
TECHNIQUES IN ACTIVE AND GENERIC SOFTWARE LIBRARIES

A Dissertation

by

JACOB NYFFELER SMITH

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2010

Major Subject: Computer Science

TECHNIQUES IN ACTIVE AND GENERIC SOFTWARE LIBRARIES

A Dissertation

by

JACOB NYFFELER SMITH

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Jaakko Järvi
Committee Members, Gabriel Dos Reis

Thomas Ioerger
Paul Gratz

Head of Department, Valerie Taylor

May 2010

Major Subject: Computer Science

iii

ABSTRACT

Techniques in Active and Generic Software Libraries. (May 2010)

Jacob Nyffeler Smith, B.S., The University of Texas at Austin;

B.A., The University of Texas at Austin

Chair of Advisory Committee: Dr. Jaako Järvi

Reusing code from software libraries can reduce the time and effort to construct soft-

ware systems and also enable the development of larger systems. However, the benefits

that come from the use of software libraries may not be realized due to limitations in

the way that traditional software libraries are constructed. Libraries come equipped

with application programming interfaces (API) that help enforce the correct use of

the abstractions in those libraries. Writing new components and adapting existing

ones to conform to library APIs may require substantial amounts of “glue” code that

potentially affects software’s efficiency, robustness, and ease-of-maintenance. If, as a

result, the idea of reusing functionality from a software library is rejected, no benefits

of reuse will be realized.

This dissertation explores and develops techniques that support the construction

of software libraries with abstraction layers that do not impede efficiency. In many

situations, glue code can be expected to have very low (or zero) performance overhead.

In particular, we describe advances in the design and development of active libraries

— software libraries that take an active role in the compilation of the user’s code.

Common to the presented techniques is that they may “break” a library API (in a

controlled manner) to adapt the functionality of the library for a particular use case.

The concrete contributions of this dissertation are: a library API that supports

iterator selection in the Standard Template Library, allowing generic algorithms to

find the most suitable traversal through a container, allowing (in one case) a 30-fold

iv

improvement in performance; the development of techniques, idioms, and best prac-

tices for concepts and concept_maps in C++, allowing the construction of algorithms

for one domain entirely in terms of formalisms from a second domain; the construc-

tion of generic algorithms for algorithmic differentiation, implemented as an active

library in Spad, language of the Open Axiom computer algebra system, allowing al-

gorithmic differentiation to be applied to the appropriate mathematical object and

not just concrete data-types; and the description of a static analysis framework to

describe the generic programming notion of local specialization within Spad, allowing

more sophisticated (value-based) control over algorithm selection and specialization

in categories and domains.

We will find that active libraries simultaneously increase the expressivity of the

underlying language and the performance of software using those libraries.

v

To Stephanie Hope & Kinsey Dorothea Danger Smith

vi

ACKNOWLEDGMENTS

I never had any intention of learning to program; in fact, I was threatened with

harm about ten years ago when making fun of programming and programmers; so, I

suppose, it is with a certain amount of auto-schadenfreude that I find my self at the

end of a multiyear journey into computer science — especially software engineering

and the development of software libraries.

I would like to thank my adviser Dr. Jaakko Järvi first and foremost. Little does

he know that it was reading his papers (and similar papers from the OSL) and poring

over the design of his Boost libraries that finally prompted me to apply for school.

I want to thank Mat Marcus for sitting in a 512 ft3 cell with Dr. Järvi and poring

over my algorithms in order to make a large portion of this dissertation possible. Of

course, working with Dr. Järvi would never have been possible without Dr. Thomas

Ioerger’s patience with myself (and Erik, my co-conspirator in generic programming);

I will forever be grateful to Tom for suggesting that—just possibly—computational

biology was not the field for me.

Dr. Gabriel Does Reis has, effectively, been the co-chair for this dissertation. I

know I try his patience at almost all times, but he has been an invaluable teacher:

each semester spent in his classes is, I feel, equivalent to whole Bachelor’s and Mas-

ter’s degrees. I would also like to thank Dr. Paul Gratz for jumping on board this

dissertation at such a late date and being so enthusiastic about its topic, regardless

of the extremely short times I gave him to review and revise!

I would like to thank two different sources for support: Dr. James F. Leary (and

the whole team at the old UTMB MCU) for his long-time support and encouragement

and for telling me that if statistical software doesn’t work, don’t complain, learn to

program and fix it! And, also, To Dr. Bart Childs for convincing me to come to

vii

A&M. The second source are the members of Jaakko’s lab (John Freeman, Xiaolong

Tang), even though I don’t think any one of us managed to actually work on a project

together. Hand-in-hand I would like to thank everyone in Dr. Bjarne Stroustrup’s

lab (including Bjarne for being such a good sport): Luke Wagner for helping me

to understand logic and language theory; Yuriy Solodkyy for our shouting matches

and appreciation of books & coffee at the library; Dr. Damian Dechev and Peter

Pirkelbauer for being too cool to be in such a geeky field. I owe a large debt to Yue Li

not only for shepharding this dissertation to a close, but also for being a good friend

my last year-or-so at TAMU.

Finally, I want to thank and send my love to my family for their infinite patience;

to my wife, Stephanie, my daughter, Kinsey; to my brother for low-rents; and lastly,

to my parents, who never once questioned why, after finishing my first degree in a

little less than three years, I stayed in school for another ten.

viii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Background . 3

1. Permeable interfaces 5

2. Composition and adaptation 7

3. Library-directed transformation 8

B. Dissertation statement . 10

II A PARAMETRIZED ITERATOR REQUEST FRAMEWORK

FOR GENERIC LIBRARIES 12

A. Introduction . 12

B. Background and motivation 17

C. Iterator request framework 19

D. Examples . 22

1. Timings for images . 22

2. Alternate run-time characteristics for std::find . . . 25

3. Alternate run-time characteristics for std::find II . . 26

4. Protein crystallography 28

a. Background information on PX 29

b. Density interpolation algorithm 31

c. Generic density interpolation using iterator selection 34

E. Computing with capabilities 37

F. Conclusion and future work 39

1. Readability . 40

III MULTILAYER LIBRARY COMPOSITION 43

A. Introduction . 43

B. Background . 45

1. From C++ 2003 to ConceptC++ 46

2. Generic programming in ConceptC++ 48

C. Cross-domain composition 54

1. Background of GIL and BGL 56

2. GIL–BGL composition 58

3. Performance results of the BGL to GIL adaptation . . 65

ix

CHAPTER Page

D. Multi-layer composition . 70

1. Background of the MTL 74

2. Implementation of the ncuts algorithm 75

3. GIL–BGL composition for MTL 76

4. BGL–MTL composition 77

5. Results of the BGL to GIL to MTL adaptation 84

E. Concept maps and other adaptation mechanisms 85

F. Adaptation and overloading 94

G. Conclusions . 96

IV ALGORITHMIC DIFFERENTIATION IN AXIOM 99

A. Introduction . 100

B. The OpenAxiom system 103

C. Spad programming language 104

1. Syntax . 104

2. Language features . 110

3. Semantics . 110

a. Operational semantics 110

b. Denotational semantics 111

D. Elements of algebraic theory of algorithmic differentiation . 113

1. Algorithmic differential rings 113

2. Strategies of derivative evaluation 115

3. Control flow and differentiability 116

E. The Spad compiler . 117

F. Implementation . 119

1. Transformation to simple form 120

2. First order prolongation 120

3. Initial environment . 122

4. Forward mode . 123

5. Examples . 124

a. The GRADIENT paper 124

b. Tchebychev polynomials 127

G. Employing generic algorithmic differentiation 128

H. Conclusion . 129

1. Related work . 129

2. Future work . 130

V LOCAL SPECIALIZATION FOR OPENAXIOM 131

x

CHAPTER Page

A. Introduction . 132

B. An overview . 134

C. The Spad programming language 135

1. Syntax . 137

2. An internal language 140

3. Translation of Spad to internal language 143

D. User-defined predicates . 147

E. Static analysis of categories 149

1. The structure of the abstract domain 150

2. Abstract evaluation of syntactic forms 150

3. Expression explosion 153

4. Reduction of abstract stores 154

F. Implementation . 155

G. Related work . 157

H. Conclusion . 158

VI CONCLUSION . 160

REFERENCES . 164

VITA . 180

xi

LIST OF FIGURES

FIGURE Page

1 Example code fragment for the active library MTL2. 5

2 The iterator and const_ metafunctions for the framework. 20

3 The set of begin functions for the framework. 21

4 The set of tagged begin functions for the framework. 22

5 Iterator execution times. 24

6 The three types of symmetry. 31

7 The eight-point interpolation algorithm. 33

8 The min_element generic algorithm. 51

9 The ForwardIterator concept (simplified from the one in the STL). 52

10 A call to the generic min_element function. 53

11 Templated concept map definition describing a modeling relation-

ship between two concepts . 55

12 The signature of the breadth_first_search function in the BGL. . 59

13 Concepts and concept-maps for graphs and images 60

14 The modeling relationship between images and graphs 61

15 The concept_map adapting models of GIL ImageView to become

models of BGL IncidenceGraph. 63

16 The implementation of flood-fill using an adaptation from GIL to BGL. 64

17 The timing results for the function flood_fill 66

18 Timing results for the function segmentation. 67

xii

FIGURE Page

19 Timing results for the function backbone_healing. 68

20 A high-level view of GIL-BGL-MTL multilayer composition. 73

21 Neighborhood concept map . 78

22 A schematic of the implementation of Shi and Malik’s image anal-

ysis architecture. 80

23 The concept for the MTL’s SparseMatrix. 82

24 Definition of the function num_columns 83

25 The ncuts function. 84

26 Code fragment showing a call to the ncuts function. 84

27 Segmentation results for ncuts . 85

28 Accidental use of the same function name in two different type

classes (left column) and in two different concepts (right column). . . 90

29 Comparison of concept-maps and type-classes 92

30 Abstract syntax of the Spad language 105

31 Evaluation rules of Spad statements. 112

32 The pipeline for performing AD. 119

33 The syntax of the core parts of Spad. 138

34 The syntax of the internal language. 141

35 The small step operational semantics of of the internal language . . . 142

36 Translation rules from Spad to to the internal language. 144

37 Definitions of the functions ∈ and ⊕. 145

38 The definition of the category ComplexCategory 146

xiii

FIGURE Page

39 The extension of the Spad grammar and translation rules to sup-

port user-defined predicates . 148

40 Rules for abstract interpretation of Spad programs. 151

1

CHAPTER I

INTRODUCTION

More than forty years ago Doug McIlroy proposed that families of reusable software

codes were necessary for developing large scale software [72]. He advocated a method

where a family of software codes would be available for programmers such that rather

than coding an algorithm by hand, a programmer could acquire the algorithm’s code

from a library of prewritten codes. This “software library” would provide not only

the implementations of different algorithms, but also implementations of alternate

versions of each algorithm. An implementation of an algorithm would be specialized

for some property such as speed, efficiency, numerical robustness, or ease-of-use. After

identifying a set of algorithms and data-structures necessary for an application, a

programmer composes the codes found in a software library into a program.

McIlroy’s vision for software libraries is widely embraced. All mainstream, general-

purpose languages such as Java, C++, and C#, have a large number of software codes

available in many software libraries, such as Java’s Platform Library [102], C++’s

STL [100], or C#’s System.Forms [26]. Software libraries provide a range of algo-

rithms and data-structures, some as simple as finding the lesser of two values, some

as complex as generating 3-D virtual worlds. There now exist many such software

libraries, for almost any given task.

Software libraries provide two important benefits to programmers. First, a pro-

grammer does not need as much time or effort to code an application, because codes

in the software library can be reused rather than redeveloped. Second, a programmer

can write increasingly larger and more sophisticated applications, because software li-

The journal model is Science of Computer Programming.

2

braries provide abstractions which allow the programmer to reason about and express

programs in terms of “higher level” concepts, rather than being occupied by “lower

level” concerns such as details of implementation of particular algorithms. These two

benefits of software libraries are essential to the development of modern software.

Even given the widespread use of software libraries and the advantages they

provide, the software industry continues to struggle with low quality, high defect

rates, and low productivity. The “software crisis” [72] identified forty years ago

continues to hold its grip. Frustratingly, one aspect of this crisis is due to the use of

software libraries, themselves. Using a software library requires a programmer to write

“glue” code to adapt the software library’s code to other codes in the application.

The complexity and size of the glue code can become substantial as the size of the

software increases. Furthermore, glue code often has a (hidden) computational cost:

it is possible for glue code to have a deleterious effect on the performance of the

whole program [75]. Similarly, the abstractions provided by a software library may

hinder performance, caused by, e.g., redundant checks of data validity and inefficient

“general case” implementations.

The size and complexity of the glue code, the negative impact to the performance

of a program because of the glue code, or from the use of library abstractions, may

force a programmer to write custom codes to re-implement the algorithms and data-

structures provided by a software library. Rewriting requires both time and expertise

on the part of the programmer, and increases the probability of defects in the program.

Furthermore, if rewriting requires development of new codes “in house” rather than

relying upon a library vendor, then there is a corresponding increase of maintenance

costs to cover the new codes.

This dissertation will explore techniques that support the construction of soft-

ware libraries with abstraction layers that do not impede efficiency, and where the

3

necessary glue code has low performance overhead. In particular, this dissertation

will describe advances in the design and development of generic libraries, software

libraries targeted to solve a class of similar problems in terms of active libraries, soft-

ware libraries that take an active role in the compilation of the user’s code [109]. All

of the methods described in this dissertation are motivated by efforts to construct

libraries to solve practical research and development problems. For each presented

technique, we describe its application to at least one problem domain and a software

library associated with that domain. The presentation of each technique will also

discuss the difficulties experienced in the use of “traditional” software library designs

to support the associated problem domains.

The next section will expand upon the background of software libraries and

introduce the new techniques for the design of libraries this dissertation presents.

A. Background

Software libraries are tools; we view the design of software libraries as an engineering

effort separate from the initial development of the algorithms and data-structures

which make up a software library. Determining the best way to implement, collect,

and compose algorithms and data-structures into a coherent software library depends

upon the goals of that library. For instance, a software library may be implemented for

clarity of code, for efficiency of operations, for numerical robustness, or for coverage

of a specific problem domain.

The traditional view of a software library is as a collection of functions and data-

structures encapsulating codes [117]. The role of a traditionally designed library is

passive; that is, the library is essentially an opaque object with an interface through

which the user can gain access to functionality of the library. Such an abstraction

4

boundary provides a host of benefits: modularity and increased programmer produc-

tivity, simplified reasoning about program behavior, separate compilation, etc. A

traditionally designed software library respects the abstraction boundary its interface

defines: the library provides a number of entry points that the user can call, but does

not include codes and data-structures which can observe the manner in which a user

calls the entry points. A traditionally designed library is thus not designed to take

advantage of the varying capabilities of client code of the library.

Some modern software libraries, such as Standard Template Library (STL) [93],

Matrix Template Library 2 (MTL2) [90], and Blitz ++ [108] diverge from the architec-

ture of traditionally designed software libraries: they observe, act upon, and interact

with the user’s code. They are active libraries [109, 117] because they participate in

the interpretation, optimization, and transformation of the user’s code during com-

pilation [110]. In some cases, the user of an active library can be more accurately

described as the client of the library, as the library transforms both the meaning and

structure of the user’s code.

This dissertation will focus on three aspects of active libraries:

1. Permeable interfaces which allow a library to observe the capabilities of the

client’s code so that, for example, the library can select alternate versions of an

algorithm based on the capabilities of the user’s code.

2. Non-intrusive adaptation and composition mechanisms allow components de-

veloped for a particular domain to be easily used with algorithms from different

domains, with minimal performance impact.

3. Library-directed transformation of client code allows the user to write code in

the most direct (obvious) way, while the library interacts with the compiler to

provide extra checking or transformation of the user’s code.

5

To clarify the use of permeable interfaces, non-intrusive adaptation and com-

position, and library-directed transformation in active libraries, we will discuss each

these three aspects of active libraries in the next few sections. First, to give the feel

of active libraries we describe a concrete example of the use of a particular library.

MTL2 provides a number of classes representing various kinds of matrices such as

symmetric, diagonal, and upper-triangular. MTL2 also provides several algorithms

which implement matrix operations, such as addition and multiplication.

matrix<float, diagonal<> >::type M, N, P;
// initialize N, P
M = N ∗ P;

Fig. 1. Example code fragment for the active library MTL2.

The code in Figure 1 shows the use of MT2 for the multiplication of a dense diagonal

matrix N by the dense diagonal matrix P, where the result of the expression is assigned

to the dense diagonal matrix M. The usual algorithmic complexity for matrix-matrix

multiplication is cubic in the number of rows (for square matrices). Because MTL2

can observe that the matrices are diagonal, it can generate better code. The resulting

executable code has linear algorithmic complexity in the number of rows [90]. Even

further, the successor to MTL2, MTL4 [36, 35], can be configured to resolve the

expression to a call to the Level 3 BLAS operation DGEMM [64]1.

1. Permeable interfaces

A library component that observes the capabilities of its inputs, i.e., the properties of

the types of the inputs, has a permeable interface. There are a number of mechanisms

1This feature was added to improve performance; however, it was superseded by
the fact that the MTL4 is second only to the Goto library [34], and vastly outperforms
ATLAS, Lapack and other Fortran and C-based libraries [35].

6

implementing permeable interfaces, including, but not limited to, traits classes and

tagging [77, 5], and techniques like expression templates [108, 106]. Permeable inter-

faces let a library designer reduce the number of explicit annotations required in the

use of a library component. Below, we show code which compares use of MTL2, on

the left, to functionally equivalent code using Lapack, on the right. Assuming that A,

B, and C are all matrices, the codes effect a multiplication and assignment operation

between the three matrices (source: [82]):

matrix C = A ∗ B;

cblas dgemm(ML BLAS STORAGE,

CBlasNoTrans, CBlasNoTrans,

A.rows(), B.cols(), A.rows(),

1.0, A.raw data(), A.data stride(),

B.raw data(), B.data stride(),

0.0, C.raw data(), C.data stride());

The algorithmic complexity and run-time performance of the above codes are roughly

the same [106, 35, 90]. Both codes use their inputs to select between alternate imple-

mentations of the multiplication-assignment algorithm. However, the MTL2 compo-

nent observes the information needed for selecting a particular implementation of the

algorithm from the types of its inputs — whereas the Lapack component requires that

the client specify the information necessary for selecting a particular implementation

of an algorithm by passing in explicit arguments. We observe that the MTL2 code,

on the left, has a distinct advantage over the Lapack code, on the right, in terms of

notational clarity. As a result, we can expect the code to be easier to maintain, and

simpler to write.

7

2. Composition and adaptation

Library composition is the use of data-structures and functions from two or more

libraries for a common task. For instance, the dense matrix data-structures defined

by the MTL4 can be passed as arguments to Lapack algorithms which expect dense

matrix data-structures defined by Lapack. The reuse of Lapack algorithms for MTL4

data-structures results in significant savings in development and debugging time.

Ideally, such reuse has no cost either in terms of performance or maintainability to

the user.

The prerequisite of library composition is that the data-structures and algorithms

must be compatible. However, when the components of libraries are incompatible an

adaptation can be used to make the components compatible. An ideal adaptation

mechanism should be non-intrusive, i.e., the mechanism should not require the modi-

fication of the component being adapted. Non-intrusiveness is crucial since the source

code may not be available, or changes to the component will cause other parts of the

program to fail. In addition, adaptation mechanisms should not incur unnecessary

performance costs. Such costs come from two sources: (1) the cost of the adaptation

mechanism, itself; and (2) the costs of converting data-structures and adding missing

functionality necessary to make the components compatible. The first cost can be

influenced by programming language technologies and library design, while the latter

cost is inherent to the adaptation.

Adaptation mechanisms which have a non-zero cost can lead to an overall de-

crease in the performance of a program. One possible reason for the decrease in

performance is deeply stacked layers of adaptations. This is because each layer, by

itself, has a small cost but the sum of the costs of the layers is large [75]. An example

is the translation of names (identifiers) of functions. Each time a function is trans-

8

lated, for example, by calling another function, there is a cost in manipulating the

call stack, which can be quite large compared to the cost of function, itself.

Some adaptations have an inherent cost because the adaptation must include

additional functionality or data-structures to make components compatible. These

adaptations can still provide important benefits both in terms of code re-use and total

performance gains, if appropriately used. An example is the adaptation between the

Parallel Boost Graph Library (PBGL) [41] and the Iterative Eigensolver Template

Library (IETL) [104]. As shown by Breuer et al. in [11], data-structures from the

domain of iterative eigensolvers can be adapted to be compatible to data-structures

from the domain of parallel graphs. This means that the effort of writing parallel

algorithms and data-structures for the domain of graphs (PBGL) can be re-used for

the domain of iterative eigensolvers (IETL). This adaptation results in significant

performance improvements for the IETL due to the increase in parallelism.

Without composition, the benefits of software libraries are diminished. Non-

intrusive and low cost adaptation mechanisms increase the scope of possible compo-

sitions by removing the mismatch between semantically equivalent but syntactically

differing data-structures and functions.

3. Library-directed transformation

We define library-directed transformation as the manipulation of data-structures rep-

resenting the parse-trees of expressions [110]. Library-directed transformations consist

of two parts: first, there must exist mechanisms to acquire representations of expres-

sions as data-structures; and second, those data-structures should be manipulated

for the purpose of improving run-time performance, providing stronger guarantees

against memory leaks, etc.

An example of a mechanism to acquire representations of expressions as data-

9

structures is “expression templates” [35, 36, 77, 107]. Expression templates are im-

plemented using a combination of parametrized data-structures and operator over-

loading. For instance, the following function could be part of an expression template

library to build a data-structure representing multiplication.

template <typename E1, typename E2> // some types E1 and E2

mul op<E1, E2>

operator ∗ (E1 const& e1, E2 const& e2) { // any multiplication

return mul op<E1, E2>(e1, e2); // mul op represents multiplication

}

Instead of immediately computing the product of the values “e1” and “e2”, the

operator “*” returns the data-structure “mul_op” which represents the multiplication

of the arguments. Similar data-structures and functions can be written for addition,

subtraction, division, general unary and binary operations, etc.

The manipulation of data-structures representing expressions can improve the

run-time performance of a program. For example, an expression structure “B*C+B*D”

for large, dense matrices “B”, “C”, and “D” can be transformed into the more run-

time efficient expression “B*(C+D)”, assuming distributivity of the multiplication over

addition. One library that uses such transformations is MTL4 which uses loop un-

rolling, tiling, specialized multiplication operations, etc., to produce codes whose

run-time performance is at least as fast, and sometimes much faster than equivalent

FORTRAN77 codes [35].

Combining domain specific notations and library-directed transformations allows

an active library to substitute for domain expertise [110, 107]. For instance, MTL4

uses the operators “*” and “+” for the multiplication and addition of any two kinds of

matrices, i.e., dense, sparse, upper-triangular, etc. Expressions using those, and other,

operators are optimized for run-time performance by MTL4. When the user writes

10

an expression such as “C = A * B” MTL4 produces efficient code for the expression

dependent upon the types of the elements of the matrices, the storage specification

of the matrices, if the matrices are upper- or lower- triangular, etc., where the user

does not need to know about these optimizations.

B. Dissertation statement

In this dissertation we view a software library as more than just a package of algo-

rithms and related data-structures: we view the software library as a program which

can benefit from abstraction. With this view in mind we can ask what data-structures

and algorithms we can describe to support the development of software libraries. For

instance, what algorithms and data-structures allows us to write permeable interfaces?

More importantly, are these data-structures and algorithms general to any software

library? Similarly, what features allow us to easily write — and easily maintain —

the composition of library components? Can we generalize the notion of composition

and write down best-case practices for any software library? Is it possible to write

software libraries that participate in some of the roles that are classically only done by

the compiler, i.e., compile-time transformations and optimizations? Are such libraries

(or the notions of such libraries) portable across compilers?

In the preceding sections we have described a number of capabilities of active

libraries. The techniques for implementing active libraries are relatively well estab-

lished — STL, perhaps the first significant active library, is more than 15 years old.

However, this dissertation argues that the tools available to active library writers —

the algorithms and data-structures for writing software libraries — are still limited.

Therefore, new techniques, clarification and augmentation of old techniques, and new

language features are needed to aid the implementation of active libraries. The central

11

theme of all of the chapters is the enumeration of recipes for constructing software

which observes the capabilities of the inputs to the libraries’ components, and then

performs transformations to the user’s code and the library’s implementations of al-

gorithms based on those capabilities. The remaining chapters of this dissertation will

then present advances in each of the three capabilities of active libraries for generic

programming above discussed:

• Chapter II will describe a framework which generalizes the selection of associ-

ated datatypes from components. In particular, the framework is implemented

to retrieve different categories of iterators from collections.

• Chapter III develops techniques, idioms, and best practices the use concepts

and concept_maps, new language features in the up-coming revision of C++

called C++0x, for the construction of low- and zero- cost adaptations.

• Chapter IV describes an active library for computing the algorithmic differen-

tiation of client code. This framework demonstrates the use of library-directed

transformations in the Spad language [58].

• Chapter V formalizes the generic programming notion of (local) specialization

within the language Spad. Specialization is an important language feature used

in the construction of active libraries.

Each chapter will individually cover related work and background material; the

dissertation will conclude in Chapter VI.

12

CHAPTER II

A PARAMETRIZED ITERATOR REQUEST FRAMEWORK FOR GENERIC

LIBRARIES

The iterator abstraction is central to many generic libraries, such as the C++ Standard

Template Library (STL). Generic algorithms are commonly specialized with regard

to the kinds of iterators available. There is, however, no mechanism for selecting

the kind of iterator that a container should provide for a particular algorithm. We

propose a framework where an algorithm can query for the categories of iterators

a container supports, and select the most appropriate iterator. This is a new axis

of parametrization for STL-like generic libraries. The motivation for the framework

comes from our work with the CCTBX and TEXTAL Protein Crystallography (PX)

libraries. The models of the data in this domain provide multiple, complex itera-

tion schemes, and the efficiency of many algorithms depends crucially on selecting a

suitable scheme. The framework allows individual algorithms to access the preferred

iteration scheme over the container it uses. We describe the framework with examples

in the context of the STL and the PX libraries.

A. Introduction

Generic programming emphasizes algorithm specialization, which essentially means

providing many implementations for the same functionality. A specialization of a

generic algorithm places more requirements on its inputs and can make more as-

sumptions on them, possibly enabling a more efficient implementation. A simple

example is finding an element in an unsorted versus in a sorted sequence: the former

requires linear run-time with respect to the length of the sequence, the latter only

logarithmic, since the assumption of sortedness allows an implementation to use a

13

binary search strategy.

In generic libraries, such as C++’s Standard Template Library [97] (STL), algo-

rithm specialization is used for many algorithms whose inputs are types conforming to

the STL’s iterator concepts. For example, the distance function—which measures

the distance between two iterators—is defined for all types that meet the require-

ments of the InputIterator concept. The least specialized version of distance is

implemented by counting the number of times the first iterator is incremented to

reach the second iterator. A specialization of this distance-computing algorithm—

operating in constant time—is provided for RandomAccessIterators. Due to the

random access capability of the iterators, the implementation of this specialization is

a simple subtraction. Typically, algorithm specialization takes place automatically:

the generic library selects the best available specialization for the types of the inputs

to the algorithm.

STL algorithms operate on sequences described as pairs of iterators. The source

of a sequence is often a container which provides mechanisms (such as the begin

and end functions) to present the contents of the container as a sequence. When

using these mechanisms the container provides the most powerful iterator types it can

offer in order to enable the most efficient algorithms specializations. This behavior

occurs because of the expectation on the part of the writer of active libraries that the

library will be composed by the end-user. For example, v.begin() for a v with type

std::vector gives a RandomAccessIterator, whereas l.begin() for an l with type

std::list is only capable of providing a BidirectionalIterator. The result is

that the two lines below eventually invoke different implementations of the distance

function. The first implementation is a constant time operation with respect to the

distance between the iterators, and the second is linear:

14

distance(v.begin(), v.end());

distance(l.begin(), l.end());

Algorithm specialization along the hierarchy of iterator concepts is not the only

opportunity for specialization. In particular, in a design where algorithms also operate

on containers and not solely on iterators, the selection of the iteration scheme for a

particular container can be subjected to specialization, and can result in performance

gains. Note that in the active libraries built for many domains the norm is to pass

data to generic algorithms as containers, not iterators; graphs [89] and matrices [90]

serve as examples of such data. In Section 4 we describe data structures in the domain

of protein crystallography where this is true as well.

When requesting a sequence from an STL container (with the begin and end

member functions), the container typically provides iterators that conform to the

most refined iterator concept possible, in terms of algorithmic performance. In STL

containers there is a strong correspondence between the most-capable iterator a con-

tainer provides and the most-refined iterator a container provides. Not all containers

have such a strong correspondence between most-capable and most-refined: it might

be more efficient to provide a less capable iterator scheme, because the possibility

exists for the container to implement the less capable iterator in a more efficient way.

For example, consider a generic image type that represents a two-dimensional raster

image with an arbitrary number of channels, parametrized over the value type of the

channels. Examples of concrete instances of such an image type include a one-bit

black and white mask, an RGB or CMYK bitmap, or images with a larger number

of color channels. Such an image type can be implemented as an array whose size is

the product of the width, height, and the number of channels. Assume we lay out the

image data in this array as a list of raster lines, where a raster line is a list of pixels,

15

and where a pixel is a list of values from each channel. Consider visiting each channel

value and performing some independent operation on it. If the only iteration scheme

provided by the image type directly models the hierarchy “raster line–pixel–channel

value”, a function visiting each channel value requires three nested loops:

raster line iterator rtr = image.begin();

raster line iterator rnd = image.end();

for (; rtr!=rnd; ++rtr) {
pixel iterator ptr = rtr→begin();

pixel iterator pnd = rtr→end();

for (; ptr!=pnd; ++ptr) {
channel iterator ctr = ptr→begin();

channel iterator cnd = ptr→end();

for (; cnd!=ctr; ++ctr) some operation (∗ctr);
}
}

This hierarchy may not, however, be necessary for an operation performed with the

channel values. In such a case, the iteration scheme will perform a non-trivial amount

of unnecessary work, compared to certain to the computational cost of the function

object some_operation(). This is because of the mismatch between the most re-

fined iterator for images — which provide the most convenient iteration scheme for

programmers, and the most-capable iterators, which provide the most efficient access

to the underlying data. A more direct and efficient mechanism for visiting all chan-

nel values is to iterate over the underlying contiguous memory directly, ignoring the

hierarchical structure:

channel iterator ctr = begin<channel>(image);

channel iterator end = end<channel>(image);

for (; cnd!=ctr; ++ctr)

some operation (∗ctr);

16

The begin<channel> and end<channel> functions are requests for a non-hierarchical

iteration scheme (see Section C). This iteration scheme is considerably faster (we

report timing results in Section 1).

Requesting a simpler iterator scheme for efficiency is the “dual” of algorithm

specialization over iterator schemes. If equivalent algorithmic functionality can be

provided with the same complexity guarantees with a simpler iterator, then it is

preferable to use the simpler iterator as it will have improved performance. For

example, the exact same code (the STL’s find algorithm) has drastically different

performance characteristics depending upon which iteration scheme is used. Experi-

mental results can be found in Sections 2 and 3.

In this chapter, we propose a lightweight framework for algorithms to request a

particular iterator scheme from a container or sequence source. The library consists of

a small number of functions forming the API for the client of the library, and requires

the algorithm and container implementations to follow a small set of conventions — a

relatively light burden for library developers. The API is designed in such a way that

it can be non-intrusively and retroactively added to a container library. The addition

of this API to a container library helps to normalize the interface for the request of

iterators for all container libraries which use the API.

The core of the framework is a set of tag structs which we call iterator tags.

The global functions begin and end parametrized with a tag and a container give

access to the iterator schemes that a container provides. In essence, the proposed

framework suggest a new degree of parametrization to STL-like generic libraries. We

suspect that it is possible to identify a set of iterator tags that could be established

similar to the iterator concepts in the STL. We do not suggest such a set in this

dissertation, but describe a handful of useful iterator schemes. We identify situations

where parametrizing the iteration scheme provides notable benefits. In describing the

17

framework, we assume some familiarity with template metaprogramming, as described,

e.g., in [1].

The API we suggest allows the use of “the right iterator in the right place” [65]

by providing a uniform method for requesting iterators from containers. The API

allows the selection of the iterator category to be parameter of a generic function,

allowing the library writer to defer decisions about the category of an iterator to the

user. This is an especially important capability since, in many cases, making such

a choice at the time of writing a function can create unsatisfactory trade-offs in the

implementation of the function.

B. Background and motivation

In the STL [100], access to the iterator of a container is provided through the member

functions begin and end. Some containers support iteration backwards with the

members rbegin and rend. Additionally, STL containers overload these functions

for the case where the container is a const object. Any single container in the STL

can thus provide up to four different iterator types (but essentially only two iteration

schemes). For any particular STL container, these schemes are always the most

capable iterators that the container can offer, for example, std::vector provides

RandomAccessIterators, and std::list BidirectionalIterators [100]. The STL

containers are thus closely tied to the iterator scheme they implement and to the

iterator concept the return types of their begin and end functions provide. Even if

a container could provide multiple iteration schemes over its data, the STL defines

no generic interface for accessing them. An important side-effect is that the STL has

become the de facto standard for defining the interfaces of containers and generic

algorithms in active libraries such as the BGL, MTL (2, 4), etc.

18

In order to take advantage of alternative iterator schemes, we need a mecha-

nism to access such schemes. A straightforward mechanism for doing this would

be to provide a specific function name for each iteration scheme, as is already done

with rbegin and rend. However, dedicating a specific function name for each itera-

tion scheme does not work well with generic programming: function names become

hard-wired in the implementations of generic algorithms. When writing a generic

algorithm, the iteration scheme is not necessarily known. For example, the following

code shows a function which is parametrized by the container type; the algorithm

requests the iterators from the container and performs a search.

template <typename Ctr>

void fun (Ctr& ctr, ...) {
typename iterator traits<Ctr>::iterator f = ctr.begin(), l = ctr.end();

// ...

search(f, l, v);

// ...

}

The particular iterator selected from the container ctr cannot change. For example,

the end-user may want the container to be searched in reverse-order. This can only be

accomplished in an indirect fashion: (1) rewrite the function; (2) reverse the container;

or (3) build some proxy to forward calls to begin and end to rbegin and rend.

Using distinct member functions for each iterator scheme also goes against the

principle of specialization. Algorithm specialization automatically selects the best

available implementation for an algorithm, but gracefully degrades to a slower version

if the requirements of the faster ones are not met. Similarly, we wish to allow a

request for a particular iterator scheme, but settle for a less specialized one, if the

exact requested one is not supported by a particular container.

The STL implements algorithm selection using tag dispatching : a fixed set of

19

tag structs which each correspond to a particular iterator concept. The tag of any

iterator type can be accessed via the iterator_traits machinery. The expression

iterator_traits<Iter>::iterator_category is guaranteed to denote the tag of

the type Iter, if Iter conforms to one of the iterator concepts [100]. Similar to

iterator categories, we use tags to refer to different iterator schemes. Our iterator

request framework defines the global functions begin and end that take a container

type as their function parameter, and additionally a type argument specifying the

requested iterator tag. In this way the iterator tag is not a fixed part of the signature.

The iterator tag can be, for example, a type parameter at the call site to the begin and

end functions—a generic algorithm can itself be parametrized over the tag, allowing

the caller of the algorithm to specify the tag requested in the interior of the algorithm.

This allows clients of the generic algorithm to “reach through” the algorithm to specify

functionality.

C. Iterator request framework

The iterator request framework consists of a family of begin and end functions, a

metafunction that computes the type of the iterators returned by the begin and

end functions, and some helper functions and metafunctions. We first describe

the metafunction iterator, shown in Figure 2, that specifies the type of the it-

erators for a given iterator tag–container pair. By default, a metafunction called

iterator<Tag, Container>::type resolves to the member type iterator in the

type Container. The default is thus to access the iterator member type in the STL

containers. To make the iterator types of other iteration schemes accessible, a generic

library must specialize the iterator template for the relevant iterator tag–container

type pairs.

20

template < typename Tag, typename Container >
struct iterator {

typedef typename Container::iterator type;
};
template < typename Arg >
struct const {

typedef typename Arg::const iterator type;
};
template < typename Tag, typename Container >
struct const < iterator<Tag,Container> > {

typedef typename Container::const iterator type;
};

Fig. 2. The iterator and const_ metafunctions for the framework.

The second metafunction, const_, is for convenience; it provides access to the

type of the iterators implementing the constant version of the requested iteration

scheme. The default is, analogously, the const_iterator member type of the con-

tainer parameter. We provide const_ to match the C++’s const qualifier.

In addition to the above metafunctions, the interface to the library includes the

functions begin, end, and const_begin, and const_end. The first two functions

provide both constant and non-constant access to the iterators. The latter two func-

tions are included to aid in situations when a constant iterator scheme is needed,

but where the current context is non-constant. The addition of the const_* form of

the interface functions does not violate our principle of providing generic names for

access to iterators: the const qualifier is a built-in language feature separate from

the usual algorithmic or data-structure concerns, such as reverse, or random-access.

All four functions are parametrized over both an iterator tag and a container type.

Their return types are computed with the iterator metafunction discussed above,

and shown in Figure 2.

Figure 3 shows all versions of the begin interface functions; the implementations

21

of the end functions are analogous. All the interface functions merely forward the

calls to appropriate tagged_begin or tagged_end functions, implementing the three

different versions of begin and end with only two “back-end” functions. This means

less work for the container implementer.

template < typename Tag, typename Container >
typename iterator<Tag,Container>::type
begin (Container& ctr) {

return tagged begin(ctr,Tag());
}
template < typename Tag, typename Container >
typename const <iterator<Tag,Container> >::type
begin (Container const& ctr) {

return tagged const begin(ctr,Tag());
}
template < typename Tag, typename Container >
typename const <iterator<Tag,Container> >::type
const begin (Container const& ctr) {

return tagged const begin(ctr,Tag());
}

Fig. 3. The set of begin functions for the framework.

The tagged_begin and tagged_end functions are shown in Figure 4. The default

versions of these functions forward to the container’s member functions begin and

end, using the current STL convention. The second function is the same as the

first, except that the computed return type is constant. It is up to the container or

algorithm implementer to overload these functions to return the desired iterator for

a particular iterator tag.

In sum, to add a new iterator scheme, one metafunction must be extended with

a new class template specialization (iterator) and with four function template over-

loads (the const and non-const versions of the tagged_begin and tagged_end). Codes

showing the implementations of the specializations and overloads are shown in the

22

template < typename Tag, typename Container >
typename iterator<Tag,Container>::type
tagged begin (Container& ctr, Tag) {

return ctr.begin();
}
template < typename Tag, typename Container >
typename const <iterator<Tag,Container> >::type
tagged const begin (Container const& ctr, Tag) {

return ctr.begin();
}

Fig. 4. The set of tagged begin functions for the framework.

next section.

D. Examples

In this section we demonstrate the use and benefits of the iterator request framework

with three examples. The first one is the image example discussed in Section A, for

which we present some run-time performance information; the second is in the context

of the STL; and the third is our motivating example taken from the computational

protein crystallography context.

1. Timings for images

In Section A we presented two alternative schemes of iterating over the pixels of

an image. To demonstrate the importance of being able to select the most suitable

iteration scheme for such image containers, we measured the performance difference

of the two different iteration schemes, which we refer to as hierarchical and linear.

Our implementation of the image was a wrapper around the std::vector. Access

to the iterators are through the framework’s begin and end functions, using either of

the tags hierarchical or linear. Each of the hierarchical iterators stores a pointer

23

to its parent iterator and an integer to the offset from the parent’s offset. That is,

the raster iterator stores a pointer to the image and the raster-line it is representing.

A pixel iterator stores a pointer to its parent raster-line iterator and an offset into

that raster-line to the pixel. And the channel iterator stores a pointer to its parent

pixel iterator and an offset into the pixel.

We assume that we have a data-structure representing an raster-image with an in-

terface providing (at least) two iterator schemes. The first scheme is for access to hier-

archical iterators through the functions hierarchical_begin and hierarchical_end

and the second is for access to linear iterators through the functions linear_begin

and linear_end. The implementation of the iterator metafunction and the func-

tions for tagged_begin for hierarchical iterators are shown below.

struct hierarchical {};
template <typename Container>

struct iterator<hierarchical, Container> {
typedef typename Container::hierarchical iterator type;

};
template <typename Container>

struct const < iterator<hierarchical, Container> > {
typedef typename Container::const hierarchical iterator type;

};
template <typename Container>

typename iterator<hierarchical, Container>::type

tagged begin (Container& ctr, hierarchical) {
return ctr.hierarchical begin();

}
template <typename Container>

typename const < iterator<hierarchical, Container> >::type

tagged const begin (Container const& ctr, hierarchical) {
return ctr.hierarchical begin();

}

The first line of the code defines the iterator scheme tag for hierarchical iterators.

24

The next eight lines of code, lines 2–9, define the template specialization of iterator

for any container that supports a hierarchical iterator, and access to that itera-

tor via the member functions hierarchical_begin() and hierarchical_end().

The remainder of the code, lines 10–19, defines the functions tagged_begin and

tagged_const_begin which, again, are defined for any container that satisfies the

concept of a raster-image with member functions to gain access to the first and

last hierarchical iterator. The definition of the functions tagged_const_end and

tagged_end are similar.

Size, Channels 1 3 6

128×128 1.75 2.15909 2.24436

256×256 1.74011 2.15009 2.23694

512×512 1.73558 2.14746 2.24312

1024×1024 1.73084 2.15235 2.25039

Fig. 5. Iterator execution execution times. The ratios of the execution time of the hier-

archical iteration scheme over the execution time of the linear iteration scheme,

measured by timing the execution times of a function essentially equivalent to

the STL’s fill. The columns are the number of channels, and the rows are

the number of pixels.

We measured the performance of iterating through images with varying width,

height, and the number of channels using both the hierarchical and linear iteration

schemes. Our test algorithm was a variation of the STL fill algorithm: we assigned

the value “127” to each channel value in the image. The measured data are depicted in

Figure 5, which shows the ratios of execution time of the hierarchical iterator scheme

implementation to that of the linear iterator scheme implementation. The hierarchical

iterator is generally about twice as fast as the linear iterator on a PowerBook5,6 G4

at 1.67GHz with 2GB of RAM.

25

2. Alternate run-time characteristics for std::find

In the above example with images, the selected iterator scheme affected the implemen-

tation of the algorithm. In this section, we show how changing the iterator scheme

can affect the run-time performance, even run-time behavior, of the same piece of

code. In particular, we take a linear deterministic algorithm and convert it into a Las

Vegas algorithm. A Las Vegas algorithm is a randomized algorithm that terminates

when some stopping condition is met or a certain number of iterations have occurred.

The input arguments of the STL find algorithm must be InputIterators, at

minimum. The find algorithm implements a straightforward sequential search. The

run-time performance for find is dependent upon the distribution of the data in

the sequence being iterated over, leading possibly to the worst-case behaviour being

realized frequently. In such a case, a randomized algorithm, e.g., a Las Vegas algo-

rithm, can possibly guarantee a better average complexity of iterator increments and

dereferences.

With the iterator scheme selection framework we can parametrize a generic algo-

rithm over the iteration scheme, allowing the client to choose the iteration scheme to

be used in the find algorithm. In the following example, we associate the iterator tag

linear with the sequential iterator scheme and the las_vegas with the Las Vegas

iteration scheme:

template <typename Tag, typename Container>

void uses find (Container const& ctr,

typename Container::value type const& v) {
...

std::find(begin<Tag>(ctr), end<Tag>(ctr), v);

...

}

Note that the uses_find function does not need to change in order to change the

26

iterator scheme for std::find; the Tag type parameter tunnels through to find, as

demonstrated by the following code fragment:

std::vector<int> a(1000,0), b(1000,1);

a.insert(a.end(), b.begin(), b.end());

a function that calls find<linear>(a, 1);

a function that calls find<las vegas>(a, 1);

3. Alternate run-time characteristics for std::find II

In the above example we showed how to change the find algorithm from being de-

terministic to be being non-deterministic. In this section we show how to change

the algorithmic complexity of find from linear to logarithmic with respect to the

number of elements in the sequence. To do this we rely on the fact that sorted

a random-access sequence of elements with a strict-weak ordering can be searched

using a binary-search algorithm.

Our solution requires that a specialization of find exists which resolves to a call

to lower_bound; such a version of find would need to be integrated into a library,

e.g., the STL, and could be implemented like this:

template <typename Iter, typename Tag>

Iter find (Iter first, Iter last,

typename Iter::value type const& v, ra sorted iterator tag) {
return lower bound(first, last, v);

}

Note that this implementation requires that the iterator category for sorted random-

access iterators has a tag ra_sorted_iterator_tag. Because the iterator category

tag is defined by a specialization of the STL’s iterator_traits template metafunc-

tion, we must define a mechanism for retroactively ‘changing’ the iterator_category

associated type of the container’s iterator. This means we must have the following:

27

(1) a specialization of the iterator selection framework for sorted random-access it-

erators and containers; and (2) a way of retroactively changing the associated type

iterator_category of an iterator.

We begin by defining a specialization of the iterator template metafunction for

random-access iterators and a parametrized iterator scheme tag ra_sorted:

template <typename Tag> struct ra sorted {};
struct ra sorted iterator tag {};
template <typename Ctr, typename Tag>

struct iterator<ra sorted<Tag>, Ctr> {
typedef ra sorted iterator proxy<

typename iterator<Ctr::iterator, Tag>::type> type;

};

We do not show the const version of the iterator. The iterator scheme tag ra_sorted

is instantiated with the iterator scheme tag of the underlying random-access iterator

that will be extracted from the container. The template metafunction iterator is

specialized over the parametrized tag ra_sorted and some container, and computes

the type of the resultant iterator: essentially, this specialization of the template

metafunction iterator wraps the container’s random-access iterator into of a proxy

object called ra_sorted_iterator_proxy. This proxy object implements a random-

access iterator by owning a random-access iterator from the container, and forwarding

calls made to the proxy object iterator to the container’s random-access iterator. The

iterator category of ra_sorted_iterator_proxy is ra_sorted_iterator_tag.

To finish this adaptation we must have appropriately defined versions of the

functions begin and end. For instance, the back-end function tagged_begin could

be implemented like this:

28

template <typename Tag, typename Container>

typename iterator<ra sorted<Tag>, Container>::type

tagged begin (Container& ctr, ra sorted<Tag>) {
return iterator<ra sorted<Tag>, Container>::type(tagged begin(ctr, Tag()));

}

The function tagged_begin takes a container and the instantiated ra_sorted<Tag>

tag and returns the proxy iterator object. The function is implemented by construct-

ing an proxy object with the result of calling the function tagged_begin recursively,

where the tag is the parametrized tag Tag.

The following code fragment demonstrates the use of the ra_sorted parametrized

iterator scheme:

std::vector<int> v;

... // v is sorted

a function that calls find<ra sorted<linear> >(v, 1);

4. Protein crystallography

The impetus for the iterator request framework was from the design of generic algo-

rithms for computational protein crystallography (PX). This section describes how

without such a framework writing generic code leads to unacceptable trade-offs: the

programmer must either depend on library-specific data structures, or accept an un-

reasonable loss of efficiency—a performance penalty of up to a factor of 30. We first

briefly introduce the field of protein crystallography, followed by the discussion on im-

plementing one of the key algorithms of PX libraries. We then demonstrate the use

of our framework that avoids the above trade-off, achieving simultaneously generality

and efficiency.

29

a. Background information on PX

In computational protein crystallography, one of the fundamental data structures is

the electron density container. This is a container which represents the “presence”

of an electron at a particular point in space—literally, the probability of an electron

being at a given point in space. The data comes from bombarding a crystal of a protein

with X-Rays [83, 48]. The electron density is used in algorithms and programs to

help the crystallographer construct a model of the protein under investigation, to be

used in drug discovery, determining novel structures, and so forth [83].

The libraries we primarily work with are the PX packages TEXTAL [49] and

CCTBX [47]. TEXTAL is a tool chain that automatically builds protein models

from electron density data [49]. CCTBX is a library of algorithms and other tools

to aid in the development of PX software [47]. Within CCTBX and TEXTAL—as

with other PX libraries not considered here [13, 18]—the electron density container

has numerous different representations [83, 48, 47, 49], leading to numerous ways of

iterating over the data.

In TEXTAL and CCTBX the iterators are also coordinates in 3D space, i.e., the

type which represents an iterator with the normal semantics (increment, dereference),

is also a type which implements the semantics of a 3-dimensional vector, or an offset,

depending on the iterator. Access to the data in an electron density container is then

provided either by dereferencing the iterator in the normal way, or by “passing” the

iterator as a coordinate to the electron density container, usually by the operator [].

The two concepts are mixed to provide programmers’ the syntactic convenience of

iterators and, on the other hand, coordinate access to the same data when that is

more natural. There are a large number of coordinate systems—and their equivalent

iterator schemes—for the electron density container which arise from the various

30

descriptions of the topology of the electron density data.

The large number of iteration schemes arises because there are four coordinate

systems and three so called “symmetry” representations. The coordinate systems are

known as the linear-array, grid, fractional, and cartesian system. Of these, the grid

coordinate system—and its equivalent iteration scheme—is the default system for the

CCTBX and TEXTAL libraries. The grid-coordinates essentially represent the data

as a 3-dimensional array. The linear-array is a 1-dimensional array, and the underlying

structure which holds the data. The fractional and cartesian coordinate systems are 3-

dimensional systems which are used to conveniently represent the underlying topology,

and “real” space, respectively. All of the coordinate systems and iteration schemes are

necessary, and should thus be accessible to the client of these libraries [13, 18, 47, 49].

For each coordinate system there are three levels of increasing symmetry: non-

symmetric, translation-independent, and asymmetric. The symmetry occurs due to

the mechanism used to gather the PX data [83, 48]. Intuitively, the symmetries can

be thought of a pattern used for tiling: non-symmetric means to not tile; translation-

independent means to use use squares without any features (a checker-board without

colors); and asymmetric means to use the smallest, non-repeating portion. Figure 6

depicts the symmetry classes with a simplified example. The four coordinate systems

and the three symmetries amount to ten—we exclude the two higher symmetries for

the linear-array coordinate system—different RandomAccessIterators possible for

any electron density container.

Each iterator type is useful depending upon the algorithm in question. For exam-

ple, since negative values are not well defined for electron density, some algorithms [49]

set negative density values to zero; this can only be done with the linear-array or grid

coordinate systems, because only those iterators provide mutability. Real-space re-

finement, a method to make the modeled protein fit better into the electron density

31

R

R R

R R
R R

R

R

R R

R R

R R

R

(2)

(1)

(3)

�
�
�
�
�
�
�
� �

�
�
�
�
�
�
�_ _ _ _ _ _ _ _ _ _ _

Fig. 6. The three types of symmetry. The image represents a finite subset of the

infinite symmetric plane. Box 1 (dotted line · · ·) represents the asymmetric

symmetry. Box 2 (using a solid line —) represents the translation-independent

symmetry. Box 3 (using a dashed line −−) represents a non-symmetric subset.

In theory algorithms that operate on the asymmetric unit should be faster

because they cover less data; in practice, the cost of discovering the proper

symmetry operator to map the data back into the asymmetric unit more than

offsets this.

data, is a critical technique in PX that relies heavily on the cartesian coordinates.

This is because cartesian coordinates have an intuitive notion of distance and direc-

tion [33, 53]. Translation-independent and asymmetric symmetries, which are most

naturally expressed in the fractional coordinate system, are useful in isolating a unique

model [2].

b. Density interpolation algorithm

The density interpolation (DI) function is a critical algorithm used in PX. It computes

a electron density value at an arbitrary coordinate in space based on the known stored

electron density values surrounding that coordinate. The DI algorithm is invoked,

32

e.g., in the inner loop of the real-space refinement algorithm [33] that fits a model

into the electron density data, and must therefore be efficient. This necessitates

several different iterator schemes for accessing data in the electron density container.

In particular, the non-symmetric symmetry can dramatically benefit from using the

linear-array coordinate system.

The iteration selection framework gives access to many iterator schemes, which

allows an implementation of an efficient DI algorithm in a generic fashion. The

pseudo-code shown in Algorithm 1 outlines the computation of an interpolated elec-

tron density value at a given coordinate.

input : P coordinate; E electron density

output: V linearly interpolated value

grid-point ← convert-to-grid-coordinate-system (P);

grid-iters [8] ← get-iterators-surrounding (grid-point);

values [8] ← get-values-of (grid-iters);

distances ← get-distances-to-grid-iters (grid-point, grid-iters [0]);

V ← linearly-weight-values-based-on-dist. (distances, values);
Algorithm 1: Eight-point linear interpolation

The algorithm differentiates between a grid coordinate system point, and a grid

coordinate system iterator. The former is some arbitrary vector in 3-dimensional

space defined by the grid coordinate system. The latter is a dereferenceable and mu-

table iterator of the grid iterator scheme, pointing to a value stored in memory. To

compute the interpolated density, the algorithm first converts the coordinate from

its given coordinate system (cartesian, fractional, etc.) to the grid coordinate sys-

tem. The algorithm then computes the coordinates for the eight grid coordinate

system iterators which surround the given point. Then, the values of the iterators are

acquired—this can be a non-trivial computation, potentially exploiting the asymmet-

ric, translation-independent, or non-symmetric symmetries. The distance from the

33

point whose value is being interpolated to the “lower-left” grid iterator is calculated,

and six weights are computed from the components of the distance as depicted in

Figure 7.

⊥⊥⊥

,α 1− α

β

1− β

γ

1− γ

������������������

�������������������

�������������������

�������������������

��
��

��
��

�

�����

��

Fig. 7. The eight-point interpolation algorithm. (1) Given an arbitrary point in space

(the sphere “,”), (2) find the eight surrounding grid iterators/coordinates,

and (3) measure the distance from the given point to the “lower-left” itera-

tor (marked “⊥⊥⊥”). The distances—α, β, γ—are used to weight the values

of the eight coordinates to find the linearly interpolated value. Finding the

eight surrounding points may require finding symmetric copies which are pos-

sibly “far away” in the the underlying data, necessitating costly computations.

For the non-symmetric case no computations are needed, for translation-inde-

pendent data the computations are a modulus operations, but for asymmetric

data searching a list of 4×4 rotation-translation matrix operators is required.

Because TEXTAL and CCTBX do not have efficient algorithms to find the

operator, asymmetric algorithms are almost always slower than their transla-

tion-independent equivalents, even though there is less data.

34

c. Generic density interpolation using iterator selection

The most efficient way to compute the density interpolation is with the non-symmetric

symmetry using the linear-array iterator scheme. Our benchmark for the fastest DI

implementation is the TEXTAL function, InterpolateDensity, which makes these

assumptions about the data. In addition, TEXTAL’s InterpolateDensity is highly

optimized: for example, it hand-unrolls all the loops that compute the weighted-

average. To acquire the values of the grid coordinates surrounding the point to be

interpolated, the TEXTAL code converts the lower-left grid coordinate to a linear-

array iterator, then uses pre-computed offsets to find the other seven surrounding grid

points, similar to Algorithm 2. By using precomputed offsets, the algorithm saves

the recomputation of linear offsets into the underlying linear-array for the other seven

grid iterators.

The TEXTAL InterpolateDensity code is dependent upon the particular se-

lection of symmetry. Furthermore, different stages of the algorithm use different

iterator schemes. TEXTAL encodes the concrete iterator types directly into the

InterpolateDensity function, which is a non-generic function that only works with

the TEXTAL’s data structure representing the electron density map.

As described above, the interpolation algorithm consists of two parts: acquiring

the values of the surrounding points, and computing the value in the current coordi-

nate as a weighted average of the values of the surrounding points. The former part

must be encoded differently for different symmetries, the latter part works for any

symmetry. In order to make the code generic, we must first factor the symmetry-

dependent value-acquisition code out of the symmetry-independent weight-averaging

code. The weight-averaging code uses only the grid iterator scheme. The value-

acquisition code uses different iteration schemes depending upon the symmetry. In

35

our implementation of the value-acquisition code in Figure 2 for non-symmetric data,

we use the linear-array iteration scheme. To acquire a linear-array iterator we use

our framework with the tag linear. We then convert the input grid coordinate to

an offset with the function linearize.

input : E Electron Density ; X Grid Coordinate; values Values

output: values Values

data ← begin<linear> (E) ;

data += linearize(X);

values [0] ← *data;

values [1] ← *(data+1);

data += stride (E,0);

values [2] ← *data;

values [3] ← *(data+1);

data += stride (E,1);

values [6] ← *data;

values [7] ← *(data+1);

data -= stride (E,0);

values [4] ← *data;

values [5] ← *(data+1);
Algorithm 2: Part of our implementation of the electron density interpolation algo-

rithm. Here, we acquire the values of the eight surrounding coordinates of a given

point. We use the iterator selection framework to choose the linear-array iterator

for this purpose (see line 3). This code uses pre-computed offsets stored in the elec-

tron density container, and accessed by the function stride. The iterator is offset

by the linearized grid coordinate X to get to the value in the lower-left corner; the

other seven values are calculated from pre-computed offsets into the linear-array.

Using the linear-array iterator, instead of a grid iterator, dramatically boosts the

speed of this implementation. Except for a change to line 3, this code is nearly

identical to the corresponding part of TEXTAL’s InterpolateDensity function.

The resulting code is nearly identical to the TEXTAL code, except for the call

to acquire the alternate iterator scheme. Without the ability to specify the linear-

array iterator scheme we would be unable to take advantage of the “pre-computed

offsets” optimization described above. This very localized change allows us to write

36

both symmetry-independent and generic code, making the algorithm usable with any

electron density container: the algorithm is parametrized over the coordinate type,

the electron density container, and the symmetry type. This means that the client

can pass in a point from any coordinate system (cartesian, fractional, grid, linear),

and implicitly or explicitly specify any type of symmetry (non-symmetric, translation-

independent, asymmetric), and get an interpolated value.

We compared our implementation to the density interpolation algorithm to that

of TEXTAL’s; to the comparable but less optimized standard density interpolation

routine in CCTBX called nonsymmetric_eight_point_interpolation; and to the

CCTBX’s routine basic_map::get_value which is more general than the above two.

The CCTBX’s basic_map::get_value function supports different symmetries in the

value acquisition through the use of virtual functions and overloading. Using a dual-

processor, hyper-threaded, 3.04 GHz Pentium IV, with 2 GB of RAM, our generic C++

implementation of the algorithm for density interpolation runs about 5–10% faster

than TEXTAL’s InterpolateDensity. The speed increase is due to suggestions1 for

additional optimizations—which we implemented—in the TEXTAL code-base. Com-

pared to CCTBX’s nonsymmetric_eight_point_interpolation routine, our imple-

mentation is about 3–5 times faster, and it is about 30 times faster than CCTBX’s

basic_map::get_value. We have written the necessary adaptors to use our generic

algorithm with TEXTAL’s emapT C-struct, and with CCTBX’s numerous electron

density container implementations.

1Source: Dr. T. Ioerger and Erik McKee.

37

E. Computing with capabilities

An important aspect to the iterator selection library presented is the use of tagging

as an annotation feature. The basic idea is to allow the user to add annotations

which augment data-structures with information about the semantic capabilities of

those data-structures, e.g., the traversal order of hierarchical iterators, the required

algorithmic complexities, etc. This means that part of the definition of the interface

of a data-structure is the declaration of the various capabilities that a data-structure

offers. Those declarations are then accessible to the routines of an active library.

For instance, if the user annotates a data-structure with complexity guarantees then

the interface of the data-structure must be defined to allow algorithms to both know

that such an annotation exists, and how to access that annotation. In this way the

capabilities of a data-structure can ‘permeate’ through the function-call boundary

and be available to the software library.

The implementation of the annotation mechanism used in this chapter relies

on type-traits and type-tagging—although it could prossibly be implemented more

naturally using the proposed concepts feature [42]. The type-tags are then used as

auxiliary parameters to an internally defined function. Because the mechanism used

is ad hoc it would be an interesting direction of study whether a more general selection

mechanism is possible. We can envision a formalism that essentially defines rules for

computing with capabilities, and a type system that is harnessed to perform these

computations. Such a system would share many properties with Gregor’s algorithm

concepts [37]: a mechanism which attaches a lattice of qualitative and quantitative

annotations to data-structures, and a set of requirements onto algorithms, and then

hijacks the function overload resolution mechanism to act as an algorithm selection

mechanism. Algorithm concepts allow an arbitrary set of attributes to be defined,

38

along with a pre-order of those attributes. If the attributes satisfy the notion of a

meet semilattice, then the algorithm selection mechanism can find a best-matching

algorithm for a given set of inputs. This could potentially allow for more accurate

information for algorithm selection.

The use of quantitative, e.g., run-time complexity, or memory-utilization poly-

nomials, rather than qualitative, e.g., sorted, or random-access tags, is another im-

portant feature that could be considered. Such quantitative tags could be used to

automatically annotate the run-time or memory complexity of an algorithm, or a

call-site. Analyses for the automatic discovery of the worst case time complexity

bounds exist, for an early example see Rosendahl [84]. More modern analyses em-

ploying much more sophisticated mechanism, i.e., abstract interpretation, the use of

automatic theorem solvers, and other techniques, also exist; for example, see Ley-

Wild [66]. Most such systems describe the run-time complexity of a few fundamental

operations then analyze the control-flow of a function to find upper-bounds on the

run-time (or memory) complexity. Such analyses could be used to deduce the run-

time complexity requirements on the input parameters’ interfaces for a routine. For

instance, an routine such STL’s lower_bound could require that the iterators passed

to it have a run-time complexity for the function advance such that the composition

of advance’s run-time complexity and lower_bound’s run-time complexity is never

worse than O(log(N)), i.e., advance must have complexity O(1).

We realize this is a far-from-concrete proposal; this discussion should be seen as

laying out future possible avenues of research. However, for this dissertation, we will

not consider such ideas in greater depth.

39

F. Conclusion and future work

The proposed iterator request framework allows containers to provide multiple itera-

tor schemes in an easily accessible way. The iterator scheme is requested using a tag

class, and not by a dedicated function name corresponding to the iterator scheme.

Thus, the iteration scheme can be a parameter in a generic algorithm: a generic al-

gorithm does not have to hard-wire the iterator scheme it uses. A single algorithm

can even use several iteration schemes from the same container. Selecting a different

iteration scheme becomes a simple change to the tag used to request the iterator.

The particular techniques of this chapter can be implemented in C++, as demon-

strated above. First, we begin with the assumption that there exist families of related

algorithms and data-structures. In languages such as C, members of a family are

marked by mangling the names of the members, e.g., literal name mangling, names-

paces, embedding in classes, etc. The name-mangling adds an annotation to the user

about the semantics of the function or data-structure. This additional information

is used implicitly by the functions that the data-structures are passed to. It is then

up to the user to determine which function to call, based upon the capabilities of the

data-structure being used.

Instead, for our technique, the additional information is added as an annota-

tion that is accessible by functions or other data-structures (in C++ we use traits or

concepts). The strategy is to then have a single function whose purpose is to select

amongst a group of similar functions. This selection function takes, as inputs, the

data-structures that are to be passed to the functions which actually implement the

algorithm the user is interested in. However, the selection function operates on the

capabilities of the inputs. The strategy we suggest for a selection function is to have

a default implementation of an algorithm that assumes some minimal semantic ca-

40

pabilities of the data-structure. If, based upon the capabilities of the data-structures

passed in, there exists a more efficient (faster, smaller footprint, etc.) implementa-

tion of the algorithm, then that implementation of the algorithm is selected instead.

We suggest the use of a compile-time selection fnction based on function overloading

and tag-dispatching to select amongst the versions of the run-time algorithm. The

use of a compile-time selection function can minimize the impact to run-time perfor-

mance, since the actual selection algorithm is performed during compilation and not

at run-time.

In this chapter, we are proposing a method for adding to the information usually

available to the algorithm which selects the run-time algorithm implemented by the

function. Such extra information can encode information that is not usually consid-

ered, i.e., fast vs. safe, etc. Depending upon the exact extra capabilities allowed, the

explicit access given to the user could violate the preconditions of the functions being

selected. (Alternately, the algorithm which selects the algorithm to be run can guard

against such selections.) In this paper, we do not give the user the ability to override

correctness preconditions, and instead expose alternate, equivalent, and safe versions

based upon the selected capabilities.

1. Readability

Using iterators in the interfaces of functions rather than the containers the functions

operate on reduces readability [105] — an aspect of minimum description length prin-

ciple. The minimum description length principle (MDL) describes the trade-offs of

performance and generality versus readability and maintainability. MDL argues that

as the need for generality and performance requirement of a function increases, the

interface, i.e., number of arguments, increases dramatically. Conversely, as the num-

ber of arguments to a function increases, the ability of the programmer to correctly

41

utilize (and select correct inputs!) drops. The iterator selection mechanism devel-

ops an API that can both reduce the complexity of the interface (exchanging pairs

of iterators for the container), while still maintaining flexibility for the selection of

parameters within the function, through optional tag parameters.

The motivation for the framework comes from our experiences with implementing

generic algorithms for the domain of computational protein crystallography. In that

domain, the majority of the generic algorithms operate on containers, rather than

pairs of iterators. Moreover, the containers support numerous iteration schemes,

the choice of which has a dramatic impact on performance of the algorithms. The

framework allowed us to write our algorithms in a fully generic way, and apply the

most appropriate iteration scheme for each calling context. We found the framework

crucial for writing efficient code for the complex data-structures in the domain.

The iterator selection framework is a generalization of the family of functions,

such as begin, end, rbegin, rend, where a fixed signature is used to refer to an

iterator scheme. Abstracting the iterator scheme in the begin and end functions is a

new and beneficial axis of parametrization in generic libraries. Essentially, by varying

the iteration scheme, we can get drastically different behavior and performance from

the exact same algorithm or code.

In this chapter we discussed several iterator schemes and their corresponding tags

in context of isolated examples. In future work, our next step is to continue to analyze

the iterator tags and identify a set of generally applicable and “standardized” tags

and their refinement hierarchy. We believe that with a full “concept analysis” a small

number of useful tags, analogous to the STL’s iterator hierarchy, can be developed.

Furthermore, we note that while we have presented a framework for iterators, the

idea is more general. Permeable interfaces for active libraries in C++ rely on associated

type and traits classes to attach properties to types. However, those mechanisms can

42

be inflexible: they do not allow either transient properties which hold only occasion-

ally at run-time, or properties that hold only in some contexts. It is our viewpoint

that active libraries should have APIs that are parametrized by (at least some) of the

properties of the input types to their components. This will allow more expressive

and powerful libraries.

43

CHAPTER III

MULTILAYER LIBRARY COMPOSITION

This chapter focuses on the definition, applications and limitations of concepts and

concept maps in C++, with an emphasis on library composition. We report on two

cases of data structure adaptation between different libraries. We compose an im-

age processing library to a graph algorithm library by making use of a transparent

adaptation layer, enabling the effortless application of graph algorithms to the im-

age processing domain. We use the adaptation layer to realize a few key algorithms,

and report little or no performance degradation when compared to algorithms imple-

mented directly for the image processing domain. We then extend this adaptation to

include a composition of a graph library with a linear algebra library. This multilayer

composition implements several image analysis algorithms by directly following their

presentation in the research literature in terms of graphs and matrices; we thus have

high confidence in their correctness.

A. Introduction

Modern software systems commonly make use of components from a variety of soft-

ware libraries. Software libraries available to programmers are typically developed by

different entities without centralized control. Consequently, different libraries’ inter-

faces are seldom directly compatible. The cost and complexity of the code needed to

combine libraries is significant, and can be prohibitively expensive: it may be easier

to rewrite the needed components than to reuse them, or the performance overhead

of the library composition mechanism may not be acceptable.

The language constructs and idioms for adaptation vary greatly between differ-

ent programming languages, and can impact the cost of library composition. This

44

chapter discusses programming with C++ “concepts” [40], a set of extensions to the

C++ template system which augment C++’s template system with constraints; this is

an experimental system being considered for future versions of C++. We explore the

applicability and limitations of these new features, particularly focusing on the use

of concepts for library composition via non-intrusive component adaptation. At the

moment, ConceptGCC [38] is the only compiler for ConceptC++. Note that in this

chapter, we will refer to C++ extended with concepts as ConceptC++ ; C++ 2003 will

be used to denote the language as specified in its current standard [51].

The C++ standard library’s collection of generic algorithms and data structures,

formerly called the Standard Template Library (STL) [97], was the central use case

that influenced the design of ConceptC++. Consequently, the first application of

ConceptC++ was the STL. Naturally, the next step is to explore the applications of

these new language features to broader domains. In this chapter we report on the

use of concepts for adapting entire library interfaces, enabling the composition of

whole generic libraries. Specifically, we (1) demonstrate how to adapt components

in a non-intrusive and efficient manner using concepts, (2) guide programmers in the

effective use of the C++ concepts feature, (3) report on the evaluation of the new

features in ConceptC++ for the support of complex library composition, (4) evaluate

the performance implications of the new features, (5) compare and relate the features

to other adaptation mechanisms in C++ and in other languages, and (6) raise some

issues and describe challenges faced when programming with concepts.

The structure of the chapter is as follows. Section B briefly summarizes the

paradigm of generic programming that has motivated the design of ConceptC++, and

introduces the main features of ConceptC++. Section 1 begins by demonstrating how

one of these features, the concept map language construct, can be used to adapt

generic components. Section C describes a complex library composition scenario,

45

where a transparent adaptation layer enables the use of an open-ended set of image

types as inputs to a library of graph algorithms; we then show the composition of

the graph algorithm library with an iterative eigensolver library, allowing the use of

graph data-structures as inputs to iterative eigensolver algorithms. Performance of

such adaptations is discussed in each relevant section. Section G relates concepts

and concept maps to other adaptation mechanisms, such as instance declarations in

Haskell and inheritance in object-oriented languages, and discusses concept maps’

strengths and limitations. Conclusions follow in Section G.

B. Background

The design of ConceptC++ has mainly been motivated by the desire to better support

the paradigm of generic programming, as practiced, for example, in the design and

implementation of active libraries such as Standard Template Library, Boost Graph

Library (BGL) [89], Matrix Template Library [90] and other generic libraries in a va-

riety of domains [28, 10, 3, 81]. The generic programming approach to library design

has proven to support the production of efficient and reusable libraries. For exam-

ple, the STL and the BGL are both large libraries providing extensive functionality,

yet the interfaces to these libraries are quite small. Through careful consideration of

the essential requirements for related classes of algorithms, the interface to a large

number of library components has been made small and uniform. The generic pro-

gramming paradigm, and generic libraries, are of interest in the context of library

composition since adapting a particular widely applicable generic library interface to

the requirements of another library may open up significant re-use opportunities. For

example, the BGL, with a few dozens of lines of code, implements a transparent adap-

tation layer on top of some graph data structures of the LEDA library [74], making

46

the entire BGL usable for LEDA graphs without requiring any explicit wrapping or

adaptation [89, §14.3.5].

1. From C++ 2003 to ConceptC++

In C++ 2003 templates are unconstrained. Generic C++ 2003 libraries, therefore, gen-

erally express constraints on type parameters of generic algorithms as part of algo-

rithms’ documentation and as names of template parameters. The STL established a

systematic documentation style for this [93, 5], in which requirements on one or more

types are collected into tables. These tables describe the functions and operators that

the types must support. They can also require a set of other accessible types, called

associated types. Naming conventions for template parameters are used to indicate

the corresponding requirements table. These conventions, however, do not serve as

first-class artifacts from the compiler’s perspective: they only exist in the mind of the

programmer.

Interfaces between components that are visible to the compiler are a key element

in successful composition strategies and lead to a number of benefits. First, it is

possible for the compiler to check and enforce the contract expressed by an interface

to various extents depending on the language. Next, semantic properties captured

in interface specifications can be leveraged for use in the optimization and transfor-

mation of codes. For instance, if the interface includes a binary operator, and an

absorber element for that operator, i.e., multiplication and 0, then any expression

of the form a*b where either a=0 or b=0 can be transformed to the expression 0.

Additionally, interfaces as first-class language constructs also offer a place to bundle

related signatures and constraints. This gives programmers the ability to create co-

herent constructs about which readers can reason. This helps to reduce long-term

maintenance costs of the code.

47

When introduced to generic programming with C++ 2003, programmers accus-

tomed to object-oriented languages have difficulty when they fail to find component

requirements in constructs analogous to the familiar abstract base classes. Such chal-

lenges are exacerbated by lengthy compiler diagnostics1 that arise because the bulk

of type checking of templates in C++ 2003 occurs late, at the time of their instan-

tiation. ConceptC++, at last, changes this for generic programming in C++. The

concept language construct gives an explicit representation of the syntactic require-

ments tables, and it is precisely these concept definitions that serve as the first class

interfaces. Since concepts are analyzed by the compiler (in addition to the program-

mer), modular type checking of templates is possible; features such as concept-based

overloading also become easier to use. For example, ConceptC++ can provide notably

more informative compiler error diagnostics [40].

Note that the development of ConceptC++ was preceded by cleverly designed

template libraries that emulated concepts. These libraries provide some support for

expressing requirements tables programmatically, for enforcing constraints on tem-

plate parameters expressed using those tables, and for rudimentary “type checking”

of template bodies [73, 91]. These techniques are brittle and expert-friendly, and have

not found their way to wide use.

The STL’s requirements tables also specify semantic requirements as algebraic

laws that implementations of required functions must satisfy as well as upper bounds

for the algorithmic complexity of these functions. ConceptC++ supports expressing

algebraic laws [44, §14.9.1.4] in concepts, as axioms. Type checking in ConceptC++,

however, is not concerned with concepts’ axioms (except for insisting that the expres-

sions in axioms themselves are well-formed). Compilers and programmers can use

1Järvi et al. have experienced a 20MB error message from a single client error in
the use of a, admittedly very complex, template library. [56]

48

axioms to justify optimizations, and they serve as a hook for auxiliary language tools.

We do not further explore the usefulness of axioms in this dissertation.

2. Generic programming in ConceptC++

This section briefly describes the new language constructs in ConceptC++. More

detailed description is available in the C++ concepts proposal overview [40], and in

the current full specification of concepts [44]. The central new construct is concept.

It defines a set of requirements on a type or tuple of types. We say that types

that satisfy the requirements of a concept model that concept. For example, the

following concept [42, §20.1.2] requires that the less-than operator (<), and the other

comparison operators, are defined for objects of type T:

concept LessThanComparable<typename T> {
bool operator<(const T& a, const T& b);

bool operator>(const T& a, const T& b) { return b < a; }
bool operator<=(const T& a, const T& b) { return !(b < a); }
bool operator>=(const T& a, const T& b) { return !(a < b); }
}

ConceptC++ requires an explicit declaration, a concept map,2 to establish that a par-

ticular type (or a parametrized class of types) models a concept. For example, the fol-

lowing definition states that the type int models the concept LessThanComparable:

concept map LessThanComparable<int> { }

Another concept map makes the user defined type name a model of the concept

LessThanComparable:

2The possibly more descriptive keyword “model” that was used in preliminary
designs of ConceptC++, was replaced with the keyword concept_map, which occurs
far less frequently in existing C++ code.

49

struct name { char∗ first; char∗ last; };
int namecmp(const name& n1, const name& n2) {

int c = strcmp(n1.last, n2.last);

if (c==0) return strcmp(n1.first, n2.first);

else return c;

};
concept map LessThanComparable<name> {

bool operator<(const name& a, const name& b) {
return namecmp(a, b) < 0;

}
}

The two concept maps differ in how they satisfy the LessThanComparable concept’s

requirements. For int, the body of the concept map is empty; the built-in compari-

son operators for integers satisfy the four requirements of the LessThanComparable

concept. For name, one of the required operations, the less-than operator, is de-

fined in the body of the concept map. This suffices to make name a model of the

LessThanComparable concept, since the concept’s body provides default implemen-

tations, defined in terms of the less-than operator, for the other three required op-

erations. A type can satisfy a requirement, for example the requirement for a less-

than-operator, in any one of the following ways, in decreasing order of precedence:

(1) the concept map can define the less-than operator explicitly, (2) the less-than

operator can be defined as a member or non-member function (or in some cases as a

built-in operation), (3) or a default implementation in the concept itself can provide

a definition. In a well-formed concept map, each required operation is defined in at

least one of these ways.

Explicit definitions of functions in the bodies of concept maps are a powerful tool

for adaptation. For example, objects of the name class can be compared using the

namecmp function, whose interface is similar to that of the strcmp function. The con-

50

cept map above adapts name to satisfy the requirements of the LessThanComparable

concept, and defines the less-than operator in terms of the existing namecmp function.

In this adaptation, the definition of the type name does not need to be modified, and

the objects of type name do not need to be wrapped by other types, to be comparable

with the less-than operator.

Definitions in concept maps do not introduce functions or type names into the

global scope. For example, the less-than operator defined in the above concept map is

only visible in generic definitions constrained by the LessThanComparable concept.

Concept maps can be made generic with templates. For example, the following

concept map declares all instances of the standard template pair to be models of

LessThanComparable—as long as the element types of the pair model the concept

LessThanComparable. The constraints on the element types, the template parameters

T and U, are stated in the requires clause, introduced with the requires keyword.

template <typename T, typename U>

requires LessThanComparable<T> && LessThanComparable<U>

concept map LessThanComparable<pair<T, U> > {
bool operator<(const pair<T, U>& a, const pair<T, U>& b) {

return a.first < b.first

|| (!(b.first < a.first) && a.second < b.second);

}
}

Figure 8 shows a simple generic algorithm, min_element; the algorithm uses the

LessThanComparable concept as a constraint. Constraints in the requires clause are

assumed to hold during type checking of the template’s body, and they are enforced at

the time of template instantiation. The ForwardIterator concept that appears in the

constraints of min_element is shown in Figure 9. This concept provides basic iteration

capabilities. The indirection operator (*) gives the value that an iterator refers to.

51

template <typename Iter>
requires ForwardIterator<Iter> && LessThanComparable<Iter::value type>

Iter min element(Iter first, Iter last) {
Iter best = first;
while (first != last) {

if (∗first < ∗best) best = first;
++first;
}
return best;
}

Fig. 8. The min_element generic algorithm.

The increment operator (++) advances an iterator to the next element. Equality

comparison is used to decide when the end of a sequence is reached. Finally, iterators

can be copied and assigned. Requirements for the equality operator (==) and the

inequality operator (!=), as well as for copying and assignment, are not stated directly

in the body of ForwardIterator, but are obtained through refinement of another

concept Regular. A concept, D, is said to refine another concept, B, when all of D’s

requirements are included in B’s requirements. The syntax for expressing refinement

relationships resembles that used for expressing class inheritance relationships. The

Regular concept (not shown, see [42, §20.1.7]) collects several common requirements

supported by most types, including equality comparison, and the abilities to copy

and assign objects. The associated type value_type denotes the type of values

that the iterator refers to. A requires clause in the body of a concept can place

additional constraints on the parameters or associated types of a concept. Here,

value_type must model CopyConstructible, a self-explanatory concept from the

proposal submitted by Gregor et al. [42] for the upcoming revision of C++. Examples

of models of ForwardIterator include all pointer types and the iterator types of

standard containers.

52

The min_element algorithm works for any sequence of values delimited by a pair

of iterators, as long as the iterator type is a model of the ForwardIterator concept

and the iterator’s associated value_type is a model of the LessThanComparable

concept. In the next few paragraphs, we illustrate how type checking works for the

call to min_element, shown in Figure 10.

The C++ standard library specifies that vector’s begin and end member func-

tions shall return types that satisfy the ForwardIterator concept. (In fact, these

types satisfy stronger constraints, but this is not important for our purposes.) This

satisfies the first requirement on types supplied to min_element. The second re-

quirement, that the iterator’s associated value_type is a model of the concept

LessThanComparable, is satisfied via the concept map for LessThanComparable<name>

given earlier. As both these requirements are, collectively, met by the vector<name>’s

iterator type and the name type, the call to min_element in Figure 10 passes type

checking.

To illustrate the role of concept maps in type checking, and as adapters, consider

the call to the less-than operator, “*first < *best”, in the body of min_element.

The type checker resolves this call to the LessThanComparable concept’s less-than

operator, looked up in the concept map LessThanComparable<Iter::value_type>.

In the example in Figure 10, at template instantiation time the placeholder associated

concept ForwardIterator<typename Iter> : Regular<Iter> {
2 typename value type;

requires CopyConstructible<value type>;
4 value type& operator∗(const Iter&);

Iter& operator++(Iter&);
6 Iter operator++(Iter&, int);
}

Fig. 9. The ForwardIterator concept (simplified from the one in the STL).

53

vector<name> names;
// fill names with values
name first in line = min element(names.begin(), names.end());

Fig. 10. A call to the generic min_element function.

type Iter::value_type is bound to the name type; thus, the call to the less-than

operator resolves to LessThanComparable<name>::operator<(*first,*best),

which is implemented in terms of namecmp in the LessThanComparable<name> con-

cept map.

Indirections through concept maps are efficient. Recall that in C++ 2003’s tem-

plate compilation model distinct code is generated whenever a template is instan-

tiated with different types—this compilation model is used in ConceptC++ as well,

after type checking a template instantiation. Once the type checker has accepted

that the types bound to the template arguments satisfy the template’s constraints,

code specialized for the particular template instance, in this instance, the function

min_element<vector<name>::iterator> is generated. Consequently, the calls that

depend on template parameters, such as the less-than operator call above, are stati-

cally resolved and subject to inlining and other compiler optimizations. This applies,

in particular, to calls directed through functions in concept maps. Gregor and Siek

give a more detailed account of type checking and compiling ConceptC++’s constrained

templates [43].

A concept definition can be preceded with the keyword auto, signifying that no

explicit concept map is necessary to establish an is-a-model-of relation between a type

and a concept—it suffices that all functions and operations required by the concept

are defined for the type. Concept maps can, however, also be written explicitly for

auto concepts. Simple concepts, with only a few requirements, are typically defined

54

as auto; we could define LessThanComparable as:

auto concept LessThanComparable<typename T> { ... }

Throughout this chapter, we use ConceptC++’s syntactic shortcuts for succinct

expression of constraints: instead of the keyword typename, a concept name can

precede a template parameter in a template parameter list, or an associated type in

the body of a concept. To demonstrate the former use of the shortcut, the signature

of min_element in Figure 8 can be re-written as:

template <ForwardIterator Iter>

requires LessThanComparable<Iter::value type>

Iter min element(Iter first, Iter last);

As an example of the latter use, lines 2 and 3 in the body of the ForwardIterator

concept in Figure 9 can be replaced with the requirements clause declaration of

“CopyConstructible value type;”.

C. Cross-domain composition

When a concept map adapts a particular type to model a concept, the concept map

implements the operations required by the concept in terms of the functionality pro-

vided by the type. In this section we move beyond the adaptation of individual types

to the adaptation of entire library interfaces. An important aspect of adapting two

or more library interfaces is that instead of one type modeling a concept, we define a

modeling relationship between concepts defined for two entire library interfaces. This

means that a collection of types from one library will model one or more concepts

from another library.

We begin with a recipe showing such a modeling relationship between library

interfaces in Figure 11. On the left are the data-structures A1, A2, ... which all model

55

(shown by single arrows) the concept A, where the concept A defines the interface of

a library. A (templated; parametric) concept map is defined so that the concept A

models the concept B, shown by a double arrow. The concept B defines the interface

of another library; a collection of functions in the second library f 1, f2, ... take as

inputs components which must satisfy the concept B. We summarize the process:

first, data-structures A1, A2, etc. are defined to model concepts representing data-

structures from the interface of a library A; then, a concept map (or many) is defined

from the concepts of library A to the concepts of library B; and as a result, algorithms

in library B can use data-structures from library A.

A1

��

f 144

A2
.. A

concept map +3
LL LL B

%%
##

f 2..

A3

DD

f 3**

...

JJ

...
&&

Fig. 11. Templated concept map definition describing a modeling relationship between

two concepts. Data-structures A1, A2, etc. on the left of the figure are models

of the concept A; the modeling relationship is represented with an arrow “→”.

The concept A is adapted to model the concept B using a concept map that

implements B’s required operations in terms of operations provided by A,

shown with a double arrow “⇒”. Any function f 1, f 2, etc. which takes as

inputs components that must satisfy concept B, represented with an arrow

“→”, can be passed data-structures that model the concept B.

We now explore a mapping between concepts that adapts abstractions from one

domain to those of another domain. This example of cross-domain composition is

from the domains of image processing and graph algorithms. Many image algo-

rithms can be viewed as graph algorithms given a suitable representation of images

as graphs [87, 24, 88]. In this section we present a partial composition of the Boost

Graph Library (BGL) [89] and the Generic Image Library (GIL) [10] that enables

56

many image processing algorithms to be implemented as simple wrapper functions

over BGL algorithms. We show the mapping from image-related concepts defined in

the GIL to the graph concepts of the BGL. Concept maps are instrumental in such

cross-domain compositions. The adaptation code involves relatively few lines of code,

is transparent to the client, and comes with minimal performance cost.

Note that as part of the adaptation we define a handful of classes that are used as

the associated types for the graph concepts. For example, one of the graph concepts

requires an associated type out_edge_iterator, used by the graph algorithms to

traverse the out edges of a node in a graph. The image concepts do not require or

guarantee the existence of any types that can directly satisfy the requirements for

this associated type, so we create a new small class for this purpose. Objects of this

class maintain the state of iteration over a pixel’s immediate neighbors. The newly

created class does not intrude on the image library, and clients of the image library

do not need to explicitly define objects of the iterator class, or even be knowledgeable

of its existence. This arrangement serves as an example of the division of labor, in

the case when stateful adaptation is needed, between concepts, concept maps, and

traditional adaptation via the creation of new classes.

1. Background of GIL and BGL

The Generic Image Library is Adobe’s open source image processing library, and

also part of the C++ Boost collection of peer-reviewed C++ libraries (www.boost.org).

The GIL defines concepts for raster images of any dimension, and provides generic

implementations of basic image algorithms, such as copying, comparing, and applying

a convolution. The GIL’s algorithms operate on an open-ended set of image types that

may vary in color-space, pixel type, storage order, and other image characteristics.

The Boost Graph Library [92] is a widely used library of generic algorithms for

57

manipulating graphs. The BGL defines concepts that describe different capabilities

for graph data structures, such as incidence graphs that provide access to the outgoing

edges of each vertex, vertex list graphs that additionally allow access to all vertices

in the graph, and edge list graphs that add the ability to access all edges in the

graph. The BGL also provides useful data structures modeling these concepts, many

implemented in terms of STL containers (essentially as compositions of vectors, lists,

and maps).

Neither the BGL nor the GIL are yet implemented using ConceptC++. We reim-

plement in ConceptC++ a subset of these libraries for our experiments. We omit

support for mechanisms like the BGL’s “named parameters” [89, §2]. The BGL de-

scribes its algorithms’ requirements using STL-like concept documentation, and the

GIL uses pseudo-code mimicking ConceptC++ to document its concepts; our concepts

are translations of these documents into ConceptC++.

For the adaptation layer between the GIL and the BGL we defined concept maps

for several GIL concepts, making those concepts models of various graph concepts

in the BGL. Using the adaptation layer, many image processing algorithms can be

implemented as thin wrappers over the BGL’s graph algorithms. We describe the

implementation of the adaptation layer, along with the implementations of multiple

algorithms. In particular, we focus on the flood-fill algorithm. This algorithm modifies

the color of a set of contiguous pixels that satisfy a predicate. The implementation

of this algorithm performs a recursive search through neighboring pixels of an initial

seed pixel. Applications of the flood-fill algorithm include transformation of a block of

one color to another, insertion of a background texture (green screening), and image

partitioning. We also report on using the adaptation layer to image segmentation.

Graph-based image segmentation refers to a set of techniques for finding a partition

of an image by representing the image as a graph, then finding a partition of the

58

graph using, e.g., edge weights or minimal cuts as the partitioning criteria [29, 88].

We chose to implement a basic segmentation algorithm based on pixel similarity. The

third algorithm we describe is for finding minimal-energy paths between two points in

an image. This can be accomplished with the Bellman-Ford [7] shortest path graph

algorithm when the input image is represented as a graph.

2. GIL–BGL composition

In our adaptation of images to graphs, vertices correspond to pixel locations and

each of the edges connect two vertices corresponding to neighboring pixel locations.

Note that we are differentiating between a pixel’s location and a pixel’s chromatic

value. The flood-fill algorithm is essentially a breadth-first graph search. The BGL’s

breadth-first search algorithm imposes several concept requirements on the types of

its inputs, which now have to be satisfied by the image type. We could establish

the image-to-graph correspondence directly with concept maps that adapt concrete

image types to the BGL graph concepts. However, a broader adaptation for an open

ended class of image types is achieved if we adapt generically all types that model

GIL image concepts to model BGL concepts. Furthermore, the adaptation is not

specific to breadth-first search and to flood-fill; many algorithms in the BGL use the

same handful of concepts in their constraints.

The breadth_first_search function in our graph library is shown in Figure 12.

For brevity, in all code examples we omit header includes, namespace prefixes of

names from both the GIL and the BGL, and the prefix std:: for names defined in

the standard library. The breadth_first_search function is parametrized on the

graph type, the type of queue used for storing references to vertices to maintain search

state, a visitor type used for providing callback functions for various event points of

the algorithm, and the type of color map used for tracking which vertices have already

59

been visited. The breadth_first_search function uses four concepts to constrain

its template parameters. The IncidenceGraph concept specifies the requirements

for the graph type: operations for enumerating out-edges of a given vertex, along

with their incident vertices. The other concepts are Buffer, which describes the

operations of the vertex queue; BFSVisitor, which specifies the dictionary of the

callback functions; and ColorMap, which defines the interface to the data structure

storing vertex visitation information.

template <IncidenceGraph G, Buffer Queue,
typename Visitor, ColorMap CMap>

requires BFSVisitor<Visitor, G>
&& SameType3<G::vertex t, CMap::key type, Queue::value type>

void breadth first search (const G& g, const G::vertex t& s,
Queue& Q, Visitor V, CMap Color);

Fig. 12. The signature of the breadth_first_search function in the BGL. The same

type constraint guarantees that types of the function arguments are consistent,

that is, that the type of the values in the queue argument and the key type

of the color map, are the same as the type of the vertices in the graph.

We focus on the IncidenceGraph concept, shown in Figure 13, in the descrip-

tion of the adaptation layer between images and graphs. The Graph concept, also in

Figure 13, specifies associated vertex and edge types which, via refinement, become

requirements of IncidenceGraph. Directly, IncidenceGraph requires the out_edges,

out_degree, source, and target operations (lines 7–10). The out_edges function

returns a pair of iterators that specify the sequence of edges emanating from a given

vertex, and out_degree is for querying how many such edges there are. The associ-

ated type out_edge_iterator on line 4 has its expected meaning.

From the point of view of a type modeling a concept, operations specified in a

concept are requirements that must be satisfied. From the point of view of an al-

gorithm constrained by a concept, the operations are capabilities that can be relied

60

concept Graph<typename G> {
Regular vertex t; Regular edge t; };

3 concept IncidenceGraph<typename G> : Graph<G> {
ForwardIterator out edge iterator;
requires SameType <edge t, out edge iterator::value type>;

6 pair<out edge iterator, out edge iterator>
out edges (const vertex t&, const G&);

size t out degree (const vertex t, const G&);
9 vertex t source (const edge t&, const G&);

vertex t target (const edge t&, const G&); };
concept Point<typename P> : Regular<P> {

12 IntegralLike value type;
const value type& operator[](const P&, size t);
value type& operator[](P&, size t);

15 size t num dimensions(P); }
concept ImageView<typename V> : Regular<V> {

Locator locator; Point difference type; Regular value type;
18 requires SameType <value type, locator::value type> &&

SameType<difference type, locator::difference type>;
const value type& operator[] (const V&, const difference type&);

21 value type& operator[] (V&, const difference type&);
difference type dimensions(const V&);
size t size(const V&); };

Fig. 13. Concepts and concept-maps for graphs and images. Lines 3–10 shows the

IncidenceGraph concept. The Regular concept, defined in the draft standard

library of ConceptC++, describes a type that is “well-behaved”, that is, it can

be constructed, destructed, copied, assigned, and compared for equality. Fur-

thermore, these operations adhere to fundamental laws, such as after assigning

a value x to a variable y, then y == x returns true. The ForwardIterator

(outlined in Figure 9) is also a standard concept. Lines 16–23 shows the

capabilities provided by the GIL concepts that are relevant for the adap-

tation. The IntegralLike concept (not shown, see [42, §20.1.7]) is a con-

cept. The Locator concept provides traversal capabilities through the values,

i.e., pixels, of GIL images—we omit this concept since Locators offer no

generic way to determine the validity of the position of a locator. Our adap-

tation maintains current location in algorithms with values of the ImageView’s

difference type.

61

upon. In our example, the GIL concepts’ capabilities are used to satisfy the BGL

concepts’ requirements. The concepts in Figure 13 on lines 3–10 describe the inter-

face that the GIL imposes on images, and thus provides as images’ capabilities. The

ImageView concept on line 16 provides capabilities of a container. The associated

type value_type (3rd declaration, line 17) is the type of the pixels. The locator

(1st declaration, line 17) represents the position of a pixel in an image, we will re-

fer to values of type locator as pixel locators to help distinguish their use. The

difference_type (2nd declaration, line 17) represents the offsets between pixel lo-

cators, and can also be used to determine the position of a pixel in an image. The

function dimensions (line 22) returns the extents of an image. The GIL ImageView

concept has further requirements, such as an iterator for linear traversal over the

sequence of pixels. These capabilities are not necessary for the adaptation to graphs,

and are not shown.

1 2 3 4

4

3

2

1

p q ==========⇒
u v

(a) (b)

Fig. 14. The modeling relationship between images and graphs. A schematic showing

the intuition of the image-to-graph modeling relationship: pixel locators for

pixels ‘p’ and ‘q’ in the image (left) are vertices u and v in the graph (right),

respectively. Given a pixel locator in the image, we compute the neighborhood

of nearby pixel locators, represented as directed edges in the graph.

A schematic for the concept map from an incidence graph to a raster image is

shown in Figure 14. Both pixel locators and the difference type of the image can be

62

used to represent the position of a pixel in an image, where the pixel locator can be

thought of the location of a pixel and a reference to the pixel’s color value. Because

the pixel locator is more expensive to copy, we choose to use the difference type to

represent the position of a pixel. The position of a pixel in an image models a vertex

in the graph (the graph is on the right); for instance, the position of the pixel p is

the vertex u. The value of the vertex that represents the pixel, i.e., its color, would

thus be accessed through a property map. Given the position of a pixel such as p it

is possible to compute the neighborhood of nearby pixel locations. This means that

an edge (u, v) exists in the graph if the position of the pixel p, represented by vertex

u, is a neighbor of the position of the pixel q, represented by vertex v. A pair of pixel

positions represents an edge; given an edge, all of the neighbors of the source of the

edge can be computed as needed.

The concept_map that adapts ImageView to IncidenceGraph is shown in Fig-

ure 15. Lines 3–5 provide definitions for the associated types of IncidenceGraph.

We represent vertices as the image’s difference_type, a point type that specifies

the coordinates of a pixel. Edges are pairs consisting of two vertices: the source and

target. The out_edges function on lines 6–8 constructs a pair of edge iterators that

denotes the sequence of out edges. The number of neighboring pixels, i.e., the number

of out edges, for a given pixel is obtained as the distance between the beginning and

end of the sequence of out edges, which gives directly the implementation for the

out_degree function on lines 17–20. The source and target functions on lines 12

and 15 are trivial.

To arrive at a flood-fill algorithm, we make one additional adaptation: we use

a color map tailored for flood-fill, instead of the BGL’s default color map defined

for breadth_first_search. The color map stores the search state: unseen, in

progress, and processed vertices are respectively marked with white, gray, or black.

63

template <ImageView Img>
concept map IncidenceGraph {

3 typedef Img::difference type vertex t;
typedef pair<vertex t, vertex t> edge t;
typedef out edge iterator adapter<vertex t> out edge iterator;

6 inline pair<out edge iterator, out edge iterator>
out edges(const vertex t& v, const Img& g) {

out edge iterator first(v, dimensions(g)), last(num dimensions(g));
9 return make pair(first, last);
}
vertex t source (const edge t& e, const Img&) {

12 return e.first;
}
vertex t target (const edge t& e, const Img&) {

15 return e.second;
}
size t out degree (const vertex t& v, const Img&) {

18 pair<out edge iterator, out edge iterator> iter = out edges (v);
return distance(iter.first, iter.second);
}

21 }

Fig. 15. The concept_map adapting models of GIL ImageView to become models of

BGL IncidenceGraph.

Only white vertices are added to the work queue. The default queue and visitor

parameters of breadth_first_search that the BGL provides need no customiza-

tion. With these adaptations, the generic implementation of flood-fill in terms of

breadth_first_search is shown in Figure 16.

The queue and visitor parameters are those used in the BGL by default, but

we need to specify them explicitly since our graph library does not implement the

BGL’s named parameters mechanism that provides support for default values for

parameters.

The image segmentation algorithm mentioned in Section C can also be imple-

mented in terms of a breadth-first graph search. The task of an image segmentation

64

template <ImageView Img, typename P>
requires Predicate<P, Img::value type>

void flood fill(Img& img, const Img::difference type& seed, P p,
const Img::value type& replacement) {

if (!p(img[seed])) return;
vector<Img::difference type> buffer;
breadth first search(img, seed, buffer, basic bfs visitor(),

color map<Img, P>(img, p, replacement));
}

Fig. 16. The implementation of flood-fill using an adaptation from GIL to BGL.

algorithm is to partition an image into contiguous regions according to some criteria;

its central building block is a generic partition algorithm that forms a single partition

in an image; repeated invocations with different initial seed locations will segment the

entire image. Implementation of the segmentation algorithm uses the same concept

map adapters, but a different color map class. The default queue type suffices, but

the BGL’s visitor type is customized to respond to the event of discovering a vertex

by adding that vertex to a data structure representing a partition.

To further evaluate the usability of cross-domain adaptation between images

and graphs, we implemented the backbone-healing algorithm [32]. This is a practi-

cal image processing algorithm from the TEXTAL automatic model-building pro-

tein crystallography package [49], and is used in improving the results of image

skeletonization. The algorithm can be implemented in terms of the Bellman-Ford

shortest-path graph algorithm, which places stronger requirements on its input graphs

than merely IncidenceGraph. The BGL’s bellman_ford algorithm requires the ca-

pability to iterate over all edges and all vertices omitting the adjacency structure

of the graph, and thus requires that its graph parameter type be a model of the

EdgeAndVertexListGraph concept.

To allow GIL images to be used as inputs of the bellman_ford algorithm, a

65

slightly more capable adaptation is necessary, one that supports iteration over all

vertices and all edges of a graph. We define two auxiliary classes, analogous to

the out_edge_iterator_adaptor class discussed above, that masquerade traversal

through an image’s pixels and its neighboring pixel pairs as iteration over vertices and

edges. With these classes, the adaptation between the GIL’s ImageView concept and

the BGL’s EdgeAndVertexListGraph concept, is expressed with the concept map:

template <ImageView Img>

concept map EdgeAndVertexListGraph { ... }

The implementation of the adaptation is similar to that between the ImageView and

IncidenceGraph concepts; we experienced no notable difficulties in realizing it. We

make the full code of the adaptions described above available.3

3. Performance results of the BGL to GIL adaptation

Adaptation mechanisms can have a negative impact on performance. Mitchell et

al. [75] give a detailed analysis of a case where multiple inefficient adaptation layers

had a major effect on the performance of a large software system. In our examples we

have used adaptation freely, adding layers as appropriate to meet our design goals.

In this section we explore the performance costs of adaptation implemented using

concept maps.

We use the flood-fill, segmentation, and backbone-healing algorithms as test

cases, and compare the execution times of two different programs for each algorithm.

The first program for each algorithm is written directly in terms of the GIL con-

cepts. Essentially, the flood-fill performs a breadth-first search tailored for images,

and the segmentation algorithm a series of such searches. The backbone-healing al-

3parasol.cs.tamu.edu/groups/pttlgroup/programming-with-c++-concepts

66

0

0.02

0.04

0.06

0.08

0.1

02 2002 4002 6002 8002 10002

GIL Custom
BGL Adaptation

bbbbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbb

bbbbbbbb
bbb

(a)

0

0.04

0.08

0.12

0.16

0.2

02 2002 4002 6002 8002 10002

GIL Custom
BGL Adaptation

bbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbb

bbbbbbbbb
bbbbb

(b)

Fig. 17. The timing results for the function flood_fill. Results for the Intel archi-

tecture are shown in (a) and for the PowerPC are shown in (b). The x-axis is

in seconds, and the y-axis is the area of the images in pixels. Each chart shows

the timing results of executing two test programs, the first written directly for

GIL concepts (“GIL Custom”) and the second written to use the adaptation

between the GIL and BGL (“BGL Adaptation”).

gorithm searches for all shortest paths using the Bellman-Ford algorithm that was

directly written for GIL’s image types. The second program for each algorithm uses

concept maps to adapt GIL concepts to BGL concepts as described in Section 2,

and uses BGL’s breadth_first_search function for the flood-fill and segmentation

algorithms, and bellman_ford for backbone-healing.

We compiled all of the test programs using the ConceptGCC [38] compiler’s

Alpha 7 Prerelease version4 with the -O3 flag on two platforms: MacBook Pro (Intel

4conceptgcc (GCC) 4.3.0 20070330 (experimental) (Indiana University Concept-

67

0
0.05
0.1

0.15
0.2

0.25
0.3

02 2002 4002 6002 8002 10002

GIL Custom
BGL Adaptation

bbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbb

bbbbbbb
bbbbbb

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

02 2002 4002 6002 8002 10002

GIL Custom
BGL Adaptation

bbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbb

bbbbbbbb
bbbbbb

(b)

Fig. 18. The timing results for the function segmentation. Results for the Intel archi-

tecture are shown in (a) and for the PowerPC are shown in (b). The x-axis is

in seconds, and the y-axis is the area of the images in pixels. Each chart shows

the timing results of executing two test programs, the first written directly for

GIL concepts (“GIL Custom”) and the second written to use the adaptation

between the GIL and BGL (“BGL Adaptation”).

Core 2 Duo), 2.2 GHz, with 2 GB of RAM, and iMac G5 (PowerPC G5), 2.1 GHz, with

1 GB of RAM. The reported timings were obtained by executing the test programs

ten times, and computing the average of the measured running times. The test sets

for flood-fill and segmentation algorithms consist of 50 square images each, from the

size of 20×20 pixels to 1000×1000 pixels. To make the image size directly determine

the size of the problem, we use procedurally generated images where the number

of reachable pixels is proportional to the image size. The test images consist of a

GCC Alpha 7 Prerelease), checkout 681

68

maze with vertical, horizontal, and diagonal lines, as well as corners and dead-ends.

Figures 17(a) and 17(b) show the results for flood-fill, and Figures 18(a) and 18(b)

the results for segmentation. The test set for the backbone-healing algorithm consists

of ten square images, from the size of 10 × 10 pixels to 100 × 100 pixels. The test

images are a topographical representation of a complex terrain with a non-trivial

shortest path between the start and target pixels. The length of the optimal path

grows linearly with the side lengths of the image, increasing the size of the problem

accordingly; Figures 19(a) and 19(b) show the timing results.

0

5

10

15

20

202 302 402 502 602 702 802 902 1002

GIL Custom
BGL Adaptation

b b b b b b b b
bb

(a)

0

10

20

30

40

102 202 302 402 502 602 702 802 9021002

GIL Custom
BGL Adaptation

b b b b b b b b b
bb

(b)

Fig. 19. The timing results for the function backbone_healing. Results for the Intel

architecture are shown in (a) and for the PowerPC are shown in (b). The

x-axis is in seconds, and the y-axis is the area of the images in pixels. Each

chart shows the timing results of executing two test programs, the first written

directly for GIL concepts (“GIL Custom”) and the second written to use the

adaptation between the GIL and BGL (“BGL Adaptation”).

69

For each algorithm we tested, performance of the two implementations is close

to the same. The averaged (over different image sizes) abstraction penalties, defined

as the ratio of an abstracted implementation over a direct implementation [52, §D.3],

due to the adaptation were as follows: for the Intel architecture, flood-fill 0.92, seg-

mentation 0.96, and backbone-healing 1.07; for the PowerPC architecture, flood-fill

1.11, segmentation 1.01, and backbone-healing 1.08. The implementation using cross-

domain adaptation thus, in all cases, achieves performance roughly on a par with a

hand written GIL algorithm. In two cases the implementation via adaptation was

faster. This (close to) zero-overhead adaptation is due to C++’s template compilation

model, where specialized code is generated for each different template instantiation.

As discussed in Section 2, calls to functions defined in concept maps can be statically

resolved, and often inlined, allowing the optimizer to see through adaptation layers.

Our tests compared the performance of algorithms written in terms of different

data structures: images and graphs. To minimize noise, we were careful to ensure that

the compared algorithms nevertheless employed a common strategy, for example for

updating work lists. In a few cases, the control structure of the code differs because the

direct implementation can take advantage of properties specific to images. Factors

such as the use of auxiliary data structures, differences in cache locality, and the

success of the compiler’s inliner, all have an impact on the final observed performance.

The experiments suggest that the composition mechanism itself incurs no significant

penalties; other factors have a larger impact on performance. Furthermore, a generic

algorithm in a widely used software library can be expected to be well tuned and

tested; reusing such an algorithm even via a complex adaptation layer retains these

benefits.

70

D. Multi-layer composition

In this section we extend the cross-domain composition presented in Section 2 to

a multilayer cross-domain composition. This extension is multilayered because we

add an adaptation layer from the domain of graphs to the domain of linear algebra,

augmenting the adaptation layer from the domain of images to the domain of graphs.

We show how by using the multilayer cross-domain composition of images-to-graphs-

to-matrices we can directly express the architecture of an important class of image

analysis algorithms.

The use of concepts for the construction of multilayer adaptations has many

benefits over other methods. For instance, consider the construction of a multilayer

library composition using object oriented techniques. Such a multilayer composition

would use a hierarchy of interfaces and class adapters and wrappers, commonly in-

tegrated into a framework [71]. Such object-oriented systems suffer from problems

such as hierarchy-hardening, fragmentation, and inflexible data representations [71].

A particular problem is that the client of the library composition must explicitly wrap

their classes, and thus also objects, to make the classes compatible with the various

layers. This wrapping must occur because object construction is hard-wired into the

data-structures and algorithms and cannot be changed by the client. While such

wrapping may be possible for some layers, other layers may not be accessible to the

client. This means that some library compositions are impossible without exposing

the internal representation of the adaptation to the client.

A solution utilizing concepts circumvents many of the problems associated with

the traditional implementation of multilayered compositions. The use of concepts

means that class and object wrapping are unnecessary due to the presence of retroac-

tive modeling. Data representations are not hardwired to the algorithms or data-

71

structures of the library as concepts are defined for classes of types and not an indi-

vidual type. Finally, multiple layers of adaptation can be effected transparently—the

crux of this chapter.

The motivating example for this section comes from the class of spectral clustering

algorithms, which are a class of popular, high-quality clustering algorithms [68]. In

particular we implement the ncuts algorithm for bipartitioning images as described by

Shi and Malik [88]. Spectral clustering algorithms were first developed for clustering

and partitioning data represented by graphs, but have since been applied to image

analysis. The purpose of such algorithms is to identify a partition of a data-set where

each datum in a subset is more related to the other data in its subset than to the

data in the rest of the data-set. Algorithms like ncuts create a bipartition of the

data and not a general partition of the data into many parts. Should the data need

to be partitioned into more than two parts the ncuts algorithm can be repeatedly

run on the individual partitions of the data. It is a property of the ncuts algorithm

that secondary cuts will always occur on strict subsets of the remaining edges in the

graph representation of the data [88].

The Shi and Malik ncuts algorithm is an especially important example in the

class of spectral clustering algorithms [68].5 The ncuts objective gives results that

tend to greatly outperform older clustering methods such as k-means clustering, or

radial-basis classification [68]. Clustering can be used for image segmentation, which

is an important step for the analysis of raster image data, for example in computer

vision.

The algorithm described by Shi and Malik relies on a multilayer composition

of images-to-graphs-to-matrices. A number of spectral clustering methods rely on

5As of May 11th, 2009, the website citeseerx.ist.psu.edu reports 1061 citations of
Shi and Malik paper [88] not including self-references.

72

the multilayer composition described by Shi and Malik, and thus it is applicable

to a many image processing and analysis methods [68]. This means that once the

multilayer composition has been implemented the composition can be reused for many

different algorithms.

The goal of this section is to directly express the multilayer composition described

by Shi and Malik as a library using the concept and concept map features of C++0x.

Without transparent, retroactive adaptation either the client of the ncuts algorithm

has to translate their image data-structures into compatible matrix data-structures,

or the programmer of the ncuts algorithm has to translate the ncuts algorithm

to work with image data-structures—and not matrix data-structures. In the first

case the client of the ncuts algorithm must understand the particular details of the

composition described by Shi and Malik, rather than just using the ncuts algorithm,

in order to correctly transform their image data-structure into the needed matrix data-

structure. Alternately, the library writer must become a domain expert in images,

graphs, and matrices so that the ncuts algorithm can be translated from the domain

of linear algebra to the domain of graph theory to the domain of image processing

algorithms, preserving the meaning of the ncuts algorithm. Instead, with concepts,

the composition from images-to-graphs-to-matrices is encapsulated in a library, using

the architecture and compositions as specified by Shi and Malik. The result is that

the ncuts algorithm is implemented using matrix concepts, the client of the ncuts

algorithm passes an image data-structure to the ncuts algorithm, and the adaptation

occurs transparently, automatically, and correctly.

The multilayer composition as described by Shi and Malik consists of three layers

which we show schematically, on the right, in Figure 20. The top layer are the set

of raster images. Images are defined to be graphs, where each pixel in an image is a

vertex in the graph. Edges are added between vertices in the graph to represent some

73

libPNG
Simple Image Library 2d
��

Generic Image Library (GIL) §1
concept map §3
��

Image

��
Boost Graph Library (BGL) §1

concept map§4
��

Graph

��
Matrix Template Library (MTL) §1

ncuts algorithm §2
��

Matrix

Iterative Eigensolver Template Library (IETL) §1
uses

��
Lapack and ATLAS

Fig. 20. A high-level view of the GIL-BGL-MTL multilayer composition. This com-

position is used in the implementation of the Shi and Malik ncuts algorithm.

The single arrow from libPNG to GIL is the wrapping of the image data by a

class. The double arrows from GIL to BGL and BGL to MTL represent the

composition of library interfaces. The single arrow from MTL to the IETL is

the use of the MTL concepts which the inputs of the ncuts algorithm must

satisfy; in addition, the ncuts algorithm uses the IETL, which in turn uses

the Lapack and ATLAS libraries.

relationship between pixels in the image, i.e., neighboring pixels, or similar intensity

values, etc. Thus, the composition described by Shi and Malik matches closely to

our definition of the image–graph composition, as described in Section 2. The second

layer describes a graph as a matrix. The matrix is defined as an adjacency matrix [89],

where there is an element in the matrix for each pair of vertices in the graph. The

value of each element in the matrix is the label of the edge connecting the two vertices

associated with that element; for Shi and Malik this label represents the degree of

similarity between two vertices.

For this section we implement a subset of the Generic Image Library’s (GIL)

concepts [10], a subset of the Boost Graph Library’s (BGL) concepts [89], and a

subset of the Matrix Template Library’s (MTL) concepts [90]. We implemented the

74

ncuts algorithm with the Iterative Eigensolver Template Library (IETL) [104], which

requires the matrices used as inputs to its components be compatible both with the

MTL, and the C-bindings for the Lapack [4] and ATLAS [116] FORTRAN back-

ends. The particular concepts used from the GIL and BGL differ from those concepts

used in Section 2: we must use the VertexAndEdgeListGraph concept instead of the

IncidenceGraph concept; however, techniques and code written for that adaptation

are used in the multilayer composition.

On the left in Figure 20 are the particular libraries we used or implemented for

this section. At the top, we use the open source C-library libPNG [86] to read a

raster bit-map image from disk. The data, a character buffer, is lightly wrapped

by a class called S2DImg::image. This class satisfies the syntactic and semantic

requirements of one of the GIL’s raster image concepts. We provide a concept map

to define a modeling relationship from the GIL’s image concept to a graph concept in

BGL and from the BGL’s graph concept a matrix concept in MTL. The MTL matrix

concept is used in the requires-clause of the ncuts algorithm, as the IETL requires this

matrix concept for its algorithms. Finally, the IETL requires FORTRAN-compatible

matrices, as it uses the Lapack and ATLAS back-ends.

1. Background of the MTL

In this multilayer composition we use the Matrix Template Library 2 (MTL) [90].

MTL is a high-performance C++ linear algebra library which utilizes domain specific

notation, expression templates, and adaptation to low-level C and FORTRAN li-

braries. Other examples of libraries in this domain are Blitz ++ [108], Boost µBLAS [113],

and MTL4 [35], etc. MTL represents matrices as two-dimensional containers — rows

of elements or columns of elements — with two-dimensional indices to access elements

in the matrices. The MTL supports a large number of different kinds of matrices:

75

upper, lower, diagonal, banded, sparse, dense, square, etc. The MTL has not been

ported to ConceptC++. For this experiment we implement only the subset of the

MTL needed for the multilayer cross-domain composition.

We also use the Iterative Eigensolver Template Library (IETL) [104], which con-

sists of a number of algorithms and components useful for finding eigenvectors and

eigenvalues of matrices. The IETL algorithms accept MTL-compatible matrices as in-

put. The Shi and Malik algorithm uses the Lanczos method for iterative eigensolving;

we note that the IETL only supports the Lanczos method through the use of a combi-

nation of the ATLAS [116] and Lapack [4] libraries [104]. Due to Lapack and ATLAS,

certain memory layout requirements are imposed on the container which represent

the matrices. Satisfying the memory layout requirement requires copying the sparse

matrix data-structure which is the input to the ncuts algorithm into a Lapack- and

ATLAS- compatible data-structure. This copying occurs within the ncuts algorithm

so no further work is needed from the adaptation.

2. Implementation of the ncuts algorithm

The core of the ncuts algorithm is a formula, called an objective, which describes a

minimization problem over the sum of the weight-labels of the edges representing a

graph-cut. This minimization problem uses a metric of similarity measures between

the two partitions described by the graph-cut. The metric is normalized, i.e., the

measure of similarity of each part of the data-set is divided by a measure of similarity

of the whole data-set. This normalization of the metric guarantees the measure of

similarity of each datum in the partition is greater to the partition that it belongs to,

than to the other partition in the bipartition of the graph. Finding such a normalized

cut is an NP-complete problem [88], but can be approximated in polynomial time

with an iterative eigensolver; Shi and Malik use the Lanczos algorithm in their paper.

76

Our implementation of the ncuts algorithm follows the description in the paper.

That is, we implement the multilayer composition architecture described by Shi and

Malik, and use their measure of similarity — a product of the normalized similarity

of intensity between two pixels and the normalized distance used in calculating a

neighborhood for each pixel. The neighborhood of pixels for a given pixel p is defined

to be every pixel q within some chosen distance of p, and where the pixel q is also

within the boundary of the image. We try to keep various other parameters as similar

as possible. We differ from Shi and Malik’s implementation in that we express the

multilayer composition directly, using concepts, rather than translating the data from

an image data-structure, to a graph data-structure, to a matrix data-structure.

Details of the measure of similarity, the derivation of the algebraic representation

of the ncuts algorithm, and proof that the ncuts objective is NP-complete can be

found in the article by Shi and Malik [88].

3. GIL–BGL composition for MTL

In this section we describe the modeling relationship used for the GIL-to-BGL adap-

tation in the multilayered composition which mimics the Shi and Malik architecture.

In Section 2 we saw that for any given pixel locator the neighboring pixel locators

were the four cardinal neighbors; the multilayered composition cannot make this same

assumption. For the normalized cuts algorithm we must generalize the modeling re-

lationship from images to graphs: one where a pixel locator is related to any pixel

that is within some radius set by the user of the algorithm. This means that a pair

of types representing an image and a radius will model the graph concept.

For this composition we use the a standard tuple<...> type containing a pointer

to the image and a value representing the radius. The image type must model the GIL

concept ImageView, and the radius’s type (this is a dynamic value in this composition)

77

must model the associated difference_type of the ImageView concept. The first

value of the tuple is a pointer so that the image is not copied into the tuple, since

this is a potentially expensive operation.

A concept map is then defined from the tuple of a pointer to image type bound by

the ImageView concept and a radius value to the concept VertexListGraph, as shown

in Figure 21. Lines 4–9 define the associated types for the concept VertexListGraph

in terms of helper types instantiated with associated types of the concept ImageView.

The edge_descriptor is the same as the definition of the edge_descriptor in

Section 2. The out_edge_iterator associated type is defined on line 7; it uses

a new helper type instantiated with the vertex_descriptor associated type (the

difference_type of the image). This version of the type out_edge_iterator iter-

ates over all of the ‘safe’ neighbors of the current vertex. By ‘safe’ neighbors we mean

all those neighbors within the window defined by the value radius (the second value

of the tuple) that are also within the bounds of the image. The vertex_iterator is

defined on line 9 and iterates over all of the pixel locations within the image.

The function out_edges is defined on line 10: it makes a call to another function

called out_edges that builds a neighborhood of legal pixel locations for v based on

the size of the neighborhood radius value radius_m and the bounds of the image. The

functions target and source are similar to the functions defined in Section 2. The

function vertices, defined on lines 26–29, builds a pair of iterators which traverse

every pixel locator in the image. The function num_vertices is defined as a call to

the size of the image.

4. BGL–MTL composition

In this section we describe the adaptation from a BGL graph concept to an MTL

matrix concept. The basic idea is to represent a graph as an adjacency matrix:

78

template <GIL::ImageView View>
concept map VertexListGraph<std::tuple<View∗,

GIL::ImageView<View>::difference type>> {
typedef typename GIL::ImageView<View>::difference type vertex descriptor;
typedef std::pair<vertex descriptor, vertex descriptor> edge descriptor;
typedef ViewToVertexList::out edge iterator adaptor<vertex descriptor>

out edge iterator;
typedef ViewToVertexList::vertex iterator adaptor<vertex descriptor>

vertex iterator;
inline std::pair<out edge iterator, out edge iterator>

out edges (const vertex descriptor& v,
const std::tuple<View∗, vertex descriptor>& g) {

return ViewToVertexList::out edges(v, g); }
inline vertex descriptor

source (const edge descriptor& e,
const std::tuple<View∗, vertex descriptor>&) {

return e.first; }
inline vertex descriptor

target (const edge descriptor& e,
const std::tuple<View∗, vertex descriptor>&) {

return e.second; }
inline std::size t out degree (const vertex descriptor& v,

const std::tuple<View∗, vertex descriptor>& g) {
std::pair<out edge iterator, out edge iterator> oedges = out edges(v, g);
return utl::distance(oedges.first, oedges.second); }

inline std::pair<vertex iterator, vertex iterator>
vertices (const std::tuple<View∗, vertex descriptor>& g) {
// create 0−vector, size, and last−position: Zero, dims, end pos
return std::make pair(vertex iterator(Zero, dims), vertex iterator(end pos)); }

inline std::size t
num vertices (const std::tuple<View∗, vertex descriptor>& g) {

return size(∗g.image m); } }

Fig. 21. Neighborhood concept map. The concept map from the tuple of a pointer to

an image type and radius to the concept VertexListGraph, where the image

type is bounded by the GIL concept ImageView and the radius is bounded

by the associated type difference_type of the concept ImageView. The

definition of the associated types of the VertexListGraph relies on helper

types instantiated with some of the associated types of the concept ImageView.

The definition of the signature of of the VertexListGraph is similar to the

concept map shown in Section 2.

79

an element in the matrix is the label between any two vertices in the graph, and the

matrix is indexed by the vertices of the graph. Similar to the GIL-to-BGL adaptation

we will define a modeling relationship from a tuple of a graph and two helper types

to a matrix concept. The helper types must both model the BGL’s PropertyMap

concept, which represents a store of information accessed by keys, returning arbitrary

values. Default—and automatically supplied—implementations for these property

maps can be described, allowing the user to compose graphs to matrices without any

intervention. The decision to use the general modeling relationship is done at the

point of usage of the image with the ncuts algorithm.

BGL graphs do not directly represent properties (labels) such as edge-weights;

instead, labels are supplied by an external entity called a property map. A property

map takes a key, for example, an edge-descriptor, and returns a value, e.g., the

weight of the edge. Likewise, we define a scalar index for each vertex in the graph

with another property map. This property map takes a vertex-descriptor as a key

and returns an integer so that if there are N vertices, each vertex is given a unique

integral value in the range [0, N). Thus, the value at the ith by jth index of the

matrix M modeled by a graph is given by Mij = w(u, v) where the scalar index of

the vertex u is i, the scalar index of the vertex v is j, and w is the weight function for

edges in the graph. In sum, this means that an adaptation from graphs to matrices

is implemented as a tuple of a graph, an edge-weight property map, and an index

property map to an adjacency matrix.

We show the overall architecture of the concept map from the GIL ImageView and

its associated property maps for edge-weight and vertex-index to the MTL concept

SparseMatrix in Figure 22. On the left is the composition from an image to a graph.

This composition is defined through a modeling relationship from pair of a types

(shown with dotted arrows) to the BGL concept VertexListGraph (shown with a

80

Radius

GIL :: ImageView

tuple < , >

BGL :: VertexListGraph

VertexIndexMap

EdgeWeightMap

tuple < , , >

IETL/ncuts

MTL :: SparseMatrix

��
�� ��

AA
99 77 99

88

Fig. 22. A schematic of the implementation of Shi and Malik’s image analysis ar-

chitecture. On the left is GIL’s ImageView concept and a run-time value

representing the radius of the neighborhood, chosen by the user; a tuple of

these two types (shown with dotted arrows) model BGL’s VertexListGraph

concept (shown with a solid arrow). A tuple of BGL’s VertexListGraph

with property maps storing the values of edge-weights and integral indexes of

the vertices of the graph (shown with dotted-arrows) satisfy the requirements

of MTL’s SparseMatrix concept (shown with a solid arrow). The double

arrow represents the use of the SparseMatrix concept as a requirement for

the ncuts algorithm; the ncuts algorithm is implemented using functionality

provided by IETL.

solid arrow); the first element of the pair is a pointer to a type that satisfies the

requirements of the GIL ImageView concept, the second element of the pair is the

type of a value for the Radius — this type must satisfy the requirements of the

associated type difference_type of the ImageView concept. The composition from

a graph to a matrix is shown on the right side. The composition is defined through

a modeling relationship from a tuple of a graph and two property maps (shown with

dotted arrows) to the MTL concept SparseMatrix (shown with a solid arrow). This

is shown by the boxes in the cartoon BGL::VertexListGraph for the graph, and

the boxes EdgeWeightMap and VertexIndexMap for the edge-weight and vertex-index

property maps, respectively. The SparseMatrix concept is used within the ncuts

algorithm, the requirement for the function shown by the double-lined arrow, which

performs a set of matrix-matrix operations, such as multiplication, subtraction etc.

The result of these matrix-matrix operations is a new, dense, ATLAS and Lapack-

compatible matrix which is passed to the Lanczos iterative eigensolver through the

81

IETL interface.

All matrix concepts in the MTL require the capability to iterate over all of

the rows (columns) of a matrix and all the elements within those rows (columns).

This requirement on matrices translates to a requirement on graphs; in particular,

since a vertex will be used to get an index into a row or column of a matrix, the

graph must support efficient—but not necessarily random-access—iteration over the

graph’s vertices. The BGL graph concept VertexListGraph provides the capability

of iteration over all the vertices in the graph [89]. However, a graph that satisfies

the VertexListGraph does not necessarily contain every possible pair of vertices

(a graph with such a capability is called an AdjacencyMatrixGraph). Since the

VertexListGraph represents a matrix with mostly 0 values for the entries of the

matrix we define a vertex list graph to be a model of the SparseMatrix concept.

Thus, we adapt the BGL’s VertexListGraph concept to the MTL’s SparseMatrix

concept. The adaptation (the concept map) is parametrized over additional types,

i.e., the necessary property maps for the modeling relationship from vertex-descriptor

to integral scalar, and out-edge to label-weight.

The concept for the MTL’s SparseMatrix is shown in Figure 23. The definition

of the SparseMatrix concept is somewhat awkward because ConceptG++ does not

support concept maps which retroactively add member functions for the type being

modeled: updates to this compiler and proposed extensions would allow a more el-

egant implementation. Briefly, lines 2–4 declare the associated types for iterators

for rows, columns, and elements, respectively. Access to the iterator ranges of rows,

columns, and elements are through the functions rows, columns, and elements. (Ac-

cess to an iterator range for a sequence of elements requires either a row or column

iterator, see lines 10 or 12.) The matrix operations that the MTL supports require

that the element type of the matrix support the arithmetic operations like addition,

82

auto concept SparseMatrix<typename M> {
std::ForwardIterator row iterator = M::row iterator;
std::ForwardIterator column iterator = M::row iterator;
std::ForwardIterator elt iterator = M::elt iterator;
std::ArithmeticLike value type = M::value type;
std::pair<row iterator, row iterator> rows (const M&);
std::pair<column iterator, column iterator> columns (const M&);
std::size t num rows (const M&); std::size t num columns (const M&);
std::pair<elt iterator, elt iterator>

elements (const row iterator&, const M&);
std::pair<elt iterator, elt iterator>

elements (const column iterator&, const M&);
std::size t get index (const row iterator&, const M&);
std::size t get index (const column iterator&, const M&);
std::size t get index (const elt iterator&, const M&);
value type get value (const elt iterator&, const M&);
}

Fig. 23. The concept for the MTL’s SparseMatrix.

subtraction, division; we enforce this capability by adding a requirement for the con-

cept ArithmeticLike for the element type of the matrix [90]. The various get_index

functions return the index of the given row, column, or some element within a row or

column. The function get_value returns the value of a particular element.

The concept map from the BGL VertexListGraph and the two property maps

to the MTL’s SparseMatrix is both long and trivial. The tuple needed for the

modeling relationship is defined using references (pointers) to the graph and the two

property maps. We show an example of the definition of a function required by

the MTL SparseMatrix concept, in Figure 24. The implementation of the function

num_columns is a single line: somewhat dwarfed by the many SameType constraints

on the function.

The signature for the function ncuts that implements the ncuts algorithm is

shown in Figure 25, along with pseudo-code describing the implementation of the

83

... // other signature definitions
template <BGL::VertexListGraph G,

utl::ReadPropertyMap EWM,
utl::ReadPropertyMap IDX>

requires std::SameType<G::vertex descriptor, IDX::key type>
&& std::SameType<IDX::value type, std::size t>
&& std::SameType<G::edge descriptor, EWM::key type>
&& std::SameType<EWM::value type, double>

std::size t num columns (const std::tuple<G∗, EWM∗, IDX∗>& gm) {
return num vertices(std::get<1>(∗gm));
}

Fig. 24. Definition of the function num_columns. One of the definitions of the signa-

tures that allow the BGL’s VertexListGraph concept to satisfy the MTL’s

SparseMatrix concept. This figure shows the implementation of the signa-

tures for num_columns function. Because the MTL SparseMatrix concept is

auto, no explicit concept_map needs to be defined — the only requirement is

that the functions exist in the correct scope.

algorithm. We note that the ncuts function is implemented entirely in terms of

functions and algorithms defined by the MTL for sparse matrices. The final statement

of the ncuts function is a call to the function ncutsW which computes the second

eigenvector (the graph-cut, see [88]) of the matrix System, which represents the system

of equations being solved.

The code fragment in Figure 26 shows a PNG file being opened and the ncuts

algorithm used on the image. It is important to note that no translation of the PNG

is performed — the image is passed to the function ncuts which is expecting an MTL

SparseMatrix.

Note in the code in Figure 26 the construction of the tuple on line 3 which binds

the image to the window radius value, which satisfies the more general graph modeling

relationship required by ncuts. similarly the construction of the tuple on line 5 binds

the neighborhood proxy to an edge-weight map ewm and a vertex-index map idx for

84

template <MTL::Matrix Mtx>
std::vector<Vector> ncuts (Mtx const& mtx) {

// acquire associated types
// find the size of the matrix, and build the problem
const std::size t N = num rows(mtx);
Matrix D(N, N), W(N, N), D isqrt(N, N), D m W, System(N, N);
// build the weighting matrix W
// build the matrices D, and the inverse−square−root of D
// build D − W
// solve and put solution into System
return ncutsW(System); // return 2nd eigenvector
}

Fig. 25. The ncuts function. The signature of the ncuts function, and an outline of

its body, defined using the MTL. The requirement for this function is that the

parameter Mtx satisfy the concept MTL::Matrix. The helper-function ncutsW

is defined entirely in terms of C-Lapack data-structures so that the C-Lapack

back-end of the Lanczos iterative eigensolver can be used.

S2DImg::image img(argv[1]);
// define edge−weight property map ewm and the vertex−index property map idx
auto graph = make tuple(&img, 2);
std::vector<...> solutions = ncuts(

make tuple(&graph, &ewm, &idx));

Fig. 26. Code fragment showing a call to the ncuts function.

the modeling relationship from graphs to matrices. We note that the two uses of the

auxiliary types at two positions within the adaptation stack are optional, and that

the binding of values only occurs at the entry point; and, in particular, the rest of

the composition occurs transparently.

5. Results of the BGL to GIL to MTL adaptation

Figure 27 shows the result of running the ncuts algorithm. The table shows that the

algorithm correctly partitions the data.

85

Figure (a) Figure (b) Figure (c)

Fig. 27. Segmentation results for ncuts. A 25 × 25 PNG image of a white diamond

in a black field is shown in Figure (a). The image allows 8-bits of gray-scale,

i.e., white is defined as the value 255 and black as the value 0. Gaussian

noise was added to the whole image with µ = 50 channels for the mean and

σ = 25 channels for the standard deviation. The ncuts algorithm was run

and the 2nd eigenvector’s values were split into vertices that are ‘positive’ and

vertices that are ‘negative’ to create the graph-cut. All positive vertices went

into one partition and all negative vertices into the other partition. This is

shown graphically in Figure (b). A composite of Figures (a) and (b) is shown

in Figure (c), demonstrating that the ncuts algorithm segmented the image

into the diamond and the surrounding field.

E. Concept maps and other adaptation mechanisms

This section relates the adaptation capabilities offered by ConceptC++’s concepts and

concept maps to those of several other mainstream languages, including C++ 2003.6

Concept maps are a non-intrusive mechanism for adapting operations on a type

(or collection of types) to model a concept. That is, a given collection of operations

and associated types might offer the essential functionality required by an interface

(concept), but these operations might not have the required names or signatures,

and some associated types might not exist with the correct names. Such a collection

can be made conform to the new interface using a concept map. No changes to the

6This analysis is adapted, with permission, from the paper by Järvi, Marcus, et
al. [56].

86

original operations or types are needed.

Concept maps adapt types rather than individual objects. They do not offer

direct facilities to store state. All state is maintained in the objects whose types

concept maps adapt. New types and operations may need to be introduced before

the concept map adaptation facilities come into play, if a collection of types does

not provide the essential functionality required to model a concept. We saw this in

Section C, where it was necessary to introduce a new class for traversing sets of pixels

in an image, in order to satisfy the requirement for an associated type modeling

edge iterators. Once all of the necessary functionality has been implemented with

appropriate types and functions, concept maps can be applied in their intended role

as non-intrusive identity-preserving adapters.

The template system of C++ 2003, and ConceptC++, is based on instantiating

templates with full type information at compile time, allowing all functions defined

in concept maps to be statically resolved, possibly inlined, and further optimized.

Several concept map adapters can be layered without the adaptation mechanism

causing performance degradation. The downside is that all template instantiations to

be used in a program must be known at compile time. While this may be acceptable in

domains like graph algorithms or linear algebra — indeed, generic C++ 2003 template

libraries have found widespread use in these domains — more “dynamic” domains,

such as GUIs, necessitate run-time polymorphism. The combination of concepts and

run-time polymorphism is explored in the papers by Marcus, et al. [70, 55, 56].

In object-oriented languages, libraries publish their interfaces as abstract classes.

(Here, this term covers the “interface” language construct found in some languages.)

To satisfy the requirements of an interface then means to define a class that inherits

from a particular abstract base class. This achieves run-time polymorphism but,

in mainstream object-oriented languages, the subclass relation is established at the

87

time of defining a class, which makes inheritance a relatively rigid mechanism for

library composition. A class cannot be made a subclass of another class retroactively

without altering its definition. Variations of structural subtyping have been proposed

as cures for problems of rigid class hierarchies [6, 62] but have not found wide use.

Outside of mainstream object-oriented languages, Cecil [67] lets subtyping be defined

externally to class definition. This feature was found beneficial for adapting existing

types for use with generic libraries in a comparative study of programming languages’

suitability for generic programming [31]. Aspect-oriented programming systems can

be used to modify classes retroactively, independently of their original definitions,

e.g., to implement new interfaces using “static crosscutting” [60].

The adapter pattern [30] is widely used to work around problems of rigid class

hierarchies when composing libraries. Adapters can be divided into object and class

adapters. Both kinds of adapters inherit an abstract base class that defines the desired

interface. Object adapters store the adaptee as a member (as a reference to a distinct

object), whereas class adapters inherit from the adaptee, storing both the adapter

and adaptee as a single object. The problems of library composition and adaptation

in object-oriented programming are widely studied and recognized. For example, if

there is a need to adapt a class with new functionality, but neither the definition of

that class nor code that is hard-wired to use that class can be changed, an adapter

is not an adequate solution (see, e.g., [71, 103]). Class adapters suffer from hierarchy

hardening and object adapters from inconsistency problems caused by breaking the

state of a single entity into multiple objects [50, 20].

We demonstrate the techniques that allow us to express large, sophisticated

architectures, as language constructs in Section C. Essential in our idioms is that

we avoid the use of an abstract base class to describe the library interface. Instead,

the library interface is specified in terms of concepts. As concept maps are entirely

88

external to both the types they adapt from and the concepts they adapt to, the

problems of object-oriented adapters are avoided. It is possible to use concept maps

to adapt client code to and from the abstract base class interface, which is provided

for the sole purpose of run-time polymorphism [56]. The constructions to achieve

this are somewhat involved, see [70], but can be hidden behind simple abstractions.

The benefit is that the choice of whether to use run-time polymorphism is deferred

to the time when the components are composed, rather than dictated by the library.

Run-time dispatching may incur a performance penalty, which is thus avoided in the

cases where run-time polymorphism is not needed. If we ignore, for the moment,

concept refinement relationships, some ability to test whether operations are present

(via down-casting), and performance optimizations (see [56, §4.3]), the central design

feature of the poly<> template presented in the paper by Järvi, et al. [56] is that

it behaves as a type constructor for defining existential types [63], where the hidden

type is constrained to be a model of a particular concept. In this regard, poly<> is

similar to Haskell’s “forall” construct, which allows the definition of types with a

hidden part constrained to be a type belonging to a given type class, or classes.

Concepts are in many ways similar to Haskell type classes [112], and concept

maps to Haskell’s instance declarations. A Haskell type class defines the signatures

of the functions that instances (models) of the type class must implement. Instance

declarations establish that a type, or a sequence of types in the case of multi-parameter

type classes, belong to a particular type class. Analogous to concept maps, instance

declarations are non-intrusive: external to both the definitions of the types and the

definition of the type class. Lämmel and Ostermann collect formulations of problems

reported in the object-oriented integration mechanisms [61], and demonstrate how

type classes are effective solutions to many of them. Essential in evading the problems

is the non-intrusive adaptation with instance declarations. Our experiences with non-

89

intrusiveness of concept maps support this view.

In their standard form (in Haskell98 [112, 80]), type classes have a few obvious

restrictions, which have largely been remedied in non-standard but common exten-

sions. First, standard type classes only accept one parameter. Multi-parameter type

classes, however, are widely supported by Haskell compilers and interpreters. Second,

standard type classes do not support associated types. They can, however, be emu-

lated to an extent with functional dependencies [59], a well-established extension, or

expressed directly using more recent extensions [15, 14].

There are also less obvious differences between concepts and type classes, some

of which affect adaptation and library composition. We explain those differences, but

refrain from a comparative evaluation, as we have not produced Haskell implemen-

tations of any of the library composition and adaptation scenarios described in this

chapter. Garcia et al. compare the suitability of different mainstream languages for

generic programming [31].

Haskell can infer the type class constraints of polymorphic functions automat-

ically, while ConceptC++ does not support the analogous “concept inference.” To

ensure that the constraints of a generic function can be uniquely determined, Haskell

requires that an overloaded function name (when called without module qualifica-

tion) is declared in exactly one type class. When composing independently developed

libraries, it is possible that the same function name is accidentally used in two type

classes in different modules. Figure 28 translates the classic example of accidental

conformance [69] to ConceptC++ and to Haskell. The Haskell version is erroneous

and is fixed by qualifying the calls to draw and shoot with the module prefix as

Cowboy.draw and Cowboy.shoot; the ConceptC++ version is inevitably valid because

ConceptC++ requires a disambiguating annotation, the “Cowboy C” constraint, even

if there are no conflicting concepts.

90

data Canvas = ...

class Rectangle r where
draw :: r → Canvas → Canvas
move :: r → Int → Int → r

class Cowboy c where
draw::c → c
move::c → Int → Int → c
shoot::c → c

drawShoot = shoot . draw

concept Rectangle<typename R> {
void draw(R r, Canvas& w);
void move(R& r, int x, int y);
}
concept Cowboy<typename C> {

void draw(C& c);
void move(C& c, int x, int y);
void shoot(C& c);
}
template <Cowboy C> void draw shoot(C& c) {

draw(c); shoot(c);
}

Fig. 28. Accidental use of the same function name in two different type classes (left

column) and in two different concepts (right column).

An instance declaration in Haskell is in effect in all functions in which the decla-

ration is visible. A concept map, however, is only in effect in a context where a type

is constrained with the corresponding concept. The example in Figure 29 illustrates.

The multiplication operator (*) for integers is given different semantics in the two

concept maps. The first concept map retains the multiplication operator’s original

meaning, the second maps the operator to perform addition. Neither mapping has an

effect outside generic functions. One or the other of the mappings, neither of them,

or both can be in effect within a particular generic function, depending on the func-

91

tions constraints. In our slightly contrived example function, both meanings apply.

The fact that concept maps define views that are only active when requested is a

desirable trait for adaptation and library composition. However, this may prove to

be confusing as well, as it creates a rift between generic and non-generic functions.

As an incremental addition to an evolving C++ language, concept maps and

concept-based overloading must co-exist, and sometimes compete, with the exist-

ing overloading mechanism of C++ 2003. This results in tension between the needs

of traditional ad-hoc function template overloading and the desire to treat concrete

types and operations as implementation details, and only expose required function-

ality through concept maps. In Section F we illustrate some insidious failure cases

that can arise from this competition.

The Scala programming language [79] provides external adaptation with rather

different mechanics, implicit parameters, but with an outcome that is close to adap-

tation using type classes or concepts. An implicit parameter to a method can be

left out in a call to the method. The Scala compiler attempts to find a unique best

matching value for that parameter in the call’s context. A fairly faithful emulation of

type classes is possible with implicit parameters that represent dictionaries of func-

tions [78]. Furthermore, Scala views utilize implicit parameters to non-intrusively

define implicit conversions between types, which seems promising for implementing

cross-domain compositions like we discussed in Section C.

C++ 2003 allows the definition of efficient non-intrusive adaptation layers. As an

example, we mentioned BGL’s transparent adapters for LEDA graphs in Section B.

Breuer et al. [11] report on a cross-domain library composition between the domains

of linear algebra and graph theory. They adapt several concepts from the Parallel

Boost Graph Library [41] to concepts found in the Iterative Eigensolver Template Li-

brary [104]. Their implementation is in C++ 2003, and uses overloading and template

92

concept Monoid <typename C, typename Tag> {
C operator∗(C, C);
C identity(); }

class additive {}; class multiplicative {};
concept map Monoid<int, multiplicative> {

int identity() { return 1; } }
concept map Monoid<int, additive> {

int operator∗(int a, int b) { return a + b; }
int identity() { return 0; } }

template <InputIterator It, InputIterator It2, typename U>
requires SameType<It::value type, It2::value type>,
requires Monoid<It::value type, multiplicative>,
requires Monoid<U, additive>, Assignable<U>,
requires Convertible<It::value type, U>

U inner product (It i1, It i1e, It2 i2, U init) {
for (; i1 != i1e; ++i1, ++i2)

init = init ∗ ((∗i1) ∗ (∗i2));
return init; }

int main() {
vector<int> v; v.push back(3); v.push back(5);
cout << inner product(v.begin(), v.end(), v.begin(), 100); }

Fig. 29. Comparison of concept-maps and type-classes. Concept maps are only

in effect in contexts constrained by the corresponding concept. In the

inner_product function, the multiplication between *i1 and *i2 comes

from Monoid<U, additive>, and is therefore integer addition as defined

by the concept map Monoid<int, additive>. The multiplication between

init and the result of the “additive” element-wise multiplication comes

from Monoid<It::value_type, multiplicative>, and is thus integer mul-

tiplications as defined by the concept map Monoid<int, multiplicative>.

The Assignable, Convertible, and InputIterator concepts come from

ConceptGCC’s implementation of the proposal by Gregor et al. [42]. The

inner_product function computes the inner product of two sequences, accu-

mulating to an initial seed value init. When executed, the program outputs

134.

93

specialization to achieve the necessary adaptation, not concept and concept_map

constructs of ConceptC++. Non-intrusive adaptation in C++ 2003 relies on a host of

tricky template techniques, such as traits classes [77] and conditional overloading us-

ing the enable if template [57]. Though C++ 2003 can support complex non-intrusive

adaptation, the resulting code is brittle; ConceptC++ offers improved support for non-

intrusive adaptation.

Retroactive adaptation mechanisms certainly predate both Haskell’s type-traits

and ConceptC++’s concepts feature. Of particular interest to this dissertation is the

category construct of OpenAxiom [25] variant Spad programming language [58] (part

of the family of AXIOM computer algebra systems). Categories provide many of the

features of concepts and type-classes; they are closer to concepts, i.e., OpenAxiom

does not support “concept inference,” and types are unambiguously annotated with

the appropriate category. More powerful mechanisms are currently being added to

OpenAxiom to support retroactive adaptation, i.e., the assume facility for categories.7

The facility effectively retroactively binds a category to a domain (the specification of

a type) separately from specification of the domain (or category). The assume facility

also provides reflection capabilities; i.e., given that the operator * is assumed to be the

signature called BinaryOperator it is possible to request the NeutralElement, which

presumably returns the distinguished element constructor 1. This means that cate-

gories using the assume feature differ from both type-traits and concepts by allowing

the user to directly operate on the signatures of categories.

7The information here comes from personal correspondence with Dr. Gabriel Dos
Reis and Yue Li, who are developing this facility

94

F. Adaptation and overloading

We have demonstrated many benefits that mechanisms like concepts and concept

maps provide when composing software components. There are, however, some stum-

bling blocks. In this section we illustrate some of the difficulties that arise when using

these language features.

Non-intrusive adaptation is possible in C++ 2003 as well. For example, the BGL

provides a vector_as_graph adapter, which adapts all instances of vector<list<T>>

to satisfy the requirements in their IncidenceGraph table. Adaptation is accom-

plished by overloading the function templates required by IncidenceGraph for its

model vector<list<T>>. In ConceptC++, the analogous adaptation is accomplished

with a concept map

template <class T>

concept map IncidenceGraph<vector<list<T>>>;

C++’s ad-hoc polymorphism defines a partial ordering amongst a set of overloaded

functions based on specialization ordering of type patterns. In a nutshell, a function

is selected from a set of overloads when it is “at least as specialized as” all other

candidates and no other candidate is at least as specialized as it. This relationship

considers a type pattern A to be at least as specialized as another type pattern B

when A is substitutable for B. ConceptC++ defines an analogous specialization order

between concept constraints [54]. For example, one can expect the size function

below to match and be applied to all IncidenceGraphs, calculating the total number

of edges in a graph, including calls with arguments of type vector<list<T>>, as

shown:

template <IncidenceGraph G> int size(const G&);

...

vector<list<int>> g;

95

int total num edges = size(g);

When executed, the above code will use graph operations to calculate and return the

total number of edges in the graph.

For the purposes of determining the partial ordering of constrained function tem-

plates, concept constraints, however, are subordinate to type patterns—constraints

are only considered in case a “tie-breaker” is needed. For example, the type pattern

vector<T> is considered strictly more specialized than, say, the IncidenceGraph<T>

constraint.

Later in the software’s life-cycle, an other overloaded size function may be

introduced, for example, to return the size of an arbitrary vector:

template <typename A>

int size(const vector<A>& a) { return a.size(); }

Now, when we invoke size on a vector<list<T>> this new overload is considered

to be the unique best-matching candidate since the type pattern in the overload

defined for IncidenceGraph<T> is no more specialized than a plain type variable.

That is, the size(vector<T>) overload has silently hijacked the function call to

size(IncidenceGraph<T>). The code will compile but will erroneously only return

the number of lists in the vector representing the graph.

Type patterns are the primary overloading criteria in several other mainstream

languages. For example, in C# and Java, overloading is based exclusively on type

patterns: constraints on type parameters must be satisfied but they do not affect

specialization ordering. Overloading rules in various languages support the notion

that the most specific knowledge prevails. ConceptC++ offers two mechanisms for

specialization, type patterns and constraints, and by subordinating one mechanism

to the other we compromise this notion. A change to the function template partial

96

ordering rules could reinstate the principle that the most specific type knowledge is

used for dispatch. In particular, programs with silent failures like the one in the

example above could be rejected, if for the purpose of function overload partial order-

ing, concept map specialization patterns were considered at the same time as function

type pattern specializations, rather than as tie-breakers. These issues are currently

under consideration in the C++ standards committee.

The unrestricted non-intrusive adaptation allowed by current languages leads

to conflicting adaptation layers, and even with the above modification to function

overloading rules, surprises and ambiguities seem still possible. A situation akin to

the one we demonstrated in C++ arises with Haskell’s specialization ordering amongst

instance declarations, with language extensions that allow definition of “overlapping

instance declarations” [80, §3.7].

Non-intrusive adaptation helps to avoid much of the pre-planning and coordina-

tion that is necessary in the use of software libraries when component adaptation is

intrusive. For this flexibility, one needs not give up efficiency: our work demonstrates

that non-intrusive adaptation and efficiency are not mutually exclusive. The possibil-

ity of accidentally adapting the same component to a given interface in multiple ways

exists, but can be controlled with language designs that support detecting conflicts

and offer means for resolving them; further programming language research in this

area is required.

G. Conclusions

This chapter reports on programming with “concepts”, a forthcoming set of potential

new features of C++, and explains their use, benefits, and costs. In particular, concepts

offer powerful mechanisms for adapting data types to specific library interfaces—we

97

provide an analysis of this aspect of C++ concepts, and a description of their use in

complex cases of non-intrusive library composition. We demonstrate that transparent

adaptation of data structures to multiple library interfaces is possible and straightfor-

ward. We conclude from our performance evaluations that such adaptations impose

minimal penalties. As we show in Section C, such adaptations enable cross-domain

composition of libraries. These adaptations allow us to reduce one domain to another

domain, with a number of benefits that accrue. For example, algorithms and data-

structures can be implemented in the domain that best (and most naturally) fits their

expression and, even if those domains are different, the algorithms and data-structures

can still be composed transparently to the user.

The main benefits of ConceptC++’s adaptation mechanisms are non-intrusiveness

(a type can be adapted to one or more interfaces without altering the definition of

the type), flexibility (instead of single data types, a generic family of data types, or

classes of data types described using concepts, can be adapted with a single adapter),

and performance (adaptation is implemented using small functions whose addresses

are statically resolved, and are thus inlineable and optimizeable).

The generic programming paradigm, introduced into C++ via the STL, supports

the non-intrusive design of efficient families of algorithms specified in terms of com-

mon abstractions. There is little language support, however, for rigorously specifying

these abstractions. C++ is now evolving to raise such specifications from the level

of naming conventions to compiler checkable artifacts. C++0x comes with language

support for concepts, and the standard library has been re-specified to take advan-

tage of this, while retaining backward compatibility. The backward compatibility

requirement, considered essential for the evolutionary acceptance of C++0x, has had

an impact on the concepts in the library, but the effort is nevertheless a significant

step forward. The guidance for programming with concepts, as well as the libraries

98

and adaptation idioms presented in this chapter, unburdened by legacy compatibility

concerns, are further advances towards leveraging the generic programming approach

in constructing reusable software libraries. The utility of these idioms will further

increase once the concepts language feature becomes widely available: we expect to

see algorithm families designed from the ground up with this support in mind, and

to see generic programming emerge as a central tool in the design of modern reusable

libraries.

99

CHAPTER IV

ALGORITHMIC DIFFERENTIATION IN AXIOM

This chapter describes the design and implementation of a framework for algorithmic

differentiation in the Axiom (OpenAxiom) computer algebra system [25]. Algorithmic

differentiation (AD) is a method for computing the “derivative of a program” —

augmenting a program to also compute its derivative [45, 94]. This AD framework

is implemented as a sequence of transformations on the typed abstract syntax tree

of a Spad program. (Spad is the library extension language for Axiom [58].) The

framework illustrates an algebraic theory of algorithmic differentiation: if it is possible

to define a compositional semantics for programs, we can define the requirements for

when those programs can be algorithmically differentiated. By leveraging the generic

programming paradigm our AD framework is not limited to programs that compute

with built-in types like floating point numbers or integers, but can operate on any

program that computes over, for instance, polynomials, or any type that satisfies

certain algebraic requirements (algorithmically differentiable ring). Our algorithmic

differentiation framework is a library-directed transformation tool — it does not rely

on any modification of OpenAxiom’s Spad compiler.

This chapter includes a specification for the core of the Spad language. This

specification includes a formal grammar, an operational semantics of relevant parts

of that grammar, and a sketch of the denotational semantics for the composition

of programs in core Spad with respect to algorithmic differentiation. The grammar

specifies the legal constructs that our framework can translate. The operational

semantics specifies the meaning of the Spad language using standard tools of the

theory of programming languages. The denotational semantics allows us to the discuss

the algebraic properties of the composition of statements, and thus properties of

100

programs. We show several examples drawn from the literature of the theory of

algorithmic differentiation. These examples show that our framework supports the

basic features of algorithmic differentiation found in the literature, in addition to

allowing the algorithmic differentiation of programs outside the scope of other tools.

A. Introduction

Algorithmic differentiation (AD) is a technique for computing derivatives of a com-

puter program avoiding both symbolic differentiation and divided difference approx-

imations [45]. AD tools usually consist of set of transformations which augment the

code with instructions for computing the value of a derivative. Compared to comput-

ing divided differences or symbolic differentiation, AD has several benefits, detailed

below.

Divided-differences suffer from numerical accuracy problems when using fixed-

precision numbers. The computation of the difference quotient has a form such as:

f ′(x) =
f(x + h)− f(x− h)

2× h
.

In this formula as h becomes smaller the accuracy of the approximation increases; of

course, this assumes an unlimited number of bits of accuracy. With fixed-precision

arithmetic the accuracy of the division and subtraction operations decrease the ac-

curacy of the computation when h becomes small enough. Thus, counterintuitively,

after a certain point, the approximation of the derivative becomes worse as h becomes

smaller. Even more frustrating is that the point where the accuracy no longer im-

proves is actually a function of both the value of h and the value of f(x). (Sensitivity

and accuracy analysis can be performed using symbolic differentiation or an AD tool

to determine an ideal h to alleviate this problem.) AD tools do not have any inher-

101

ent effect on numerical accuracy; in fact, the numerical accuracy of the derivative is

proportional to the numerical accuracy of the unaugmented code [45].

Symbolic differentiation can suffer from the ‘expression explosion’ problem [45],

where the size of the symbolic expression grows very large. Lifting directly from

Griewank’s “Evaluating Derivatives”, we show Speelspenning’s example [45, 96]:

f(x) =
n∏

i=1

xi := x1 × x2 × · · · × xn

whose gradient has the form of:

∇f(x) =

(x2 × x3 × · · · × xi × xi+1 × · · · × xn−1 × xn ,

x1 × x3 × · · · × xi × xi+1 × · · · × xn−1 × xn ,
...

x1 × x2 × · · · × xi−1 × xi+1 × · · · × xn−1 × xn ,
...

x1 × x2 × · · · × xi × xi+1 × · · · × xn−2 × xn ,

x1 × x2 × · · · × xi × xi+1 × · · · × xn−2 × xn−1)

This resultant symbolic derivative is neither informative, particularly memory effi-

cient, nor fits nicely onto the printed page — a particularly keen observation by

Griewank. AD tools have only a linear increase in the number of instructions, where

the increase is sensitive either to the number of arguments of the function (forward-

mode) or the number of returned values of the function (reverse-mode) [45].

We now demonstrate an example of AD with the Tchebychev polynomial of the

first kind:

Tn(x) = cosh(n arccosh(x)).

102

This polynomial can be defined in the OpenAxiom computer algebra system, dis-

cussed in Section B, in (at least) two ways: directly entered into OpenAxiom from

the command line as

Tchebychev(x,n) == cosh(n∗acosh(x))

or by defining a recursive program, using the recurrence relation:

Tchebychev(x: Integer, n: Integer): Integer ==

if n=0 then return 1

if n=1 then return x

2∗x∗Tchebychev(x,n−1) − Tchebychev(x,n−2) −− return value

Clearly, this function is outside the range of conventional symbolic differentiation

tools. An AD tool, however, can handle this function without trouble.

Several software packages exist for algorithmic differentiation [76, 111, 46, 9, 8],

some extending a compiler [76], some implemented as a pre-processor [8], and some

purely as a software library [46]. Typically these packages operate on computations

on concrete data types, such as the built-in floating point types. In particular, such

software are difficult to use with generic programming techniques — techniques that

typically do not know actual data representations in advance — but instead state

abstract requirements on the types they work with.

The chapter discusses an algebraic differentiation system which is not limited to

concrete data types. Instead, the tool can compute the algorithmic derivative of a

program as long as the types of the program satisfy suitable requirements, outlined

later. We have developed the beginnings of a theory for algorithmic differentiation

to specify these requirements. We present the theory in the context of the Open-

Axiom’s library extension language, but suggest that the ideas are more general. Our

algorithmic differentiation framework, based on the presented theory, is a library-

directed transformation tool of Spad programs.

103

In this chapter we use tools from the theory of programming languages’ semantics

to formalize the meaning of algorithmic differentiation in a generic programming

context. This is in the spirit of the work on generic programming by Davenport

et al. [22], where languages features should be harnessed to expose the elegance of

the underlying mathematical theory, not simply implement a computation. Finally

we observe that our framework is designed as a library without modification of the

OpenAxiom system.

B. The OpenAxiom system

OpenAxiom is a strongly-typed general-purpose computational platform, supporting

both numeric and symbolic computations. It uses type information, at compile time,

to guide selection and application of operations — a process which supports generic

programming. For example, given the recursive definition of the function Tchebychev

from the previous section, the Axiom compiler generates direct calls to the multipli-

cation and subtraction operations over Integer values for the fragment

2∗x∗Tchebychev (x , n−1) − Tchebychev (x , n−2)

as opposed to inspecting the values held by the variables x, n, and the values returned

by the function Tchebychev at run-time and resolving the function to call. If the type

specified for the variable x were unknown, or if x had a type for which no suitable

operation named * could be found, then the expression would be rejected by the

type checker and no code would be generated. This design aspect of OpenAxiom

contrasts remarkably with most general purpose computer algebra systems which

rely on dynamic, run-time type-checking. This aspect allows the use of techniques

from active libraries and generic programming.

OpenAxiom users can extend the system with libraries implemented in Spad, a

104

general purpose programming language with affinity towards mathematical software

construction and scientific computations. More information about the OpenAxiom

system and its use can be found in “the Axiom Book” [58, 21], the seminal papers of

J. Davenport and collaborators [23, 22], and on the OpenAxiom web site [25].

C. Spad programming language

This section describes the (abstract) syntax and the semantics of the Spad program-

ming language. For the purposes of this chapter, the intuitive behavior of a Spad

program is described by a structural operational semantics, i.e., a semantics described

in terms of the syntactic forms of Spad. In this chapter, we relate the behavior of the

structural operational semantics to the function a Spad program computes through

standard denotational semantics, and the meaning of the “derived program” to that

of the input program. This methodology shapes the final form of the library-directed

transformation AD tool.

1. Syntax

This section presents the syntax and semantics of a reasonably large subset of Spad,

sufficient to demonstrate the concepts and capabilities of our framework. The lan-

guage is an extension of the explicitly typed lambda calculus that contains elements

of dependent types. Spad also contains mechanisms which make it a sutiable lan-

guage for supporting generic programming and active libraries, notably: the category

mechanism (similar to C++0x’s concepts), and conditional categories and domains

— which provide support for algorithm specialization. Figure 30 summarizes the

abstract syntax of the Spad subset presented here.

Module A Spad module is a sequence of toplevel definitions.

105

Module M ::= ∆+

ToplevelDef ∆ ::= C | D | P | d
CategoryDef C ::= φ : Category == E

Exports E ::= W | X W?

Extension X ::= τ | Join(τ+)

WithExpr W ::= with S+

Signature S ::= x : τ

Type τ ::= Boolean | Integer | Float | Record(S+) | Union(S+)

| τ1 × · · · × τn → τ0 | γ | γ ([τ |e]+)

DomainDef D ::= φ : E == K

PackageDef P ::= φ : E == K

Capsule K ::= add R? d+

Representation R ::= Rep := τ

Definition d ::= [n | φ] : τ == s

CallForm φ ::= x(S+)

Statement s ::= e | if e then s | if e then s else s | i+ repeat s

| S == e | S := e

Iterator i ::= for n in e [suchthat p]? | while p

Expression e, p ::= c | xτ | e(e+) | e.xτ | e case τ | e := e | e where d+

Variable xτ

Constant cτ

Identifier x

CDPName γ name of a Spad category, domain, or package

Fig. 30. Abstract syntax of the Spad language. The notation Z? represents an optional

Z, Z+ a non-empty finite sequence of Z; the square brackets are used for

grouping.

ToplevelDef A toplevel definition is either a Spad category definition, or a Spad

domain definition, or a Spad package definition, or a delayed definition.

CategoryDef A Spad category definition specifies a class of algebras, by declaring

the signatures of the required operations. A Spad category definition may extend

existing Spad categories with new signatures. For example, the fragment

106

Monoid(): Category == with

∗: (%, %) → %

1: %

declares Monoid as a Spad category with two signatures:

1. the symbol * is a binary operation on the domain belong to this category;

2. the identifier 1 denotes a constant object of domain belonging to the category

being defined.

The following category definition

Group(): Category == Monoid with

inverse: % → %

extends Monoid with the inverse operation, to capture the mathematical notion of

group structure. One can think of Spad categories as specifying views on objects.

Exports Definitions for Spad categories, Spad domains, and packages specify ex-

ported operations, i.e., the “public interface” in programming languages jargon,

through either a WithExpr, or an Extension, or combination of both.

WithExpr A WithExpr is essentially an unnamed Spad category consisting of a list

of operation signatures (Signature).

Extension Definitions for Spad categories and Spad domains may extend existing

Spad categories or domains. An extension may specify either a type, or multiple cate-

gories through the Join operator. The latter form corresponds to multiple inheritance

in object-oriented programming languages.

107

Signature The specification of a type for an identifier can appear in a WithExpr, as

a parameter declaration in CallForm, as the field of a record or union, or in a local

variable definition.

Type A type is a built-in type (Boolean, Integer, Float), a record or union, a

function type, the name of a Spad category or Spad domain, or an instantiation of

a Spad category or Spad domain. All field names specified by signatures in a record

must be distinct. Similarly, all field names specified in a union must be distinct

and unique in the enclosing scope; this applies recursively to any other union types

directly referenced in the signature list of the union.

DomainDef A Spad domain definition provides implementations for views specified

by categories. A domain definition has an interface specification part (Exports) stating

the categories and possible additional signatures it implements, and an implementa-

tion part called capsule. The implementation part may define the representation of

the object belonging to the domain, and provide definitions for operations declared

in its Exports. For example, the program fragment

IntMonoid(): Monoid == add

Rep == Integer

(x:%) ∗ (y:%) == (rep x + rep y)$Integer

1:% == 0::Integer

provides an implementation IntMonoid for the Monoid specification as follows:

• the object representation domain is Integer;

• “multiplication” of two objects in IntMonoid is the value obtained by adding

their respective underlying values (returned by the + operator);

• the Integer constant 0 is the underlying value of the unit of IntMonoid.

108

Note that a Spad domain almost always references the “current domain” using the

symbol %.

PackageDef A package definition provides implementations for functions that oper-

ate on a Spad domain. Unlike a Spad domain, a package does not define a Represen-

tation and does not reference the symbol %. Like a Spad domain, it has an Exports

part and an implementation part.

Capsule The implementation part of a Spad domain or package is its capsule. A

capsule may specify the representation of a domain (if it is the implementation of a

domain), and specifies a sequence of toplevel definitions for operations on the Spad

domain objects, or the operators in a package.

Representation A Spad domain specifies the underlying representation of its objects

by assigning a type expression to the identifier Rep. A Representation can occur only

in a Spad domain definition.

Definition A (delayed) definition is the binding of an identifier or a function call

expression to a Spad category, Spad domain, or an ordinary function. The body of

the definition is evaluated when needed. That evaluation may happen only once for

a given argument list. Even though the evaluation is delayed, the body is still fully

type checked at the definition point. The Spad language, as understood by the Spad

compiler, does not allow ordinary function definitions at toplevel. However, they are

the core of the language understood by the interpreter. For uniformity, we include

toplevel function definitions in the Spad subset we describe.

109

CallForm A call form consists of an identifier and a parenthesized sequence of

signatures declaring formal parameters. A call form is needed in the definitions of a

Spad category, Spad domain, and function.

Statement Statements appear in the body of function definitions. A statement is

either an expression, a one or two-arm if-statement, an iteration where the body of the

iteration (a statement) is controlled by a list of iterators, a local variable definition,

or a an assignment.

Iterator An iterator is either a sequence of items x drawn from a sequence e, possibly

filtered by a predicate p, or a repeated evaluation of a predicate.

Expression An expression is either a constant, variable, function call, member se-

lection, type-case expression, an assignment, or a qualified expression. A qualified

expression is an expression that contains free variables and is immediately followed

by their definitions in a where-clause. We assimilate expressions built with built-in

operations — such as addition on integers, etc. — as function calls.

Variable A variable is the use of a name declared with a given type.

Constant A constant is a built-in value, such as +Integer×Integer→Integer, 342Integer,

trueBoolean, etc.

Identifier An identifier is a finite sequence of characters. The set of identifiers in

Spad is countably infinite.

110

2. Language features

The Spad programming language supports elements of dependent types, a result of

the functorial nature of the data-structuring mechanisms available in Spad. That is,

the Spad type system allows types to be function-like objects with arguments that

depend on types and values. Dependent types enables an unusually direct style of

implementation of mathematical structures. Aspects of this will be explored later in

this dissertation V.

The Spad programming language also supports general function overloading; in

particular, a function can be overloaded on its argument and return types. The over-

load resolution algorithm exploits all context information, including arguments and

target types, to select the best matching function. Implicit conversion is supported

through the coerce operator.

3. Semantics

The computational rules used to evaluate Spad programs are those of eager semantics

(and call-by-value), and the arguments of functions are passed by reference. We sketch

the semantics of Spad programs in two ways: small-step operational semantics, and

denotational semantics. The small-step operational semantics gives an intuitive idea

of the behavior of Spad programs, whereas the denotational semantics lets us associate

mathematical functions to Spad programs. The latter allows us to formally talk about

the notion of a derivative of a Spad program.

a. Operational semantics

The Spad language is imperative in the sense that its programs operate on stores by

explicit modification. Values of Spad programs can be booleans, integers, floating

111

point numbers, aggregates thereof, or function codes. We denote the collection of

values by Value, inductively defined as:

Location values: object locations are in Value

Boolean values: true ∈ Value and false ∈ Value

Integer values: integer constants nInteger are in Value

Float values: float constants fFloat are in Value

Functions: If f is a defined function of type τ1 → τ2 then the

constant f τ1→τ2 is in Value
Aggregates: if cτi

i are values of type τi in Value, then the tu-

ple (cτ1
1 , . . . , cτn

n)τ1×···×τn is in Value. Tuples repre-

sent record values. Similarly, if cτ1 is in Value, so is

cτ2←τ1 . It represents a value of a field of type τ1 in a

union τ2.

The behavior of a Spad program is a sequence of configurations 〈p, σ, Γ〉 where

p denotes fragments of Spad constructs, σ the store of values, and Γ the current

environment of bindings of variables to types and expressions. The notation Γ, xτ ==

e denotes an environment obtained by extending Γ with the binding xτ == e. The

== e part may be missing. A store σ is a mapping from memory locations to Spad

values. We use the notation σ[v/l] to designate an updated function defined by

σ[v/l] (x) =

{
v if x = l

σ (x) otherwise
.

Each configuration is defined by structural induction on the syntax of Spad, as

specified in Figure 31.

b. Denotational semantics

The basic idea of algorithmic differentiation rests on the notion that a computer pro-

gram computes a function whose range has a ring structure; and the collection of

such functions can be endowed with a differential algebra structure. The theory of

denotational semantics [98] is a useful tool in laying down the necessary theoretical

112

Variable
〈xτ , σ, Γ〉 −→ 〈σ (xτ), σ, Γ〉

Call-Arguments
〈ei, σ, Γ〉 −→ 〈e′i, σ′, Γ〉

〈e0 (v1, . . . , ei, . . . , en), σ, Γ〉 −→ 〈e0 (v1, . . . , e
′
i, . . . , en), σ′, Γ〉

where the xi are
parameters of v0.

Call-Operator
〈e0, σ, Γ〉 −→ 〈e0, σ

′, Γ〉
〈e0 (v1, . . . , vn), σ, Γ〉 −→ 〈e′0 (v1, . . . , vn), σ′, Γ〉

where the xi are
parameters of v0.

Call
〈vτ0

0 (vτ1
1 , . . . , vτn

n), σ, Γ〉 −→ 〈vτ0
0 [vτ1

1 /x1, . . . , v
τn
n /xn], σ, Γ〉 where the xi are

parameters of v0.

Qual. expr.

〈δ1, σ, Γ1〉 −→ 〈δ′1, σ, Γ2〉 〈δ2, σ, Γ2〉 −→ 〈δ′2, σ, Γ3〉
· · · 〈δn, σ, Γn〉 −→ 〈δ′n, σ, Γn+1〉 〈e, σ, Γn+1〉 −→ 〈e′, σ′, Γn+2〉

〈e where δ1 · · · δn, σ, Γ1〉 −→ 〈e′, σ′, Γn+2〉
Sequence-Head
〈s1, σ1, Γ1〉 −→ 〈s′1, σ2, Γ2〉

〈s1; s2, σ1, Γ1〉 −→ 〈s′1; s2, σ2, Γ2〉

Sequence-Tail
〈v1; s2, σ, Γ〉 −→ 〈s2, σ, Γ〉

If
〈e, σ, Γ〉 −→ 〈e′, σ′, Γ〉

〈if e then s1; s2, σ, Γ〉 −→ 〈if e′ then s1; s2, σ
′, Γ〉

If-true
〈s1, σ, Γ〉 −→ 〈s′1, σ′, Γ′〉

〈if true then s1; s2, σ, Γ〉 −→ 〈s′1, σ′, Γ′〉
If-false

〈s2, σ, Γ〉 −→ 〈s′2, σ′, Γ′〉
〈if false then s1; s2, σ, Γ〉 −→ 〈s′2, σ′, Γ′〉

Assignment-Left
〈e1, σ0, Γ〉 −→ 〈e′1, σ1, Γ〉

〈e1:=e2, σ, Γ〉 −→ 〈e′1:=e2, σ1, Γ〉
Assignment-Right
〈e2, σ, Γ〉 −→ 〈e′2, σ′, Γ〉

〈l:=e2, σ, Γ〉 −→ 〈l:=e′2, σ
′, Γ〉

Assignment

〈l:=vτ , σ, Γ〉 −→ 〈vτ , σ[vτ/l], Γ〉
Imm. def.
〈e, σ, Γ〉 −→ 〈e′, σ1, Γ〉

〈x:τ :=e, σ, Γ〉 −→ 〈x:τ :=e′, σ1, Γ〉
Imm. def.
〈x:τ :=vτ , σ, Γ〉 −→ 〈vτ , σ, Γ, xτ == vτ 〉

Fig. 31. Evaluation rules of Spad statements.

113

framework for meaningful discussion of computing the derivative of computer pro-

grams. We seek for a standard denotational semantics J•K of the Spad programming

language, that respects the operational semantics outlined in §a, i.e.,

t→∗ vτ ⇒ JtK = JvτK .

D. Elements of algebraic theory of algorithmic differentiation

The meaning of transforming a program P to another program P ′ so that the func-

tion computed by the program P ′ is the derivative of the function computed by the

program P requires a semantics function that computes the meaning of a program.

Without such a function, there is no way to relate a sequence of commands given in

Spad to our usual intuition of a function with a well-defined derivative. Given such a

semantics function we can describe a sequence of transformations which act the same

as the corresponding (mechanical) analytic derivative operations, i.e., the chain rule.

In our framework, we define a program written in the Spad language as a SPAD-

algebra, where SPAD is the functor structuring the Spad language abstract syntax

(Figure 30.) Let’s call S the collection of all SPAD-algebras — which can be thought

of as all the possible abstract syntax trees of programs of the Spad language. We are

interested in meaning functions J•K : S → D where the semantics domain D is suitable

for talking about derivatives.

1. Algorithmic differential rings

An algorithmic differentiation of Spad program is a transformation Φ : S → S such

that

114

• the function JΦ (−)K : S → D respects composition, i.e.,

JΦ (P1; P2)K = JΦP2K ◦ JΦP1K

where we have used ; to indicate sequencing, i.e., the action of executing pro-

gram P1 first, followed by the execution of the program P2. This key functorial

property embodies the usual chain rule from calculus.

• we let U be the differential ring, an algebra. The differential ring adds an

operator δ to a ring, with carrier set U . If two programs P1 ∈ S and P2 ∈ S

have meanings

JP1K = f : T → U⊥ JP2K = g : T → U⊥

where U⊥ is a strict extension of a differential ring (U, δ), then the following

identities hold

δ (JΦP1K + JΦP2K) = δ (JΦP1K) + δ (JΦP2K)

δ (JΦP1K · JΦP2K) = δ (JΦP1K) · JP2K + JP1K · δ (JΦP2K) .

These two identities relate the meaning of the transformed programs to the

usual mathematical notion of derivation, namely additivity and Leibniz rule.

Note that if the domains of computation are that of polynomials, or power series,

with usual derivation operation then the chain rule holds. In more general domains

of computations, however, we add the chain rule as a requirement. That leads us to

speak of algorithmic differential ring. Consequently, we require that all our domains of

computations where we carry differentiation are actually algorithmic differential rings,

and not just differential rings. This non-trivial subtlety is not currently expressable

in OpenAxiom, and is left as an axiomatic requirement that the user must satisfy in

writing a program.

115

2. Strategies of derivative evaluation

Based on the chain rule and associativity of function composition, one can develop

various strategies for evaluating the derivative. For example, given the program

P1 ; ; Pn

the meaning of its algorithmic differentiation transform is

JΦ (P1; ...; Pn)K = JΦPnK ◦ · · · ◦ JΦP1K

which can be evaluated using various computation strategies. One approach is a

“naive” reading of the composition from right to left, leading to so-called forward mode

where the first instruction is transformed, then the second, etc., and the derivatives

are propagated forward. This approach is simple to comprehend and implement.

However, it has the inconvenience that it generates computations with complexity

expressed in terms of the number of (independent) input variables. Therefore it might

not be very efficient for computing gradients of scalar functions of many variables.

Another approach is a reading of the compositions from left to right. That strat-

egy requires the computation of derivatives of functions not yet executed. Conse-

quently, its actual implementation requires running the original programs first, then

‘reverting’ the sequencing of computations to propagate the derivatives generated,

thus leading to so-called reverse mode. This computation strategy has the property

that its complexity is in terms of the number of (dependent) output variables. It is

therefore a good candidate for computing the gradient of a scalar function of many

variables. These two strategies of computation are “extreme” in some sense, and an

AD tool may actually use a mix of association of compositions, a class of transforma-

tions which are called hybrid mode.

116

3. Control flow and differentiability

The practical realization of algorithmic differentiation of a program P builds on two

concepts. First, the abstract evaluation [17] of the operational semantics (§a) of P

yields a program Q that is in simple form. The simple form relies on the algebraic

properties of the code guaranteed by the algorithmic differentiable ring. The simple

form is a form of pseudo-SSA: each expression consists of an assignment (or a return

statement) where the expression on the right is a single function call whose arguments

are variables or constants, i.e., no sub-expressions. The simple form is computed

using a recursive algorithm that acts on expressions by removing non-constant and

non-variable sub-expressions out of the expression. The simple form more closely

matches the intuitive notion of our theory of derivative — and also helps to mitigate

potential problems from side-effects. Note that this stage is parameterized by the

operational semantics of the programming language being used (Spad, in our case).

From this program Q in simple form one extracts the control flow and the data

flow graphs. This data flow graph is usually called a computational graph [45] of the

program P. The control flow graph extracted from Q is such that each node of the

graph is a basic block, that is a maximal sequence of instructions without “jumps”.

Each basic block is therefore a straight line program and, through the denotational

semantics §b, defines a differentiable function. However, at the joint points of the

control flow graph, there is no guarantee that we obtain a differentiable function, e.g.,

the case of the absolute value function. Even when the mathematical function being

computed is differentiable, it may be that its expression as an algorithm contains

transfers of control that introduce artificial anomalies. Consider

funnyId(x: Integer): Integer ==

if x=2 then 2 else x

117

which computes the identity function in a curious way. Its transform is

funnyId(x: Jet Integer): Jet Integer ==

if x.value = 2 then jet(2,0) else x

with derivative 0 at x = 2, which is clearly unintuitive behavior.1 It is impossible to

detect such contrived constructs — the transformation acts on the program as is and

can make no guesses as to any ‘underlying’ meaning. However, the theory of data

flow analysis as abstract interpretation [17] provides a framework for studying certain

classes of these issues, which we do not investigate further here. The programmer

must be aware of these limitations.

E. The Spad compiler

The OpenAxiom system can operate in interactive, “batch”, and “compiled” modes.

The interactive mode uses an interpreter, the batch and compiled modes a compiler.

The compiler can be invoked from within the interpreter by issuing the system com-

mand:

)compiler.

The interpreter and the compiler understand slightly different dialects of the

Spad language. This is due partly by design, and partly by a turbulent history.

The compiler is intended for library development (large scale programming), whereas

the interpreter is intended for convenient interactive conversation (small scale pro-

gramming). Also, the interpreter supports type inference (“guessing”), as opposed

to the compiler which, for the most part, restricts itself to type checking. Since our

framework is primarily intended for library development, we focus on the compiler

1Although, according to the definitions of our operational and denotational se-
mantics, correct. It is unintuitive to the user, only.

118

component of the OpenAxiom system. We emphasize that our framework works with

both the compiled and the interpreted dialects of Spad.

An input Spad source file is decomposed into a stream of tokens by the Spad

lexer. The token stream is transformed into a parse tree by the Spad parser. That

parse tree undergoes further transformation by a post-parser transformer, resulting

in a parse form. The parse form is still close to Spad source. For example, here are

the parse forms of the definitions of Monoid and IntMonoid examples from §1:

(DEF (Monoid) ((Category)) (())

(CATEGORY (SIGNATURE ∗ (% % %))

(SIGNATURE (One) (%))))

(DEF (IntMonoid) ((Monoid)) (())

(CAPSULE (LET Rep (Integer))

(DEF (∗ x y) (() % %) (() () ())

((elt (Integer) +) (rep x) (rep y)))

(DEF (One) (%) (())

(:: (Zero) (Integer)))))

The parse form is then transformed into another internal abstract syntax tree,

which is used as input to the semantic analyzer. The job of the semantic analyzer is to

type check the abstract syntax tree, to resolve dependencies on previously compiled

programs and load them if necessary. The output of the semantic analyzer is a fully

typed abstract syntax tree, which is translated by the code generator into Lisp code.

A copy of the resulting Lisp code is saved on disk for future use, and another copy

is given to the run time system (a Lisp system) for evaluation. The current Open-

Axiom system uses the Steel Bank Common Lisp (SBCL) implementation. SBCL is

capable of compiling Lisp code to native object code, which is subsequently loaded

into the running Lisp image. As a result, the OpenAxiom compiler compiles input

Spad programs to native object code for execution.

119

F. Implementation

Our AD framework, shown schematically in Figure 32, is entirely implemented as an

OpenAxiom library, meaning that no source code modification to the OpenAxiom

compiler is required. The implementation consists of

• a small library interface to the Spad compiler, to retrieve the parse forms and

the typed abstract syntax tree over objects of the SExpression domain;

• OpenAxiom domains and packages working on the output of the compiler in-

terface.

The library interface for the transformation tool was built to support a large

class of library-driven semantic enhancements to Spad. The interface to the compiler

was developed as part of the engineering effort from a larger project to rationalize the

OpenAxiom system. The interface, itself, is designed to allow sophisticated analysis

and transformation of the internal representation of Spad codes, without having to

modify the compiler. We have also written an unparser that pretty prints the internal

representation as Spad code.

P0 ∈ S
P1

&&
ADCatExpand(P1)

P2
&&
ad(P2) // P′2

Fig. 32. The pipeline for performing AD. The process starts with a program P0 which

is parsed by the compiler into the representation P1 and given to the func-

tion expand from the ADCatExpand package to convert P1 into simple form.

The simple-form P2 is the input to the “ad” function which computes the

algorithmic derivative P′2.

At the time of the writing, we support only the forward mode. We do not support

direct computation of gradient yet. The gradient can be obtained from repeated calls

to compute partial derivative in several directions; however, that is inefficient and

120

potentially incorrect, because if the function depends on global variables, there is no

guarantee that successive calls yield the desired values.

1. Transformation to simple form

The main thrust of our transformer is that it requires the input program be in simple

form (§3), which simulates the operational semantics outlined in §a. Since it is un-

realistic to require users to write codes in that specific form, we have implemented a

package called ADCatExpand that transforms an arbitrary Spad program into simple

form. The expander “walks” the AST, identifying and expanding any expressions

that are not in simple form. For example, all the arguments of function calls that

are not constants or variables are replaced with temporary variables, such that every

operation consists of the name of the operation and references to variables. This

transformation does not change the meaning of the input program.

2. First order prolongation

Our AD framework uses the theory of jets [27]. A jet can be thought of as a value and

sequence of derivatives (whichever derivatives are appropriate). We can construct a jet

of a function by lifting a function that computes in values so that it computes in jets.

If the input program computes a mathematical function f : M → N as determined

by the standard semantics, then our tool generates a program that computes the first

prolongation

jet1 (f) : jet1 M → jet1 N.

More precisely, the framework defines a domain Jet parameterized by a domain from

the Ring category. For example, Jet(Integer) and Jet(Float) designate the first

order jet of Integer and Float, respectively.

121

A subset of the code for implementing the domain Jet in our framework is shown

below.

Jet(T: Ring): Public == Private where

Public == with

jet: (T, T) → %

++ construct a jet value from a pair

elt: (%, ”value”) → T

++ retrieve the ‘‘value’’ field of a jet

elt: (%, ”delta”) → T

++ retrieve the ‘‘delta’’ field of a jet

setelt: (%, ”value”, T) → T

++ set the ‘‘value’’ field of a jet

setelt: (%, ”delta”, T) → T

++ set the ‘‘delta’’ field of a jet

−− ...

Private == add

Rep == Record(val: T, der: T)

jet(v, d) == [v, d]

elt(jet: %, x: ”value”) == jet.val

elt(jet: %, x: ”delta”) == jet.der

setelt(jet: %, x: ”value”, jetValue: T) ==

jet.val := jetValue

setelt(jet: %, x: ”delta”, jetDelta: T) ==

jet.der := jetDelta

−− ...

Note that here Jet takes types T of the Ring category; in reality, Jet should take

types T from the category of algorithmic differential ring as explained in §1. That is

a current limitation of our framework, partly due to lack of enough expressivity of

the Spad language.

The generated program is defined as an overloaded function on the jets. In par-

ticular, we don’t use a fancy symbol mirroring the mathematical “functorial notation”

jet1 (f). A benefit from that approach is that the generated program is structurally

similar to the input program. A fundamental drawback is that it prevents us from

122

defining functions on jet spaces which are not prolongations. For example, we would

like Jet(T) to be a member of the Ring category but doing so requires defining op-

erators * and +, which conflict with operators we may be prolonging when working

with Jet(Integer) or Jet(Float) for example. This is an aspect that we plan to

improve on in future work, as it makes perfect sense to define functions on jets (to

represent differential equations) that are different from prolongations.

3. Initial environment

When our library is loaded into OpenAxiom, it starts with an environment that

contains the prolongations of certain operators on built-in types. These operators are

defined within the Jet domain:

Jet(T: Ring): Public == Private where

Public == with

−− ...

+: (%, %) → %

−: (%, %) → %

∗: (%, %) → %

−: % → %

if T has Field then

/: (%, %) → %

if T has TranscendentalFunctionCategory

and T has Field then

log: % → %

if T has TranscendentalFunctionCategory then

exp: % → %

sin: % → %

cos: % → %

−− ...

Private == add

+(x: %, y: %): % ==

jet(x.value + y.value, x.delta + y.delta)

−(x: %, y: %): % ==

123

jet(x.value − y.value, x.delta − y.delta)

∗(x: %, y: %): % ==

jet(x.value ∗ y.value,

x.delta ∗ y.value + x.value ∗ y.delta)

−(x: %): % == jet(−x.value, −x.delta)

if T has field then

/(x: %, y: %): % ==

r : T := x.value / y.value

jet(r, (x.delta − r ∗ y.delta) / y.value)

if T has TranscendentalFunctionCategory

and T has Field then

log(x: %) ==

jet(log(x.value), x.delta / x.value)

−− ...

Note how the rules of computation of jets embody both the actual derivatives

and the chain rule. The initial environment serves as a basis for the Spad compiler

and interpreter for successfully completing the evaluation of derivatives.

4. Forward mode

The core of our framework’s user interface consists of functions defined in the package

ADCatForward. There are two versions: the first takes an s-expression (the internal

data-structure used to hold the AST) and returns an s-expression that contains the

differentiated code. The second takes a String (a file-name), and returns a list

of s-expressions corresponding to the first prolongation of all domains, categories,

packages, etc. found within that file.

The AD function is a simple layer on top of a routine that implements a Visitor

Pattern [30] over the AST. The AD function walks the AST until all derivatives have

been generated. We use the category membership assertion to reject invalid input

functions, e.g., those with arguments and return types that are not from Ring. For

124

example, since the type String is not asserted to belong to Ring, we reject a request

to compute the derivative of a function that returns a String. This is another place

where we rely on type annotation for meaningful transformation.

5. Examples

a. The GRADIENT paper

Our first example is the function “f” from Monagan and Neuenschwander [76] that

we have translated to Spad as:

f (x:Float, n: Integer): Float ==

if n = 0 then return 0

else

a : Float := 0

b : Float := x

for k in 1..(n−1) repeat

h : Float := b

b := log(a+b)

a := h

b

Monagan and Neuenschwander’s example did not include explicit typing for the argu-

ments. Here, we have chosen Float to emphasize the point that our framework (and

Algorithmic Differentiation in general) does not require that function parameters be

“symbols”.

First, the tool runs expand (from ADCatExpand) on the program shown above

to produce the output shown below. The code as shown is the output of our pretty-

printer. The expander uses the Lisp function GENSYM() to generate fresh names for

temporaries; therefore the names for the temporaries are not necessarily the same

each time expand is run on the same function.

125

−− intermediate expanded code

f(x:Float,n:Integer):Float==

if n = Zero() then

G6327 := Zero()

return(G6327)

else

a : Float := Zero()

b : Float := x

h : Float

for k in (One())..(n − One()) repeat

h := b

G6328 := a + b

b := log(G6328)

a := h

b

After which the actual AD transformation is performed and the final output program

is shown below.

f(x: Jet(Float), n: Jet(Integer)): Jet(Float) ==

if n.value = Zero() then

G2668 := Zero()

return(G2668)

else

a : Jet(Float) := Zero()

b : Jet(Float) := x

for k in (One())..(n.value − One()) repeat

h : Jet(Float) := b

G2669 := a + b

b := log(G2669)

a := h

b

Note that all operator names have retained their original spelling. This is be-

cause the AD transformer has inserted the first prolongation of the operators as an

overloaded function defined on the first prolongations of its source and target. This

126

means that the correct operation is selected based on its argument types in addition

to its name.

The above program, despite the syntactic similarity with the original program

f, does compute numerical values of the derivative of the function computed by f.

To see that this is the case, we will use OpenAxiom’s Expressions. Even with its

strong emphasis on numerical algebraic computations, OpenAxiom also provides the

parameterized domain Expression for symbolic manipulation. Replacing Float with

Expression Integer in the original function f and transforming that function with

our AD tool results in the function below. The result, again, is similar to the original

function; only type annotations have changed and temporaries have been introduced

to hold intermediate values:2

f(x: Jet(Expression(Integer)),

n: Jet(Integer)): Jet(Expression(Integer)) ==

if n.value= Zero() then

G2668 := Zero()

return(G2668)

else

a : Jet(Expression(Integer)) := Zero()

b : Jet(Expression(Integer)) := x

for k in (One())..(n.value − One()) repeat

h : Jet(Expression(Integer)) := b

G2669 := a + b

b := log(G2669)

a := h

b

Evaluation of f(jet(x,1),jet(4,0)).delta yields

2The coincidence of the fresh variable names is an artifact of running the framework
from a new instance of the interpreter; the first 2500-or-so fresh variable names are
consumed by the setup of the interpreter, itself.

127

log(x) + 2x + 1

2 2 2

(x log(x) + x)log(log(x) + x) + x log(x) + x log(x)

which coincides with the derivative of f(x,4):

log(log(log(x) + x) + log(x)).

b. Tchebychev polynomials

Next, we consider the Tchebychev polynomial defined by recurrence relation as shown

in §A. Here, again we considered the original function taking a Float, and another

taking Expression Integer to check the symbolic evaluation. The first prolongation

of

Tchebychev(x: Expression Integer, n: Integer): Expression Integer ==

if n=0 then return 1

if n=1 then return x

2∗x∗Tchebychev(x,n−1) − Tchebychev(x,n−2)

is computed as:

Tchebychev(x: Jet Expression Integer, n: Jet Integer):

Jet Expression Integer ==

if n.value = 0 then

G2716 := 1

return G2716

if n.value = 1 then return x

G2718 := 2 ∗ x

G2721 := 1

G2720 := n − G2721

G2719 := Tchebychev(x,G2720)

G2717 := G2718 ∗ G2719

G2723 := n − 2

128

G2722 := Tchebychev(x,G2723)

G2717 − G2722

Evaluating Tchebychev(jet(x,1), jet(5,0)).delta yields

4 2

80x - 60x + 5

which agrees with the derivative of T5 = 16x5 − 20x3 + 5x.

G. Employing generic algorithmic differentiation

In this chapter we have defined a generic library for AD and, also, demonstrated

the use of that library. Our methodology requires a language with support for both

generic programming and the ability to transform code, preferably at compile-time.

This section summarizes what the task of creating an AD library entailed, and what

it entails for an application programmer to use an AD library to obtain a code that

algorithmically differentiates a function.

Our AD library consists of three main parts: (1) the concept algorithmic differ-

ential ring, which represents any type that carries the mathematical structure of a

ring, and allows an operator to be defined that satisfies the algebraic definition of

differentiation; (2) a Jet type, which is a type that carries the augmenting derivative

information; and, (3) an algorithmic differentiation transform, which augments func-

tions to carry derivative information. Our AD transform has three main duties: (1)

replacing type annotations with the Jet of the type annotation; (2) converting literals

to a Jet, e.g., the expression 10 becomes jet(10) (or the appropriate construct to lift

from values to jets-of-values); and (3) projecting all variables used in control flow to

be the value of that variable, e.g., if v < 0 is the control-expression of a loop, then

the AD function must emit an expression such as v.value < jet(0).value.

129

With a generic AD library and an AD transform available, obtaining the code

to algorithmically differentiate a function becomes effortless. For example, assuming

the programmer wants to compute the derivatives of the function call f(a, 0), the

programmer just rewrites the function call as AD(f(a, 0)). The result is that both

the value and the derivative of the function are computed.

H. Conclusion

Automatic differentiation is a well-known technique for computing derivatives, and

matured software packages exist for applying it in practice. However, we found the

theory of algorithmic differentiation incomplete. This chapter explores such a theory.

We base our work on top of the OpenAxiom computer algebra system, which allows

highly generic programs to be written in terms of “categories,” or classes of algebras,

instead of concrete data-types. We outline the formal semantics of Spad, the library

extension language of OpenAxiom, and define the exact requirements for when Spad

programs can be subjected to algorithmic differentiation.

We apply our theory in an implementation of an algorithmic differentiation tool

for Spad. The implementation transforms Spad programs, at the level of typed ab-

stract syntax trees, into programs that compute derivatives as well as their original

values. Our prototype implementation illustrates the benefits of the algebraic ap-

proach to algorithmic differentiation.

1. Related work

M. Monagan and W. Neuenschwander [76] implemented the forward mode of AD

— called GRADIENT — in the Maple computer algebra system. The GRADIENT

package was latter extended by D. Villard and M. Monagan [111] to cover the reverse

130

mode. To the best of our knowledge, our work is the first documented attempt at

implementing AD for the Axiom computer algebra system.

2. Future work

There are several directions we would like to extend our work. First, we are working

on a way to voice algorithmic differentiation as a form of abstract interpretation as

outlined by Cousot and Cousot [17]. The description of algorithmic differentiation

in terms of abstract interpretation requires a rigorous description of the semantic

meaning (and type checking); a first step is begun in Chapter V. We feel that such

a description will allow us to rigorously describe the semantics of our forward mode

implementation — even more, the reverse and hybrid modes take significant liberties

with the meaning of programs, which we hope to capture. We naturally expect such

an implementation to support higher order derivatives. Second, the “Axiom way”

of implementing computational mathematics is to rely on strong typing to structure

programs. Our initial work on interfacing with the Spad compiler suggests that we

need Spad domains and packages for strongly typed representations of Spad programs

themselves. We have found that the ability to integrate our framework into the Spad

compiler as a library natural. Finally, and probably most importantly from the “Ax-

iom way” of doing computational mathematics, we will continue the development of

formal semantics of the Spad programming languages as well as the algebraic theory

of algorithmic differentiation, to gain better understanding of algorithmic differenti-

ation, and to stimulate the construction of generic AD libraries.

131

CHAPTER V

LOCAL SPECIALIZATION FOR OPENAXIOM

Support for active libraries is closely tied to support for the generic programming

paradigm. In particular, the computations which allow an active library to observe

and (more importantly) respond to the inputs of the library’s components tend to

be both static and typeful. By static, we mean that the generation of specialized

codes based upon the inputs to the components occurs during compilation (or similar

phases). By typeful we mean that the active library’s activities are based upon type

information and other static traits of the inputs to the components of the library.

The ability to select alternate variants of the implementations of algorithms and

data structures based upon compile time parameters is called specialization. In the

computer algebra system OpenAxiom, the library extension language Spad uses a

variant of the specialization feature called local specialization. Local specialization is

built upon the functorial nature of data-structures in Spad; functoriality in Spad is

expressed through data-structures which act like functions that, given input values

at compile-time, return a type. The local specialization feature allows multiple vari-

ants of a data-structure (and associated algorithms) at a single point of definition,

dependent upon compile-time values such as types or values passed as parameters to

the data-structure.

This chapter continues the rationalization of OpenAxiom computer algebra sys-

tem; in particular, it provides a principled compilation strategy for local specialization

informed by the theory of abstract interpretation.

132

A. Introduction

Most algebraic structures in computational mathematics can be seen as instances

of functors [23, 22]. Functors are naturally expressed in the typeful programming

paradigm as parametrized datatypes. Certain properties of parametric data-structures

may be common to all instances of a given data-structure. For instance, the integers

Z/kZ modulo a positive natural number k always carry the structure of a ring. How-

ever, it can also happen that a specific instance of a parametrized structure has capa-

bilities that are not shared by other instances [23]. For example, the ring Z/kZ is also

a field when k is a prime number. In the generic programming setting, expressing such

conditional properties for parametrized datatypes in a single definition is called local

specialization. Any computer algebra system using a typeful programming language

must include provisions for the support of local specialization.

The programming languages of the AXIOM system family [58] and the Aldor sys-

tem [115, 114, 12] of computer algebra systems are categorial — they support abstract

interfaces to concrete data-structures. Importantly, those systems’ programming lan-

guages allow the direct expression of parametric data-structures and interfaces with

conditional properties. The functorial data-structures (both abstract and concrete)

of these systems are parametrically polymorphic [99]: the definition stays the same

over a range of type and value parameters. The support for local specialization in

such a categorial model presents interesting challenges.

In the OpenAxiom computer algebra system [25], and in all other variants of the

AXIOM family, abstract algebraic structures are defined as categories and concrete

instances of such structures as domains. One can think of categories as specifica-

tions, and of domains as implementations of specifications.1 Each local specialization

1To relate the programming notions of categories and domains to the rest of this

133

is controlled by a conditional statement and each condition’s predicate is a logical

formula. Currently OpenAxiom only supports predicates over domains. General sup-

port for predicates involving user-defined functions or values does not exist, and this

limitation has proven to be a hindrance in practice, and a source of several bugs.

For instance, the current implementation of Z/kZ in OpenAxiom always provides the

operations of the structure field, particularly division and modular arithmeti — it is

left to the user to test that the value k is prime before using the field operations.

This chapter describes our extension to OpenAxiom that generalizes the con-

ditions of conditional specifications to allow arbitrary user defined predicates. For

example, the specification that the ring Z/kZ is a field when the parameter k is a

prime can be written as:

IntegerModCategory(k: Integer()): Category == Type() with

if prime? k then Field() else Ring()

· · ·

We note that local specialization with generalized predicates is already handled

in Aldor [115]. The algorithms underlying the implementation, however, have never

been demonstrated or justified. A key contribution of this chapter is a rational and

principled implementation of this feature. More specifically, our contributions include:

• Specification of the operational semantics of categories and has-predicates in

the AXIOM system family.

• Generalization of the set of legal predicates in conditional specifications to allow

user-defined predicates.

• Description and implementation of the conditional specification as an alternate

dissertation, we note that a category is (very roughly) analagous to a concept in
C++0x, and a domain is analagous to a model of a concept.

134

evaluation of Spad code for deriving the static semantics of categories.

The rest of the chapter is structured as follows: Section B provides an overview

of our general approach; Section C defines Spad language, and specifies the concrete

semantics of Spad categories and predicates; we extend the set of legal predicates in

Section D; we present our framework for the alernate evaluation of Spad in Section E,

and demonstrate with practical examples that our framework allows in Section F; we

discuss related work in Section G, and conclude in Section H.

B. An overview

The family of AXIOM systems, OpenAxiom in particular, provide a very rich type

system. OpenAxiom offers a strongly typed programming language where types are

instantiated at run time. Yet, OpenAxiom supports an erasure semantics [19] for its

core—except for (runtime) intensional representations of domains.

A standard formal presentation of OpenAxiom’s programming language (Spad)

would require a dynamic semantics for Spad, along with type checking rules (the static

semantics), and a separate proof that the reduction rules are sound with respect

to the type system. We feel that this approach makes a type system look like an

after-thought, and sheds little light on the profound connection between the type

system and the dynamic semantics. Our approach, instead, is inspired by the types

as abstractions [16] philosophy that holds that a type system for a programming

language is a sound approximation of the language’s dynamic semantics.

The construction of the alternate evaluation for Spad is very general and proceeds

in stages. First we define the dynamic semantics of the language. Next, we answer

questions about or compute properties of programs based only on the programs’

static structure. This leads to the first approximation: the collecting semantics. The

135

collecting semantics associates properties to each program point, for all conceivable

executions, and is thus in general not computable. This allows us to seeks computable

approximations, guided by the kind of information one is looking for. In our case, we

are seeking computable characterizations of properties that hold in each branch of a

conditional specification.

In our presentation we define a translation from Spad to an intermediate lan-

guage; the intermediate language is a variant of the lambda calculus, see Section 2.

The operational semantics are defined for this intermediate language, see Section 2;

we then use these operational semantics to describe the collecting semantics, see Sec-

tion 1, for the abstract interpretation presented in this chapter. This is a particularly

heavyweight approach, however, our intention is to provide a framework onto which

we can hang a number of analyses, and not just the analysis presented here.

C. The Spad programming language

OpenAxiom is a library-centric and extensible system. Users extend OpenAxiom by

writing libraries using the programming language called Spad. We describe enough

of the Spad syntax to enable a discussion of Spad categories (and domains). We then

specify the concrete semantics of Spad categories by defining a translation from Spad

to an internal language, followed by the specification of the operational semantics of

this internal language. We use the translation and the operational semantics of the

internal language to inform the construction of the static semantics for categories in

Spad.

The general philosophy of the Spad language is based on the abstract datatype

methodology. In this methodology, a concrete algebraic structure is introduced by its

specification (which we call its category) and its implementation (called its domain).

136

Specifications (abstract interfaces) will generally have many implementations, and

it is typical for categories to be defined independently from their implementations.

For example, we can capture the general notion of monoid structure by building a

category that specifies a binary operation named * along with a constant named 1.

In Spad, we can express this as:

Monoid(): Category == Type with

∗: (%,%) → %

1: %

The datatype Integer obviously satisfies the Monoid specification, i.e., with mul-

tiplication and the literal 1. It so happens that the list data structure also satisfies

this specification: the binary operator is the concatenation operation, and the con-

stant 1 is the empty list. In the OpenAxiom system, datatypes satisfy (belong to)

categories by explicit assertions. For instance, here is a definition for a domain that

defines a list to carry the structure of a monoid:

ListMonoid(T: Type): Monoid() with

coerce: List T → %

== add

import List T

Rep == List T

coerce(l: List T) == per l

1:% == per empty()

(x:%) ∗ (y:%) == per concat(rep x, rep y)

The unusual indentation is due to the fact that Spad is a white-space sensitive

language that defines code blocks by indentation level. This definition says that

ListMonoid is a parametric data-structure that takes a single argument T, and re-

turns a structure ListMonoid that carries the structure of a monoid (the first line

of code). The specifications for ListMonoid are taken from the category Monoid,

and are extended to include a function to convert a List to a ListMonoid. The

137

implementation of the specification comes after the statement == add; this section is

called the capsule. The first line of the capsule imports the operations of the domain

List T into the current scope. The next line of capsule Rep == List T states that

the ListMonoid’s internal representation is a List. The remainder of the capsule

provides definitions for the specifications defined by the category Monoid. As a brief

note, the operation per changes the type of a List to a ListMonoid, thus converting

a List value into a ListMonoid value. The operation rep does the reverse.

Below, we describe enough of the syntax of Spad to enable a discussion of Spad

categories. We then specify the concrete semantics of Spad categories by defining a

translation from Spad to an internal language, followed by the specification of the

operational semantics of this internal language.

1. Syntax

A Spad program can be understood as a sequence of category and domain definitions,

followed by an expression. Figure 33 shows the syntax of the parts of Spad needed

for this chapter. Specifically, a category is a sequence of specifications, each of which

is either a function declaration or a category extension. The latter is another cate-

gory instance, and indicates that all of the specifications exported by that instance

should be included in the current category. The category extension mechanism is

transitive, reflexive, and antisymmetric. In the version of Spad used in this chapter

every specification is conditional.

Program A Spad program can be understood as a sequence of category and domain

definitions, followed by an expression.

138

Program P ::= (C|D)∗ e

CategoryDef C ::= χ : Category == Type() with W+

DomainDef D ::= χ : τ == add A+

CallForm χ ::= x([x : τ]∗)

Cond. Spec. W ::= if π then E1 else E2

Cond. Def. A ::= if π then d1 else d2

Export E ::= x : τ | τ
Definition d ::= Rep == τ | χ : τ == e | Nil
Predicate π ::= true | π1 and π2 | π1 or π2 | not π | τ1 has τ2

Expression e ::= if e1 then e2 else e3 | e(e∗) | c
Type τ ::= x(τ ∗) | xτ | cτ | (τ ∗)→ τ | %

Identifier x

Fig. 33. The syntax of the core parts of Spad.

CategoryDef A Spad category definition is a sequence of conditional specifications;

the entire sequence is called the Exports section of the category. All Spad categories

must extend the category Type, which is a special built-in root category with no

specifications. In the example shown below, the left-hand category definition declares

a Spad category with two signatures: a neutral element 1 and binary operator ∗

of a monoid structure. The right-hand definition extends Monoid with the inverse

operation to capture the mathematical notion of group structure.2

Monoid(): Category == Type() with

if true then 1: % else Type()

if true then ∗: (%, %) → % else Type()

Group(): Category == Type() with

if true then Monoid() else Type()

if true then inverse: (%, %) → % else Type()

2The definition of Spad in this chapter does not allow specifications or definitions
that are not conditional; we thus represent unconditional specifications and definitions
through the use of conditionals with the predicate true for their condition.

139

DomainDef A Spad domain consists of a sequence of conditional definitions; the

sequence of conditional definitions is referred to as the capsule of the domain. The

definition of the domain provides implementations for the specifications defined by

the categories the domain carries. The implementation part of the domain is called

a Capsule; the capsule may define the representation of the object belonging to the

domain and also provide definitions for operations declared in the exports section of

the categories it implements.

CallForm A call form consists of an identifier and a parenthesized sequence of

signatures declaring formal parameters. A call form is needed in the definitions of a

Spad category, Spad domain, and function.

Conditional Specification A conditional specification is expressed in Spad as an if-

statement. The condition of the if-statement can be any legal Predicate π. The then-

and else- branches must contain a single statement, each. The statement that can go

in these branches must be an Export.

Conditional Definition A conditional definition is written as an if-statement. The

condition of the conditional definition can be any Predicate π. Each branch of the

conditional definition must have one statement — a definition.

Export An export is either a definition — a signature of a function such as binary

plus +:(%,%)->% or a distinguished value such as 1:% — or, a category extension

such as Monoid().

Definition A definition is the binding of an identifier or a function call expression

to a Spad category, Spad domain, or an ordinary function. The Spad language, as

140

understood by the Spad compiler, does not allow ordinary function definitions at

toplevel. The special symbol Nil is introduced to allow a null statement.

Predicate A predicate is used as the condition of a Conditional Specification. It can

be either a atomic predicate such as true or has-predicate, or a logical formulae of

atomic predicates.

Expression An expression is either an if-statement, function call, or a constant.

Looping and iteration are not possible but recursion is possible.

Type A type is an instantiation of a Spad category or Spad domain, a function

type, the name of a Spad category or Spad domain, or a carrier set denoted by %. In

a category definition, % denotes a placeholder for a domain. In a domain definition,

% denotes the domain itself.

Identifier An identifier is a finite sequence of characters. The set of identifiers in

Spad is countably infinite.

2. An internal language

We define the semantics of a Spad program by translation into an internal represen-

tation language which allows us to express categories and specifications within those

categories. We provide a full description of the internal language, and a translation

from Spad to this internal language. While the full framework is somewhat heavy-

weight, the framework provides a foundation on which to build other transformations

not considered in this chapter. We note that the current translation only covers the

syntax and semantics of the Spad language needed to describe categories and the

141

conditional specifications within the categories. Figure 34 and Figure 35 show the

syntax and operational semantics, respectively, for this language.

The internal language is the untyped lambda calculus with some extensions. We

provide support for a list data structure, offering the primitive list operators cons3,

car, and cdr, as well as a predicate for detecting an empty list. The term Rid(c1, e2)

represents a Spad domain or category, where the constant c1 is the name of the domain

or category. The variable e2 is a list of representations of the specifications, i.e., the

function declarations and category extensions, of the domain or category. Since an

R-term represents a category (or domain), an R-term also represents a Spad type

in the internal language. The R-term types are used by a number of (compile-

time) functions, including the has-predicate. The term R→(e1, e2) represents a Spad

function definition where e1 is a list of the representations of the parameter types of

the function, and e2 is a lambda abstraction representing the body of the function.

To access the elements of the above terms we define the functions π1 and π2 that

return the first and second element, respectively, when applied to either of the “R-

terms”. The constants c include OpenAxiom’s set of primitive types (e.g., integers

and floating-point numbers) and symbols (used, e.g., as names of categories and

domains).

Terms e ::= λx.e | e1e2 | cons(e1, e2) | car(e) | cdr(e) | isNil?(e)

| if e1 then e2 else e3 | let x = e1 in e2 | Rid(c1, e2) | R→(e1, e2)

| π1(e) | π2(e) | is→?(e) | isid?(e) | v
Values v ::= c | x | λx.e | cons(v1, v2) | nil | true | false

Fig. 34. The syntax of the internal language.

The operational semantics for the intermediate language are shown in Figure 35.

3In the later sections, we use the notation “[a1, . . . , an]” as a shorthand for con-
structing a list from the elements a1, . . . , an.

142

The operational semantics are defined as small-step semantics. The rules include

function application, the construction of lists, access to the head and tail of lists, and

a test to determine if a list is empty. The rules also include the introduction of named

functions (let-statements), and if-then-else statements. The final set of rules are for

the projection onto the elements out of a R-term and tests to determine if a value is

either a Rid-term or a R→-term.

(λx.e)v 7→ e[v/x]
e1 7→ e′1

e1 e2 7→ e′1 e2

e 7→ e′

v e 7→ v e′

car(cons(v1, v2)) 7→ v1 cdr(cons(v1, v2)) 7→ v2

e1 7→ e′1

cons(e1, e2) 7→ cons(e′1, e2)
e 7→ e′

cons(v, e) 7→ cons(v, e′)

e 7→ e′

car(e) 7→ car(e′)
e 7→ e′

cdr(e) 7→ cdr(e′)

e 7→ e′

isNil?(e) 7→ isNil?(e′)
e 7→ nil

isNil?(e) 7→ true
e 7→ v v 6= nil

isNil?(e) 7→ false

let x = v in e 7→ e[v/x]
e1 7→ e′1

let x = e1 in e2 7→ let x = e′1 in e2

e2 7→ e′2

if true then e2

else e3 7→ e′2

e3 7→ e′3

if false then e2

else e3 7→ e′3

e1 7→ e′1

if e1 then e2 else e3

7→ if e′1 then e2 else e3

ei 7→ e′i

πi(R•(e1, e2)) 7→ e′i

e1 7→ e′1

R•(e1, e2) 7→ R•(e′1, e2)
e 7→ e′

R•(v, e) 7→ R•(v, e′)

e 7→ e′

is•?(e) 7→ is•?(e′)
e = R•(e1, e2)
is•?(e) 7→ true

e 6= R•(e1, e2)
is•?(e) 7→ false

Fig. 35. The small step operational semantics of the internal language. The • symbol

stands for id or →. The index i in the projection rule is either 1 or 2.

143

3. Translation of Spad to internal language

As the basis for the abstract interpretation discussed in Section E, we describe the

translation of a Spad category into the internal language. We think of this translation

as a specification for a Spad compiler that compiles Spad to a lower-level language

such as assembly, or to a virtual machine. Formally, we define a syntax-directed

translation function T• J·K : SPAD → IL, where SPAD is the set of Spad programs

and IL the set of programs in the internal language. This function, defined by case

for each syntactical form of Spad, is shown in Figure 36.

The translation of a Spad category into the internal language will result in a

value (a function returning a list) that is the representation of a Spad category in the

internal language. This construction allows us to understand the semantics of both

instantiated and uninstantiated categories.

To translate a category definition to the internal language, we iteratively trans-

late a conditional specification at each program point of the category definition, in

addition to the callform of the category. (The callform is an identifier and a paren-

thesized list of formal parameters of a category.) Each iteration step computes the

internal representation of a callform, a function declaration, or recursively translates

a category extension following the transitivity of category extension. That is, when

a category C1 declares that it extends the category C2, we replace this specification

with the specifications of C2, a recursive operation.

The translation of a category definition results in a lambda abstraction in IL

introduced by a let-statement which names the lambda abstraction. The lambda ab-

straction takes an extra parameter %̂ for the carrier set % in SPAD. The body of the

abstraction is a list of if-statements (whose branches contain “R-terms”) representing

a sequence of specifications. The if-statements of the conditional specifications in the

144

TC

t
x0(x1 : τ1, . . . , xk : τk) :

Category == Type() with
W1 · · ·Wn

|
def

=⇒

let Tτ Jx0K
= λ Tτ J%K .λ Tτ Jx1K . . . λ Tτ JxkK .
cons (if true then TX Jx0(x1, . . . , xk)K
else ˆType(%̂),
TW JW1K⊕ · · · ⊕ TW JWnK
⊕ ˆType(%̂)) in

TW Jif π then E1 else E2K
def

=⇒ if Tπ JπK then TE JE1K else TE JE2K
Tσ JxK def

=⇒ ‘x

TX JxK def
=⇒ Tτ JxK

TX Jx(τ1, . . . , τk)K
def

=⇒ Rid(Tσ JxK , [TX Jτ1K , . . . , TX JτkK])
TX J(τ1, . . . τk)→ τ0K

def
=⇒ R→([TX Jτ0K , TX Jτ1K , . . . , TX JτkK], nil)

TE Jx(τ1, . . . , τk)K
def

=⇒ Tτ JxK (Tτ J%K , Tτ Jτ1K , . . . , Tτ JτkK)
TE JxK def

=⇒ Tτ JxK (Tτ J%K)
TE Jx : τK def

=⇒ Rid(Tσ JxK , [TX JτK])
Tπ JtrueK def

=⇒ true

Tπ Jτ1 has τ2K
def

=⇒ car(TX Jτ2K) ∈ Tτ Jτ1K
Tπ Jnot πK def

=⇒ not(Tπ JπK)
Tπ Jπ1 and π2K

def
=⇒ and(Tπ Jπ1K , Tπ Jπ2K)

Tπ Jπ1 or π2K
def

=⇒ or(Tπ Jπ1K , Tπ Jπ2K)
Tτ Jx(τ1, . . . , τk)K

def
=⇒ Tτ JxK (Tτ Jτ1K , . . . , Tτ JτkK)

Tτ JxK def
=⇒ x̂

Fig. 36. The translation rules from Spad to the internal language. Functions ⊕ and

∈ are primitive operators defined in Figure 37. The function ⊕ concatenates

two lists together; the function ∈ takes a value and a list as arguments, and

checks the membership of the value to the list; the functions and, or, and not

are the usual boolean operators. We use ‘x and x̂ to denote the symbol and

identifier x, respectively, in the internal language.

145

let ⊕ = λleft.λright.

if isnil? left then right else cons(car left, fix(concat)(cdr left, right)) in

let member equal? = λleft.λright.

if isnil? left and isnil? right then true else if isnil? left then false

else if isnil? right then false else if isid? left and isid? right then

if π1 left = π1 right then

fix(member equal?)(π2 left, π2 right)

else false

else if is→? left and is→? right then

if fix(member equal?)(π1 left, π2 right) then true else false

else if member equal?(car left, car right) then

fix(member equal?)(cdr left, cdr right) else false in

let ∈ = λvalue.λspeclist.

if isnil? speclist then false else if member equal?(car speclist, value) then true

else fix(∈)(value, cdr speclist) in

Fig. 37. Definitions of the functions ∈ and ⊕.

body of a category are translated to if-statements in IL; has-predicates are trans-

lated to the function ∈; category extensions are translated to function calls to other

translated categories in IL; the Spad boolean operators and, or, and not are trans-

lated to functions of the same name in the IL; function declarations are translated to

“R→-terms”.

The translation in IL relies on two functions ⊕ and ∈ being defined: the first

function is the concatenation of two lists, and the second function determines if a

value is within a list. These two functions are defined in Figure 37. We note that

the function ∈ is recursive, and is aware of the conventions used within the various

R-terms.

As an example, we translate the category ComplexCategory, defined in Figure 38,

146

ComplexCategory(R: CommutativeRing()): Category == Type() with
if true then CommutativeRing() else Type()
if R has IntegralDomain() then exquo : (%, R) → % else Type()
if true then FullyLinearlyExplicitRingOver(R) else Type()
· · ·

Fig. 38. The definition of the category ComplexCategory. To simplify the transla-

tion, we use a preprocessor to transform an unconditional specification into

a conditional form with condition true and the category Type() in the else

branch—Type() is the empty root category that has no specifications.

which represents the extension of a ring structure by
√
−1. Applying the translation

rules at the topmost level yields (showing only the parts of the category that are

included in Figure 38):

let Tτ JComplexCategoryK = λ Tτ J%K .λ Tτ JRK .

cons(if true then TX JComplexCategory(R)K else ˆType(%̂),
TW Jif true then CommutativeRing() else Type()K⊕
TW Jif R has IntegralDomain() then exquo:(%,R)→ % else Type()K⊕
TW Jif true then FullyLinearlyExplicitRingOver(R) else Type()K⊕ · · · ⊕ ˆType(%̂)) in

Where the function ⊕ is the concatenation of two lists, shown in Figure 37. We

note that the callform of the category is used to generate both the name of the

function representing the category, the names of the parameters of that function, and

an R-term which will become the reflexive assertion that the ComplexCategory is

the category ComplexCategory. Beginning with the translation of the callform to the

name of function we get:

Tτ JComplexCategoryK a.i.
=⇒ ˆComplexCategory

that is, the identifier of the callform becomes an identifier in IL. The parameters of

the callform are translated similarly into identifiers IL.

We note that we do not translate the types of the formal parameters: the type

information is embedded within the specification lists that are passed as arguments

147

to the function. For example, an argument passed to parameter R would be a speci-

fication list, containing run-time evidence of all the types of the domain represented

by R. Similarly, the callform is also translated into a specification (from the second

line of the translation):

TX JComplexCategory(R)K a.i.=⇒ Rid(Tσ JComplexCategoryK , [TX JRK])
a.i.=⇒ Rid(‘ComplexCategory, [Tτ JRK])
a.i.=⇒ Rid(‘ComplexCategory, [R̂]).

Conditional specifications in categories are translated into if-statements in IL;

furthermore, the value true from Spad becomes the values true in IL. Category exten-

sion declarations are translated into function calls of the same name. The function

ˆType returns the specification list [Rid(‘Type, [])].

TW Jif true then CommutativeRing() else TrueK
a.i.=⇒ if Tπ JtrueK then TE JCommutativeRing()K else TE JType()K
a.i.=⇒ if true then Tτ JCommutativeRingK (TX J%K) else Tτ JTypeK (TX J%K)
a.i.=⇒ if true then ˆCommutativeRing(%̂) else ˆType(%̂)

We now turn our attention to the translation of a has-predicate. Intuitively, a

has-predicate X has C is asking if a domain X has the type C. We translate this

into a question asking if the specification of C is within the list of specifications of X:

Tπ JR has IntegralDomain()K a.i.=⇒ car(TX JIntegralDomain()K) ∈ Tτ JRK
a.i.=⇒ Rid(‘IntegralDomain[]) ∈ R̂.

D. User-defined predicates

Figure 39 shows the syntax we add to Spad to support user-defined predicates, as

well as the translation rules for the new syntactic form. The rules below rely on a

function called lookup for function resolution. The function lookup takes the name

of the function being called, the representation of the types of the arguments of the

148

function, and domain the function is to be found in. For this chapter, we let Spad

be parametrized by the implementation of lookup; however, a particular instance of

lookup could be implemented by, for instance, name-lookup. Equipped with the new

Predicate π ::= x(π∗)$τ

Tπ Jx0(π1, . . . , πk)$τK def=⇒ lookup(Tσ Jx0K , [car(Tπ Jπ1K), . . . ,
car(Tπ Jπ2K)],Tτ JτK)(Tπ Jπ1K , . . . ,Tπ JπkK)

Fig. 39. The extension of the Spad grammar and translation rules to support user-de-

fined predicates. The function lookup returns the function called by the user,

given the name of the function, and the domain the Spad function is defined

in.

language construct we can show more of the definition of ComplexCategory. We add

a specification that expresses that the category carries the structure of a Field when

both its parameter R carries the structure of a Field and the polynomial x2 + 1 is

irreducible in R:

if R has Field() and irreducible?((monomial(1,2)$R+1)$R)$R

then Field()

else Type()

The syntax $R above specifies that R is the domain that provides the implementation

of the function preceding the $ symbol.

Using the extended translation rules, the above user-defined predicate is trans-

lated as follows:

Tπ Jirreducible?((monomial(1, 2)$R + 1)$R)$RK =⇒
lookup(‘irreducible?, [car(Tπ J(monomial(1, 2)$R + 1)$R)K], R)(

Tπ J(monomial(1, 2)$R + 1)$RK)

149

E. Static analysis of categories

Conditional specifications control the capabilities of categories, i.e., the set of exported

function declarations of a category is determined by the run-time evaluation of the

conditional specifications. However, we want to be able to reason about such capa-

bilities at compile-time so that we can, for example, determine the best matching un-

ambiguous function definition given a function call. The main thrust of our approach

is to seek computable characterizations of specifications that hold in each branch of

a conditional specification, and statically approximate a category’s specifications and

the specifications’ conditions through an abstract interpretation framework.

The implementation of our framework is inspired by Cousot’s notion of types as

abstract evaluations. Our static analysis extracts a set of abstract specifications from

each conditional specification of a Spad category, updating an abstract store with

the set. Intuitively, the recursive translation and substitution of the specifications for

category extension in the concrete translation is the recursive abstract evaluation of a

category and join of its abstract store to the current store. The concrete evaluation of

a conditional specification selects one branch according to the run-time evaluation of

its condition, while, correspondingly, we abstractly evaluate both branches and join

the resulting abstract stores.

The final step in the static analysis is to simplify the resulting abstract store.

The abstract store can suffer from expression explosion due to the particular way

we construct the store. At each step of the abstract evaluation we simplify the

predicates of each abstract specification by applying the rules of classical logic, i.e.,

true and π → π, etc. Furthermore, we define an operation called reduction which

attempts to simplify the abstract store by using information found within the abstract

store to simplify the abstract store (this operation is developed and explained in

150

Section 4).

1. The structure of the abstract domain

The abstract domain is defined as the set of all sets of abstract specifications. An

abstract specification 〈E, π〉 is defined as an approximation of a conditional specifica-

tion by attaching a category specification E with a condition π, under which E holds.

We say that each set of abstract specifications is as an abstract store σ. We note

that the smallest abstract store is {〈 % has Type(), true〉} for reason that all categories

must extend Type. We define the operator join tA as

σ tA σ∆ =
{〈E, π1〉 | ∀ 〈E, π1〉 ∈ σ, @ 〈E, π2〉 ∈ σ∆}

∪ {〈E, π2〉 | ∀ 〈E, π2〉 ∈ σ∆, @ 〈E, π1〉 ∈ σ}
∪ {〈E, π1 or π2〉 | 〈E, π1〉 ∈ σ ∧ 〈E, π2〉 ∈ σ∆}.

The join operator takes two abstract stores σ and σ∆, and constructs an updated

store. The abstract specifications from both σ and σ∆ which have different category

extensions will be directly added to the updated store; if two abstract specifications

from different stores have a common extension, a combined abstract specification will

be added. The combined abstract specification keeps the common extension, but

combines the predicates using the logical connective or; the common extension holds

when either of the conditions is true.

2. Abstract evaluation of syntactic forms

We define the syntax-directed rules for the static analysis of a Spad category in Fig-

ure 40. An interpretation function J·KΠ
• : SPAD → AS takes a category definition in

Spad syntactic form, then computes the abstract store containing the corresponding

abstract specifications of the category. The superscript Π is the assumption of the

current interpretation, and is required when interpreting the branches of conditional

specifications (its use is explained later).

151

u

v
x0(x1 : τ1, . . . , xk : τk) :

Category == with
W1 · · ·Wn

}

~

Π

C

a.i.=⇒

 Jx0(x1 : τ1, . . . , xk : τk)KΠX
tA JW1KΠW tA · · · tA JWnKΠW
tA{〈% has Type(), true〉}


Jx0(x1 : τ1, . . . , xk : τk)KΠX

a.i.=⇒
(

{〈% has χ,Π〉}
tA [x1/%] Jτ1KΠE tA . . . tA [xk/%] JτkKΠE

)
where χ = Jx0Kτ (Jx1Kτ , . . . , JxkKτ)

Jif π then E1 else E2KΠW
a.i.=⇒ JE1KΠ and π

E tA JE2K
Π and (not π)
E

Jx0(τ1, . . . , τk)KΠE
a.i.=⇒

u

v
[

τ1/x1, . . . ,
τk/xk

] x0(x1 : τ ′1, . . . , xk : τ ′k) :
Category == Type() with

W1 · · ·Wn

}

~

Π

C


Jx : τKΠE

a.i.=⇒ {〈% has x : τ , Π〉}
JType()KΠE

a.i.=⇒ {〈% has Type(),Π〉}
JxKτ

a.i.=⇒ ‘x

Fig. 40. Rules for abstract interpretation of Spad programs.

To abstractly evaluate a category definition we interpret the callform, followed by

iteratively abstractly evaluating each conditional specification. We demonstrate the

top-level rule by showing the abstract evaluation of ComplexCategory from Figure 38,

along with the additional conditional specification enabled in Section D:

JComplexCategory(R : CommutativeRing())Ktrue
X

tA Jif true then CommutativeRing() else Type()Ktrue
W

tA Jif R has IntegralDomain() then exquo : (%,R)→ % else NilKtrue
W

tA Jif true then FullyLinearlyExplicitRingOver(R) else Type()Ktrue
W

tA Jif R has Field() and irreducible?(monomial(1,2)$R+1)$R then Field() else Type()Ktrue
W

tA · · · tA {〈% has Type(), true〉}

In this abstract evaluation, we assign Π to the value true as the initial assumption,

which means no assumptions (only a top-level abstract evaluation can have the as-

sumption true). In the abstract evaluation we can think of the join operator tA as

the approximation of the concatenation operator ⊕ in the concrete semantics.

The callform introduces an abstract specification for the category itself (reflexiv-

ity of category extension), and abstract specifications of the formal parameters in the

callform. The type of each formal parameter is abstractly evaluated and the resulting

152

abstract store for each parameter has all uses of the variable % renamed to the name of

the formal parameter. For the callform of ComplexCategory, the abstract evaluation

results in an abstract specification asserting the category is the ComplexCategory;

this is joined to the abstract store of CommutativeRing — which has had all instances

of the variable % renamed to R, i.e., specifications about CommutativeRing are now

about R:

JComplexCategory(R:CommutativeRing())Ktrue
X

a.i.=⇒
{〈% has ‘ComplexCategory(‘R), true〉} tA [R/%] JCommutativeRing()Ktrue

E .

Each conditional specification of a category definition results in the join of ab-

stract stores from evaluation of each branch’s specification: function declarations

are directly interpreted as abstract specifications; category extensions are recursively

interpreted following the transitivity of category extensions. The assumption for in-

terpreting each branch of the conditional specification is computed by the conjunction

of the enclosing category’s assumption Π and either the predicate π or not π for the

then- and else- branches, respectively. For instance, the last conditional specification

in the example above is interpreted as

Jif π then Field() else Type()Ktrue
W

a.i.=⇒ JField()Ktrue and π
E tA JType()Ktrue and (not π)

E

where π ← R has Field() and irreducible?(monomial(1, 2)$R+1)$R.

We show part of the abstract store for the then-branch:

{〈% has ‘Field(), true and π〉, . . . , 〈% has ‘Type(), true and π〉}

Note that the condition of the abstract specifications for this branch are not just true:

they are the conjunction of the assumption of ComplexCategory and the predicate

of the conditional specification. This means that the abstract specifications in this

branch only hold when both the assumption of ComplexCategory holds, and the

predicate holds.

We briefly illustrate the interpretation of an extension to a parameterized cate-

gory using the category extension FullyLinearlyExplicitRingOver(R) in the then-

153

branch of the third conditional specification. The abstract interpretation results in a

recursive interpretation over the definition of FullyLinearlyExplicitRingOver:

q
[R/X] FullyLinearlyExplicitRingOver(X : Ring()) : Category == Type() with . . .

ytrue

C

The formal parameter X is renamed to R, however, we do not rename the variable

% in category extensions—this mimics the fact that in the concrete evaluation, the

variable %̂ of the current category is passed as the formal parameter to instantiate

the category which is to be extended.

We now consider the more interesting category IntegerModCategory, given in

the introduction; we show the interpretation of the first conditional specification:

Jif prime?(k) then Field() else Ring()Ktrue
W

a.i.=⇒ JField()Ktrue and prime?(k)
E tA JRing()Ktrue and not prime?(k)

E

The abstract stores from each branch of this conditional specification are:

σField = {〈% has ‘Field(), true and prime?(k)〉, 〈% has ‘Ring(), true and prime?(k)〉, . . .}
σRing = {〈% has ‘Ring(), true and not prime?(k)〉, . . .}

And the final result of the interpretation becomes

σField tA σRing = {〈% has ‘Field(), true and prime?(k)〉,
〈% has ‘Ring(), (true and prime?(k)) or (true and not prime?(k))〉, . . .}

By applying a Boolean simplification function over the conditions of each abstract

specification, we get

σField tA σRing = {〈% has ‘Field(), prime?(k)〉, 〈% has ‘Ring(), true〉, . . .}

which is the result we expect: the category IntegerModCategory unconditionally

extends category Ring, and extends category Field when k is a prime.

3. Expression explosion

Due to the construction of the abstract evaluation the size of the expression of the

predicate π of an abstract specification 〈E, π〉 grows exponentially in the number of

154

times a specification E is used within a category, and the depth of category exten-

sion. For instance, the category Type is involved in a predicate consisting of several

hundred terms for the examples given above. Such large predicates can defeat the

proposed purpose of the analysis simply by making compilation and static checking

too expensive.

Our solution is to simplify the predicates of the abstract specifications at all

points in the abstract evaluation. In general, we can use the rules of classical logic

to the simplify the predicates — all of the predicates are tautologies. An example of

such a rule is the elimination of a disjunction: false or π ⇒ π, etc. In general, the

use of binary-decision diagrams or other mechanisms, along with boolean-expression

simplification can prevent significant expression explosion.

4. Reduction of abstract stores

An abstract store can contain abstract specifications which provide information about

other abstract specifications. This comes in the form of abstract specifications whose

category specification E is part of (or all of) the predicate π of some other abstract

specification. We use the fact that abstract specifications have information about

each other to simplify the predicates of abstract specifications within an abstract

store. This process emulates the process of concrete evaluation of predicates for

categories. In addition, this mechanism allows the user to add abstract specifications

to an abstract store; this can be done to perturb the abstract store. For instance, if the

user adds extra abstract specifiations to the abstract store, the reduction mechanism

can be used to find the abstract representation of a concrete instance of a category.

Consider, for instance, the following two abstract specifications from the abstract

store for the complex commutative ring:

155

{
〈% has ‘Field(), ‘R has ‘Field() and lookup(. . .)〉,
〈‘R has ‘Field(), true〉

}
These two abstract specifications reduce to the following specifications:

{
〈% has ‘Field(), lookup(. . .)〉,
〈‘R has ‘Ring(), true〉

}
.

In general the reduction function takes each abstract specification a = 〈Ea, πa〉

in the abstract store and for all b = 〈Eb, πb〉 if πb = Ea then the function replaces πb

with πa. The fixed point of this function is taken, which results in the abstract store

being fully reduced.

We consider another example taken from the IntegerModCategory:

{〈〈% has ‘IntegerModCategory(‘k), true〉, . . . , 〈% has ‘Field(), prime? k〉}

where the abstract specification 〈prime? k, true〉 is added to the abstract store. Ex-

plicitly adding this abstract specification can happen, for instance, in a domain im-

plementing IntegerModCategory, under the then-branch of a conditional definition

whose condition is prime? k. The fixed-point of the reduction results in the abstract

store:

{〈〈% has ‘IntegerModCategory(‘k), true〉, . . . , 〈% has ‘Field(), true〉}.

That is, all of the specifications of the structure field are added to the category

IntegerModCategory at this point.

F. Implementation

In OpenAxiom, Spad has a well-defined library interface to its internal representation.

Furthermore, the compiler provides access to this interface during compilation. This

156

allows extensions to the compiler for static analysis to be written as a library, and not

as a patch to the compiler. Our static analysis framework is implemented as a Spad

library, and is available on our project website [95]; the provided implementation

operates as a stand-alone analysis tool.

A non-trivial problem associated with the analysis is the potential exponential

explosion in the size of the predicates associated with each abstract specification.

However, the facts generated through our static analysis almost always have the form

(A ∧ B) ∨ (A ∧ notB) which is equivalent to just A. In addition, a large number of

the abstract specifications include the predicates true and false — expressions with

these predicates are immediately simplified. The result is that most of the expression

explosion is mitigated, and not a significant performance barrier.

Another potential problem is the recursive nature of the static analysis: every

category will repeatedly analyze the same class of categories. Even more worrisome

is the tree-like nature of most categories, where many categories extend the same set

of categories, and the same analysis is performed multiple times. We could (but do

not) build a cache to memoize the result of previous analyses, which would result in

a significant speed up of the static analysis.

We tested our framework on the definition of ComplexCategory, and a pro-

posed category for the type of the domain IntegerMod. ComplexCategory is taken

from OpenAxiom’s algebra library (the standard library of OpenAxiom). We based

IntegerModCategory on the algebra’s implementation of the domain IntegerMod.

For both examples, we show only a relevant subset of each result. First, the results

for ComplexCategory:

ComplexCategory := {

<% has Name(ComplexCategory(R)), true>,

<% has Name(Field()), R has Field() and_

157

irreducible?(monomial(1,2)$R + 1)$R)>,

<% has Name(FullyLinearlyExplicitRingOver(R)), true>,

<% has Sig(exquo(Mapping(%,%,R),Nil), R has IntegralDomain()>,

<R has Name(CommutativeRing()), true>, ... }

The conditions of the abstract specifications have been simplified, reduced, and out-

putted using a pretty-printer built into the analysis tool.

Next, we show the results for IntegerModCategory:

IntegerModCategory := {

<% has Name(IntegerModCategory(k)), true>,

<% has Name(Ring()), true>,

<% has Name(Field()), prime?(k)$Integer()>,

<k has Name(IntegerCategory()), true>, ... }

We point out that just as shown in Section 2, the abstract store shown above precisely

states that IntegerModCategory unconditionally extends Ring, which matches with

our expectation. The results for both examples presented above have had the condi-

tions of their abstract specifications simplified by a Boolean simplification function.

G. Related work

The static semantics of conditional categories for the AXIOM family is informally

discussed in the “AXIOM book” (Section 11.8 and 12.11) [58], and further explored

by Santas [85] where typing rules for conditional categories and domains are specified

and implemented. However, the implementation details of conditional categories and

domains are still not obvious to compiler writers because of the missing formalization

of their dynamic semantics. This chapter specifies the dynamic semantics of condi-

tional categories using a lambda calculus based internal language. Specification of

the semantics of conditional domains is still in progress, which we leave for the future

work.

158

Local specialization with generalized predicates can be handled in system Al-

dor [115], but does not exist in the AXIOM family. We stress that, although the local

specialization has been implemented in Aldor before this chapter, the algorithms

underlying the implementation have not been demonstrated or justified. Another

key contribution of this chapter is a rational and principled implementation of local

specialization as an application of abstract interpretation.

The theory of abstract interpretation was studied by Cousot and Cousot [17],

first; the development of this novel theory allows the redefinition of the role of a

compiler: type-checking and other static analyses become abstract interpretations

written as portable library code, instead of patches to the compiler. To the best of

our knowledge, our work is the first documented attempt at formal specification of the

concrete semantics of conditional categories, and an implementation of an abstract

interpretation framework for local specializations in a categorial computer algebra

system.

H. Conclusion

Local specialization has been a well-known technique for computer algebra systems for

decades. However, we found its theoretical support to be under-explored. This chap-

ter provides a principled construction of both the dynamic and static behaviors which

support local specialization for computer algebra systems. In addition, it provides

a formal description for general predicates, increasing the expressivity of algebraic

structures written in OpenAxiom. Beginning with an operational semantics for the

dynamic behavior of categories we apply the theory of Abstract Interpretation to de-

rive the static semantics of categories. For example, the derived static semantics can

be used to discover the visibility of functions for type-checking during compile-time.

159

We have implemented the abstract interpretation framework in the experimental

branch of OpenAxiom. This prototype illustrates the benefits of a principled descrip-

tion of behaviors for the implementation of local specialization in computer algebra

systems.

160

CHAPTER VI

CONCLUSION

In the half century of language development and design, as a community, we have

discovered and promulgated a large number of language paradigms. Each of these

paradigms is made up of numerous (mostly) orthogonal features. These features are

re-composable because, since we language designers are naturally good programmers1,

we seek to break down our problems (the paradigm) into re-usable components. Re-

usable components cry out for re-combination (in multi-paradigm languages). The

result is a surplus of combinations of features with very little guidance to the use of

those features to actually make software, nor confidence that these features work as

advertised.

Since the writing of most of the (papers contributing to the) chapters of this

dissertation both Spad and C++ have continued to evolve. Particularly notable to

this dissertation is that Spad has been forked: this has led to the (in my opinion) far

superior implementation of the AXIOM System and Spad language: Open-Axiom.

This allowed me to re-implement Chapter IV in a fraction of the time and a fraction

of the number of lines code. Furthermore, Chapter V was made possible both be-

cause of our desire to provide a more rational basis for the description of the features

of Spad, and also because of certain new features (reflection) that have rapidly ma-

tured in Open-Axiom. C++ has also continued to evolve; the concepts proposal has

been ‘deferred’ [101, 39] until a later date. (Other new features have been voted in:

anonymous functions, variadic templates, an expanded standard library, etc.)

The main thesis of this dissertation is that, in many ways, the capabilities pro-

1Given a rather large grain of salt.

161

vided by modern languages have far outreached our understanding of how to deploy

those capabilities, gainfully. We have a large set of language features already avail-

able to us, as programmers, and that set of features continues to expand. These

language features were added to support certain mental frameworks for program-

ming, for instance: classes, virtual functions (and inheritance), member functions

for object-oriented programming; or, templates, associated types, and compile time

values to support parametric polymorphism. In languages like C++ and Spad, these

features can be used in one fashion to support the programming paradigm they are

intended for, but like any well-written library, the features can be combined and re-

combined. The result is that we are constantly discovering new ways (paradigms) of

programming.2

When we combine old features into new paradigms, we inevitably find places

where it is inconvenient or inefficient to express our intention. Since programmers

(and especially language designers) are an especially lazy breed, we inevitably propose

yet another language feature to patch this difficulty.

Regardless of the status of individual language features, an important and central

tenet of any kind of programming remains that abstraction allows more sophisticated

software. applies to language design: we can have easy-to-build compilers (with easy-

to-understand diagnostics), high-performance and efficient run-times, or abstraction

and expressivity. Thus, an assembler is (relatively) easy to build compiler, it provides

fairly high performance, but assembly lacks significantly in terms of abstraction ca-

pabilities. The typical trade-off made is to increase the abstraction capabilities and

expressivity of a language at the cost of performance, i.e., Lisp or Python. Languages

which support generic programming tend to take the “opposite” course: high-levels

2A terribly unscientific poll is to note that as of September 2009, Wikipedia lists
a few dozen programming paradigms.

162

of abstraction and expressivity, with high levels of performance. The results, for ex-

ample in C++, are spectacular: error messages (see the footnote in Section III.1) of

legendary length; and compilers which literally take decades to implement.

In this dissertation I hope that I have shown ways of synthesizing and complet-

ing (rationalizing) features for efficient abstraction. Dr. Veldhuizen’s discussion of

parsimony [105] is a perfect framework to mount the discussion from Chapter II: it

is important to provide as many (and varied) entry points into a library as possible.

As library writers we should cater to our users, and not to the minimal level func-

tionality.3 Chapter III shows idioms and provides a mental framework for combining

libraries, and how the act of library composition should be a programming construct

that in and of itself should be a re-usable component. Chapters IV and V cast light

on how to build robust library-directed extensions for languages and their compilers.

There are clear directions left for this line of research. Perhaps the most tangible

direction is the full enumeration of a type- and deduction- system using the theory

abstract interpretation for Open-Axiom’s Spad. While most of the Spad language,

itself, is not covered in the construction given in the dissertation (Chapter V), the

actual difficulty lay merely in the dimensions of size and time, and not complexity.

For C++ there are still clearly unresolved issues in the understanding of the basic

features needed for generic programming. For instance, C++’s use of specialization

with generic programming functions is not well-characterized. And, even if generic

programming functions were well-understood, the guarantees they give are razor thin:

monotonically non-decreasing improvements in “performance.” Yet, C++ has shown

(consider the MTL4 vs. GOTO BLAS in Chapter III) that with just those tools it is

3I am currently engaged in a project to provide a typeful enumeration of a com-
plex instruction set computer — each assembly instruction is represented by several
hundred high-level signatures.

163

possible to dramatically outperform even the most sophisticated optimizing compiler,

or low-level manual assembler.

164

REFERENCES

[1] D. Abrahams, A. Gurtovoy, C++ Template Metaprogramming: Concepts,

Tools, and Techniques from Boost and Beyond, Addison-Wesley, 2004.

[2] P.D. Adams, R.W. Grosse-Kunstleve, L.W. Hung, T.R. Ioerger, A.J. McCoy,

N.W. Moriarty, R.J. Read, J.C. Sacchettini, N.K. Sauter, T.C. Terwilliger,

PHENIX: building new software for automated crystallographic structure de-

termination, Acta Crystallographica Section D 58 (2002) 1948–1954.

[3] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato,

L. Rauchwerger, STAPL: An adaptive, generic parallel C++ library, in: Lan-

guages and Compilers for Parallel Computing, volume 2624 of Lecture Notes in

Computer Science, Springer, 2001, pp. 193–208.

[4] E. Angerson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J.D. Croz,

S. Hammarling, J. Demmel, C. Bischof, D. Sorensen, LAPACK: A portable

linear algebra library for high-performance computers, Proceedings of Super-

computing ’90 (1990) 2–11.

[5] M.H. Austern, Generic programming and the STL: Using and extending the

C++ Standard Template Library, Professional Computing Series, Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1998.

[6] G. Baumgartner, M. Jansche, K. Läufer, Half & Half: Multiple Dispatch and

Retroactive Abstraction for Java, Technical Report OSU-CISRC-5/01-TR08,

Ohio State University, 2002.

[7] R.E. Bellman, On a routing problem, Quart. Appl. Math. 16 (1958) 87–90.

165

[8] C. Bischof, A. Carle, G. Corliss, A. Griewank, ADIFOR: Automatic differen-

tiation in a source translator environment, in: ISSAC ’92: Papers from the

International Symposium on Symbolic and Algebraic Computation, New York,

NY, USA, 1992, ACM Press, pp. 294–302.

[9] C.H. Bischof, L. Roh, A.J. Mauer-Oats, ADIC: an extensible automatic differ-

entiation tool for ANSI-C, Software—Practice and Experience 27 (1997) 1427–

1456.

[10] L. Bourdev, H. Jin, Generic Image Library, 2006. opensource.adobe.com/gil.

[11] A. Breuer, P. Gottschling, D. Gregor, A. Lumsdaine, Effecting parallel graph

eigensolvers through library composition, in: Workshop on Performance Op-

timization for High-Level Languages and Libraries (POHLL), in Proceedings

of the 20th IEEE International Parallel & Distributed Processing Symposium

(IPDPS 2006), Los Alamitos, CA, USA, 2006, IEEE Computer Society, p. 466.

http://doi.ieeecomputersociety.org/10.1109/IPDPS.2006.1639723.

[12] P.A. Broadbery, T. Gómez-Dı́az, S.M. Watt, On the implementation of dynamic

evaluation, in: ISSAC ’95: Proceedings of the 1995 International Symposium

on Symbolic and Algebraic Computation, New York, NY, USA, 1995, ACM,

pp. 77–84.

[13] A.T. Brünger, X-Plor Version 3.1: A System for X-Ray Crystallography and

NMR, Yale University Press, 1993.

[14] M.M.T. Chakravarty, G. Keller, S. Peyton Jones, Associated type synonyms,

in: ICFP ’05: Proceedings of the International Conference on Functional Pro-

gramming, New York, NY, USA, 2005, ACM Press, pp. 241–253.

166

[15] M.M.T. Chakravarty, G. Keller, S. Peyton Jones, S. Marlow, Associated types

with class, in: POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, New York, NY, USA,

2005, ACM Press, pp. 1–13.

[16] P. Cousot, Types as abstract interpretations, invited paper, in: Conference

Record of the Twentyfourth Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, Paris, France, 1997, ACM Press, New

York, NY, pp. 316–331.

[17] P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints, in: POPL

’77: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles

of programming languages, New York, NY, USA, 1977, ACM Press, pp. 238–

252.

[18] K. Cowtan, The clipper project, Joint CCP4 and ESF-EACBM Newsletter on

Protein Crystallography 40 (2002).

[19] K. Crary, S. Weirich, G. Morrisett, Intensional polymorphism in type-erasure

semantics, J. Funct. Program. 12 (2002) 567–600.

[20] K. Czarnecki, U.W. Eisenecker, Generative Programming, Addison-Wesley,

2000.

[21] T. Daly, Axiom Volume 1: Tutorial, Lulu.com, 2005. ISBN: 978-1-4116-6597-2.

[22] J.H. Davenport, P. Gianni, B.M. Trager, Scratchpad’s view of algebra II: A

categorical view of factorization, New York, NY, USA, 1991, ACM Press, pp.

32–38.

167

[23] J.H. Davenport, B.M. Trager, Scratchpad’s view of algebra I: Basic commuta-

tive algebra, in: DISCO ’90: Proceedings of the International Symposium on

Design and Implementation of Symbolic Computation Systems, London, UK,

1990, Springer-Verlag, pp. 40–54.

[24] S. Dickinson, M. Pelillo, R. Zabih, Introduction to the special section on graph

algorithms in computer vision, IEEE Transactions on Pattern Analysis and

Machine Intelligence 23 (2001) 1049–1052.

[25] G. Dos Reis, Open-Axiom: The open scientific computation platform, http:

//open-axiom.org, 2009.

[26] ECMA-334, C# language specification, 2006. http://www.ecma-international.

org/publications/files/ECMA-ST/Ecma-334.pdf.

[27] C. Ehresmann, Les prolongements d’une variété différentiable, C.R. Acad. Sc.

Paris 233 (1951) 598–600.

[28] A. Fabri, G.J. Giezeman, L. Kettner, S. Schirra, S. Schönherr, On the design of

CGAL, a computational geometry algorithms library, Software – Practice and

Experience 30 (2000) 1167–1202. Special Issue on Discrete Algorithm Engineer-

ing.

[29] P.F. Felzenszwalb, D.P. Huttenlocher, Efficient graph-based image segmenta-

tion, Int. J. Comput. Vision 59 (2004) 167–181.

[30] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley Publishing Co., New York,

NY, USA, 1995.

168

[31] R. Garcia, J. Järvi, A. Lumsdaine, J. Siek, J. Willcock, An extended compara-

tive study of language support for generic programming, Journal of Functional

Programming 17 (2007) 145–205.

[32] K. Gopal, R. Pai, T.R. Ioerger, T. Romo, J.C. Sacchettini, TEXTAL: Artificial

intelligence techniques for automated protein structure determination, Proceed-

ings of the 15th Conference on Innovative Applications in Artificial Intelligence

(IAAI) (2003) 93–100.

[33] K. Gopal, T. Romo, E. Mckee, K. Childs, L. Kanbi, R. Pai, J. Smith, J. Sac-

chettini, T. Ioerger, TEXTAL: Automated crystallographic protein structure

determination, Proceedings of the Seventeenth Conference on Innovative Ap-

plications of Artificial Intelligence (2005) 1483–1490.

[34] K. Goto, R.A. van de Geijn, Anatomy of high-performance matrix multiplica-

tion, ACM Trans. Math. Softw. 34 (2008) 1–25.

[35] P. Gottschling, A. Lumsdaine, The Matrix Template Library 4, http://www.

osl.iu.edu/research/mtl/mtl4/, 2008.

[36] P. Gottschling, D.S. Wise, A. Joshi, Generic support of algorithmic and struc-

tural recursion for scientific computing, The International Journal of Parallel,

Emergent and Distributed Systems 0 (2008) 1–23. www.informaworld.com.

[37] D. Gregor, High-level static analysis for generic libraries, PhD thesis, Rensselaer

Polytechnic Institute, 2004. http://www.osl.iu.edu/publications/prints/2004/

Gregor-Thesis.pdf.

[38] D. Gregor, ConceptGCC: Concept extensions for C++, http://www.

generic-programming.org/software/ConceptGCC, 2005.

169

[39] D. Gregor, What happened in frankfurt?, 2009. http://cpp-next.com/archive/

2009/08/what-happened-in-frankfurt/.

[40] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G.D. Reis, A. Lumsdaine, Concepts:

Linguistic support for generic programming in C++, in: OOPSLA ’06: Pro-

ceedings of the 2006 ACM SIGPLAN Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications, 2006, ACM Press, pp. 291–310.

[41] D. Gregor, A. Lumsdaine, Lifting sequential graph algorithms for distributed-

memory parallel computation, in: OOPSLA ’05: Proceedings of the 2005 ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,

and Applications, pp. 423–437.

[42] D. Gregor, M. Marcus, T. Witt, A. Lumsdaine, Foundational Concepts for the

C++0x Standard Library, Technical Report N2677=08-0187, ISO/IEC JTC 1,

Information technology, Subcommittee SC 22, Programming language C++,

2008. www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2677.pdf.

[43] D. Gregor, J. Siek, Implementing Concepts, Technical Report N1848=05-0108,

ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming

Language C++, 2005. www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/

n1848.pdf.

[44] D. Gregor, B. Stroustrup, J. Widman, J. Siek, Proposed Wording for Concepts

(Revision 8), Technical Report N2741=08-025, ISO/IEC JTC 1, Information

Technology, Subcommittee SC 22, Programming Language C++, 2008.

[45] A. Griewank, Evaluating derivatives: principles and techniques of algorithmic

differentiation, Society for Industrial and Applied Mathematics, Philadelphia,

PA, USA, 2000.

170

[46] A. Griewank, D. Juedes, J. Utke, Algorithm 755: ADOL-C: a package for the

automatic differentiation of algorithms written in C/C++, ACM Trans. Math.

Softw. 22 (1996) 131–167.

[47] R.W. Grosse-Kunstleve, N.K. Sauter, N.W. Moriarty, P.D. Adams, The Com-

putational Crystallography Toolbox: crystallographic algorithms in a reusable

software framework, J. Appl. Cryst. 35 (2002) 126–136.

[48] T. Hahn, International Tables for Crystallography, Volume A: Space Group

Symmetry, Spring, 2002.

[49] T.R. Holton, T.R. Ioerger, J.A. Christopher, J.C. Sacchettini, TEXTAL: A pat-

tern recognition system for interpreting electron density maps, in: Proceedings

of the Seventh International Conference on Intelligent Systems for Molecular

Biology (ISMB), pp. 130–137.

[50] IBM Research, Subject-oriented programming and the adapter pattern, IBM

Research, 2008. www.research.ibm.com/sop/sopcadap.htm.

[51] International Organization for Standardization, ISO/IEC 14882:2003:

Programming languages: C++, ISO, Geneva, Switzerland, 2nd edition,

2003. http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?

CSNUMBER=38110.

[52] International Standards Organization, Technical Report on C++ performance,

Technical Report N1487=03-0070, ISO/IEC JTC 1, Information Technology,

Subcommittee SC 22, Programming Language C++, 2003.

[53] T.R. Ioerger, J.C. Sacchettini, TEXTAL system: Artificial intelligence tech-

171

niques for automated protein model building, Methods in Enzymology 374

(2003) 244–270.

[54] J. Järvi, D. Gregor, J. Willcock, A. Lumsdaine, J. Siek, Algorithm specialization

in generic programming: challenges of constrained generics in C++, in: PLDI

’06: Proceedings of the 2006 ACM SIGPLAN Conference on Programming

Language Design and Implementation, New York, NY, USA, 2006, ACM Press,

pp. 272–282.

[55] J. Järvi, M.A. Marcus, J.N. Smith, Library composition and adaptation using

c++ concepts, in: GPCE ’07: Proceedings of the 6th International Conference

on Generative Programming and Component Engineering, New York, NY, USA,

2007, ACM, pp. 73–82.

[56] J. Järvi, M.A. Marcus, J.N. Smith, Programming with C++ concepts, Science

of Computer Programming (2009).

[57] J. Järvi, J. Willcock, A. Lumsdaine, Concept-controlled polymorphism, in:

F. Pfennig, Y. Smaragdakis (Eds.), GPCE ’03: Proceedings of the 2nd Inter-

national Conference on Generative Programming and Component Engineering,

volume 2830 of LNCS, Erfurt, Germany, 2003, Springer Verlag, pp. 228–244.

[58] R.D. Jenks, R.S. Sutor, AXIOM: The Scientific Computation System, Springer-

Verlag, 1992.

[59] M.P. Jones, Type classes with functional dependencies, in: ESOP ’00: Pro-

ceedings of the 9th European Symposium on Programming Languages and Sys-

tems, volume 1782 of Lecture Notes in Computer Science, New York, NY, 2000,

Springer-Verlag, pp. 230–244.

172

[60] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W.G. Griswold, An

overview of AspectJ, in: J.L. Knudsen (Ed.), Proceedings of the 15th European

Conference on Object-Oriented Programming (ECOOP ’01), volume 2072 of

Lecture Notes in Computer Science, Springer-Verlag, London, UK, 2001, pp.

327–353.

[61] R. Lämmel, K. Ostermann, Software extension and integration with type

classes, in: GPCE ’06: Proceedings of the 5th International Conference on

Generative Programming and Component Engineering, New York, NY, USA,

2006, ACM Press, pp. 161–170.

[62] K. Läufer, G. Baumgartner, V.F. Russo, Safe structural conformance for Java,

The Computer Journal 43 (2000) 469–481.

[63] K. Läufer, M. Odersky, Polymorphic type inference and abstract data types,

ACM Transactions on Programming Languages and Systems 16 (1994) 1411–

1430.

[64] C.L. Lawson, R.J. Hanson, R.J. Kincaid, F.T. Krogh, Basic linear algebra sub-

programs for FORTRAN usage, ACM Transactions on Mathematical Software

5 (1979) 308–323.

[65] D. Lea, Public conversation, 2006. Workshop of Library-Centric Software De-

sign at OOPSLA’06, Portland Oregon.

[66] R. Ley-Wild, U.A. Acar, M. Fluet, A cost semantics for self-adjusting computa-

tion, in: POPL ’09: Proceedings of the 36th annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, New York, NY, USA,

2009, ACM, pp. 186–199.

173

[67] V. Litvinov, Constraint-based polymorphism in Cecil: towards a practical and

static type system, in: OOPSLA ’98: Proceedings of the 13th ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Appli-

cations, New York, NY, USA, 1998, ACM Press, pp. 388–411.

[68] U. von Luxburg, A tutorial on spectral clustering, 2006. Technical Report No.

TR-149; http://www.kyb.mpg.de/publications/attachments/Luxburg06 TR \

%5B0\%5D.pdf.

[69] B. Magnusson, Code reuse considered harmful, Journal of Object-Oriented Pro-

gramming 4 (1991) 8.

[70] M. Marcus, J. Järvi, S. Parent, Runtime polymorphic generic programming—

mixing objects and concepts in ConceptC++, in: K. Davis, J. Striegnitz (Eds.),

Multiparadigm Programming 2007: Proceedings of the MPOOL Workshop at

ECOOP ’07, Berlin, Germany. homepages.fh-regensburg.de/∼mpool/.

[71] M. Mattsson, J. Bosch, M.E. Fayad, Framework integration problems, causes,

solutions, Commun. ACM 42 (1999) 80–87.

[72] D. Mcilroy, Mass-produced software components, in: Proceedings of the 1st

International Conference on Software Engineering sponsored by the NATO Sci-

ence Committee, Garmisch Pattenkirchen, Germany, Brussels, Belgium, 1969,

Scientific Affairs Division, NATO, pp. 138–155.

[73] B. McNamara, Y. Smaragdakis, Static interfaces in C++, in: First Workshop

on C++ Template Programming, Erfurt, Germany. oonumerics.org/tmpw00/.

[74] K. Mehlhorn, S. Näher, The LEDA Platform of Combinatorial and Geometric

Computing, Cambridge University Press, 1999.

174

[75] N. Mitchell, G. Sevitsky, H. Srinivasan, The diary of a datum: An approach

to modeling runtime complexity in framework-based applications, in: Proceed-

ings of the First International Workshop of Library-Centric Software Design

(LCSD ’05). An OOPSLA ’05 workshop, San Diego, CA, USA. As technical re-

port 06-12 of Rensselaer Polytechnic Institute, Computer Science Department.

[76] M.B. Monagan, W.M. Neuenschwander, GRADIENT: algorithmic differentia-

tion in Maple, in: ISSAC ’93: Proceedings of the 1993 International Symposium

on Symbolic and Algebraic Computation, New York, NY, USA, 1993, ACM

Press, pp. 68–76.

[77] N. Myers, A New and Useful Template Technique: “Traits”, volume 7, SIGS

Publications, Inc., 1995.

[78] M. Odersky, Poor man’s type classes, Presentation at the meeting of IFIP

WG 2.8, Functional Programming, 2006. lamp.epfl.ch/∼odersky/talks/wg2.

8-boston06.pdf.

[79] M. Odersky, The Scala language specification: Version 2.0, draft march 17,

2006, http://scala.epfl.ch/docu/files/ScalaReference.pdf, 2006.

[80] S. Peyton Jones, M. Jones, E. Meijer, Type classes: an exploration of the

design space, in: Proceedings of the Second Haskell Workshop of the ICPF ’97,

New York, NY, USA, 1997, ACM Press. citeseer.ist.psu.edu/peytonjones97type.

html.

[81] W.R. Pitt, M.A. Williams, M. Steven, B. Sweeney, A.J. Bleasby, D.S. Moss,

The Bioinformatics Template Library–generic components for biocomputing,

Bioinformatics 17 (2001) 729–737. http://bioinformatics.oupjournals.org/cgi/

content/abstract/17/8/729.

175

[82] Princeton Satellite Systems, Matrixlib: BLAS and LAPACK, Matrix library

API overview, 2008. http://www.psatellite.com/matrixlib/api/lapack.html.

[83] G. Rhodes, Crystallography Made Crystal Clear, Third Edition : A Guide for

Users of Macromolecular Models, Academic Press, 2006.

[84] M. Rosendahl, Automatic complexity analysis, in: FPCA ’89: Proceedings of

the Fourth International Conference on Functional Programming Languages

and Computer Architecture, New York, NY, USA, 1989, ACM, pp. 144–156.

[85] P.S. Santas, Conditional categories and domains, in: Design and Implementa-

tion of Symbolic Computation Systems, volume 1128, 1996, Springer Berlin /

Heidelberg, pp. 112–125.

[86] G.E. Schalnat, A. Dilger, G. Randers-Perhson, C. Truta, S.P. Cadieux, E.S.

Raymond, G. Vollant, T. Lange, W.V. Schaik, J. Bowler, K. Bracey, S. Bushell,

M. Holmgren, G. Roelofs, T. Tanner, D. Martindale, P. Schmidt, T. Weg-

ner, libpng home page, Website, 2009. http://www.libpng.org/pub/png/libpng.

html.

[87] U. Shani, Filling regions in binary raster images: A graph-theoretic approach,

SIGGRAPH Computer Graphics 14 (1980) 321–327.

[88] J. Shi, J. Malik, Normalized cuts and image segmentation, Transactions on

Pattern Analysis and Machine Intelligence 22 (2000) 888–905.

[89] J. Siek, L.Q. Lee, A. Lumsdaine, The Boost Graph Library: User Guide and

Reference Manual, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 2002.

176

[90] J. Siek, A. Lumsdaine, The Matrix Template Library: Generic components for

high-performance scientific computing, Computing in Science and Engineering

1 (1999) 70–78. http://dx.doi.org/10.1109/5992.805137.

[91] J. Siek, A. Lumsdaine, Concept checking: Binding parametric polymorphism

in C++, in: First Workshop on C++ Template Programming. oonumerics.org/

tmpw00/.

[92] J. Siek, A. Lumsdaine, L.Q. Lee, Boost Graph Library, Boost, 2001. www.boost.

org/libs/graph.

[93] Silicon Graphics, Inc., SGI Implementation of the Standard Template Library,

2004. http://www.sgi.com/tech/stl/.

[94] J. Smith, G. Dos Reis, J. Järvi, Algorithmic differentiation in Axiom, in: IS-

SAC ’07: Proceedings of the 2007 International Symposium on Symbolic and

Algebraic Computation, New York, NY, USA, 2007, ACM, pp. 347–354.

[95] J. Smith, Y. Li, Y. Solodkyy, G. Dos Reis, J. Järvi, Local Specialization in

Open-Axiom, Technical Report, Texas A&M University, 2009. http://parasol.

cs.tamu.edu/groups/pttlgroup/local-specialization/.

[96] B. Speelpenning, Compiling fast partial derivatives of functions given by algo-

rithms, PhD thesis, The University of Illinois at Urbana-Champaigne, 1980.

[97] A. Stepanov, M. Lee, The Standard Template Library, Technical Report HPL-

94-34(R.1), Hewlett-Packard Laboratories, 1994. www.hpl.hp.com/techreports.

[98] J.E. Stoy, Denotational Semantics: The Scott–Strachey Approach to Program-

ming Language Theory, The MIT Press, 1977.

177

[99] C. Strachey, Fundamental concepts in programming languages, Higher Order

Symbol. Comput. 13 (2000) 11–49.

[100] B. Stroustrup, The C++ Programming Language (Third Edition and Special

Edition), Addison-Wesley Publishing Co., New York, NY, USA, 1997.

[101] B. Stroustrup, The C++0x “remove concepts” decision, Dr. Dobb’s Journal

(2009).

[102] N. Su, Java 2 platform standard ed. 5.0 API, 2004. http://java.sun.com/j2se/

1.5.0/docs/api/.

[103] C. Szyperski, Component Software: Beyond Object-Oriented Programming,

ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 1998.

[104] M. Troyer, P. Dayal, R. Villiger, The Iterative Eigensolver Template Library,

2004. www.comp-phys.org/software/ietl/.

[105] T. Veldhuizen, Parsimony principles for software components and metalan-

guages, in: GPCE ’07: Proceedings of the 6th International Conference on

Generative Programming and Component Engineering, New York, NY, USA,

2007, ACM, pp. 115–122.

[106] T. Veldhuizen, M. Jernigan, Will C++ be faster than FORTRAN, in: Volume

1343, Springer Verlag KG, 1997, pp. 49–56.

[107] T.L. Veldhuizen, Expression templates, j-C-PLUS-PLUS-REPORT 7 (1995)

26–31. Reprinted in C++ Gems, ed. Stanley Lippman.

[108] T.L. Veldhuizen, Arrays in Blitz++, in: ISCOPE ’98: Proceedings of the Second

International Symposium on Computing in Object-Oriented Parallel Environ-

ments, London, UK, 1998, Springer-Verlag, pp. 223–230.

178

[109] T.L. Veldhuizen, Active libraries and universal languages, PhD thesis, Indiana

University Computer Science, 2004. http://osl.iu.edu/∼tveldhui/papers/2004/

dissertation.pdf.

[110] T.L. Veldhuizen, D. Gannon, Active Libraries: Rethinking the roles of compilers

and libraries, Technical Report, University of Waterloo, 1998. http://ubiety.

uwaterloo.ca/∼tveldhui/papers/oo98.html.

[111] D. Villard, M.B. Monagan, ADrien: an implementation of automatic differen-

tiation in Maple, in: ISSAC ’99: Proceedings of the 1999 International Sym-

posium on Symbolic and Algebraic Computation, New York, NY, USA, 1999,

ACM Press, pp. 221–228.

[112] P. Wadler, S. Blott, How to make ad-hoc polymorphism less ad-hoc, in: ACM

Symposium on Principles of Programming Languages, 1989, ACM, pp. 60–76.

[113] J. Walter, M. Koch, Boost Basic Linear Algebra, C++ Boost, 2002. http://

www.boost.org/doc/libs/1 38 0/libs/numeric/ublas/doc/index.htm.

[114] S.M. Watt, P.A. Broadbery, S.S. Dooley, P. Iglio, S.C. Morrison, J.M. Steinbach,

R.S. Sutor, A first report on the A# compiler, in: ISSAC ’94: Proceedings of

the International Symposium on Symbolic and Algebraic Computation, New

York, NY, USA, 1994, ACM, pp. 25–31.

[115] S.M. Watt, P.A. Broadbery, S.S. Dooley, P. Iglio, S.C. Morrison, J.M. Steinbach,

R.S. Sutor, Aldor User Guide, Aldor, 2000. http://www.aldor.org.

[116] R.C. Whaley, J. Dongarra, Automatically Tuned Linear Algebra Software, in:

SuperComputing 1998: High Performance and Network Computing.

179

[117] J. Willcock, J. Järvi, A. Lumsdaine, Active libraries vs. separate compilation,

2004. Lecture Slides.

180

VITA

Name: Jacob Nyffeler Smith

Address: Järvi-Labs

Dept. of Computer Science and Engineering

Texas A&M University

College Station, TX 77843-3112

Email Address: jacob.nyffeler.smith@gmail.com

Education: B.S., Mathematics, The University of Texas at Austin, 2001

B.A., Plan II, The University of Texas at Austin, 2001

This document was typeset in LATEX by Jacob Nyffeler Smith.

