V )

It was shown [12] that the subset convolution over the integer min-sum semiring can be

computed in O∗(2nM), where n is the number of elements and M is the maximum possible

absolute value of input functions.

By the definition of (f ∗ g)(S), there are ℎ elements and the maximum value of f, g is

bounded by k. So D(S, t), ∀S ⊆ G can be computed in time O∗(2ℎk), and D(G, d) can be

computed in time O∗(2ℎk ∗ d).

Overall, the running of the algorithm is bounded by O∗(2.56k1 ∗ 2d+k−k1). Thus the

worst case analysis shows the algorithm takes time at most O∗(max{2.56k, 2k+d}).

E. Final remarks

We discuss the parameterized complexity of a variance of the cluster editing problem, –

the d-cluster editing problem, which requires that the resulting graph contains exactly

d disjoint clusters. We introduce a new concept, class-partitions of a graph, and shows that

the optimal solution can be obtained by split or combination of classes in a class-partition.
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We prove that the optimal solution can be obtained by either splitting classes in a class-

partition, or combining classes. We construct a kernel consisting of two graphs, either by

splitting classes of a class-partition of one graph, or by combining classes of a class-partition

of the other graph, we obtain the optimal solution. Totally the kernel contain no more than

7k + 2d vertices.

We also develop a branch-and-search algorithm to enumerate all possible class-partitions

of the kernel; For the first graph, we apply the splitting-algorithm to split classes to obtain

exactly d clusters; For the second graph, we apply the combining-algorithm to combining

classes to reduce the number of clusters to exactly d. The optimal solution can be the best of

two kinds of solutions. Putting all together, the runtime of the algorithm is O∗(2.56k, 2k+d).
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CHAPTER IV

A QUADRATIC KERNEL FOR THE PSEUDO-ACHROMATIC NUMBER

PROBLEM

We study the parameterized complexity of the pseudo-achromatic number problem in this

chapter, the problems is defined as following: Given an undirected graph and a parameter

k, determine if the graph can be partitioned into k groups such that every two groups are

connected by at least one edge.

This problem has been extensively studied in graph theory and combinatorial optimiza-

tion. We show that the problem has a kernel of at most (k − 2)(k + 1) vertices that is

constructable in time O(m
√
n), where n and m are the number of vertices and edges, re-

spectively, in the graph, and k is the parameter. This directly implies that the problem is

fixed-parameter tractable. We also study generalizations of the problem and show that they

are parameterized intractable.

A. Introduction

The pseudo-achromatic number problem is to determine whether an undirected graph

G can be partitioned into k groups/classes (G1,G2, . . . ,Gk) such that every two groups Gi

and Gj, 1 ≤ i < j ≤ k, are connected by at least one edge. The problem is also referred to

in the literature as the graph complete partition problem, and is formally defined as

follows:

∗Reprinted with permission from “On the pseudo-achromatic number problem”, by J.
Chen, I. A. Kanj, J. Meng, X. Ge, F. Zhang, 2009, Theoretical Computer Science, volume
410, issue 8 - 10, pages 818 - 829, Copyright [2009] by Elsevier Limited.
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Definition LetG be an undirected graph. The pseudo-achromatic number ofG is the largest

integer p such that there exists a surjective function f : V (G)→ {1, . . . , p} satisfying: for all

i, j, where 1 ≤ i, j ≤ p and i ∕= j, there exist u ∈ f−1(i), v ∈ f−1(j) such that (u, v) ∈ E(G),

where f−1(ℎ) denotes the preimage set of ℎ under f .

The pseudo-achromatic number problem is:

pseudo-achromatic number. Given an undirected graph G and a positive

integer k, determine if the pseudo-achromatic number of G is at least k.

We will be using the informal definition more frequently than the formal one.

It is easy to see that the pseudo-achromatic number problem is a variation of the

graph coloring problem (or the achromatic number problem), the latter problem requiring

the groups in the partition to be independent sets, and the number of groups to be as few

as possible.

The pseudo-achromatic number problem was first introduced by Gupta in 1969 [52],

and since then it has been studied extensively [7, 8, 9, 17, 37, 66, 77]. The problem is known

to be NP-complete even on restricted classes of graphs [9, 37, 66].

Kortsarz et al. [66] studied the approximability of the pseudo-achromatic number

problem. It was proved in [66] that the problem has a randomized polynomial-time approx-

imation algorithm of ratio O(
√

lg n), which can be de-randomized in polynomial time. This

upper bound on the approximation ratio was shown to be asymptotically tight under the

randomized model.

The pseudo-achromatic number problem was also considered from the extremal

graph-theoretic point of view on special classes of graphs [8, 17, 77, 86, 87]. Balsubramanian

et al. [7] gave a complete characterization of when the pseudo-achromatic number of the join
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of two graphs is the sum of the pseudo-achromatic numbers of the two graphs.

In this chapter we study the parameterized complexity of the pseudo-achromatic

number problem. We show that the problem has a kernel of size at most (k − 2)(k + 1)

vertices that is computable in time O(m
√
n), where n and m are the number of vertices

and edges, respectively, in the graph. This kernelization result directly gives an algorithm

for the pseudo-achromatic number problem running in time O(kk
2−k+2 + m

√
n), thus

showing that the problem is fixed-parameter tractable. The upper bound on the kernel

size is obtained by developing elegant and highly non-trivial structural results, that are of

independent interest.

We also study generalizations of the pseudo-achromatic number problem and prove

that they are parameterized intractable. In particular, we consider the vertex grouping

problem, in which an input instance has the form (G,H, k), where G and H are two graphs,

and k = ∣V (H)∣. The problem asks for the existence of a surjective function f : V (G) −→

V (H) satisfying the property that ∀u, v ∈ V (H), if (u, v) ∈ E(H) then there exists x ∈

f−1(u), y ∈ f−1(v) such that (x, y) ∈ E(G). The pseudo-achromatic number problem

is a special case of the vertex grouping problem in which the graph H is the complete

graph on k vertices. The vertex grouping problem falls into the category of grouping

problems, where a grouping of the graph G into ∣V (H)∣ groups is sought such that the inter-

group properties are imposed by the graph H. We prove some (parameterized) intractability

results for the vertex grouping problem. For example, we show that the problem is

W [1]-hard, even when the graph H is the ℎ-star graph (i.e., K1,ℎ−1). We also show that

some interesting instances of the vertex grouping problem can be solved in polynomial

time.
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B. Preliminaries

We have defined the notion of FPT, W-hierarchy and kernelization in the introduction chap-

ter, the readers are referred to [35] for more details about parameterized complexity theory.

Recall that the parameterized-complexity preserving reduction (FPT-reduction) can be

defined as follows: A parameterized problem Q is FPT-reducible to a parameterized problem

Q′ if there exists an algorithm of running time f(k)∣x∣c that on an instance (x, k) of Q

produces an instance (x′, g(k)) of Q′ such that (x, k) is a yes-instance of Q if and only if

(x′, g(k)) is a yes-instance of Q′, where the functions f and g depend only on k, and c

is a constant. A parameterized problem Q is W [i]-hard if every problem in W [i] is FPT-

reducible to Q, i ≥ 1. Many well-known problems have been proved to be W [1]-hard

including: clique, independent set, set packing, dominating set, hitting set and

set cover.

The fixed-parameter tractability of a problem turns out to be closely related to the

notion of the problem having a good data reduction (or preprocessing) algorithm. Recall

that it was shown that a parameterized problem is fixed-parameter tractable if and only if

it has a kernelization algorithm [34].

For a graph G we denote by V (G) and E(G) the set of vertices and edges of G, respec-

tively. A matching M in a graph G is a set of edges such that no two edges in M share an

endpoint. A matching M of G is said to be maximum if the cardinality of M is maximum

over all matchings in G. For a vertex v and a set of vertices Γ in G, we say that v is connected

to Γ if v is adjacent to some vertex in Γ. Similarly, for two sets of vertices Γ and Γ′ in G,

we say that Γ is connected to Γ′ if there exists a vertex in Γ that is connected to Γ′. For a

vertex v ∈ G we denote by N(v) the set of neighbors of v in G. For a set of vertices Γ in G

we denote by N(Γ) the set of neighbors of all the vertices of Γ in G, i.e., N(Γ) =
∪

v∈ΓN(v).

We denote by Sℎ the (ℎ+ 1)-star graph (i.e., K1,ℎ). The vertex of degree ℎ in Sℎ is referred



61

to as the root of the star, and the other ℎ vertices are referred to as the leaves of the star.

The size of the star Sℎ is the number of vertices in it, which is ℎ + 1. We say that a graph

G contains Sℎ if Sℎ is a subgraph (not necessarily induced) of G.

For a background on network flows we refer the reader to [30], or to any standard book

on combinatorial optimization.

C. The kernel

In this section we show how to construct a kernel of size (number of vertices) at most

(k − 2)(k + 1) for the parameterized pseudo-achromatic number problem. We start by

presenting some structural results that are essential for the kernelization algorithm, and that

are of independent interest on their own.

1. Structural results

The following lemma ascertains that graphs with large matchings have large pseudo-

achromatic number.

Lemma C.1 If a graph G contains a matching of size at least (k− 1)k/2, then the instance

(G, k) is a yes-instance of the pseudo-achromatic number problem.

Proof. Assuming that G contains a matching of at least (k − 1)k/2 edges, we show

how to group the vertices of G into k groups (G1,G2, . . . ,Gk) so that every pair of groups

is connected. For every pair of groups (Gi,Gj) where 1 ≤ i < j ≤ k, we use a distinct

edge (u, v) of the matching to connect the two groups by mapping the vertex u to Gi and

v to Gi. The remaining vertices of G are mapped arbitrarily to the groups. Since there are

exactly (k− 1)k/2 pairs of groups and at least (k− 1)k/2 edges in the matching, every pair
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of groups is connected under this mapping. It follows that (G, k) is a yes-instance of the

pseudo-achromatic number problem.

Lemma C.2 If a graph G contains a set of k − 1 (mutually) vertex-disjoint stars of sizes

2, . . . , k, respectively, then the instance (G, k) is a yes-instance of the pseudo-achromatic

number problem.

Proof. Let S = {s1, . . . , sk−1} be a set of vertex-disjoint stars in G, where si is the star

graph Si. We will map the vertices in S to k groups (G1,G2, . . . ,Gk) such that every pair of

groups is connected.

For i = 1, . . . , k − 1, we map the root of si to group Gi+1, and we map its leaves, in

a one-to-one fashion, to groups (G1,G2, . . . ,Gi). The remaining vertices in G are mapped

arbitrarily to the groups. Since there is no overlap between the vertices of any two stars

in S, this mapping is well defined. It is easy to verify now that every two distinct groups

in (G1,G2, . . . ,Gk) are connected under the defined mapping. It follows that (G, k) is a

yes-instance of the pseudo-achromatic number problem.

Lemma C.3 If a graph G contains a collection of (mutually) vertex-disjoint stars each of

size at least 2 and at most k + 1, and such that the total number of vertices in all the

stars is more than (k − 2)(k + 1), then the instance (G, k) is a yes-instance of the pseudo-

achromatic number problem.

Proof. Suppose that G contains a collection P of vertex-disjoint stars, each containing

at least two vertices and at most k + 1 vertices, and such that the total number of vertices

of the stars in P is more than (k − 2)(k + 1). Assume, to get a contradiction, that (G, k) is

a no-instance of the pseudo-achromatic number problem.
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Let s be the star graph Sℎ and s′ be the star graph Sℎ′ such that s and s′ are vertex-

disjoint. By merging s and s′ we mean creating the star graph Sℎ+ℎ′ by identifying the roots

of s and s′. Note that the size of the merged star is 1 less than the size of s plus the size of

s′.

We construct from P a sequence of vertex-disjoint stars S = ⟨sk−1, . . . , sr⟩, for some

integer r ≥ 1, such that si has size at least i + 1, for r ≤ i ≤ k − 1. The procedure that

constructs these stars is as follows.

For i = k− 1 down to 1 do: if the largest star in P is an Sj, where j ≥ i, assign it to si,

and remove it from P ; Otherwise, recursively merge the two stars of largest size in P and

add the resulting star to P until either there is only one star left in P , and in which case the

procedure halts, or the largest star in P is an Sj, where j ≥ i, and in which case we assign

it to si, remove it from P , and proceed to the next value of i in the for loop.

If a star si in S was created without merging stars in P , we call si a single star, otherwise,

we call si a merged star.

Note the following: if si is a merged star created from merging a collection of stars,

and if si is used to produce a valid grouping of G, then clearly the stars that si was merged

from can replace si to produce a valid grouping of G. Therefore, assuming that (G, k) is a

no-instance of the pseudo-achromatic number problem, the last star sr constructed by

the above procedure before halting must satisfy r ≥ 2. Otherwise, the sequence S would

contain a set of k− 1 vertex-disjoint stars of sizes 2, . . . , k, and by Lemma C.2, the instance

(G, k) would be a yes-instance of the problem, contradicting our assumption.

Now assume that the above procedure halts after constructing a sequence of vertex-

disjoint stars S = ⟨sk−1, . . . , sr⟩, such that si has size at least i+ 1, for 2 ≤ r ≤ i ≤ k − 1.

We define a monotone subsequence of S to be a consecutive subsequence ⟨si, si−1 . . . , sj⟩

of S such that either si, si−1 . . . , sj are all single stars, or they are all merged stars. A
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monotone subsequence ⟨si, si−1 . . . , sj⟩ of S is maximal if it is maximal under containment.

Let ⟨si, si−1 . . . , si−ℓ+1⟩, ℓ ≥ 1, be a maximal monotone subsequence of S, and note that

i−ℓ+1 ≥ 2 (since r ≥ 2). We will show that the total number of vertices in the stars of P that

were used to form the subsequence ⟨si, si−1 . . . , si−ℓ+1⟩ is at most 2(i+(i−1)+. . .+(i−ℓ+1)).

We distinguish two cases:

∙ Case 1. ⟨si, si−1, . . . , si−ℓ+1⟩ consists of single stars. We distinguish two subcases:

– Subcase 1.1. i = k − 1. Since every single star contains at most k + 1 vertices

by the statement of the lemma, the total number of vertices in the stars in the

subsequence is bounded by ℓ(k + 1) ≤ 2(k − 1 + k − 2 + . . . + k − ℓ). The last

inequality is true because ((k − 1)− ℓ+ 1) ≥ 2.

– Subcase 1.2. i < k − 1. By the maximality of the subsequence, si+1 is a

merged star. Since si is a single star, it is easy to verify that si has size exactly

i+ 1. The total number of vertices in the stars in the subsequence is bounded by

ℓ(i+ 1) ≤ 2(i+ i− 1 + . . .+ i− ℓ+ 1) because i− ℓ+ 1 ≥ 2.

∙ Case 2. ⟨si, si−1, . . . , si−ℓ+1⟩ consists of merged stars. Let sj be any star in this

subsequence, and suppose that sj was constructed by merging stars t1, . . . , tq in P . By

the construction of sj, the total number of leaves in the stars t1, . . . , tq−1 is less than j

(otherwise these stars would be sufficient to produce sj), and the size of tq is not larger

than any of the sizes of t1, . . . , tq−1. Therefore, we have:

∣t1∣ − 1 + ∣t2∣ − 1 + . . .+ ∣tq−1∣ − 1 ≤ j − 1, (4.1)

and

∣tq∣ ≤ (∣t1∣+ ∣t2∣+ . . .+ ∣tq−1∣)/(q − 1). (4.2)
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Combining Inequality (4.1) with Inequality (4.2), and noting that q ≤ j, we obtain:

∣t1∣+ ∣t2∣+ . . .+ ∣tq∣ ≤ 2j. (4.3)

Inequality (4.3) shows that the total number of vertices in the stars of P forming sj is at

most 2j. By applying this inequality to each star sj in the maximal monotone subsequence

⟨si, si−1, . . . , si−ℓ+1⟩ of merged stars, and by the linearity of addition, we obtain that the

total number of vertices of P used to form the stars in ⟨si, si−1, . . . , si−ℓ+1⟩ is at most 2(i+

(i− 1) + . . .+ (i− ℓ+ 1)).

It follows from the above that, for any maximal monotone subsequence

⟨si, si−1, . . . , si−ℓ+1⟩ of S, the total number of vertices of P used to form the stars in this

subsequence is at most 2(i+ (i− 1) + . . .+ (i− ℓ+ 1)). Applying the above bound to every

maximal monotone subsequence of S, and by the linearity of addition, we conclude that the

total number of vertices in P forming all the stars in S is at most (k − r)(k + r − 1).

Noting that the number of remaining non-empty stars in P cannot form an sr−1, the

total number of leaves in the remaining stars is at most r − 2, and consequently, the total

number of vertices in the remaining stars is at most 2(r − 2). Therefore, the total number

of vertices in P is at most (k − r)(k + r − 1) + 2(r − 2) = k2 − k − (r2 − 3r + 4). Since

r ≥ 2, P has the maximum number of vertices when r = 2. It follows that the total number

of vertices in P is at most (k − 2)(k + 1), contradicting the hypothesis of the lemma.

This completes the proof.

2. The auxiliary flow network and the graph pseudo-achromatic number

Let G be a graph with pseudo-achromatic number at least k, and let ℋ be a vertex grouping

that partitions the vertices of G into k groups such that every pair of groups is connected.

For each pair of groups in ℋ, pick, arbitrarily, an edge connecting the groups, and
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designate that edge as a critical edge. Therefore, the set Ec of critical edges consists of

exactly
(
k
2

)
= k(k − 1)/2 edges, each connecting a different pair of groups in ℋ. The tuple

(ℋ, Ec, k) will be called a valid triple for the graph G. All the edges in G that are not

in Ec are called noncritical edges. A vertex in G is critical if it is incident to at least one

critical edge; otherwise, the vertex is noncritical. Note that the existence of the valid triple

(ℋ, Ec, k) for the graph G implies that the pseudo-achromatic number of G is at least k.

Lemma C.4 Let v be a noncritical vertex in G (with respect to a valid triple (ℋ, Ec, k)).

Then either deleting v from G or moving v from its current group to any other group will

result in a vertex grouping ℋ′ such that (ℋ′, Ec, k) is a valid triple for the resulting graph.

Proof. Since the vertex v is noncritical, v is not incident to any critical edges. Conse-

quently, deleting v from G or moving v from one group to another group will not affect the

critical edges. Therefore, in the new vertex grouping ℋ′ in the resulting graph, there are

still exactly k groups such that each pair of the groups is connected.

We will show a nice relationship between the pseudo-achromatic number of a graph and

graph matchings.

Let M be a maximum matching in G. Let I = V (G) ∖ V (M), and note that I is an

independent set. For a vertex u ∈ V (M) we denote by NI(u) the set N(u) ∩ I. Let M2 be

the set of edges in M whose both ends are connected to I.

Lemma C.5 Let (u, v) be an edge in M2. Then NI(u) = NI(v) and ∣NI(u)∣ = 1.

Proof. By definition, both NI(u) and NI(v) are nonempty. Therefore, either NI(u) ∕=

NI(v) or ∣NI(u)∣ > 1 would imply the existence of two different vertices w1 ∈ NI(u) and

w2 ∈ NI(v). However, this would give an augmenting path (w1, u, v, w2) with respect to M ,
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contradicting the maximality of the matching M .

Let NI(M2) be the set N(V (M2)) ∩ I, and let D = I ∖NI(M2). We partition the edges

of M ∖M2 into two sets M1 and M0, where M1 consists of all the edges in M ∖M2 that have

exactly one end connected to D, and M0 = M ∖ (M2 ∪M1). Note that the edges in M0 ∪M2

have no end connected to D (however, an edge in M0 or in M1 may have an end connected

to NI(M2)).

The vertices in V (M1) are further partitioned into R and L, such that R is the set of

vertices in V (M1) that are connected to D, and L is the set of remaining vertices in V (M1).

By definition, each edge in M1 has exactly one end in R and one end in L. Moreover, by the

definition of the set M0 and by Lemma C.5, the vertices in the set D can only be connected

to vertices in R (note that D is an independent set). We refer the reader to Figure 7 for an

illustration of the decomposition of G.

Fig. 7. The decomposition of input G

Let J be the subgraph of G with vertex set R ∪D and edge set {(u, v) ∣ u ∈ R and v ∈

D}. We construct a flow network Jk from J as follows. Convert each undirected edge (u, v)
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in J , where u ∈ R and v ∈ D, into a directed edge ⟨u, v⟩ of capacity 1. Add a source s and

a sink t. For each vertex u ∈ R, add a directed edge ⟨s, u⟩ of capacity k − 1; and for each

vertex v ∈ D, add a directed edge ⟨v, t⟩ of capacity 1. We refer the reader to Figure 8 for

an illustration of the flow network Jk.

In the following, we fix a valid triple (ℋ, Ec, k) for the graph G, a maximum matching

M in G, and the corresponding flow network Jk. Let f ∗ be an integer-valued maximum flow

in Jk. In case of no confusion, we will identify the vertices and edges in Jk−{s, t} with their

counterparts in G. Therefore, an edge is critical and saturated if it is critical with respect

to the valid triple (ℋ, Ec, k) for G and saturated in the flow network Jk under the flow f ∗.

For a vertex u, denote by f ∗u the flow through u, i.e., the total outgoing flow from u.

We say that a vertex u ∈ R is saturated if f ∗u = k − 1, and that a vertex v ∈ D is saturated

if f ∗v = 1.

Let Tk = {u ∣ u ∈ D and f ∗u = 0}. The main result of this subsection is to show that

the instance (G, k) is a yes-instance of the pseudo-achromatic number problem if and

only if (G− Tk, k) is.

We further partition the vertices in the set R into two sets R1 and R2, where R1 consists

of all saturated vertices (in the flow network Jk under f ∗), and R2 = R ∖R1.

Fig. 8. The flow network Jk.
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Lemma C.6 For each vertex u ∈ R1, let cri-unsat(u) be the set of critical unsaturated edges

going out from u, and let noncri-sat(u) be the set of noncritical saturated edges going out

from u. Then there is an injective mapping Φu from cri-unsat(u) to noncri-sat(u) (i.e., a

mapping Φu such that for every e1, e2 ∈ cri-unsat(u), if e1 ∕= e2 then Φu(e1) ∕= Φu(e2)).

Proof. It suffices to show that ∣cri-unsat(u)∣ ≤ ∣noncri-sat(u)∣. Let cri(u) be the set of

critical edges going out from u, and let sat(u) be the set of saturated edges going out from

u. It is easy to see that the vertex u can be incident to at most k − 1 critical edges. Thus,

∣cri(u)∣ ≤ k−1. Moreover, since u ∈ R1, u is saturated, which gives ∣sat(u)∣ = k−1. Now let

cri-sat(u) be the set of critical saturated edges going out from u. Then cri(u) ∖ cri-sat(u) is

the set cri-unsat(u) of critical unsaturated edges going out from u, and sat(u) ∖ cri-sat(u) is

the set noncri-sat(u) of noncritical saturated edges going out from u. By the above analysis,

we have ∣cri-unsat(u)∣ = ∣cri(u) ∖ cri-sat(u)∣ ≤ ∣sat(u) ∖ cri-sat(u)∣ = ∣noncri-sat(u)∣.

By Lemma C.6, for each vertex u ∈ R1 we can correspond an injective mapping Φu from

the set cri-unsat(u) of critical unsaturated edges going out from u to the set noncri-sat(u)

of noncritical saturated edges going out from u.

For the given valid triple (ℋ, Ec, k), the maximum matching M in G, the flow network

Jk, the maximum flow f ∗ on Jk, and the set of injective mappings {Φu ∣ u ∈ R1}, we define

a layered structure L that is a subgraph of the flow network Jk, as follows.

Definition The 0-th level of L consists of all vertices in the set Tk. For an integer i ≥ 0,

(1) the (2i + 1)-st level of L consists of all vertices u ∈ R such that ⟨u, v⟩ is a critical

edge and v ∈ D is a vertex in the (2i)-th level. Every critical edge that is from a vertex in

the (2i+ 1)-st level to a vertex in the (2i)-th level is also included in L.

(2) the vertices in the (2i+2)-nd level are given as follows: for each critical unsaturated
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edge e = ⟨u, v⟩, where u ∈ R1 is in the (2i + 1)-st level and v ∈ D is in the (2i)-th level,

if Φu(e) = ⟨u,w⟩, then the vertex w is in the (2i + 2)-nd level, and the edge ⟨u,w⟩ is also

included in L.

By definition, all vertices in even levels in the layered structure L belong to the set D,

and all vertices in odd levels in L belong to the set R. For any integer i ≥ 0, all edges

between the (2i)-th level and the (2i + 1)-st level are critical edges whose direction is from

the (2i+ 1)-st level to the (2i)-th level; while all edges between the (2i+ 1)-st level and the

(2i + 2)-nd level are noncritical saturated with directions from the (2i + 1)-st level to the

(2i+ 2)-nd level.

Lemma C.7 The layered structure L has the following properties: (1) all critical edges in L

are unsaturated; (2) all vertices in odd levels in L are in the set R1; and (3) for each vertex

v in an even level 2i, where i > 0, there is exactly one edge coming into v from the (2i−1)-st

level.

Proof. (1) Let e be a critical edge in L. If e is a directed edge from the 1-st level to the

0-th level, then the edge e must be unsaturated because all vertices in the 0-th level are in

Tk, and hence are unsaturated. If e = ⟨u, v⟩ is from the (2i+ 1)-st level to the (2i)-th level,

for some i > 0, then since there is a noncritical saturated edge from the (2i− 1)-st level to

the vertex v in the (2i)-th level, and since v ∈ D has only one out-going edge that has a

capacity 1, the critical edge e coming into the vertex v must be unsaturated.

(2) Let v be a vertex in the (2i+1)-st level in L, for some i ≥ 0. By the definition of the

layered structure L, v ∈ R, and there is a vertex sequence (w0, w1, . . . , w2i+1) in the layered

structure L, where w0 ∈ Tk, v = w2i+1, wj is in the j-th level for all j, and for all ℎ, the

edge ⟨w2ℎ+1, w2ℎ⟩ is critical (which, by (1) of the current lemma, is also unsaturated), and
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Fig. 9. The layered structure L.

the edge ⟨w2ℎ−1, w2ℎ⟩ is noncritical saturated. If the vertex v is not saturated, then the edge

⟨s, w2i+1⟩ is unsaturated. Since w0 ∈ Tk, the edge ⟨w0, t⟩ is also unsaturated. Therefore, the

path (s, w2i+1, w2i, w2i−1, . . . , w1, w0, t) would make a flow augmenting path in the residual

network of Jk with respect to f ∗, contradicting the maximality of the flow f ∗ in the flow

network Jk. This proves that the vertex v must be saturated, i.e., v ∈ R1.

(3) Let v be a vertex in the (2i)-th level in L, for some i > 0. By the definition of the

layered structure L, v ∈ D, and there is at least one noncritical saturated edge coming into

v from the (2i − 1)-st level. Moreover, since v has only one out-going edge to t that has

capacity 1, v cannot have more than one incoming edge from the (2i − 1)-st level that is

saturated.

By Lemma C.7, all vertices in odd levels in L belong to the set R1, and for any integer

i ≥ 0, the edges between the (2i)-th level and the (2i+ 1)-st level are all critical unsaturated

edges. We refer the reader to Figure 9 for the properties of the layered structure L.

We prove next that the layered structure L is finite.

Lemma C.8 Let v be a vertex in the set D that is at an even level i > 0 in the layered

structure L. Then v is saturated and does not appear anywhere else in L.
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Proof. By the definition of the layered structure L, there is a noncritical saturated edge

⟨u, v⟩ coming into v from the (i− 1)-st level. Therefore, the vertex v ∈ D is saturated.

To prove the second part of the lemma, suppose that the vertex v has two copies v1 and

v2 in the layered structure L, which appear at the i1-th level and the i2-th level, respectively,

where i1 ≤ i2 are even integers. Without loss of generality, assume that the index i1 is the

smallest among all vertices in D that have multiple copies in L. We must have i1 < i2 since

each vertex has at most one copy at each level in L. Moreover, i1 ∕= 0, since a vertex at the

0-th level is unsaturated (because it is in the set Tk) while a vertex at any other even level

is saturated (by the first part of the current lemma). Therefore, we must have 0 < i1 < i2.

By Lemma C.7(3), for j = 1, 2, there is a unique noncritical saturated edge ⟨uj, vj⟩ from

the (ij − 1)-st level to the vertex vj. Since there is at most one saturated edge coming into

a vertex in the set D, and v1 = v2, we must have ⟨u1, v1⟩ = ⟨u2, v2⟩, so u1 = u2. Note that

for each j = 1, 2, the edge ⟨uj, vj⟩ is the image of a unique edge ⟨uj, wj⟩ under the injective

mapping Φuj
, where wj is in the (ij − 2)-nd level in L. Since u1 = u2 and ⟨u1, v1⟩ = ⟨u2, v2⟩,

we must have ⟨u1, w1⟩ = ⟨u2, w2⟩. Thus, w1 = w2 and the vertex w1 is at the (i1 − 2)-nd

level. However, this contradicts the minimality of the index i1. This completes the proof of

the lemma.

Corollary C.9 Each edge in the flow network Jk can appear at most once in L.

Proof. Two edges between the same pair of adjacent levels in L cannot correspond to

the same edge in Jk because no two vertices in the same level of L correspond to the same

vertex. Two edges between two different pairs of adjacent levels in L cannot correspond to

the same edge in Jk because either they have different flow saturations, or, they either come

into or go out from, respectively, two vertices of D at different levels, which by Lemma C.8,

must be different.
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By Lemma C.8 and Corollary C.9, we can conclude that the layered structure L is finite.

We note that a vertex in the set R1 may have multiple copies in the layered structure L,

which, however, will not affect our discussion.

We call a vertex v at the i-th level of L a leaf if there is no edge in L between v and the

(i+ 1)-st level in L. In particular, all vertices in the last level of L are leaves.

Lemma C.10 All leaves in the layered structure L belong to the set D.

Proof. Let u be a vertex in the set R1 that is at the i-th level in L for some i. The

vertex u is in L because of a critical unsaturated edge e = ⟨u, v⟩, where v ∈ D is a vertex in

the (i− 1)-st level. By the definition of L, the edge Φu(e) will become an edge from u to a

vertex in the (i+ 1)-st level, which implies that the vertex u cannot be a leaf.

Now we are ready for our main theorem in this subsection.

Theorem C.11 The instance (G, k) is a yes-instance of the pseudo-achromatic num-

ber problem if and only if (G−Tk, k) is a yes-instance of the pseudo-achromatic number

problem.

Proof. Since G−Tk is a subgraph of G, the pseudo-achromatic number of G−Tk cannot

be larger than that of G. Therefore, if (G, k) is a no-instance of the pseudo-achromatic

number problem, then (G − Tk, k) is a no-instance of the pseudo-achromatic number

problem.

Now suppose that (G, k) is a yes-instance of the pseudo-achromatic number prob-

lem. Then there is a valid triple (ℋ, Ec, k) for the graph G. We fix the maximum matching

M of G, the flow network Jk, the maximum flow f ∗ on Jk, the set R1 of saturated vertices in

R, and the set Tk of unsaturated vertices in D, as we have defined in the above discussion.
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Since for each valid triple (ℋ, Ec, k) for the graph G, we can define the set of injective map-

pings Φu and construct the corresponding layered structure L, we can assume, without loss

of generality, that (ℋ, Ec, k) is a valid triple for G together with a set of injective mappings

Φu, for which the corresponding layered structure L has the minimum number of vertices

(note that the layered structure L is finite). We first show that all the vertices in the set Tk

are noncritical under this valid triple (ℋ, Ec, k) and the injective mappings.

If the set Tk contains critical vertices, then the layered structure L has ℎ0 +1 > 1 levels.

Let v0 be any vertex in the last level (i.e., the ℎ0-th level) in L. By Lemma C.10, v0 ∈ D

and ℎ0 > 0 is an even number. By the definition of the layered structure L and since v0 is a

leaf, the vertex v0 is not incident to any critical edges (recall that D is an independent set,

and the vertices in D can only be connected to the vertices in R). Thus, v0 is a noncritical

vertex. Let e1 = ⟨u0, v0⟩ be the unique noncritical edge from the (ℎ0 − 1)-st level to v0,

and let e2 = ⟨u0, w0⟩ be the critical edge in L such that Φu0(e2) = e1, where w0 is at the

(ℎ0 − 2)-nd level. Suppose that the vertices u0 and w0 belong to the groups H1 and H2,

respectively, under the grouping ℋ. We perform the following operations on the valid triple

(ℋ, Ec, k): (1) move the vertex v0 from its current group to the group H2 and let the new

grouping be ℋ′; and (2) designate e1 = ⟨u0, v0⟩ the critical edge between the groups H1 and

H2 (so the edge e2 = ⟨u0, w0⟩ becomes a noncritical edge), and let E ′c = Ec − e2 + e1. See

Figure 10 for an illustration of these operations.

Since v0 is noncritical, by Lemma C.4, it is easy to see that the triple (ℋ′, E ′c, k) is a

valid triple for the graph G. We also modify the injective mapping Φu0 at u0 by simply

removing the edge e2 from the domain of Φu0 (recall that Φu0 is an injective mapping from

the set cri-unsat(u0) of critical unsaturated edges going out from u0 to the set noncri-sat(u0)

of noncritical saturated edges going out from u0): we had e2 ∈ cri-unsat(u0) and e1 =

Φu(e2) ∈ noncri-sat(u0) under the original valid triple (ℋ, Ec, k), while under the new valid
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Fig. 10. Moving a noncritical vertex v0.

triple (ℋ′, E ′c, k), the edge e1 becomes critical saturated and the edge e2 becomes noncritical

unsaturated, so neither of them is in the set cri-unsat(u0) ∪ noncri-sat(u0). For all other

vertices u ∈ R1, u ∕= u0, in L, we keep the injective mapping Φu unchanged.

We consider how the layered structure L is changed under the new valid triple (ℋ′, E ′c, k)

and the new injective mapping Φu0 corresponding to vertex u0. The layered structure is

started from the same set Tk and expanded level by level. An even level is expanded to

the next level based on edge saturations and edge criticalities, and an odd level is expanded

to the next level based on the injective mapping Φu on each vertex u in the current level.

Therefore, the layered structure L′ under the new valid triple (ℋ′, E ′c, k) and the new injective

mapping Φu0 is exactly the same as the old layered structure L, except when we expand from

the vertex w0 in the (ℎ0 − 2)-nd level to the (ℎ0 − 1)-st level: the edge e2 = ⟨u0, w0⟩ is not

included because it is no longer critical. As a consequence, the edge e1 = ⟨u0, v0⟩ will not be

added between the (ℎ0−1)-st level and the ℎ0-th level and the vertex v0 will not appear in the

ℎ0-th level. We emphasize that the above reasoning holds true also because of Corollary C.9,

which states that no edge has multiple copies in the layered structure.

Therefore, the layered structure L′ under the new valid triple (ℋ′, E ′c, k) and the new

injective mapping Φu0 can be obtained from the layered structure L under the original valid

triple (ℋ, Ec, k) and the original injective mapping Φu0 by deleting the edges e1 and e2 and
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deleting the vertex v0 in the ℎ0-th level (probably also deleting the vertex u0 if there is no

other critical edge from u0 to a vertex in the (ℎ0 − 2)-nd level). Thus, L′ has at least one

fewer vertex than L. However, this contradicts our assumption that the original valid triple

(ℋ, Ec, k), together with the original injective mappings on vertices in R1, gives the layered

structure L of the minimum number of vertices. This contradiction shows that all vertices

in the set Tk must be noncritical under the valid triple (ℋ, Ec, k).

By Lemma C.4, deleting a noncritical vertex in a graph under a valid triple gives a

valid triple for the resulting graph. Moreover, note that deleting a noncritical vertex does

not convert any noncritical vertices into critical vertices because the critical edges are not

changed. Therefore, if we delete all vertices in the set Tk from the graph G under the valid

triple (ℋ, Ec, k), we will obtain a valid triple (ℋ′, Ec, k) for the graph G− Tk, which shows

that the pseudo-achromatic number of the graph G − Tk is at least k, i.e., (G − Tk, k) is a

yes-instance of the pseudo-achromatic number problem.

This completes the proof of the theorem.

The above theorem shows that the vertex set Tk can be safely removed from the graph

G. Moreover, the graph G− Tk has the following nice property.

Lemma C.12 The vertices in the graph G′ = G−Tk can be decomposed into a collection P

of vertex-disjoint stars, each star of size at least 2 and at most k + 1.

Proof. We will exhibit the collection of vertex-disjoint stars P in G′. We will denote by

VP the set of vertices of the stars in the collection P , and by EP the set of edges of the stars

in P .

The set of vertices of G′ consists of the vertices in the matching M , the vertices in

NI(M2), and the vertices in D with a non-zero flow value. For a vertex u in R, let S(u) be

the star graph formed by the incident edge to u in M1, together with the set of saturated
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edges in G′ incident on u. Clearly, each such star S(u) has size at least 2 and at most k + 1

since the capacity of u in Jk is k − 1. Moreover, for any two vertices u and v in R, the

two star graphs S(u) and S(v) share no vertices; otherwise, there would be a shared vertex

w ∈ S(u) ∩ S(v) of capacity 1 in Jk with two saturated edges incident on it, contradicting

the flow properties. We add all such stars S(u) to the collection P .

We also include in P a maximal set of disjoint S2 stars such that the root of each S2 star

is a vertex in NI(M2) and its leaves are the end points of the same edge in M2. Moreover,

for every edge in M2 whose endpoints are not yet in VP , we include it in P as an S1 stars.

Finally we include in P the matching edges in M0 as S1 stars.

It is clear that all the stars included in P are vertex-disjoint, and that each star has size

at least 2 and at most k + 1.

We claim that VP contains all the vertices of G′. First observe that VP contains the

endpoints of all the edges in M . Second, since every vertex v in D − Tk is incident on

a saturated edge in G′, v is included in P . Moreover, since by definition every vertex

u ∈ NI(M2) forms an S2 star with two vertices w and v, where (w, v) is an edge in M2, and

since by Lemma C.5 no other vertex in NI(M2) can form a star with the vertices w and v,

it follows from the construction of P that u ∈ VP . Therefore, every vertex u in NI(M2) is in

P , and VP contains all the vertices of G′ as desired.

3. Putting it all together: the kernelization algorithm

Consider the decomposition of G defined in Subsection 2, and let M and Tk be as defined in

Subsection 2. The kernelization algorithm is given in Figure 11.

Theorem C.13 Given an instance (G, k) of the pseudo-achromatic number problem,

the algorithm PseudoAchromaticNumberKernel either decides the instance (G, k) cor-
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Algorithm PseudoAchromaticNumberKernel

Input: (G, k)
Output:(G′, k′)

1. construct a maximum matching M of G;
2. if ∣M ∣ ≥ (k − 1)k/2 then return yes;
3. compute the set Tk of vertices as described in Subsection 2; G′ = G− Tk;
4. if ∣V (G′)∣ > (k − 2)(k + 1) then return yes;
5. return (G′, k′ = k);

Fig. 11. The kernelization algorithm for the pseudo-achromatic number problem

rectly, or returns an instance (G′, k′) of the problem such that G′ is a subgraph of G, k′ ≤ k,

and (G, k) is a yes-instance if and only if (G′, k′) is. Moreover, the algorithm runs in time

O(m
√
n), where n and m are the number of vertices and edges, respectively, in G.

Proof. If the size of the maximum matching M in G is at least (k − 1)k/2, then by

Lemma C.1, G is a yes-instance of the pseudo-achromatic number problem. Therefore,

the algorithm PseudoAchromaticNumberKernel makes the right decision in step 2.2

By Theorem C.11, (G, k) is a yes-instance of the pseudo-achromatic number prob-

lem if and only if (G′, k′) is.

It suffices to argue that if ∣V (G′)∣ > (k−2)(k+1) (note k′ = k), then (G′, k′), and hence

(G, k), is a yes-instance of the pseudo-achromatic number problem, and the algorithm

makes the right decision in step 4.

By Lemma C.12, the set V (G′) can be decomposed into a collection of vertex-disjoint

stars P , each star of size at least 2 and at most k+1. Since ∣V (G′)∣ > (k−2)(k+1), it follows

2We note that step 2 is not essential to the algorithm and can be omitted. However, since
the computation of the maximum matching M is essential to the computation of the set of
vertices Tk in step 3, there is no harm in checking the size of the matching M and accepting
the instance in case the size is large enough. Moreover, this step makes sense, especially
from a practical point of view, as there is no need to carry on further with the computation
of a maximum flow, and subsequently of the set of vertices Tk, if the graph contains a large
matching and the instance can be accepted.
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that the number of vertices in P is more than (k − 2)(k + 1). Consequently, P satisfies the

statement of Lemma C.3, and (G′, k′) is a yes-instance of the pseudo-achromatic number

problem.

Finally, to see that the algorithm PseudoAchromaticNumberKernel runs in time

O(m
√
n), note first that the maximum matching M can be computed in O(m

√
n) time by a

standard maximum matching algorithm [30]. Noting that the flow network Jk is a bipartite

graph with at most O(n) vertices and O(m) edges, the maximum flow f ∗ in Jk can be

computed in time O(m
√
n) [30]. All other steps can be performed in time O(m), and the

theorem follows.

Corollary C.14 The pseudo-achromatic number problem has a kernel of at most (k−

2)(k + 1) vertices that is computable in time O(m
√
n), where n and m are the number of

vertices and edges, respectively, in the graph, and k is the parameter.

Remark. Note that our upper-bound analysis of the size of the kernel returned by the

algorithm PseudoAchromaticNumberKernel is tight. This can be seen by considering

a graph G that consists of (k − 1)k − 2 = (k − 2)(k + 1) vertices which are the endpoints of

(k − 1)k/2 − 1 edges in a matching. The algorithm PseudoAchromaticNumberKernel

on input (G, k) will return (G, k) as is, and without any modifications. Clearly, (G, k) is a

no-instance of the pseudo-achromatic number problem.

Using the (k − 2)(k + 1) upper bound on the kernel size, we can solve the pseudo-

achromatic number problem by enumerating all possible assignments of the vertices in

the graph to the k groups, then checking whether any such assignment yields a valid grouping.

We have the following corollary:

Corollary C.15 The pseudo-achromatic number problem can be solved in time

O(kk
2−k+2 + m

√
n), and hence is fixed-parameter tractable, where n and m are the num-
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ber of vertices and edges, respectively, in the graph.

Proof. Given an instance (G, k) of the pseudo-achromatic number problem, where G

has n vertices andm edges, we apply the algorithm PseudoAchromaticNumberKernel to

(G, k). The algorithm runs in O(m
√
n) time and either accepts the instance (G, k) correctly,

or returns a kernel (G′, k) where G′ has at most (k − 2)(k + 1) vertices. Now if G′ can be

partitioned into k groups that are mutually connected, then every vertex in G′ must belong

to one of the k groups. Therefore, there are at most k(k−2)(k+1) ways to partition G′ into

k groups. For each such partitioning, we can check whether the corresponding groups are

mutually connected; this can be done in time O(k4). If we do not succeed in finding a valid

partitioning then clearly the algorithm can reject the instance; otherwise, the algorithm

returns a valid partitioning. The total running time of the algorithm is O(k4 ⋅ k(k−2)(k+1) +

m
√
n), which is O(kk

2−k+2 +m
√
n).

D. Hardness results for the vertex grouping problem

Recall from Section A that in the vertex grouping problem we are given an instance

(G,H, k), where G and H are two graphs, and k = ∣V (H)∣, and the problem asks for the

existence of a surjective function f : V (G) −→ V (H) satisfying the property that for all

u, v ∈ V (H), if (u, v) ∈ E(H) then there exist x ∈ f−1(u) and y ∈ f−1(v) such that

(x, y) ∈ E(G). The vertex grouping problem can be defined more intuitively as follows.

Let G be an undirected graph. We define an operation on G, called vertex grouping,

applied to a subset of vertices S as follows: remove all the vertices in S from G, add a new

vertex w, and connect w to all the neighbors of S in G−S. The vertex grouping problem

is:

vertex grouping: Given two graphs G and H, where H is a graph of k vertices,
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and k is the parameter, decide if H can be obtained from G by a sequence of

vertex grouping operations.

If H in the above definition is the complete graph on k vertices, then the vertex

grouping problem becomes the pseudo-achromatic number problem, and hence is fixed

parameter tractable. The following theorem shows that the vertex grouping problem is

parameterized intractable in general.

Theorem D.1 The vertex grouping problem is W [1]-hard.

Proof. We reduce the W [1]-hard problem independent set to the vertex grouping

problem.

Let (G, k) be an instance of the independent set problem. Construct a graph G′ by

adding a new vertex w to G and connecting w to every vertex in G. Let H be a (k + 1)-

star with root rH . Define the mapping � that, on an instance (G, k) of independent

set, produces the instance (G′, H, k + 1) of vertex grouping. Clearly, the mapping � is

computable in polynomial time, and hence � is an FPT-reduction. We show that (G, k) is a

yes-instance of independent set if and only if (G′, H, k + 1) is a yes-instance of vertex

grouping.

In effect, suppose that (G, k) is a yes-instance of independent set, and let I be an

independent set in G of size k. Consider the function f : V (G′) −→ V (H) that maps the k

vertices of I in G′ to the k leaves of the star H, in a one-to-one fashion, and maps all other

vertices of G′ to the root rH of H. Then it is easy to verify that H is a vertex grouping of

G′ under the function f .

Conversely, suppose that H is a vertex grouping of G′ under a function f . Consider

any set of vertices I in G of cardinality k satisfying f(I) = V (H) ∖ {rH}. Clearly, such a

set I exists by the definition of the vertex grouping. Note that f is a bijection from I to
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V (H) ∖ {rH}. Now for any two distinct vertices u and v of I, u and v are not adjacent in

G, otherwise, by the definition of vertex grouping, f(u) and f(v) would be adjacent in H.

It follows that I is an independent set of size k in G. This completes the proof.

The Exponential Time Hypothesis (ETH) states that many NP-hard problems including

3-sat, independent set, and vertex cover, cannot be solved in time 2o(n). ETH has

become a working hypothesis for many researchers in the area of exact and parameterized

algorithms. It was shown in [25] that, unless ETH fails, independent set cannot be solved

in time no(k). It was also shown in [25] that if a parameterized problem Q is reducible to a

parameterized problem Q′ by an FPT reduction, called linear fpt-reduction, that preserves

the order of the parameter and does not increase the size of the instance by more than a

polynomial factor, and if Q cannot be solved in time no(k) then it follows that Q′ cannot be

solved in time no(k). Clearly, the reduction from independent set to vertex grouping,

given in the proof of Theorem D.1, is a linear fpt-reduction. Therefore, we have the following

theorem:

Theorem D.2 Unless ETH fails, the vertex grouping problem cannot be solved in time

no(k), where n and k are the number of vertices in G and H, respectively.

Determining the complexity of the graph isomorphism problem is an outstanding

open problem that has been attracting the attention of researchers in theoretical computer

science for decades. Although no polynomial time algorithm was developed for the problem,

it seems unlikely that the problem is NP-hard [64].

We illustrate a relationship between the graph isomorphism problem and the vertex

grouping problem. Let G1 and G2 be two graphs on n vertices. We are interested in

knowing how “similar” G1 and G2 are, under the notion of vertex grouping defined above.

For this purpose, we introduce the following parameterized problem:
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graph structural similarity: given two graphs G1 and G2 on n vertices,

and a parameter k, decide if there exists a graph H of k vertices such that both

(G1, H, k) and (G2, H, k) are yes-instances of the vertex grouping problem.

Intuitively, the graph structural similarity measures the degree of similarity (i.e., k)

between two graphs under the notion of vertex grouping. In particular, if k = n, then the

graph structural similarity problem is equivalent to the graph isomorphism prob-

lem. We have the following parameterized intractability result for the graph structural

similarity problem:

Theorem D.3 The graph structural similarity problem is W [1]-hard.

Proof. As was shown in Theorem D.1, the vertex grouping problem is W [1]-hard

when the graph H is a star. An FPT-reduction can be constructed that takes an instance

(G,H, k), where G has n vertices and H is a k-star, of the vertex grouping problem to

an instance (G1, G2, k) of the graph structural similarity problem, where G1 = G

and G2 is the n-star. Observing that any sequence of vertex grouping operations that are

applied to G2 can only result in a star graph, the W [1]-hardness of the graph structural

similarity problem follows.

The reduction described in the proof of the above theorem is clearly a linear fpt-

reduction. Therefore, it follows from Theorem D.2 that:

Theorem D.4 Unless ETH fails, the graph structural similarity problem cannot be

solved in time no(k), where n is the number of vertices in G1 and G2, and k is the parameter.
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E. An easy instance of the vertex grouping problem

In this section we will show that some instances of the vertex grouping problem can be

solved in polynomial time. We will consider the interesting case when the graph H, in the

instances (G,H, k) of the vertex grouping problem, is the simple path Pk on k vertices.

For two vertices u and v in G, denote by the distance between u and v, dG(u, v), the

length of a shortest path between u and v in G. Let G be an undirected graph, and k a

positive integer. We start by providing a characterization of when Pk can be obtained from G

by a sequence of vertex grouping operations. Equivalently, we provide a characterization of

when G can be partitioned in k groups G1,G2, . . . ,Gk, such that each group Gi, i = 2, . . . , k−1,

is connected and only connected to groups Gi−1 and Gi+1. We consider first the case when

G is connected.

Lemma E.1 Let G be a connected graph. Then G can be partitioned into k groups

G1,G2, . . . ,Gk, such that each group Gi, i = 2, . . . , k − 1, is connected and only connected

to groups Gi−1 and Gi+1, if and only if there exist two vertices u and v in G satisfying

dG(u, v) ≥ k − 1.

Proof. Suppose that there exist two vertices u and v in G satisfying dG(u, v) ≥ k − 1.

Let (u = u1, u1, . . . , uℎ = v) be a shortest path between u and v in G, where ℎ ≥ k. For

i = 1, . . . , k − 1, let Gi = {w ∈ G ∣ dG(u,w) = i − 1}, and with an abuse of the notation,

let Gk = {w ∈ G ∣ dG(u,w) ≥ k − 1}, and note that Gi is nonempty, for i = 1, . . . , k

because ui ∈ Gi. Since G is connected, every vertex in G must appear in one of the k groups

G1, . . . ,Gk. Moreover, by the definition of the groups and the connectedness of G, each group

Gi, i = 2, . . . , k, is connected and only connected to groups Gi−1 and Gi+1.

Conversely, suppose that the vertices in G can be grouped into k groups, G1,G2, . . . ,Gk,
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such that each group Gi, i = 2, . . . , k − 1, is connected and only connected to groups Gi−1

and Gi+1. Let u be a vertex in G1 and v a vertex in Gk. Since G is connected, there exists a

shortest path between u and v in G. Clearly, any path between u and v must pass through

at least one vertex in each of the groups Gi, i = 2, . . . , k− 1, and hence must have length at

least k − 1. It follows that dG(u, v) ≥ k − 1.

Now we address the case when G is not connected.

Lemma E.2 Let G be an undirected graph, and assume that G is not connected. Let

C1, . . . , Cℓ, where ℓ > 1, be the connected components of G. Then G can be partitioned

into k groups G1,G2, . . . ,Gk, such that each group Gi, i = 2, . . . , k− 1, is connected and only

connected to groups Gi−1 and Gi+1, if and only if there exist vertices ui and vi in Ci, for

i = 1, . . . , ℓ, such that dG(ui, vi) + . . .+ dG(uℓ, vℓ) ≥ k − 1.

Proof. We prove the statement for the case ℓ = 2, and the proof for the general case

follows by an inductive argument. Let C1 and C2 be the connected components of G.

Let u1, v1 be two vertices in C1, and u2, v2 be two vertices in C2 such that dG(u1, v1) +

dG(u2, v2) ≥ k−1. By Lemma E.1, we can group the vertices in C1 into groups G1,G2, . . . ,Gr,

where r = dG(u1, v1) + 1, such that each group Gj, j = 2, . . . , r − 1, is connected and only

connected to groups Gj−1 and Gj+1. Similarly, we can group the vertices of C2 into groups

Gr+1,Gr+2, . . . ,Gr+s, where s = dG(u2, v2)+1, such that each group Gj, j = r+2, . . . , r+s−1,

is connected and only connected to groups Gj−1 and Gj+1. Now by grouping the vertices in

Gr and Gr+1 together, we obtain a grouping for G into groups G1,G2, . . . ,Gr+s−1, where

r + s − 1 = dG(u1, v1) + dG(u2, v2) + 1 ≥ k, such that each group Gj, j = 2, . . . , r + s − 2

is connected and only connected to groups Gj−1 and Gj+1. Finally, by grouping the vertices

in all the groups Gj, where j ≥ k, together, and calling the resulting group, without loss of
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generality, Gk, we obtain a grouping of G into groups G1,G2, . . . ,Gk, such that each group

Gj, j = 2, . . . , k − 1 is connected and only connected to groups Gj−1 and Gj+1.

To prove the converse, suppose that the vertices in G can be grouped into groups

G1,G2, . . . ,Gk, such that each group Gj, j = 2, . . . , k− 1, is connected and only connected to

groups Gj−1 and Gj+1. Since each of C1 and C2 is connected, the vertices of C1 must appear

in a consecutive subsequence Gp,Gp+1, . . . ,Gp+x of the groups in G1,G2, . . . ,Gk. Similarly,

the vertices of C2 must appear in a consecutive subsequence Gq,Gq+1, . . . ,Gq+y of the groups

in G1,G2, . . . ,Gk. Since every vertex in G must appear in C1 or in C2, and since any two

adjacent groups in the sequence G1,G2, . . . ,Gk are connected, we have (x+1)+(y+1)−1 ≥ k,

which implies that x + y ≥ k − 1. Let u1 ∈ Gp and v1 ∈ Gp+x. Since C1 is connected, there

is a shortest path between u1 and v1 of length at least x. Similarly, there exists a shortest

path from a vertex u2 ∈ Gq to a vertex v2 ∈ Gq+y of length at least y. It follows that

dG(u1, v1) + dG(u2, v2) ≥ x+ y ≥ k − 1.

This completes the proof.

Theorem E.3 let G be a graph on n vertices and m edges. Then in time O(nm) it can be

decided whether Pk can be obtained from G by a sequence of vertex grouping operations.

Proof. The proof follows from Lemma E.1 and Lemma E.2, and the fact that the shortest

distance between all pairs of vertices in a graph can be computed in O(nm) time by running

a breadth first search algorithm at every vertex in the graph.

F. Concluding remarks

In this chapter we studied the pseudo-achromatic number problem from the parame-

terized complexity point of view. Using interesting and non-trivial techniques from match-

ing theory and network flows, we were able to show that the problem admits a kernel of
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quadratic size that is computable in time O(m
√
n), where n and m are the number of ver-

tices and edges, respectively, in the graph, and k is the parameter. The result directly implies

that the pseudo-achromatic number problem is fixed-parameter tractable, and gives a

straight-forward brute-force algorithm that runs in O(kk
2−k+2 +m

√
n) time for the problem.

Improving on this trivial upper bound for solving the problem remains an interesting open

problem.

We also considered a generalization of the pseudo-achromatic number problem:

the vertex grouping problem. Although the pseudo-achromatic number problem,

which is a special case of the vertex grouping problem, is fixed-parameter tractable, we

showed that the vertex grouping problem is in general W [1]-hard. We also showed that

an interesting special case of the vertex grouping problem is solvable in polynomial time.
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CHAPTER V

FIX-PARAMETER ENUMERABILITY

In the practice of computing, it is often required to generate a collection of good solutions,

instead of a single best solution, for a given instance of an optimization problem. Motivated

by this, we propose a new framework to systematically study the complexity of enumerating

a given number K of best solutions for an instance of an NP optimization problem. Using

elegant enumeration techniques and effective data structures, we show that many algorithm-

design techniques for fixed-parameter tractable problems, such as branch-and-search, color

coding, and bounded treewidth, can be adopted for the design of effective enumeration

algorithms. In particular, we show that for a large class of well-known NP optimization

problems, it takes fixed parameter tractable average time per solution to enumerate any

required number K of best solutions for any given instance. The proposed framework is

different from the previously-proposed ones, which either studied the complexity of counting

the number of solutions or studied the complexity of enumerating all solutions for an instance

of a given problem. For example, even though counting the number of k-paths in a graph

is fixed-parameter infeasible, we present an efficient fixed-parameter enumeration algorithm

for the problem.

A. Introduction

Most computational problems are concerned with finding a single solution for a problem

instance. For example, decision problems ask for the existence of a solution to a given

instance, while optimization problems seek a solution of the optimal value to a given instance

[74].

On the other hand, many computational problems in practice seek a number of good
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solutions rather than a single good solution. It is a natural practice in many branches in

science and technology that one would like to identify a collection of “good solutions” and

then (possibly) pick the most proper ones based on her own expertise in the discipline.

Examples of such cases include seeking certain sub-structures in biological networks [67, 79],

studying sequence motifs and alignments [75], studying evolutionary trees [49], list decoding

[56], and finding the best-K queries [82] or top-K discords [16] in database systems.

Several approaches have been proposed towards meeting this need. The most notable

one is the study of the counting complexity of a problem, which is the computational com-

plexity of counting all the solutions to a given instance of the problem. Since its initialization

by Valiant [84], significant work has been done on the study of counting complexity. Most of

this work has focused on the hardness side, i.e., proving the intractability of certain counting

problems. For example, Valiant [84] proved that counting the number of perfect matchings

in a bipartite graph is #P-complete. Hunt et al. [60] proved the #P-hardness for a number

of counting problems on planar graphs. Flum and Grohe [41] studied the parameterized

complexity of counting problems and, in particular, proved that the problem of counting

the number of k-paths in a graph is #W[1]-complete. Positive results along this line of re-

search lead to a number of exact algorithms (e.g., [4, 31, 76]) and approximation algorithms

(e.g., [29, 36]) for a number of counting problems that are intractable.

Another approach along this line of research studied the complexity of enumerating all

solutions to a given problem instance. Tomita, Tanaka, and Takahashi [83] presented an

exponential time algorithm that enumerates all maximal cliques in a graph. Gramm and

Niedermeier [49] gave an algorithm that enumerates all minimum solutions for the quartet

inconsistency problem. Fernau [42] considered a number of enumeration paradigms and

studied their respective complexities.

None of the above approaches, however, has sufficiently met the practical needs of the
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corresponding applications of the considered problems. For example, the study of counting

complexity does not provide hints on how the solutions to a given instance of the problem can

be generated. Moreover, the counting complexity of a problem can be significantly different

from that of generating a single solution. For instance, in contrast to the hardness results

in [84] and [41], finding a perfect matching in a bipartite graph is polynomial time solvable

and constructing a k-path in a graph is fixed parameter tractable. The enumeration approach

(i.e., enumerating all solutions to a given instance) may easily become computationally

infeasible, not because of the difficulty of generating each single solution, but simply because

the number of solutions is too large. For example, the problem of constructing a vertex cover

of k vertices in a graph is practically feasible for small values of k [24], but the problem of

enumerating all vertex covers of k vertices in a graph is computationally infeasible simply

because there can be too many such vertex covers in the graph [42].

On the other hand, many computational applications do not ask for the entire set of

solutions, instead, they only seek a certain number of “best” solutions [49, 67, 75, 79].

Motivated by this observation, we propose a new framework to study the effective enu-

merability of NP optimization problems. Needless to say, in order to be able to effectively

enumerate a set of solutions, we must be able to generate a single solution. Therefore, we

will be mainly interested in the NP optimization problems that have effective algorithms for

generating a single solution. In particular, we will be seeking solutions of small size k, and

study the enumerability of problems whose first solution can be generated in time f(k)nO(1)

for a recursive function f — this is precisely the class of fixed parameter tractable problems

studied in parameterized complexity theory [35]. We associate each problem solution with a

“weight” that measures the quality/ranking of the solution. We say that an NP optimization

problem is fixed-parameter enumerable (resp. fixed-parameter linearly enumerable) if there

is an algorithm that, for a given problem instance (x, k) and an integer K, generates the K
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best solutions of size k to x in time f(k)nO(1)KO(1) (resp. in time f(k)nO(1)K).

We argue that our enumeration model is meaningful from both the theoretical and

practical perspectives. Indeed, generating K solutions takes time at least Ω(K) – therefore,

it should be acceptable to require that generating the K best solutions take time polynomial

in K. Besides the polynomial factor in K, we require that generating each of the best

solutions takes an average time f(k)nO(1), which is feasible for small values of k. The model

is especially suitable for applications that require a moderate number of best solutions, i.e,

in which K = nO(1).

We investigate a number of popular techniques used in developing fixed-parameter

tractable algorithms, including branch-and-search, color coding, and bounded tree-width.

Using elegant enumeration techniques, combined with effective data structures, we show

that these algorithm-design techniques can be translated into effective enumeration algo-

rithms, and derive the fixed-parameter enumerability for many NP optimization problems.

In particular, we show that a large class of well-known NP optimization problems are fixed-

parameter linearly enumerable, for which, it takes fixed parameter tractable average time

per solution to enumerate any given number K of the best solutions. Our construction also

shows that our formulation is significantly different from the previous ones. For example,

we present a fixed-parameter enumerable algorithm for the k-path problem, while counting

the number of k-paths in a graph is known to be fixed-parameter intractable [41].

We note some differences between our approach and the previously-proposed approaches.

∙ As a natural extension of the theory of fixed parameter tractability [35], which stud-

ies the problem complexity of finding a single solution in terms of a single parameter

k (which in most cases is the solution size), our approach studies the problem com-

plexity parameterized in multi-dimensions, i.e., in terms of solution size k as well as

the number K of solutions. In particular, the algorithms developed in our study are
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output-sensitive.

∙ Different from the previous research [21, 45, 65] that studies the complexity of gen-

erating K best solutions for a specific problem whose corresponding search and op-

timization versions are polynomial time solvable, our concentration is on developing

systematic and general enumerating techniques for a large class of optimization prob-

lems that most are NP-hard.

∙ Compared to the study of hardness of counting and other related problems [41, 60, 84,

31, 36, 50], which emphasizes the complexity issues of the problems, our research is

focused on algorithmic aspects of problems. Algorithmic techniques for multi-solution

enumeration have not been studied as extensively as that for single solution searching

and optimization. Our research intends to develop effective algorithmic techniques for

generating multiple solutions to meet the demands from practical computation. Also,

this study avoids in many cases running into the realm of infeasibility simply resulting

from the existence of a large number of solutions.

B. Definitions and preliminaries

We have presented the definition of FPT, W-Hierarchy in the introduction chapter, for more

details readers are referred to the book [35].

1. Fixed parameter enumerability

We extend the standard definition of NP optimization problems [3] to encompass their pa-

rameterized versions.

Definition A parameterized NP optimization problem Q is a 4-tuple (IQ, SQ, fQ, optQ) where
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1. IQ is the set of input instances of the form (x, k), where x ∈ Σ∗ for a fixed finite alphabet

set Σ, and k is a non-negative integer called the parameter. The input instances are

recognizable in polynomial time.

2. For each instance (x, k) in IQ, SQ(x, k) is the set of feasible solutions for (x, k), which

is defined by a polynomial p and a polynomial time computable predicate Φ (p and Φ

depend only on Q) as SQ(x, k) = {y : ∣y∣ ≤ p(∣x∣) and Φ(x, k, y)}.

3. fQ(x, k, y) is the objective function mapping a pair (x, k) ∈ IQ and y ∈ SQ(x, k) to a

real number. The function fQ is computable in polynomial time.

4. optQ ∈ {max,min}.

Note that since the length of a solution y to an instance (x, k) in Q is bounded by a

polynomial of ∣x∣, the number of solutions to the instance (x, k) is bounded by 2q(∣x∣) for

some fixed polynomial q. Therefore, the values of the solutions in the set SQ(x, k) can be

given in a finite sorted list �x,k = [fQ(x, k, y1), fQ(x, k, y2), . . .], in a non-decreasing order

when optQ = min, and in a non-increasing order when optQ = max. We say that the

solutions y′1, . . . , y
′
K are the K best solutions for the instance (x, k) if the values fQ(x, k, y′1),

. . ., fQ(x, k, y′K), when sorted accordingly are identical to the first K values in the list �x,k.

Definition A parameterized NP optimization problem Q is fixed-parameter enumerable if

there are two algorithms A1 and A2 such that the following are true.

1. Given an instance (x, k) of Q, the algorithm A1 generates a structure �x,k in time

f(k)nO(1), where f is a recursive function independent of n = ∣x∣.

2. Given the structure �x,k and an integer K ≥ 0, the algorithm A2 generates the K best
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solutions to the instance (x, k) in time ∣�x,k∣O(1)KO(1).1

The algorithm A1 will be called the structure algorithm, and the algorithm A2 will be

called the enumerating algorithm. We say that the problem Q is fixed parameter linearly

enumerable if the running time of the enumerating algorithm A2 is ∣�x,k∣O(1)K.

We comment on the above definitions. Since the algorithm A1 runs in time f(k)nO(1),

the size ∣�x,k∣ of the structure �x,k is bounded by f(k)nO(1). In consequence, the running

time of the enumerating algorithm A2 is bounded by f1(k)nO(1)KO(1), where f1 is a recursive

function independent of n. Moreover, we require that each input instance (x, k) of a fixed

parameter enumerable problem Q have a small structure �x,k whose size is independent of

the number K of solutions to be generated.

We argue that our definitions are practically meaningful and significant. First of all,

the definitions are consistent with the normal sense of tractability and intractability. In

particular, the definition requires that generating a single best solution (i.e., K = 1) can be

done in a feasible amount of time f1(k)nO(1) for a fixed function f1, which coincides with

the standard definition of fixed parameter tractability. Moreover, if one asks for a large

number K of best solutions, then it seems reasonable to require that he pay computational

time polynomial in K (besides the factor f1(k)nO(1)). In particular, for fixed parameter

linearly enumerable problems, the average time for generating each best solution is bounded

by f1(k)nO(1) for a fixed function f1 independent of n, which is feasible for moderate values

of the parameter k.

We remark that there has been research in the literature that is related to the above

formulation. For example, Chegireddy and Hamacher [21] developed algorithms for finding

1Note that it is possible that the total number ∣SQ(x, k)∣ of solutions is smaller than K.
To avoid repeatedly distinguishing the two different cases, we will simply use the symbol K
to refer to the value K0 = min{K, ∣SQ(x, k)∣}.
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the K largest perfect matchings in a weighted graph, and Kapoor and Ramesh [65] studied

the complexity of generating the K smallest spanning trees in a weighted graph. For a more

comprehensive summary in this line of research, the readers are referred to [45]. However,

to the authors’ knowledge, all these works are on optimization problems that are solvable

in polynomial time, and each of them deals with a very specific problem. On the other

hand, this chapter is mainly focused on NP-hard optimization problems, and on develop-

ing systematical techniques for effective solution enumerations for a large class of NP-hard

optimization problems.

2. Fixed parameter tractable problems and fixed parameter enumerable problems

It is natural to ask the relationship between the class of fixed parameter tractable problems

and the class of fixed parameter enumerable problems. We first note a difference between

standard parameterized problems and parameterized NP optimization problems. A standard

parameterized problem [35] is a decision problem which asks for the existence of a solution.

On the other hand, an instance of a parameterized NP optimization problem is associated

with a set of solutions that can be ranked by solution weights, and asks for constructing

the best solutions. Nevertheless, we have the following simple relationship between the two

notions.

Theorem B.1 If a parameterized NP optimization problem Q is fixed parameter enumerable

then it is fixed parameter tractable.

Proof. Suppose that Q is fixed parameter enumerable and let (x, k) be an instance of

Q. We use the structure algorithm A1 to construct the structure �x,k in time f(k)nO(1).

Then we apply the enumerating algorithm A2 to �x,k with K = 1; this takes time f1(k)nO(1)

and correctly tests whether (x, k) has a solution or not. The whole process takes time
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(f(k) + f1(k))nO(1). Therefore, the problem Q, when regarded as a standard parameterized

decision problem, is fixed parameter tractable.

Therefore, a necessary condition for a problem Q to be fixed parameter enumerable is

that it is fixed parameter tractable. On the other hand, as observed by Hans Bodlaender,

the converse of this fact is false under the parameterized complexity hypothesis. In fact,

there are natural parameterized problems that are fixed parameter tractable but not fixed

parameter enumerable. In the following, we describe such a problem, which is a modification

of the construction suggested by Hans Bodlaender.

Recall that a set I of vertices in a graph G is an independent set if no two vertices in

I are adjacent, and that a set D of vertices in G is a dominating set if every vertex in G is

either in D or adjacent to at least one vertex in D. A set B of vertices in the graph G is

an independent dominating set if B is both an independent set and a dominating set in the

graph G.

Let ℎ be an integer. A graph G = (V,E) is an ℎ-tent if there is a vertex v in G such

that: (1) the set N(v) of neighbors of v forms an independent set; (2) ∣N(v)∣ = ℎ; and (3)

every vertex in N(v) is adjacent to all vertices in V − N(v). Intuitively, an ℎ-tent is the

complete bipartite graph Kℎ,s = (Vℎ ∪ Vs, E) for some integer s with proper edges added

among s− 1 vertices in the set Vs.

Consider the following parameterized problem.

tent independent dominating set (tent-ids): given a graph G and an

integer k, decide if the graph G is a k-tent and has an independent dominating

set of size k.

The tent-ids problem can be regarded as a parameterized NP optimization problem

if we assign each vertex in the graph weight 1 and look for size-k independent dominating
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sets of the maximum weight in the graph.

Theorem B.2 There are fixed parameter tractable problems that are not fixed parameter

enumerable unless W [2] = FPT.

Proof. Bodlaender proved this theorem by giving a fixed parameter tractable problem

whose fixed parameter enumerability implies W [2] = FPT. Here we follow his idea and prove

that the tent-ids problem is fixed parameter tractable but not fixed parameter enumerable

unless W [2] = FPT. First we show that tent-ids is fixed parameter tractable. In fact, the

problem is polynomial time solvable: for a given instance (G, k), we check whether there

is a vertex v in G such that: (1) the set N(v) of neighbors of v forms an independent

set; (2) v has exactly k neighbors; and (3) each neighbor of v is adjacent to all vertices in

G − N(v). This process obviously takes polynomial time. Moreover, if no such a vertex

exists in G then G is not a k-tent, and (G, k) is a no-instance of the tent-ids problem. On

the other hand, if there is such a vertex v in G, then the neighbors of v obviously form an

independent dominating set of size k for the graph G, and (G, k) is a yes-instance of the

tent-ids problem.

To prove that the tent-ids problem is not fixed parameter enumerable, consider the

standard independent dominating set problem (ids): given a graph G and an integer

k, decide if G has a size-k independent dominating set.

Given an instance (G, k) of the ids problem, construct a new graph G′ as follows: (1)

add k + 2 new vertices v0, v1, . . ., vk+1 to G; (2) add an edge between v0 and each vi, for

1 ≤ i ≤ k + 1; and (3) add an edge between vi and w for each i, 1 ≤ i ≤ k + 1, and for

each vertex w in G. It is easy to see that the graph G′ is a (k + 1)-tent, and that the set

B1 = {v1, . . . , vk+1} is a size-(k + 1) independent dominating set in G′. We show that the

graph G′ has more than one size-(k+ 1) independent dominating set if and only if the graph
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G has a size-k independent dominating set.

If the graph G has a size-k independent dominating set B′, then the set B′ ∪ {v0} is

obviously a size-(k + 1) independent dominating set for the graph G′. Therefore, the graph

G′ has at least two size-(k + 1) independent dominating sets: B1 and B′ ∪ {v0}.

On the other hand, suppose that the graph G′ has a size-(k+1) independent dominating

set B2 that is different from the set B1. We have the following simple facts. First, no vertex

in B1 can be in B2. In fact, if a vertex vi in B1 is in B2, then neither v0 nor vertices in

the original graph G can be in B2 because vi is adjacent to all these vertices and B2 is an

independent set. This would imply that B2 ⊆ B1, and hence B2 = B1 because B1 and B2

are of the same cardinality. Second, the vertex v0 is in B2. This is because: the vertex v0 is

only adjacent to vertices in B1, no vertex in B1 is in B2, and the vertex v0 must be either

in B2 or adjacent to a vertex in B2. It follows from the above facts that the set B2 − {v0}

is entirely contained in the original graph G. Moreover, it is now easy to verify that the set

B2 − {v0} is a size-k independent dominating set in the graph G.

Now we can show that if the tent-ids problem is fixed parameter enumerable, then

the ids problem is fixed parameter tractable. Given an instance (G, k) of the ids problem,

we construct the graph G′ as described above, and consider the instance (G′, k′, K), where

k′ = k + 1, and K = 2, of the enumeration problem tent-ids. If the tent-ids problem is

fixed parameter enumerable, then by definition, there is an algorithm A that, on the instance

(G′, k′, K) where k′ = k + 1 and K = 2, generates the largest two size-k′ (i.e., size-(k + 1))

independent dominating sets in the graph G′ in time f(k′)nO(1)KO(1) = f1(k)nO(1) for some

function f1. By the discussion above, the algorithm A on instance (G′, k′, K) returns more

than one size-(k + 1) independent dominating set for the graph G′ if and only if the graph

G has a size-k independent dominating set. Therefore, it is decidable in time f1(k)nO(1)

whether (G, k) is a yes-instance for the ids problem, and in consequence, the ids problem is
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fixed parameter tractable.

It is well-known that the ids problem is W[2]-hard [35]. Therefore, the fixed parameter

tractability of the ids problem would imply that W[2] = FPT. This completes the proof that

the fixed parameter enumerability of the tent-ids problem would imply W[2] = FPT.

In the rest of chapter, we examine the techniques that have been widely used in the

development of fixed parameter tractable algorithms. We show that these techniques, when

carefully revised, give nice structure algorithms. We then also develop new techniques for

effective enumerating algorithms. We demonstrate our techniques based on some of the best-

known fixed parameter tractable problems and show that the corresponding parameterized

NP optimization problems are fixed parameter enumerable. This indicates that the research

on fixed parameter tractable algorithms may also have a direct impact on the study of

effective enumeration algorithms for NP optimization problems.

The following simple technique will be useful in our enumerating algorithms. Suppose

that we have a list of n real numbers. By first finding the K-th largest (or the K-th smallest)

number a in the list in time O(n) [30] then partitioning the list using a as a “pivot”, we can

generate the K largest (or the K smallest) numbers in the list in time O(n).

C. Effective enumerations based on branch-and-search

The branch-and-search method based on bounded search-trees has been a very popular and

powerful technique in the development of efficient exact and parameterized algorithms [35].

A typical parameterized algorithm A that uses a branch-and-search process works in

the following recursive way: given an input (x, k), the algorithm A constructs a sequence

of sub-instances (x1, k1), . . ., (xs, ks), where kj < k for all j, recursively solves these sub-

instances, then constructs a solution for the original instance (x, k) based on the solutions

for the sub-instances. This process can be described as a search-tree: the root is labeled with
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the original input instance (x, k) and its children are labeled with the sub-instances (x1, k1),

. . ., (xs, ks), each is recursively represented by a corresponding search sub-tree. Each leaf of

the search-tree is labeled with an instance that is easy enough to be solved directly.

The computational time of the parameterized algorithm A based on the branch-and-

search process can be measured by the number of leaves (or equivalently, the number of

nodes) in the search tree if the computation and construction at each node in the search tree

are relatively easy (e.g., can be done in polynomial time).

We discuss how to use this technique in effective enumeration algorithms for parame-

terized NP optimization problems. As a running example, we describe our algorithm with

vertex cover as the underlying problem. Recall that a vertex set C in a graph G is a

vertex cover for G if each edge in G has at least one end in C. A vertex cover of k ver-

tices will be called a k-vertex cover. The vertex cover problem is a well-known fixed

parameter tractable problem, and parameterized algorithms for this problem have been ex-

tensively studied (e.g., [22, 24]). Moreover, the counting complexity and the complexity of

enumerating all solutions of the problem have also been examined. Arvind and Raman [4]

(see also [41]) showed that counting the total number of k-vertex covers can be done in time

O(2k2+kk + 2kn). The complexity of enumerating all k-vertex covers, however, depends on

whether k is the size of a minimum vertex cover of the graph. Fernau [42] showed that if k

is equal to the size of a minimum vertex cover, then enumerating all k-vertex covers can be

done in time O(2kk2 + kn), while if k is not equal to the size of a minimum vertex cover,

then no algorithm of running time f(k)nO(1) for any recursive function f can enumerate all

k-vertex covers. The latter fact holds simply because in such case the number of k-vertex

covers can be too large to be enumerated in such time.

We investigate the fixed parameter enumerability of the problem. We assume that the

input graph G is weighted in which each vertex is associated with a real number (the vertex
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weight). The weight of a vertex cover C is the sum of the weights of the vertices in C. Thus,

a vertex cover C1 is smaller than a vertex cover C2 if the weight of C1 is smaller than the

weight of C2.

weighted vertex cover: Given a weighted graphG of n vertices, and integers

k and K, generate the K smallest k-vertex covers in G.

1. The structure algorithm

Let (G, k) be an instance of the weighted vertex cover problem, where G is a graph

of n vertices. Since a vertex of degree larger than k must be in every k-vertex cover of G,

we can first remove all vertices of degree larger than k from the graph and then work on

the remaining graph. This preprocess can be done in time O(kn) even when the number

of edges in G is larger than kn. Now the resulting instance (G′, k′) has a graph G′ of O(n)

vertices and O(kn) edges and a parameter k′ ≤ k. Thus, without loss of generality, we can

assume that our input graph G has n vertices and O(kn) edges.

Our structure algorithm for weighted vertex cover is a recursive algorithm based

on the branch-and-research method, which on an input instance (G, k) returns a collection

ℒ(G, k) of triples (I, O,R), where each (I, O,R) is a partition of the vertex set of the graph

G, representing the set of all k-vertex covers that include all vertices in I and exclude all

vertices in O. Moreover, we require that in the subgraph induced by the vertex set R, all

vertices have degree bounded by 2. The structure algorithm is given in Figure 12.

Theorem C.1 On an input (G, k), the algorithm structure-vc runs in time O(1.47kn),

and returns a collection ℒ(G, k) of at most 1.466k triples.

Proof. We first prove the second claim. Let L(k) be the number of triples in the collection

ℒ(G, k) returned by the algorithm structure-vc on the input (G, k). If the input (G, k)
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Algorithm structure-vc

Input: G: a weighted graph; k: an integer;

1. if (k < 0) or (k = 0 but the edge set ofG is not empty) then return ℒ(G, k) = ∅;
2. if there is no vertex of degree larger than 2 in G then return ℒ(G, k) =
{(∅, ∅, V )};

3. pick any vertex v of degree d ≥ 3;
4. let G1 = G− v and G2 = G− (v ∪N(v)) where N(v) is the set of neighbors of
v;

5. recursively call structure-vc(G1, k − 1) and structure-vc(G2, k − d);
let the returned collections be ℒ(G1, k − 1) and ℒ(G2, k − d), respectively;

6. ℒ(G, k) = ∅;
7. for each triple (I1, O1, R1) in ℒ(G1, k− 1) do add (I1 ∪{v}, O1, R1) to ℒ(G, k);
8. for each triple (I2, O2, R2) in ℒ(G2, k − d) do add (I2 ∪N(v), O2 ∪ {v}, R2) to
ℒ(G, k);

Fig. 12. The structure algorithm for weighted vertex cover.

satisfies the conditions in step 1 or step 2, then L(k) ≤ 1. In particular, L(k) ≤ 1 for k ≤ 0.

Otherwise, the value L(k) satisfies the recurrence relation L(k) ≤ L(k − 1) + L(k − d),

where d ≥ 3. Using the standard technique for solving this recurrence relation (see [22] for

a detailed discussion on this technique), we get L(k) ≤ �k, where � = 1.4655 ⋅ ⋅ ⋅ < 1.466 is

the unique positive root of the polynomial xk − xk−1 − xk−3. This proves the second claim

in the theorem.

Let T (k,G) be the running time of the algorithm structure-vc on the input (G, k).

If (G, k) satisfies the conditions in step 1 or step 2, then T (k,G) = O(kn) (recall that we

can assume the size of the graph G is O(kn)). In particular, T (k,G) = O(kn) for k ≤ 0.

Otherwise, the value T (k,G) satisfies the following recurrence relation

T (k,G) ≤ T (k − 1, G− v) + T (k − d,G− (v ∪N(v))) +O(1.466kn),

where v is a vertex of degree d ≥ 3 in G, N(v) is the set of neighbors of v in G, and the term

O(1.466kn) is the time for constructing the graphs G1 = G−v and G2 = G− (v∪N(v)) and

for constructing the collection ℒ(G, k) from the collections ℒ(G1, k − 1) and ℒ(G2, k − d)
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(here we have used the fact that ℒ(G, k) contains at most 1.466k triples). Using induction

on k and n, one can easily verify that T (k,G) = O(1.466kkn) = O(1.47kn).

We say that a vertex cover C of the graph G is consistent with a partition (I, O,R) of

the vertex set of G if C contains all vertices in I and excludes all vertices in O.

Lemma C.2 Let ℒ(G, k) be the collection returned by the algorithm structure-vc on input

(G, k). Then every k-vertex cover of G is consistent with exactly one triple in ℒ(G, k).

Proof. If (G, k) satisfies the conditions in step 1, then the graph G has no k-vertex cover.

If (G, k) satisfies the condition in step 2, then clearly every k-vertex cover of G is consistent

with the unique triple (∅, ∅, V ) in ℒ(G, k).

Now assume that (G, k) does not satisfy the conditions in step 1 and step 2. Let C be

any k-vertex cover of G, and let v be the vertex picked in step 3. It should be true that the

vertex cover C either contains v or does not contain v but contains all neighbors of v.

If C contains v, then the set C1 = C − v is a (k − 1)-vertex cover of the graph G1 =

G− v. By the inductive hypothesis, C1 is consistent with exactly one triple in the collection

ℒ(G1, k−1). Thus, the set C = C1+v is consistent with exactly one of the triples constructed

in step 7. Moreover, since C contains v, C cannot be consistent with any triples constructed

in step 8. In conclusion, in this case the k-vertex cover C is consistent with exact one triple

in ℒ(G, k).

If C does not contain v but contains all vertices in N(v), then the set C2 = C −N(v) is

a (k − d)-vertex cover of the graph G2 = G− (v ∪N(v)), and C2 is consistent with exactly

one triple in ℒ(G2, k− d). Thus, the set C = C2 ∪N(v) is consistent with exactly one of the

triples constructed in step 8 but is not consistent with any triples constructed in step 7. In

conclusion, the k-vertex cover C is consistent with exactly one triple in ℒ(G, k).
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The collection ℒ(G, k) forms the structure �G,k for the instance (G, k) of the weighted

vertex cover problem. By Theorem C.1, the structure �G,k can be constructed in time

O(1.47kn).

2. The enumerating algorithm

Let ℒ(G, k) be the structure returned by the algorithm structure-vc on input (G, k). By

Lemma C.2, every k-vertex cover C of G is consistent with a unique triple (I, O,R) in

ℒ(G, k) in the sense that C contains all vertices in I and excludes all vertices in O. Thus,

the k-vertex cover C must consist of the vertex set I plus a vertex cover of k−∣I∣ vertices for

the subgraph G(R) induced by the vertex set R. Therefore, the K smallest k-vertex covers of

the graph G that are consistent with the triple (I, O,R) can be generated by generating the

K smallest (k − ∣I∣)-vertex covers for the induced subgraph G(R). Finally, the K smallest

k-vertex covers of the original graph G can be obtained by performing the above process on

all triples in the structure ℒ(G, k).

From the algorithm structure-vc, all vertices in the induced subgraph G(R) have

degree bounded by 2. Therefore, we first discuss how we deal with this kind of graphs.

Lemma C.3 Let G be a graph of n vertices in which all vertices have degree bounded by 2.

Then the K smallest k-vertex covers of G can be generated in time O(Kkn).

Proof. Since all vertices in G have degree bounded by 2, every connected component of

G is either an isolated vertex, a simple path, or a simple cycle. Order the vertices of G in

a list W = [v1, v2, . . . , vn] such that the vertices of each connected component of G appear

in a consecutive subsegment in W . In particular, the vertices of a simple path appear in W

in the order by which we traverse the path from one end to the other end, and the vertices

of a simple cycle appear in W in the order by which we traverse the entire cycle (starting
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from an arbitrary vertex in the cycle). A vertex vi is a type-1 vertex if it has degree 0 in G,

a type-2 vertex if it is in a connected component of G that is a simple path of length larger

than 0, and a type-3 vertex if it is in a connected component of G that is a simple cycle.

For each i, 1 ≤ i ≤ n, let Gi be the subgraph of G induced by the vertex set

{v1, v2, . . . , vi}. For each induced subgraph Gi, we form a list Li = [Si,0, Si,1, . . . , Si,k], where

Si,j is a set of j-vertex covers of Gi, defined as follows:

(1) If vi is of type-1, then Si,j is the set of the K smallest j-vertex covers for Gi (recall

that this really means “the K smallest j-vertex covers or all j-vertex covers if the total

number of j-vertex covers is smaller than K”– this remark is also applied to the following

discussions);

(2) If vi is of type-2, then Si,j consists of two sets S ′i,j and S ′′i,j, where S ′i,j contains the

K smallest j-vertex covers of Gi that contain vi, and S ′′i,j contains the K smallest j-vertex

covers of Gi that do not contain vi;

(3) If vi is of type-3 and in a simple cycle [vℎ, . . . , vi, . . . , vt] in G, then Si,j consists of

four sets S ′i,j, S
′′
i,j, S

′′′
i,j and S ′′′′i,j , where S ′i,j is the set of the K smallest j-vertex covers of

Gi that contain both vℎ and vi, S
′′
i,j is the set of the K smallest j-vertex covers of Gi that

contain vℎ but not vi, S
′′′
i,j is the set of the K smallest j-vertex covers of Gi that contain vi

but not vℎ, and S ′′′′i,j is the set of the K smallest j-vertex covers of Gi that contain neither

vℎ nor vi.

Note that since each set Si,j contains at most 4K j-vertex covers, the set S0
i,j of the K

smallest j-vertex covers of the graph Gi can always be constructed from Si,j in time O(K).

The list L1 can be trivially constructed: (1) if v1 is of type-1, then all S1,j are empty

except S1,0 = {∅} and S1,1 = {(v1)}; (2) if vi is of type-2, then all S ′1,j and S ′′1,j are empty

except S ′′1,0 = {∅} and S ′1,1 = {(v1)}; and (3) if vi is of type-3, then all S ′1,j, S
′′
1,j, S

′′′
1,j, and

S ′′′′1,j are empty except S ′′′′1,0 = {∅} and S ′1,1 = {(v1)}.
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Inductively, suppose that we have built the list Li−1. To construct the list Li, we

distinguish the cases based on the type of the vertex vi.

Case 1. The vertex vi is of type-1.

Then the graph Gi is the graph Gi−1 plus an isolated vertex vi. For each j, 0 ≤ j ≤ k,

let S0
i−1,j be the set of the K smallest j-vertex covers of the graph Gi−1, which can be

constructed in time O(K). Since each vertex cover of Gi is either a vertex cover of Gi−1,

or a vertex cover of Gi−1 plus the vertex vi, the set Si,j in Li can be constructed as follows:

take each (j − 1)-vertex cover of Gi−1 from S0
i−1,j−1 and add the vertex vi to it to make a

j-vertex cover of Gi. This gives a set F of K j-vertex covers for Gi. It is clear that the K

smallest j-vertex covers of Gi must be contained in the union F ∪ S0
i−1,j, which is a set of

2K j-vertex covers for Gi. Thus, the K smallest j-vertex covers in the union F ∪ S0
i−1,j will

make the set Si,j. Each set Si,j can be constructed in time O(K), and the list Li can be

constructed from the list Li−1 in time O(Kk).

Case 2. The vertex vi is of type-2.

Then vi is in a connected component [vℎ, . . . , vi, . . . , vt] of G, where ℎ < t, that is a

simple path. As in Case 1, for each j, let S0
i−1,j be the set of the K smallest j-vertex covers

of Gi−1.

If vi = vℎ is the first vertex in the path, then the graph Gi is the graph Gi−1 plus an

isolated vertex vi. Thus, the set S ′i,j can be obtained from S0
i−1,j−1 by adding the vertex vi

to each (j − 1)-vertex cover of Gi−1 in S0
i−1,j−1, and the set S ′′i,j is equal to the set S0

i−1,j.

If ℎ < i and vi is not the first vertex in the path, then the graph Gi is the graph Gi−1

plus the vertex vi and the edge [vi−1, vi]. Therefore, each vertex cover of Gi is either a vertex

cover of Gi−1 plus vi, or a vertex cover of Gi−1 that contains vi−1. Thus, the set S ′i,j is again

obtained from S0
i−1,j−1 by adding the vertex vi to each (j−1)-vertex cover of Gi−1 in S0

i−1,j−1.

On the other hand, now the set S ′′i,j is equal to the set S ′i−1,j.



107

Again in this case, the list Li can be constructed from the list Li−1 in time O(Kk).

Case 3. The vertex vi is of type-3.

Then vi is in a connected component [vℎ, . . . , vi, . . . , vt] of G that is a simple cycle. Again

for each j, let S0
i−1,j be the set of the K smallest j-vertex covers of Gi−1.

If vi = vℎ is the first vertex in the cycle, then the graph Gi is the graph Gi−1 plus an

isolated vertex vi. Thus, the set S ′i,j can be obtained from S0
i−1,j−1 by adding the vertex vi

to each (j− 1)-vertex cover of Gi−1 in S0
i−1,j−1, and the set S ′′′′i,j is equal to the set S0

i−1,j. By

definition, the sets S ′′i,j and S ′′′i,j are empty.

If ℎ < i < t, then the graph Gi is the graph Gi−1 plus the vertex vi and the edge [vi−1, vi].

Therefore, the set S ′i,j can be obtained by adding the vertex vi to each (j − 1)-vertex cover

in the union S ′i−1,j−1∪S ′′i−1,j−1 then selecting the K smallest ones; the set S ′′i,j is equal to the

set S ′i−1,j; the set S ′′′i,j is obtained by adding the vertex vi to each (j − 1)-vertex cover in the

union S ′′′i−1,j−1 ∪ S ′′′′i−1,j−1 then selecting the K smallest ones; and the set S ′′′′i,j is equal to the

set S ′′′i−1,j.

If vi = vt is the last vertex in the cycle, then the graph Gi is the graph Gi−1 plus the

vertex vi and two edges [vℎ, vi] and [vi−1, vi]. In this case, the set S ′i,j can be obtained by

adding the vertex vi to each (j−1)-vertex cover in the union S ′i−1,j−1∪S ′′i−1,j−1 then selecting

the K smallest ones; the set S ′′i,j is equal to the set S ′i−1,j; the set S ′′′i,j is obtained by adding

the vertex vi to each (j − 1)-vertex cover in the union S ′′′i−1,j−1 ∪ S ′′′′i−1,j−1 then selecting the

K smallest ones; and the set S ′′′′i,j is empty because [vℎ, vi] is an edge in Gi.

The correctness of these constructions can be easily verified using the definitions of the

sets S ′i,j, S
′′
i,j, S

′′′
i,j, and S ′′′′i,j . Moreover, it is also easy to see that the list Li can be constructed

from the list Li−1 in time O(Kk).

Summarizing all the above, we conclude that the list Ln can be constructed in time

O(Kkn). Now the K smallest k-vertex covers of the graph G = Gn can be easily obtained
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in time O(K) from the set Sn,k in the list Ln. This completes the proof of the lemma.

Now it is obvious in principle how we can generate the K smallest k-vertex covers for

the graph G: they can be obtained by first generating the K smallest consistent k-vertex

covers for each triple in ℒ(G, k). Moreover, we can further speedup the enumeration process

as shown by the following theorem.

Theorem C.4 Let (G, k) be an instance of the weighted vertex cover problem, and

let ℒ(G, k) be the structure returned by the algorithm structure-vc on (G, k). Then the K

smallest k-vertex covers of the graph G can be generated in time O(1.47kn+ 1.22kKn).

Proof. Let (I, O,R) be a triple in ℒ(G, k) and let k1 = k − ∣I∣. By Lemma C.3,

the K smallest k1-vertex covers of the induced subgraph G(R) can be constructed in time

O(Kk1n). Then the vertex set I plus each of these k1-vertex covers for G(R) makes one

of the K smallest k-vertex covers consistent with (I, O,R) for the graph G. Thus, the K

smallest k-vertex covers of G consistent with (I, O,R) can be constructed in time O(Kkn).

Moreover, by Lemma C.2, every k-vertex cover of G is consistent with a triple in ℒ(G, k).

Therefore, if we generate K smallest consistent k-vertex covers for each triple in ℒ(G, k), and

pick the K smallest among all these generated k-vertex covers, we will get the K smallest

k-vertex covers for the graph G.

Let L be the total number of triples in ℒ(G, k).

If K ≤
√
L, then let K1 = 1, and construct the K1 smallest k-vertex covers (i.e., the

smallest k-vertex cover) consistent with each triple in ℒ(G, k), and then make the set S1

of the K smallest k-vertex covers from these LK1 = L k-vertex covers. This takes time

O(LK1kn) = O(Lkn). Note that if the set S1 does not contain the smallest k-vertex cover

consistent with a triple (I, O,R), then no k-vertex cover consistent with (I, O,R) can be

among the K smallest k-vertex covers for G. Thus, we can remove all the triples that have no
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consistent k-vertex covers in the set S1. After this, the total number L1 of remaining triples

is bounded by K ≤
√
L. Now on each of these L1 triples, we apply Lemma C.3 and construct

the K smallest consistent k-vertex covers. This takes time O(L1Kkn) = O(
√
LKkn). Now

picking the K smallest among these L1K k-vertex covers takes time O(L1K) = O(
√
LK)

and gives the K smallest k-vertex covers for the graph G. In summary, in this case, the K

smallest k-vertex covers of G can be generated in time O(Lkn+
√
LKkn).

Now suppose that K >
√
L. Then let K2 = K/

√
L, and construct the K2 smallest

consistent k-vertex covers for each triple in ℒ(G, k), and make the set S2 of the K small-

est k-vertex covers among all these LK2 k-vertex covers. This takes time O(LK2kn) =

O(
√
LKkn). For each triple (I, O,R) whose K2 smallest consistent k-vertex covers are not

all in the set S2, only those k-vertex covers consistent with (I, O,R) that are already in the

set S2 can be possibly among the K smallest k-vertex covers of the graph G. Thus, once

we get the set S2, we can remove those triples whose K2 smallest consistent k-vertex covers

are not all in the set S2. Since no k-vertex cover is consistent with more than one triple

in ℒ(G, k), there are at most
√
L triples in ℒ(G, k) for which the K2 smallest consistent

k-vertex covers are all in the set S2. Therefore, the number L2 of the remaining triples is

bounded by
√
L. Now in time O(L2Kkn) = O(

√
LKkn), we can apply Lemma C.3 to these

L2 triples and generate the K smallest consistent k-vertex covers from each of these triples.

Now the K smallest k-vertex covers among these L2K k-vertex covers and those in the set S2

are the K smallest k-vertex covers of the graph G. In summary, in this case, the K smallest

k-vertex covers of the graph G can be generated in time O(
√
LKkn).

In conclusion, given the structure ℒ(G, k), the K smallest k-vertex covers of the graph

G can be generated in time O(Lkn+
√
LKkn). The theorem follows now from Theorem C.1

because L ≤ 1.466k thus Lk = O(1.47k) and
√
Lk = O(1.22k).

Corollary C.5 The weighted vertex cover problem is fixed parameter linearly enumer-
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able. More specifically, given an instance (G, k) and an integer K, the K smallest k-vertex

covers of the graph G can be generated in time O(1.47kn+ 1.22kKn).

We give some remarks before we close this section. Constructing a single k-vertex cover

in a graph in which all vertices have degree bounded by 2 is trivial [22]. On the other hand,

Theorem C.3 shows that we need to be much more careful when we generate the K smallest

k-vertex covers in such a graph. Moreover, Corollary C.5 may be a little surprising in the

sense that the “average running time” for generating each of the K smallest k-vertex covers is

O(1.22kn), which is actually better than the fastest known algorithm for generating a single

k-vertex cover [24]. In particular, this corollary shows that the cost of generating even many

smallest k-vertex covers for a graph (e.g., K can be as large as 1.22k) is still comparable

with that of generating a single k-vertex cover of the graph.

D. Effective enumeration based on color coding

Recent research in parameterized computation has shown that the color coding technique [5]

is very powerful and useful in the development of efficient parameterized algorithms. In

particular, the technique has been used in developing improved parameterized algorithms

for the k-path problem [5, 27], for matching and set packing problems [39, 69], and for

problems in computational biology [79]. In this section, we show that the color coding

technique is also very effective for developing enumeration algorithms for parameterized NP

optimization problems. We illustrate our techniques by presenting an enumeration algorithm

for the k-path problem.

A simple path in a graph G is a k-path if it contains exactly k vertices. The weight of

a path in a weighted graph is the sum of weights of the vertices in the path. The problem

can be formally defined as follows.



111

weighted k-path: given a weighted graph G and integers k and K, generate

the K largest k-paths in G.

1. The structure algorithm

A k-coloring of a set S is a function from S to {1, 2, . . . , k}. A collection ℱ of k-colorings of

S is a k-color coding scheme for S if for any subset W of k elements in S, there is a k-coloring

fW in ℱ such that no two elements in W are assigned the same color by fW . The size of

the k-color coding scheme ℱ is equal to the number of k-colorings in ℱ . Alon, Yuster, and

Zwick [5] showed that there is a k-color coding scheme of size 2O(k)n for a set of n elements.

This bound has been improved recently to O(6.4kn) [27]. In the following discussion, we will

assume a k-color coding scheme ℱ of size O(6.4kn) for a set of n elements.

On a given instance (G, k,K) of the weighted k-path problem, where G is a graph

of n vertices, our structure algorithm for weighted k-path produces ℎ = O(6.4kn) copies

{G1, G2, . . . , Gℎ} of the graph G, where each copy Gi is colored by a k-coloring in the k-color

coding scheme ℱ . Note that by the definition of k-color coding schemes, every k-path in

the graph G has all its vertices colored with different colors in at least one of these copies.

The list �G,k = {G1, G2, . . . , Gℎ} is the structure returned by the structure algorithm for the

weighted k-path problem, whose running time is O(6.4kn2).

2. The enumerating algorithm

The enumerating algorithm for weighted k-path is a careful and non-trivial generalization

of the dynamic programming algorithm described in [5] which finds a k-path in a k-colored

graph. We first discuss how we deal with each copy Gi of the colored graphs in the list �G,k.

We say that a k-path in a k-colored graph is properly colored if no two vertices on the path

are colored with the same color. Consider the algorithm given in Figure 13, where we have
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used c(w) for the color assigned to the vertex w in the k-colored graph G. Inductively, before

the j-th execution of the loop 2.1-2.5, we assume that each vertex w is associated with a

collection Cj(w) of pairs (C,P ), where C is a subset of j colors in the k-color set, and P is

the set of up to K largest properly colored j-paths ending at w that use exactly the colors

in C. Then the j-th execution of steps 2.1-2.5 will produce, for each vertex w, a similar

collection Cj+1(w) for (j + 1)-paths in G based on these collections for j-paths.

enumerate-path(G, k,K)
input: a k-colored graph G, and integers k and K
output: the K largest properly colored k-paths ending at each vertex in G

1. for each vertex w in G do C1(w) = [({c(w)}; {w})];
2. for j = 1 to k − 1 do
2.1. for each edge [v, w] in G do
2.2. for each pair (C,P ) in Cj(v) do
2.3. if (c(w) ∕∈ C) then
2.4. construct ∣P ∣ (j + 1)-paths ending at w by extending each path in P

to the vertex w;
2.5. add these (j + 1)-paths to P ′ in the pair (C ∪ {c(w)}, P ′) in Cj+1(w)

and only keep the K largest (j + 1)-paths in P ′;
3. return the K largest k-paths in the union of the collections Ck(w) over all
vertices w in G.

Fig. 13. The enumerating algorithm for weighted k-path

Note that at the end of the algorithm enumerate-path(G, k,K), for each vertex w in

the k-colored graph G, the collection Ck(w) is either empty or contains a single pair (C,P )

where C is the set of all k colors and P is a set of properly colored k-paths ending at w in

G.

Lemma D.1 For each vertex w in the k-colored graph G, the unique pair (C,P ) in the

collection Ck(w) constructed by the algorithm enumerate-path(G, k,K) contains the K

largest properly colored k-paths ending at w. Thus, the algorithm returns the K largest
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properly colored k-paths in the graph G. The running time of the algorithm enumerate-

path(G, k,K) is O(2k(kn)2K).

Proof. We prove by induction on j the following claim:

After the j-th execution of the loop 2.1-2.5, for each vertex w, each pair (C,P )

in the collection Cj+1(w) must contain the K largest (j + 1)-paths ending at w

and properly colored by the color subset C.

The claim is obviously true for j = 0 because of step 1 of the algorithm. For j > 0, note

that each p of the K largest (j + 1)-paths that end at the vertex w and colored properly by

the color subset C is a concatenation, by an edge [v, w], of the vertex w and a j-path p′ that

ends at the vertex v and properly colored by the color subset C ′ = C − c(w). The j-path p′

must be among the K largest j-paths ending at v and properly colored by C ′ (otherwise, p

would not be among the K largest (j+1)-paths ending at w and properly colored by C). By

the inductive hypothesis, the j-path p′ (or a j-path of the same weight) must be contained

in the pair (C ′, P ′) in the collection Cj(v). Therefore, when the edge [v, w] is considered in

the j-th execution of the loop 2.1-2.5, the path p (or a path of the same weight) will be

constructed and included in the pair (C,P ) in the collection Cj+1(w).

We must verify that it is not possible that a pair (C,P ) in the collection Cj+1(w) contains

many copies of the same path so that some other paths among the K largest (j+1)-paths are

missing in the pair. Inductively, suppose that for the vertex v, all j-paths in P ′ in the pair

(C − c(w), P ′) in the collection Cj(v) are distinct. Then when the edge [v, w] is considered

in step 2.1, the (j + 1)-paths constructed in step 2.4 from the j-paths in P ′ and the vertex

w are all different. Moreover, note that any (j + 1)-path constructed from a collection Cj(v)

and any (j + 1)-path constructed from a collection Cj(v′), where v ∕= v′, cannot be the same

since the second vertices on the paths are different. This proves that all paths in P in the
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pair (C,P ) in the collection Cj+1(w) are different.

Since there is only one color subset that contains all the k colors, the above claim implies

the first part of the lemma by setting j = k−1. Therefore, from the collection Ck(w) for each

vertex w, we get the K largest properly colored k-paths ending at w. Collecting these paths

over all vertices in G, we get a set P0 of O(Kn) properly colored k-paths that obviously

contains the K largest properly colored k-paths in G, from which we can find the K largest

properly colored k-paths in the graph G in time O(Kn). This is the second part of the

lemma.

The complexity of the algorithm is dominated by step 2. Since each of the sets (C,P )

and (C ∪ {c(w)}, P ′) contains at most K paths, step 2.5 of the algorithm can be executed

in time O(Kk). Since each collection Cj(v) may have up to
(
k
j

)
= O(2k) j-subsets of colors,

and the number of edges in G is bounded by O(n2), we conclude that the running time of

the algorithm is bounded by O(2k(kn)2K).

Since there are O(6.4kn) k-colored graphs in the list �G,k = {G1, G2, . . . , Gℎ}, we perform

the above process on each of these k-colored graphs. This takes O(12.8kk2n3K) time. We

get a set P ′ of O(6.4knK) k-paths, each is properly colored in some k-colored graphs in the

list �G,k. Since the k-colorings we used to color the graph vertices come from the k-color

coding scheme ℱ , every k-path among the K largest k-paths in G is among the K largest

properly colored k-paths in some k-colored graph Gi in the list �G,k, and hence is contained

in the set P ′. To find the K distinct largest k-paths in P ′, we first use BucketSort to sort all

k-paths in P ′ (using the vertex names as ordered along a path as the key for the path). This

sorting takes time O(6.4kknK) and removes duplicate copies of each path in P ′. Finally,

we find, in time O(6.4knK), the K-th largest k-path in the remaining set, which are the K

distinct largest k-paths in the graph G. Summarizing this discussion, we conclude with the

following theorem.
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Theorem D.2 Given the structure �G,k and an integer K, the K largest k-paths in the graph

G can be generated in time O(12.8kk2n3K).

Corollary D.3 The weighted k-path problem is fixed parameter linearly enumerable.

Corollary D.3 may look a bit surprising. Although the k-path problem is fixed parame-

ter tractable [5], Flum and Grohe [41] proved that counting the number of k-paths in a graph

G is #W [1]-hard. This means that it is unlikely that there is an algorithm of running time

f(k)nO(1), where f is a function of k, that can count the number of k-paths in a graph of n

vertices precisely. On the other hand, Corollary D.3 shows that enumerating the K largest

k-paths in the graph G takes time f(k)nO(1)K, where f is a function independent of n. This

means that in a feasible amount of average time f(k)nO(1) per path, we can generate the

paths in decreasing order of the path weights, which shows that the hardness of the problem

of counting the number of k-paths is mainly due to the (possible) large number of such paths

in the graph.

E. Effective enumeration based on graph tree decompositions

Graph tree decompositions have played an important role in algorithmic graph theory [10].

More recently, there has been significant research in investigating the concept for developing

more efficient exact and parameterized algorithms for graph problems (e.g. [1]). In this

section, we discuss how this approach can be used to develop effective structure algorithms

for graph problems, and how efficient enumerating algorithms can be achieved based on such

structures.

A set D of vertices in a graph G is a dominating set of G if every vertex in G is either in

D or adjacent to a vertex in D. A dominating set of k vertices will be called a k-dominating

set. Our running example is the following problem.
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weighted planar dominating set: given a weighted planar graph G and

integers k and K, generate the K smallest k-dominating sets in the graph G.

The problem of deciding whether a given planar graph has a k-dominating set is among

the most extensively studied parameterized problems [1]. Flum and Grohe [41] pointed out

that counting the total number of k-dominating sets in a planar graph is fixed parameter

tractable. On the other hand, no fixed parater tractable algorithm exists that can enumerate

all k-dominating sets of a planar graph because the number of such dominating sets can be

simply too large to be enumerated in such time.

1. The K smallest elements in a Cartesian Sum

Before we present the structure and enumerating algorithms for weighted planar domi-

nating set, we first consider a combinatorial problem, which is also of independent interest.

Let A be a set of n numbers and B be a set of m numbers. The Cartesian Sum of A

and B, written as A + B, is the set {a + b ∣ a ∈ A and b ∈ B} of n ⋅m numbers (strictly

speaking, A+B is a multiset that allows repeated elements). We will say that a pair (a, b),

where a ∈ A and b ∈ B, is an AB-pair corresponding to the element a + b in A + B. We

are interested in finding the K AB-pairs that correspond to the K smallest elements in the

Cartesian Sum A+B.

We need some notations for our discussion. We say that a list B = [b1, b2, . . . , bm] is

ℎ-split if bℎ is the ℎ-th smallest number in B, and bi ≤ bℎ for all i < ℎ and bℎ ≤ bj for all

ℎ < j. The list B is semi-sorted if B is ℎ-split for all ℎ = 2q, where q = 0, 1, . . . , ⌊logm⌋.

Recall that the following linear time algorithm makes a given set B an ℎ-split list: first

find the ℎ-th smallest number w in B in linear time [30], then partition B using w as a “pivot”

(this process also gives the ℎ smallest elements in B). For Cartesian Sums, Frederickson and

Johnson [44] developed an efficient algorithm that finds the ℎ-th smallest element w in a
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Cartesian Sum A+B. However, the process of finding the K smallest elements in A+B by

simply partitioning A+B using the pivot w will be less efficient: the size of A+B is n ⋅m.

The following theorem shows how such a partition can be efficiently implemented.

Theorem E.1 Let A and B be two sets, each consisting of at most K numbers. Then the

K AB-pairs corresponding to the K smallest elements in A+ B can be constructed in time

O(K).

Proof. The proof of the theorem is based on the algorithm given in Figure 14. Let A be

a set of n numbers and let B be a set of m numbers, where both n and m are bounded by

K.

To see the correctness of the algorithm, observe that after the set B is semi-sorted in

step 2, B becomes 2q-split for all q, 0 ≤ q ≤ ⌊logm⌋. Since w is the K-th smallest element

in A + B, if ai + b2q > w, no elements bj in B, where j ≥ 2q, can make ai + bj among the

K smallest elements in A + B. Thus, step 4.2 in fact examines all possible AB-pairs that

may correspond to any of the K smallest elements in A+B. In the following, we study the

complexity of the algorithm.

Step 1 of the algorithm takes time O(K) if we use the algorithm by Frederickson and

Johnson [44]. To semi-sort the set B in step 2, we first make the set B a 2⌊logm⌋-split list, then,

recursively, make the first 2q elements in B a 2q−1-split list, for each q = ⌊logm⌋, ⌊logm⌋ −

1, . . . , 2, 1, in this order. As explained above, making a size-t list ℎ-split for any ℎ ≤ t takes

time O(t). Therefore, to semi-sort the set B in step 2 of the algorithm takes time of the

order

m+ 2⌊logm⌋ + 2⌊logm⌋−1 + ⋅ ⋅ ⋅ 4 + 2 = O(m) = O(K).

The main step, step 4 of the algorithm partition, has its running time proportional

to the number of times steps 4.2.1-4.2.2 are executed. Note that since q is the smallest
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integer such that ai + b2q > w, we must have ai + b2q−1 ≤ w. Since the set B is also 2q−1-

split, we have ai + bj ≤ w for all j ≤ 2q−1. Therefore, for a fixed ai, at least half of the

2q − 1 executions of steps 4.2.1-4.2.2 generate AB-pairs corresponding to elements among

the K smallest elements in A + B. In conclusion, the total number of executions of steps

4.2.1-4.2.2 is at most twice of the number of AB-pairs generated by the algorithm. Since

the algorithm stops when K AB-pairs are generated, the total time spent by step 4 of the

algorithm partition is bounded by O(m+n+K) = O(K). This completes the proof of the

theorem.

partition(A,B,K)
input: an integer K, and two sets A and B, each consists of at most K numbers
output: K AB-pairs corresponding to the K smallest elements in A+B

1. find the K-th smallest element w in A+B;
2. semi-sort the set B, let the semi-sorted list be B = [b1, b2, . . . , bm];
3. K0 = 0;
4. for i = 1 to n do (*suppose A = [a1, a2, . . . , an].*)
4.1. find the smallest q such that ai + b2q > w;
4.2. for j = 1 to 2q − 1 do
4.2.1 if ai + bj ≤ w then output (ai, bj); K0 = K0 + 1;
4.2.2 if (K0 = K) then stop.

Fig. 14. Finding the K smallest elements in a Cartesian set

2. The structure algorithm

To describe the structure algorithm for weighted planar dominating set, we review

some related terminologies. For more detailed discussions on this topic, the reader is referred

to [10].

Definition Let G = (V,E) be a graph. A tree decomposition of G is a pair (V , T ) where
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V is a collection of subsets of V such that
∪

Xi∈V = V , and T is a tree whose node set is V ,

such that:

1. for every edge [u, v] ∈ E, there is an Xi ∈ V , such that {u, v} ⊆ Xi;

2. for all Xi, Xj, Xk ∈ V , if the node Xj lies on the path between the nodes Xi and Xk

in the tree T , then Xi ∩Xk ⊆ Xj.

The width of the tree decomposition (V , T ) is defined to be max{∣Xi∣ ∣ Xi ∈ V} − 1.

The treewidth of the graph G is the minimum tree width over all tree decompositions of G.2

For a given graph of treewidth k, a tree decomposition of width k for G can be con-

structed in time f(k)n, where the function value f(k) is very large even for small values of

k [10]. Alternatively, for planar graphs that have k-dominating sets, tree decompositions of

small width can be constructed using more practical algorithms, as given in the following

theorem [1].

Theorem E.2 ([1]) If a planar graph G of n vertices has a k-dominating set, then a tree

decomposition of treewidth O(
√
k) and O(n) nodes for G can be constructed in time O(

√
kn).

A tree decomposition (V , T ) is nice if it satisfies the following conditions:

1. Each node in the tree T has at most two children;

2. If a node Xi has two children Xj and Xk in the tree T , then Xi = Xj = Xk;

3. If a node Xi has only one child Xj in the tree T , then either ∣Xi∣ = ∣Xj∣+ 1 and

Xj ⊂ Xi, or ∣Xi∣ = ∣Xj∣ − 1 and Xi ⊂ Xj.

Theorem E.3 ([68]) There is a linear time algorithm that, for a given tree decomposition

of treewidth ℎ and n nodes for a graph G, constructs a nice tree decomposition of treewidth

ℎ and O(n) nodes for the graph G.

2To avoid confusion, we will use “nodes” for the trees in tree decompositions, and use
“vertices” for the underlying graphs.
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Therefore, for an instance (G, k,K) of weighted planar dominating set, we first

call the algorithms in Theorem E.2 and Theorem E.3 on the graph G. If the algorithms

do not return a desired tree decomposition, then G has no k-dominating set. Otherwise,

the returned nice tree decomposition (V , T ) is the structure �G,k used for our enumerating

algorithm, which has O(n) nodes and of treewidth ℎ = O(
√
k), and can be constructed in

time O(
√
kn).

3. The enumerating algorithm

Let (G, k,K) be an instance of weighted planar dominating set, where G = (V,E) is

a weighted and planar graph of n vertices. Let �G,k = (V , T ) be a nice tree decomposition

of G with O(n) nodes and treewidth ℎ = O(
√
k), which is the structure produced by the

structure algorithm in the previous subsection. In this subsection we show how the structure

�G,k can be used to enumerate the K smallest k-dominating sets in the graph G.

Let Xi = {v1, . . . , vq} be a node in the tree T , where each vj is a vertex in the graph G.

In the following discussion in this subsection, we will always denote by Yi the set of vertices

in G that are contained in any node in the subtree rooted at Xi in the tree T . For a given

subset D of Yi, we assign each vertex vj in Xi a value c(vj) according to its relation to D,

as follows:

1. c(vj) = 1 if vj is in D;

2. c(vj) = −1 if vj is not in D but is adjacent to a vertex in D;

3. c(vj) = 0 if vj is neither in D nor adjacent to any vertex in D.

With these values, we say that the set D and the value assignment A = [c(v1), . . . , c(vq)]

to Xi are consistent. Note that there can be many subsets of Yi that are consistent with the

same value assignment A to Xi. For a value assignment A to Xi and an integer r ≤ k, a

subset D of Yi is an (A, r)-subset of Yi if (1) D has exactly r vertices, (2) D is consistent
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with the value assignment A, and (3) for each vertex w in Yi −Xi, either w is in D or w is

adjacent to a vertex in D. Intuitively, an (A, r)-subset D is a potential set of r vertices that

is part of a k-dominating set D0 for the graph G such that D0 ∩ Yi = D.

For the node Xi that contains q vertices in the graph G, there are 3q possible value

assignments to Xi. For each value assignment A to Xi, we attach to A a collection of k + 1

lists ℒA = [L0, L1, . . . , Lk], where Lr is a list containing the K smallest (A, r)-subsets of

Yi (the collection ℒA will be called the spectrum of A). Observe that since no vertex w in

Yi−Xi can be adjacent to any vertex not in Yi, the selection of the vertices in a dominating

set from the set V −Yi will be totally independent of the status of w, but may (only) depend

on the status of the vertices in Xi. Therefore, if in each list Lr we simply record the K

smallest (A, r)-subsets of Yi that are consistent with the value assignment A, then for the

k-dominating sets of G consistent with the value assignment A, only these (A, r)-subsets of

Yi can make the K smallest k-dominating sets with vertices in V − Yi.

Using dynamic programming, we can construct for each node Xi in the tree T all the

valid value assignments to Xi, and for each valid value assignment A to Xi, we construct

the corresponding spectrum ℒA. We proceed from the leaves of the tree T in a bottom-up

manner. For each leaf Xi of q vertices, we construct each of the 3q value assignments to Xi.

Note that in this case, Yi = Xi, so it is fairly easy to determine if a value assignment is valid,

and for each valid value assignment A, the spectrum ℒA = [L0, L1, . . . , Lk] can be directly

constructed.

Now we discuss how the induction proceeds. Suppose that the value assignments and

the corresponding spectra have been constructed for all children of a node Xi in the tree

T . To construct the value assignments and the corresponding spectra for the node Xi, we

distinguish three different cases.

Case 1. Xi has a single child Xj, ∣Xj∣ = ∣Xi∣ − 1, and Xj ⊂ Xi.
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Let v ∈ Xi − Xj, then v ∕∈ Yj. For each value assignment Aj to Xj, we can get three

different value assignments for Xi by assigning c(v) = −1, 0, and 1, respectively. Since

v is not adjacent to any vertex in Yj − Xj, it is easy to check the validity of these value

assignments. For example, if we assign c(v) = 1, then any vertex w in Xi that is adjacent

to v in G cannot have value c(w) = 0. To construct the corresponding spectrum ℒAi
for

a valid value assignment Ai for Xi, suppose that c(v) = 1 and that Ai is obtained from a

value assignment Aj for Xj. Then each (Aj, r)-subset in the spectrum ℒAj
plus the vertex

v becomes an (Ai, r + 1)-subset in the spectrum ℒAi
. The cases for the other values of c(v)

can be handled similarly. Finally, we remove the larger (A, r)-subsets from a list Lr in ℒAi

if the list contains more than K subsets.

Case 2. Xi has a single child Xj, ∣Xj∣ = ∣Xi∣+ 1, and Xi ⊂ Xj.

Let v ∈ Xj −Xi, then any value assignment to Xj with the value c(v) dropped makes

a value assignment to Xi. Again, we can check the validity of these value assignments to

Xi. For example, if c(v) = 0 in a value assignment Aj to Xj, then Aj with c(v) dropped

does not induce a valid value assignment Ai to Xi because no (Aj, rj)-subset for any rj in

the spectrum ℒAj
is a valid (Ai, ri)-subset for any ri in Yi: the vertex v in Yi−Xi is neither

contained in nor adjacent to the (Aj, rj)-subset. If Aj to Xj with c(v) dropped induces a

valid value assignment Ai to Xi, then each (Aj, r)-subset in ℒAj
becomes an (Ai, r)-subset

in ℒAi
. Again we need to remove the larger (Ai, r)-subsets if the list Lr in ℒAi

contains more

than K subsets.

Case 3. Xi has two children Xj and Xℎ and Xj = Xi = Xℎ.

We say that a value assignment Aj to Xj and a value assignment Aℎ to Xℎ are “merge-

able” if for any v ∈ Xj = Xℎ, either v has the same value in Aj and in Aℎ, or one of Aj

and Aℎ assigns v value −1 and the other assigns v value 0. A value assignment Ai to Xi is

obtained from the two mergeable value assignments Aj and Aℎ such that the value of v in
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Ai is equal to that of v in both Aj and Aℎ (when the values are equal) or equal to −1 (if the

values are not equal).

A valid value assignment Ai to Xi has in its spectrum ℒAi
a collection of (Ai, ri)-subsets

in Yi, where 0 ≤ ri ≤ k. Since Yi = Yj∪Yℎ, each (Ai, ri)-subset Di in ℒAi
is a union of a subset

Dj in Yj and a subset Dℎ in Yℎ. Let Aj and Aℎ be the value assignments to Xj and to Xℎ that

are consistent with Dj and Dℎ, respectively. Then from Di = Dj ∪Dℎ, Dj ∩Dℎ ⊆ Xi, and

(Yj−Xi)∩ (Yℎ−Xi) = ∅, it is not difficult to verify that (1) Dj is an (Aj, rj)-subset for some

rj in Yj; (2) Dℎ is an (Aℎ, rℎ)-subset for some rℎ in Yℎ; and (3) Aj and Aℎ are mergeable.

In particular, this means that the value assignment Ai to Xi can be obtained from the

two mergeable (and valid) value assignments Aj and Aℎ. In consequence, by examining all

possible mergeable value assignments to Xj and to Xℎ, we will construct the value assignment

Ai to Xi. Moreover, let X1
i = Di ∩Xi, then Di = Dj ∪Dℎ = (Dj −X1

i ) ∪ (Dℎ −X1
i ) ∪X1

i .

Thus, the weight of Di is equal to the weight of Dj plus the weight of Dℎ minus the weight

of X1
i . Therefore, Dj must be among the K smallest (Aj, rj)-subsets in Yj (otherwise Di

would not be in the spectrum ℒAi
), i.e., Dj must be contained in the list Lrj in the spectrum

ℒAj
. Similarly, Dℎ must be contained in the list Lrℎ in the spectrum ℒAℎ

. In summary, by

examining all possible unions of the subsets in the spectra ℒAj
and ℒAℎ

, the (Ai, ri)-subset

Di (or an (Ai, ri)-subset of the same weight) in the spectrum ℒAi
can be re-constructed.

Since Ai is an arbitrary valid value assignment to Xi and Di is an arbitrary (Ai, ri)-

subset in the spectrum ℒAi
, we conclude that by examining all pairs of mergeable (and valid)

value assignments Aj and Aℎ (to Xj and Xℎ, resp.), and by examining for each such a pair

Aj and Aℎ all possible unions of the subsets in ℒAj
and ℒAℎ

, we can construct all valid

value assignments to Xi and their corresponding spectra. This completes the proof of the

induction for Case 3.

In conclusion, by the above dynamic programming process, starting from the leaves
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of the tree T , we can correctly construct the value assignments and their spectra for each

node in the tree T , in particular, for the root node X0 of the tree T . Note that for a value

assignment A0 to X0, in order for an (A0, k)-subset in ℒA0 to be a k-dominating set for the

graph G, it is sufficient and necessary that the assignment A0 does not assign value 0 to

any vertex in X0. Thus, for each value assignment A0 that does not assign value 0 to any

vertex in X0, the list Lk in the spectrum ℒA0 contains the K smallest k-dominating sets

for the graph G that are (A0, k)-subsets. Since every k-dominating set of the graph G must

be consistent with a value assignment to X0, by examining all value assignments to X0 and

their spectra, we will be able to construct the K smallest k-dominating sets of the graph G.

Lemma E.4 Given a tree decomposition (V , T ) of treewidth q and N nodes for a weighted

graph G, and integers k and K, the K smallest k-dominating sets of the graph G can be

generated in time O(9qk3NK).

Proof. The discussion given above describes a dynamic programming process that

generates the K smallest k-dominating sets of the graph G when the tree decomposition

(V , T ) is given. What remains is to analyze the complexity of this process.

The most complicated case in the dynamic programming is Case 3, in which a node Xi

in the tree T has two children Xj and Xℎ. We analyze the complexity for this case in detail.

The other two cases are simpler and have their running time dominated by that of Case 3.

Suppose that a value assignment Aj to Xj and a value assignment Aℎ to Xℎ are merge-

able and merged into a value assignment Ai to Xi. From a list Lrj in ℒAj
and a list Lrℎ in

ℒAℎ
, we need to identify the K smallest unions of the form Di = Dj ∪Dℎ, where Dj is an

(Aj, rj)-subset in Lrj and Dℎ is an (Aℎ, rℎ)-subset in Lrℎ . Let X1
i = Di ∩Xi. Then

weight(Di) = weight(Dj) + weight(Dℎ)− weight(X1
i )
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Since X1
i is fixed when Ai is given, finding these K smallest unions is equivalent to finding the

K smallest elements in the Cartesian Sum Wj +Wℎ, where Wj is the set of the weights of the

(Aj, rj)-subsets in Lrj and Wℎ is the set of the weights of the (Aℎ, rℎ)-subsets in Lrℎ . Since

each of Lrj and Lrℎ contains at most K subsets, by Theorem E.1, these K smallest unions

can be identified in time O(K), and constructed in time O(kK) (since each of the subsets in

LAj
and LAℎ

contains at most k vertices, the union of such two sets can be constructed in

time O(k)). Finally, note that updating the list Lri in ℒAi
, where ri = rj + rℎ − ∣X1

i ∣, with

these K new (Ai, ri)-subsets, i.e., picking the K smallest from the current subsets in Lri and

these new subsets, can also be done in time O(kK).

Therefore, updating a list in the spectrum of a value assignment to Xi by the set unions

from two lists in the spectra of two mergeable value assignments to Xj and Xℎ takes time

O(kK). Each spectrum of a value assignment to the nodes Xj and Xℎ has at most k + 1

lists, and each of the nodes Xj and Xℎ has at most 3q value assignments (since the treewidth

of T is q). Since the dynamic programming process examines all unions of subsets from all

possible pairs of lists in the spectra of all mergeable value assignments to Xj and Xℎ, the

process takes time O(9qk3K) to proceed from the nodes Xj and Xℎ to to node Xi in the tree

T . The lemma now follows since the tree T has N nodes.

We conclude with our main result in this section.

Theorem E.5 The weighted planar dominating set problem is fixed parameter lin-

early enumerable. More specifically, for an instance (G, k,K) of the problem, a structure

�G,k = (V , T ) can be constructed in time O(
√
kn), and from the structure �G,k, the K small-

est k-dominating sets of the planar graph G can be generated in time O(2O(
√
k)k3nK).

Proof. The conclusion for the structure �G,k = (V , T ) follows directly from Theorem E.2
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and Theorem E.3, which also claim that the tree T in the structure �G,k has O(n) nodes

and treewidth O(
√
k). The last conclusion then follows from this fact and Lemma E.4.

F. Final remarks

We have introduced the concept of effective fixed parameter enumerability of NP optimiza-

tion problems. Our objective is to solve enumeration problems that seem to have an in-

creasing demand in recent research in computational science. We split the task of solving an

enumeration problem into two stages: the structure stage and the enumerating stage. We

showed that many popular techniques developed in parameterized algorithms can be modi-

fied and enhanced to provide effective algorithms for the structure stage. We developed new

algorithms for the enumerating stage that exploit the structure produced by the structure

stage to enumerate the desired number of best solutions efficiently.

Further investigation on the relationship between fixed parameter tractability and fixed

parameter enumerability may open up an interesting research direction. It is quite natural

that fixed parameter enumerability implies fixed parameter tractability (generating a num-

ber of best solutions cannot be easier than checking the existence of a single solution). We

showed that the converse is not true in general by exhibiting an example of a problem which

is fixed parameter tractable but not fixed parameter enumerable (under the parameterized

complexity hypothesis). On the other hand, our study shows that most techniques used in

fixed parameter tractability are also applicable for fixed parameter enumerability. Study-

ing the relationship between these two classes seems interesting and important, from both

theoretical and practical points of view.

We finally indicate that even though we illustrated our results by picking specific prob-

lems for each technique, each of the considered problems is a representative for a large set

of problems to which the techniques are applicable as well.
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CHAPTER VI

SUMMARY AND FUTURE RESEARCH

In this dissertation, we present kernels for several parameterized problems, and propose a

framework to study enumerability. The results in the dissertation not only improve the

previous known results, but are enlightening for the future research.

A. Summary

We present kernels for several parameterized problems. The cluster editing problem

arises from biological research, where researchers are looking for “similar” genes. In algorith-

mic research, the instances of the problem are modeled as graphs, where vertices correspond

to the genes and two vertices are connected if the genes they represent are similar. The ideal

instance is a graph consisting of a union of disjoint cliques, however, the practical instances

might have “errors”, so the graphs contain other edges. The cluster editing problem is

focusing on fixing the errors by removing least number of edges in the graphs. The problem

is fix-parameter tractable and admits a 4k kernel size previously. We improve the result and

develop a 2k kernel for the problem.

We also study the d-cluster editing problem, a variant of the cluster editing

problem. We provide a 7k + 2d kernel and develop the first fix-parameter tractable algo-

rithm for this problem. The difference from its original version is that after applying the

edge operations in the solutions, the resulting graphs contain exactly d clusters. However

the solutions with least edge insertion/deletion operations may not result in d clusters in

the resulting graph, and are not valid. We introduce the class-partition to overcome this

difficulty. We show that there are two possible cases: either we combine some of the classes

in some class-partitions to decrease the number of clusters, or we split classes in some class-
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partitions to increase the number of clusters. In both cases, we present smaller instances

and combining both instances we obtain a kernel containing no more than 7k + 2d vertices.

We also design a branch-and-search algorithm to enumerate all class-partitions, and apply

combinatorial combinating/spliting algorithms on the class-partitions to find the optimal

solutions to the d-cluster editing problem.

The pseudo-achromatic number problem is a variance of the graph coloring

problem. An equivalent definition of the problem is that given an input graph, it asks if we

can “group” vertices in the graph to convert the graph to a complete graph with k vertices.

By grouping vertices, basically we merge vertices, which may not be necessarily adjacent.

Previously no results in parameterized complexity is known for this problem, we present

a quadratic kernel for this problem and it implies that the problem is in FPT . We also

study the more general problem, the vertex grouping problem: the input consists of two

graphs, G and H, it asks if one can apply a set of vertex grouping operations on G to convert

G to a new graph with ∣V (G)∣ vertices which is isomorphic to H. We show that the general

problem is fix-parameter intractable.

We present a framework to study fix-parameter enumerability of the parameterized

problems, the approach is of general interest. We prove that the class FPE is a proper

subset of FPT , to further explore the relation between them and illustrate the approach,

we study three classical parameterized problems, each of which can be solved efficiently by

a typical algorithm-design technique for parameterized problems, i.e. branch-and-search,

color coding and treewidth. Specifically, we show that the Z smallest k-vertex covers of

the instance graphs of the weighted vertex cover problem can be generated in time

O(1.47kn+1.22knZ); For the weighted k-path problem, the Z largest k-paths in the graph

can be generated in time O(12.8kk2n3Z); And for the weighted planar dominating set

problem, the Z smallest k-dominating sets of the planar graph can be generated in time
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O(2O(
√
k)k3nZ).

We note that the runtime of the algorithms we have shown is linear in Z, the number

of desired solutions. Thus the solutions to the problems can be generated in time f(k)nO(1)

per solution; we call this kind of problems fix-parameter linearly enumerable, it extends

the definition of fix-parameter enumerability of parameterized problems. Readers may find

similar definition ”polynomial time delay” for the problems in P, but our approach is to

study the enumerability for NP-Hard problems.

B. Open problems

In the section, we describe the future research topic and open problems in the dissertation.

1. The cluster editing problems

In biological research, an important task is to find “similar” genes. The corresponding prob-

lem in algorithmic research is the gene clustering problem. In the ideal case, the graph

model contains a union of disjoint cliques. However due to the difficulty in biological research,

we can merely obtain the data expressed by a graph which are “close” to disjoint cliques. To

correct the errors, researchers study the cluster editing problem. This model still has

limitations, since the clusters are well structured, to apply only k edge insertion/deletion

operations may not be enough to correct all the “errors”. Different approaches are proposed,

for example, Guo [54] present the s-plex editing problem. In practice the quality of data

could be very poor so that the graph models are far away from disjoint cliques. Motivated

by this, we relax the requirement for clusters: the resulting graph contains a union of spe-

cial structures instead of disjoint cliques, which are “almost” complete. A concrete model

is s-defective cluster. A s-defective cluster is a complete graph except that there are at

most s edges missing in the graph. Up to now no kernelization algorithm and fix-parameter
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tractable algorithm are known for this model. A more general model is that we skip the

“errors” inside each structure, but focus on the inter-structure “errors”, providing that the

structure are really dense graphs. Another variance is to allow certain edges with zero cost,

i.e. the cost to insert/delete the edges is ignored, the cluster editing problem with some

“don’t care” edges are unknown about its fix-parameter tractability.

In our kernelization algorithm, critical clique play an important role. The interesting

part about critical cliques is that vertices in the same critical clique have the same set of

neighbors besides themselves. A generalization of the idea is modular decomposition, [57]

the basic definition is as follows. Two sets E and F are overlap if E
∩
F is not empty, and

both E−F and F −E are not empty. A subset M of V is a module if for any v ∈ (V −M),

M does not overlap with neighbors of v: either v connects to all of the vertices in M or v

connects to none. Every set with one or all vertices is a trivial module, a graph with no

non-trivial module is prime, and a strong module is a module that does not overlap with any

other modules. The critical clique is one special case in modular decomposition. Using the

idea of modular decomposition, we might be able to develop better kernel for the cluster

editing problem, and provide different approaches to overcome the difficult of the poor

quality of data.

We study the d-cluster editing problem, a variance of the cluster editing prob-

lem. We present a linear kernel for this problem, the kernel size is linear in both k and d.

One difficulty in developing kernelization algorithm for the d-cluster editing problem is

that it asks that the resulting graph contains exactly d disjoint cliques. We introduce the

idea of class-partition to overcome the difficulty and design a kernel and a fix-parameter

tractable algorithm. An open problem is that if we can develop a kernel whose size only

depends on k, and similarly, can we design a fix-parameter tractable algorithm with a solo

parameter k for this problem?
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2. The graph coloring problems

The pseudo-achromatic number problem is a variance of the graph coloring problem.

The vertex grouping operation, which is defined in the vertex grouping problem, can

merge any vertices, even they are not adjacent. It is different from the edge contraction

operation in the graph minor theory, where only adjacent vertices can be merged. The

vertex grouping problem is fix-parameter intractable. On the other hand, its special

case, the pseudo-achromatic number problem, admits a quadratic kernel, it implies its

feasibility in term of the parameterized complexity.

To author’s knowledge, no non-trivial fix-parameter tractable algorithms is known for

the pseudo-achromatic number problem, even its instances can be reduced to smaller

instances with at most k2 vertices. The trivial algorithm simply enumerates all possible ways

to partition vertices to k groups, merge vertices in each group, then check if the resulting

graph is complete. The runtime of the trivial algorithm is O(kk
2
). To design non-trivial

algorithms with runtime O(ck
2
) is still an open problem, further investigation on the property

of the problem can help to develop better algorithms. For example, we can apply the color

coding approach, coloring the edges of the input instances with k2 colors takes ck
2

time, but

it is unknown that how to identify the useful edges.

A variance of the color coding technique is proposed by Alon et al, the algorithm in the

paper [2] illustrates the new approach. The basic idea is that given a graph G with k edges,

we randomly color vertices in G with O(
√
k) colors. With probability c−

√
k, the endpoints of

any edges in G are colored by different colors, where c is some constant; And the randomized

approach can be de-randomized with slightly increasing on the running time. The approach

shows a new way to color edges in the given graph, previously it is hard to construct a nice

structure after coloring edges directly. By coloring vertices with less colors, the resulting

graph reserves all the edges we are interested in. We don’t know how to apply the idea to
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the pseudo-achromatic number problem, it is still open whether we can develop efficient

parameterized algorithms with this approach.

3. Parameterized enumerability

Enumerability is a well-studied topic in the classical complexity research, but the previous

approach [45] is targeting the problems in P . In the theory of parameterized complexity, we

study the enumerability of the fix-parameter tractable problems. We show that FPE is a

subset of FPT by providing a concrete problem which is in FPT , but not enumerable in

term of parameterized complexity.

Many algorithms for the NP-Hard problems essentially enumerate all solutions to find

the optimal. Motivated by this observation, we study three popular algorithm-design tech-

niques, and show that with little revision, the three techniques can be adapted to structural

algorithms and produce certain structures; Then we apply elegant enumeration techniques

on the structures to efficiently enumerate solutions to the parameterized problems. Specif-

ically, we define fix-parameter linearly enumerable problems, solutions to which could be

enumerated in time f(k)nO(1) per solution.

With rapid developments on algorithm-design techniques, it is not possible to list all

techniques in this dissertation. We design three enumeration algorithms, surely it is pos-

sible to further explore the design of fix-parameter enumerable algorithms. Kernelization

algorithm has attracted much attention recently, we know that problems in FPT admit

kernelization algorithms, it is unknown if we can adapt kernelization to the design of fix-

parameter enumeration algorithm. One important strategy in kerneliation is to repeatedly

reduce the size of the instances, it is possible that some sub-optimal solutions are removed.

It would be interesting to develop kernels for fix-parameter enumerable problems and to

explore the relation between kernelization algorithms and enumeration algorithms .
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[31] V. Dahllöf, P. Jonsson, An algorithm for counting maximum weighted independent sets

and its applications, ACM-SIAM Symposium on Discrete Algorithms (2002) 292 - 298.

[32] F. Dehne, M. Langston, X. Luo, S. Pitre, P. Shaw, Y. Zhang, The cluster editing

problem: implementations and experiments, Lecture Notes in Computer Science 4169

(2006) (IWPEC 2006) 13 - 24.

[33] M. Dom, J. Guo, F. Huffner, R. Niedermeier, Extending the tractability border for

closest leaf powers, Lecture Notes in Computer Science 3787 (2005) (WG 2005) 397-

408.

[34] R. Downey, M. Fellows, U. Stege, Parameterized complexity: A framework for system-

atically confronting computational intractability, in Contemporary Trends in Discrete

Mathematics, (R. Graham, J. Kratochv́ıl, J. Nešetřil, and F. Roberts eds.), Proceed-
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