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ABSTRACT 

 

Prediction of Asphalt Mixture Compactability from Mixture, Asphalt, and Aggregate 

Properties. (May 2010) 

Andrew James Muras, B.S., Texas A&M University 

Co-Chairs of Advisory Committee:  Dr. Eyad Masad  

    Dr. Amy Martin 

 

 The underlying purpose of any pavement is to provide a safe, smooth and reliable 

surface for the intended users.  In the case of hot mix asphalt (HMA) pavements, this 

includes producing a surface that is resistant to the principal HMA distress types: 

permanent deformation (or rutting) and fatigue damage (or cracking).  To protect better 

against these distress types, there have recently been changes in HMA mixture design 

practice.  These changes have had the positive effect of producing more damage resistant 

mixtures but have also had the effect of producing mixtures that require more 

compaction effort to obtain required densities.  It is important to understand what 

properties of an HMA mixture contribute to their compactability.  This study presents 

analysis of the correlation between HMA mixture properties and laboratory compaction 

parameters for the purpose of predicting compactability. 

Mixture property data were measured for a variety of mixtures; these mixtures 

were compacted in the laboratory and compaction parameters were collected.  A 

statistical analysis was implemented to correlate the mixture data to the compaction data 

for the purpose of predicting compactability.  The resulting model performs well at 
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predicting compactability for mixtures that are similar to the ones used to make the 

model, and it reveals some mixture properties that influence compaction.  The analysis 

showed that the binder content in an HMA mixture and the slope of the aggregate 

gradation curve are important in determining the compactability of a mixture. 
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CHAPTER I 

INTRODUCTION 

 

 Since the start of use of hot mix asphalt (HMA) as a pavement material in the 

early 1800s, the practice of roadway design has changed much.  There have been 

numerous methodologies used for HMA mixture design.  Each design method was 

intended to provide better results in terms of resistance to the common forms of 

pavement damage and longer life span.  The earlier methods for determining appropriate 

proportions of asphalt and aggregate were based highly on trial and error and personal 

experience.  As time went on, these methods were replaced by empirically based 

guidelines for establishing appropriate mixture volumetrics.  These guidelines were 

intended to assist the engineer in developing mixtures that were resistant to both forms 

of load induced damage: fatigue damage (cracking) and permanent deformation 

(rutting). 

In the 1990s, engineers began to better realize the impact of aggregate size and 

gradation characteristics on the performance of a mixture.  It was determined that 

aggregates that were angular and rough had better rutting performance than round and 

smooth aggregates.  This relationship has been demonstrated for both coarse and fine 

aggregates (Huang 2009, and Bennert 2006). 

Recent changes in HMA mixture design practices were successful in helping to  

 
This thesis follows the style and format of Journal of Materials in Civil Engineering 

(ASCE). 
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produce pavements that are resistant to the common distress types but have had the 

unintended effect of creating some mixtures that are difficult to compact to required 

densities in the field.  This compaction difficulty can lead to pavement performance 

problems if the required densities are not achieved.  There is not yet a reliable method 

for predicting if a mixture will experience field compaction difficulty.  The following 

sections will describe the background on the topic studied in this thesis, the main 

problem, and the research tasks.  

 

BACKGROUND 

 

There have been few studies on methods for predicting mixture compactability.  

A recent study has focused on relating laboratory measured characteristics of Hot Mix 

Asphalt (HMA) to field compactability (Leiva 2008).  The study indicated a significant 

correlation between some laboratory and mixture properties and field compaction effort. 

Other work on the subject has dealt with more specific topics.  One paper 

investigated how well different laboratory compactors simulated field compaction (Khan 

1998).  Others dealt with how specific mixture properties like fine aggregate angularity 

(FAA) and temperature affected laboratory compaction (Stakston 2002 and Lee 2008).  

These studies found that mixtures with higher FAA required greater compactive effort, 

and mixtures compacted at lower temperatures resulted in greater air void contents. 

In every study relating to HMA compaction, there must be some measure to 

quantify laboratory compaction or the compactability of mixtures.  Often this can be 
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done using simple measures like the air void content after a set number of gyrations in a 

compactor; sometimes more complicated indexes are used.  Frequently the number of 

gyrations required to achieve a specific density or the maximum density is used. 

Delgadillo (2008) used the percent theoretical maximum specific gravity (%Gmm) 

at the first gyration, the design number of gyrations, and the maximum number of 

gyrations to measure compaction.  Stakston (2002) used three similar %Gmm values to 

quantify compaction but also used two compaction indexes, which are the compaction 

densification index (CDI) and compaction force index (CFI).  The (CDI) is calculated by 

integrating the area under the densification curve from the first gyration to 92%Gmm.  

The (CFI) is calcualated by integrating the area under the resistive work curve measured 

using a gyratory load plate assembly. 

In the study by Leiva(2008), the compaction parameters used were density at the 

first gyration, compaction slope, number of gyrations to achieve 92% theoretical 

maximum specific gravity (Gmm), compaction energy index (CEI), and the number of 

gyrations to reach the locking point.  Here, the compaction slope is the slope of a line 

from the beginning of compaction to the end, the CEI is the area under a compaction 

curve from the eighth gyration to a certain density, and the locking point is the first 

gyration where no increase in density is measured.  That study found that CEI, N at 92% 

Gmm, compaction slope, and locking point were good measures of laboratory 

compactability.  
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PROBLEM STATEMENT 

 

 While there is not a great deal of evidence that HMA mixture compaction issues 

have become a serious problem in the asphalt industry, there is a desire to estimate the 

ability to compact a mixture prior to the start of pavement construction.  The purpose of 

this study is to develop a correlation between HMA mixture properties and compaction 

parameters for the purpose of predicting compatibility in the laboratory.  This correlation 

could be useful to determine the level of compaction effort that is needed in the field in 

order to achieve the desired densities.  In addition, it can be used to determine the 

possible effects of manipulating mixture properties to facilitate compaction. 

In order to produce this correlation, many different mixtures and mixture types 

were prepared.  For each mixture, certain properties describing the asphalt binder, 

gradation, and aggregates were measured.  Hot mix asphalt (HMA) specimens were 

compacted for each mixture, and compaction parameters for each specimen were 

recorded.  A correlation was found between the mixture properties and the compaction 

parameters. 

 

 

RESEARCH TASKS 

This section will outline and summarize the research tasks taken in t his study.  

These tasks are as follows.  

 

 Conduct literature review on asphalt compaction. 
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 Collect data of HMA mixture characteristics and compaction. 

 Carry out statistical analysis of the relationship between mixture characteristics 

and compaction data using Number of Factors, Neural Net, and Stepwise 

Regression methods. 
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CHAPTER II 

EXPERIMENTAL DESIGN AND RESULTS 

 

 This chapter describes the HMA mixtures used for the study, the mixture 

properties that were measured, and how these properties were measured or calculated. 

The first phase of this project involved the collection, compaction, and testing of many 

different HMA mixtures.  The laboratory compaction and testing was performed at the 

McNew Materials Testing Laboratory at Texas Transportation Institute (TTI).  The 

different HMA mixture types included in the study were crack attenuating mixtures 

(CAM), dense graded mixtures (B, C, and D), Stone Matrix Asphalt (SMA), and Porous 

Friction Course (PFC).  These are all Texas Department of Transportation (TxDOT) 

mixture design types (TxDOT 2008).  These mixture types differ mainly in their 

gradations, maximum aggregate size, and also in the amount of asphalt binder typically 

used.  CAMs are characterized by including fine gradations and large asphalt contents.  

They are used primarily as an interlayer between an existing pavement and a surface 

layer.  Dense graded mixtures are produced with continuously graded aggregate.  

Among dense graded mixtures, mixture type B has the largest maximum aggregate size, 

followed by mixture type C and then mixture type D.  SMAs are gap-graded, meaning 

they contain large amounts of coarse and fine aggregate but very little intermediate 

aggregate.  They are typified by stone-on-stone contact and often contain fibers or 

modified binders.  PFC mixtures are open-graded, meaning they are produced with 

mainly uniform-sized aggregate.  They are known for producing less road noise than 
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other mixtures and for their ability to drain water from the pavement surface.  The test 

mixture pool was intended to include several examples of each mixture type to ensure a 

diverse set.  Table 1 shows the number of mixtures of each type that were used. 

 

Table 1 Types and Number of Mixtures Used in This Study 

Mixture Type Number of Mixture 

B 2 

C 6 

D 3 

CAM 7 

SMA 3 

PFC 1 

 

The following mixture characteristics and properties of mixture constituents were 

measured: 

 

 binder content, 

 binder viscosity, 

 gradation parameter λ, k, 

 aggregate angularity, 

 aggregate texture, 

 aggregate sphericity, 
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BINDER CONTENT AND VISCOSITY 

 

Binder content is the percent mass of asphalt binder per total mass of the mixture.  

This value generally can range from as low as 4% to as high as 9% depending on the 

aggregate and mixture type.  The binder viscosity is the resistance to flow of the asphalt 

binder.  The rotational viscosity of the binder was measured at the mixture compaction 

temperature using a Brookfield Rotational Viscometer (AASHTO T316).  In this test, a 

small container of asphalt binder is heated to the compaction temperature.  A small steel 

cylinder is immersed into the binder and rotated at a constant rate.  The machine 

measures the torque required to rotate the spindle at that rate.  Using this information 

along with some attributes of the spindle, the machine calculates a rotational viscosity 

for the binder.  Figure 1 shows the Brookfield Rotational Viscometer along with a small 

heater to warm the binder and the controlling computer.  Table 2 lists the viscosity of the 

binder used in each mixture along with the binder content and testing temperature.  The 

testing temperature is determined by the PG grade of the binder used in each mixture.  

The compaction temperature for each binder was chosen for testing in accordance with 

Texas Department of Transportation guidelines (TxDOT). 
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Figure 1. Brookfield Rotational Viscometer 
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Table 2 Asphalt Binder Content and Viscosity 

Mixture Name, Type 
Binder Content 

% 

Binder Viscosity 

cP 

Temperature at 

measured 

Viscosity °C 

US 87 C 4.3 1167.5 149 

HW 6 SMA_D 6.4 656.7 149 

SH 44 B 4.2 777.5 149 

SH 21 C 4.7 883.4 135 

Lufkin CAM 7.0% 70-22 7 890.0 135 

Lufkin CAM 7.5% 70-22 7.5 890.0 135 

Lufkin CAM 8.0% 70-22 8 890.0 135 

Lufkin CAM 7.5% 76-22 7.5 824.8 149 

Lufkin CAM 8.0% 76-22 8 824.8 149 

Lufkin CAM 8.5% 76-22 8.5 824.8 149 

Mopac SMA_C 6.2 824.8 149 

Bryan C 4.4 1238.3 121 

SS3111_CAM 7.6 824.8 149 

I-35 Waco SMA_D 6 684.2 149 

SH 36 D 4.9 1205.0 121 

US 259 C 4.3 919.2 135 

341 C 4.5 1190.8 135 

346 SMA 6 824.8 149 

342 PFC 6.7 1205.0 149 

340 B 4.6 1228.3 121 

Arash4 C 4.5 730.0 149 

Arash9 D 5.3 730.0 149 

 

AGGREGATE GRADATION 

 

The gradation of an asphalt mixture describes the amount and size of the 

aggregate particles that make up the mixture.  Aggregate gradations are shown 

graphically by plotting the size of the aggregates versus the percent of total aggregate 
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weight passing each sieve size.  Different mixture types can have dramatically different 

gradation curves.  In order to characterize these differences in gradation, a Weibull 

distribution curve was fit to each gradation curve using a least squares method as shown 

by the example in Figure 2.  The form of the Weibull distribution used is shown in 

Equation 1.   

 

      (1) 

 

In the equation, x is the size in millimeters of each sieve used in the gradation, P 

is the percent passing each sieve size, and λ and k are shape and scale parameters.  These 

two parameters determine the broad shape of the curve.  The fit was found using the 

Solver tool in Microsoft Excel.  The difference between the percent passing at each sieve 

size and the equation predicted percent passing was squared and summed for all the 

sieve sizes.  This summed difference is called the squared error.  The Solver manipulates 

λ and k to find the minimum squared error. 

Figure 2 shows the aggregate gradation curve for two mixtures, one type C 

mixture, and a PFC mixture.  It also shows the predicted curve resulting from the 

Weibull distribution fit.  The predicted curves mirror the actual curves well.  For these 

two mixtures, the gradation shape parameter λ for the C and PFC mixture is 4.74 and 

9.76, respectively.  The gradation scale parameter k for the C and PFC mixture is 0.85 

and 2.83, respectively. 
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Figure 2. Examples of Weibull Distribution Fit to Aggregate Gradations 

 

Prior studies relating mixture gradation to compaction or performance simply 

described the gradation qualitatively such as fine, coarse, gap, or open graded.  The 

Weibull distribution method uses two numerical values to describe the shape of the 

gradation curve rather than a just the mixture type.  Table 3 shows the gradation 

parameters for all the mixtures used in the study.  The values of λ ranged from 3.17 for a 

CAM mixture to 9.76 for a PFC mixture.  In a broad sense, manipulating the values of λ 

has the effect of shifting the gradation curve to the left and right.  This shifting of the 

curve affects the size of the aggregates.  Manipulating the value of k changes the slope of 

the curve.  This slope distinguishes well graded gradations from gap graded gradations.  

The k parameter ranges from 0.75 for a B mixture to 2.38 for the PFC mixture. 
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Table 3 Parameters of Weibull Distribution Function for Various Gradations 

Mixture Name Type Gradation λ Gradation k 

US 87 C 4.74 0.85 

HW 6 SMA_D 9.20 1.49 

SH 44 B 5.51 0.75 

SH 21 C 5.47 0.85 

Lufkin CAM 7.0% 70-22 3.17 1.00 

Lufkin CAM 7.5% 70-22 3.17 1.00 

Lufkin CAM 8.0% 70-22 3.17 1.00 

Lufkin CAM 7.5% 76-22 3.17 1.00 

Lufkin CAM 8.0% 76-22 3.17 1.00 

Lufkin CAM 8.5% 76-22 3.17 1.00 

Mopac SMA_C 9.43 1.28 

Bryan C 4.42 0.77 

SS3111 CAM 3.23 0.92 

I-35 Waco SMA_D 8.87 1.36 

SH 36 D 4.34 0.92 

US 259 C 5.97 0.83 

341 C 4.95 0.79 

346 SMA 9.14 1.50 

342 PFC 9.76 2.38 

340 B 7.06 0.86 

Arash 4 C 5.33 0.79 

Arash 9 D 4.30 0.81 

 

Figures 3-8 show sample gradation curves for the mixture types used in the 

study.  The original curves are shown by the solid line; the dashed-lines are the curves 

produced by the Weibull distribution function.  In most cases the Weibull fit curve 

follows the original curve reasonably well. 
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Figure 3. Sample B Mix Gradation 

 

 

 

Figure 4. Sample C Mix Gradation 
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Figure 5. Sample D Mix Gradation 

 

 

 

Figure 6. Sample CAM Mix Gradation 
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Figure 7. Sample SMA Mix Gradation 

 

 

 

Figure 8. Sample PFC Mix Gradation 
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AGGREGATE SHAPE CHARACTERISTICS 

 

The Aggregate Imaging System (AIMS) was used to quantify the shape 

characteristics of aggregates (Fletcher 2003).  The AIMS system uses a digital camera to 

take detailed wider angle photographs of entire aggregates or close up photographs of 

the surface of aggregates. The system software uses these images to calculate various 

aggregate shape and texture properties including 2D form, angularity, sphericity, texture, 

and flat and elongated ratio.  For this study, angularity, texture, and sphericity were 

utilized.  Figure 9 shows the AIMS apparatus.  It consists of a servo-controlled, 

illuminated platform that the aggregates are placed on, a digital camera and lights 

mounted above the platform, electronics, and a controlling computer. 

 

 

Figure 9. Aggregate Imaging System (AIMS) 
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To calculate angularity, AIMS captures a 2D, black and white digital image of 

each aggregate particle.  The program calculates a numerical angularity index value for 

each aggregate using the gradient method.  The method used to calculate the average in 

the change in the angles of orientation of the gradient vectors around the edge of the 

particle outline.  Faceted particles will have a higher angularity index than rounded 

particles since the angles of orientation change more rapidly near sharp corners 

(Mahmound 2008).  Figures 10 and 11 show black and white digital images taken by the 

AIMS camera of low and high angularity aggregates respectively. 

 

 

Figure 10. A Projection of a Low Angularity Aggregate Particle 
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Figure 11. A Projection of a High Angularity Aggregate Particle 

 

Aggregate texture index values are found by taking a close up grey scale image 

of the aggregates surface and calculating the texture using wavelet analysis.  The AIMS 

software calculates texture by finding the local variation in the pixel gray-intensity 

values.  A more detailed explanation of this analysis is available in Fletcher (2003).  

Figures 12 and 13 are digital grey-scale images taken by the AIMS camera of a low and 

high texture aggregate, respectively. 
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Figure 12. An Image of the Surface of Low Texture Aggregate 

 

 

Figure 13. An Image of the Surface of High Texture Aggregate 

 

Sphericity is found using length, width, and depth measurements of each 

aggregate particle.  The 2D grey-scale image is used to find the longest and shortest 

dimensions of the aggregate projection.  The autofocus feature on the camera is used to 

measure the thickness.  Equation 2 is used to calculate sphericity.  Texture and sphericity 
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can only be measured for aggregates retained on a 4.75 mm sieve.  Aggregates smaller 

than 4.75 mm are only tested for angularity. 

 

      (2) 

 

 Before AIMS testing can begin for aggregates use in an HMA mixture, there are 

a few steps that must be taken in preparation.  The system is designed to scan only one 

size of aggregate at the same time.  Aggregates must be sieved and separated by their 

sizes.  For the study, the sieve sizes used to separate aggregate were 0.75”, 0.5”, 0.375”, 

0.25”, No.4, No.8, and No.16.  This separation must be done for every bin present in the 

aggregate gradation. 

 After each bin is sieved into its constituent sizes, the aggregates must be washed 

and dried before they can be scanned.  This removes fine particles from the aggregate 

surface that could affect the measurements. 

 Once the aggregates were washed and dried, they were ready for testing.  From 

each bin, one coarse aggregate size, usually 3/8”, No. 8, and No. 16 were scanned.  

During testing, shape characteristics were measured for each aggregate.  The computer 

program compiles all the results for each test and calculates the average and standard 

deviation values.  It also creates plots showing the distribution of characteristic values 

for each test.  Figures 14, 15, and 16 show examples of distribution curves produced by 

the AIMS system for the shape characteristics used in the study. 
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Figure 14. Example of AIMS Measurements of Angularity Distribution 

 

Figure 15. Example of AIMS Measurements of Texture Distribution 
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Figure 16. Examples of AIMS Measurements of Sphericity Distribution 

 

 For the purposes of this study, it is desirable to have just one average value of 

angularity, texture, and sphericity for each HMA mixture.  The AIMS software 

calculates a weighted average of shape characteristics for each aggregate bin.  For 

angularity and texture measurements, the average is weighted by the surface area of the 

aggregates.  A typical particle volume and mass is calculated assuming a cubical shape 

with length, width, and height measurements equal to half the smallest passing sieve and 

the largest retaining sieve for each size.  Using this typical particle, the bin gradation, 

and the shape characteristic values for each size scanned from the bin, the program 

calculates a weighted average.  The program uses the same procedure for sphericity 

except it weights the average by particle count in the gradation and not surface area.  
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Using the average shape characteristic values for each bin and the percentages of each 

bin present in the mixture, a weighted average must again be calculated, this time for the 

entire mixture.  Angularity and texture are again weighted by surface area, and sphericity 

is weighted by particle count.  Table 4 contains the average shape characteristic values 

for all the aggregate gradations used in the study. 

 

 

Table 4 Average Aggregate Shape Characterisitcs 

Mixture Name, Type Angularity Texture Spherisity 

US 87 C 2981.1 160.8 0.722 

HW 6 SMA_D 3067.2 210.0 0.665 

SH 44 B 2818.7 177.5 0.737 

SH 21 C 2811.9 106.0 0.708 

Lufkin CAM 7.0% 70-22 3895.1 337.7 0.690 

Lufkin CAM 7.5% 70-22 3895.1 337.7 0.690 

Lufkin CAM 8.0% 70-22 3895.1 337.7 0.690 

Lufkin CAM 7.5% 76-22 3895.1 337.7 0.690 

Lufkin CAM 8.0% 76-22 3895.1 337.7 0.690 

Lufkin CAM 8.5% 76-22 3895.1 337.7 0.690 

Mopac SMA_C 3822.7 172.6 0.730 

Bryan C 2681.1 106.0 0.739 

SS3111_CAM 3477.0 546.7 0.620 

I-35 Waco SMA_D 2848.1 375.1 0.690 

SH 36 D 3104.1 63.7 0.675 

US 259 C 3065.3 366.8 0.760 

341 C 3523.5 96.2 0.679 

346 SMA 2787.4 143.1 0.657 

342 PFC 2995.6 82.2 0.661 

340 B 2697.7 149.0 0.748 

Arash4 C 2885.8 294.3 0.694 

Arash9 D 2801.8 283.9 0.681 
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AGGREGATE MIXTURE COMPACTION 

 

After mixture data were collected for each mixture, samples were compacted in 

the laboratory.  Samples were compacted using the Superpave Gyratory Compactor 

(SGC).  Figure 17 shows the SGC used for the study.  Compaction using a SGC involves 

first placing HMA mixture into a heated steel cylindrical mold with a 6-inch diameter.  

Once placed inside the compactor, a pneumatic ram applies 600kPa pressure on the 

material and the ram gyrates in a circular pattern at a 1.25 degree angle at a constant rate 

of 30 revolutions per minute.  Material inside the mold loses its air void content as the 

sample shrinks in height.  Dimensions of the compaction test samples were 6 inches in 

diameter and 2.5 inches in height.  This sample size was chosen because most of the 

specimens were prepared to be tested using the laboratory tests, Hamburg Wheel 

Tracking test and the Overlay test.  Four replicate samples were compacted for each 

mixture type.   
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Figure 17. The Superpave Gyratory Compactor (SGC) Used in This Study 

 

Once aggregate and asphalt binder were obtained for each mixture, aggregate for 

four replicate samples was weighed out and prepared for compaction.  Appropriate 

mixing and compaction temperatures guidelines for each type of PG grade binder were 

followed (TxDOT).  A listing of the TxDOT recommended mixing and compaction 

temperatures is shown in Table 5.  Most HMA mixture designs included important 
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information about the aggregate bin proportions required, binder PG grade and content, 

and the theoretical maximum specific gravity (Gmm) of the mixture at the optimum 

binder content.  Samples were compacted to a target air void content of 7% for most 

mixtures except PFC, which were compacted to 15% air voids.  PFCs have a much more 

open aggregate gradation and cannot be compacted to the same densities as other 

mixtures.  Using the Gmm, the target air void content, and the sample volume at the 

required dimensions, the appropriate weight of material for each sample was calculated.  

The specific SGC compactor used has the ability to terminate compaction once it reaches 

a specified number of gyrations or when the sample reaches a specified height or air void 

content.  For this study, each compaction was set to end when the sample reached 2.5 

inches in height. 

 

Table 5 HMA Mixing and Compaction Temperatures 

HMA Mixing and Compaction Temperatures by Grade 

PG Grade Mixing Temp, °F Compaction Temp, °F 

64-22 290 250 

64-28 300 275 

70-22 300 275 

70-28 325 300 

76-16 325 300 

76-22 325 300 
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Following compaction of samples for each mixture, some loose material was 

reserved for laboratory testing of Gmm using the pycnometer method (ASTM D 2041).  

Results of the Gmm test were compared to the posted value on the mixture design report 

that accompanied each mixture design.  If there was a significant discrepancy in the two 

values, it was noted and the laboratory measured value was used for all later 

calculations. 

Once each laboratory molded sample had sufficiently cooled, its bulk specific 

gravity (Gmb) was measured using the CoreLok machine (AASHTO PT 69).  Figure 18 

shows the CoreLok tester.  This testing method involves sealing a plastic bag around the 

sample while it is under a vacuum so that the surface air voids of the sample are filled in.  

This ensures that the volume contained inside the bag is occupied only by the sample 

and no air.  This sealed sample is then submerged and weighed under water.  Figure 19 

shows a laboratory compacted sample sealed inside an air tight plastic bag. 
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Figure 18. The CoreLok Tester Used to Measure Specimen Specific Gravity 

 

 

Figure 19. CoreLok Sealed Sample 

 

These two laboratory tests were conducted because with their results (Gmm, Gmb) 

the density or air void content (%AV) of the samples could easily be calculated.  The 

samples were compacted to a specific air void content, but it is important to measure the 
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actual content in the samples.  HMA laboratory samples have two types of air voids, 

internal voids and surface voids.  For most purposes, data on only the internal voids is 

desired.  When samples are molded to a specific air void content based on their Gmm 

value and dimensions (when compaction is set to terminate when a sample reaches a 

specific AV), this includes both internal and surface voids.  The CoreLok test is 

designed to measure only the internal voids.  This is done by assuming that under 

vacuum, the plastic bag conforms to the surface of the sample, filling in most surface 

voids. 

The specific SGC compactor used for the study has the ability to save a file for 

each compaction completed.  Each file contains general data about the test including 

date, time, sample diameter, gyration rate, vertical stress, gyration angle, weight of 

material, and Gmm.  The files also contain information about each gyration in a 

compaction test including gyration number, sample height, and shear stress.  The height 

per gyration data is most valuable because it can be used to construct a compaction curve 

for each sample.  Figure 20 contains a compaction curve showing sample height versus 

gyration number. 
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Figure 20. An Example of Compaction Curve Showing Sample Height Change as a Function of 

Number of Gyrations 

 

With the height versus gyration data, as well as the weight, radius, and Gmm for 

each sample the air voids versus gyration curves can be calculated volumetrically using 

Equation 3. 

 

     (3) 

 

Equation 3 accurately calculates the air voids content at each gyration 

volumetrically, but one drawback is this method includes air voids on the surface of the 

samples.  As stated before, for most purposes the amount of internal air voids is desired.  

To correct this problem, the CoreLok measured air void content of each sample and the 
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volumetrically measured content are used to calculate a correction factor.  This 

correction factor is used to adjust the %AV at each gyration in the curve.  A summary of 

this calculation is available in Appendix A.  An example of a corrected %AV versus 

gyration compaction curve is shown in Figure 21. 

 

 

Figure 21. An Example of Corrected Air Void Versus Number of Gyrations Curve 

 

COMPACTION PARAMETERS 

 

 Following collection of HMA mixture property data and compaction of test 

samples, the next step was to extract compaction parameters from the compaction curves 

of each sample.  It was believed that different mixture properties might affect different 
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parts of the compaction curve.  For instance, asphalt binder content might have a greater 

influence on the slope of the compaction curve early in the compaction, while slopes 

near the end of compaction might be greater influenced by aggregate angularity.  It is 

important to understand how different properties of HMA mixtures affect different parts 

of the compaction curve.  There was also an ongoing study by another TTI researcher 

that sought to correlate laboratory compaction parameters to field compaction.  This 

complimentary study required five laboratory compaction parameters. To characterize 

these different parts of a normalized compaction curve described subsequently, the 

following seven compaction parameters were extracted from the data: 

 

 a  Slope of normalized compaction curve, 

 c  y-axis intercept of normalized compaction curve, 

 %AV Nini Sample %AV after first gyration, 

 m1  Linear slope of first five gyrations, 

 m2  Linear slope of gyrations 96 to 100, 

 α  Gyration at intercept of m1 and m2 lines, 

 Δ Slope Difference between m1 and m2, 

 

 In identifying the various compaction parameters, one of the first steps was to fit 

a trendline to the compaction curve of each sample.  This was first done by plotting the 

%AV versus number of gyrations in Excel and fitting a trendline to the curve.  It was 

found that a logarithmic equation with a slope and y-axis intercept fits the curves best.  
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Figure 22 shows two air void compaction curves from different mixtures; one is a type C 

mixture and the other is an SMA mixture.  The trendline and corresponding equation and 

R
2
 value are shown for both curves.  As evident by the high R

2
, a logarithmic equation 

fits the data very well. 

 

 

Figure 22. Air Void Compaction Curves 

 

 In addition to the slope and intercept, additional parameters related to the amount 

of compaction at a specific gyration number or a specific %AV were considered.  This 

representation of the compaction curves works well for describing different curves when 

each compaction has the same final %AV.  In that case, a possible parameter could be 

the gyration at which the sample reaches its target %AV.  Another parameter could be 

the percent compaction at a set number of gyrations.  Since all the curves were adjusted 
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by the CoreLok measured %AV, and mixture types like PFC (which is designed to a 

higher %AV range) were included, this type of parameter was no longer usable.  The 

final %AV of different mixtures ranged from 5% to 15%.  Achieving 15%AV, for 

example, in two mixtures with different final %AV corresponds to widely varying levels 

of compaction.  At 15%AV, a PFC mixture has reached terminal density, but a dense 

graded mixture has a significant amount of compaction remaining.  To resolve this 

difficulty in comparing the different mixtures, the %AV data for each sample was 

normalized to remove the effect of sample %AV differences. 

 To normalize the compaction curve data, the %AV at each gyration in a 

compaction was divided by the %AV after the first gyration.  This way, every curve 

begins at the same value of 1.  Logarithmic trendlines were again fit to the data to arrive 

at a slope and intercept that describe the curve.  Figure 23 shows the equation and R
2
 for 

both curves.  Again, the R
2
 values are very high. 
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Figure 23. Normalized Compaction Curves 

 

 Figure 24 shows the same data but with the x-axis in logarithmic scale.  The 

logarithmic equation was found to fit all the compaction curves very well with R
2
 values 

normally above 0.99. 
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Figure 24. Normalized Compaction Curves, Log Axis 

 

 The slope of these logarithmic curves was chosen to be the compaction 

parameter a.  The parameter a provides an accurate quantitative description of the 

overall shape of the curve and ranges from -0.11 to -0.24.  The y-axis intercept is 

identified as parameter c and ranges from 1.053 to 0.987.  Because the curves were 

normalized by their initial %AV, the c parameter (y-axis intercept) was almost one for 

every curve. 

The %AV content after the first gyration was chosen as a third compaction 

parameter (AV Nini).  This parameter might be influenced by the aggregate gradation and 

binder content. In the mixtures evaluated in the study, AV Nini ranged from 0.16 to 0.31.  
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Table 6 contains compaction parameters a, c, and AV Nini for one of the four replicate 

samples of ever mixture design used in the study. 

 

Table 6 Compaction Parameters a, c, and AV Nini 

Mixture Name, Type a c AV Nini 

US 87 C -0.176 1.011 0.183 

HW 6 SMA_D -0.171 1.042 0.267 

SH 44 B -0.175 1.010 0.182 

SH 21 C -0.166 1.013 0.205 

Lufkin CAM 7.0% 70-22 -0.176 1.015 0.208 

Lufkin CAM 7.5% 70-22 -0.207 1.014 0.188 

Lufkin CAM 8.0% 70-22 -0.227 1.013 0.165 

Lufkin CAM 7.5% 76-22 -0.196 1.015 0.191 

Lufkin CAM 8.0% 76-22 -0.223 1.014 0.179 

Lufkin CAM 8.5% 76-22 -0.240 1.010 0.161 

Mopac SMA_C -0.225 1.028 0.205 

Bryan C -0.169 1.013 0.209 

SS3111_CAM -0.208 1.018 0.193 

I-35 Waco SMA_D -0.203 1.053 0.237 

SH 36 D -0.153 0.994 0.238 

US 259 C -0.197 1.015 0.174 

341 C -0.185 1.021 0.209 

346 SMA -0.204 1.052 0.222 

342 PFC -0.112 1.008 0.315 

340 B -0.167 1.015 0.196 

Arash4 C -0.159 0.987 0.193 

Arash9 D -0.159 0.997 0.223 

 

 While a logarithmic equation fits the compaction curves very well, the fit was not 

perfect.  Often the most noticeable error occurred near the beginning of compaction in 

the first few gyrations.  There was a possibility that this deviation from the logarithmic 
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equation could be related to a mixture property that has influence primarily early in the 

compaction process.  In an attempt to characterize this early compaction, a linear 

trendline was fit through only the first five gyrations.  The slope of this linear trendline 

was designated as m1.  Figure 25 shows a sample compaction curve and parameter m1. 

 

 

Figure 25. Compaction Curve Showing m1 

 

 Parameter m1 is meant to characterize the early part of sample compaction.  To 

characterize the later part of compaction, another linear trendline was fit through 

gyration numbers 96 through 100.  While compacting samples, some mixtures required 

fewer than 100 gyrations; in these cases, the logarithmic equation was used to predict 

%AV at gyrations 96 through 100.  A linear trendline was then fit through these 
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predicted gyration points.  The slope of this trendline is designated as parameter m2. 

Figure 26 shows m2 and a compaction curve.   

 

 

Figure 26. Compaction Curve Showing m2 

 

 Another compaction parameter was Δ Slope.  It is the absolute value of the 

difference between m1 and m2.  The last parameter α was chosen to be the gyration 

number where the trendlines created for m1 and m2 intersect.  Figure 27 shows the 

trendlines used to find m1 and m2; the point where these two lines intersect is parameter 

α. 
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Figure 27. Compaction Curve Showing Parameter α 

 

 It was hoped that these seven compaction parameters could not only characterize 

the broad shape of the compaction curves but also isolate some of the subtle differences 

in compaction performance.  Table 7 contains parameters m1, m2, α, and Δ Slope for one 

replicate sample of every mixture design used in the study. 
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Table 7 Compaction Parameters m1, m2 α, and Δ Slope 

Mixture Name, Type m1 m2 α Δ Slope 

US 87 C -0.065 -0.0018 10.455 0.063 

HW 6 SMA_D -0.055 -0.0017 11.475 0.053 

SH 44 B -0.065 -0.0018 10.351 0.064 

SH 21 C -0.061 -0.0017 10.524 0.059 

Lufkin CAM 7.0% 70-22 -0.064 -0.0018 10.522 0.062 

Lufkin CAM 7.5% 70-22 -0.076 -0.0021 10.453 0.074 

Lufkin CAM 8.0% 70-22 -0.085 -0.0023 10.337 0.082 

Lufkin CAM 7.5% 76-22 -0.072 -0.0020 10.481 0.070 

Lufkin CAM 8.0% 76-22 -0.083 -0.0023 10.388 0.080 

Lufkin CAM 8.5% 76-22 -0.091 -0.0025 10.194 0.089 

Mopac SMA_C -0.078 -0.0023 10.960 0.075 

Bryan C -0.061 -0.0017 10.538 0.060 

SS3111_CAM -0.075 -0.0021 10.586 0.073 

I-35 Waco SMA_D -0.064 -0.0021 11.610 0.062 

SH 36 D -0.058 -0.0016 10.429 0.057 

US 259 C -0.072 -0.0020 10.493 0.070 

341 C -0.065 -0.0019 10.709 0.064 

346 SMA -0.063 -0.0021 11.738 0.061 

342 PFC -0.038 -0.0011 11.253 0.037 

340 B -0.060 -0.0017 10.616 0.059 

Arash4 C -0.064 -0.0016 9.900 0.063 

Arash9 D -0.061 -0.0016 10.366 0.059 

 

 

  



43 

 

 

CHAPTER III 

STATISTICAL ANALYSIS OF THE RELATIONSHIP BETWEEN MIXTURE 

CHARACTERISTICS AND COMPACTION PARAMETERS 

 

Following the mixture and compaction data collection phase of the project, 

statistical analyses were completed on the compiled data.  The analysis has three main 

parts.  The goal of the first part was to use a number of factors analysis to determine how 

many of the seven mixture properties and seven compaction parameters are required to 

reproduce the correlation matrix of the measurements to a reasonable and repeatable 

approximation.  In the second part of the analysis, a Neural Net was used as a first step 

in determining an upper bound on the correlation between the mixture and compaction 

data.  The third part employed a stepwise regression analysis to determine which of the 

mixture properties are needed to efficiently predict the compaction parameters.  

 

FACTOR ANALYSIS 

 

There were seven compaction parameters and seven mixture properties 

considered in the study, but there is no guarantee that each one is necessary or useful.  It 

is possible that some of the mixture parameters chosen have no correlation with 

compaction.  These are parameters that will not contribute to the model and should be 

excluded.  It is also possible for two parameters to closely correlate with each other.  In 
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that case, only one of them can be used as a surrogate for both because the other does not 

provide any unique or additional information to improve the model. 

For this study the Number of Factors command in the PLS toolbox in Matlab was 

utilized (Matlab 7.4 2007).  The algorithm used in the program has been tested using 

data from a variety of fields and is a trusted tool for estimating the number of factors in a 

problem (Henry 1999).  The Number of Factors analysis indicated that of the seven 

mixture parameters, only four were important, and of the seven compaction parameters, 

only two were important. 

While the Number of Factors tool does a good job of estimating how many 

important variables there are by finding which factors have the most variability, it does 

not provide information about what variables are important for prediction.  Because the 

compaction curves were fit so well by a logarithmic equation, it was decided that the 

parameters a and AV Nini used to produce that normalized curve were likely the most 

important.  The y-axis intercept of the equation, c diminished in importance because 

normalizing the data forced c to equal very near 1.  The other parameters were basically 

derived from the curve and were meant to characterize differences between the actual 

data curve and the trendline.  Since the data were fit so well by the trendline, the other 

parameters carried little weight.  This conclusion was later backed up by regression 

analysis. 

The Number of Factors algorithm found that there were four important mixture 

properties.  As in the case of the compaction parameters, this only means that most of 

the variability was found in four factors, not that there are four variables needed to 
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predict compaction.  It was much harder to intuitively tell which mixture properties were 

important.  It was also possible that four properties important in predicting a might be 

different than the four needed for AV Nini.  For these reasons it was decided to include all 

original mixture properties in further analyses. 

 One other tool was used to determine the number of important factors: the 

Principal Components analysis in the statistics program JMP.  Given a set of original 

variables, a number of principal components are formed.  The first principal component 

is the linear combination of the standardized original variables that has the greatest 

variance.  Each subsequent component is the linear combination of the standardized 

original variables that has the greatest possible variance and is uncorrelated with all 

previously defined components (SAS, 2008).  The two ways to use these to estimate the 

number of principal components are: (1) determine how many components are needed to 

capture most of the variability in the data set and (2) find the component number where 

there is a bend in the scree plot.  

 The Principal Component analysis was first performed on the compaction 

parameter data.  Table 8 shows the seven components sorted by their importance.  The 

eigenvalue for each component is displayed in the second column, and the third shows 

the percent of variation in the data that is contained in each component.  A great deal of 

the variability (97%) is captured by just two principal components.  Figure 28 shows a 

scree plot of this data.  A scree plot graphs the number of components versus the 

eigenvalue for each component.  Common practice is to choose the number of 
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components where there is a bend in the plot.  This would indicate that there are three 

principal components. 

 

Table 8 Principal Component Analysis Results for Compaction Parameters 

Principal Components: on Correlations 
Number Eigenvalue Percent Percent Cum Percent 

1 4.6438 66.340  66.340 

2 2.1688 30.982  97.322 

3 0.1347 1.924  99.246 

4 0.0511 0.730  99.976 

5 0.0017 0.024  100.000 

6 0.0000 0.000  100.000 

7 -0.0000 -0.000  100.000 
 

 

 

 
Figure 28. Scree Plot for Compaction Parameters 

 

When this analysis is applied to the mixture property data the results are a little 

less clear.  There is no definite bend in the scree plot and when examining the 

eigenvalues and their percentages, it is up to the user’s interpretation to decide how 

many are important.  Four components would capture 93% of the variability while five 

would capture 97%.  Table 9 shows the variability captured for each number of variables 

and Figures 29 shows a scree plot of this data. 
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Table 9 Principal Component Analysis Results for Mixture Properties 

Principal Components: on Correlations 
Number Eigenvalue Percent Percent Cum Percent 

1 2.9239 41.770  41.770 

2 1.9042 27.203  68.972 

3 1.0563 15.090  84.063 

4 0.6419 9.170  93.232 

5 0.2883 4.119  97.351 

6 0.1314 1.877  99.228 

7 0.0540 0.772  100.000 
 

 

 

 
Figure 29. Scree Plot for Mixture Properties 

 

The results of these two analyses were slightly different, but can be interpreted to arrive 

at the same conclusion.  For further analyses, four or five mixture properties and two 

compaction parameters will be considered. 

 

 

NEURAL NET ANALYSIS 

The second part of the analysis used a Neural Net as a first step to determine if 

there is a correlation between the data.  The important parameters found in the previous 
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step can be identified with this type of analysis.  A neural net is a valuable tool modeled 

`after nerve cells in the brain that can efficiently model different response surfaces.  It 

uses a flexible network of functions of input variables to predict responses.  Figure 30 

shows an illustration of the intermediate variables used in a neural net analysis.  Its 

strength is that it can approximate any surface to any accuracy given enough hidden 

nodes.  Its drawbacks are that it tends to over-fit data and its results are hard to interpret.  

The program may find a correlation between two data sets, but it could be difficult to 

determine what the correlation is. 

 

 

Figure 30. Neural Net Illustration for a 

 

 The statistics program JMP was used for the neural net analysis.  Neural nets 

have a tendency to over-fit the data used to create a model (training data).  For this 

reason it is necessary to include cross-validation in the neural net analysis.  K-fold cross-

validation was used.  This means that the data were first fit using every data point.  Then 
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a portion of the training set was excluded and the model was run again.  The solution 

from this second run was applied to the withheld data and the R
2
 of that fit recorded.  

This process will be repeated K times with different excluded data sets and the R
2
 from 

all K times were averaged.  The user defines K, the number of runs included in the 

analysis.  This tool helps determine if the model does a good job of fitting the data and at 

predicting new data, or if it only fits the training data well but does a poor job predicting. 

 In the first attempts at this analysis, a Gauss Newton method was used with three 

hidden nodes and 5-fold cross-validation and the entire data set was used, replicate 

samples included.  This produced excellent results for both compaction parameters.  

Table 10 shows the R
2
 results for the analysis using all data and the cross-validated (CV) 

analysis.  In both cases the initial R
2
 is above 0.98 and the CV R

2
 is also high.  Figures 

31 and 32 show the predicted plot for both parameters.  These results show evidence that 

the model does a very good job at both fitting a training set of data and predicting new 

data. 
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Table 10 Fit History for Neural Net Analyses 

Fit History 

 RSquare CV RSquare 

Entire Data Set Analysis 

for a  
0.98764 0.97725 

Entire Data Set Analysis 

for AV Nini 
0.98564 

0.95136 

 

Partial Data Set Analysis 

for a 
0.99288 0.02280 

Partial Data Set Analysis 

for AV Nini 
0.99532 0.48788 

 

 

 

Figure 31. Predicted Plot of CV Neural Net of Entire Data Set for a 
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Figure 32. Predicted Plot of CV Neural Net of Entire Data Set for AV Nini 

 

When running the cross-validation, parts of the training set were excluded from 

the analysis and then predicted using the model.  The results show that the model is 

successful at predicting these excluded points, but because there were four replicate 

samples for every mixture, when some points were taken out, replicate samples of the 

excluded points still remained in the training set.  In every case, the compaction 

parameters for all four replicate samples very closely matched each other.  This means 

that when one point was removed from the training set, a near copy of it remained and 

was used for the model.  That is why the analysis resulted in such high CV R
2
 values.   

To resolve this issue, the analysis was rerun with all replicate samples taken out.  

Table 10 also contains the analysis results from the partial data sets.  As in the previous 

analyses, the R
2
 for the entire data set is very high, but excluding the replicate samples 

had a profound effect on the CV R
2
.  In the case of parameter a, the CV R

2
 dropped to 

nearly zero.  For AV Nini, it dropped below 0.5.  When doing cross-validation, the 
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program randomly excludes parts of the data but not the same parts every time the model 

is run.  Because of this, the model can produce different CV R
2
 values each time the 

model is run.  After running the model several times, CV R
2
 for a stayed very near zero, 

but for AV Nini it ranged from about 0.1 to 0.6.  These results mean that fitting the model 

to certain types of mixtures and using the model to predict another type that is not within 

the mixture used in the fitting is not a good use of the model.  The model can be used to 

describe the compaction parameters of mixture types that are included in the fitting or 

analysis. 

 

REGRESSION ANALYSIS 

 

 The neural net analysis showed us that the mixture property data can be fit to the 

compaction parameters.  It also showed that there could be a problem in using the data to 

predict new data.  The next step is to analyze the data with a different type of model 

whose output is easier to interpret. 

 The third part of the statistical analysis included a stepwise regression analysis to 

determine which variables best predict the compaction parameters.  This analysis can be 

used first to find which variables are unique and which are simply related to another 

variable. 

 A stepwise analysis operates in one of two ways, forward or backward.  In the 

first step of a forward analysis, the most significant term is entered into the model and an 

R
2
 value of the fit is calculated.  In the second step, the next most significant term that 
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improves the fit is added to the model.  Each additional term must be significant at a user 

defined level (probability to enter).  This continues until all available terms have been 

added or additional terms fail to exceed the entry criteria.  In a backward analysis, all 

terms are included in the model from the beginning.  In the first step, the regressor that 

affects the fit the least is removed provided the term is not significant at the user defined 

level (probability to leave).  The two defined significance levels can be manipulated so 

that the analysis utilizes the same number of terms for forward and backward analyses.   

 The forward stepwise analysis was first applied to the compaction parameter a.  

Tables 11 and 12 show the step history and current estimate of the forward analysis.  The 

step history (Table 11) outlines the order in which each parameter was added or removed 

from the model, and the current estimate (Table 12) provides information about the 

model at the last step.  The four properties that the forward analysis chose were 

angularity, texture, sphericity, and binder viscosity.  These produced a fit with an R
2
 of 

0.61.  Tables 13 and 14 show the step history and current estimate for the backward 

analysis.  This time the properties chosen were binder content, λ, k, and angularity.  

These properties produced a model with a much better R
2
 of 0.78.  It is important to note 

how much the accuracy of the models change as terms are removed in Table 13. 

 

Table 11. Forward Step History for a 

Step History 
Step   Parameter Action "Sig Prob" Seq SS RSquare Cp p 

1  Angularity Entered 0.0000 0.031644 0.4312 151.19 2 

2  Texture Entered 0.0000 0.007502 0.5335 110.91 3 

3  Sphericity Entered 0.0035 0.003332 0.5789 94.134 4 

4  Binder Viscosity Entered 0.0119 0.00228 0.6100 83.284 5 
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Table 12. Forward Stepwise Current Estimate for a 

Current Estimates 
SSE DFE MSE RSquare RSquare Adj Cp AICc 

0.0286203 83 0.0003448 0.6100 0.5912 83.284308 -443.956 
 

Lock Entered Parameter Estimate nDF SS "F Ratio" "Prob>F" 

X X Intercept 0.05923656 1 0 0.000 1 

    Binder Content 0 1 0.000401 1.166 0.28349 

  X Binder Viscosity 3.45322e-5 1 0.00228 6.613 0.01191 

    Gradation lambda 0 1 0.000371 1.076 0.30271 

    Gradation k 0 1 0.000838 2.473 0.1197 

  X Angularity -3.3438e-5 1 0.016441 47.679 9.3e-10 

  X Texture -0.000062 1 0.00262 7.599 0.00718 

  X Sphericity -0.2202642 1 0.004013 11.637 0.001 
 

 

 

Table 13. Backward Stepwise History for a 

Step History 
Step   Parameter Action "Sig Prob" Seq SS RSquare Cp p 

1  Sphericity Removed 0.1676 0.000344 0.8018 7.9393 7 

2  Binder Viscosity Removed 0.0682 0.000613 0.7935 9.3947 6 

3  Texture Removed 0.1467 0.000397 0.7881 9.6304 5 
 

 

 

Table 14. Wackward Stepwise Current Estimate for a 

Current Estimates 
SSE DFE MSE RSquare RSquare Adj Cp AICc 

0.0155502 83 0.0001874 0.7881 0.7779 9.6304155 -497.639 
 

Lock Entered Parameter Estimate nDF SS "F Ratio" "Prob>F" 

X X Intercept -0.0406065 1 0 0.000 1 

  X Binder Content -0.019771 1 0.015063 80.397 7.6e-14 

    Binder Viscosity 0 1 0.000158 0.839 0.36224 

  X Gradation lambda -0.0119215 1 0.016959 90.520 6.1e-15 
  X Gradation k 0.09735515 1 0.025651 136.911 3e-19 

  X Angularity -1.9922e-5 1 0.00236 12.597 0.00064 

    Texture 0 1 0.000397 2.147 0.14669 

    Sphericity 0 1 0.000471 2.563 0.11321 
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 Stepwise regression does not always produce the same result forwards and 

backwards, so this difference is no surprise.  The backward analysis result is chosen as 

the better one because of its higher R
2
 value. 

The same two types of stepwise regression were performed for the compaction 

parameter %AVNini.  This time the forward and backward analyses arrived at the same 

four properties for the model.  Table 15 shows the step history of both analyses.  Steps 

one through four are from the forward analysis; steps five through seven are from the 

backward analysis.  Table 16 shows the current estimate of the analysis.  Binder content, 

k, sphericity, and texture were the important properties for %AVNini.  This model has an 

R
2
 value of 0.80. 

 

Table 15. Stepwise History for %AVNini 

Step History 
Step   Parameter Action "Sig Prob" Seq SS RSquare Cp p 

1  Gradation k Entered 0.0000 0.053354 0.5454 108.8 2 

2  Binder Content Entered 0.0000 0.01599 0.7089 41.47 3 

3  Sphericity Entered 0.0000 0.008431 0.7951 6.9139 4 

4  Texture Entered 0.0150 0.001386 0.8093 2.9029 5 

5  Binder Viscosity Removed 0.7528 0.000023 0.8112 6.0999 7 

6  Gradation lambda Removed 0.5547 8.025e-5 0.8103 4.4479 6 

7  Angularity Removed 0.4978 0.000105 0.8093 2.9029 5 
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Table 16. Stepwise Current Estimate for %AVNini 

Current Estimates 
SSE DFE MSE RSquare RSquare Adj Cp AICc 

0.018658 83 0.0002248 0.8093 0.8001 2.9028977 -481.606 
 

Lock Entered Parameter Estimate nDF SS "F Ratio" "Prob>F" 

X X Intercept 0.48625387 1 0 0.000 1 

  X Binder Content -0.0111538 1 0.009379 41.724 6.75e-9 

    Binder Viscosity 0 1 4.127e-7 0.002 0.96613 

    Gradation lambda 0 1 0.000061 0.269 0.60569 

  X Gradation k 0.06574747 1 0.030723 136.671 3.2e-19 

    Angularity 0 1 0.000105 0.464 0.49778 

  X Texture -4.5366e-5 1 0.001386 6.167 0.01503 

  X Sphericity -0.3873268 1 0.008991 39.995 1.22e-8 
 

 

 Reviewing these results, it is clear that using four of the seven mixture properties 

produces an efficient model of the compaction parameters.  Modeling a requires the 

mixture properties binder content, λ, k, and angularity.  The form of the model equation 

is shown in Equation 4. 

 

   (4) 

 

 Modeling %AV Nini requires the mixture properties binder content, k, spherisity, 

and texture.  The form of this model is shown in Equation 5. 

 

+−4.54×10−5× +−3.87×10−1× ℎ   (5) 

It is important to test the prediction capabilities of the regression model for new 

data.  To do this, a portion (20%) of the training data set was removed, and the model 



57 

 

 

was rerun with the limited data set.  Then, the new model was used to predict the 

compaction parameters of the mixtures that were excluded.  This gave an indication of 

how well the model performs with new data. 

 

Figures 33 and 34 show the results of this analysis.  A model was created with an 

abridged data set and then used to predict the excluded data points.  The reintroduced 

points are denoted by red circles.  The results of this analysis change depending on 

which portion of the data set is withheld.  In the case of Figure 33, a model to predict a 

was created using four mixture parameters (binder content, λ, k, angularity) and 

produced an R
2
 of 0.81.  When the excluded points were reintroduced, the R

2
 dropped to 

0,65.  In Figure 33, the red circles are noticeably astray as compared to the trendline.  In 

the case of Figure 34 and AV%Nini,  the R
2
 fell from 0.83 to 0.78. 

 

 

Figure 33  a versus Predicted a 
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Figure 34  %AVNini versus Predicted %AVNin 

 

 This analysis was repeated several times used different sets of excluded data each 

time.  The prediction performance of the model tended to depend on what data were 

excluded.  If one mixture from each of the major mixture types was excluded, the model 

performed well because the training set still included mixtures similar to the ones taken 

out.  When all mixtures of a specific mixture type were excluded, the model performed 

worse because there were no mixtures similar to the ones excluded left in the training 

set.  These results affirm that the model is successful at predicting compaction 

parameters for new mixtures that are similar to ones included in the initial data set.  For 

mixtures that are much different than the mixtures included in the model, the 

performance is diminished. 
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SUMMARY AND VALIDATION 

 

 The factor analysis showed that of the 14 possible parameters included in the 

study, four mixture properties were important, and two compaction parameters were 

important.  It indicated how many variables were important but it did not identify these 

important variables.   

The neural net analysis showed that it was possible to fit the compaction 

parameters using the mixture properties to a high degree of accuracy.   

The stepwise regression analysis confirmed that four properties prodiced a good 

fit, and it identified which four were the important terms.  These results from the neural 

net and the regression analysis showed that fitting the model to certain types of mixtures 

and using the model to predict anather types that is not within the mixtures used in the 

fitting is not a good use of the model.  The model can be used to describe the compaction 

parameters of mixture types that are included in the fitting or analysis 
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CHAPTER IV 

CONCLUSIONS AND FUTURE WORK 

 

 The statistical analysis of the seven mixture properties and seven compaction 

parameters resulted in two, four-term regression equations (Equations 4 and 5) that can 

be used to predict the compaction parameters of HMA mixtures (a and %AVNini).  The 

analysis showed that these equations accurately fit the data in the training set.  They can 

also successfully predict compaction parameters for new mixtures provided they are 

similar to mixtures included in the model.  Parameters for mixtures unlike those included 

in the model were not predicted well.  It is possible that by enlarging the models data set, 

parameters for most types of mixtures could be predicted.  

 In addition to the prediction capabilities of the equations, there are other notable 

results from the study.  By examining the form of the equations and the terms used, 

some qualitative conclusions can be drawn from the results.  Out of the seven original 

material properties included in the study, both equations require only four properties, but 

all four were not the same for both equations.  The important properties for predicting a 

are aggregate gradation parameters k and λ, binder content, and aggregate angularity.  

The properties for predicting %AVNini are k, binder content, and aggregate sphericity and 

texture. 

 Compaction parameter a is the slope of a logarithmic trendline fit to the 

normalized compaction curve.  Typical values range from around -0.1 to -0.25.  A more 

negative slope corresponds with greater compactability; the sample compacts at a higher 
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rate.  The equation reveals the attributes that contribute to a more negative compaction 

slope.  A low k, high λ, high binder content, and high angularity are shown to aid 

compaction.  Gradations with lower k values have a lower slope and indicate a dense 

gradation; gradations with higher k values have higher slopes and are said to be more 

open or gap graded.  Gradations with higher λ values have coarser aggregate gradation; 

lower values indicate finer gradations.  The binder in an HMA mixture acts as a 

lubricant between aggregate particles during compaction, and the aggregate angularity 

affects how aggregates shift around each other during compaction.  HMA mixtures with 

dense gradations, larger coarse aggregate, and high binder contents should be easily 

compacted. It is possible that the increase in angularity improves the locking between 

the particles and reduces slipping; hence and increase in angularity improves the transfer 

of stresses and compactability of the mixture. 

 The second compaction parameter %AVNini is an estimation of the %AV of the 

sample during compaction, after the first gyration.  HMA mixtures with lower %AV at 

the start of compaction will require fewer gyrations to reach the target %AV.  Typical 

values range from 0.16 to 0.3.  Equation 5 shows that the properties that contribute to 

low %AVNini are low gradation k, high binder content, high sphericity, and high texture.  

Sphericity is a measure of how round an aggregate is.  Very round aggregates (nearly a 

sphere) have higher sphericity values than more oblong aggregates.  Aggregates with 

rough surfaces will have higher texture values than smooth aggregates.  Again, most of 

these property relationships agree with expectations, but the effect of high aggregate 

texture enhancing compactability is not completely understood. 
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 In the future, other studies on the topic of compactability could benefit from the 

following changes in experimental design.  

 

 Several additional mixtures included to the data set and a wider variety of 

mixtures could improve the model.  Some of the inconsistencies in the statistical 

model could be addressed by the addition of more mixtures, and it is possible that 

the prediction performance could be improved as well.  This study included 22 

mixtures, two or three times that number would probably significantly improve 

the results.  

 

 The gyratory compaction curves used in this study were fit very well by a 

logarithmic trendline.  This trendline utilizes two parameters to describe the 

curve (slope and intercept).  Almost any other compaction parameter used in this 

study or the other studies discussed in the literature review can be back-

calculated to a high accuracy using those two trendline parameters.  Future 

studies should focus on the slope and height of the compaction curve and less on 

other parameters that do not describe this curve. 

 

 As a way to increase the diversity of the data set, individual properties of HMA 

mixtures included in a study could be changed to create a new mixture with 

slightly different properties.  For instance, the angular and rough aggregate used 
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in one mixture could be replaced by a round and smooth aggregate, binders and 

binder contents could be changed, or aggregate gradations could be manipulated. 

 

 It is possible that there are other mixture properties that could be good predictors 

of compaction that were not included in this study.  Some suggestions include 

voids in mineral aggregate (VMA), effective binder content, and dry-rodded 

density of the aggregate mixture. 

 

 By comparing the compaction parameters for each set of four replicate samples 

for each mixture, it was found that all replicates have nearly the same 

compaction parameters.  This similarity of parameters between replicates adds 

little diversity to the model, and in some cases all replicates were left out of the 

analysis for simplicity.  Future studies need not include replicate samples in the 

statistical analysis. 

 

This study found that there are significant correlations between some mixture 

properties and compaction parameters.  By focusing on the right mixture properties and 

including a large variety of HMA mixtures, a model that predicts compaction accurately 

should be possible. 
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APPENDIX A 

AIR VOID CORRECTION 

 

Gmb estimated (N) =  

Correction Factor (N) =  

Gmb corrected (N) =  

%AV corrected (N) =  
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APPENDIX B 

AGGREGATE STOCKPILE CALCULATIONS 

This is a proposed procedure and has not yet been approved. 

 

Standard Practice for 

Determining Aggregate Source 

Shape Values from Digital 

Image Analysis Shape 

Properties 

 

 

AASHTO Designation: xx-xx 
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Standard Practice for 

Determining Aggregate Source Shape 

Values from Digital Image Analysis Shape 

Properties 

AASHTO Designation: xx-xx 

SCOPE 

This standard covers the determination of aggregate source and source blend shape 

characteristics using gradation analysis and shape properties 

determined by means of digital image analysis. 

This standard may involve hazardous materials, operations, and equipment. This 

standard does not purport to address all of the safety problems 

associated with its use.  It is the responsibility of the user of this 

standard to establish appropriate safety and health practices and 

determine the applicability of regulatory limitations prior to use. 

REFERENCED DOCUMENTS 

AASHTO Standards: 

 T 11  Amount of Material Finer Than 75 m in Aggregate 

 T 27  Standard Method of Test for Sieve Analysis of Fine and Coarse Aggregates 

 T 84  Standard Method of Test for Specific Gravity and Absorption of Fine Aggregate 

 T 85  Standard Method of Test for Specific Gravity and Absorption of Coarse Aggregate 

 TP XX  Standard Method of Test for Determining Aggregate Shape Properties by Means 

of Digital Image Analysis 

TERMINOLOGY 

Aggregate size—material retained on a given sieve size after passing the next larger 

sieve. 

Fine Aggregate—Aggregate material passing 4.75mm (#4) sieve. 
sieve sizes: 2.36mm (#8), 1.18mm (#16), 0.60mm (#30), 0.30mm (#50), 0.15mm (#100), 

0.075mm (#200) 

Coarse Aggregate—Aggregate material retained on 4.75mm (#4) sieve. 
sieve sizes: 25.0mm (1”), 19.0mm (3/4”), 12.5mm (1/2”), 9.5mm (3/8”), 4.75mm (#4) 
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Shape Properties for each retained sieve (x) 

Gradient Angularity (GA)—Applies to both fine and coarse aggregate sizes 
and is related to the sharpness of the corners of 2-dimensional 
images of aggregate particles.  The gradient angularity 
quantifies changes along a particle boundary with higher 
gradient values indicating a more angular shape.  Gradient 
angularity has a relative range of 0 to 10000 with a perfect circle 
having a value of 0. 

Gradient Angularity:  

3

1

3

1
3

1 n

i

iin
GA  (1) 

where:  θ  angle of orientation of the edge points 

 n is the total number of points 

 subscript i denoting the ith point on the edge of the particle. 

Texture (or Micro-Texture) (TX)—Applies to coarse aggregate sizes only and 
describes the relative smoothness or roughness of surface 
features less than roughly 0.5 mm in size which are too small to 
affect the overall shape.  Texture has a relative scale of 0 to 1000 
with a smooth polished surface approaching a value of 0. 

23

1 1

, ,
3

1

i

N

j

ji yxD
N

TX  (2) 

where:  

 D = decomposition function 

 n = decomposition level 

 N = total number of coefficients in an image 

 i = 1, 2,or 3 for detailed images 

 j = wavelet index 

 x,y = location of the coefficients in transformed domain 

Sphericity (SP)—Applies to coarse aggregate sizes only and describes the 
overall three dimensional shape of a particle.  Sphericity has a 
relative scale of 0 to 1.  A sphericity value of one indicates a 
particle has equal dimensions (cubical). 

3
2

*

L

IS

d

dd
SP  (3) 

where:  dS = particle shortest dimension 

 dI = particle intermediate dimension 

 dL = particle longest dimension 
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Form 2D—Applies to fine aggregate sizes only and is used to quantify the 
relative form from 2-dimensional images of aggregate particles.  
Form2D has a relative scale of 0 to 20.  A perfect circle has a 
Form 2D value of zero. 

360

0

2
R

RR
DForm  (4) 

where:  Rθ is the radius of the particle at an angle of θ  

 ∆θ is the incremental difference in the angle 

 

Flat and Elongated—those particles having a ratio of longest dimension to 
shortest dimension greater than a specified value. 
Aggregate particle dimensions in an x, y, z coordinate system 

dS = particle shortest dimension 

dI = particle intermediate 

dL = particle longest dimension 

Flatness Ratio (S/L):  

I

S

d

d
Flatness  (5) 

Elongation Ratio (I/L):  

L

I

d

d
Elongation  (6) 

Flat and Elongated Value (F&E):  

S

L

d

d
SL /  (7) 

Flat or Elongated—those particles having a ratio of intermediate dimension 
to shortest dimension or longest dimension to intermediate 
dimension greater than a specified value. 

Flat or Elongated (ForE):  Ratio
d

d
or

d

d

I

L

S

I
(i.e.:  1, 2, 3…) (8) 

%Passx = % passing sieve x 

%Rx = % retained on sieve x (passing sieve x+1) 

SIGNIFICANCE AND USE 

Shape, angularity, and surface texture of aggregates have been shown to directly 

affect the engineering properties of highway construction materials 

such as hot mix asphalt concrete, Portland cement concrete, and 

unbound aggregate layers.  This standard is used to characterize the 

combined shape values for an aggregate source from the individual 
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particle shape properties determined by digital image analysis from 

AASHTO Test Method xx-xx.  The aggregate shape characterization 

includes  Gradient Angularity, Form 2D, Sphericity, Texture, and 

Flat and Elongated value.   

 

Note 1—The National Cooperative Highway Research Program Report 

555 provides background information relevant to characterizing aggregate 

shape, texture and angularity. 

 

This practice may be used to characterize the shape characteristics of single source 

aggregate materials and multiple source aggregate material blends. 

 

PROCEDURE 

Determine the aggregate sample grading according to AASHTO T27 and the 

amount finer than 75 m according to AASHTO T11. 

Determine the aggregate sample specific gravities according to AASHTO T84 and 

T85. 

Determine the material sample shape values for Form 2D, Gradient Angularity, 

Sphericity, Form Ratios (F&E, F or E), and Texture according to 

AASHTO TP XX. 

CALCULATIONS – SINGLE SOURCE 

The material sample is typically characterized by individual evaluation of material 

retained on each sieve size, passing the next larger sieve.  For the 

purpose of calculating the combined shape values, consider any sizes 

that contain inadequate percent retained mass to achieve minimum 

particle count to have the same shape value as the average of the next 

larger or the next smaller size, whichever is present. 

Calculate the Percent Retained for the aggregate sample on each sieve using the 

AASHTO T27 results.: 

Sieve Sizes (x): 

Coarse: 25.0mm(1”), 19.0mm(3/4”), 12.5mm(1/2”), 9.5mm(3/8”), 4.75mm(#4) 
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Fine: 2.36mm(#8), 1.18mm(#16), 0.60mm(#30), 0.30mm(#50), 0.15mm(#100), 

0.075mm(#200) 

 

Percent Passing:  %Passx = % passing sieve x  

 

Percent Retained:  %Rx = % retained on sieve x 

xxx PassPassR %%% 1  (9) 

Calculate average particle size, volume, and surface area for each sieve size x for 

unit mass. 

For the purposes of shape characterization, volume and surface area of an average 

particle is estimated by using a cubical shape with side dimensions estimated by the 

average of the retained sieve and next larger sieve dimension.  

 

Average Particle Size:  
2

)( 1xx
x

SieveSieve
D  (mm) (10) 

Average Particle Surface Area (cubical):  
2

*6 xx DPSA  (mm2) (11) 

Average Particle Volume (cubical):  
3

xx DV  (mm3) (12) 

Calculate number of particles per sample unit mass for each sieve size from the size 

distribution of AASHTO T27 and the respective specific gravities 

from AASHTO T84 and T85. 

Number of particles per sieve size:  

xsb

x
x

VG

R
P

*

1000*%
#  (13) 

Note 2—A mass of 1 is assumed in Eq 13.  This calculation determines the weighting 

factor applied to each sieve size for a material sample, therefore, actual mass is not 

required. 

Calculate total particle surface area for each sieve size per sample unit mass. 

Particle Surface Area (each sieve x) (mm2):  xxx PPSASSA *#  (14) 

Calculate Sample Surface Area (per unit mass): 

Total Surface Area (mm2):   

0.25

075.0x

xSSATSA  (15) 

Coarse Surface Area (mm2):   

0.25

75.4x

xSSACSA  (16) 

Fine Surface Area (mm2):   

36.2

075.0x

xSSAFSA  (17) 



74 

 

 

Calculate Sample Particles Count (per unit mass): 

Total Particles:   

0.25

075.0

##
x

xPTP  (18) 

# Coarse Particles:   

0.25

75.4

##
x

xPCP  (19) 

# Fine Particles:   

36.2

075.0

##
x

xPFP  (20) 

Calculate Sample Gradient Angularity (weighted by surface area): 

 

Fine Gradient Angularity:  

36.2

075.0

*
1

x

xx GASSA
FSA

FGA  (21) 

 

Coarse Gradient Angularity:  

0.25

75.4

*
1

x

xx GASSA
CSA

CGA  (22) 

 

Overall Gradient Angularity:  

0.25

075.0

*
1

x

xx GASSA
TSA

GA  (23) 

 

Calculate Sample Fine Aggregate Form 2D (weighted by surface area): 
36.2

075.0

2*
1

2
x

xx DSSA
FSA

DForm  (24) 

Calculate Sample Coarse Aggregate Texture (weighted by surface area): 
0.25

75.4

*
1

x

xx TXSSA
CSA

TX  (25) 

Calculate Sample Coarse Aggregate Sphericity (weighted by particle count): 
0.25

75.4

*#
#

1

x

xx SPP
CP

SP  (26) 

Calculate Sample Sphericity Range Distribution (weighted by particle count): 

% of Particles with Sphericity  0.3 :  

0.25

75.4

)3.0(*#
#

1
)3.0(

x

xx SPP
CP

SP  (27) 

% of Particles with Sphericity 0.3  SP  0.7 :   
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0.25

75.4

)7.0(*#
#

1
)7.0(

x

xx SPP
CP

SP  (28) 

% of Particles with Sphericity 0.7  SP  1.0 :   

0.25

75.4

)0.1(*#
#

1
)0.1(

x

xx SPP
CP

SP  (29) 

Calculate sample weighted percentages of coarse aggregate Flat and Elongated 

Values (weighted by mass fraction) at the following ratios:  ≥1:1, 

>2:1, >3:1, >4:1, >5:1  

% dL/dS ≥ 1 :  

0.25

75.4 100

)1(/%*%
)1(/%

x

xx SLR
SL  (30) 

% dL/dS > 2 :  

0.25

75.4 100

)2(/%*%
)2(/%

x

xx SLR
SL  (31) 

% dL/dS > 3 :  

0.25

75.4 100

)3(/%*%
)3(/%

x

xx SLR
SL  (32) 

% dL/dS > 4 :  

0.25

75.4 100

)4(/%*%
)4(/%

x

xx SLR
SL  (33) 

% dL/dS > 5 :  

0.25

75.4 100

)5(/%*%
)5(/%

x

xx SLR
SL  (34) 

Calculate the sample weighted percentages of Coarse Aggregate Flat or 
Elongated (weighted by mass fraction) at the following ratios:  
≥1:1, >2:1, >3:1, >4:1, >5:1  

% dI/dS or dL/dI ≥ 1 :  

0.25

75.4 100

)1(%*%
)1(%

x

xx ForER
ForE  (35) 

% dI/dS or dL/dI > 2 :  

0.25

75.4 100

)2(%*%
)2(%

x

xx ForER
ForE  (36) 

% dI/dS or dL/dI > 3 : 

0.25

75.4 100

)3(%*%
)3(%

x

xx ForER
ForE  (37) 

% dI/dS or dL/dI > 4 : 

0.25

75.4 100

)4(%*%
)4(%

x

xx ForER
ForE  (38) 

% dI/dS or dL/dI > 5 : 

0.25

75.4 100

)5(%*%
)5(%

x

xx ForER
ForE  (39) 
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CALCULATIONS – MULTIPLE SOURCE BLEND 

Use the calculations in this section to estimate the shape characteristics of multiple 

material source blends.  Each source must be sampled and 

characterized according to Section 0 calculations. 

Determine Blend Composition Percentages 

%ASn = Percent Aggregate Source n  

100%
1

n

i

iAS  (40) 

where: n = # of aggregate sources 

Calculate Blend Surface Area 

Blend Total Surface Area (each sieve):   

 () 

n

i x

ixi
xBlend

SSAAS
SSA

1

5.37

075.0

_
100

*%
 

where: x= 0.075 to 25.0 mm 

 n= # of aggregate sources 

Total Surface Area Blend (all sieves x = 0.075 to 25.0 mm) 

0.25

075.0

_

x

xBlendBlend SSATSA  (41) 

Coarse Surface Area Blend (sieve x = 4.75 to 25.0): 

0.25

75.4

_

x

xBlendBlend SSACSA  (42) 

Fine Surface Area Blend (sieve x =0.075 to 2.36): 

36.2

075.0

_

x

xBlendBlend SSAFSA  (43) 

Calculate number of particles per blend unit mass for each sieve size: 

n

i x

ixi
xBlend

PAS
P

1

0.25

075.0

_
100

*#%
#  (44) 

Calculate number of particles per blend unit mass 

Total Particle Count Blend:  

0.25

075.0

_##
x

xBlendBlend PTP  (45) 

# Coarse Particles Blend:  
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0.25

75.4

_##
x

xBlendBlend PCP  (46) 

# Fine Particles Blend:  

36.2

075.0

_##
x

xBlendBlend PFP  (47) 

Calculate Blend Gradient Angularity for each size x = 0.075 to 25.0 mm and 

combined (weighted by surface area): 

i

i

ixixi

xBlend

xBlend

GASSAAS

SSA
GA

1_

_
100

**%1
 (48) 

Blend Fine Gradient Angularity:  

36.2

075.0

__ *
1

x

xBlendxBlend

Blend

Blend GASSA
FSA

FGA  (49 

 

Blend Coarse Gradient Angularity:  

0.25

75.4

__ *
1

x

xBlendxBlend

Blend

Blend GASSA
CSA

CGA  (50) 

 

Blend Overall Gradient Angularity:  

0.25

075.0

__ *
1

x

xBlendxBlend

Blend

Blend GASSA
TSA

GA  (51) 

 

Calculate Blend Fine Aggregate Form 2D for each size x = 0.075 to 2.36 mm and 

combined (weighted by surface area): 

n

i

ixixi

xBlend

xBlend

DSSAAS

SSA
DForm

1_

_
100

2**%1
2  (52) 

Blend Form 2D: 

36.2

075.0

__ 2*
1

2
x

xBlendxBlend

Blend

Blend DSSA
FSA

DForm  (53) 

 

Calculate Blend Texture for each size x = 4.75 to 25.0 mm and combined (weighted 

by coarse aggregate surface area): 

n

i

ixixi

xBlend

xBlend

TXSSAAS

SSA
TX

1_

_
100

**%1
 (54) 
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Blend Texture: 

0.25

75.4

__ *
1

x

xBlendxBlend

Blend

Blend TXSSA
CSA

TX  (55) 

 

Calculate Average Blend Sphericity for each size 4.75 to 25.0 and blend (weighted 

by coarse particle count):  

n

i

ixixi

xBlend

xBlend

SPPAS

P
SP

1_

_
100

**#%

#

1
 (56) 

Blend Sphericity:  

0.25

75.4

__ *#
#

1

x

xBlendxBlend

Blend

Blend SPP
CP

SP  (57) 

 

Calculate Blend Sphericity Distribution for each sieve 4.75 to 25.0 mm and blend 

(weighted by coarse particle count): 

 

% of Particles with Sphericity  0.3 (Blend):  

n

i

ixixi

xBlend

xBlend

SPPAS

P
SP

1_

_
100

)3.0(**#%

#

1
)3.0(  (58) 

0.25

75.4

__ )3.0(*#
#

1
)3.0(

x

xBlendxBlend

Blend

Blend SPP
CP

SP  (59) 

 

% of Particles with Sphericity 0.3  SP  0.7 (Blend):  

n

i

ixixi

xBlend

xBlend

SPPAS

P
SP

1_

_
100

)7.0(**#%

#

1
)7.0(  (60) 

0.25

75.4

__ )7.0(*#
#

1
)7.0(

x

xBlendxBlend

Blend

Blend SPP
CP

SP  (61) 

 

% of Particles with Sphericity 0.7  SP  1.0 (Blend):  

n

i

ixixi

xBlend

xBlend

SPPAS

P
SP

1_

_
100

)0.1(**#%

#

1
)0.1(  (62) 

0.25

75.4

__ )0.1(*#
#

1
)0.1(

x

xBlendxBlend

Blend

Blend SPP
CP

SP  (63) 
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Calculate combined Flat and Elongated Values for each sieve 4.75 to 25.0 mm and 

blend (weighted by mass fraction): 

% dL/dS ≥ 1 (Blend):  

n

i

ixixi
xBlend

SLRAS
SL

1
2_

100

)1(/%*%*%
)1(/%  (64) 

0.25

75.4

_)1(/%)1(/%
x

xBlendBlend SLSL  (65) 

% dL/dS > 2 (Blend):  

n

i

ixixi
xBlend

SLRAS
SL

1
2_

100

)2(/%*%*%
)2(/%  (66) 

0.25

75.4

_)2(/%)2(/%
x

xBlendBlend SLSL  (67) 

 

% dL/dS > 3 (Blend):  

n

i

ixixi
xBlend

SLRAS
SL

1
2_

100

)3(/%*%*%
)3(/%  (68) 

0.25

75.4

_)3(/%)3(/%
x

xBlendBlend SLSL  (69) 

 

% dL/dS > 4 (Blend):  

n

i

ixixi
xBlend

SLRAS
SL

1
2_

100

)4(/%*%*%
)4(/%  (70) 

0.25

75.4

_)4(/%)4(/%
x

xBlendBlend SLSL  (71) 

 

% dL/dS  5 (Blend):  

n

i

ixixi
xBlend

SLRAS
SL

1
2_

100

)5(/%*%*%
)5(/%  (72) 

5.37

75.4

_)5(/%)5(/%
x

xBlendBlend SLSL  (73) 

 

Calculate Flat or Elongated Values for each sieve 4.75 to 25.0 mm and blend 

(weighted by mass fraction): 
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% dI/dS or dL/dI ≥ 1 : (Blend):  

n

i

ixixi
xBlend

ForERAS
ForE

1
2_

100

)1(%*%*%
)1(%  (74) 

0.25

75.4

_)1(%)1(%
x

xBlendBlend ForEForE  (75) 

% dI/dS or dL/dI > 2 : (Blend):  

n

i

ixixi
xBlend

ForERAS
ForE

1
2_

100

)2(%*%*%
)2(%  (76) 

0.25

75.4

_)2(%)2(%
x

xBlendBlend ForEForE  (77) 

 

% dI/dS or dL/dI > 3 : (Blend):  

n

i

ixixi
xBlend

ForERAS
ForE

1
2_

100

)3(%*%*%
)3(%  (78) 

0.25

75.4

_)3(%)3(%
x

xBlendBlend ForEForE  (79) 

 

% dI/dS or dL/dI > 4 : (Blend):  

i

i

ixixi
xBlend

ForERAS
ForE

1
2_

100

)4(%*%*%
)4(%  (80) 

0.25

75.4

_)4(%)4(%
x

xBlendBlend ForEForE  (81) 

 

% dI/dS or dL/dI > 5 : (Blend):  

n

i

ixixi
xBlend

ForERAS
ForE

1
2_

100

)5(%*%*%
)5(%  (82) 

0.25

75.4

_)5(%)5(%
x

xBlendBlend ForEForE  (83) 

 

REPORT 

Report the following information: 

A sample report format is presented in Appendix X1 
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Project name 

Date of the analysis 

Material sample identifications:  type, source, size, gradation. 

Number of particles analyzed for each size. 

Material shape property mean and standard deviation.  Graphical 
representations of the property distributions may be included. 

PRECISION AND BIAS 

Precision—This practice uses data generated from other testing methods to develop 

cumulative information, therefore the precision of the values 

generated in this practice are established by the precision of the 

standards used to collect the raw data. 

Bias—Since there is no accepted reference device suitable for determining the bias 

in this method, no statement of bias is made. 

KEYWORDS 

aggregate; angularity; consensus property, shape, texture, form, elongation 

 

  



82 

 

 

Appendix X1: Sample Report 
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