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ABSTRACT 

 

The Umbrella File System: Storage Management  

Across Heterogeneous Devices. (May 2010) 

John Allen Garrison, B.S., University of Tennessee, Knoxville 

Chair of Advisory Committee: Dr. Narasimha Annapareddy 

 

With the advent of Flash based solid state devices (SSDs), the differences in 

physical devices used to store data in computers are becoming more and more 

pronounced.  Effectively mapping the differences in storage devices to the files, and 

applications using the devices, is the problem addressed in this dissertation. 

This dissertation presents the Umbrella File System (UmbrellaFS), a layered file 

system designed to effectively map file and device level differences, while maintaining a 

single coherent directory structure for users.  Particular files are directed to appropriate 

underlying file systems by intercepting system calls connecting the Virtual File System 

(VFS) to the underlying file systems.  Files are evaluated by a policy module that can 

examine both filenames and file metadata to make decisions about final placement.  

Files are transparently directed to and moved between appropriate file systems based on 

their characteristics.  A prototype of UmbrellaFS is implemented as a loadable kernel 

module in the 2.4 and 2.6 Linux kernels. 

In addition to providing the ability to direct files to file systems, UmbrellaFS 

enables different decisions at other layers of the storage stack.  In particular, alternate 
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page cache writeback methods are presented through the use of UmbrellaFS.  A multiple 

queue strategy based on file sequentiality and a sorting strategy are presented as 

alternatives to standard Linux cache writeback protocols.  These strategies are 

implemented in a 2.6 Linux kernel and show improvements in a variety of benchmarks 

and tests. 
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CHAPTER I 

 

INTRODUCTION 

 

Novel storage devices based on flash memory are becoming available with 

price/performance characteristics different from traditional magnetic disks.  Storage 

systems in the future will likely incorporate both flash-memory based devices and 

magnetic disks.  The unique characteristics of these different devices give cause to 

reexamine and potentially redesign the various layers of the storage stack.  While current 

storage systems exploit devices of different characteristics, some of the characteristics of 

flash drives such as limited write cycles warrant the revisiting of this problem. 

Two major types of Flash memory are in production.  They are referred to as 

―NOR‖ and ―NAND‖ Flash based on the way the transistors in the Flash are arranged to 

either resemble NOR or NAND gates.  Both use floating gate transistors where the 

charge on the gate determines a logical ―1‖ or ―0.‖  Typically NOR Flash memory is 

used more as a substitute for main memory and is byte addressable, while NAND flash 

is page addressable and is typically used in block-interface devices.  NAND flash is used 

in SSDs and all subsequent references to Flash memory in this dissertation are directed 

towards NAND flash. 

Within NAND Flash there are two additional approaches to storing data.  The 

first is a single level cell (SLC), where there is only one charge level on the floating gate. 

____________ 

This dissertation follows the style of ACM Transactions on Storage. 

 



2 

 

 

A newer approach is the multi level cell (MLC), where the amount of charge on the gate 

is used to indicate more than a binary state.  MLC Flash is obviously capable of much 

denser storage and is thus less expensive than SLC Flash.  SLC Flash is typically faster 

than its MLC counterparts.   

Modern Flash SSDs are designed to function as plug in alternatives to traditional 

magnetic devices with a block interface.  Even though the underlying mechanics are 

different, compatibility concerns force Flash SSDs to emulate the interface of traditional 

block devices.  However, there are some fundamental differences between SSDs and 

magnetic disks.  In a Flash SSD, it is not possible to write multiple times to the same 

area without first ―erasing‖ the data that is present.  In general, the write interface is 

emulated by using the erase and write functions.  These devices also have a limited 

number of times they can perform the write operation without degrading the storage 

medium such that that area of the device becomes unusable.  Writes to SSDs typically 

employ a copy on write strategy, writing the new data in a new location on the drive. A 

―flash translation layer‖ (FTL) in the physical device provides the conversion from block 

commands to their implementation on the Flash device.  This layer also provides the 

mapping translation from the block level to where data is actually stored on the Flash 

drive.  Some remapping is always involved in FTLs, so all actions, including reads, need 

to use the layer to arrive at the correct location.  There are a variety of FTL policies 

involving buffers, specified log blocks, and other strategies designed to improve 

performance. 
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Table I: Operational latency of flash SSDs 

Operation Access Time 

read ~25 µs (2 KB) 

write ~200 µs (2 KB) 

erase ~1.5 ms (128 KB) 

 

 

The various underlying flash operations, in particular read, write, and erase, take 

drastically different amounts of time to complete.  Example operation times from a 

Samsung flash device are included in Table 1 [Lee 2009].  These operations also operate 

on different amounts of data.  Reads and writes take place in units of a page, which 

varies in size depending on the device.  Erases operate on groups of pages called blocks.  

The erase operation which must precede an over write of data takes orders of magnitude 

more time than the write operation itself.  Read operations are typically faster than write 

operations.  In a traditional magnetic disk, sequential read performance is drastically 

better than random read performance.  Because of the lack of moving parts that causes 

such a penalty to magnetic disks, Flash SSDs performance for random reads is much 

closer to sequential reads.  Because of the order of magnitude latency difference between 

the underlying erase and write mechanics, as well as the limited number of erase cycles, 

FTLs are designed to minimize erases.  If a drive is forced to erase a block before it can 

write a new block, its write performance can suffer greatly compared to either its 

―normal‖ operation when it is not waiting on an erase or when compared to magnetic 
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devices.  Flash drives also typically have more uniform performance with respect to 

write size, where magnetic disks typically perform better with larger write sizes, as can 

be seen in Chapter V. 

Flash SSDs in general have been shown to have variable write performance with 

respect to sequentiality.  Random write performance tends to be quite poor, and when a 

workload mixes random writes with reads, overall performance can suffer quite 

significantly.  Additionally, some Flash SSDs have a block crossing delay that is 

incurred when subsequent writes cross certain block boundaries in either direction [Chen 

2009].  This penalty is similar to a seek penalty in magnetic disks, although clearly not 

caused by the arm moving to the appropriate location as in magnetic disks. 

As an example of the boundary crossing penalty, Figure 1 shows a stride test on a 

Transcend TS16GSSD25-S 16GB drive, although results are similar for the Memoright 

and Samsung drives used in later tests (data from [Dunn 2009]).  Blocks of 4KB of data 

were written at 32 KB offsets throughout the drive and the latency of each operation was 

collected.  Latency spikes are observed at 1 MB offset intervals when using various 

stride sizes, leading to the conclusion that some of the SSD drives suffer a boundary 

crossing penalty. Even when these boundary crossing penalties are not present, the 

writes require more attention in SSDs because of the reasons mentioned above. 



5 

 

 

 

Fig. 1. Boundary crossing penalty in SSDs. 

 

 

Like devices, applications also have remarkable diversity.  This diversity impacts 

performance and provides an opportunity for improvement of the storage system.  While 

some applications utilize primarily sequential storage accesses and thus would not 

benefit from caching, some other applications have much more locality in their access 

patterns and would benefit greatly from caching. Some files may be read-only while 

others may be frequently updated. 

Current file systems map files to devices based on the namespace organizations. 

Typically, a file system’s data is mapped to a fixed set of devices based on the way the 

namespace is mapped to the underlying devices. If a user wants to locate some of his 

files (say /usr/foo) on one device (a flash drive) while locating other files in /usr on 

another device, most current file systems do not provide a simple mechanism to allow 

this since all of the files under /usr are mapped to a fixed set of devices in the storage 
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system. This mapping is determined by the relation between the namespace and devices 

in the storage system. 

In general, current file systems do not provide applications above them a choice 

of where to locate files or which devices to employ. This choice is only available at the 

entire file system granularity and not at an individual file level.  Work presented in 

Chapter III proposes a solution to allow diversity of applications to be matched to the 

diversity of devices at an individual file level. The matching of application 

characteristics to device characteristics can be done by a system wide policy or based on 

the user’s preferences.  

As an example configuration that can benefit from matching device 

characteristics to the data and applications that use them, consider a system with three 

different types of storage, traditional magnetic storage devices, a smaller capacity flash 

based device, and another magnetic disk with hardware encryption support.  There are 

various file systems [Halcrow 2005; Hohmann 2007; Gough 2006] and even device level 

[Seagate 2007] encryption options available to users.  Consider a situation where some 

user files need to be encrypted on such a system.  If an encryption file system 

encompassing all the devices is employed, the hardware encryption support available at 

one of the devices is not utilized to the extent possible (or some files may be encrypted 

twice). Encrypting all the files may impose overheads that may be undesirable for 

multimedia files and other files that do not have major security requirements. If normal 

file systems are employed on all the drives and device-level encryption is relied upon, 

the user has to carefully place the sensitive files on this device to ensure their protection. 
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Directing files to the appropriate underlying storage device while allowing the 

files to be viewed in the same directory would be a boon for this system.  This would 

avoid the overhead of encrypting everything, as well as allowing the user to map files 

that best utilize the encrypting device for storing sensitive documents and the flash drive 

for storing read-only files (for example).  Keeping all of this in a unified directory 

structure can ease the user’s burden of maintaining the files on separate drives. 

It has been observed that current device level coding schemes utilized to protect 

bit errors on the drive surface may not guarantee 100% data protection as drive 

capacities get larger. While data files require 100% bit accuracy, multimedia files can 

tolerate some bit errors without suffering any significant loss of quality. It is possible 

that in the future drives with different levels of bit error protection may become 

available. Again, mapping this diversity in devices to the applications using the data 

could provide numerous benefits to the user. 

Additionally, benefits can be obtained by applying different policies at other 

levels of the storage stack than just the file system.  With respect to Flash SSDs, there 

are major differences in write performance and behavior compared to magnetic disks, 

the traditional end point of the storage stack.  A representation of the storage stack is 

shown in Figure 2.  An application’s write would traverse the various layers until 

ultimately arriving at the disk.  Chapter IV focuses on write destaging to the device and 

how policies might be redesigned to best accommodate the basic differences at the end 

point of the storage stack.  The differences in write and read performance, the relative 

importance of write performance, and the introduction of possible boundary crossing 
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penalties warrant revisiting the page cache management algorithms for writes when the 

underlying file system data may reside on an SSD.  In particular, the work from Chapter 

III is utilized to differentiate which pages should be treated by a particular page cache 

writeout algorithm.  Despite the particular application, the practice could be extrapolated 

to other areas of the storage stack. 

 

 

Fig. 2. Storage stack. 
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Much attention has been paid over the years to managing pages in a page cache. 

The focus of much of this work is in reducing the number of accesses of the storage 

device because of significant performance differences between DRAM and magnetic 

disk drives. Since applications typically issue synchronous read requests (where 

applications stall on the reads to complete) and the writes are completed asynchronously 

from the page cache to the storage device, the page cache management tends to focus on 

reads.   Relatively little attention has been paid to which pages are being written out.  

This is because dirty page eviction is seen to have relatively little effect on overall 

application performance since these writes are completed asynchronously to the 

application.  However, as memory access and CPU core speeds have increased, disk 

accesses have increasingly become the bottleneck [Jiang 2005].  While this has 

traditionally been thought of as a read throughput issue, in write heavy or mixed 

workloads, writes can quickly become a part of the problem.  

With respect to the contents of the page cache, there are a few competing 

principles regarding whether or not to write pages to disk.  Ideally, pages would be held 

in the cache as long as possible so that pages could be grouped together and sent to the 

disk in an optimal order. The more pages present that can be reordered, the better this 

can be done.  Also, if pages are in the cache longer, it is possible that the data might be 

overwritten, thus saving a write to the disk.  On the other hand, if the cache is devoted 

more toward write caching, the read performance would suffer.  Additionally, when a 

program writes to disk, it typically considers that data to be ―safe.‖  If data were held for 

a very long time in the cache, the user might think that their data had been saved 
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permanently, but a power outage could still wipe out their data because it has not yet 

made it to nonvolatile storage.  Clearly there needs to be some balance between caching 

a large amount of write data to improve performance, still having enough room to cache 

read requests, and sending data to the storage device at appropriate intervals so that the 

data is on a nonvolatile medium in a reasonable amount of time. 

These policies have been developed with the concept of the data ultimately 

residing on a magnetic disk.  Because of the significant differences in writes to Flash 

SSDs and magnetic disks, if Flash SSDs are to be the end point of the storage stack, 

additional effort should be directed to development and implementation of appropriate 

policies to reduce the impact of writes on SSD performance. In addition, reducing total 

writes to SSDs has important ramifications in improving the lifetime of the device.  

Opportunities like this and the others a user could conceive serve as motivation 

for UmbrellaFS.  With UmbrellaFS, users can select file systems that serve the particular 

characteristics of the data sets without compromising the user’s convenience of 

organizing files any way he or she sees fit.  Different files can be stored in separate file 

systems while being presented to the user in a single directory.  The user can deal with a 

variety of files without worrying about the particular file system where a file is stored.  

With the UmbrellaFS rules framework, users have the option of setting up the mapping 

from files to underlying storage in a manner that optimizes file usage. 

Chapter II presents related work.  Chapter III presents a new layered file system 

that is designed to address device level differences, UmbrellaFS.  Chapter IV presents 

modifications to the page cache writeback strategies.  Results of benchmark tests of 
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UmbrellaFS and the page cache modifications are presented in Chapter V, and Chapter 

VI concludes. 
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CHAPTER II 

RELATED WORK 

 

Device Differences 

The considerable difference between Flash based devices and magnetic disks 

directs the efforts of this research to explore methods to take advantage of these 

differences.  Various methods have been proposed to compensate for and exploit 

diversity in device characteristics.  A wide variety of these methods have been proposed 

to affect the device or device driver level. 

Device Level Approaches 

Methods that work at the device level present a single view of the device to the 

file system and do not expose the diversity of the device characteristics to the file 

systems and applications above the file system.  Two traditional approaches to device 

differences are to migrate data between devices with different characteristics and to use 

one device with different characteristics as a cache for another device. 

HP’s AutoRAID system is a device level approach to managing storage across 

RAID 1 and RAID 5 devices, and it is an example of data migration in response to 

device differences.  In AutoRAID ―hot‖ and ―cold‖ data are stored in the RAID 1 and 

RAID 5 arrays, respectively.  Blocks of data are automatically migrated between the two 

arrays as the characteristics of the blocks changes. 

Recent work [Wu 2009] has targeted migration between Flash and traditional 

magnetic devices.  Multiple devices are presented to the higher levels as a single device, 
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and a device driver migrates data between the devices based on a cost function and 

measurements over time.  This way the blocks of data that benefit from the 

characteristics of a Flash device are stored on a Flash device, and those that benefit from 

being stored on a magnetic disk are stored there. 

Intel’s Robson technology [Trainor 2006] has proposed using NAND Flash 

RAM in order to operate as a cache for traditional hard drive accesses.  By storing files 

in Flash RAM, the amount of time the system spends rotating disk arms on traditional 

hard drives can be dramatically reduced. 

Flash storage in particular has been receiving increased attention. Policies for 

wear leveling, block level management and uniformity improvement have been studied 

[Baek et al. 2007; Gal and Toledo 2005; Kim and Ahn 2008; Kim and Lee 2002; Lee et 

al. 2007; Chang 2007].   

File System Approaches 

In addition to lower level approaches to device diversity, a number of efforts 

have been directed toward file system approaches.  A number of these propose new file 

systems, and some others propose a layered approach similar to that taken by 

UmbrellaFS. 

Sun’s ZFS file system [Sun Microsystems 2007] allocates blocks flexibly across 

a pool of storage devices at the time of writing the file, rather than tying the file system 

to a device at the time of creating the file system. However, ZFS doesn’t provide the 

user the flexibility of allocating a file across available devices. 
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Conquest File System [Wang et al. 2006] is designed to span both persistent 

memory and magnetic disks. UmbrellaFS can provide similar functionality in terms of 

the placement of files based on size, but cannot easily place metadata on one drive and 

data on another due to metadata consistency and underlying file system issues. 

UmbrellaFS has numerous additional rule possibilities in addition to Conquest’s file-size 

threshold approach. 

Panasas’s storage allocation policy scales the striping granularity based on the 

file size [Panasas 2005].  Panasas does not have the same breadth of policy choices that 

are possible in a layered file system.  The Veritas File System [Symantec 2007] has 

policies which can direct files to particular underlying storage devices.  Unlike 

UmbrellaFS, the enforcement of these policies to move files between devices is not done 

on the fly as situations change, but must be directly triggered by an administrator.   

IBM’s General Parallel File System (GPFS) is a high-performance parallel storage 

solution.  GPFS provides users flexibility in striping policies for individual files.   

UmbrellaFS can provide the types of benefits from these file systems without 

necessitating a total switch to a proprietary file system.  UmbrellaFS can direct files to 

appropriate file systems mapped to the underlying device characteristics. 

Duke’s Active Names [Vahdat et al. 1999] framework is another system that can 

be leveraged in a way similar to UmbrellaFS.  In this case, however, to be used as a file 

system, the Active Names system would need to operate as its own file system.  In 

addition, the Active Names framework focuses exclusively on the namespace.  
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UmbrellaFS can make decisions based on both the namespace and other metadata such 

as file modification times, permissions, and the like. 

Unionfs [Wright et al. 2004] provides a similar unification of underlying file 

systems that UmbrellaFS does.  Unionfs does not have the ability to target particular 

files to particular underlying devices, it merely combines existing file systems and 

presents a unified directory structure.  An expansion on Unionfs, RAIF [Joukov et al. 

2007] enables policy driven striping of files across file systems.  In effect, RAIF uses 

different underlying file systems like a RAID array uses devices.  It allows a policy 

driven direction of files to the different types of striping across file systems, but RAIF 

does not use file metadata in making these decisions.  Decisions are based only on 

filenames, and policies are targeted to arrays of file systems, not individual file systems. 

Other Methods 

Brick based storage systems such as Self-* [Ganger et al. 2003] and FAB 

[Frølund et al. 2004] typically distribute file blocks randomly or based on a policy across 

the available storage bricks or nodes. However, this policy is typically not tailored to 

nature of the file or other characteristics of the file. The Google File System [Ghemawat 

et. Al 2003] randomly distributes the blocks of a file across a number of nodes. 

While Object Storage Devices (OSDs) [Project T10 2004] can potentially 

provide such flexibility, OSDs require extensive changes to storage systems, file systems 

and clients. High level hints have been shown to be valuable in improving I/O 

performance [Patterson et al. 1992]. 
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Policies have been employed in managing grid resources [Bharathi et al. 2005] 

and in enforcing security [Blaich et al. 2007]. 

OSD framework potentially allows storage systems to be tailored to specific 

characteristics of objects. However, the current OSD architecture or framework leaves 

the ―policy‖ of allocation open and we are not aware of any specific studies investigating 

the utility of different allocation policies in OSD systems. 

Packet interposing [Anderson et al. 2000] has been shown to provide benefits in 

scaling performance in a clustered file server. 

Page Cache 

Many algorithms have been proposed for managing page caches or storage 

caches, for example [Chen et al. 2005; Forney et al. 2002; Gill and Modha 2005].   

These efforts have largely focused on improving cache hit rates.  While both frequency 

information (LRU) and recency information (LRFU) [Lee et al. 2001] have been used in 

cache strategies, others have attempted to incorporate both recency and frequency.  

LRU-K [O’Neil et al. 1993], 2Q [Johnson and Shasha 1994], ARC [Megiddo and Modha 

2003] and others have attempted to balance between the recency and frequency 

components of page behavior with various levels of overhead and adaptability.  DULO 

[Jiang et al. 2005] examines temporal and spatial locality in making cache decisions.  

LIRS [Jiang and Zhang 2002] examines inter-reference recency instead of simply 

examining recency as the more commonly used LRU does. 

All of these efforts have targeted cache performance with a focus on what to 

keep in the cache and what to discard.  DULO in particular uses two separate sections to 
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try to increase sequentiality of accesses going to the disk.  In their work and their 

implementation, however, they focus on the pages that are clean.  In Linux, the order of 

pages on the various inactive and active queues does not affect the writes the system 

performs to the storage device.  The work in Chapter IV is similar in that it uses multiple 

queues and sorting of those queues, however the focus here is on write order instead of 

reads, and this makes the work presented here complementary to these other efforts. 

Efforts have been made to improve the power consumption of disks through 

different caching and prefetching policies.  Papathanasiou and Scott propose to increase 

burstiness to provide more power down opportunities for hard disks [Papathanasiou and 

Scott 2004].  Zhu et al. propose both an offline power-aware algorithm to provide 

improved lower bounds on energy consumption and an online power-aware algorithm 

based on the insights from their offline algorithm to save disk energy [Zhu et al. 2004].  

PB-LRU proposes a strategy to improve power consumption in multiple workloads with 

minimal parameter tuning [Zhu et al. 2004b].  These strategies are focused on traditional 

magnetic disks. 

Efforts have also been directed toward cache writes, and these efforts bear the 

most resemblance to the work presented in Chapter IV.  Some of these efforts have been 

directed toward buffers at disks themselves, and some are directed more at the caches 

within the operating system, but these approaches are all in general directed at 

controlling writes to improve performance. 

STOW [Gill et al. 2009] separates writes into sequential and random queues and 

adaptively sizes the two queues based on workloads in a write cache.  While this work 
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also divides workloads into sequential and random, it additionally sorts the queues and 

focuses on the page cache as opposed to a separate write cache in front of a storage 

array.  Additionally, by implementing policies in the page cache, it is possible to gain 

access to additional information for decisions that is not available in the write caches for 

STOW.  In a non-volatile write-specific cache considered in STOW, synchronous writes 

occur when the cache is full.  In a general page cache, dirty page eviction is not so 

flexible and is controlled by the need to move dirty pages to stable storage in a 

reasonable amount of time.  This leads to a need for solutions not only in the write 

caches of storage controllers closer to the disk, but higher in the page cache as studied 

here. Also, addressing writes at the page cache level can reduce the number of 

synchronous writes an application has to do, which is not possible at the storage 

controller level. 

AWOL [Batsakis et al. 2008] improves page cache performance with respect to 

writes through the use of ghost caching and combining the memory manager and the I/O 

scheduler.  This work has a similar goal of improving locality, although the separation of 

the page cache and the I/O scheduler is maintained.  In addition, this research considers 

SSDs.  This work differentiates between types of writes in that files written sequentially 

are treated differently than those written in nonsequential patterns.  AWOL adapts the 

high-low thresholds of dirty pages to control when the pages are offloaded to the storage 

device and to control the amount of memory allocated to write caching. The approach 

here has not modified the high-low thresholds and can be seen as somewhat 
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complementary to AWOL. Incorporating the ideas in AWOL into this work is left for 

future work. 

WOLF [Wang and Hu 2002] examines the write buffer of log-structured file 

systems and attempts to improve the write order going to log-structured file systems in 

order to increase performance.  While WOLF proposes a multiple queue system similar 

to the proposal in this dissertation of multiple queues in the page cache, their focus is 

solely on log-structured file systems.  This research targets caches in general, although it 

could also be applied to log-structured file systems.  

Log-structured file systems have been suggested as a possible solution for 

reducing the random write I/O problem. They are particularly well suited to SSDs with 

very efficient random read performance and poor random write performance. Log-

structured file systems may also benefit from changes such as the proposed sorting 

method and separation of the writes into separate queues [Wang and Hu 2002].  
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CHAPTER III 

UMBRELLAFS 

 

UmbrellaFS functions as a stackable file system located between the Virtual File 

System (VFS) [Kleiman 1986] and the file systems that hold data on the underlying 

devices.  File systems interact with both applications and the underlying storage systems, 

and  their location at the intersection of these two systems with diverse characteristics 

makes them uniquely suited to take advantage of both device and application 

characteristics.  While the file system does not have large amounts of information about 

the underlying device where it resides, the system’s administrator typically is aware of 

device characteristics and differences.  UmbrellaFS allows the device characteristics to 

be exposed at the granularity of a file system. Hence, matching application 

characteristics to device characteristics translates into placing files of different 

characteristics onto appropriate file systems.  UmbrellaFS provides a mechanism for 

files in a single user directory to be located appropriately on multiple file systems or 

devices through a user directed policy.  

UmbrellaFS can act to enable appropriate use of different underlying devices 

such as Flash SSDs, traditional magnetic drives, networked data storage, and others.  

Additionally, UmbrellaFS provides the opportunity to selectively apply policies at other 

layers in the storage stack for additional exploitation of the differences in physical 

devices. 
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Hourglass Model 

The Virtual File System (VFS) [Kleiman 1986] in relation to user’s namespace 

and underlying file systems and devices is shown in Figure 3.  The VFS maintains a one 

to one mapping between the namespace and the underlying file systems.  The VFS layer 

is at the waist of an hour-glass with potentially a large number of user directories above 

and potentially multiple file systems at the bottom. If one is in the directory ―/user1‖, the 

files ―/user1/file1‖ and ―/user1/file2‖ are not located on separate file systems.  This can 

be seen in Figure 3.  This one to one mapping between the directories in the namespace 

and underlying file systems ties the user’s perception of the system to the underlying 

device characteristics.  If this one to one mapping could be broken, such that one 

directory in the namespace could contain files from many underlying file systems, then 

this could enable exposure of device characteristics to individual files and allow new 

opportunities and options for the user. 

By inserting another layer into the kernel, below VFS and above the underlying 

file systems, it is possible to place files from multiple file systems in the same directory.  

This layer would look and behave like the underlying file systems to VFS, and look and 

behave like VFS to the underlying file systems.  When VFS receives a command, it 

would pass it into this new layer, which would then redirect the command to the 

appropriate underlying file system.  This method would allow both VFS and the 

underlying file system to continue to operate normally, and would not require any 

modification of those parts of the kernel. While VFS continues to provide the important 

function of demultiplexing among the many different underlying file system 
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implementations, the underlying layer, UmbrellaFS, provides the function of unifying 

the namespaces and demultiplexing the namespace operations among the different 

underlying file systems. 

 

 

Fig. 3. Hourglass model with traditional virtual file system. 

 

 

UmbrellaFS lies below VFS and interfaces between VFS and the underlying file 

systems.  UmbrellaFS provides a unified name space for all the underlying file systems 

while also allowing policy based placement of files onto those file systems.  The 

proposed approach with UmbrellaFS is shown in Figure 4. While VFS provides an 

hourglass model for file system implementations with a single interface, UmbrellaFS 
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provides a similar function for the namespace and individual users’ files, as seen in 

Figure 4. 

 

 

Fig. 4. Hourglass model with UmbrellaFS. 

 

 

The Virtual File System provides a common API for applications to interact with 

file systems.  This allows the file system’s actual implementation of various functions 

such as writing, reading, etc. to be hidden from the application.  For example, when an 

application accesses file /user1/file1 in Figure 3, VFS receives the system call and then 

calls the appropriate function for the underlying file system.  When the underlying 

function returns, VFS returns that value up to the application.  With UmbrellaFS, while 

the underlying mechanisms are slightly different, from the user’s perspective the file 
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access proceeds as normal.  UmbrellaFS appears as a single file system to VFS, and 

consequently to the user.  When the user accesses the file, VFS calls the appropriate 

UmbrellaFS call.  UmbrellaFS then translates the filename to the correct underlying file 

system and calls the appropriate function for that file system.  When the file system 

function returns, UmbrellaFS returns the value to VFS as if it were the base file system 

on which the file resides, and VFS returns to the application. 

In this manner, UmbrellaFS can leverage the disparity in device characteristics 

by mapping particular files to particular underlying file systems which appropriately 

exploit the device characteristics on which they reside.  Additionally, UmbrellaFS 

increases the opportunity for future file system development with respect to particular 

underlying devices.  Rather than requiring a full change of file systems, incremental 

development and installation of underlying file systems is permitted.  UmbrellaFS 

exposes the device characteristics to the user or system administrator at the level of 

native file systems. For example, a traditional file system might be employed on a 

magnetic disk drive, while a log based file system is employed on a flash drive in order 

to conserve energy and lengthen the drive lifetime [Mathur et al. 2006].  Based on user-

controlled policies, files can be mapped to the underlying device by mapping individual 

files (/user1/file1, /user1/file2… in Figure 4) to the native file systems (/FS1, /FS2… in 

Figure 4). 

As an example of UmbrellaFS’s utility, consider content specific storage.  If the 

types of files are known, they can be mapped to an underlying storage device that best 

meets their typical access patterns.  For example, UmbrellaFS can direct files to 
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underlying file systems based on the file suffix.  Multimedia files with extensions such 

as .jpg, .gif, and .bmp files could be stored in /images.  Text files such as .txt and .doc 

extensions could be stored in /text, and video files such as .avi files could be stored in 

/video.  The user is presented with a single directory structure with all of the files 

present.  For example, /user/dir1/foo.txt and /user/dir1/foo.jpg would be stored in 

/text/dir1/foo.txt and /images/dir1/foo.jpg respectively.  With files mapped in this 

manner, it would be possible to put text files on a file system with redundancy, while the 

various multimedia files could be stored on a system with wide striping for faster access, 

etc.  Figure 5 shows the user’s view of the namespace, as well as how the files are stored 

in the underlying storage. 

There are alternatives to the implementation of a new file system approach as 

described in this dissertation.  It is possible for users to attempt to exploit device and 

application level diversity manually.  A user can direct files to appropriate file systems 

on top of storage devices that best work with those files’ access patterns and the 

applications that use them.  This approach has a number of drawbacks, including a great 

deal of time and thought required by the user for uniform implementation. With the 

manual user-based approach, file locations are still tied to the underlying storage device, 

and large amounts of user intervention are required for nearly every operation. 
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Fig. 5. Example mapping of user namespace based on file contents. 

 

 

Additionally, it would be possible that rather than providing a combined 

namespace as UmbrellaFS does, one could rely on soft links to achieve a similar effect.  

The process could be automated, and files could be placed on appropriate underlying 

devices while links to the files are displayed to the user in a combined directory.  In 

addition to the lack of transparency in this method, it is likely that the overhead and 

work involved in maintaining soft links and an additional combined directory structure 

would meet or exceed that encountered by UmbrellaFS’s current implementation. 

UmbrellaFS is designed to provide flexibility in storage allocation. Some 

examples of how this flexibility can be exploited by the user are presented in Chapter V. 

Much of this flexibility is derived by breaking the one-to-one link from the user 
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namespace to the underlying storage devices. The flexibility is envisioned to be 

exploited through a policy module administered by the user or system administrator, the 

details of which are described below. 

System Design 

UmbrellaFS functions as a stackable file system [Zadok et al. 2006], residing 

below VFS and above the underlying file systems.  All user interactions with the file 

systems pass through UmbrellaFS and are directed to the appropriate underlying file 

system.  Some operations, such as open, remove, read, and write which operate on a 

single file are directed only to the underlying file system on which the file resides.  

Operations which list the contents of directories such as ls and du must be mapped to all 

the underlying file systems, and the results must be collated and passed back to the 

calling operation. 

It is possible to provide different functionality by treating the failures on the 

branches differently when operations such as ls and du are executed on multiple 

branches or file systems. In one implementation, any failure on any branch is treated as a 

failure of the entire operation (an OR operation on the failures). In a second 

implementation, data from successful branches can be passed up, suppressing the 

failures on some branches (an AND operation on the failures). While more general 

functions can be employed in reporting failures, these two cases are considered in 

Chapter V, in two separate applications of UmbrellaFS. 

In order to deal with the differences in directories (which may or may not reside 

on multiple underlying file systems) and files (which should only reside on a single 
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underlying file system), UmbrellaFS maintains additional data about each file.  This data 

includes values which indicate the branch where the file currently resides as well as the 

branches where a directory might exist. 

The key element of UmbrellaFS is the policy decision module.  When any file 

system operation is invoked by an application, the subsequent system call sends control 

to the UmbrellaFS.  UmbrellaFS then evaluates the file based on the rules provided by 

the user at file system mount time, and sends the command to the appropriate underlying 

file system.  UmbrellaFS stores these rules in UmbrellaFS’s super block.  Return values 

from the underlying file systems are likewise directed back to VFS, which then returns 

them to the application. 

The policy decision module is in many ways similar to a router in a network, 

directing traffic to the appropriate destination. Many of the policy matching rules (first 

match, longest name match etc.) resemble the order in which routing decisions are 

applied when multiple entries in a routing table match an incoming packet. In 

UmbrellaFS, the file is an analog of a packet and the destination file system is an analog 

of nexthop. While the current system uses the rules of first match and longest name 

match, other appropriate rules may be employed in other designs. 

An example of the system flow for a call acting on a single underlying file 

system is presented in Figure 6.  The operation leaves the VFS and enters the section of 

UmbrellaFS that emulates a lower level file system.  From this point, UmbrellaFS 

queries the policy module to determine to which particular underlying file system the 

operation should be directed.  The call then emulates the VFS and calls the lower level 
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file system call.  On return, the return value is passed back up from the underlying file 

system to the VFS as if UmbrellaFS itself had carried out the call. 

 

 
Fig. 6. Interaction of a file system call with the policy module. 

 

 

Figure 7 shows the system flow for a call that must operate on all the underlying 

file systems, such as ls.  In this case, the policy module is not needed.  Rather than being 

specifically routed to a particular file system, all the underlying file systems receive the 



30 

 

 

request and then that information is collated by UmbrellaFS before returning it to the 

VFS. 

 

 
Fig. 7. Operation flow of a call that operates on all the underlying file systems. 

 

 

The policy module employs rules or policies that determine the allocation of files 

on different devices. For example, a policy can state that any file larger than 100 kB 

should be directed to a file system (say /FSRAID) on a RAID5 [Patterson et al. 1988] 

device. A second policy can decide that Dave’s files be stored on a second device. These 

rules can be based on any attributes of the file, including namespace, size, access 
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privileges, time of creation, etc. UmbrellaFS directs file system operations to underlying 

file systems based on the different criteria specified in the policy module.  Both 

namespace rules as well as metadata rules based on inode values can be specified.  The 

rules are evaluated in a two pass system.  Metadata rules are evaluated in order, 

returning the first positive match to the list.  The namespace rules reside in the list of 

metadata rules, and are evaluated when the namespace rule is reached in the list.  The 

different namespace rules are evaluated based on length of match between the file in 

question and the rule, much like longest prefix matching in routing.  In this case 

however, the namespace rule with the longest overall match, not just the longest prefix is 

returned and used to determine which underlying file system to use.  Should there be 

additional metadata rules underneath the namespace rules and if there were no matches 

in the namespace rules, then once the namespace rules return the system continues to 

evaluate the rest of the rules.  Should there be no match whatsoever, the system directs 

the operation to a default file system. 

At the time of file creation, much of the metadata is either unavailable or liable to 

change shortly into a file’s lifetime.  Values such as create time can be handled by using 

the current time of the operation, but values such as file size can be more problematic.  

As a large file is being copied, it will initially be a small file.  If a rule is set up based on 

file size, this could result in moving a file between underlying file systems soon after 

creation.  In many cases this would be mitigated by the fact that the file that is moved 

will be less than the full file, however there is an impact that is examined in Chapter V. 
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Similarly, at file creation, a file would need to be writable, even though it would 

ultimately be a read-only file.  Putting read-only files on a particular file system could 

therefore involve an overhead of moving files across file systems after file permissions 

are changed.  These overheads can be minimized by employing policies on group and 

global permissions. Alternately, the mostly-read characteristics can be assessed by other 

characteristics such as file suffixes ending in .out .exe. While complex rule structures 

may be needed to adequately describe and define the desired behavior, UmbrellaFS 

makes these types of rule structures possible. 

Figure 8 shows an example system with one metadata and three filename policy 

rules. These rules are designed to represent the situation described in the introduction of 

a system with three different types of storage, traditional magnetic storage devices, a 

smaller capacity flash based device, and another magnetic disk with hardware encryption 

support.  The user, Dave, wants to map most of his personal files to the encrypted 

storage, read only files to the flash storage, and his video files and all other files to the 

magnetic storage. 
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Fig. 8. Sample UmbrellaFS rules. 

 

 

Rule 1 is based on access type and dictates that all read only files should be 

located on /fs2, the flash drive. For the purposes of this example, a process such as the 

previously described planned transition of file permissions is assumed.  Rule 2 is based 

on filenames and is elaborated in the second table. The filename rules state that all of 

user Dave’s files should be placed on the encrypted device, /fs3.  The exception is .avi 

files which should be placed preferably on /fse1 (the magnetic disk) first and then on 

/fs3.  Finally, all other files should be directed to /fs1. 

As can be seen from this example, a number of policies may apply to a given file. 

The specified rules are evaluated in order of specified priority (first rule 1, then rule 2, 

and then on to other rules if they are present). For example, if user Dave creates a read 

only .avi file in his home directory, it will be placed on /fs2 since rule 1 is applied before 

the filename rules are examined.  A decision tree or other appropriate data structure can 
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be used to reason about the effect of the policies on the storage of files on different 

devices. When evaluating the rules and determining which storage device should hold a 

file, it is possible that the characteristics that mapped a file to a particular device might 

change.  For example, a file size based rule might be in effect, and a file has grown (or 

reduced) to the point that the rule structure indicates the file should be on a different file 

system.  These situations are evaluated as they arise, and should a file reside in a file 

system that is different from the file system that the policy decision module decides it 

should reside in, that particular file is moved to the appropriate underlying file system.  

This evaluation is made primarily during file closing (with some exceptions noted 

below). This movement between native file systems (or underlying devices) may result 

in performance overheads, which are evaluated later. 

Such lazy enforcement of policies on file closing will not be useful with certain 

rules based on time of access. For example, if one desires a file to be stored on a slow 

device if it hasn’t been accessed in five days, one would need another mechanism to 

enforce this policy. A periodic policy enforcer may be needed in such cases.  This policy 

enforcer could simply traverse the directory structure, opening and closing each file.  

This would allow UmbrellaFS to make the appropriate choices for file relocation.  The 

overhead from this type of operation could be minimized by scheduling the policy 

enforcer to run during off-peak usage times.  There is no need for a specific program to 

move files in the underlying file systems, as this could lead to discrepancies between 

UmbrellaFS’s understanding of the underlying file systems and their actual state.  

UmbrellaFS depends on the lower level file systems remaining in the state in which it 
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left them.  Attempting to circumvent UmbrellaFS and accessing the lower level file 

system directly could result in UmbrellaFS not finding underlying files because it is 

directing operations to file systems that do not contain the files anymore.  In general, 

while UmbrellaFS can be circumvented by accessing the underlying file systems, this 

should always be avoided to prevent situations like that laid out above.   This risk can be 

diminished by mounting a ―dummy‖ directory over the underlying directory, effectively 

hiding the directory from the user. 

It is possible that the administrator specified policy may not be well suited for the 

underlying storage systems. For example, the administrator may specify that video files 

be stored on a 100GB device. If more than 100GB of video files need to be stored in the 

system, the policy needs to be flexible to use the space on remaining devices that may 

not be so well suited to video files. In order to allow for these exception cases, the policy 

can specify a set of choices for locating a given type of files. The policy module tries to 

place files in the specified preferred order of devices. Hence, in some exception cases, a 

file system operation such as a read may involve multiple underlying file systems. The 

impact of this overhead is examined in the experiments. 

In these exception cases the writes will be mapped to the next choice of system.  

If a file were to grow to the point that it could not fit, then the file would have to be 

moved to the secondary storage system before additional writes are done.  This writing is 

done on the fly as individual actions to the underlying file systems return errors. 

In addition to making backup locations like this possible, UmbrellaFS can also 

explicitly forbid them.  If, for example, the rule in question put sensitive files onto an 
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encrypted drive, one would not want these files to be written to another location if that 

drive became full.  Correct behavior in this case would be to return with an error 

indicating there is no more room on the device.  Whether a backup location is allowed 

for a given rule is up to the user. In the example above, rules 1 and 2.2 provided backup 

systems while rules 2.1 and 2.3 only allowed one choice in locating the files. 

Inferring beneficial policy rules automatically based on file access behavior in 

guiding policy decisions may be feasible. This is left to future work. The current 

framework will be able to accommodate such an approach through the employment of 

additional metadata characteristics or file tags. 

UmbrellaFS can be used to enable different strategies in other layers of the 

storage stack.  Other layers in the storage stack do not have the same information 

available to them that UmbrellaFS does.  Many of the data structures and values are 

linked together, however, enabling the selective application of other strategies in 

caching, device drivers, or other layers. 

As an example, UmbrellaFS is used to differentiate caching policies as described 

in Chapter IV.  Rather than applying different cache strategies to the entire system, the 

policies can be targeted specifically to particular devices that benefit from the different 

strategies.  In particular, by marking the pages as they are written to a particular branch 

within UmbrellaFS, those markings can be interpreted by the caching system to enable 

alternate methods in that layer.  
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Implementation 

UmbrellaFS is implemented as a loadable module for both the 2.6 and 2.4 Linux 

kernels.  Unionfs 1.0.14 [Wright et al. 2004] was leveraged in the development of 

UmbrellaFS.  Unionfs’s ability to combine underlying file systems and representing 

them in a single directory is an integral part of UmbrellaFS’s functionality; however 

modification of the underlying functions of Unionfs was required in order to accomplish 

the specific goals of UmbrellaFS.  There are no substantial differences in the 2.4 and 2.6 

implementations. 

The modifications were primarily located in the rule evaluation framework, and 

the methods for importing the rules into the system at module load time.  Some 

additional minor changes were made in many functions to convert from linear searches 

of directories to the particular file system targeting used by UmbrellaFS.  No kernel code 

external to UmbrellaFS was modified. 

Unionfs combines the contents of underlying file systems into one unified view 

for the user.  UmbrellaFS expands upon this idea by providing the ability to direct files 

to particular underlying file systems using either namespace rules or other metadata.  In 

addition, UmbrellaFS is designed to separate files into the appropriate underlying 

storage devices as they are written, instead of combining existing file systems into one.  

Much of Unionfs’s overhead is circumvented in UmbrellaFS because rather than 

searching through all of the possible directories linearly each time when accessing a file, 

UmbrellaFS uses the metadata to direct the operation to the appropriate file system.  The 
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inherent overhead from additional system calls is present in both UmbrellaFS and 

Unionfs. 
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CHAPTER IV 

PAGE CACHE WRITE TECHNIQUES 

 

General Approach 

The user and the application perceive the data to be stored as files on the system.  

From a practical perspective, however, a disk is a collection of blocks.  Both the data in 

files and those files’ metadata all reside on a block device.  From the device’s 

perspective, one block is much the same as the next.  The combination of file systems 

and device drivers make the translation from the files a user perceives to the blocks that 

store data on the disk.  Thus, when examining the storage system, there are a variety of 

points where some modifications might have dramatic results on the overall system 

performance.  From the time a user or application calls for a read or write, that call 

traverses the file system, the page cache, the device driver, and finally the disk itself.  In 

the case of Flash SSDs there is an additional layer in the FTL below the device driver 

and above the media. 

Writes are of particular interest for a variety of reasons.  Flash SSDs are greatly 

impacted by workload mix and have limited write cycles.  Additionally, most work has 

focused on read throughput of the storage system because writes are typically viewed as 

asynchronous.  In a mixed workload or write-heavy system, the writes can quickly 

become the system bottleneck. 

With respect to writes, the data will ultimately traverse all the various layers.  

Each layer attempts to make logical decisions about placement in order to achieve the 
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best overall results.  Each layer has a limited scope of data it can use to make decisions 

about when and what to write, and that scope is largely influenced by the layer(s) above 

it.  Thus the page cache is a layer that all writes to block devices transit and has an 

impact on the decisions that lower levels can make.  This is one of the reasons efforts are 

focused on the page cache and its algorithms for moving dirty pages to the disk.   

In this work, the focus is on determination of the order the data should be written 

out, without altering any policies on how long to retain the data in the system. This 

experimental constraint allows a fair comparison of the approaches with the currently 

employed policies in the system. This also insulates the work presented in this chapter 

from any changes to page cache replacement algorithms or similar aspects of caching 

that might be developed separately.  As the order of writes changes, the data is still 

bound by the existing page cache heuristics. 

In addition to not modifying the various heuristics currently employed by the 

system, UmbrellaFS limits changes to the page cache behavior to selective parts of the 

system.  This allowed the localization of the policies presented to prevent changing the 

cache behavior of the entire system.  Because of the pervasive nature of the page cache, 

it was important to ensure that the system was only being changed on the particular part 

of the system being tested.  UmbrellaFS enables the selective application of the 

particular cache write-back policies under testing such that these changes are only made 

on the test drive, leaving the rest of the system using traditional page cache behavior. 

Various flags are used to determine how pages in the page cache should be 

treated.  In addition to this method which is described later, UmbrellaFS can be used to 
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enable the use of these other flags.  While not a part of the base UmbrellaFS system 

described in Chapter III, only minor changes were required to expand UmbrellaFS to 

flag files on particular drives for different treatment.  Thus files that the user perceives to 

be in the same directory can be treated differently by the page cache. 

This ability to apply different policies is not limited to write-back treatment in 

the page cache or assigning files to a certain file system and thus underlying device.  

UmbrellaFS could conceivably be applied to control policies and affect behavior at 

various additional layers of the storage stack, such as device drivers.  Any situation 

where UmbrellaFS can affect the behavior of the system is an allowable location to 

define different policies to be applied to different files, file systems, and devices.  For 

example, the standard cache write-back policy could be used for most of the system, a 

different policy could be used for some files and a third policy could be used for an 

additional set of files. 

In this particular implementation, when a write goes to a branch that UmbrellaFS 

has been instructed to flag for application of a different page cache write-back policy, 

UmbrellaFS enables a flag in that file’s inode’s address_space structure.  This same flag 

is then checked during write-back, and decisions can be made based on its 

characteristics.  The flag is a simple binary indication that the file should be treated with 

the different policy.  Once a single file in a file system (as determined by having the 

same superblock) is indicated to be treated with the different policy, all the files on that 

file system will be treated with the changed policy.  This limitation is due to both the file 

system level nature of UmbrellaFS and the nature of page cache write-back, as the 
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writeback algorithm traverses a superblock’s dirty list to determine what files’ pages 

need to be written to disk. 

Write Access Characteristics 

In the page cache, the access pattern of data determines decisions such as which 

pages to remove from the cache, which pages to write to disk, etc.  Two broad 

classifications of access patterns are sequential access and random access. 

Sequential data access patterns arise in a variety of situations, and occur in both 

read and write requests.  Playing video or audio files is typically a very sequential read 

operation.  Writing to a log file is an example of a sequential write operation.  Both read 

and write sequential patterns share the property that they typically only visit a particular 

location in a file once.  If that particular page remains in the cache indefinitely, a truly 

sequential access pattern will not return to it, and it will not help improve page cache hit 

rates.  Sequential data can be thought of as having address locality.  That is, accesses are 

typically clustered based on the address.  Temporal locality is common in many types of 

files that are not sequential, as that data is more likely to be used again close to when it 

was previously used. 

For the purposes of this dissertation, data is considered random if it is not 

accessed in a sequential pattern.  Because the data is not accessed sequentially, it is more 

likely that an application may need to either write or read the data again.  Thus, keeping 

pages of data that are accessed non-sequentially in the cache can help increase the cache 

hit rates and the system speed. 
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In current systems, page caches consider the read accesses to a page in 

considering how to treat the page in the cache.  Pages that are read consistently and 

repeatedly are held longer in the cache, and pages that are read only a few times are 

moved more quickly out of the cache.  Many cache management algorithms have been 

proposed that consider the age, frequency and access patterns of data in making 

decisions about what to retain in the cache and what to evict [Jiang et al. 2005; Jiang and 

Zhang 2002; Johnson and Shasha 1994; Lee et al. 2001; Megiddo and Modha 2003].  

While these algorithms take into account whether or not a page is dirty, they do not 

consider how the page cache sends writes to the disk. 

These write decisions of a page cache have an impact on the performance of the 

overall system, both from their impact on what pages are in the cache (dirty pages 

cannot be kicked out of the cache until they are on disk) and in controlling the relative 

number of dirty pages in the cache.  If too many dirty pages are present, then 

applications will be forced to wait on their write calls, dramatically impacting 

application performance.  Thus, considering the access pattern of write calls makes sense 

when determining which pages to write in the page cache. 

Just as pages that are likely to be accessed again are kept in the page cache 

longer, it makes sense to defer writes to pages that are likely to be written again.  Pages 

that are unlikely to be written again serve no real positive purpose by remaining dirty in 

the cache, so it is beneficial to write these pages before writing pages that are more 

likely to be rewritten.  Currently page caches largely ignore this distinction and write 

pages in an order based on when the page was first written.  Categorizing these pages 
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based on their write patterns would help leverage the same ideas used in page cache 

eviction to improve rewriting and overall write performance of the system. For example, 

in Linux, when the 10% dirty threshold is reached, could performance be improved by 

taking the write characteristics of the page into account, rather than simply evicting the 

pages in the FIFO order as done currently? 

Particularly with the advent of Flash SSDs and their differences from magnetic 

disks with respect to writing, improving write performance has even more opportunity to 

improve overall system performance.  A reduction in overwrites to a Flash SSD has a 

more dramatic effect than the same reduction in overwriting on a magnetic disk.  The 

erase cycles in a Flash SSD are a large source of latency, and separating sequential and 

non-sequential data in the page cache write algorithm could help reduce erase cycles. 

Multiple Queues 

Separating the writes into multiple queues based on their access patterns provides 

the ability to discriminate between various pages that would be better to write 

immediately and those that would benefit the system by staying dirty in the page cache 

longer.  It is possible to separate the writes into multiple queues based on their write 

access patterns. Since there are two obvious distinctive write patterns, utilizing two 

queues, one for sequential and one for non-sequential access patterns, this strategy is 

explored in this dissertation.  While there are additional possible classifications of the 

access patterns, such as a looping sequential access pattern, detection of many of these 

other patterns requires more state to be maintained and more processing to be done to 

detect them.  
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The system described in this work utilizes two queues, one for sequentially 

written files and one for non-sequentially written files.  When writing is required, 

sequentially written files are written before files from the non-sequentially written 

queue. This way it might be possible to reduce repeated writes to the same files, as the 

random files will stay in the cache longer allowing more write hits on dirty cache pages, 

as well as clearing up space in the cache from the sequential accesses that are unlikely to 

be written again before eviction. 

In order to provide sequential detection, the number of times the pages within 

inodes are written is tracked.  If a page is written more times than a certain threshold, it 

is classified as non-sequential or random.  Otherwise it remains sequential.  Rather than 

sequential detection, this strategy accomplishes ―non-sequential detection,‖ although 

alternate implementations are certainly possible. 

Sorting 

Magnetic drives are well known to have seek times and rotational latency 

penalties.  Moving parts must get into the proper position in order to write to or read 

from the disk.  Numerous strategies have been employed to improve this performance 

such as elevator scans and request merging.  Because most of these concepts are 

implemented in the lower layers of the storage stack, decisions higher up can have an 

impact on the efficacy of these algorithms.  By improving the order that writes leave the 

page cache, the overall performance can be improved with the help of these lower level 

algorithms. 
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Many flash drives organize the data internally in terms of larger erase blocks 

(even though writes may be done at a smaller size) and such organizations make it more 

efficient to write data in larger sizes. These issues drive the motivation in particular for 

ordering the writes leaving the page cache. 

  Algorithms in the scheduler and device drivers sort the writes in order to 

optimize the writing process on the underlying media.  Despite this reordering, the initial 

order that is chosen in the page cache for writes clearly affects the ultimate order of 

writes on the device.  Hold times and buffer sizes are issues at the various lower levels, 

so those layers are limited in their effectiveness by the order of writes coming from the 

page cache. 

On the other hand, historically these write order decisions have been made at the 

lowest levels for very solid reasons.  The lower levels have much better information 

about the ultimate block addresses of data than higher up the stack.  The page cache does 

not know precisely where on the disk a page resides.  The scheduler and device driver 

can sort and reorder the pages more cheaply than the page cache because they are 

working with smaller sets. 

The page cache has some benefits that are not present in the lower levels.  It has 

access to all the cached data in the system, so it can make decisions collectively about 

more data than the lower levels are given at any given time.  Despite not having precise 

block information, the page cache can make inferences about the relative locations of 

pages and files on the disk.   
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 This research studies the effectiveness of sorting the blocks being written out at 

the page cache.  In particular, sorting the files that are slated to be written out before they 

are passed out of the page cache for writing is examined.  This gives the system the 

opportunity to reduce the frequency of SSD boundary crossings in Flash SSDs and thus 

improve overall performance.  While most sorting algorithms have time complexities of 

at least O(n log n), the write operation itself is so long that this overhead has not been 

seen to be significant in tests involving tens of thousands of files. 

Example Scenario 

As an example, assume there are 7 files, each of which has a single 4k block.  

These files can be described by their inode numbers, which for the sake of clarity are 

labeled with the integers from 1 to 7.  These files are written in the order of 1, 5, 3, 6, 7, 

4, 2.  Next the even numbered files are overwritten with new data multiple times.  In a 

normal Linux system, the writeout algorithms would traverse the superblock’s dirty list 

and send the blocks of these inodes to disk.  In the case of this example, let us assume 

that writing out 3 files will satisfy the present needs for writing. 

In a traditional Linux system, the write-back would proceed as shown in Figure 

9.  The files (1, 5, and 3) are written in a FIFO manner and the remaining inodes remain 

on the superblock’s dirty list.  In this case, that leaves inodes 6, 7, 4, and 2 as dirty. 
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Fig. 9.   Traditional Linux. 

 

 

In the multiple queues implementation, the inodes would first be put into sublists 

based on whether they have been detected as having multiple writes.  This is shown in 

Figure 10.  Inodes 6, 4, and 2 are placed on the nonsequential list and 1, 5, 3, and 7 are 

placed on the sequential list.  Inodes 1, 5, and 3 are written out in that order, and the 

remaining inodes are returned to the superblock’s dirty list. 

 

 
Fig. 10.   2 Queues. 

 

 

The sorting implementation is shown in Figure 11.  The inodes are placed on a 

temporary list in sorted order, and that list is traversed for write outs.  Thus inodes 1, 2, 

and 3 are written out and inodes 4, 5, 6 and 7 are returned to the dirty list. 
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Fig. 11.   Sorting. 

 

 

When both multiple queues and sorting are used, the method proceeds much as in 

the multiple queue implementation, but as the inodes are placed on a sublist based on 

their characteristics, they are placed in sorted order.  Thus the nonsequential list is 

ordered 2, 4, 6 and the sequential list is ordered 1, 3, 5, 7.  After writes are completed, 2, 

4, 6, and 7 are returned to the dirty list, as is shown in Figure 12. 

 

 

 
Fig. 12. Sorting and multiple queues. 
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Implementation 

This implementation of both the multiple queues and sorting techniques to 

improve system performance is based on a Linux platform.  As a kernel based solution, 

an actual working implementation of the modifications in the page cache has been 

created. 

Linux attempts to balance the amount of dirty data and length of time it remains 

in the cache using two thresholds and a timer.  One threshold is for background writes 

and one is for foreground writes, where a process is stopped until some of its writes 

complete.  These thresholds are based on how many dirty pages are in the page cache as 

a percentage of the total size of the cache.  The background writeout threshold was 

originally 10% in the Linux kernel i.e., when the number of dirty pages exceed 10% of 

the total page cache size, a background write process is triggered to offload the dirty 

pages to disk.  When the number of dirty pages reaches 40% of the cache threshold, 

processes would not be allowed to proceed until their writes completed.  When the 

background process keeps the dirty pages below the 40% threshold, the applications 

complete the writes to page cache and do not see a disk delay for writes. Due to the 

increase in memory size, where desktop computers now often have 2 to 4 gigabytes of 

RAM, those thresholds have been lowered to 5% and 10%, respectively. 

In addition to these thresholds, Linux policies establish a maximum time a page 

can remain dirty.  If a dirty page is still in the page cache after 30 seconds from its initial 

write, then background threads wake up and write the changed files to disk.  Both this as 

well as the background and foreground thresholds attempt to allow enough writes to 
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collect that the disk will be utilized well and to ensure that changes are written to disk in 

a relatively timely manner.  This set of policies minimizes the chance that a system 

failure will be catastrophic from a data loss standpoint. 

These rules and heuristics control the aggregate write behavior from page cache 

to the disk.  Relatively little effort has been directed towards which pages should be 

written when it is determined that something should be written out.  For example, the 

Linux kernel does not employ any particularly complicated strategy when making this 

decision.  Inodes and their data are written in the order that they reside on a doubly 

linked list.  When a file is written, it is marked dirty and placed on the list of dirty 

inodes.  When that data needs to go to disk, either because it has been 30 seconds, or the 

page cache is above one of the thresholds, inodes and their data are written out in a first-

in-first-out (FIFO) order.  Inodes are not repositioned if written multiple times, so the 

first file to be written will go to the disk driver first.  This implementation has low 

computational overhead, and since writes are typically asynchronous, the exact order 

that pages reach the disk is traditionally considered to be relatively unimportant to full 

system performance. 

In the page cache there is a doubly linked list of all the inodes of dirty files.  

However, it is not known precisely where these files reside on disk.  The underlying 

mapping is not easily accessible from the page cache.  However, the inode numbers for 

the various files are known.  Since most file systems use inode numbers in a relatively 

sequential manner, it is likely that that by ordering files according to their inode number, 

a more sequential access pattern to the disk might result.  This is a simple hueristic that 
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is seen to be quite effective in tests.  Aged file systems might be less likely to have 

particularly sequential use of inodes.  In situations such as this, it will be necessary to 

employ techniques based on the block addresses of the files.  This is left as future work. 

A selection sort algorithm is used to take the inodes off the superblock dirty list 

and then place them in a sequential order for write-out.  This algorithm is triggered every 

time a background writing thread wakes up to do write-out, or when an application is 

forced to devote its processor time to disk writes.  If inode write-out is prematurely 

terminated due to the write limit in a single pass, the remaining dirty inodes are returned 

to the superblock dirty list, although now in a sorted order.  The original FIFO order is 

neither maintained nor restored after the sorting operation.  If additional inodes are 

added to the dirty list, they are added in the traditional manner at the end of the list and 

then sorted once again when write-out begins. 

Although selection sort has a complexity of O(n
2
), in tests involving up to tens of 

thousands of separate files being affected by small writes significant overhead was not 

observed.  Some improvement might be achieved by using a faster O(n log n) sorting 

algorithm, although in practice writing to disk takes sufficient time that the initial sorting 

complexity is a small portion of the total time spent doing device I/O.  

To keep track of write characteristics, unused bits in the page flags were used to 

mark pages as they are written.  Two new page flags were declared, a written bit and a 

sticky bit.  This allows the counting of up to four writes.  When a page is written 

multiple times, the flags are modified in order to increase its counter.  Once the counter 

reaches a certain threshold, the file is considered to have repeated writes.  Heuristically it 
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was determined that after 4 total writes to the same page in a file that file should be 

marked for inclusion in the repeated writes queue.  A count of 4 writes to an individual 

page helped prevent too rapid escalation of a file to repeated write status, as well as 

fitting in two bits in the page structure in the cache. 

Files are marked via the address_space mapping in their inode.  The upper bits of 

the address_space mapping flags are not used, and thus can be overloaded for this 

implementation.  Additionally, the inode’s address_space is already available in the 

function that is doing the writing to individual pages.  Thus the flags indicating the 

number of times an inode is written can be checked and set, and then mark the inode’s 

address_space appropriately without the need to reference additional objects that are not 

already present in the function.  The uppermost bit of the address_space mapping flags is 

marked to indicate that the inode in question should be treated with the two list strategy.  

The next bit is marked after any page within an inode receives its 4th write.  In this 

initial implementation, the examination is done on a per page basis because it is units of 

pages that are in the page cache and are actually written to disk.  Because of the 

difficulties in accessing the particular pages when doing actual writes to disk, files are 

treated as sequential or random based on whether a page is written repeatedly or not.  

Although this may lead some files to be misclassified, the results (shown later) indicate 

that this policy improves performance on the whole. 

When the system decides to write dirty pages from the page cache to disk, the 

files are taken from the superblock dirty list and placed onto one of two lists depending 

on whether the file in question has been flagged as being sequential or non-sequential.  
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The sequential queue is then written first, and if the system still desires to write more 

pages, the non-sequential list is written to disk.  Any files that remain dirty are returned 

to the superblock dirty list.  When testing both the techniques of multiple queues and 

sorting simultaneously, files are placed into the two queues in a sorted order. That is, 

rather than keeping them in the order they were originally on the superblock dirty list, 

the files are placed into the two new lists using insertion sort. 
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CHAPTER V 

RESULTS 

 

UmbrellaFS Results 

Benchmark tests for UmbrellaFS were run on a Dell Optiplex GX620 with an 

Intel 3.2 GHz Pentium D processor and 2 GB of RAM.  Tests were run using a Red Hat 

Fedora Core 3 Linux 2.6.9 kernel as well as a Debian 2.4.27 kernel.  For tests the kernel 

only used 250 MB of RAM in order to prevent caching from skewing the results.  The 

system disk was a Samsung 7200 RPM 250 GB SATA hard drive, while the tests were 

run on Seagate Cheetah 10k.7 73 GB SCSI hard drives.  The SCSI hard drives were 

connected to the system via Adaptec 29320A SCSI controllers. Ext2 was used as the file 

system on all hard drives.  The lower level file systems were remounted between each 

test to clear file system caches. 

A variety of macrobenchmarks and microbenchmarks were chosen to explore the 

characteristics of UmbrellaFS.  In addition to the benchmarks examined in [Traeger et al. 

2008] such as Bonnie++ [Coker 2001], Postmark [Katcher 1997], and compilation of 

source code, particular microbenchmarks were developed in order to examine some of 

the potential issues in UmbrellaFS.  Each test was run at least 3 times, and the averages 

are provided.  Ninety-five % confidence intervals were calculated using the Student-t 

distribution, and these confidence intervals also appear on the graphs.  The half-widths 

of the intervals are less than 5% of the mean in most cases, and exceptions are noted in 

their particular sections. 
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UmbrellaFS’s overhead was evaluated in a number of different situations.  Raw 

device throughput, CPU and I/O intensive loads were examined.  All tests were 

performed with exclusively inode rules as well as exclusively filename rules.  When 

inode based rules were used, the worst case scenario (no match on the rules until the 

final rule) was used.  Similarly, with the filename rules, rules were chosen which had at 

least some match to the files used so that as much time as possible would be spent 

comparing various string matches. 

Basic overhead was examined when UmbrellaFS was mounted over a single 

underlying file system.  Additionally, overhead was examined when UmbrellaFS resided 

over multiple underlying file systems, both when data was confined to a single branch, 

and when data was distributed between branches.  The multiple branch results are not 

included, but do not differ significantly from the results shown. 

Bonnie++ 

Bonnie++ is a benchmark which tests sequential accesses to a single file, or 

multiple files if the working size is larger than 1 GB.  A working size of 2 GB was used 

for Bonnie++, so Bonnie wrote two 1 GB files.  The results of the Bonnie++ benchmark 

are shown in Figure 13. 
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Fig. 13.   (a) Throughput in Bonnie++ benchmark for sequential reads.   (b) Throughput 

in Bonnie++ benchmark for sequential writes. 

 

 

As can be seen in Figures 13(a) and 13(b), UmbrellaFS imposes no discernable 

overhead in large sequential reads and writes.  The read benchmark in particular was 

rather noisy, as can be seen from the confidence intervals.  The half widths of the 

intervals in the read test are all less than 10% of the mean, but the means themselves are 

often within the confidence intervals of other points in the graph.  The confidence 

intervals for the write overhead are several orders of magnitude smaller, and the means 
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are very close to the base ext2 case.  From all of this one can infer that there is not a 

large overhead associated with large reads and writes. 

OpenSSH 

Compiling OpenSSH [OpenBSD 2007] is a CPU-intensive benchmark [Wright et 

al. 2004].  A vanilla copy of the OpenSSH 4.7p1 source code was used for these tests.  

The benchmark itself consists of a typical compilation and installation of OpenSSH, first 

by running configuration tests, compiling the OpenSSH 4.7p1 code, and finally 

installing OpenSSH.   This is the typical series of configure, make, and make install to 

compile and install a program.  This test involves numerous reads, writes, and other 

system operations, and helps expose UmbrellaFS’s potential impact on typical users.  

The benchmark was timed, and the results are shown in the amount of time spent in user 

mode, kernel mode, and wait time, which typically corresponds to I/O, although wait 

time could also be impacted by many other factors in the system. 

 

 
Fig. 14.   OpenSSH overhead with inode based rules.  
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Fig. 15.   OpenSSH overhead with filename based rules. 

 

 

Figures 14 and 15 show the overhead of the OpenSSH benchmark for inode and 

filename based rules.  The confidence intervals shown are for overall execution time.  In 

general, the half widths of the confidence intervals were within 1% of the mean, for 

overall, system, and user times.  Wait time had a very large confidence interval. Given 

the relatively small amount of wait time, this did not have a large effect on the overall 

execution. 

With both inode and file based rules, the predominant overhead is in the kernel 

execution time, as is to be expected.  UmbrellaFS requires an extra system call for every 

file system operation, since instead of accessing the file systems directly, VFS accesses 

an UmbrellaFS function.  The average kernel execution time in the inode rule test was 

actually lower for 32 rules than for a single rule, and in the filename rules the overhead 

was less than 1% higher than the single rule case, indicating good scaling properties for 

the number of rules. 
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Postmark 

Postmark is an I/O intensive benchmark designed to simulate the operation of an 

e-mail server.   In the Postmark tests, Postmark version 1.5 was used to create 12,500 

files between 8 kB and 64 kB in 200 subdirectories and then performed 25,000 

transactions.  The block size was 512 bytes, with the default operation ratios and 

unbuffered I/O. 

Figure 16 shows the results of the Postmark tests.  Both types of rules showed an 

overhead on a straight Ext2 partition, typically less than 1% but at no time more than 

3%. 

 

 
Fig. 16.   Postmark Overhead. 

 

 

In the Postmark evaluations, UmbrellaFS showed a consistent overhead over the 

vanilla Ext2 results.  Since Postmark is a benchmark that spends almost all of its time 

reading and writing to random files, this is not surprising.  That both CPU intensive and 

random I/O intensive benchmarks show less than 3% overhead across the board for 
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UmbrellaFS indicates that in most user applications, the overhead of simply installing 

UmbrellaFS will not be prohibitively high. 

Overflow 

Because the Postmark benchmark had the highest overhead with UmbrellaFS, 

Postmark was also used to determine the overhead when one file system fills up and 

another is used in a backup capacity.  A single inode-based rule and two branches were 

used.  One file system was filled with data, while the other was empty at the beginning 

of the test.  The rule indicated that writes should go to the full file system first, and then 

the empty file system.  Figure 17 shows the results, compared with vanilla Ext2 and a 

single inode-based rule on one file system.  The overflow system had an execution time 

very slightly lower than the single rule test, although given the confidence intervals it is 

not an unreasonable value.  The overflow situation showed 2.6% overhead over vanilla 

Ext2. 

As can be seen from Figure 17, simply being forced to write to another drive 

when the first drive is full imposes no meaningful overhead beyond that imposed by 

UmbrellaFS in general.  In this situation, there was no need to copy files across file 

systems, since the primary file system began the test full.  The overhead of being forced 

to copy files is evaluated later. 
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Fig. 17.   Postmark overhead with full file system. 

 

 

Rewriting Overhead 

Situations may arise where a file is moved back and forth between two branches 

on separate drives.  While careful application of rules can reduce the risk of this 

thrashing, it is still conceivable that the properties of a file will hover near the boundary 

between two rules, requiring multiple rewrites of a file as the characteristics change.  In 

order to examine this situation, a micro benchmark was used which took a set of 35,000 

files, appended to each file, and then truncated the file by the same amount, and finally 

appended again to the file in order to keep it at the larger size.  This was repeated 3 

times, with the middle set of append, truncate, append taking the file across a rule 

boundary.  The system was set so that files larger than 8 kB were on one file system, and 

those smaller were on a different file system.  Initially files were 6.5 kB in size, and all 

appends and truncates were 1 kB in size.  The results of appends and truncates which 

moved the file size between 7.5 kB and 8.5 kB are shown in Figure 18.  The appends and 
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truncates when not on a rule boundary resulted in overhead in line with that experienced 

in previous benchmarks, and those results are not shown. 

 

 
Fig. 18. File size oscillation between 7.5 and 8.5 kB. 

 

 

When a 7.5 kB file was appended with 1 kB of additional data and there was a 

rule indicating that files larger than 8 kB should be stored on one drive and smaller than 

8 kB should be stored on another drive, significant overhead was seen.  This is expected, 

since in a typical append of this size, only an append is done.  To move the file, a new 

file must be created on the other drive, and the full 8.5 kB must be written, rather than 

just the 1 kB append.  The original file must also be deleted.  Likewise, on a truncate the 

file is moved back to the original file system. Appends showed an overhead of 32% on 

ext2 and 31% over UmbrellaFS without the file movement.  Truncates showed an 

overhead of 49% and 48% respectively.  The severity of these overheads demonstrates 

the importance of careful rule selection. It is noted that rules based on thresholds could 

be susceptible to this overhead if the workload causes the files to go back and forth 
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across the thresholds, and hysteresis of some sort is being considered in order to reduce 

this type of thrashing. 

Example UmbrellaFS Scenarios 

This section demonstrates the potential utility of UmbrellaFS in a number of 

example scenarios. The first example consists of a system with diverse devices. The 

second example demonstrates a system where different native file systems are employed 

below UmbrellaFS. The third example considers different failure semantics and shows 

the possibility of a Coda [Kistler and Satyanarayanan 1992] like disconnected operation. 

Diverse Devices 

In the first example scenario, consider a system consisting of a Flash drive and a 

RAID array. Samsung’s 32 GB Flash drive (model MCBOE32G8APR-0XA) and 5 of 

the Seagate Cheetah 10k.7 drives organized as a 4+P software RAID5 array were 

employed. The characteristics of these two devices are shown below in Figures 19(a) 

and 19(b). 

The Flash drive has superior read performance at request sizes up to 2 MB and 

better write performance at smaller write sizes up to 64 kB. The RAID array has higher 

read and write performance at larger request sizes. It is noted that the performance gap 

of writes between the flash drive and the RAID arrays is significant (up to a factor of 4) 

at larger file sizes. 

 

 



65 

 

 

 

 
Fig. 19.   (a) RAID 5 and flash SSD write performance.   (b)  RAID 5 and flash SSD 

read performance. 

 

 

In order to mitigate the impact of limited number of write cycles of flash drives 

and the write performance gap at large file sizes, it was decided to allocate read-only 

files and executable files on the flash drive while placing the remaining files on the 

RAID array. Postmark was modified to emulate this situation.  Two file sets were 

created.  One file set was only read, while the other file set was both read and written to.  

The policy made this decision based on filenames in this example; however in a real 

system the file permissions could just as easily be used.  File sizes in this simulation 
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were between 8 kB and 1 MB.  The performance of such a policy on the example system 

is shown in Figure 20. 

 

 
Fig. 20. Diverse devices policy rule example. 

 

 

The results of this policy are compared against the policy of randomly assigning 

files across the two types of devices, as well as placing all the files on either the flash 

drive or the RAID array. The policy took 44% less time than a random distribution, and 

51% and 26% less time than flash and RAID 5, respectively.  The results show that by 

keeping writes on the RAID 5 array and heavily utilizing the Flash device for reads, the 

overall performance is improved.  In the random distribution example, the large writes to 

the slower flash device impacted performance. In this example, the flash drive did not 

fill up, which could have forced overflow to the RAID array or vice-versa.  Even had 

this occurred, however, because there would not be a need to move the files, the system 

would not exhibit the overhead seen in the ―Rewriting Overhead‖ section of Chapter III, 

but rather the performance would have reverted to the RAID 5 curves in Figures 19(a) 
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and 19(b).  Performance improvements are dependent on many factors, viz., the relative 

performance of the devices and the relative loads on the different devices, localities of 

loads and other factors and that performance gains from policy decisions may not be 

universal [Shenoy et al. 1998]. 

More importantly, the policy of allocating read-only and executable files to flash 

drive through a system level policy improves the lifetime of the flash drive since writes 

are incurred only once when the files are initially written to the flash drive. Second, if 

the user or administrator deems that small files can also be effectively placed on flash 

drives (because of RAID array’s small-write cost), it is easy to modify or augment the 

system policy to make this change. 

Diverse File Systems 

Another example scenario was set up similar to the previous situation.  In this 

case, the read only file set consisted of 50,000 small files, with sizes ranging from 1 kB 

to 5 kB, rather than the large files represented in the previous example.  The read/write 

file set still consisted of files between 8 kB and 1 MB.  The performance of this situation 

was examined in terms of the time to create the files as well as the time to run 

transactions on them (reads in the case of the 50,000 small files, reads, appends, 

creations, and deletions for the large files).  The small files were placed on the Flash 

drive as before, but this time the file system on the Flash drive was Ext2 for one set of 

runs and NILFS [Yoshiji et al. 2008], a Linux log-structured file system, for another.  

The other set of runs simply placed all the files on the RAID 5 system.  The results of 

the test are shown in Figure 21. 
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Fig. 21.   Diverse file systems policy rule example. 

 

 

As can be seen from the results, the Flash device performs poorly with respect to 

file creation with numerous small files when it uses the Ext2 file system.  When using 

NILFS, however, the Flash device took 79% less time to create the files than the RAID 5 

array, and over 96% less time than the same Flash device using Ext2.  Transactions took 

11% less time with the policy based storage and NILFS on the Flash device and 40% 

less time than the same policy-based storage with Ext2 on the Flash device.  These 

results, particularly in combination with the previous policy-based storage results clearly 

demonstrate how different workloads need different policies.  In particular, these results 

demonstrate that different file systems can provide a drastic difference to results for 

different workloads.  As this example shows, UmbrellaFS makes matching particular file 

systems to devices and workloads possible within a single namespace. 

 

 

 



69 

 

 

Encryption 

In order to examine a situation with multiple types of file systems, consider the 

example of a system with 3 types of storage devices, a magnetic disk, a magnetic disk 

with encryption, and a flash drive. 

Difficulties were encountered obtaining Linux drivers for full disk encryption 

drives such as the Seagate Momentus 5400 FDE.2.  So rather than relying on a hardware 

encryption solution, EncFS [Gough 2006], an open source encrypted file system that 

makes use of the FUSE [Szeredi 2007] library to run in user space, was used in a 

software-based emulation.  The blowfish algorithm was used to encrypt files with a 160 

bit key.  While this does not function exactly as a hardware-based encrypting drive 

would, the overhead from encryption is present, as well as demonstrating the 

functionality of UmbrellaFS working across multiple types of underlying file systems. 

The same modified Postmark benchmark as the previous example was used in 

this situation.  Three drives were used, two of which were the Seagate Cheetah drives, as 

well as the Samsung Flash drive.  The numbers in this example and the previous one are 

not intended to be directly compared. 

Figure 22 shows the results from a policy where only the 10% files placed on the 

―encrypted‖ drive were encrypted compared to a policy where the files are distributed 

the same way between the different drives, but all three file systems were encrypted.  As 

is to be expected, when only a portion of the files encounter the overhead of encryption 

and decryption, the benchmark takes much less time to complete than when all files need 

to be encrypted before being stored and decrypted before being read.  This example 
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demonstrates how appropriate use of rules can reduce the burden of particular file 

placement on underlying drives on the user.  It also shows the ability of UmbrellaFS to 

function across multiple different underlying file systems. 

 

 
Fig. 22.   Encryption example. 

 

 

Disconnected Operation 

CMU’s Coda system achieves disconnected operation in a networked storage 

situation by caching recently used files on the local machine.  When the machine is 

disconnected, operation can continue on those local files, and then when reconnected, 

the copies on the network are updated to match the locally cached copies.  With 

appropriate use of rules, UmbrellaFS can achieve a somewhat similar type of operation. 

In this situation, assume that the user has a local machine and has mounted an 

NFS partition as well.  A drive on the local machine and the NFS partition can be used to 

achieve disconnected operation.  By setting up a rule based on access time, all files 

which are accessed today can be moved from the NFS partition to the local machine. 
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If the NFS server should become unavailable, either due to a network outage, or 

simply because the user’s machine has been disconnected from the network (in the case 

of say, a laptop that the user is taking home for the day), then operations that attempt to 

access the directory that UmbrellaFS is maintaining will return an error.  If rather than 

an OR based evaluation of errors (where any error in any of the underlying branches 

returns up an error to the user), an AND based evaluation is utilized, it is possible to hide 

this error from the user and take appropriate action to return the available information.  

The choice of between OR and AND based evaluation of errors can be made when the 

module is loaded, the same way the rules themselves can be specified. 

When an error of this type is encountered, a feature of Unionfs is used.  That 

feature is the ability to add and remove underlying branches on the fly.  By calling an 

appropriate ioctl, the branch that returned the error from UmbrellaFS cab be removed so 

that future actions will not attempt to access that branch.  This functions in the same 

manner as in Unionfs, although in addition to the work that is normally done, the rules 

must be updated.  If not, then an access that would normally go to the (now 

disconnected) device would cause problems such as accessing indices that are not 

present, etc.  So when a branch is removed, the rules in the system are analyzed, and if 

any rule’s primary file system that it directs to should become unavailable, that rule is 

flagged as inactive.  Inactive rules are then simply skipped by the rule evaluation 

mechanism.  When evaluating the placement of a file, if no rule applies to a file because 

of a rule deactivation, then just as if there is no rule in the system that applies to that file,  

the file is placed on a default file system. 
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When the NFS partition is reconnected the same Unionfs feature is used to add 

branches on the fly.  Again the rules must be evaluated, and if an inactive rule’s primary 

branch has returned, that rule is reactivated so that it again directs files to the newly 

returned drive.  In this situation, however, there are files that have been moved to the 

local machine and need to be migrated back to the network storage.  In order to 

accomplish this, a background program is utilized.  Since the evaluation of a file and its 

correctness of location is done on open and close, files cannot move back to the 

networked storage without assistance.  The background program simply opens and 

closes files, so that the evaluation can take place.  Upon closing, the most recent access 

time is evaluated, and if the file has not been accessed recently, then it is moved back to 

the network storage device.  Since the program does not actually read the file, the file’s 

access time is unaffected and can be properly examined. 

By using these elements of the UmbrellaFS system, disconnected operation 

similar to that provided by Coda can be achieved, without requiring a fully new file 

system.  The examples presented in this paper are not intended to be comprehensive, but 

rather an indication of the types of things that can be achieved with an UmbrellaFS type 

system. 

Page Cache Evaluation 

All the benchmark tests for the sorting and multiple queues implementations 

were run on a Dell Optiplex GX620 with an Intel 3.2 GHz Pentium D processor and 2 

GB of RAM.  Tests were run using a Red Hat Fedora Core 9 Linux 2.6.24.  In these tests 

the full RAM was used to appropriately evaluate caching effects.  The system disk was a 
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Samsung 7200 RPM 250 GB SATA hard drive, while the tests were run on Seagate 

Cheetah 10k.7 73 GB SCSI hard drives, a Samsung 32 GB Flash SSD (model 

MCBOE32G8APR-0XA), and a 32 GB Memoright MR25.2-032S.  The Samsung drive 

is a MLC based device and the Memoright drive is a SLC based device.  The test hard 

drives were connected to the system via Adaptec 29320A SCSI controllers. The 

Samsung and Memoright drives each used adapter devices in order to connect via the 

SCSI bus.  Ext2 was used as the file system on all hard drives.  The file systems were 

remounted between each test to clear file system caches. 

A variety of benchmarks were used to test both the sorting and multiple queues 

approaches to page cache writing.  IOzone [IOzone 2006], dbench [Dbench 2008], 

compilation of the Linux kernel [Linux Kernel 2008], and Postmark were all used to test 

the system under a variety of situations. Each benchmark was run 5 times and the 95% 

confidence intervals are shown.  

IOzone is a file system benchmark tool with quite a variety of options and 

settings.  IOzone’s throughput mode was used with 16 processes.  The IOzone 

benchmark was modified to incorporate a Zipf distribution of write accesses to model 

some locality. In the experiments, a number of processes accessing files with this Zipf 

distribution were used to model access locality and some processes accessing files 

sequentially to represent a mixed workload.  The tests were run with 2, 4, and 8 zipfian 

writers while the remaining 14, 12, and 8 processes performed sequential operations. 

Dbench is a benchmark that is designed to emulate the file system load of the 

netbench benchmark without the requisite networked system set up.  It produces the IO 
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calls that the smdb server in Samba would call when given a netbench run.  It runs for a 

supplied amount of time and during that time attempts to access the file system as fast as 

possible using its preconfigured load.  Dbench as a benchmark reports application 

throughput, that being the amount of reads and writes the application completes during 

its run time.  Dbench was run for 300 seconds emulating 100 clients accessing the web 

server.  All the files that were generated were placed onto the test hard drives, and in 

addition to remounting between each run all of dbench’s files were removed before the 

remount. 

In order to test a CPU bound load that still had a large amount of I/O, 

compilation of the Linux kernel was used.  The gcc version that ships with Fedora Core 

9 (4.3.0) compiled the Linux kernel source code in the Fedora Core 9 kernel source rpm, 

kernel-2.6.25-14.fc9.src.rpm.  The config file for the kernel was taken directly from the 

default config file generated for the test system. 

Postmark is an I/O intensive benchmark designed to simulate the operation of an 

e-mail server.   In the Postmark tests, Postmark version 1.5 created 12,500 files between 

8 kB and 64 kB in 200 subdirectories and then performed 25,000 transactions.  The 

block size was 4 kilobytes, with the default operation ratios and unbuffered I/O. 

In addition to the raw results, a number of different aspects of the data were 

examined and it was found that different benchmarks improved for different reasons and 

due to different aspects of the changes made in the system.  Among the elements that 

were examined were the amount of data actually written to the disk, the average size of 

sequential writes to the disk, and the number of writes within 1 MB boundaries in 100 
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ms.  The first two are fairly self explanatory.  The last is designed to examine the 

boundary crossing effect that Flash drives exhibit.  The values were chosen because 1 

MB is the usual boundary to suffer a penalty and 100 ms is a reasonable amount of time 

for the scheduler to use in its calculations. 

IOzone 

The results for IOzone benchmark are shown in Figures 23, 24, and 25. For each 

device (Magnetic, Samsung and Memoright), three figures are included corresponding to 

the three workloads of (2 Zipf writers + 14 sequential), (4 Zipf writers + 12 sequential) 

and (8 Zipf writers + 8 sequential) for a total of 3x3 = 9 experiments. In each 

experiment, the performance of the different schemes is normalized to the unmodified 

base system. Hence, completion times below 1 show performance improvements.  

 

  

 
Fig. 23.   IOzone magnetic completion times. 
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Fig. 24.  IOzone Samsung completion times. 

 

 

   
 

 
Fig. 25.   IOzone Memoright completion times. 
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When using the 2 Queue algorithm with 8 zipfian writers the IOzone test showed 

run times of 89%, 57%, and 66% for the magnetic, Samsung, and Memoright drives 

respectively.  The only run to show an increase of run time was the sorting algorithm on 

the magnetic drive with 2 Zipfian writers, although even this case was only an increase 

of .3%.  In general, as the workload had a larger portion of zipfian writers, both sorting 

and the 2 Queue algorithm performed better.  As threads which are doing a uniform mix 

of reads and writes are replaced with writers, improvements to the writing strategy in the 

cache had  a more pronounced effect. 

IOzone saw the most improvement among the benchmarks examined.  When 

examining this benchmark’s writes within a 1 MB boundary in 100 ms, an obvious 

pattern occurs.  All three modifications, 2 queues, sorting, and 2 queues with sorting 

shift the writes such that additional writes occur within 1 MB boundaries.  The results 

for the Memoright 8 zipf writers case is shown in Figure 26.  Similar, although less 

dramatic results are seen for 4 and 2 zipf writers.  The situations with less than 16 writes 

in a 1 MB boundary are dramatically reduced while increasing the times that more than 

16 writes are performed in 100 ms.  This shifting reduces the boundary crossing penalty 

and thus improves performance. 
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Fig. 26.   Number of writes within 1 MB boundary in 100 ms on Memoright drive. 

 

 

Dbench 

Results for the dbench benchmark are shown in Figure 27. For each device 

(Magnetic, Samsung and Memoright), the application throughput is shown in a separate 

graph.  In each experiment, the performance of the different schemes is normalized to 

the unmodified base system. Hence, throughput above 1 shows performance 

improvement. 

The dbench tests show uniform improvement with the modified systems.  The 

sorting algorithm provides the best results in this test, with improvements of 

approximately 19% more throughput for the magnetic drive, 13% more throughput for 

the Samsung SSD, and almost 33% more throughput for the Memoright SSD.  The 

results are shown in Figure 27.  The 2 Queue algorithm showed the least improvement 

while the Sorting and 2 Queue algorithms combined show improvement in between each 

algorithm alone. 
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Fig. 27.   Dbench throughput. 

 

 

As can be seen from the results with dbench, both the multiple queues and the 

sorting algorithms provide improved performance compared to the standard Linux write 

behavior.  We infer that this improvement comes from improvements in the cache hit 

ratios due to information about the amount of data written to disk. Results are shown for 

the Memoright drive, as it had the best performance improvement and best shows the 

relevant issues. 

As can be seen in Figure 28, the disk is written with approximately the same 

amount of data, regardless of the write policy.  The read numbers were similarly 

unchanged, although due to the size of the test, most of the data set stayed in the cache 

and few reads went to disk.  Because the application saw higher throughput while the 

disk saw the same amount of activity in the same amount of time (300 seconds), less 
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write data was sent to the disks per transaction by the benchmark in the modified 

systems. This improvement can be attributed to the modifications to the page cache 

write-out policies. 

 

 
Fig. 28.  Data written to disk on Memoright drive during dbench test.  

 

 

This improvement can be further examined with the data in Figures 29 and 30.  

Figure 29 shows shows the number of writes to particular blocks on the Memoright drive 

with the original policies in place, and Figure 30 shows the sorting policy.  Blocks that 

received a single write are omitted for clarity of the graphs.  The sorting policy clusters 

the writes more effectively than the traditional policy, leading to more locality on the 

disk.  Additionally, by sorting the writes, some blocks are rewritten many more times 

than other blocks.  Particularly due to the threshold policy in Linux, if writes can be 

moved from multiple blocks and focused on a single block, throughput can increase.  

This is because the multiple blocks are overwritten in the cache repeatedly and do not 
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increase the dirty ratio of the system.  Thus these applications do not pause to wait for 

writes to finish and can do additional work.  Due to the nature of the dbench benchmark, 

that work is often operations other than writes and so an application can do many 

operations without waiting on disk I/O as it would be forced to if the system contained 

more dirty pages. 

 

 
Fig. 29   Writes to particular block addresses during dbench test. 
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Fig. 30.   Writes to particular block addresses during dbench test when writes are sorted. 

 

 

   
 

 
Fig. 31.   Linux kernel compilation. 
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Kernel Compilation 

The results from the compilation benchmark are shown in Figure 31.  

Completion time of the different schemes is normalized to the unmodified base system, 

so completion times below 1 show performance improvement.  Each device is graphed 

separately. 

Compilation shows very little change depending on the page cache algorithm on 

the magnetic and Samsung drives, although there is a slight improvement.  On the 

Memoright drive, compilation time takes between 82% and 84% of the time when run 

without any modification to the page cache.  Noticeable in all of these tests is an increase 

in the time spent in kernel mode, although that is accompanied by less time spent 

waiting.  This generally indicates that the algorithms are improving throughput, but most 

of the time these improvements are somewhat offset by the additional time spent sorting, 

marking flags, etc. Since this benchmark is processing intensive, the gains achieved 

through write-out policy modifications are being offset by the extra processing time 

needed to implement these policies. 
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Fig. 32.   Average write length for compilation test. 

 

 

The memoright drive showed significant improvement with the compilation 

benchmark.  In the case of this benchmark, the average size of sequential writes was also 

examined.  While, in general, roughly the same percentage of writes were sequential 

when arriving at the disk, the average size of these sequential writes increased by over 

26%, as can be seen in Figure 32.  The increased length of sequential writes in particular 

on the compilation benchmark helped to improve the performance. 

Postmark 

The results of the Postmark benchmark are shown in Figure 33.  One graph is 

shown for each device used in the tests.  Completion time of the benchmark is 

normalized to the unmodified base system, so total times less than 1 show performance 

improvement. 
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Fig. 33.   Postmark completion times. 

 

Postmark shows mixed results in the tests.  While showing some improvement on 

the magnetic disk, postmark showed relatively less improvement with the Samsung SSD, 

and showed worse performance with the Memoright SSD.  As this test focuses on many 

small files, it is understandable that the overhead might increase relative to the benefit 

provided by the systems.  Particularly, the multiple queues concept is ineffective, as all 

writes are appends, so a single block will not receive the number of writes necessary to 

transition from sequential to repeated access. 

Different Policies on Different Drives 

UmbrellaFS can be configured to allow different cache writeback policies on 

different underlying file systems and devices.  For the tests which provide examples for 

this ability, IOzone was used again.  The 8 sequential and 8 zipf writers case was used 

with 4 of each type of writer mapped to a drive.  Two instances of IOzone were run 
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simultaneously, each spawning 8 processes which were split 4 and 4 between sequential 

and zipf.  The total time was calculated by adding the times from each IOzone instance 

together. 

 

 
Fig. 34.   IOzone completion time when spread across two magnetic drives. 

 

 

Figure 34 shows the results of a test where IOzone was run as described above on 

two magnetic Seagate Cheetah drives.  The results show that a 2 Queue implementation 

on both devices results in 91% of the runtime of the traditional policy, while using 2 

Queue on one drive and the traditional policy on the other results in 93% runtime.  These 

numbers are comparable to the 89% runtime difference shown when all 16 processes 

operated on a single magnetic disk (Figure 23), and show that partial application of the 

policies presented results in conveying a portion of the benefits of the different policies, 

as would be expected by only applying the policies to a portion of the disks. 
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Fig. 35.   IOzone completion time spread across one magnetic and one flash drive. 

 

 

Figure 35 shows the results from running the experiment with one Seagate 

Cheetah drive and the Samsung Flash drive.  In this experiment, in addition to running 

the test with 2 Queue on both drives and the original policy on two drives, both sets of 2 

Queue on one drive and original policy on the other drive were run.  Thus the ―2Q – 

Samsung‖ bar indicates the situation with 2 Queue on the Samsung flash drive and the 

original policy on the magnetic drive, and ―2Q – Magnetic‖ indicates 2 Queue on the 

magnetic disk and the original policy on the Samsung flash drive.  The results show 

benchmark completion times of 91% for 2 Queue on only the Samsung device and  92% 

for both of the other modified policies.  Since the Samsung device shows the most 

benefit in the original IOzone tests, it is unsurprising that implementing 2 Queue on the 

Samsung device alone is approximately as effective implementing it on both drives.  The 
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benefit is similar to that obtained by only implementing it on the magnetic disk, which is 

a bit surprising. 

NILFS 

In addition to running the various tests on a traditional ext2 file system, tests 

were run with NILFS as the file system.  NILFS is a log-structured file system under 

active development for Linux.  The results for IOzone are shown in Figures 36, 37, and 

38.  The results for dbench, Postmark, and compilation showed similar results. 

 

 

   
 

 
Fig. 36. IOzone magnetic completion times on NILFS. 
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Fig. 37. IOzone Samsung completion times on NILFS. 

 

 

   
 

 
Fig. 38. IOzone Memoright completion times on NILFS. 

 

 



90 

 

 

The results for tests on NILFS do not show significant improvement, and in most 

cases show a slight penalty to using the various sorting and 2 Queue strategies.  The tests 

do not show improvement when combined with NILFS in large part because NILFS 

converts these benchmarks into sequential write operations.  With an unmodified page 

cache, the benchmarks simply run as fast as the device can write.  Reordering the writes 

coming out of the page cache cannot improve on the device’s maximum write speed, and 

the reordering imposes some overhead.  Thus the system runs at approximately the same 

speed with only the addition of a bit of overhead in the page cache. 

Trace Results 

 The dbench benchmark was modified slightly in order to allow the playing of 

trace files.  The trace files were obtained from the Storage Networking Industry 

Association (SNIA) trace repository [SNIA 2009], and the result shown is from an NFS 

trace of email and workloads from Harvard’s division of engineering and applied 

sciences.  Because the NFS traces are in a format that dbench cannot run, they had to be 

converted before the actual test.  Additional work was also done to prepare the system to 

run the trace.  During the test run, the trace was replayed at the maximum speed the 

system could handle rather than the original speed of the trace. 

 In order to convert the trace into a file that dbench could run, the trace was 

parsed to convert the commands in the trace to the format that dbench uses.  In cases 

where dbench does not have an analogous function to the NFS trace, that operation was 

simply omitted.  In addition to this conversion of the trace, it is necessary to prepare the 

file system to run the trace.  Because the NFS traces did not start when the file system 
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was created, the traces would call operations on files that were not created in the trace.  

For example, a file might be read in the trace, but never created or any data written to it.  

If this operation were to be attempted without a file present, the read would fail.  Since 

the read did not fail in the trace itself, this would represent a departure from the trace to 

the replay.  Issues such as this were resolved by tracking files throughout the trace.  At 

the end of the conversion to dbench’s format, and additional dbench formatted file was 

created.  This file was designed to create a file system image that would be able to 

successfully handle the operations in the trace.  Files and directories were created in a 

manner consistent with the first appearance of a file or directory in the trace.  Files were 

filled with data to satisfy the initial size of the file detected in the trace.  While this does 

not necessarily create a file system image that is a duplicate of that in the original trace, 

it does create a file system image that is close enough to run the trace itself.   

 Figure 39 shows the results of the replaying of one hour of the traces obtained 

from SNIA.  In each case the completion time is only shown for the trace run, not the 

initialization necessary to prepare the system.  The results of the trace replaying show 

overhead imposed by all but the combination of sorting and 2 Queue on the Samsung 

drive.  That result is very close to the unmodified system and well within the 95% 

confidence interval for the unmodified page cache. 

 While this representation of trace replay does not necessarily exactly mimic the 

situation from the traces themselves, it does indicate that the proposed changes to the 

page cache system are not necessarily beneficial in all situations. 
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Fig. 39. Dbench trace completion times. 

 

 The dbench trace runs performance with respect to sorting is not unexpected, 

considering the nature of how the file system is set up.  Because the initialization process 

is done based on the order of the files being referenced, the files are effectively 

referenced in a sorted order on disk.  Therefore the sorting itself results in very little 

change in the order of writes with an increase of overhead. 

 With respect to the 2 Queue strategy, the nature of the trace is an issue.  The 2 

Queue strategy relies upon the workload having both sequential and non-sequential 

operations.  In the traces from SNIA, over 90% of the files are typically written 

sequentially.  Writes to individual pages are also classified as sequential by the 

algorithms over 90% of the time.  With less than 10% of the files classified as non-

sequential, the 2 Queue strategy does not have enough difference in write patterns to 

work with to generate a benefit. 
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Optimality 

 The proposed cache strategies were evaluated with respect to optimal 

possibilities in order to ascertain the value of improvement provided.  Due to the nature 

of the benchmarks, the trace results were the only ones that could be evaluated for 

optimality.  The other benchmarks lack elements such as future knowledge that are 

necessary to evaluate the results from an optimal standpoint. 

 For the purposes of this section, optimality is examined from a number of angles.  

In the first, a clairvoyant algorithm was used to determine cache eviction policies.  This 

is the traditional ―optimal‖ caching strategy, and in this situation writes were not 

performed until a dirty page was selected to be evicted from the page cache.  In addition 

to an unconstrained optimal algorithm, efforts were made to simulate optimization with 

respect to amount of data written to disk.   

For the data write minimizing simulation, a moving 30 second window was used 

to emulate the 30 second rule.  Files were held in the cache until the 30 second 

maximum to provide the most opportunity to have repeated writes to the page cache and 

save writes to disk.  Using constraints such as the 30 second rule provided a better 

understanding of what the best possible situation could be in a live system with 

reasonable constraints.  In addition, the write minimizing did not require future 

knowledge as the optimal replacement algorithm does. 

All simulations assumed a 2 GB cache.  Results for both simulations are 

evaluated from the standpoint of boundary crossings and total data written to disk, since 
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evaluation based on completion time would depend on the particulars of the underlying 

storage device. 

Boundary Crossings 

 Figure 40 shows the number of boundary crossings for a variety of policies, 

including the ―optimal‖ strategy and measured results from the previous trace runs.  The 

results from the total write minimizing strategy are not included for the sake of clarity.  

The write minimizing strategy that is not shown in this graph did not take into account 

efforts to minimize boundary crossing, and lead to a dramatic increase in boundary 

crossings that made representation with optimal, the original, and Sort + 2 Queue 

strategies difficult. 

 

 
Fig. 40. Boundary crossings. 
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 From Figure 40 we see that the optimal strategy reduces the boundary crossing 

penalties dramatically.  The values for the original page cache writeback strategy and the 

combined sorting and 2 Queue strategies are measured from block level tracing of the 

trace replay.  These show that the strategies presented make improvements in the total 

number of boundary crossings.  Obtaining results comparable to the optimal replacement 

strategy would be difficult, given elements such as future knowledge that that strategy 

uses in its decision making.  In addition, the optimal replacement strategy does not 

consider real system limitations such as the 30 second constraint on length a page can 

remain dirty.  It does consider the size of the cache, however. 

Amount of Writes 

 Figure 41 shows the amount of data written for the optimal replacement 

algorithm, the write optimized (and 30 second rule constrained) algorithm, and measured 

results from trace replay on the Samsung drive.  These results show that there is 

relatively little room for improvement with respect to total writes when the 30 second 

rule is still used.  Without the 30 second rule, a dramatic reduction is possible, as seen by 

the results for the optimal replacement algorithm.  The modified strategies presented in 

this dissertation do not dramatically affect the total number of writes, as is demonstrated 

by the measured results from the Samsung drive. 
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Fig. 41. Total amount of data written. 
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CHAPTER VI 

CONCLUSION 

 

Conclusion 

 The Umbrella File System provides myriad opportunities for system level 

improvement with respect to storage solutions.  UmbrellaFS provides opportunities to 

exploit device level differences, such as those presented by the advent of Flash SSDs, 

without requiring particular action by end users.  The prototype implementation of 

UmbrellaFS on a 2.6 Linux kernel presented in this dissertation adds little overhead to 

most file system operations.  In addition, the prototype has shown the ability of 

UmbrellaFS to work in a live system consisting of both Flash SSDs and RAID arrays 

and to work with the selective encryption of files.  In addition to these examples, 

UmbrellaFS has provided the ability to apply different cache writeback policies in the 

page cache. 

Changing the write out policy of the page cache can achieve significant 

improvements in a variety of workloads that have mixed random and sequential access 

characteristics.  Both using multiple queues to distinguish between various different 

types of access patterns and sorting the writes leaving the page cache provided 

improvements in performance through improvements in increased sequentiality of 

writes, and through reducing boundary crossing penalties in SSDs.  These improvements 

were found to be effective in improving performance of both traditional magnetic disks 

and Flash SSDs. 
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While clearly not a panacea for page cache writing, the techniques show 

improvements of over 40% in some circumstances, and they do not negatively impact 

the system in most situations.  Most importantly, the use of UmbrellaFS to target the 

techniques to particular file systems while not affecting other parts of the system 

presents an opportunity to tailor not only applications and file systems to appropriate 

devices, but to tailor particular page cache techniques to file systems and devices.  This 

represents a new dynamic that has the potential to provide new capabilities and better 

performance in storage systems. 

Future Work 

Providing hysteresis to the UmbrellaFS system could help to minimize the 

negative effects of oscillation.  The ability to include file system based rules, such as 

rules concerning the current available space in file systems or other aspects that are not 

necessarily present in the file metadata, would provide additional ways to control file 

placement. Inferring beneficial policy rules from file access behavior in guiding the 

policy decisions is another area where UmbrellaFS could be expanded. 

In addition to enabling the selective application of cache writeback policies, 

UmbrellaFS could be expanded to provide selective operations at additional layers of the 

storage stack.  Areas such as the device drivers and the Virtual File System will be 

explored to determine where the additional abilities of UmbrellaFS might be able to 

influence decisions and in what manner that influence might provide the best results. 

A more efficient sorting algorithm will be incorporated in the future.  By using a 

sorting algorithm that operates in O(n log n) time as opposed to the current O(n
2
) 
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selection sort the overhead can be reduced particularly in cases with a very large number 

of small files in the system. 

Mixed workloads of reads and writes are particularly difficult for Flash drives, 

and further efforts will be devoted to improving performance in these cases.  Additional 

classification mechanisms and categories provide opportunities for improved 

performance.  

Efforts will be made to adapt write thresholds in a manner similar to AWOL 

without combining page cache the page cache into other separate elements of the kernel.  

In particular, it would be preferable to do this without combining the memory manager 

and the I/O scheduler, and this will be a focus of future efforts. 

Finally, known sequential detection and mechanisms such as balancing recency 

and frequency information in decision making will be incorporated into the page cache 

writeback mechanisms. 
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