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ABSTRACT

Simulation and Optimization of Wind Farm Operations under Stochastic

Conditions. (May 2010)

Eunshin Byon, B. S., Korean Advanced Science and Technology;

M.S., Korean Advanced Science and Technology

Chair of Advisory Committee: Dr. Yu Ding

This dissertation develops a new methodology and associated solution tools to

achieve optimal operations and maintenance strategies for wind turbines, helping

reduce operational costs and enhance the marketability of wind generation. The

integrated framework proposed includes two optimization models for enabling decision

support capability, and one discrete event-based simulation model that characterizes

the dynamic operations of wind power systems. The problems in the optimization

models are formulated as a partially observed Markov decision process to determine

an optimal action based on a wind turbine’s health status and the stochastic weather

conditions.

The first optimization model uses homogeneous parameters with an assumption

of stationary weather characteristics over the decision horizon. We derive a set of

closed-form expressions for the optimal policy and explore the policy’s monotonicity.

The second model allows time-varying weather conditions and other practical aspects.

Consequently, the resulting strategy are season-dependent. The model is solved using

a backward dynamic programming method. The benefits of the optimal policy are

highlighted via a case study that is based upon field data from the literature and

industry. We find that the optimal policy provides options for cost-effective actions,

because it can be adapted to a variety of operating conditions.
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Our discrete event-based simulation model incorporates critical components, such

as a wind turbine degradation model, power generation model, wind speed model,

and maintenance model. We provide practical insights gained by examining different

maintenance strategies. To the best of our knowledge, our simulation model is the

first discrete-event simulation model for wind farm operations.

Last, we present the integration framework, which incorporates the optimization

results in the simulation model. Preliminary results reveal that the integrated model

has the potential to provide practical guidelines that can reduce the operation costs

as well as enhance the marketability of wind energy.
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CHAPTER I

INTRODUCTION

I.1. Motivation

Propelled by the need to mitigate climate change and high energy costs, wind power

has become one of the fastest growing renewable energy sources around the world.

Worldwide, wind energy increased from 18 GW to 152 GW over the past decade. In

the US, total capacity of wind energy rose 45% in 2007 and is forecasted to nearly

triple by 2012 (American Wind Energy Association, 2008). According to NERC

(2009), approximately 260 GW of new renewable nameplate capacity is projected in

the US during 2009-2018. Roughly 96% of this total is estimated to be wind energy.

In fact, NERC projects that wind power alone will account for 18% of the US total

resource mix by 2018.

However, despite the vast capacity of global wind power reserve, the share of wind

energy comprises only a small portion of the current energy market. A key factor for

enhancing the marketability of wind energy is to reduce operations and maintenance

(O&M) costs (Vachon, 2002, Walford, 2006, Wiser and Bolinger, 2008). According to

Walford (2006), the contribution of O&M costs to the total energy production cost

could be as much as 20% for a wind farm. Vachon (2002) shows that O&M costs

can account for 75-90% of investment costs based on a 20-year life cycle for a 100

MW wind farm in North America with 600 turbines of 750 kW each. Field data from

Germany (Faulstich et al., 2008) indicate approximately six failures per year and

restoration times ranging from 60 hours to a few weeks. As a result, O&M accounts

The journal model is IIE Transactions.
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for 20-47.5% of the wholesale market price (Wiser and Bolinger, 2008). Considering

that most turbines in the US were installed in the past 10 to 15 years, wind facilities

are still operating in their relatively reliable period. In the next few years as turbine

components near the end of their design life cycles, it is expected that failure rates

of wind power facilities will soar exponentially, as will the costs of O&M.

I.2. Overview of wind farm operations and maintenance

Wind farm operators perform scheduled maintenances (SchMs) on a regular basis.

However, since turbines are typically subjected to irregular loading (Leite et al.,

2006)), the deterioration progress of individual components often differs considerably.

For this reason alone, SchMs may result in unnecessary visits, an inability to address

unexpected failures in a timely fashion, etc.

To minimize O&M costs, wind farm operators have come to understand that

condition-based maintenance (CBM) is essential to an effective maintenance program

(Zhang et al., 2009). For example, condition-based monitoring equipment (installing

sensors inside turbines) provides diagnostic information about the health of com-

ponents. Using such data helps wind farm operators to estimate the deterioration

progress that may lead to major failure or consequential damage and establish ap-

propriate maintenance in advance.

The CBM provides abundant information, but it cannot solve the uncertainty

issue perfectly (Ding et al., 2007). “Noise” can interfere with gathering measurement

data, and a specific value of monitoring data can come from the different conditions

of the target system. More importantly, fault diagnosis based on sensor measure-

ments is nontrivial, because wind turbines operate under non-steady and irregular

operating conditions. Given that it is difficult to determine the exact state of turbine
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components forces operators to estimate the actual state in a probabilistic sense.

Several additional stochastic factors also need to be considered. One is the

stochastic weather conditions that may constrain the feasibility of maintenance. Clearly,

to maximize generation, wind facilities are built where the wind blows strongest. But

climbing a turbine during wind speeds of more than 20 meters per second (m/s) is not

allowed; when speeds are higher than 30 m/s, a site becomes inaccessible (McMillan

and Ault, 2008). Moreover, some work takes days (and even weeks) to complete

due to the physical difficulties of repairing or replacing components. The relatively

long duration of a repair session increases the likelihood of disruption by adverse

weather. A study using a Monte Carlo simulation (Rademakers et al., 2003b) found

that turbine availability was only 85-94% in a 100-unit wind farm situated about 35

kilometers off the Dutch coast. The relatively low availability is due to the farm’s

poor accessibility which is, on average, around 60%. Another study (Bussel, 1999)

found the availability of a wind farm was 76%. Some repairs also require long lead

times for assembling maintenance crews and obtaining parts. Pacot et al. (2003)

points out that it may take several weeks for critical parts, such as a gearbox, to be

delivered. Ultimately, these and similar factors affect the revenue loss incurred during

downtimes. Lost productivity becomes more significant when turbine unavailability

occurs in the high wind seasons (Walford, 2006).

I.3. Research objective and outline

Due to uncertainty and stochastic issues, a properly timed and well-planned preven-

tive maintenance strategy should be of great interest to the wind industry. Hence, we

propose a new integrated framework for wind farm O&M. The framework includes

optimization models that provide the decision support capabilities enabling cost-
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effective planning, easily implementable real-time control for turbine management,

and a discrete event-based simulation model that characterizes the dynamic opera-

tions of wind power systems.

Fig. 1 depicts the integrated framework proposed. Within the framework, the

optimization models produce dynamic O&M strategies based on mathematical anal-

ysis. The simulation platform characterizes the behavior of large-scale wind power

systems with hundred-plus turbines per wind farm. It allows profound insights in

developing optimization models for O&M because of its platform for testing different

operational strategies.

Decision 

boundariesOptimization model 1: 

Static CBM model
Dynamic 

O&M  

strategy 

Mathematical models

Optimization model 2: 

Dynamic CBM model Insights in 

dynamic policy

strategy 

(real-time 

strategy)

Insight , parameters

Simulation Model

Dynamic 
Validation

of the 

Wind farm & Turbine 

configuration
Weather data

Simulation Model

time 

of the 

models

Degradation & 

Failure data
Maintenance data

Insight , parameters

Fig. 1. Overall framework

I.3.1. Optimization models and solution tools for operation and mainte-

nance

We develop two mathematical models to optimize maintenance activities. The mod-

els are based both on the internal condition of each turbine component and on
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the external operating environments. The internal conditions include the degree

of deterioration status (or health status) and the different failure modes associated

with individual components. The external operating environment includes weather

climate and required lead time to prepare repair resources. Although they may

not be significantly related to the degradation or failure of a turbine component,

they can impact the O&M costs and turbine availability (McMillan and Ault, 2008,

Rademakers et al., 2003a).

There are two types of measurements to estimate the internal condition of each

turbine component: 1. inexpensive, but less reliable, remote sensing and diagnosis

from general condition monitoring equipment, and 2. expensive, but more certain,

on-site visit/observation (OB). Condition monitoring sensors can be run continu-

ously but the information uncertainty must be handled with caution, and on-site

observations must be integrated with planning other maintenance actions.

This dissertation addresses the problem of sensor information uncertainty by

using a partially observed Markov decision process (POMDP), a sequential decision-

making process used to control a stochastic system based on a system state (Lovejoy,

1987, Rosenfield, 1976). In a POMDP setting, the system condition cannot be

observed directly, so that the condition is estimated in a probabilistic sense (Maillart,

2006, Maillart and Zheltova, 2007). Since sensors provide abundant yet uncertain

data, a POMDP is aptly suited to optimize turbine maintenance activities.

Our optimization models aim at deciding the optimal decision strategy. The

three types of actions are considered: preventive maintenance (PM); on-site visit and

observation (OB); and when neither is needed, continue monitoring and take no action

(NA). Regarding PM , we allow multiple repair levels that can bring an operating

system to any state between the current state and an “as-good-as-new” state. We

will examine the effects of each PM on costs, reliability and repair durations.
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OB, as discussed earlier, differs from an automated, remote monitoring system.

We define it as the infrequent, non-periodic on-site investigation that operators can

take. OB is fulfilled by either dispatching a maintenance crew or, if technologically

feasible, invoking more advanced smart sensors. Both options are generally costly,

but presumably depict system conditions with a high confidence. We note that the

co-existence of a cheap but unreliable remote monitoring and an accurate yet costly

OB is unique to the wind industry.

With these different actions and the other several critical aspects, we propose

two dynamic optimization models and their solution tools.

Model 1: This static, time-independent model with homogeneous parameters

we term a static CBM model. The homogeneous parameters imply that the character-

istics of weather conditions remain constant period by period. This relatively simple

model allows us to characterize the solution structures and thus develop more efficient

solution techniques. We analytically derive the optimal control limits for each action

as a set of closed-form expressions. We provide the necessary and sufficient conditions

under which preventive maintenance will be optimal and the sufficient conditions for

other actions to be optimal.

The model can also incorporate several structural properties, such as the mono-

tonicity of the optimal policy. We show that the structure of the optimal policy is

similar to those studied in the previous POMDP literature, but our policy structure

requires weaker assumptions. Optimality results for policy structures not previously

proved in the literature are also presented. We examine the practical implications of

these properties in wind turbine maintenance.

Model 2: This dynamic, time-dependent model with non-homogeneous param-

eters we term a dynamic CBM model. The time-varying parameters depend on pre-

vailing weather conditions and exhibit considerable seasonal differences. Therefore,



7

the resulting strategy is adaptive to the operating environments.

In the dynamic CBM model we formulate the problem as a finite horizon POMDP

model. The optimal policy is constructed from the evolution of the deterioration states

of individual wind turbine components. We use a backward dynamic programming

algorithm to solve the problem.

I.3.2. Discrete event simulation model

We use the discrete event modeling and simulation approach to build a generic

simulation model for wind farm operations. Specifically, discrete event system spec-

ification (DEVS) formalism (Zeigler et al., 2000) is used to derive the model that

can be tailored to any real-world facility. DEVS is a formal modeling and simulation

framework based on dynamical systems theory. We choose DEVS because it provides

well-defined concepts for coupling components, hierarchical and modular model con-

struction and an object-oriented substrate supporting repository reuse. Furthermore,

its modular construction ability allows the modeler to design and construct each model

independently for optimum efficiency. The models can interact with each other by

adhering to well-defined protocols.

This effort involves the following subtasks: (a) building wind farm DEVS atomic

models; (b) coupling the atomic models to create complex coupled models; (c) build-

ing the experimental frame (EF) to allow for a suite of simulation experiment choices;

(d) computer implementation of the models; and (e) testing, verification and valida-

tion. The simulation platform enables profound framework and insights into the

operation of large-scale wind power systems and provides a platform for testing and

validating the different O&M strategies or policies. Pre-defined algorithms can be

integrated into the simulation model to determine which O&M action to take for

each of the possible states (or conditions) of the system. This approach not only
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provides the clarity in wind farm operators’ decision-making, but also computational

efficiency in the simulation procedure.

We begin by dividing the simulation run of a suggested entire operating horizon

into shorter time periods (for example, one week) in order to take the aforementioned

internal/external stochastic factors into account. The weather model inside the

simulation generates climate conditions such as wind speeds for each time (planning)

period. We estimate the physical condition of turbine components based on recent

sensor information. The data inputs give us a highly accurate schedule that maximizes

the most feasible personnel/equipment allocations and maintenance operations for the

planning period being considered. We can then shift the decision horizon to the next

period to find the most feasible planning and scheduling, continuing the procedure

until we reach the end of the decision horizon. Upon completing the simulation,

the next step is to evaluate the implemented O&M strategy via several performance

criteria. To illustrate the application of the simulation framework, we perform a

case study based on field data from literature and industry. The results confirm our

hypothesis that appreciable benefits can be expected when operators apply the CBM

strategy.

Since the simulation model includes many critical aspects of wind farm opera-

tions, a broad array of potential applications in addition to the maintenance policy

can be developed on this simulation platform, e.g., evaluating site viability (Wan

et al., 2003), grid connection, generation adequacy of wind power systems (Karki and

Billinton, 2004), system reliability (Karki and Patel, 2009, Wen et al., 2009), and so

on.
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I.4. Organization of this dissertation

The remainder of this dissertation is organized as follows. Chapter II surveys the

various methods proposed in the literature for wind farm operations. We review

several studies about the O&M aspects of turbines to attain general understanding.

Then we review simulation studies for operations and their limitations. We also

examine POMDP optimization models for general maintenance problems and explain

the relationship between previous models and the models proposed in this study.

Chapter III discusses several modeling aspects relevant to wind farm O&M. We

present the different choices of maintenance actions available to wind farm operators,

the corresponding effects on system conditions, and the associated costs.

Chapter IV describes the static CBM model using a POMDP with static weather

parameters. Several critical factors uniquely encountered in wind farm operations are

incorporated in the model. We characterize the optimal policy after analyzing the

structural properties of the presented model. We derive the closed expressions for

each action to be optimal and give a computationally improved algorithm based on

the developed decision rules.

Chapter V extends the static CBM model, incorporating more practical aspects

of operations. We describe the dynamic CBM model with heterogeneous parameters

by allowing dynamic weather conditions. A backward dynamic programming is

devised to solve for the optimal policy numerically. We empirically demonstrate

the performance of the model using a case with strong seasonality.

Chapter VI describes several critical components, such as wind turbine degrada-

tion, power generation, wind speed simulation, and maintenance, and how to couple

such components to construct a generic simulation model. We conduct a case study by

applying the model to a 100-unit facility with different O&M strategies, and compare
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the performance of each strategy during the average life spans of the turbines.

Chapter VII introduces the integration framework to incorporate the optimiza-

tion results in the simulation. We propose a real-time decision-making process based

on the structural results garnered from the static CBM model and describe the

preliminary results.

Chapter VIII summarizes our findings and offers suggestions for expanding our

research to other classes of wind farm operations.

Appendix A gives detailed descriptions of the characteristics of the simulation

model which may prove useful to those unfamiliar with DEVS formalism.
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CHAPTER II

LITERATURE REVIEW

We first review several studies to understand the O&M aspects of wind turbine

generators. Then, we review simulation studies for wind farm operations. We

also examine several optimization models for general maintenance problems using

a POMDP which incorporates the information from condition monitoring sensors.

II.1. Studies on operation and maintenance

II.1.1. Factors affecting wind farm operations

Several studies have examined critical factors which affect the O&M costs of wind

generation. Pacot et al. (2003) discuss key performance indicators in wind farm

management, and review the effects of several factors such as wind turbine age,

turbine size, and location. Bussel (1999) presents an expert system to determine the

availability of wind turbines and O&M costs; the goal is to find the most economical

solution by striking a balance between front-loading costs invested for reliability

enhancement and O&M costs.

Ribrant (2006) and Ribrant and Bertling (2007) review the different failure modes

of turbine components and the corresponding consequences. For example, a failing

gearbox can also lead to bearing failures, sealing problems, and oil system problems.

According to Ribrant (2006), it can take several weeks to fix problems associated with

bearing failures, partly because of the long lead time needed to have labor and heavy

equipment in place, while oil system problems can usually be fixed within hours.
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II.1.2. Condition-based maintenance techniques and benefits

Insightful review of the recent CBM for turbines is provided by Caselitz and Giebhardt

(2005). Vibration analysis is the primary monitoring technique used for gearbox fault

detection (Khan et al., 2005). Other common monitoring systems include: measuring

the temperature of bearings, lubrication oil particulate content analysis, and optical

strain measurements (Ribrant, 2006).

A few studies attempt to quantify the benefits of CBM in the wind power

industry. McMillan and Ault (2008) evaluate the cost-effectiveness of CBM via

Monte Carlo simulations. They employ several probabilistic models to accommodate

uncertainties which are incorporated in their Monte Carlo simulations to capture

the complex processes. Through simulating various scenarios with different weather

problems, down-time duration, and repair costs, they show that operators can gain

economic benefits for onshore turbines by adopting specific CBM strategy. One would

expect more appreciable benefits for offshore wind turbines since the repairs of those

turbines are more costly and taking maintenance actions faces more constraints.

Similarly, Nilsson and Bertling (2007) present an asset life-cycle cost analysis by

breaking all maintenance costs into several cost components. They analyze the

benefits of CBM with a case study of two wind farms in Sweden and the UK.

II.1.3. Mathematical models for optimal strategies

There are two categories of mathematical models. The first uses statistical methods

to identify the optimal repair time based on failure statistics. Using statistical

approaches, Andrawus et al. (2007) employ the Weibull distribution to model the

failure pattern of each component before deciding on the optimal replacement cycle

for each component. According to their case studies of 600 kW horizontal axis
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turbines, a gearbox should be replaced every six years and a generator every three

years to minimize total maintenance costs. Similarly, Hall and Strutt (2007) develop

probabilistic failure models for assessing component reliability. Both studies consider

the average aging process of the components, but do not capture the degradation

behavior of each individual component.

The second category uses Markov models to analyze the aging behavior of wind

components. Notably, Markov models are in wide use because of their flexibility and

popularity in many industrial applications (Billinton and Li, 2004, Hoskins et al.,

1999, Jirutitijaroen and Singh, 2004, Qian et al., 2007, Welte, 2009, Yang et al., 2008).

To date, however, Markov models have rarely been applied to the wind industry. Sayas

and Allan (1996) evaluate the generation availability of wind farms using a Markov

model, in which wind turbine condition is categorized by two simple states: up or

down. A simple failure model is considered, i.e. the time to failure of each generator

including both turbines and conventional generators is assumed to be exponentially

distributed, and the mean time to failure (MTTF) of each generator is estimated from

historical data. Based on historical data about wind turbine failures, the transition

probabilities between the two states are also obtained.

McMillan and Ault (2008) further categorize the states of a wind turbine con-

dition in more detail by considering the individual state of critical components like

gearboxes and generators. Their Markow model incorporates an intermediate state

to represent component degradation behavior for a gearbox. Condition monitoring

equipment to evaluate the system state is employed, but it is assumed that the

condition monitoring equipment exactly reveals the degradation status of each turbine

component.
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II.1.4. Limitations of existing models

Most existing wind farm O&M models neglect the critical factors addressed in Chap-

ter I. For example, most mathematical models described in Section II.1.3 only

consider the degradation condition of turbine components, and omit other exoge-

nous factors such as weather constraints and lead time to prepare resources upon a

failure. Moreover, the decisions for repairing wind turbines are based on average aging

behavior, but the real-time sensory information which reflects the actual condition of

each turbine component is not integrated. Only McMillan and Ault (2008) consider

the sensory information in their aging model, but they do not take into account the

uncertainty associated with the sensor information.

Finally, the existing studies only consider preventive repairs as a decision al-

ternative. As discussed in Section I.3.1, on-site investigation (OB) to examine the

exact condition of wind turbine components is costly, but provides the most accurate

information about component condition. Therefore, OB must be planned carefully

when planning other maintenance actions.

II.2. Simulation model for wind farm operations

In this section, we first survey the simulation studies directly related to O&M. Then,

we review studies which are not specific to wind farm O&M, but from which we hope

to gain insights about reliability and the cost issues of wind energy within the entire

electric power system. These studies provide the broad applicability of our simulation

model to other classes of problems associated with wind power operations.
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II.2.1. Simulation models related to wind farm operation and mainte-

nance

Rademakers et al. (2003b) describe a Monte Carlo simulation model for operations

and maintenance of offshore wind farms, developed by Delft University of Technology

(TU-Delft). They illustrate the features and benefits of the model using a case study of

a 100 MW wind farm. The model simulates the operation aspects over a period of time

by considering several critical factors for performing repair actions, such as turbine

failures and weather. The failures of turbine components are generated stochastically,

based on the relevant statistics such as MTTF and reliability distributions. Weather

conditions are realized with the given summer and winter storm percentages at

the specific site. The model further categorizes different failure modes and the

corresponding repair actions. For example, the first category of the failure mode

requires the replacement of rotor and nacelle with external crane; the second failure

mode requires replacement of large components with internal crane, and so on. The

failure rates of the individual components are distributed over four maintenance

categories. The model only considers corrective maintenance, and the simulation

results indicate that the revenue losses account for 55% of the total maintenance costs,

mainly due to the long lead times to prepare parts and the waiting time until favorable

weather conditions are met. Similar studies appear in Bussel (1999), Rademakers

et al. (2003a) and Hendriks et al. (2000).

McMillan and Ault (2008) quantify the cost-effectiveness of CBM by comparing

the performance of different maintenance polices. Several probabilistic models are

employed to introduce uncertainties. They use an autoregressive time series analysis

to generate wind speeds and consider weather constraints when performing repair

actions.
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Simulations are also used for the validation purpose of various O&M approaches.

In Andrawus et al. (2007), the suggested strategy resulting from their statistical model

is evaluated by using Monte Carlo simulations. They assess the reliability, availability,

and maintenance costs by simulating a wind farm with turbines over a period of four

years using a commercial software called ReliaSoft BlockSim-7 (ReliaSoft BlocSim-7

software, 2007). Similarly, Hall and Strutt (2007) develop probabilistic failure models

for component reliability using Monte Carlo simulation combined with statistical

analysis.

II.2.2. Other simulation models

Karki and Billinton (2004) use a Monte Carlo simulation to help determine appro-

priate wind power penetration in an existing power system from both reliability

and economic aspects. The generating system is divided into subsystems of wind

turbine generators and conventional generators. The power output generated from

the wind system is combined with the capacity of the conventional system to create

the generation model for the entire power system. In simulating wind speeds to deter-

mine the generated power from the wind turbines, the authors use an autoregressive

moving average (ARMA) time series model. A simple failure model is considered

in this study; i.e. the time to failure of each generator including wind turbines and

conventional generators is assumed to be exponentially distributed, and the MTTF

of each generator is estimated from historical data. Based on a case study of a typical

small power generating system, the authors present the procedure to help determine

an appropriate wind penetration level in a power system with both reliability and

cost criteria.

Karki and Patel (2009) extend the above study to determine appropriate trans-

mission line size and evaluate the reliability of the combined wind generation and
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transmission systems. Several other studies also use Monte Carlo simulation to

evaluate the reliability and/or availability of hybrid power systems including wind

power (Di Fazio and Russo, 2008, Leite et al., 2006, Ravindra and Prakash, 2008).

For a detailed review of recent reliability assessment studies on wind power, also see

Wen et al. (2009).

II.2.3. Limitations of existing simulation models

Discrete event simulation and modeling (Law and Kelton, 1997, Zeigler et al., 2000)

is an operations research technique that has been used in the past to look at the char-

acteristics of many applications, yet studies applying it to wind energy are scarce. To

the best of our knowledge, this dissertation presents the first discrete-event simulation

model specific to wind farm operations.

In discrete event simulation, the operation of each model is represented as a

chronological sequence of events which occur at discrete time instances and can

alter the system state (Miller et al., 2009). Our simulation model also belongs to

the category of a Monte Carlo simulation, in the sense that it uses random number

generators to characterize the stochastic aspects of wind farm operations. A major

difference between our proposed model and existing models is that in the latter

time evolution is unimportant, and the focus is to obtain lump sum estimates for

performance measures. On the contrary, our model enables operators to gain a

detailed knowledge of the lifetime evolution of wind power systems in addition to

gathering performance measures.

Moreover, the current simulation models are generally oversimplified without

sufficient granularity representing wind farm operations. Most of them assume in-

dependence, yet in reality there is a high dependency of wind turbines in power

generation. There is a spatial correlation of wind speeds at wind turbine sites, and as



18

a result, generation is also correlated among the turbines. In addition, a well-designed

model must consider the elevation information and the morphology of the terrain at

a turbine site, because these factors affect power production.

Perhaps most critical is the lack of decision-making ability inside existing simula-

tion models, Simply put, there is no integrated framework for wind farm operations in

which the simulations can interact with decision-making modules during simulation

runs.

II.3. Optimization models using partially observed Markov decision pro-

cesses (POMDPs)

Recently several mathematical models have been introduced which incorporate infor-

mation from CBM. Although they are not specific to turbine maintenance, we can

gain insights about the utilization of CBM data.

II.3.1. Static operating environment

Maillart (2006) uses POMDPs to adaptively schedule the observation and to decide

the appropriate maintenance actions based on the state information from CBM. In her

study, the system is assumed to undergo a multi-state Markovian deterioration process

with a known and fixed transition probability matrix. Gebraeel (2006) integrates

the real-time sensory signals from CBM with a population-specific aging process to

capture the degradation behavior of individual components. The author updates the

remaining life distributions of individual components in a Bayesian manner. Similarly,

Ghasemi et al. (2007) represent a system’s deterioration process using the average

aging behavior provided by the manufacturer (or from survival data) and the system

utilization that can be diagnosed by CBM data. They formulate the problem via a
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POMDP and derive optimal policies using dynamic programming.

Several studies examine the structural properties of POMDP maintenance models

(Lovejoy, 1987, Maillart, 2006, Maillart and Zheltova, 2007, Ohnishi et al., 1986,

Rosenfield, 1976, Ross, 1971). Although they choose different state definitions and

cost structures, they establish a monotonic “At-Most-Four-Region” (AM4R) struc-

ture. AM4R implies that along ordered subsets of deterioration state spaces, the

optimal policy regions are divided into four regions at most in the following order:

taking no action → taking observation to perfectly identify the physical condition of

a system→ taking no action→ preventive maintenance. For example, Ohnishi et al.

(1986) prove similar results for the problem where a system is monitored incompletely

in discrete decision epochs, but taking observation perfectly reveals the condition of a

system at some cost (for detailed reviews of these AM4R studies, see Maillart (2006)).

II.3.2. Stochastic operating environment

Most maintenance studies in the literature to date only consider static environmental

conditions. Very few quantitative studies exist for systems operating under stochastic

environments. Thomas et al. (1991) investigate the repair strategies to maximize the

expected survival time until a catastrophic event occurs in an uncertain environment.

They consider the situation where a system should be stopped during inspection or

maintenance action. If specific events, termed “initiating events”, take place when

a system is down or being replaced, they are noted as catastrophic events; examples

given are military equipment or hospital systems. Thomas et al. (1991) also show that

similar AM4R structural results hold for a simple system in which the system state

takes only the binary values, operating or failed. Kim and Thomas (2006) extend the

problem where the multiple environmental situations are assumed to follow Markovian

process. However, the criteria in both studies are designed to maximize the expected
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time until a catastrophe occurs. In sum, they focus on short-term availability, whereas

we are interested in minimizing long-term total costs.

II.3.3. Two proposed optimization models

We devise two multistate POMDP models to capture the degradation process of

wind turbines and to decide the optimal maintenance strategies. The presented

models extend the model introduced in Maillart (2006) by incorporating the unique

characteristics of turbine operations. For example, to represent stochastic weather

conditions, we apply the initiating events idea described above, since harsh weather

conditions delay repair processes and cause non-negligible revenue losses. Other

characteristics included are long lead times after unplanned failures and the resulting

production losses.

For the static CBM model with homogeneous parameters, we show that the

optimal decision rules are composed of control limit polices. Previous POMDP studies

show the existence of an optimal control limit for preventive maintenance action

(Maillart and Zheltova, 2007, Ohnishi et al., 1986), i.e. if preventive maintenance is

an optimal action for a system it is also an optimal action for a more deteriorated

system. These studies do not provide the exact value of the control limit. In contrast,

this dissertation derives the closed-form conditions for each action to be optimal.

Establishing closed-form expressions helps us to efficiently find optimal strategies

that produce significant speedups in high dimensional problems.

We also show that the static CBM model still holds the well-known monotonic

AM4R policy structure under weaker assumptions than Maillart (2006). Since the

model can be generalized by varying the parameter values, the AM4R policy structure

we present can be applied not only to wind turbines, but also to other general aging

systems. Additionally, we demonstrate the conditions under which the optimal policy
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structure becomes a more appealing monotonic “At-Most-Three-Region” (AM3R)

structure. AM3R implies that there are at most three optimal policy regions along

ordered subsets of the deterioration state spaces in the following order: taking no

action →taking observation → preventive maintenance. There is no second “taking

no action” region in a AM3R structure, which there is one in the AM4R structure.

This simpler structure is more intuitive and easier to implement.

In the dynamic CBM model, we gain insights about adapting the repair strategy

based on changing operating environments. We solve the problem by a backward

dynamic programming. Due to the heterogeneity of weather parameters, we cannot

derive the structural properties as we established for the static CBM model. However,

as discussed in Chapter VII, we suggest a real-time algorithm to find the approximate

decision rules for the optimal policy based on the results of the static CBM model. In

the real-time algorithm, the most updated weather information is applied to decide

the proper maintenance policy. We provide the preliminary results to empirically

validate the real-time algorithm using a case study.
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CHAPTER III

MODELING THE OPERATION AND MAINTENANCE IN WIND

FARMS

In this chapter, we examine several modeling aspects relevant to the wind farm

operations. We also consider the different choices of maintenance action that the wind

farm operators can take and the corresponding effects on the system condition and

the associated costs. It is assumed that the wind farm operators make maintenance

decisions in discrete time.

III.1. Modeling aspects in wind farm operations

III.1.1. Different failure modes

Wind turbine components experience different failure modes, leading to the different

failure consequences. Each failure mode determines what type of parts/crew is

required, which in turn determines the costs, lead time and repair time. Accordingly,

the costs of corrective maintenance (CM) and the downtime due to the occurrence

of a turbine failure could vary for different failure modes. We assume that a system

can experience L types of failures.

III.1.2. Partial information about a system

Suppose that the deterioration levels of an operating system are classified into a finite

number of conditions 1, · · · ,M and that there are L different types of failures. Then,

the system condition can be categorized into a series of states, 1, · · · ,M + L. State

1 denotes the best condition like “new”, and state M denotes the most deteriorated

operating condition before a system fails. State M + l reflects the lth failed mode,
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l = 1, · · · , L. Let us call S0 = {1, · · · ,M + L} the original state space.

In reality, the physical condition of a turbine component is not known exactly, but

may be estimated from the condition monitoring sensor signals. Estimations rarely

reveal perfectly the system conditions and health status due to a wide variety of

reasons, such as imperfect models linking measurements to specific faults, as well

as noises and contaminations in sensor signals (Ding et al., 2007). One way to

characterize the information from the sensor signals is to specify a probability vector

about the actual underlying condition. A common treatment of the information

uncertainty under the POMDP setting is to define a state as a probability distribution,

representing one’s belief over the corresponding true state. As such, we define the

state of the system as the following probability distribution

π = [π1, π2, · · · , πM+L], (3.1)

where πi, i = 1, · · · ,M + L is the probability that the system is in deterioration

level i. π is commonly known as an information state in the literature (Maillart and

Zheltova, 2007). Then, the state space under the POMDP setting becomes

S1 = {[π1, π2, · · · , πM+L];
M+L∑
i=1

πi = 1, 0 ≤ πi ≤ 1, i = 1, · · · ,M + L} (3.2)

Let us call S1 the partially observed state space.

When one of the elements in the information state is one and other elements are

zero, the state is called the extreme state, denoted by ei, i = 1, · · · ,M + L, where

ei = [0, · · · , 1, · · · , 0] is (M+L)×1 dimensional row vector with a 1 in the ith position

and 0 elsewhere. In other words, e1 denotes the best condition like an “as-good-as

new” condition, eM is the most deteriorated condition, and eM+l, l = 1, · · · , L denotes

the lth failure mode. These extreme states reveal the system’s condition perfectly.

Note that
∑M

i=1 πi = 1 for an operating system since wind turbines no longer
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operate upon failures. When a system fails with the lth failure mode, the state

becomes eM+l.

III.1.3. Markovian deterioration

In this study, we choose a Markov model to represent the aging behavior of a system.

When a system undergoes Markovian deterioration, the current state is transited to

another state according to a transition probability matrix, P = [pij](M+L)×(M+L). P

consists of the four submatrices as follows:

P =

 PA PB

0L×M IL×L

 , (3.3)

where PA denotes an M ×M transition matrix from an operating state to another

operating state, and PB is an M × L transition matrix from an operating state to

one of the failure states. 0L×M is an L×M zero matrix, whereas IL×L is an identity

matrix. Together, 0L×M and IL×L matrices reflect the fact that once the system

fails, it cannot return to any operating state on its own but remains at the same

failure state unless a maintenance action is taken. In many practical applications, P

is an upper-triangular matrix where the lower off-diagonal elements are zero because

a system cannot improve on its own. Fig. 2 illustrates the state transitions with an

upper-triangular matrix P in the original state space S0 .

Suppose that the current information state of an operating system is π and no

action (NA) is taken. The probability that the system will still operate until the

next decision point is R(π) =
∑M

i=1

∑M
j=1 πipij. People call this probability as the

reliability of the system (Maillart, 2006). Based on the law of conditional probability

(Maillart, 2006), the information state after the next transition, given that the system
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is not yet failed, is

π′j(π) =


∑M
i=1 πipij
R(π)

, j = 1, 2, · · · ,M

0, j = M + 1, · · · ,M + L.
(3.4)

As such, the system is transited to the next state π′(π) = [π′1(π), · · · , π′M(π), 0, · · · , 0]

with probability R(π).

As an additional note, sensor information is not reflected in the state transition

in (3.4) because the uncertainty and bias from sensor outputs may contaminate the

information state further. How the sensor information should be used in updating

the information state has been addressed in several studies (Porta et al., 2006, Qian

et al., 2007, Spaan and Vlassis, 2005). But the method and analysis is not straight-

forward and remains as an open question yet. Since this issue is out of scope of this

dissertation, we simply apply the equation (3.4) for modeling the state transition.

If the system fails and results in the lth failure mode with probability Hl(π) =∑M
i=1 πipi,M+l, the state becomes eM+l in the next period. And, the total probability

that the system fails until the next period is H(π) = 1−R(π) =
∑M+L

j=M+1Hl(π), which

is called the hazard rate of the system. Fig. 3 illustrates the state transition diagram

in the partially observed state space S1 without any maintenance interruption.
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III.2. Maintenance actions

III.2.1. Corrective maintenance

According to Walford (2006), the portion of the corrective maintenance costs is

between 30% and 60% of the total O&M costs. Not only do the direct costs (to fix

the failed components), but the indirect costs such as revenue losses also contribute

considerably to the corrective maintenance costs. This is mainly the result of a

typically long downtime, due to usually restricted accessibility to a wind farm and

limited availability of parts and crew (Rademakers et al., 2003a).

Upon a failure with the lth failure mode, parts are ordered and crews are arranged,

which supposedly takes λ(l) lead time. When all of the parts and crew are available,

and if the weather conditions are good enough to allow the repair work to go ahead,

the crew carry out a CM for the lth failure mode (namely, CM(l)) for µ(l) repair

periods at cost CCM(l) (note: λ(l) and µ(l) take non-negative integer values, meaning

0 period, 1 period, 2 periods and so on). If the prevailing weather conditions are

not good enough, however, the crew must wait until the weather conditions permit a

repair. Let WCM(l),n represent the probability that the prevailing weather conditions

during the nth period are harsh, and CM for the lth failure mode is thus prohibited.
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Without loss of generality, we order the failure states such that a higher in-

dex implies a more serious failure mode. We assume that major repairs that fix

serious problems take one full period (i.e. µ(l) = 1), whereas the repair time for

minor problems is negligible compared to the duration of a period (i.e. µ(l) = 0).

Understandably, major repairs require that the weather conditions stay permitting

for the whole repair period, and also require costlier resources and longer lead time

than minor repairs. Therefore, we have WCM(l),n ≤ WCM(l′),n, CCM(l) ≤ CCM(l′), and

λ(l) ≤ λ(l′) for l ≤ l′.

Unless the repair is completed, wind turbines can no longer be operated after a

failure, causing τn revenue losses at period n. Note that τn could be a time-dependent

parameter, varying season by season. After the repair, the system is renewed to an

as-good-as-new state. Fig. 4 illustrates the repair process after a failure occurs. The

figure illustrates the repairing process after a major failure where µ(l) = 1. For a

minor failure, the process would be similar except µ(l) = 0

lth failure 
occurs

Decision made 
to carry out CM(l)

periods
(lead time)

Ready to 
carry out CM(l)

CM(l) is
completed

)(l Waiting time for 
good weather 

windows

periods
(repair time)

)(l

Fig. 4. Corrective maintenance after a failure with the lth failure mode

III.2.2. Preventive maintenance

PM is the action to repair the system that has deteriorated but not yet failed

(Chattopadhyay, 2004). The PM ’s are divided based on how system condition can be



28

improved with maintenance efforts. Recall that the condition of an operating system

in this study is modeled by M discrete levels, which suggests that there can be at

most M − 1 choices for the PM actions, namely, PM(1), · · · , PM(M − 1), where

PM(m) denotes the PM action which repairs the system to the state em at cost

CPM(m). For example, choosing PM(1) corresponds to performing a major repair

such as overhaul, which returns the system to an as-good-as-new state, e1. On the

other hand, PM(M − 1) spends the least efforts to bring the system state to eM−1.

Accordingly, CPM(m) ≥ CPM(m′), ∀m ≤ m′.

Depending on which PM level is chosen, the repair time and the requirements for

weather conditions may differ, and consequently, the production loss during a repair

can be different. If the weather becomes harsh during a repair, the crew have to hold

the repair work until the weather returns to good conditions. Let WPM(m),n represent

the probability that the weather conditions at period n do not allow PM(m) to be

performed, m = 1, · · · ,M − 1. Then, we have WPM(m),n ≥ WPM(m′),n for m ≤ m′.

III.2.3. Observation

Through the remote monitoring system, the wind farm operators can attain the partial

(and imperfect) information about the system condition, while OB is the action to

evaluate the system’s exact deterioration level at cost COB. The information state

after an OB reverts to one of the extreme states ei, i = 1, · · · ,M , where ei is defined

earlier in Section III.1.2. After an OB, the decision maker will choose an adequate

maintenance action in that same decision period, based on the updated information

state.
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III.2.4. No action

NA is the action to continue the operation without any intervention. With this ac-

tion, the system undergoes deterioration according to a known transition probability

matrix, P = [pij](M+L)×(M+L) in (3.3). Given the current information state π, under

NA, the system will transit to the next state π′(π) in (3.4) in the next decision point

with probability R(π) or fail with the lth failure mode with probability Hl(π).

III.3. Illustrative example

Suppose that the operating system condition can be categorized into three different

aging levels, namely, normal, alert and alarm condition, respectively. π1, π2 and

π3 denote the probability that the system condition is normal, alert and alarm,

respectively. Fig. 5 illustrates the partially observed state space for an operating

system. In the figure, the X-axis denotes the alert probability π2, whereas the Y -axis

is the alarm probability π3. Since π1 + π2 + π3 = 1, the origin (0, 0) implies the best

condition e1. The state space is defined as the triangle surrounded by the X-axis,

Y -axis and π2 + π3 = 1. Note that π2 ≥ 0, π3 ≥ 0 and π2 + π3 ≤ 1. Therefore, all

states can only fall inside the triangular area, as shown in Fig. 5.

The area A in the upper-left corner of the triangle depicts the states correspond-

ing to seriously deteriorating conditions. The states belonging to this area might need

remedies such as preventive repairs to avoid a catastrophic failure in the near future.

On the other hand, the area B in the lower-left corner implies the healthy conditions,

which might not need any repair action. The states outside these two areas are those

whose aging conditions are in-between and the information about the health status

of the system is obscure. Therefore, OB might be necessary when the system state

belongs to this in-between area.



30

3
π

(alarm 

3
e

area A

2
π

(alarm 

probability)

(alert probability)1
e

2
e

area B

Fig. 5. Partially observed state space for an operating system
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CHAPTER IV

STATIC CBM MODEL: A POMDP MODEL WITH HOMOGENEOUS

PARAMETERS

In this chapter we formulate the wind turbine maintenance problem using a POMDP

with homogeneous parameters. We introduce the existing algorithm to numerically

solve the problem and in later sections, we will present a computationally improved

algorithm after analyzing the structural properties of the presented model.

IV.1. Model formulation

Let Vn(π) denote the minimum expected total cost when n periods are left to the

terminal period (or the total cost-to-go) and the current state is π. At each decision

epoch, there are M + 1 possible action alternatives: NA, PM(1), · · · , PM(M − 1),

and OB. In this model, we assume the weather characteristics remain constant across

the decision horizon. That is, all weather related parameters are constant, and we

set WCM(l) = WCM(l),n, WPM(m) = WPM(m),n and τ = τn for ∀l,m, n.

WhenNA is selected at the current state π, the total cost-to-go can be formulated

as follows:

NAn(π) =
L∑
l=1

(
λ(l) · τ + CMn−λ(l)−1(eM+l)

)
Hl(π) + Vn−1(π′(π))R(π) (4.1)

where

CMn(eM+l) =WCM(l) (τ + CMn−1(eM+l)) +

(1−WCM(l))(τ · 1(µ(l) = 1) + CCM(l) + Vn−µ(l)(e1)) (4.2)

Here, 1(·) is the indicator function. Under NA, the system could either end up with
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the lth failure mode with probability Hl(π), l = 1, · · · , L, or, transit to the next

state π′(π) with probability R(π). In (4.1), the first term λ(l) · τ is the total revenue

losses during the lead time upon a system failure with lth mode. CMn(em+l) in (4.2)

reflects the CM costs for the lth failure mode. The first component in (4.2) is the

expected costs caused by delays due to harsh weather conditions, which would occur

with probability WCM(l). The second component indicates the repair costs under

good weather conditions. Note that τ · 1(µ(l) = 1) in (4.2) specifies the revenue

losses during a major repair that takes one full period. After the repair, the system

condition is restored to the best condition e1.

Next, let us consider the actions of PM . PM(m) action, m = 1, · · · ,M − 1

improves the system condition to the state em. In this static CBM model, we assume

that all of the preventive repairs take one full period and if the weather conditions

become harsh during the repair, the job has to be halted and will be resumed in the

next period. The following formulation in (4.3) is the total cost-to-go for PM(m) for

m = 1, · · · ,M − 1:

PMn(m) = WPM(m)(τ + PMn−1(m)) + (1−WPM(m))(τ + CPM(m) + Vn−1(em))

(4.3)

Finally, we model the action of OB. The observation costs are divided into

the direct costs to inspect the system and the post maintenance costs after the

system condition is evaluated precisely. The following OBn(π) and Postn(π) together

represent that after each observation at cost COB, the state is updated to ei with

probability πi and then we choose the least costly action in the same decision period,

among NA or PM(m), m = 1, · · · ,M − 1.

OBn(π) = COB +
M∑
i=1

Postn(ei)πi (4.4)
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where

Postn(ei) = min{NAn(ei), PMn(1), · · · , PMn(M − 1)} (4.5)

Note that OB cannot be optimal at the extreme points ei, i = 1, · · · ,M because

OBn(ei) is always greater thanmin{NAn(ei), PMn(1), · · · , PMn(M−1)} when COB >

0.

Now, the optimal value function can be written as follows:

Vn(π) = min{NAn(π), PMn(1), · · · , PMn(M − 1), OBn(π)} (4.6)

Solving the optimization in (4.6) gives the the optimal decision rule δSn (π) at the

current state π where the superscript “S” implies a static policy. Here, δSn (π) will

take one of the possible actions, NA, PM(1), · · · , PM(m − 1), OB, specifying the

best action selection when the system occupies the state π at a specified decision

epoch n.

IV.2. Limiting behavior

Since the system is renewed after CM or the system condition is improved after

PM(m) as long as weather conditions are good, the model is unichain for 0 ≤

WCM(l) < 1 and 0 ≤ WPM(m) < 1, ∀l,m (Maillart, 2006). That is, the transition

matrix corresponding to each action consists of a single recurrent class. For these

kinds of problems, Puterman (1994) shows that Vn(π) approaches a line with slope g

and intercept b(π) as n becomes large, which is,

lim
n→∞

Vn(π) = n · g + b(π) (4.7)
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Here, g denotes the average cost per unit time under the optimal policy, b(π) is the

bias, or the relative cost when the information state starts from π.

To obtain g and b(π), we should take limit for the cost-to-go associated with each

action. First, taking limit of NAn(π) and then applying (4.7) yields

lim
n→∞

NAn(π) = lim
n→∞

L∑
l=1

(
λ(l) · τ + CMn−λ(l)−1(eM+l)

)
Hl(π) + Vn−1(π′(π))R(π)

(4.8)

=
L∑
l=1

(λ(l) · τ + (n− λ(l)− 1)g + b(eM+l))Hl(π)+

((n− 1)g + b(π′(π)))R(π) (4.9)

=ng +
L∑
l=1

(λ(l)(τ − g) + b(eM+l))Hl(π) + b(π′(π))R(π)− g (4.10)

Let us denote the bias associated with action NA by bNA(π). Then, we can define

bNA(π) as follows:

bNA(π) =
L∑
l=1

(λ(l)(τ − g) + b(eM+l))Hl(π) + b(π′(π))R(π)− g (4.11)

Here, b(eM+l) can be obtained by applying the same technique to CMn(eM+l) in (4.2)

as follows:

b(eM+l) = CCM(l) + b(e1) +


WCM(l)(τ−g)

1−WCM(l)
if µ(l) = 0

(τ−g)
1−WCM(l)

if µ(l) = 1
(4.12)

Since b(π) is the relative difference in total cost that results from starting the process

in state π instead of any other state, Puterman (1994) suggests to set b(π0) = 0 for

an arbitrary π0. Intuitively, we set b(e1) = 0 in (4.12).

Similarly, let us denote the bias associated with PM(m) action by bPM(m)(π).
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That is,

lim
n→∞

PMn(m) = n · g + bPM(m)(π) (4.13)

Applying (4.13) to (4.3) in both sides gives

n · g + bPM(m)(π) =WPM(m)(τ + (n− 1)g + bPM(m)(π))+

(1−WPM(m))(τ + CPM + (n− 1)g + b(em)) (4.14)

Rearranging the above equation gives, for m = 1, · · · ,M − 1,

bPM(m)(π) = CPM(m) + b(em) +
(τ − g)

1−WPM(m)

(4.15)

Let us now define the new maintenance costs which compound weather effects,

lead time and production losses by C ′CM and C ′PM , respectively, as follows:

C ′CM(l) = CCM(l) + λ(l) · (τ − g) +


WCM(l)(τ−g)

1−WCM(l)
if µ(l) = 0

τ−g
1−WCM(l)

if µ(l) = 1
(4.16)

C ′PM(m) = CPM(m) + b(em) +
τ − g

1−WPM(m)

(4.17)

Here, the new corrective cost, C ′CM(l) consists of three terms, each of which has

physical implications. The first term, CCM(l) is a direct repair cost. The second

term is the revenue losses minus average maintenance costs during the lead time

(Note that during a waiting time, no maintenance cost is incurred). The last part is

the expected revenue losses during the repair delay due to weather constraints. For

example, when µ(l) = 0, the expected repair time is
WCM(l)

1−WCM(l)
. Similarly, when the

repair takes one period (i.e. µ(l) = 1), the expected number of periods until the

repair is finished is 1
1−WCM(l)

. During those periods, revenue losses incur. The new

preventive maintenance cost, C ′PM can be interpreted likewise.
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Also note that both C ′CM(l) and C ′PM(m) are increasing in WCM(l) and WPM(m),

respectively. This implies that higher frequency of harsh weather conditions incurs

higher repair costs. Here, we assume that τ ≥ g, i.e. the revenue per period is greater

than, or equal to, the average cost. Therefore, the added costs due to an unplanned

failure (i.e. C ′CM − C ′PM) arise from the following three factors: (1) increased repair

costs (for doing CM), i.e. CCM(l)−(CPM+b(em)); (2) production losses caused by the

waiting time to prepare resources after a failure, i.e. λ(l) · (τ − g); and (3) increased

possibility of repair delays due to more restricted weather requirements to carry out

CM .

Substituting C ′CM , C ′PM into (4.11) and (4.15) simplifies the equations to

b(π) = min


bNA(π) =

∑L
l=1C

′
CM(l)Hl(π) + b(π′(π))R(π)− g,

bPM(m)(π) = C ′PM(m),m = 1, · · · ,M − 1

bOB(π) = COB +
∑M

i=1 b(ei)πi

(4.18)

IV.3. Existing solution method - pure recursive technique

First, let us consider a sample path emanating from an information state π. By a

sample path, we mean the sequence of information states over time when no action

is taken, which is denoted by {π, π2, · · · ,Π(π)} where π2 = π′(π), π3 = π′(π2) and so

on. Π(π), defined by Π(π) ≡ πk
∗
, where k∗ = min{k : ||πk+1 − πk|| < ε} with small

ε > 0, is a stationary state or an absorbing state. Maillart (2006) shows, by referring

to Mandl (1959), that when the Markov chain is acyclic, Π(π) exists for any ε > 0.

Let us call the sequence of states emanating from one of the extreme points

b(ei), ∀i, in (4.18) an extreme sample path. Since all the biases at the states on the

extreme sample paths are independent of the biases at the states on non-extreme

sample paths, we can easily obtain b(ei), ∀i and average cost g by applying policy
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iteration (or value iteration) methods to the states only on the extreme sample paths

(Puterman, 1994). Then, bOB(π) and bPM(π) in (4.18) can be directly computed.

Now, we only need to compute bNA(π) to get b(π). We can use the similar

recursive technique introduced by Maillart (2004). First, we solve (4.18) for Π(π) by

b(Π(π)) = min


bNA(Π(π)) =

∑L
l=1 C

′
CMHl(π)−g

1−R(Π(π))
,

bPM(Π(π)) = C ′PM ,

bOB(Π(π)) = COB +
∑M

i=1 b(ei)Π(π)i

(4.19)

Then, we apply b(Π(π)) to (4.18) in order to find the optimal policy at the previous

state. By solving the recursive set of equations backwards, we can get the optimal

policy along the states on the sample path emanating from the original state π.

However, this recursive technique might be computationally inefficient when we

want to find the optimal policies at a large number of states in a high dimensional

state space. This is because we have to apply the recursive set of equations for each

state. These computational difficulties motivate us to study the structural properties

of the model.

IV.4. Structural properties

In this section we characterize the optimal policy of the static CBM model with several

structural properties. More specifically, we derive a set of closed expressions for the

optimal policy including the exact control limits for PM . In later sections we show

how these results help attain optimal polices. We also show that the model exhibits

the monotonous AM4R policy structure. This finding is an extension of a previous

study in Maillart (2006). In Maillart (2006), the AM4R results are shown for a simpler

model than the one presented here, and are obtained under specific assumptions on

the transition matrix and information states. We relax the assumptions while proving
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the results, and establish the conditions when the optimal policy is simplified to a

more intuitive “At-Most-Three-Region” (AM3R) structure.

For simplicity, we consider one failure mode and one major PM level, PM(1) in

the following discussions in this chapter (But the results will be extended for general

cases with multiple failure modes and multiple repair levels in Chapter VII). We

use PM to denote PM(1), and use WCM and WPM to represent the harsh weather

probabilities which prohibit CM and PM , respectively. Similarly, CCM and CPM

represent the direct repair costs for CM and PM , respectively. Typically CM requires

more complicated repair jobs than PM , resulting in WPM ≤ WCM and CPM ≤ CCM

in many practical cases.

IV.4.1. Preliminary results

We first introduce several definitions which are often used in POMDP studies. These

definitions can be found, for example, in Lovejoy (1987), Rosenfield (1976), and

Ohnishi et al. (1986).

Definition 1. Information state π is stochastically less (or smaller) than π̂, denoted

as π ≺st π̂ if and only if
∑

i≥j πi ≤
∑

i≥j π̂i for all j.

Definition 2. Information state π is less (or smaller) in likelihood ratio than π̂,

denoted as π ≺lr π̂ if and only if πiπ̂j − πjπ̂i ≥ 0 for all j ≥ i.

These two definitions present the binary relations of the two states in the sense

of deterioration. Both definitions imply that when the system is less deteriorated,

the state is stochastically (or in the likelihood ratio) less than another (Maillart and

Zheltova, 2007). However, as Proposition 1(a) (see below) suggests, ≺lr relationship is

stronger than ≺st relationship (Rosenfield, 1976). We also need additional definitions

regarding the transition matrix P .
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Definition 3. A transition matrix P has an Increasing Failure Rate (IFR) if
∑

j≥k pij ≤∑
j≥k pi′j for all i′ ≥ i and all k.

Definition 4. A transition matrix P is Totally Positive of order 2 (TP2) if pijpi′j′ ≥

pi′jpij′ for all i′ ≥ i and j′ ≥ j.

These definitions imply that the more deteriorated system tends to more likely

deteriorate further and/or fail (Maillart, 2006). Similar to the stochastic relations

defined in Definition 1 and Definition 2, TP2 is more stringent assumption than IFR

due to the following Proposition 1(b) (Rosenfield, 1976).

Proposition 1. (Rosenfield, 1976) (a) If π ≺lr π̂, then π ≺st π̂. (b) If P is TP2,

then P is IFR.

Before presenting our results, we introduce several well-known results in the

following two Propositions.

Proposition 2. (Derman, 1963) For any column vector v such that vi ≤ vi+1,∀i, if

π ≺st π̂, then π · v ≤ π̂v.

Proposition 3. (a) (Maillart, 2006) Suppose that P is IFR. If π ≺st π̂, then R(π) ≥

R(π̂). (b) (Maillart and Zheltova, 2007) If P is IFR and π ≺st π̂, then πP ≺st π̂P

The next Proposition 4 establishes that when P is IFR, the stochastic ordering

of two states are maintained after the transitions.

Proposition 4. Suppose that P is IFR. If π ≺st π̂, π′(π) ≺st π′(π̂).

Proof Let (πP )i, π
′
i(π) and π′i(π̂) denote the ith position of the row vector πP , π′(π)

and π′(π̂), respectively. Then, we have

∑
i≥j

π′i(π) =
∑
i≥j

(πP )i
R(π)

≤
∑
i≥j

(πP )i
R(π̂)

≤
∑
i≥j

(π̂P )i
R(π̂)

=
∑
i≥j

π′i(π̂) (4.20)
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The two inequalities in (4.20) hold due to Proposition 3(a) and Proposition 3(b),

respectively.

The following Proposition 5 demonstrates that the total cost-to-go for a failed

system is always greater than, or equal to, the cost-to-go when PM is selected.

Proposition 5. (a) CMn(eM+1) − CCM ≥ PMn − CPM for ∀n where CMn(eM+1),

and PMn are defined in (4.2), and (4.3), respectively. (b) CMn(eM+1) ≥ PMn for

∀n.

Proof (a) We prove the claim by induction method. Let λ is the lead time to prepare

repair resources upon failure (i.e. λ = λ(1)). Suppose that n ≥ λ + 1 because one

cannot carry out corrective maintenance when the system fails and the number of

remaining periods is less than, or equal to, the lead time. Without loss of generality,

we suppose Vλ+1(π) = 0 for an operating system and CMλ+1(eM+1) = CCM and

PMλ+1 = CPM . Then, CMλ+1(eM+1) − CCM = PMλ+1 − CPM = τ . Suppose that

CMn(eM+1)− CCM ≥ PMn − CPM for n ≥ λ+ 1. Then,

CMn+1(eM+1)− CCM

= (1−WCM)(τ + CCM + Vn(e1)) +WCM(τ + CMn(eM+1))− CCM (4.21)

= τ + Vn(e1) +WCM(CMn(eM+1)− CCM − Vn(e1)) (4.22)

≥ τ + Vn(e1) +WPM(PMn − CPM − Vn(e1)) (4.23)

= PMn+1 − CPM , (4.24)

where (4.23) is from induction hypothesis. Therefore, CMn(eM+1)− CCM ≥ PMn −

CPM holds for ∀n ≥ λ+ 1.
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(b)

CMn(eM+1) = (1−WCM)(τ + CCM + Vn−1(e1)) +WCM(τ + CMn−1(eM+1)),

(4.25)

= τ + CCM + Vn−1(e1) +WCM(CMn−1(eM+1)− CCM − Vn−1(e1))

(4.26)

≥ τ + CPM + Vn−1(e1) +WPM(PMn−1 − CPM − Vn−1(e1)) (4.27)

= PMn. (4.28)

Inequality in (4.27) is due to the result of Proposition 5(a) and the fact that CCM ≥

CPM and WCM ≥ WPM . Consequently, CMn(eM+1) ≥ PMn for all n.

The above Propositions allow us to derive the monotonicity of Vn(π) in ≺st-

ordering, as shown in Lemma 1.

Lemma 1. If P is IFR, b(π) in (4.18) is non-decreasing in ≺st-ordering.

Proof By induction, we can show that Vn(π) is non-decreasing in ≺st when P is IFR.

Let λ is the lead time to prepare repair resources upon failure. Suppose that n ≥ λ+1.

Without loss of generality, we suppose that Vλ+1(π) = 0, ∀π. Then, NAλ+2(π) =

(τλ + CMλ+1(eM+1))(1− R(π)) is non-decreasing in ≺st from Proposition 3(a), and

PMλ+2 is constant in π. OBλ+2(π) = COB +
∑M

i=1min{NAλ+2(ei), PMλ+2}πi. Since

ei ≺st ej for i ≤ j and NAλ+2(ei) is nondecreasing in i, OBλ+2(π) is also non-

decreasing in ≺st due to Proposition 2. Therefore, Vλ+2(π) is non-decreasing in ≺st.
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Suppose that Vn(π) is non-decreasing in ≺st for ∀n ≥ λ+ 1. Then, for π ≺ π̂,

NAn+1(π) = (τλ+ CMn−λ(eM+1))(1−R(π)) + Vn(π2)R(π) (4.29)

≤ (τλ+ CMn−λ(eM+1))(1−R(π)) + Vn(π̂2)R(π) (4.30)

= (τλ+ CMn−λ(eM+1))− (τλ+ CMn−λ(eM+1)− Vn(π̂2))R(π) (4.31)

≤ (τλ+ CMn−λ(eM+1))− (τλ+ CMn−λ(eM+1))− Vn(π̂2))R(π̂) (4.32)

= (τλ+ CMn−λ(eM+1))(1−R(π̂)) + Vn(π̂2)R(π̂)) = NAn+1(π̂) (4.33)

Note that H1(π) = 1 − R(π) for L = 1 in (4.29). (4.30) follows from the induction

assumption and Proposition 4(a). (4.32) follows from Proposition 3(a) and the fact

that τλ + CMn−λ(eM+1) ≥ Vn(π),∀π (Note that τλ + CMn−λ(eM+1) is the revenue

losses during the lead time plus corrective maintenance costs when the system fails,

so it is always greater than the optimal value function for any operating state).

It is obvious that OBn+1(π) = COB +
∑

imin{NAn+1(ei), PMn+1}πi is also non-

decreasing in ≺st with the similar reason explained above. Consequently, Vn+1(π) is

nondecreasing in ≺st, ∀n ≥ λ + 1. Since b(π) can be obtained by taking limits of

Vn(π), b(π) is nondecreasing in ≺st, which concludes the claim.

The claim of Lemma 1 extends the result presented in Maillart (2006) where

the monotonicity of the optimal cost function in ≺lr-ordering on the TP2 transition

matrix is shown. Also, unlike our model, the model in Maillart (2006) does not

consider revenue losses, lead time and stochastic operating environments (i.e. τ = 0,

λ = 0, WCM = WPM = 0). Therefore, the result of Lemma 1 is more general, and

can be applied to other general aging systems.
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IV.4.2. Closed expressions for optimal policy regions

In this section, we present the closed boundary expressions for the optimal policy.

Let ΩNA(π),ΩOB(π),ΩPM(π) be the set of information states with δS(π) = NA,

δS(π) = OB, and δS(π) = PM , respectively. To get the optimal policy to minimize

the long-run average cost, we need to compare bNA(π), bPM(π), and bOB(π).

First, the following Lemma 2 explains when NA is preferred to PM , and vice

versa. To prove the claim, we apply a technique similar to the one used in Ghasemi

et al. (2007).

Lemma 2. Suppose that P is IFR and upper-triangular. δS(π) 6= PM if R(π) ≥

1− g
C′CM−C

′
PM

. Also, δS(π) 6= NA if R(π) < 1− g
C′CM−C

′
PM

for π ≺st π′(π).

Proof

bNA(π)− bPM(π) = C ′CM(1−R(π)) + b(π′(π))R(π)− g − C ′PM (4.34)

= (C ′CM − C ′PM)(1−R(π))− g + (b(π′(π))− C ′PM)R(π) (4.35)

Note that b(π′(π)) ≤ C ′PM . Consequently, if (C ′CM − C ′PM)(1 − R(π)) − g ≤ 0 (or

equivalently, R(π) ≥ 1− g
C′CM−C

′
PM

), NA is preferred to PM . Next, consider the case

that (C ′CM − C ′PM)(1−R(π))− g > 0. Let us assume that δS(π) = NA. Then,

b(π′(π))− b(π) = b(π′(π))− (C ′CM(1−R(π)) + b(π′(π))R(π)− g) (4.36)

= (b(π′(π))− C ′PM)(1−R(π))− (C ′CM − C ′PM)(1−R(π)) + g

(4.37)

(4.36) holds from the assumption δS(π) = NA and thus, b(π) = C ′CM(1 − R(π)) +

b(π′(π))R(π) − g. Note that in (4.37), b(π′(π)) ≤ C ′PM . Therefore, when (C ′CM −

C ′PM)(1− R(π))− g > 0, b(π′(π)) ≤ b(π) with the assumption of δS(π) = NA. But,

this result contradicts that b(π′(π)) ≥ b(π) for π ≺st π′(π) from Lemma 1. Therefore,
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when (C ′CM − C ′PM)(1 − R(π)) − g > 0, or equivalently, R(π) < 1 − g
C′CM−C

′
PM

, NA

cannot be optimal.

The claim of Lemma 2 is intuitive. As the system deteriorates, its reliability

monotonically decreases. When its reliability is lower than a threshold (here, it

is 1 − g
C′CM−C

′
PM

), it is better to take some actions rather than do nothing. On

the contrary, we need not carry out costly maintenance action for a highly reliable

system. Note that the second part of Lemma 2 requires the assumption π ≺st π′(π),

which implies that the next state is more deteriorated than the current state in a

probabilistic sense. This assumption should hold in most commonly encountered

aging systems.

With the result of Lemma 2, bOB(π) in (4.19) can be reformulated as follows:

bOB(π) = COB +
M∑
i=1

{bNA(ei) · 1 (R(ei) ≥ α) + bPM(ei) · 1 (R(ei) < α)} πi (4.38)

Here, α = 1− g
C′CM−C

′
PM

. OBn(π) in (4.6) can be reformulated likewise.

Next, let us compare bOB(π) with bPM(π). If C ′PM < COB +
∑

i b(ei)πi, PM is

preferred to OB. As a result, if R(π) < 1− g
C′CM−C

′
PM

, and C ′PM < COB +
∑

i b(ei)πi,

the optimal policy is PM . Also, from the facts that bOB(π) is non-decreasing in

≺st-ordering, and that bPM(π) is constant, we can derive the control limit for PM in

a closed form. Many previous maintenance studies based on POMDPs simply prove

the “existence” of the control limit for PM . But for this problem, we analytically

obtain the necessary and sufficient condition. Theorem IV.1 summarizes the results.

Theorem IV.1. Suppose that P is IFR. (a) For π ≺st π′(π), the region where the

optimal policy is PM is defined by ΩPM = {π;R(π) < 1− g
C′CM−C

′
PM
, C ′PM < COB +∑

b(ei)πi}, whereas PM cannot be optimal for π /∈ ΩPM . (b) Furthermore, if δS(π) =
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PM , δS(π̂) = PM for π ≺st π̂.

Proof The first part is straightforward from Lemma 2 and the above discussions.

Regarding the second part, NA cannot be optimal at π̂ from the fact that R(π̂) ≤

R(π) for π ≺st π̂. Also, since b(ei) is non-decreasing in i,
∑

i b(ei)πi is also non-

decreasing in ≺st-ordering from Proposition 2, and so is bOB(π). This leads to

bOB(π̂) ≥ bOB(π). But, bPM(π) is constant. Thus, when δS(π) = PM , OB cannot be

optimal at π̂ as well, which concludes the second part of the Theorem.

This PM region in Theorem IV.1 defines the optimal PM region of the AM4R

policy, as we will discuss in Section IV.4.4.

Corollary 1. Suppose that P is IFR. (a) If R(π) < 1 − g
C′CM−C

′
PM

, and C ′PM ≥

COB +
∑
b(ei)πi, δ

S(π) = OB for π ≺st π′(π). (b) If R(π) ≥ 1 − g
C′CM−C

′
PM

, and

C ′PM < COB +
∑
b(ei)πi, δ

S(π) = NA.

Proof It follows directly from Lemma 2 and the fact that OB is preferred to PM

when C ′PM ≥ COB +
∑
b(ei)πi.

Finally, let us compare bNA(π) with bOB(π). We present the conditions under

which NA is preferred to OB and vice versa, in Lemma 3 and Lemma 4.

Lemma 3. Suppose that COB + CPM ≤ CCM . If R(π) ≥ (C′CM−COB−
∑
b(ei)πi)−g

C′CM−COB−
∑
b(ei)π′i(π)

, then

δS(π) 6= OB.
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Proof We use similar technique used in Lemma 2.

bNA(π)− bOB(π) (4.39)

= C ′CM(1−R(π)) + b(π′(π))R(π)− g − COB −
∑

b(ei)πi (4.40)

= (C ′CM − COB −
∑

b(ei)πi)(1−R(π))− g +R(π)(b(π′(π))− COB −
∑

b(ei)πi)

(4.41)

= (C ′CM − COB −
∑

b(ei)πi)(1−R(π))− g +R(π)
∑

b(ei)(π
′
i(π)− πi)

+R(π)(b(π′(π))− COB −
∑

b(ei)π
′
i(π)), (4.42)

Note that b(π′(π)) ≤ COB +
∑
b(ei)π

′
i(π). Therefore, if (C ′CM −COB−

∑
b(ei)πi)(1−

R(π))−g+R(π)
∑
b(ei)(π

′
i(π)−πi) ≤ 0, bNA(π) ≤ bOB(π). Re-arranging the condition

yields

(C ′CM − COB −
∑

b(ei)πi)(1−R(π))− g +R(π)
∑

b(ei)(π
′
i(π)− πi) < 0 (4.43)

⇔ R(π) ≥ C ′CM − COB −
∑
b(ei)πi − g

C ′CM − COB −
∑
b(ei)π′i(π)

(4.44)

The last inequality (4.44) comes from b(ei) ≤ C ′PM for all i = 1, · · · ,M and from

COB + C ′PM ≤ C ′CM (Note that COB + CPM ≤ CCM by assumption).

Similar to Lemma 2, Lemma 3 also explains that when the system is in a fairly

good condition with a high reliability, we need not carry out costly inspection of

the system. Along with Lemma 2, the following Corollary 2 specifies the sufficient

condition for NA to be optimal.

Corollary 2. If R(π) ≥ max{1− g
C′CM−C

′
PM
,
C′CM−COB−

∑
b(ei)πi−g

C′CM−COB−
∑
b(ei)π′i(π)

}, then δS(π) = NA.

Proof It follows directly from Lemma 2 and Lemma 3.

Lemma 4 specifies the sufficient condition under which OB is optimal.
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Lemma 4. Suppose that R(π) <
C′CM−COB−

∑
b(ei)πi−g

C′CM−COB−
∑
b(ei)π′i(π)

. If δS(π′(π)) = OB, then

δS(π) = OB.

Proof We will use contradiction. Assume that δS(π) = NA. Then,

b(π′(π))− b(π)−
∑

b(ei)(π
′
i(π)− πi) (4.45)

= b(π′(π))− C ′CM(1−R(π))− b(π′(π))R(π) + g −
∑

b(ei)(π
′
i(π)− πi) (4.46)

= (b(π′(π))− C ′CM)(1−R(π)) + g −
∑

b(ei)(π
′
i(π)− πi) (4.47)

= (b(π′(π))− COB −
∑

b(ei)π
′
i(π))(1−R(π))+

(COB +
∑

b(ei)πi − C ′CM)(1−R(π)) + g −R(π)
∑

b(ei)(π
′
i(π)− πi) (4.48)

Note that b(π′(π))−COB−
∑
b(ei)π

′
i(π) ≤ 0. Also, by the condition of the claim, the

remaining term is also negative. Therefore, we get b(π′(π))− b(π)−
∑
b(ei)(π

′
i(π)−

πi) < 0 under the assumption of δS(π) = NA. However,

b(π′(π))− b(π)−
∑

b(ei)(π
′
i(π)− πi) (4.49)

= bOB(π′(π))− b(π)− bOB(π′(π)) + bOB(π) (from δS(π′(π)) = OB), (4.50)

= −b(π) + bOB(π) ≥ 0, (4.51)

which contradicts the assumption. As a result, δS(π) cannot be NA. Also note

that bOB(π) ≤ bOB(π′(π)) ≤ bPM(π′(π)) = bPM(π). Therefore, PM cannot be also

optimal, which concludes δS(π) = OB.

Table 1 summarizes the closed boundaries for the optimal policy of the static

CBM model with one failure mode and one PM level.

IV.4.3. Structural properties along sample path

By extending the claim of Proposition 4(a), we can show that when P is IFR, all

of the states in the sample path emanating from any π is in increasing stochastic
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Table 1. Closed boundaries for optimal policy when L = 1 and M = 1

δS(π) Conditions Remark

PM if and only if R(π) < 1− g
C′CM−C

′
PM

and Sufficient

C ′PM < COB +
∑
b(ei)πi for π ≺st π′(π) and necessary

OB if R(π) < 1− g
C′CM−C

′
PM

and C ′PM ≥ COB +
∑
b(ei)πi Sufficient

or, if R(π) ≤ C′CM−COB−
∑
b(ei)πi−g

C′CM−COB−
∑
b(ei)π′i(π)

and δS(π′(π)) = OB

NA if R(π) ≥ 1− g
C′CM−C

′
PM

and C ′PM < COB +
∑
b(ei)πi Sufficient

or, if R(π) ≥ max{1− g
C′CM−C

′
PM
,
C′CM−COB−

∑
b(ei)πi−g

C′CM−COB−
∑
b(ei)π′i(π)

}

order as long as π ≺st π′(π). This allows us to apply all of the results developed in

Section IV.4.2 to the states along a sample path in increasing stochastic order. The

following Corollary 3 summarizes them.

Corollary 3. Suppose that P is IFR. Then the states along a sample path satisfy the

following properties for π ≺st π′(π).

(a) Any sample path is in ≺st-increasing order. i.e. π ≺st π2(= π′(π)) ≺st π3 ≺st

, · · · ,≺st Π(π) where πk+1 = π′(πk).

(b) Vn(π) and b(π) are non-decreasing along any sample path.

(c) Suppose that R(πq) ≥ 1− g
C′CM−C

′
PM

. δS(πk) 6= PM for ∀k ≤ q. On the contrary,

if R(πq) < 1− g
C′CM−C

′
PM

, δS(πk) 6= NA for ∀k ≥ q.

(d) There exists a critical number k∗ such that δS(πk) = PM , ∀k ≥ k∗, and δS(πk) 6=
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PM otherwise. And, such k∗ is given by k∗ = max{k1(π), k2(π)} where

k1(π) = min{k;R(πk) < 1− g

C ′CM − C ′PM
} (4.52)

k2(π) = min{k;COB +
∑

b(ei)π
k
i > C ′PM}. (4.53)

Proof (a) Applying Proposition 4 repeatedly to both sides of this inequality yields

the result.

(b) Since the states along any sample path is in ≺st-increasing order, the result follows

directly from Lemma 1.

(c) Note that R(πk) is non-increasing in k by proposition 3(a). Then, the result

follows from Lemma 2.

(d) For k ≥ k1(π), NA cannot be the optimal action from Lemma 2. Also, for

k ≥ k2(π), PM is preferable to OB since COB +
∑
b(ei)π

k
i is nondecreasing in k in

a ≺st-increasing sample path and C ′PM is constant. Hence for k ≥ k∗, either NA or

OB cannot be optimal. For k1 ≤ k < k∗, OB is optimal, whereas k2 ≤ k < k∗, NA

is optimal. For k < min{k1, k2}, OB or NA is optimal.

IV.4.4. The monotonic policy

Several previous studies establish the AM4R policy structure along an ordered subset

of state space for POMDP problems in different maintenance settings. For example,

Maillart (2006) presents the AM4R structure along any straight line of ≺lr-ordered

information states when P is TP2 in her model.

In this section, we establish similar results for the presented problem under less

stringent assumptions on the transition matrix and information states. We also deal

with more complicated problem which reflect the special characteristics of wind farm

operations. Specifically, we show that the optimal policy has the AM4R structure
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along a straight line of ≺st-ordered states on IFR transition matrix. In deriving the

desired results, we take an analogous approach to one proposed in Maillart (2004).

Consider two states π and π̂ for π ≺st π̂. Let us denote a state between π and

π̂ by π(η) = ηπ + (1 − η)π̂, 0 ≤ η ≤ 1. Here, higher η implies a more deteriorated

condition (we will show the reason in the proof of Theorem IV.2). Then, there exist

at most three numbers η1, η2, η3 to divide the optimal policy regions as follows:

δS(π(η)) = min


NA, if η < η1 or η2 < η ≤ η3

OB, if η1 ≤ η ≤ η2

PM, if η > η3

(4.54)

That is, as η increases, the optimal policy regions are divided into at most four

regions with the order NA→ OB → NA→ PM . To establish this AM4R structure,

we first show the concavity of Vn(π).

Lemma 5. Vn(π) is piecewise linear concave for all n.

Proof We apply the similar induction technique used in Maillart (2006). Let λ

denote the lead time. Suppose that n ≥ λ+ 1. Without loss of generality, we assume

Vλ+1(π) = 0 for an operating system. NAλ+1(π) = λτ(1 − R(π)) is linear in π.

OBn(π) is hyperplane of π and PMn is constant in π for ∀n. Therefore, Vλ+1(π)

is piecewise linear concave because minimum of linear functions is piecewise linear

concave. Now, suppose that Vn(π), n ≥ λ+ 1, is piecewise linear concave such that

Vn(π) = min{π · aTn ; an ∈ An} where an is a 1× (M + 1) dimensional column vector.

We only need to examine NAn+1(π) to show the piecewise linear concavity of Vn+1(π).

The first term of NAn+1(π), i.e. λτ + CMn−λ−1(eM + 1))(1 − R(π)), is linear in π.
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The second term of NAn+1(π) is,

R(π)Vn(π2) = R(π)min{π2 · aTn ; an ∈ An} (4.55)

= R(π)min

{[
(πP )1

R(π)
,
(πP )2

R(π)
, · · · , (πP )M

R(π)
, 0

]
· aTn ; an ∈ An

}
(4.56)

= min{[(πP )1, (πP )2, · · · , (πP )M , 0] · aTn ; an ∈ An} (4.57)

= min{π · aTn+1; an+1 ∈ An+1} (4.58)

Since R(π)Vn(π2) is the minimum of hyperplanes, it is piecewise linear concave, which

makes NAn+1(π) is also piecewise linear concave. Consequently, Vn+1(π) is piecewise

linear concave. And the claim holds for ∀n ≥ λ+ 1 by induction.

Now, we are ready to prove the monotonic AM4R structure along a≺st-increasing

line.

Theorem IV.2. If P is IFR, the optimal policy has the monotonic AM4R structure

along any straight line of information states in ≺st-increasing order. Furthermore,

the control limit to define optimal PM policy is defined by

η∗ = inf{λ;R(π(λ)) < 1− g
C′CM−C

′
PM
, C ′PM < COB +

∑
b(ei)π(λ)i}.

Proof Consider the two states π(η1) and π(η2) between π and π̂ (π ≺st π̂) where

π(ηj) = ηjπ + (1 − ηj)π̂, for j = 1, 2 and 0 ≤ η1 ≤ η2 ≤ 1. Then, from
∑

i≥j πi ≺st

η1

∑
i≥j πi+(1−η1)

∑
i≥j π̂i ≺st

∑
i≥j π̂i, we have π ≺st π(η1) ≺st π̂. In a similar way,

we can easily show that π(η1) ≺st π(η2) ≺st π̂. Therefore, π(η) is in ≺st-increasing

in η, which implies that bNA(π(η)) and bOB(π(η)) is non-decreasing in η. bPM(π(η))

is constant. Hence, there exists a control limit η∗ such that for any η > η∗, PM is

optimal. The value of η∗ is straightforward from Theorem IV.1. Next, let us consider

0 ≤ η ≤ η∗. For this region, we already know that PM cannot be optimal from

Theorem IV.1. In Lemma 5, we show that NAn(π) is piecewise linear concave.
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Thus bNA(π) is also piecewise linear concave, but bOB(π) is hyperplane. Thus,

{π; bNA(π) ≥ bOB(π)} is a convex set and {η; bNA(π(η)) ≥ bOB(π(η)), 0 ≤ η ≤ η∗} is

also a convex set. This concludes the AM4R structure.

As Rosenfield (1976) points out, the second NA region in the AM4R structure

may seem counter-intuitive. In the following discussions, we establish the conditions

under which we have the more intuitive AM3R policy structure. Let us define the

critical numbers to divide the optimal policy regions as follows:

ηNA≤PM = max{η;R(π(λ)) ≥ 1− g

C ′CM − C ′PM
} (4.59)

ηOB≤PM = max{η;COB +
∑

b(ei)πi(η) ≤ C ′PM}, (4.60)

where πi(η) in (4.60) is ith element of π(η). Note that for η ≤ ηNA≤PM , NA is

preferred to PM and vice versa. Similarly, For η ≤ ηOB≤PM , OB is preferred to PM

and vice versa.

Corollary 4. If ηNA≤PM < ηOB≤PM , the optimal policy has the monotonic AM3R

structure along any ≺st-increasing straight line of information states with the order

of NA → OB → PM . The optimal policy region for PM is given by {π(η);C ′PM <

COB +
∑
b(ei)πi(η)}.

Proof When ηNA≤PM < ηOB≤PM , The second NA region of AM4R structure van-

ishes. So the optimal policy structure results in at most three regions. The optimal

policy region for PM is straightforward from the previous discussions.

Fig. 6 compares the two policy structures. Whether the optimal policy structure

exhibits the AM4R or AM3R is highly dependent on the costs of PM . When the PM

costs are relatively larger compared to the costs related to other actions, the structure
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is more likely to result in the AM4R structure, as shown in Fig. 6(a). Otherwise, when

PM costs are comparable to other costs, the AM3R structure occurs more likely, as

shown in Fig. 6(b).

NA OB NA PM

( ))(λπ
OB

b

( ))(λπ
NA

b

π π̂
PMOB≤η

PMNA≤η

( ))(ηπ
PM

b

(a)

NA OB PM

( ))(ηπ
OB

b

( ))(ηπ
PM

b

( ))(ηπ
NA

b

π π̂
PMOB≤ηPMNA≤η

(b)

Fig. 6. Monotonic optimal policy structure: (a) AM4R structure (b) AM3R structure

In wind turbine operations, the repair costs (C ′CM) after an unplanned failure

are considerably larger compared to the PM costs. Also, in most cases OB costs are

not negligible because inspecting the physical condition by dispatching crew is costly

due to the high labor costs and the long distance of wind farms from the operation

centers (Rademakers et al., 2003a). This implies that the presented optimal policy

would more likely lead to the AM3R structure in wind turbine maintenance problems.
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IV.5. Algorithm

In Section IV.3, we introduced the pure recursive technique to find the optimal policy.

Now, using the structural policies developed so far, we present the new algorithm

which can reduce the computational efforts substantially.

Algorithm IV.1. Construction of an optimal policy for the static CBM model

Input: CCM , CPM , COB, WCM , WPM , λ, P and τ .

Step 1. Obtain b(ei), ∀i and average cost g by applying policy (or value) iteration to

the states on the extreme sample paths.

Step 2. Compute C ′CM , C ′PM in (4.16) and (4.17), respectively.

Step 3. Apply the following decision rules for a given π.

( a) Suppose that R(π) < 1− g
C′CM−C

′
PM

for π ≺st π′(π) . If bOB(π) > bPM(π),

δS(π) = PM . Otherwise, δS(π) = OB.

( b) Suppose that R(π) ≥ 1 − g
C′CM−C

′
PM

. δS(π) = NA if bOB(π) > bPM(π)

or if R(π) ≥ C′CM−COB−
∑
b(ei)πi−g

C′CM−COB−
∑
b(ei)π′i(π)

.

( c) Suppose that 1− g
C′CM−C

′
PM
≤ R(π) <

C′CM−COB−
∑
b(ei)πi−g

C′CM−COB−
∑
b(ei)π′i(π)

, and bOB(π) ≤

bPM . We apply the following recursive method, which improves the pure

recursive technique.

1. Set k = 1;

2. If R(πk) < 1− g
C′CM−C

′
PM

, b(πk) = min{bOB(πk), bPM(πk)}. Then ap-

ply the recursive set of equations (4.18) backward to get b(πk−1), · · · , b(π).

Otherwise, k = k + 1, and go to Step 3.

3. If ||πk+1 − πk|| < ε where ε is a small positive value, we apply (4.19)

to get b(πk), and then step backwards along the path by comparing
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bNA and bOB to get b(πk−1), · · · , b(π). Otherwise, k = k + 1, and go

back to Step 2.

The above method results in an optimal policy that can be analytically obtained

from the closed-form expressions. We need to apply the recursive method only for the

states whose reliabilities are between 1− g
C′CM−C

′
PM

, and
(C′CM−COB−

∑
b(ei)πi)−g

C′CM−COB−
∑
b(ei)π′i(π)

. Even

for the recursive method itself, as Step 3(c).2 shows, we need not proceed until we

meet the stationary state Π(π). Along the sample path, once we find the state whose

optimal policy is not NA (i.e. R(πk) ≤ 1− g
C′CM−C

′
PM

for some πk), we can compute

b(πk) by comparing bPM with bOB(πk). Then we can step backwards by applying

(4.18) until we get π. On the contrary, Step 3(c).3 occurs when the reliability at the

stationary state is greater than 1− g
C′CM−C

′
PM

. In this case, PM cannot be optimal at

all of the states along the sample path originating from π. Therefore, we only need

to compare bNA(πk) with bOB(πk) when we step backwards to π.

IV.6. Numerical examples

In this section, we present an example to illustrate the utility of the proposed dynamic

maintenance policy. We examine the failures at a gearbox because gearbox problems

have been identified a long while ago as one of the most serious problems in wind

turbines, and the recent large-scale wind turbines with new designs still suffer badly

from gearbox failures (Echavarria et al., 2008, McMillan and Ault, 2008, Nilsson and

Bertling, 2007, Ribrant, 2006, Ribrant and Bertling, 2007). We do want to note,

however, that similar analysis can be performed for other wind turbine components

as well.
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IV.6.1. Problem description

We choose appropriate parameter values based on published data, and discussions

with our industry partners. For the costs to repair a gearbox, we refer to Rademakers

et al. (2003a). The total direct costs for CM , which include labor costs, crane rental,

materials, and consumables, are CCM =$17,264. The PM costs are about half that

of the CM costs: CPM =$8,632. We assume that the system returns to an as-good-as

status after preventive maintenance. For a 2.5 MW turbine, revenue losses during one

week is assumed to be τ =$11,971. We set COB =$1,357, according to the suggestions

of our industry partners. The monetary unit of each cost factor in this example was

originally in euros (Rademakers et al., 2003a), but we converted from euros to the

US dollar with an exchange rate of 1 euro = 1.3572 dollar.

Typical downtime after failures may take from 600 hours (25 days) up to 60 days

(McMillan and Ault, 2008, Ribrant, 2006, Ribrant and Bertling, 2007). The major

contribution of this lengthy down time is the long lead time when the spare parts

and/or crew are not available. In this study, we assume that, upon failure, the lead

time for assembling repair crew and spare parts and travel time takes six weeks. We

also assume that repairs can be carried out in about one week (McMillan and Ault,

2008).

Generally, a transition matrix P can be generated from historical data by taking

a long-run history about the deterioration states, and counting transitions. Due to the

relatively short history of preventive maintenance practices in wind turbine industries,

we do not yet have a transition matrix generated from an actual aging gearbox. So we

use a P similar to the one used by Maillart (2006) with slight modifications. We will

examine the sensitivity of P in the next section. We assume that the weekly-based
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deterioration process follows a Markovian behavior with the following IFR matrix.

P =



0.90 0.05 0.03 0.02

0.00 0.85 0.10 0.05

0.00 0.00 0.92 0.08

0.00 0.00 0.00 1.00


(4.61)

Based on (4.61), we can represent the state of the gearbox as a four-dimensional row

vector, π = {π1, π2, π3, π4}. The values π1, π2, and π3 represent the probabilities of

being in a normal, alert, and alarm state, respectively. The value π4 represents the

probability of being in a failed state.

Fig. 7 illustrates the optimal policies with two different stochastic weather envi-

ronments. We can see that ΩOB, and ΩPM are convex sets. Also, if we draw a line

between any two points, the policy regions are divided into at most three regions in

most cases, which is consistent with the previous discussions that the AM3R structure

might dominate over the AM4R structure in real applications. Also notice that ΩPM

gets smaller as the chance of adverse weather conditions to prohibit PM increases.

That is, with higher frequency of adverse weather conditions (i.e. with higher WPM),

wind farm operators should be more conservative in carrying out PM because of

possible production losses caused by interrupted or delayed jobs during harsh weather.

Fig. 8 superimposes the control limits developed in Section IV.4.2 on the optimal

policy for the same example in Fig. 7(a). Line 1 depicts the preference of NA to PM ,

or vice versa, with R(π) = 1− g
C′CM−C

′
PM

. Line 2 is obtained from the comparison of

bOB and bPM with C ′PM = COB +
∑

i b(ei)πi. Finally, Line 3 defines the area where

NA is preferred to OB. The optimal policy of each area is as follows:

• PM in states above Line 1, and Line 2 (by Theorem IV.1).

• OB in states above Line 1, and below Line 2 (by Corollary 1(a)).
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Fig. 7. Optimal policy: (a) WPM = 0.1,WCM = 0.4 (b) WPM = 0.4,WCM = 0.4

• NA in states below Line 1, and Line 3 (by Lemma 2, and Lemma 3).

• NA in states in the triangular area surrounded by Line 1, Line 2, and Line 3

(by Corollary 1(b)).

The only states whose optimal policy are not straightforward from these control

limits are shown in the region surrounded by the dashed lines in Fig. 8. The

optimal policy in this region is obtained by applying the improved recursive technique

discussed in Section IV.5.
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IV.6.2. Performance comparison

Suppose that we want to find the optimal policy at every grid point, as shown in

Fig 7. As the dimension of states increases, computation time significantly increases

when we use the pure recursive algorithm. Fig. 9 compares the performance of the

suggested algorithm with the pure recursive technique. In the figure, “M+1” denotes

the dimension of a state and “# states” denote the number of states that we evaluate

to optimal policies. We use the same parameter values in the previous examples,

and WPM = 0.1 and WCM = 0.4, but vary the transition matrix along a state

size. The results indicate that the closed form of decision boundaries compounded

by the improved recursive technique reduces the computation time as much as 70%,

especially over the large-sized problem instances.

IV.6.3. Sensitivity analysis of transition matrix

Considering difficulties to get a transition matrix P , we analyze the sensitivity of a

transition matrix by applying four additional, different matrices, Pi, i = 1, · · · , 4.

P1 represents a more slowly deteriorating system in a stochastic sense than P in
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(4.61). That is, each row vector of P1 is stochastically less than the corresponding

row vector of P . Let us denote this relationship by P1 ≺st P . Similarly, P2 ≺st P , and

also P1 ≺st P2. On the other hand, P3, and P4 represent more rapidly deteriorating

systems than P , such that P ≺st P3 ≺st P4.

We quantify the speeds of deterioration of a system with Pk, k = 1, · · · , 4,

compared to P , with the measure

∆Pk(%) =
M∑
i=1

∑
j≥i

|P (i, j)− Pk(i, j)|
P (i, j)

× 100, . (4.62)

where P (i, j) is the element in ith row and jth column of P matrix, and Pk(i, j) is

similarly defined. Note that the lower off-diagonal elements are not involved in (4.62)

because we consider upper-triangular matrices. ∆Pk implies the relative difference of

Pk, compared to P .

To measure the sensitivity of a transition matrix, we use simulation. Suppose that

the actual system undergoes a deterioration process following a transition matrix P .

We simulate the trajectories of system states following P from 136 different starting

points. Here, 136 starting points are the points in the grid, similar to the grid points

shown in Fig. 4. To speed up the simulations, we use a coarser grid such that the

distance between adjacent grid points is 2
3
. From each starting point, the simulation
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is performed over 1,000 periods. At each period, we take actions as the optimal policy

suggests. Then the costs are averaged. This process is repeated 30 times. That is,

we gain the average cost g by the simulations on 136 different starting points × 1,000

periods × 30 trajectories (runs).

Suppose that we do not know the transition matrix exactly, so we incorrectly

use the transition matrix Pk to attain optimal policies, while the actual deterioration

process follows P . We apply the similar simulation process, but we use Pk to decide

the optimal policy. Then, we compute the average cost gk. From the results of the

simulations, we quantitatively measure the sensitivity of each transition matrix by

∆Gk =
gk − g
g
× 100. (4.63)

Table 2 summarizes the results. The fourth column (i.e. gk) shows that the

average costs increase as the assumed transition matrix Pk deviates from the actual

transition matrix P . However, the difference is not significant, as the fifth column

(i.e. ∆Gk) indicates. When the values of the actual transition matrix deviates from

the assumed transition matrix values by about 10% such as P1 and P4, the increased

cost is about 2.0% on average. When the element values are different by 5-6% such

as P2 and P3, average costs are increased by around 1%.

Although the results show that the average costs are not seriously affected by

the deviation of the assumed transition matrix from the actual one, we recommend

making considerable efforts to accumulate data regarding system deterioration. Rade-

makers et al. (2003a) also suggest that industry parties should share data for the

improvement of O&M for wind turbines. For conventional power systems, these

data for critical equipment such as circuit breakers and transformers have been

accumulated, and several preventive maintenance strategies have been introduced

based on historical data (Endrenyi et al., 2001, 1998, Sotiropoulos et al., 2007).
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Table 2. Sensitivity analysis on P

Pk ∆Pk g gk ∆Gk

P1 10.3% 3460.0 3527.9 2.0%

P2 6.1% 3460.0 3496.7 1.1%

P3 5.7% 3460.0 3491.8 0.9%

P4 10.1% 3460.0 3523.7 1.9%

Similar efforts are necessary in wind power industries.
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CHAPTER V

DYNAMIC CBM MODEL: A POMDP MODEL WITH

HETEROGENEOUS PARAMETERS

In this chapter, we develop the dynamic CBM model which extends the static CBM

model presented in Chapter IV by incorporating more practical aspects of wind

turbine operations. We formulate the problem as a finite-horizon model with het-

erogeneous parameters, and devise a backward dynamic programming to solve for

the optimal policy numerically.

V.1. Model formulation

Weather conditions not only affect the generating capacity of wind farms but also

determine its accessibility for major repairs. Harsh weather conditions could cause

the repairing interruption and delay. The relatively long duration of a turbine-related

repairing session in turn increases the chance that a repair is interrupted by adverse

weather conditions. Moreover wind power generations are maximized in high wind

speed seasons, downtime during these seasons could lead to huge productivity loss.

Taking such a seasonality factor into consideration, we examine the dynamic

weather conditions that could significantly differ season by season. We allow the

heterogeneity of parameters in this model. Therefore, the weather-related parameters,

WCM(l),n, WPM(m),n and τn, ∀l,m depend on the choice of a period. Also, let us

introduce a discount factor β, 0 ≤ β ≥ 1. When β = 1, the model is the average cost

model, whereas when β < 1, the model is discounted model. At each decision epoch,

there are M +1 possible action alternatives: NA, PM(1), · · · , PM(M −1), and OB.

Let Jn(π) denote tht total cost-to-go where n periods are left until the terminal
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period. When NA is selected at the current state π, the total cost-to-go is as follows:

NAn(π) =
L∑
l=1

(
τ̃n(l) + βλ(l)+1CMn−λ(l)−1(eM+l)

)
Hl(π) + Jn−1(π′(π))R(π) (5.1)

where

τ̃n(l) =

 λ(l)∑
t=1

βtτn−t

 · 1(λ(l) > 0) + 0 · 1(λ(l) = 0), (5.2)

and

CMn(eM+l) =WCM(l),n (τn + βCMn−1(eM+l)) +

(1−WCM(l),n)(τn · 1(µ(l) = 1) + CCM(l) + Jn−µ(l)(e1)) (5.3)

In (5.1), the first term τ̃n(l) is the total revenue losses during the lead time, upon a

system failure. If the system fails and the lead time is non-zero (i.e. λ(l) > 0), the

wind farm would lose the revenue of
∑λ(l)

t=1 β
tτn−t, as shown in the first component of

(5.2). Note that these revenue losses depend on weather conditions, which indicates

that if the system fails during the windy seasons and the failure requires long lead

time, one should expect significant production loss. On the contrary, the second term

in (5.2) implies the cases of minor failures with zero lead time.

CMn(eM+l) in (5.3) reflects the CM costs for the lth failure mode. The first

component is the expected costs caused by delays due to harsh weather conditions,

which would occur with probability WCM(l),n. The second component indicates the

repair costs under good weather conditions. Note that τn ·1(µ(l) = 1) in (5.3) specifies

the revenue losses during a major repair that takes one full period. After the repair,

the system condition is restored to the best condition e1.

Next, let us consider the actions of PM . PM(m) action, m = 1, · · · ,M − 1 can

be categorized into minor repairs and major repairs in a broad sense. We assume
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that the repair time for minor repairs is negligible. Therefore, minor repairs can

be carried out almost instantaneously as long as the weather conditions are good

(This is a more realistic setting than the one used in the static CBM model. Recall

that in static CBM model, we assume that PM(m) takes one full period regardless

of the repair level). But, if the weather conditions are not good during the whole

period, NA is taken. On the other hand, major repairs take one full period, and if

the weather conditions become harsh during the repair, the job has to be halted and

will be resumed in the next period. The following formulation in (5.4) is the total

cost-to-go for PM(m) for m = 1, · · · ,M − 1:

PMn(m) =



WPM(m),nNAn(π) + (1−WPM(m),n)(CPM(m) + Jn(em))

for minor repairs

WPM(m),n(τn + PMn−1(m)) + (1−WPM(m),n)(τn + CPM(m) + Jn−1(em))

for major repairs

(5.4)

Finally, the observation costs can be formulated in the same way as we did in

the static CBM model. That is,

OBn(π) = COB +
M∑
i=1

Postn(ei)πi (5.5)

where

Postn(ei) = min{NAn(ei), PMn(1), · · · , PMn(M − 1)} (5.6)

Now, the optimal value function can be written as follows:

Jn(π) = min{NAn(π), PMn(1), · · · , PMn(M − 1), OBn(π)} (5.7)
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Solving the optimization in (5.7) gives the the optimal decision rule δDn (π) at the

current state π where the superscript D implies a dynamic policy. δDn (π) will take one

of the possible maintenance actions, NA, PM(1), · · · , PM(M−1), OB, specifying the

best action selection when the system occupies the state π at a specified decision epoch

n. The optimal policy at the state π, denoted by ∆D(π), is the vector of the optimal

decision rules to be used through decision epochs, i.e. ∆D(π) = (δD1 (π), · · · , δDn (π)).

V.2. Proposed solution: backward dynamic programming

In order to attain the optimal policy and optimal value, we use a backward dynamic

programming (Puterman, 1994). Let us consider a sample path starting from a state

π, {π, π2, · · · ,Π(π)}. Observing from (5.1) to (5.6), one can find that the total

cost-to-go associated with each possible action as well as the optimal value Jn(πk)

at πk and period n are only dependent on the values at the next state πk+1 and

the extreme states ei, i = 1, · · · ,M + L. Utilizing this understanding, we can step

backwards along the path, recursively solving for the corresponding optimal action.

The following algorithm summarizes the solution procedure that finds the optimal

polices along a sample path. We also provide an overview of the algorithm in Fig. 10.

Let λ = max{λ(l); l = 1, · · · , L}.

Algorithm V.1. Backward dynamic programming algorithm

Input: π, β, P, CCM(l), CPM(m), COB, λ(l), µ(l), τn,WCM(l),n, WPM(m),n, ∀l,m, n

Step 1. Construct a sample path Ψ(π) = {π, π2, · · · ,Π(π)}, emanating from π. Sim-

ilarly, generate the extreme sample paths, Ψe1 , · · · ,ΨeM , originating from the

extreme states em, m = 1, · · · ,M .

Step 2. Set the terminal values Jλ+1(π) according to the business situations (Alter-
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natively, the terminal values can be set arbitrarily for large n).

Step 3. Repeat for t = λ+ 2, λ+ 3, · · · , n:

3.1. Set the time-varying parameter values such as WCM(l),t, WPM(m),t and

τt, l = 1, · · · , L, m = 1, · · · ,M − 1.

3.2. Find the optimal decision rule and optimal value at each extreme point ei,

i = 1, · · · ,M . i.e. compute NAt(ei), PMt(1), · · · , PMt(M − 1), for i =

1, · · · ,M . Then, find Jt(ei) = min{NAt(ei), PMt(1), · · · , PMt(M−1)}

and the corresponding δDt (ei), i = 1, · · · ,M .

3.3. Compute the total cost-to-go CMt(eM+l) for each CM with the lth failure

mode, l = 1, · · · , L.

3.4. For ∀πk ∈ Ψπ, compute the total cost-to-go associated with each action,

NAt(π
k), PMt(1), · · · , PMt(M − 1), OBt(π

k)

3.5. Get the optimal value function Jt(π
k), ∀πk ∈ Ψπ and the corresponding

optimal decision rule.

3.6. Set t = t+ 1, and go back to Step 3(a).

At Step 2 of the algorithm, one option to assign the terminal value is to use

the salvage value of the component. Alternatively, we can set the terminal values

arbitrarily since the terminal value would not affect the optimal decision rules at the

initial periods when n is large enough. Without loss of generality, Jλ+1(π) = 0 is

used, ∀π .

We evaluate the optimal values at the extreme states at Step 3.2, before evalu-

ating the optimal values at other non-extreme states at Step 3.4 and 3.5. Note that

for calculating the optimal values for the extreme states, OB is not considered as
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Fig. 10. Overview of the proposed backward dynamic programming algorithm

one of the potential optimal actions for selection because we know that OB cannot

be optimal at the extreme points (see (5.5) and (5.6)). But, in order to compute

OBn(πk) at the non-extreme states, we need to know V (ei)’s, i = 1, · · · ,M , which

explains why Step 3.2 comes first before Step 3.4 and 3.5.

Since the weather related parameters (i.e. WCM(l),n, WPM(m),n, τn) are season-

dependent, the above procedure generates a non-stationary optimal policy, making

the policy dynamically adjusted to seasonal effects.

V.3. Case study

As explained in the previous chapter, most critical failures in wind turbines are

associated with the gearbox because of high capital cost, long lead time for repairs,

difficulty in replacing a gearbox, and lengthy downtime compounded by adverse
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weather conditions (Echavarria et al., 2008, McMillan and Ault, 2008, Nilsson and

Bertling, 2007, Ribrant, 2006, Ribrant and Bertling, 2007). Therefore, we again

choose a gearbox among several components of a wind turbine to illustrate the

presented methodology in this chapter.

V.3.1. Problem description

We assume that the wind farm operators make maintenance decisions on a weekly

basis. Appropriate parameter values are selected based on the published data or

discussions with our industry partners.

Ribrant (2006) and Ribrant and Bertling (2007) examine the failure frequencies of

different failure modes and the corresponding downtime in gearboxes of wind turbines

with a rated power of 490kW or more. Table 3 summarizes the statistics related to

the gearbox failures. The failures of bearings and gearwheels often demand a total

change of the gearbox, resulting in a long downtime. The unspecified failure types in

the fourth row of Table 3 sometimes correspond to other serious failures which require

a replacement of the whole gearbox (Ribrant, 2006). The other two failure modes

require minor repairs in general. The first three columns are obtained from Ribrant

(2006), Ribrant and Bertling (2007). Based on these numbers, we set the lead time

and repair time for each failure type, as shown in the fourth and fifth columns.

As explained in the previous chapters, a transition matrix P can be obtained

from operational data by taking a long-run history about the degradation states and

counting transitions. For critical equipment such as circuit breakers and transformers

in the conventional power systems, aging-related data have been accumulated for a

long time, and several repair strategies have been presented using a Markov process

(Billinton and Li, 2004, Hoskins et al., 1999, Jirutitijaroen and Singh, 2004, Qian
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Table 3. Failure types of a gearbox

Sub-

componenta

failure

frequencya

Average (min-

max) downtime

(hours)a

lead

time

(weeks)b

repair

time

(weeks)b

Corresponding

repair action

Oil systems 11.9% 26 (1-63) 0 0 CM(1)

Sealing 7.3% 52 (2-218) 0 0 CM(2)

Not specified 40.4% 230 (9-1,248) 1 1 CM(3)

Gearwheels 2.8% 272 (57-383) 1 1 CM(4)

Bearings 37.6% 562 (15-2,067) 2 1 CM(5)

a The data are obtained from Ribrant (2006) and Ribrant and Bertling (2007)
b The lead time and repair time associated with each failure mode are set on a weekly

basis for the modeling purpose

et al., 2007, Welte, 2009, Yang et al., 2008). For the wind industry, there is a lack

of data in the public domain for calculating the precise transition matrix for wind

turbine components. For the time being, the common remedy researchers adopt is to

use the limited amount of data, combined with expert judgments or simulations, to

estimate the transition probabilities, for instance, the approach used in the study of

McMillan and Ault (2008).

In this study we follow a similar approach to handle the transition probabilities

as in the above-mentioned literature. We analytically derive the first passage time

(Norris, 1998) to the failure as a function of the elements of a transition matrix, which

is a MTTF in the reliability study (Jirutitijaroen and Singh, 2004). The inverse of

MTTF gives the average failure frequency. Then, we apply a similar transition matrix

used in Maillart (2006) and modify the matrix to be consistent with the overall failure
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frequency of a gearbox and the frequency of each failure mode shown in Table 3.

According to Ribrant (2006), the failure frequency of a gearbox ranges from 0.05-2.29

times per year, depending on the turbine manufacturers and models. Since most

wind farm operators currently perform SchMs regularly, we believe that this failure

frequency is the result under the SchM practice. Based on these understandings, we

construct the transition matrix P with the following submatrices.

PA =


0.93 0.04 0.029

0.00 0.95 0.03

0.00 0.00 0.96

 ,

PB =


0.001 0 0 0 0

0.002 0.001 0.008 0.001 0.008

0.004 0.003 0.016 0.002 0.015

 (5.8)

Since we consider one week as a transition period, P represents a weekly-based

deterioration process. The state can be represented as an eight dimensional row

vector, π = {π1, π2, π3, π4, · · · , π8}. π1, π2 and π3 are the probabilities of being in

a normal, alert and alarm condition, respectively, and π4 to π8 represent the five

different failure modes, as shown in Table 3.

Remark: Using Monte Carlo simulations, we validate that the failure frequencies

with PA and PB in (5.8) are consistent with the industry statistics under a SchM. The

parameter values presented in (5.8), however, may not be a definitive set of values;

rather they could be a starting point for deriving condition-based maintenance policy

and evaluating the benefits of the proposed model framework. As McMillan and Ault

(2008) point out, future work is needed to better quantify the parameter values in P .

Rademakers et al. (2003a) also suggest that industry parties should collaborate with

one another to collect and share data for the improvement of wind farm O&M. It also
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should be emphasized that a much refined definition of system conditions allowing

more levels of possible PM actions may be necessary in real situations while we only

consider these three levels of system conditions in this case study. Doing so will need

to use an information state π of a higher dimension, but the proposed methodology

can be similarly applied.

There are five types of corrective maintenances, CM(1), · · · , CM(5) and two

types of preventive maintenances, PM(1) and PM(2). To get the maintenance costs,

we refer to Andrawus et al. (2007). Rademakers et al. (2003a) also discuss different

cost factors in their study. According to Andrawus et al. (2007), a major CM , as a

result of unanticipated failures, costs $122,787, and a major preventive repair costs

$12,820. Therefore, we set CCM(4) and CCM(5) to be $122,787 and CPM(1) to be

$12,820 because CM(4), CM(5) and PM(1) correspond to major repairs. There are

no cost figures for CPM(2) in the literature, and not for CCM(1) through CCM(3), either.

So based on the suggestions of our industry partners, we set CCM(3) to be the half of

the major CM cost, and CCM(1) and CCM(2) to be one tenth of the major CM cost,

respectively. Similarly, PM(2) corresponds to the minor repair and its cost CPM(2)

is assumed to be one third of the major PM cost. The OB cost of a gearbox is set

to be $313.36 (Andrawus et al., 2007). The monetary unit of each cost factor in this

example was originally in pounds(£) (Andrawus et al., 2007), but we converted from

pounds to the US dollar with an exchange rate of 1 pound = 1.5668 dollar. These

costs are summarized in the second column of Table 4.

Furthermore, these maintenance activities are constrained by the weather con-

ditions. The weather conditions would depend on the locations, terrains of the wind

farm site. We set the probabilities that the harsh weather conditions would occur

each season in the third column of Table 4.



73

Revenue losses per period depend on the weather conditions. We set the average

revenue losses to be $6,946 (Andrawus et al., 2007). Then, we adjust the revenue

losses across the four seasons from spring to winter to be 80%, 120%, 80% and 130%

of the average revenue losses, respectively. Table 5 summarizes the potential revenue

losses per week for each season.

Table 4. Maintenance costs and harsh weather probabilities for each maintenance

action

Repair typesa Repair costsb Weather parameters

Spring Summer Fall Winter

Minor CM CM(1) 12,279 0.05 0.2 0.05 0.2

CM(2) 12,279 0.05 0.2 0.05 0.2

Major CM CM(3) 61,394 0.1 0.3 0.1 0.4

CM(4) 122,787 0.1 0.4 0.1 0.6

CM(5) 122,787 0.1 0.4 0.1 0.6

Major PM PM(1) 12,820 0.1 0.3 0.1 0.4

Minor PM PM(2) 4,273 0.05 0.2 0.05 0.2

a Major repairs take one week, whereas the duration for minor repairs
is negligible.

b The monetary unit is the US dollar.

V.3.2. Results from optimal policy

With these parameter values, we compute the optimal policy during a 20-year decision

horizon. Since we consider the decision-makings on a weekly basis, we set the discount
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Table 5. Revenue losses

Spring Summer Fall Winter

5,556 8,335 5,556 9,029

factor β as 0.99, which is close to one. Fig. 11 through Fig. 13 show, respectively,

the optimal actions for spring, summer and fall seasons in the first year of operations

along a number of series of the sample paths. The optimal actions for winter season

are almost similar to the results for summer season.
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Fig. 11. Optimal decision rule during spring season

The resulting policy in the figures can be understood as follows: the viable

operating region (the triangle in Fig. 5 in Section III.3) can be partitioned into

subregions corresponding to different actions (i.e. NA, OB, major PM , and minor

PM). It is noticeable that each curve in Figs. 11-13 (except Fig. 12(b)) has a couple

of different colors (and shapes) in order to specify different optimal policies along
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(b) At the end of summer

Fig. 12. Optimal decision rule during summer season

a sample path. For example, in Fig. 11(a), one curve originating from the origin

consists of markers of three different colors and shapes: first the blue X’s, then the

green O’s, and then, the red squares. It implies that wind farm operators should take

no action for the first segment in this curve when a state belongs to the NA region,

and it becomes optimal to take OB in the second segment until the curve reaches the

region where PM is optimal.

By obtaining the optimal policies along multiple sample paths, we can easily

identify each region where a specific action is optimal. Then, at the beginning of each

decision period, wind farm operators just need to estimate the system states (π2 and

π3, the horizontal and vertical axes in the figure) and to check which subregion the

state estimate falls in, and then take actions according to the corresponding type of

that subregion. For example, in the beginning of spring (See Fig. 11(a)), if a state

falls in a major PM area in the upper-left corner surrounded by the red dashed

boundary, wind farm operators should take major preventive repairs. Neither repair

nor observation is required in the case that a state falls in the NA area in the lower

part surrounded by solid lines. Understandably, if a state falls in the area in between,
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(b) At the end of fall

Fig. 13. Optimal decision rule during fall season

wind farm operators should take OB.
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(b) In the middle of fall

Fig. 14. Optimal decision rule in the middle of spring and fall

It is interesting to see that the optimal policy is non-stationary. That is, the

optimal action is not the same throughout the decision periods. It is worth noting a

few features of the optimal decision rules.

Observation 1. In the beginning of mild weather seasons such as spring and fall,

we take the major PM ’s when the system is estimated to be ill-conditioned. Toward

the end of mild seasons, the optimal decision is to take the major PM ’s even for
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the moderately deteriorated condition like e2 in order to minimize the risk of failures

during the upcoming harsh weather seasons.

Observation 2. The optimal decisions of spring and fall seasons are slightly

different. The NA area at the end of fall season in Fig. 13(b) is smaller than the one

in Fig. 11(b). Fig. 14 compares the two optimal policies in the middle of spring and

fall seasons. The area where the major PM is optimal in Fig. 14(b) is larger than

the area in Fig. 14(a). All these are because of the more restricted maintainability of

the wind turbines during the (almost entire) winter season.

Observation 3. In the beginning of harsh weather seasons such as the summer

storm season and winter season, it is recommended to take the minor PM ’s for the

seriously ill-conditioned system to avoid failures during the remaining harsh weather

periods, occurring of which may cause tremendous repair costs. However, at the end

of harsh weather seasons, NA is dominated in all the states because it would be better

to wait for the next mild periods rather than performing risky repair activities right

away.

Observation 4. OB is taken when the system conditions are not clear. However,

OB is taken more often in the beginning or middle of harsh weather seasons to decide

the most suitable maintenance tasks than in the mild seasons. Understandably, doing

so will help reap more economical benefits.

V.3.3. Comparison of different maintenance strategies

To quantify the benefits of the proposed dynamic CBM strategy, we compare the

optimal policy with two other maintenance strategies. The first strategy is the SchM

with fixed, regular repair schedules, reflecting the current industry practices. The

other strategy is a similar CBM strategy, but without considering the seasonal weather

effects.
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To compare each strategy, we conduct Monte Carlo simulations using the same

parameter values explained in Section V.3.1. We simulate the system states using the

transition matrix with PA and PB in (5.8). We also simulate the weather scenarios

with the given probabilities in Table 4. For each strategy, 30 trajectories (runs) of

simulations are performed over 1,040 periods (= 52 weeks × 20 years). Then, we

obtain the average failure frequency and O&M costs per year. Table 6 and Fig. 15

summarize the simulation results of each maintenance strategy, and we will explain

the implications of the results.

Table 6. Average of simulation results for different maintenance strategies (standard

deviation in parenthesis)

SchM Static CBM Dynamic CBM

# failures per year 1.29 (0.31) 0.74 (0.30) 0.55 (0.16)

O&M costs per yeara 107,044 (21,167) 102,923 (14,133) 90,859 (13,945)

a The monetary unit is the US dollar.

Static CBM strategy Dynamic CBM strategy

42.6%

57.4%

3.8%

15.1%

# failures per year O&M costs

Fig. 15. Reduction (%) of failure frequency and maintenance costs of the two CBM

strategies compared with the current industry practices

Results from current industry practices. Current industry practices are

mainly based on the SchMs, which conducts PM ’s on a regular basis in low wind
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speed seasons (Nilsson and Bertling, 2007, Walford, 2006). The frequency of the SchM

usually depends on the manufacturer’s recommended maintenance program (Pacot

et al., 2003). However, according to Nilsson and Bertling (2007), wind farm operators

usually carry out minor maintenances twice a year and major maintenances once every

2 to 4 years, respectively. Following the industry practices, we set the scheduled minor

maintenances to be carried out in spring and fall, and major preventive maintenances

to be performed once every three years in spring. The simulation results indicate that

generators would fail 1.29 times per year on average, resulting in $107,044 costs per

year under this SchM strategy.

Results from the static CBM strategy. Suppose that in order to produce

a condition-based maintenance policy, wind farm operators consider a gearbox’s

degradation status but ignore the weather constraints. That is, the maintenance

policy is obtained with the assumption that maintenance tasks can be performed

anytime although repair tasks are constrained by seasonal weather effects.

To implement this strategy, we setWCM(l),n’s andWPM(m),n’s to be zero, and use a

constant τn, ∀l,m, n in the Algorithm V.1. Then, the resulting decision rules under the

assumption of static weather conditions are applied at each period in the simulation.

This strategy is similar to the static CBM model introduced in Chapter IV, in the

sense that homogeneous weather-related parameters are used, and thus, the resulting

strategies are static over the decision horizon (but the difference is that the static

CBM model use non-zero constants for WCM(l),n’s and WPM(m),n’s).

Fig. 16 illustrates the optimal decision rules under this static CBM strategy.

With this strategy, wind farm operators take the action based on the degradation state

of a gearbox, but the same maintenance action will be applied to the same state over

the different seasons. The third column of Table 6 summarizes the results from this
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strategy. Since this strategy considers the deterioration status, one can make timely

decisions regarding when to take maintenance actions to avoid failures. As a result,

the failure frequency is reduced by 42.6% (=(1.29-0.74)/1.29), compared with the

result of the SchM. However, the reduction of O&M costs comes at an unimpressive

3.8% (=(107,044-102,923)/107,044) since this strategy does not consider the weather

impacts (See the graph in the left side of Fig. 15).
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Fig. 16. Optimal decision rule under stationary weather conditions

Results from the dynamic CBM strategy. In this strategy, the optimal

maintenance action suggested by this chapter, which considers the costs, degradation

status and weather conditions, is taken at each decision period. The final column of

Table 6 summarizes the results from the optimal policy. The reductions in both failure

frequency and O&M costs are remarkable, compared with the SchM. The failure

frequency and O&M costs are decreased by 57.4% (=(1.29-0.55)/1.29) and 15.1%

(=(107,044-90,859)/107,044), respectively, demonstrating that substantial benefits

can be anticipated by adopting the proposed dynamic CBM strategy in the practices

of wind power industry (See the graph in the right side of Fig. 15).
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CHAPTER VI

SIMULATION OF WIND FARM OPERATIONS USING DEVS

In this chapter, we describe the simulation model for a wind farm for predicting wind

turbines’ states and assessing maintenance actions. We use the DEVS formalism

(Zeigler et al., 2000) to derive the models that can be tailored to any real wind farm.

In our simulation model, we consider the maintenance of a gearbox among several

components of wind turbines to illustrate the simulation model. We implement two

different O&M strategies: SM and CBM. Here, the CBM strategy is different from

the strategies discussed in Chapters IV and V. Rather, we implement a simpler CBM

strategy which has been recently adopted in practice (Pacot et al., 2003).

VI.1. Model abstraction

VI.1.1. Power generation model

Power generated from wind turbines mainly depends on wind speed and can be

calculated using a power curve as shown in Fig. 17 (Karki and Patel, 2009). Wind

turbines are designed to start generating power at the cut-in wind speed WSci. The

power output increases nonlinearly as the wind speed increases from the cut-in wind

speed to the rated wind speed WSr. However, at higher wind speeds than the cut-

out wind speed WSco turbines are shut down to avoid damage to the structure due

to excessive mechanical loads. These parameter values depend on the type of wind

turbine and are usually specified by wind turbine manufacturers.

According to (Karki and Patel, 2009), the mathematical relationship between
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ci
WS

co
WS

Pwr

Wind speed
(unit: m/s)

Generated
power(unit: MWh)

r
WS

Fig. 17. Power curve (Karki and Patel, 2009)

the wind speed WS and the generated power Pwr can be given as follows:

Pwr =



0, if 0 ≤ WS < WSci

Pr(a+ b ·WS + c ·WS2) if WSci ≤ WS < WSr

Pr, if WSr ≤ WS < WSco

0, if WSco ≤ WS,

(6.1)

where Pr is the rated power output of the wind turbine. The parameters a, b, c in

equation (6.1) are obtained by the following equations:

a =
1

(WSci −WSr)2

[
WSci(WSci +WSr)− 4WSciWSr

(
WSci +WSr

2WSr

)3
]

(6.2)

b =
1

(WSci −WSr)2

[
4(WSci +WSr)

(
WSci +WSr

2WSr

)3

− (3WSci +WSr)

]
(6.3)

c =
1

(WSci −WSr)2

[
2− 4

(
WSci +WSr

2WSr

)3
]

(6.4)

VI.1.2. Wind speed model

When anemometers are installed inside turbines, wind speed models at turbine loca-

tions can be built using temporal models. However, when wind speeds are measured
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at stations near wind turbine sites, the spatial correlations between wind speeds at

the stations and those at the wind turbine sites have to be considered. The latter

case happens when evaluating a new wind farm site where the wind speeds are not

available but the wind speeds at the stations near the target wind farm site are

available. This is also true when wind turbines do not have anemometers, which can

be encountered often in old, small-sized wind turbines. A spatio-temporal model that

considers both temporal and spatial variations of wind speeds is required in this case.

We develop a spatio-temporal model in a hierarchical manner to generate syn-

thetic sequences of wind speeds at turbine locations. This hierarchical construction

makes the model flexible so that when the wind speeds are available at the turbine site,

we only need the temporal model. The generated sequences should represent possible

realizations of wind speeds at the turbine sites. Therefore, each of the components

included in a spatio-temporal model has a physical interpretation and include diurnal

cycle, yearly seasonality, and the spatial variations among different locations.

First, we build a time series model at each station which measures wind speeds

on a regular basis. In the model, diurnal cycle and yearly seasonality are modeled

using Fourier series (De Luna and Genton, 2005, Gneiting et al., 2007). Let us denote

the wind speed at time t at station xi, i = 1, 2, · · · , Ns, by St(xi). Then, St(xi) at

each station, i = 1, · · · , Ns can be modeled as follows:

St(xi) = αi0 +

nd∑
d=1

[
βi1d sin(d

2πt

ωd
) + βi2d cos(d

2πt

ωd
)

]
+

ns∑
s=1

[
γi1s sin(s

2πt

ωs
) + γi2s cos(s

2πt

ωs
)

]
+ εit. (6.5)

In equation (6.5), the first term αi0 is the average wind speed and the second term

βi1d sin(d2πt
ωd

)+βi2d cos(d2πt
ωd

) is the dth harmonic to represent the diurnal cycle, where ωd

is the number of wind speed measurements during a day (Soares and Medeiros, 2008).
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Similarly, s in the third term γi1s sin(s2πt
ωs

) +γi2s cos(s2πt
ωs

) is the sth yearly harmonic to

represent yearly seasonality, where ωs is the number of measurements during a year.

In many environmental studies, nd and ns are typically set to 1 or 2 (Gneiting et al.,

2007, Im et al., 2008, Magnano and Boland, 2007, Soares and Medeiros, 2008). The

parameter εit in (6.5) is a stochastic component of the time series model, which can

be formulated as the following ARMA model:

εit −
Dp∑
p=1

φipε
i
t−p = ait −

Dq−1∑
q=1

θiqa
i
t−q, (6.6)

where ait is an i.i.d random variable with distribution N(0, σ2
i ). The appropriate

degree (Dp, Dq) of the ARMA model can be selected by using the Akaike Information

Criterion (AIC) or the Bayesian Information Criterion (BIC) (Bowerman et al., 2005).

The related parameters in the above ARMA model, φip, θ
i
q, and σ2

i , ∀p, q, i can be

estimated by going through a generalized linear model analysis.

The wind speed at a turbine site x at time t, denoted by Wt(x), can be generated

considering spatial correlations between stations and turbine sites. We use a spatial

modeling approach, called Kriging (Haining, 2000). Suppose that wind speeds at

the stations, St(x1), · · · , St(xNs) are simulated (or observed) at spatial locations

x1, · · · , xNs at time t. Then, the wind speed at a wind turbine site x at time t is

given by,

Wt(x) =
J∑
j=1

ϕjfj(x) + r>R−1(St − ϕ · e), (6.7)

where fj(x), j = 1, · · · , J , are known regression functions taking spatial locations

x as input. In this study, we use simple Kriging with
∑J

j=1 ϕjfj(x) = ϕ, which is

constant. St = [St(x1), · · · , St(xNs)]> is the Ns × 1 matrix, each element of which

denotes a wind speed at each station at time t, and e = [1, 1, · · · , 1]> is Ns×1 vector.
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R is the correlation matrix between wind speeds at stations, whose (k, l)th element is

as follows:

R(xk, xl) = exp{−
U∑
u=1

|(xku − xlu)/νu|ψ}, (6.8)

Here, U is a dimension of xi, i = 1, · · · , Ns, and R(xk, xl) denotes the correlation

function between two locations, xk = [xk1, · · · , xkU ]> and xl = [xl1, · · · , xlU ]>, k, l =

{1, · · · , Ns}. ψ is the shape parameter to represent the correlation function shape,

whereas νu is the scale parameter to denote the effect of distance in each dimension u,

u = 1, · · · , U . Finally, r = [R(x, x1), · · · , R(x, xNS)]> in (6.7) is NS × 1 dimensional

vector, each of element reflects the correlation between the wind turbine site and the

station.

Note thatWt(x) in (6.7) is the estimated wind speed at the anemometer height. If

the anemometer height does not coincide with the wind turbine hub height, the wind

speed has to be scaled based on the turbine hub height. There are different formulas

for the wind speed adjustment (Negra et al., 2007, Zhou et al., 2006), among which

the following wind power law has been recognized as a useful tool to transfer the

anemometer data to the desired hub center in many studies (Gipe, 2000, Zhou et al.,

2006).

WH
t (x) = Wt(x)

(
z

z0

)α
, (6.9)

where WH
t (x) is the wind speed at anemometer height z at turbine location x and

Wt(x) is wind speed at hub height z0 from equation (6.7). The parameter α is a wind

speed power law coefficient, whose value mainly depends on the local geographical

terrain.
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VI.1.3. Wind turbine components with degradation model

Although there are different designs of wind turbines, they share basic common

features and the names of the components are general (Pacot et al., 2003). Fig. 18

shows the different components of a wind turbine (Pacot et al., 2003). A wind turbine

consists of a tower, two or three-bladed rotors, and a nacelle which houses several

critical components such as the drive train, gearbox, generator and the electrical

system.

rotor blades

drive train
gearbox

generator

Electrical system

shafts
nacelle

tower

Fig. 18. Wind turbine components (Pacot et al., 2003)

There are several mathematical models to represent component degradation. In

this study, we use a Markov model for the consistency with the optimization models

in Chapters IV and V.

VI.1.4. Sensor models

In a regular Markov model, the state is directly visible to the observer. However, we

assume the state is not directly visible, but output (here, sensor output) dependent

on the state is available. Suppose that one can categorize the sensor results into a

finite number of outputs, k = 1, 2, · · · , K. Then, the probability of getting sensor
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output k when the current state is j is SEj(k), where
∑K

k=1 SEj(k) = 1 for each j.

As such, the sequence of sensor outputs characterizes the system degradation in a

probabilistic sense.

VI.1.5. State evaluation model.

Given sensor information, we need a model for performing system state evaluation.

Let us denote the current system state by Zt at time t. Based on sensor data

streams, we estimate the system state Zt using the Viterbi algorithm (Qian et al.,

2007). Suppose that M is the number of operating conditions. Given the sequence of

sensor outputs, o1, · · · , ot up to time t, the Viterbi algorithm finds the most probable

sequence of underlying states by solving the likelihood of the given sensor outputs.

That is, the algorithm chooses the most likely state which produces the maximum

likelihood value. Mathematically, the algorithm proceeds as follows:

1. Initialization: Set α1(j) = π̇j0SEj(o1), ∀j ∈ {1, 2, · · · ,M}.

2. Recursion: For, 2 ≤ n ≤ t compute αn(j) = maxi{αn−1(i)pijSEj(on)}, ∀j ∈

{1, 2, · · · ,M}.

where π̇j0 is the estimated probability that the initial system state is j. Then, the

estimated current state Ẑt is given by

Ẑt = argmax
j∈{1,2,··· ,M}

{αt(j)}. (6.10)

VI.1.6. Smart sensor model

In general, the above-described sensors are relatively cheap but may be unreliable.

In practice, there are different means to evaluate the exact deterioration level of

a component of a system. The most common way is to dispatch a maintenance
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crew to conduct an on-site inspection. With emerging of new sensor technology,

more advanced sensors (e.g., high-speed imaging or mobile acoustic sensors) can be

invoked to do a follow-up investigation upon the initial sounding of alerts or alarms.

Regardless of which mechanism is used, the follow-up investigation is usually much

more expensive (and more accurate). Collectively, we refer to this observation mode

as “Smart Sensor”. We assume that once a “Smart Sensor” is invoked, the system

state can be revealed with certainty.

VI.1.7. Maintenance model

We consider two different maintenance approaches in our simulation model: SchM and

CBM. The SchM model reflects current maintenance practices. Wind farm operators

usually carry out SchM twice a year in the low wind speed seasons (Pacot et al.,

2003). Following the industry practice, we set the major preventive repairs to be

performed in spring and fall seasons in our simulation model.

The second model is a CBM model. Modern wind turbines are equipped with

automated alarm call-out systems inside condition monitoring equipment so that

when a sensor signal exceeds a certain threshold, an alarm is sent to a wind farm

operator by fax, pager, simple message service (SMS) or email (Pacot et al., 2003).

In our simulation model, when the most probable state of a component, decided from

the state evaluation module, is the alarm state, the alarm message is sent to the

operation center. Then, we invoke smart sensors to evaluate the system conditions

exactly. If the actual system state that the smart sensors report is equal to the alarm

state, PM has to be carried out.

In both maintenance strategies, unplanned failures are not completely avoidable.

When a wind turbine fails before SchM or PM, we carry out corrective maintenance.

In this case, we consider a substantial lead time for organizing maintenance crews
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and spare parts.

As discussed earlier, maintenance actions can be constrained by adverse weather

conditions (McMillan and Ault, 2008, Pacot et al., 2003). Therefore, repair actions

cannot be carried out under these harsh weather conditions. We reflect these kinds

of weather constraints in the simulation model. In our simulation model, we assume

that maintenance actions are carried out only when wind speeds are less than 10 m/s.

VI.2. Performance measures

We consider four performance measures to evaluate wind farm operations and main-

tenance.

Capacity factor. Capacity factor quantifies the productivity of a wind turbine

(American Wind Energy Association, 2008). It compares the turbine’s (or wind

farm’s) actual production over a given period of time with the amount of power the

turbine (or wind farm) would have produced if it had run at full capacity for the

same amount of time. Let Pactual denote the actual amount of power produced over

a given time period and let Pideal denote the amount of power that would have been

produced at full capacity. Then capacity factor can be expressed as the ratio Pactual

Pideal
.

Availability. Availability refers to the percentage of time a wind turbine is available

to generate power and is not out of service or under repair.

Number of failures of a given period. We count the number of times a wind

turbine fails over a given period. This is an important factor for measuring the

reliability of a wind turbine.

Wind farm O&M costs. We collect maintenance costs over a given time period to

quantify the effectiveness of the different maintenance strategies.
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VI.3. DEVS preliminaries

Before presenting the DEVS wind farm simulation model, we first provide some

preliminaries on DEVS.

Parallel DEVS (Zeigler et al., 2000) follows a hierarchical approach to building

complex models from the basic models called atomic models. DEVS has a well

defined concept of component coupling. Atomic models are coupled to form coupled

(composite) models. In DEVS coupled models are treated as components via the

property of closure under coupling, which enables the hierarchical model composition

construct. An atomic model possesses input and output ports through which all

interaction with the environment is mediated and has to be in a defined state at any

given time. The input ports allow the atomic model to receive external events arising

outside the model. Coupling is done by joining the output of one atomic model to

the input of another to enable communication between models. The description of

the internal workings of the model determines how the model responds to external

events. The internal events arising within the model can change its state and manifest

themselves as events on the output ports to be transmitted to other models. Parallel

DEVS allows for all imminent atomic models to be activated and send their outputs

to other components of the system.

Next we provide the mathematical description of a Parallel DEVS model. Let

us denote by M an atomic model with a set of input ports IPorts, a set of input

values (events) Xp, a set of output ports OPorts, and a set of output values (events)

Yp. Let (p, v) denote the port-value pair. Then a basic Parallel DEVS is a structure

defined as follows:
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Definition 5.

DEV S = (XM , YM , S, δext, δint, δcon, λout, ta)

where,

XM = {(p, v)|p ∈ IPorts, v ∈ Xp} is the set of input ports and values, where

IPorts is the set of input ports;

YM = {(p, v)|p ∈ OPorts, v ∈ Yp} is the set of output ports and values;

S is the set of sequential states;

δext : Q × Xb
M → S is the external transition function, where Xb

M is a set of

bags over elements in XM and Q is the set of total states;

δint : S → S is the internal state transition function;

δcon : Q×Xb
M → S is the confluent transition function;

λout : S → Y b
M is the output function;

ta : S → R+
0,∞ is the time advance function; and

Q := {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} is the set of total states, where s is the state

and e is the elapsed time.

Parallel DEVS has the ability to handle multiple inputs and uses a bag to store the

inputs. A bag is a set with possible multiple occurrences of its elements.

According to Definition 5, at any time the system is in some state s and if no

external events occur, the system will remain in its current state for a time ta(s) ∈

[0,∞]. When this time expires the system outputs the value, λout(s), and transitions

to a state s′ = δint(s). In DEVS an output is only possible after an internal transition.

If an external event x ∈ XM occurs when the system is the total state (s, e) with e ≤

ta(s), the system changes to state s′ = δext(s, e, x). The external transition function

determines a new state when an external event occurs while the internal transition
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function determines a new state when no events occur since the last transition. The

confluent function decides the next state in cases when there is an external event

exactly when an internal transition has to occur.

To construct models from components (DEVS models), the DEVS specification

includes the external interface, the components, and the coupling relations. Let EIC,

EOC and IC denote the external input coupling, external output coupling and inter-

nal coupling, respectively. Then a coupled model N can be defined mathematically

as follows:

Definition 6.

N = (X, Y,D, {Md | d ∈ D}, EIC,EOC, IC)

where,

X = {(p, v)|p ∈ IPorts, v ∈ Xp}

is the set of input ports and values and

Y = {(p, v)|p ∈ OPorts, v ∈ Yp}

is the set of output ports and values. D is the set of component names, and for each

d ∈ D,

Md = (Xd, Yd, S, δext, δint, δcon, λout, ta)

is a DEVS model with

Xd = {(p, v)|p ∈ IPortsd, v ∈ Xp}

and

Yd = {(p, v)|p ∈ OPortsd, v ∈ Yp}.
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The external input coupling, EIC, connect external inputs to component inputs:

EIC ⊆ {((N, ipN), (d, ipd)) | ipN ∈ IPorts, d ∈ D, ipd ∈ IPortsd}.

The external output coupling, EOC, connect external outputs to component outputs:

EOC ⊆ {((N, opd), (N, opN)) | opN ∈ OPorts, d ∈ D, opd ∈ OPortsd}.

Lastly, the internal coupling, IC, connect component outputs to component inputs:

IC ⊆ {((a, opa), (b, ipb)) | a, b ∈ D, opa ∈ OPortsa, ipb ∈ IPortsb}.

Finally, DEVS does not allow for an output port of a component to be connected

to an input port of the same component. Thus in DEVS (a, opa), (b, ipb) ∈ IC implies

a 6= b. In other words, no direct feedback loops are allowed for each component.

VI.4. Atomic models

Let us now turn to deriving DEVS atomic and coupled models for the DEVS wind

farm simulation. These models provide the basic building blocks for the overall wind

farm simulation model. We follow a bottom-up approach by first deriving atomic

models, coupling them to create coupled models, and then coupling the coupled

models to create to the overall simulation model. In this section, we describe the

atomic models and the next section will discuss how we couple the atomic models to

make a generic simulation model for wind farm operations.

The DEVS wind farm simulation model we propose comprises the models ab-

stracted in Section VI.1. Specifically, we derive the following atomic models: Power

Generator (PWRGEN), Component Degradation (CMPDEG), Wind Generator (WG-

ENR), Sensor (SENSR), Smart Sensor (SMSENSR), State Evaluation (STEVAL),
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Maintenance Scheduler (MSCHEDR), Maintenance Generator (MGENR), and Trans-

ducer (TRANSD). PWRGEN models electrical power generation based on wind

speeds from the WGENR atomic model. The amount of power generated at any given

time is calculated using a power curve in equation (6.1). The WGENR atomic model

generates wind speeds calculated using the spatio-temporal wind model described in

equations (6.5)-(6.9). CMPDEG models the degradation or deterioration process of

wind turbine component.

SENSR and SMSENSR models unreliable sensor and smart sensor behavior, re-

spectively, as described in Section VI.1. The STEVAL atomic model is responsible for

estimating the actual state of a wind turbine gearbox based on the sensor information

from SENSR and/or SMSENSR.

MSCHEDR models the two types of maintenance strategies, SchM and CBM,

described in Section VI.1. The MGENR atomic model is responsible for generating

the actual maintenance actions (e.g. dispatching a maintenance crew) based on the

maintenance schedules created by MSCHEDR. Finally, TRANSD is in charge of

computing the performance measures and statistical parameters of interest during

the simulation run.

In this section, we present the details on two atomic models, PWRGEN and

CMPDEG, to illustrate the derivation of the atomic models. We put the mathe-

matical expressions of the two atomic models in Parallel DEVS in the Appendix A.

The detailed descriptions of the rest of the atomic models (sensor (SENSR) model,

smart sensor (SMSENSR) model, state evaluation (STEVAL) model and maintenance

scheduler (MSCHEDR)) are also presented in Appendix A for the interested reader

for testing and verification purposes.
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VI.4.1. Power generator (PWRGEN) atomic model

The power generator (PWRGEN) atomic model has several basic states; off normal,

off normal waiting, on normal, off alert, off alert waiting, on alert, off alarm,

off alarm waiting, on alarm, failed, and report status. We consider a PWRGEN with

the input and output ports as shown in Fig. 19. The model has seven basic input

ports, namely; ‘turb on off”, “wind in”, “deg in”, “corr mnt”, “prev mnt”, “obsv”,

and “req status”.

turb_on_off

wind_in

prev_mnt

pwr_out

PWRGEN

deg_in

corr_mnt

obsv

req_status

status_out

deg_on_off

Fig. 19. Power generator (PWRGEN) atomic model

The operation of the PWRGEN atomic model is depicted in Fig. 20. The model

is initialized in the off normal state. When an input is received on the “turb on off”

input port, the wind speed at the current location is verified. A transition to the

on normal state occurs if the current wind speed is within the thresholds specified

for the proper operation of the turbine. If the current wind speed is outside the

thresholds, the model transitions to off normal waiting state. Messages received on

the “wind in” input port will notify changes in the wind speed. A transition from

off normal waiting state to on normal state occurs when the wind speed satisfies

the thresholds required for wind turbine operation. If an input is received on the

“prev mnt” input port or on the “turb on off” input port when the model is in

on normal state, a transition to off normal state occurs.

A transition from on normal state to on alert state occurs if a message is received

on the “deg in” input port containing the information of a component degradation
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Fig. 20. Power generator (PWRGEN) state transition diagram

of alert (type 1). When in on alert state, the model transitions to off alert waiting

state if the wind speed goes out of the specified thresholds, or to off alert state

if the component is turned off or if PM has to be performed. In the case PM is

performed, the model transitions from off alert to off normal state upon completion

of maintenance.

A transition to on alarm happens if the model is in on normal or on alert state

and a message is received on the “deg in” input port containing the information of

a component degradation of alarm (type 2 or type 4). When the model transitions

to off alarm waiting state if the wind speed goes out of the specified thresholds, or

to transitions to off alarm state if the component is turned off or if PM has to be

performed. In the case PM is performed, the model transitions from off alarm state
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to off normal state upon completion of maintenance.

A transition to failed state occurs if the model is in one of the following states;

on normal, on alert or on alarm; and a message is received on the “deg in” input

port containing the information of a component degradation of failure (type 3, type

5 or type 6). The model transitions from failed state to off normal when a message

is received on the “corr mnt” input port indicating that the turbine has been fixed

after corrective maintenance has been performed. When a message is received on

the “req status” input port, the model transitions to report status state and remains

in this state for a short time interval (STI). Once this STI has elapsed, the model

transitions to the original state it was before receiving the message.

The PWRGEN atomic model has three output ports, namely; “pwr out”, “deg on

off”, and “status out”. The ‘pwr out” output port is used to notify the amount of

power generated by the turbine during a period of time. A message is sent using

the “deg on off” output port when the turbine is turned off. This message will turn

off other components that are linked to this model. The “status out” output port

is used to report the status of the turbine when requested by the smart sensor. A

mathematical expression of the PWRGEN atomic model in Parallel DEVS is given

in the Appendix.

VI.4.2. Component degradation (CMPDEG) atomic model

CMPDEG is a model of a critical component of a wind turbine and in our case,

represents the degradation of a wind turbine gearbox. This atomic model has six basic

states; passive, active, passive wind, report status, report deg, and passive service.

CMPDEG is always coupled to a PWRGEN atomic model to create the wind tur-

bine (WTURBINE) coupled model. The coupling between these two models is
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discussed in Section VI.5.1. CMPDEG has three input ports, namely; “wind on off”,

“main on off”, and “manual on off”. Fig. 21 shows the input and output ports for

the model, while its operation is depicted in Fig. 22.

deg_out

CMPDEGmaint_on_off

manual_on_off

wind_on_off

status_out

Fig. 21. Component degradation (CMPDEG) atomic model
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maintenance_done
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status
STISTI

Report deg

in cut-off

LTI

maintenance

off

maintenance

out cut-off

LTI

degdeg

STI STI

Fig. 22. Component degradation (CMPDEG) state transition diagram

CMPDEG is initialized in passive state. If an input is received on the “man-

ual on off” input port, the model transitions to active state. Once in active state,

three things can happen. First, a message received at the “wind on off” input port

will indicate that the component has to be turned off due to current wind speed

being above the threshold. In this case the model transitions to passive wind state.

Second, a transition to the report status state occurs when a predetermined large
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time interval (LTI) has elapsed. The report status state is used to report the current

component status to the sensors. Third, a change in the status of the model due to

degradation will take the model to report deg state. The model will transition to the

passive service state if it is in active or passive wind state and a message is received

on the “maint on off” port. When maintenance is completed, the model returns to

its initial passive state.

CMPDEG model has two output ports, namely; “deg out” and “status out”.

The first outport is used to send messages to the PWRGEN atomic model when a

status change occurs. The second output port is used to report the current state of

the component to the sensors. A mathematical expression of the CMPDEG atomic

model in Parallel DEVS is given in the Appendix A.

VI.5. Coupled models

We couple the four atomic models, PWRGEN, CMPDEG, SENSR and STEVAL

to create a Wind Turbine (WTURBINE) coupled model. A collection of several

WTURBINE coupled models forms the Wind Farm (WF) coupled model. We couple

MSCHEDR and MGENR to create an Operation and Maintenance (OPMNT) cou-

pled model. Similarly, we couple WGENR and TRANSD to create an Experimental

Frame (EF). Finally, we couple the three coupled models, WF, OPMNT and EF to

form the DEVS wind farm simulation model. We provide descriptions of the three

coupled models WF, OPMNT and EF using block diagrams. We end this section with

a system entity structure (SES) to provide a summary of the hierarchical structure

and possible structures of the DEVS wind farm simulation model.
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VI.5.1. Wind turbine (WTURBINE) coupled model

WTURBINE is a coupled model comprising PWRGEN and CMPDEG atomic mod-

els. Fig. 23 gives the block diagram for the WTURBINE coupled model showing

the input and output ports. Five input ports are defined for this coupled model,

namely; “on off”, “wind speed”, “observation”, “corrective maintenance”, and “pre-

ventive maintenance”. The atomic models communicate using two internal couplings

(IC s). Information is passed to the CMPDEG model when the PWRGEN is turned

off (on). Every time the PWRGEN atomic model is turned off, the CMPDEG atomic

model is turned off as well. The CMPDEG atomic model notifies the PWRGEN

atomic model about changes in the component’s degradation status. Recall that if

degradation occurs, PWRGEN transitions from the current state to a more degraded

state, e.g. normal to alert state. The three output ports in Fig. 23, namely;

“pwrgen status out”, “comp status out”, and “power out” are used to report the

status and performance of WTURBINE.

turb_on_off

wind_in

prev_mnt

pwr_out

PWRGEN

status_out

deg_in

corr_mnt deg_on_off

obsv

deg_out

status_out

CMPDEG 

on_off

wind_speed

observation

corrective_mnt

preventive_mnt

status_out

power_out

status_out

WTURBINE

Fig. 23. Wind turbine block diagram with input and output ports
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VI.5.2. Operation and maintenance (OPMNT) coupled model

OPMNT is a coupled model formed by coupling MSCHEDR and MGENR atomic

models. Fig. 24 shows the block diagram for a OPMNT coupled model. One input

port is defined for this coupled model, namely; “status in”. The MSCHEDR atomic

model communicates with the MGENR atomic model by using one IC. Information

is passed to the MGENR atomic model when a maintenance procedure is scheduled.

MGENR uses the information to generate maintenance jobs at the scheduled times.

MSCHEDR

MGENR 
corrective_mnt

observation

sched_maintenance

status_in

observation

corrective_mnt

preventive_mntpreventive_mnt

transducer

OPMNT

check_turbine_status check_turbine

Fig. 24. O&M block diagram with input and output ports

VI.5.3. Experimental frame (EF)

The experimental frame is one of the most important components of the simulation

model because it is used to define the experiment parameters and to collect the

information of interest from the simulation runs.

In our wind farm model, EF is a coupled model that is formed by coupling

WGENR and TRANSD atomic models. Fig. 25 shows the atomic models that are

part of the EF coupled model and the way they are connected. Recall that the
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WGENR atomic model is in charge of generating wind speed information for each

one of the turbines used in the simulation. This model computes the wind speed for

each WTURBINE atomic model based on its height and location in the wind farm.

The TRANSD coupled model collects the information of interest and computes the

performance measures specified by the user.

WGENR

EF

turbine_1

turbine_2

turbine_n

deg_status_in

pg_status_in

power_in

on_off

power_in

pg_status_in

deg_status_in

turbine_1

turbine_2

turbine_n

TRANSD

Fig. 25. Experimental frame (EF) coupled model

VI.5.4. Overall simulation model

The overall wind farm simulation model is depicted in Fig. 26. Due to space restric-

tions, the figure shows only a few wind turbines. In general, the wind farms (WF)

would have several wind turbines coupled to the EF and OPMNT models. Observe

that the EF and OPMNT are designed to be separated from WF. This allows for

changes in the experimenter’s goals or changes in the operations and maintenance

policies to be done independently without concern for making changes to the WF

coupled model.
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Fig. 26. DEVS wind farm system

VI.5.5. System entity structure

The system entity structure (SES) is utilized to plan, generate and evaluate design

of simulation-based systems (Zeigler et al., 2000). This is a scheme that organizes a

set of possible structures of a system. A library of models is generated when all the

components abstracted from the real system are implemented. The SES is used to

classify these components by their characteristics and to organize them in hierarchical

composition. This representation allows the modeler to visualize the system as a

whole. The goal of the SES is to synthesize a simulation model by traversing a model
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hierarchical structure. A SES represents not a single model structure, but a family

of structures from which a candidate entity structure can be selected.

EF_WF

ef_wf_dec

EF

ef_dec

GENR

genr_spec

WGENR

TRANSD

MGENR

OPMNT

WF

wf_dec

EVAL WTURBINE
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PWRGENCMPDEG

om_dec

MSCHEDRSENSRSTEVAL

eval_dec

sensor_spec

SMSENSR

Fig. 27. System entity structure (SES) for the DEVS wind farm simulation

Fig. 27 shows the SES for the wind farm discrete event simulation. At the top

level, the scheme shows the two major coupled models that define the system struc-

ture. The Experimental Frame (EF) branch can be decomposed into two branches

that are assigned to the Transducer (TRANSD) and Generator (GENR) atomic

models. The double line under the GENR branch means specialization. The GENR

model can be categorized into a specialized entity called Wind Generator (WGENR).

The Wind Farm (WF) branch can be decomposed into three branches: System

Evaluation (EVAL), Wind Turbine (WTURBINE), and Operation and Maintenance

(OPMNT). The EVAL branch can be decomposed into two branches, State Evaluation

(STEVAL) and Sensor (SENSR). The SENSR model can be categorized into a

specialized entity called Smart Sensor(SMSENSR). The Wind turbine (WTURBINE)

and the Operation and Maintenance (OPMNT) branches are decomposed into the

models that are used to form their respective coupled models.
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VI.6. Application

The wind farm simulation model is implemented in DEVSJAVA (Zeigler and Sar-

joughian, 2003) which is a Java-based software implementation of the DEVS formal-

ism. All computational experiments are conducted on a DELL Optiplex GX620 with

a Pentium D processor running at 3.0GHz with 3.5GB RAM.

The simulation model is verified and tested using DEVSJAVA SimView version

1.0.4 (Zeigler and Sarjoughian, 2003). This visual interface allows the modeler to

inspect the behavior of each atomic and coupled model created in DEVSJAVA. Atomic

models are inspected first because they should perform as expected to achieve the

proper functioning of the coupled models. SimView has several convenient func-

tionalities such as allowing the user to control the simulation run (start and stop),

simulation fast-forwarding or slow motion, and being able to insert user defined

parameters created for model verification and testing by using the models’ input

ports. The SimView user interface also provides a top menu that allows the user to

select the appropriate model and run it with the click of a button. A simulation clock

is always displayed on the interface during the simulation run as well as statistics of

the active models by simply positioning the mouse cursor on top of the model block.

VI.6.1. Computational experiments design

We applied our simulation model to a 100-unit wind farm located in West Texas.

The wind farm is assumed to operate 24 hours a day for 365 days a year. Several

computational experiments are performed to validate the model and gain management

insights into the impact of maintenance scheduling policies on system performance.

Ten replications for each simulation run are made and a scheduling time horizon of

20 years is used since the average lifespan of a wind turbine is 20 years.
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A preliminary validation of the simulation model is achieved by configuring the

simulation as described based on the following parameter setting (Note that the

parameters in the simulation model are different from the ones used in the case study

in Chapter V).

Wind turbine configuration. We assumed all the wind turbines to be GE sle’s

with 1.5 MW rated power with a hub height of 100 m. The parameters corresponding

to GE sle wind turbines are listed in Table 7.

Table 7. GE 1.5 sle turbine specifications

cut-in speed 3.5 m/s

rated speed 14 m/s

cut-out speed 25 m/s

rated power 1.5 MW

Gearbox degradation. We consider one week as a transition period and use the

following P matrix to represent a weekly-based deterioration process.

P =



0.95 0.04 0.01 0.00

0.00 0.97 0.02 0.01

0.00 0.00 0.94 0.06

0.00 0.00 0.00 1.00


(6.11)

Weather data. The parameters in the spatio-temporal model (6.7) are estimated

using historical wind speed data from the West Texas Mesonet (West Texas Mesonet,

2008). The West Texas Mesonet is a network of meteorological monitoring instru-

ments, dispersed across West Texas. Based on the wind characteristics at this wind

farm location, a value of 0.31 for α in equation (6.9) is used, which is a typical value
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for suburban areas (Gipe, 2000).

O&M practices. We simulate wind farm operations under the two maintenance

strategies: SchM and CBM. As mentioned in Section VI.1, we assume that under

SchM, maintenance actions are performed twice a year in low windy conditions

regardless of the deterioration status of a wind turbine. Under CBM strategy, PM

actions are carried out only when sensors in condition monitoring equipment produce

alarm signals. We assume that preventive repairs in SchM and CBM for each

wind turbine takes two days at a cost of $8,632 based on a study by Rademakers

et al. (2003a). Under both SchM and CBM, CM is performed upon an unplanned

failure. In this case, we consider a lead time of six weeks before repairing the

turbine. The cost for performing corrective maintenance on a single gearbox is

assumed to be $17,264. We also set the cost to invoke smart sensors to be about

10% of the corrective maintenance costs according to the suggestions of our industry

partners. (The monetary unit of each cost factor in this example is originally in euros

(Rademakers et al., 2003a), but we converted from euros to the US dollar with an

exchange rate of 1 euro = 1.3572 dollar). The number of available repair crews is

fixed at five throughout the simulation.

VI.6.2. Simulation results and discussion

The simulation results for the average total power generation and the capacity factor

for 20 years under SchM and CBM, respectively, are reported in Table 8. We also

report the simulation computational time. The columns of the table show the mean

and standard deviation (in parenthesis) for each scheduling strategy. The results

show that CBM performs better than SchM on both power generation and capacity

factor. There is an increase of about 5.85 % (70,3968 MW) in power generation and

increase of about 5.92 % in capacity factor under CBM. Each simulation run took
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about 1.2 hours due to the large number of wind turbines (100) and the lengthy

planning horizon (20 years) used.

Table 8. Simulation results for power generation and capacity factor (standard

deviation in parenthesis)

SchM CBM

Power Generated (MW) 12,025,091.98 (18,851.97) 12,729,060.05 (10,488.85)

Capacity Factor 0.422 (0.001) 0.447 (0.001)

CPU Time (secs) 5,102.67 (84.23) 5,023.02 (7.79)

Annual power generation for each maintenance policy is reported in Fig. 28. The

results show that CBM outperforms SchM for all the years except in year 12, where

SchM has a slightly higher power output. Also, observe that the amount of power

generation decreases annually under SchM starting in year 14. This is the time when

the wind turbines are near their lifespan and are more prone to failure. The results

indicate that there is relatively more corrective maintenance under SchM than CBM.

We also report on the ‘accumulated’ capacity factor, i.e. the average capacity

factor based on the number of years from the start of the simulation. The results

are plotted in Fig. 29 and show steady capacity factors for both SchM and CBM.

However, CBM has relatively larger capacity factor than SchM. This means that on

average, relatively more power is generated under CBM throughout the wind farm

operation years. The capacity factor in actual wind farms is between 0.25 and 0.4

(American Wind Energy Association, 2008), which we believe is typically reported

for SchM since SchM is the most widely used maintenance policy in the wind power
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industry. In our case we obtain slightly higher values for capacity factor. We believe

this is due to the fact that we only consider gearbox failures. Incorporating failures

of other wind turbine components such as blades and generator, the capacity factor

under SchM would fall within the range reported in the literature. Furthermore, the

capacity factor under CBM is expected to be higher since CBM outperforms SchM.
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Fig. 29. Accumulated average capacity factor
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The rest of the performance results are reported in Table 9. The table shows the

average values of wind turbine availability, number of failures per turbine, and O&M

costs per turbine over the 20-year period.

Table 9. Performance results (standard deviation in parenthesis)

SchM CBM

Availability 0.898 (0.008) 0.907 (0.006)

Number of failures per turbine per year 0.932 (0.014) 0.823 (0.011)

O&M costs per turbine per year ($) 33,364.47 (233.44) 22,839.72 (186.68)

The results show that CBM has about 1.0 % higher wind turbine availability over

SchM. CBM also has about 11.7 % less number of gearbox failures than SchM. In

terms of average total maintenance cost, SchM has a significantly higher cost (about

31.5% higher) than CBM. Recall that under SchM, PM is always performed twice

a year on each turbine even when it may not be necessary, thus contributing to the

higher O&M costs. Under CBM, PM is only performed when necessary based on

sensor information. Even though CBM has much lower O&M costs, one has to also

factor in the cost of managing and maintaining the sensors. Since we are unable find

cost figures related to sensor management in the literature, we do not factor in such

a cost into the total average maintenance cost.

We should point out that availability for onshore wind turbines reported in the

literature is about 0.98 (Ribrant, 2006), which is higher than what we obtain (about

0.90). The low availability we obtain is due to the fact that we use a fixed and

relatively long lead time of six weeks for CM of unplanned gearbox failures. According

to a study by Ribrant (2006), the downtime upon a gearbox failure widely varies from
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1 hour to 2,067 hours (almost 12 weeks). In our simulation we use the mid-range value

of six weeks for lead time. However, in practice this time can vary significantly. We

should also mention that the average number of failures per turbine in a year under

the SchM policy, 0.932, falls within the range of actual gearbox failures, which is

0.05-2.29 times per year.

Fig. 30 compares the average number of failures per year during the 20-year

period. The results show that the average number of failures is always higher under

SchM strategy. Also, notice that there is a cyclic failure pattern similar to a sinusoid

curve in both maintenance polices, which indicate the general Markovian degradation

pattern followed by gearbox failures.
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Fig. 30. Average number of failures per turbine

Fig. 31 depicts the ‘accumulated’ average number of failures at a given time

period, i.e. the average number of failures from year one up to a given year. The

results show that SchM has higher average number of failures at each time period. It

is interesting to notice that there is an increasing number of failures in the last five

years under the SchM policy. This can be attributed to the fact that we observe more

failures than the available maintenance crews can handle towards the end of the wind
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turbine lifespan. Recall that the number of repair crews is fixed at five throughout

the simulation. Wind turbines that are close to failures during those years have to

wait for repair crews to finish PM already scheduled for other turbines. The limited

maintenance resources thus result in long downtime leading to increased revenue

losses. On the contrary, the accumulated average number of failures under CBM

remains steady because the CBM strategy utilizes maintenance resources only when

repairs are needed to avoid failures. This result indicates that CBM is a beneficial

maintenance strategy in wind farms with limited repair resources.
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Fig. 31. Accumulated average number of failures per wind turbine

To assess the performance of each individual wind turbine, we plot the average

availability (left axis) and the number of failures (right axis) for each wind turbine

for the 20-year period under SchM and CBM in Fig. 32 and Fig. 33. The average

availability and number of failures for SchM are between 0.87 - 0.92 and 15 - 22,

respectively. Under CBM, the average availability and number of failures are between

0.89 - 0.93 and 13 - 20, respectively. Thus CBM has relatively better values for both

availability and number of failures for each turbine. Finally, Fig. 34 plots the

availability for each turbine for both SchM and CBM. As can be seen in the graph,
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Fig. 32. Aailability and number of failures per wind turbine under SchM
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Fig. 33. Availability and number of failures per wind turbine under CBM

CBM gives higher availability for most of the wind turbines. Also, CBM has lesser

variability in average availability among the wind turbines.
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CHAPTER VII

THE INTEGRATION OF OPTIMIZATION MODELS IN THE

SIMULATION FRAMEWORK

The optimization strategies, discussed in Chapters IV and V, are constructed with

a set of assumptions which simplify some of the details of actual turbine operations.

Consequently, there is a need to evaluate such strategies by use of the simulation

model before field implementation. This chapter discusses our proposed integration

framework regarding how to incorporate the optimization results into the simulation.

We propose a real-time decision-making process for the dynamic CBM model based

on the structural results garnered from the static CBM model, and describe the

preliminary results.

VII.1. Real-time optimization algorithm

As discussed previously, our static CBM model contains a set of decision rules to

determine the proper O&M action. Being static, it cannot adapt to the changing

operating environments, but it is feasible for wind farms that operate in relatively

stationary weather conditions. Applying the dynamic CBM model can provide more

satisfactory results when there are strong seasonal variations, but it, too, has limita-

tions. Its algorithm is not computationally efficient for large size problems with large

planning horizon and/or with large state dimension (M ; L). The heterogeneity of

model parameters, by nature, does not allow us to easily derive structural properties

which can save the computational efforts, unlike the static CBM model.

It is important to note that the two models and the resulting optimal strategies

are based on offline design, i.e. the model parameters and decision-making procedure
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are established offline using historical data yet real-time weather patterns will be

quite different. For example, suppose that the current week is the tenth week of a

year. In the dynamic CBM model we set WCM(l),n = 0.3 for the current week based

on historical data, and we cannot guarantee that the same probability occurs in the

current week. In this case, the optimal policy based on historical data cannot adapt

to these real-time, detailed weather conditions. Hence, an alternative strategy is a

real-time optimization which utilizes refined weather patterns with these two features:

• The use of rule-based decision boundaries similar to those developed in the

static CBM model.

• Coupling the most recent weather information for the current and a few next

periods to the real-time decision boundaries.

The first feature reduces computational efforts considerably compared to the

backward dynamic programming that solves the dynamic CBM model, and incor-

porating the optimization results is simple. Since it is rule-based and expressed as

if-then rules, the strategy is easily implementable by operators and managers. The

second feature fully utilizes refined, real-time weather information; thanks to the

advent of today’s sophisticated forecasting technology, accurate weather information

is available for the current period and near future (The Weather Research and Fore-

casting (WRF), 2009). Having defined our decision rules, we can apply the most

recent weather patterns to the rules at each decision point and decide the best action

on-the-fly. The overall framework to incorporate the online decision-making approach

in our simulation model is depicted in Fig. 35.
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Fig. 35. Framework of real-time O&M strategy

VII.1.1. Extension of static CBM model with several failure modes and

multiple preventive repair levels

Before developing the decision rules for our real-time O&M strategy, we briefly review

the mathematical analysis discussed for the static CBM model and extend the model.

Section IV.4 discussed how we derived a set of decision boundaries for each action

to be optimal for the static CBM model with one failure mode and one preventive

repair level, as summarized in Table 1. The following section generalizes the results

with several failure modes and multiple preventive repair levels.

First, let us consider the PM(m) actions with different repair levels, m =

1, · · · ,M−1. Recall that in our analysis in Section IV.4, we evaluate a bias associated

with each action to determine the optimal policy. The bias associated with PM(m),

denoted by bPM(m)(π) in (4.15), is defined as follows:

bPM(m)(π) = CPM(m) + b(em) +
(τ − g)

1−WPM(m)

(7.1)
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Since bPM(m)(π) is constant in π, we can define the best level of PM as m∗ which

gives the minimum bias among (M − 1) PM -associated biases. That is,

m∗ ≡ argminm=1,··· ,M−1{bPM(m)(π)} (7.2)

bPM(m∗)(π) ≡ min{bPM(m)(π);m = 1, · · · ,M − 1} (7.3)

Table 10 shows the conditions for each action to be optimal for the general static

CBM model. In the table, δS(π) denotes the optimal policy at π. Since the claims

in the table and their proofs are similar to the ones in Section IV.4, we omit them.

Note that Table 1 in Section IV.4 is a special case when only one failure mode and

one preventive repair level (PM(1)) is considered (i.e. L = 1 and M = 1).

VII.1.2. Modified decision rules for real-time decision making

In this section, we adjust the decision boundaries developed for the static CBM model

in order to derive the real-time decision rules.

Recall that the decision boundaries for the static CBM model, summarized in

Tables 1 or 10, are developed by evaluating the bias associated with each action, and

the biases are computed based on the convergence property discussed in Section IV.2.

That is, when the number of decision horizon goes to infinity, the optimal value

function approaches to a linear line with a slope of the average O&M cost per

period g, and an intercept b(π) when the current information state is π (See (4.7) in

Section IV.2).

According to Puterman (1994) (page # 338), the bias can be obtained during

the first few transitions for an aperiodic Markov chain in an average cost Markov

decision process model. Although we consider an infinite horizon model in the static

CBM model, the decision horizon need not be very large to satisfy the convergence

property.
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Table 10. Closed boundaries for optimal policy for general static CBM model

δS(π) Conditions Remark

PM(m∗) if and only if
∑L

l=1(C ′CM(l)−C ′PM(m∗))Hl(π)−g > 0 and Sufficient

C ′PM(m∗) < COB +
∑
b(ei)πi for π ≺st π′(π) and necessary

OB if
∑L

l=1(C ′CM(l) − C ′PM(m∗))Hl(π)− g > 0 and Sufficient

C ′PM(m∗) ≥ COB +
∑
b(ei)πi

or, if
∑L

l=1(C ′CM(l) − COB −
∑
b(ei)π)Hl(π) +

R(π)(
∑
b(ei)(π

′
i(π)− πi)− g) ≥ 0 and δS(π2) = OB

NA if
∑L

l=1(C ′CM(l) − C ′PM(m∗))Hl(π)− g ≤ 0 and Sufficient

C ′PM(m∗) < COB +
∑
b(ei)πi

or, if
∑L

l=1(C ′CM(l) − C ′PM(m∗))Hl(π)− g ≤ 0 and∑L
l=1(C ′CM(l) − COB −

∑
b(ei)π)Hl(π) +

R(π)(
∑
b(ei)(π

′
i(π)− πi)− g) < 0

This gives an important implication for the real-time algorithm. In practice, the

frequency of harsh weather events (i.e. WCM(l),n, WPM(m),n, ∀l,m) may happen more

often during storm seasons or winter season. However, it would still be reasonable

to assume that during a given season, harsh weather frequency is almost constant.

Also, we consider that wind farm operators want to make a timely decision to avoid

catastrophic failures. For example, a weekly decision would be of practical choice.

Considering the weekly decision-making process, each season consists of multiple

periods. When the remaining periods until the next season are not very small, we

can still apply the convergence property to determine the decision boundaries.
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In applying the decision boundaries derived in the static CBM model to the real-

time decision making (or dynamic CBM model), we need a few more approximations.

First, note that in the static CBM model, we do not consider a discount factor

because we use an average cost model, whereas in dynamic CBM model, β is not

necessarily one. However, when decisions are made frequently, a discount rate is

close to one. Also, recall that in the static CBM model, we compared actions pairwise

(See Lemma 2 through Lemma 4 in Section IV.4). For the comparison of “PM(m)

vs. NA” and “PM(m) vs. OB”, we derive necessary and sufficient conditions to

define which action is preferred to the other action. However, when we compare NA

with OB, we derive only the sufficient condition under which NA is preferred. We

approximate that if the condition does not hold, OB is preferred.

Next, how can we bind the most updated forecasting information to the decision

rules? Recall that in the static CBM model, we define the new repair costs as C ′CM(l),

C ′PM(m) in (4.16) and (4.17), respectively, to compound weather effects, lead time and

production losses, as follows:

C ′CM(l) = CCM(l) + λ(l) · (τ − g) +


WCM(l)(τ−g)

1−WCM(l)
if µ(l) = 0

τ−g
1−WCM(l)

if µ(l) = 1
(7.4)

C ′PM(m) = CPM(m) + b(em) +
τ − g

1−WPM(m)

(7.5)

where µ(·) is the number of repair periods required when the system fails with lth

failure mode. In (7.4), the second term λ(l) · (τ − g) represents the revenue losses

during the lead time. Since in the dynamic CBM model, the revenue losses depend

on the period, we replace the second term with τ̃n(l) − λ(l) · g, where τ̃n(l) is the

total revenue losses during the lead time as defined in (5.2) with β = 1. Also, in

(7.4), the third term reflects the expected revenue losses during repair delay after the

maintenance resources are ready. Thus, we replace τ and g in the third term with
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τλ(l)−n−1 and WCM(l),λ(l)−n−1, respectively (note that n implies the remaining periods

until the terminal period; thus, λ(l) − n − 1 in (7.4) is the (λ(l) + 1)th period after

the current period n). In (7.5), since PM(m) can be carried out during the current

period as long as weather conditions permits the corresponding preventive repairs,

we can use the τn and WPM(m),n for τ and g, respectively. In summary, we redefine

the repair costs as follows:

CR
CM(l) = CCM(l) + τ̃n(l)− λ(l) · g +


WCM(l),λ−n−1(τλ−n−1−g)

1−WCM(l),λ(l)−n−1
if µ(l) = 0

τλ−n−1−g
1−WCM(l),λ−n−1

if µ(l) = 1
(7.6)

CR
PM(m) = CPM(m) + b(em) +

τn − g
1−WPM(m),n

(7.7)

Here, superscript R reflects the real-time strategy. We can now substitute these

redefined cost factors and weather parameters into the bias functions in (4.18) as

follows:

bR(π) = min


bRNA(π) =

∑L
l=1C

R
CM(l)Hl(π) + bR(π′(π))R(π)− gR,

bRPM(m)(π) = CR
PM(m),m = 1, · · · ,M − 1

bROB(π) = COB +
∑M

i=1 b
R(ei)πi

(7.8)

Then, we can apply the policy iteration (or value iteration) along the extreme

sample paths to find the average cost and extreme biases, denoted by gR and bR(ei),

i = 1, · · · ,M , respectively.

Finally, we can use the preference conditions between two actions to find the

best policy, as summarized in Table 11. Note that the claims in the table generalize

the results for the static CBM model with L = 1 and M = 1 which is discussed in

Section IV.4.
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Table 11. Preference conditions for real-time decision-making

Actions Preference Conditions

PM(m∗) vs. NA PM(m∗) is preferred to NA

if
∑L

l=1(CR
CM(l)−CR

PM(m∗))Hl(π)−gR > 0 and vice versa

PM(m∗) vs. OB PM(m∗) is preferred to OB

if CR
PM(m∗) < COB +

∑
bR(ei)πi and vice versa

NA vs. OB NA is preferred to OB

if
∑L

l=1(CR
CM(l) − COB −

∑
bR(ei)πi)Hl(π) +

R(π)
(∑

bR(ei)(π
′
i(π)− πi)

)
− gRn < 0 and vice

versa

VII.1.3. Adjustment for transition periods

In highly complex systems with hundreds of wind turbines, the decision rules pre-

sented in Table 11 will provide considerable computational savings over the dynamic

programming algorithm (Algorithm V.1). Nevertheless, an important limitation

of this approximation is that only the current and predicted weather information

for the near future is used to make decisions. Therefore, if the weather conditions

are updated at a high frequency or change dramatically in the consecutive periods,

erratic performance and instability could arise. The example can be observed during

transitional periods (known as “shoulder seasons”) from harsh to mild seasons. In

these transitional periods, the optimal policy will encourage operators to postpone

preventive repairs until the mild weather arrives (see case study in Chapter V).

However, the real-time decision boundaries may not capture these dramatic weather

changes.
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To adjust the dramatic weather changes during transition periods, we must add

one more rule. Note that the average number of periods to complete preventive

repairs is 1
1−WPM(m),n

. Therefore, when the predicted weather condition during the

next
[

1
1−WPM(m),n

]
periods is better than the current condition, we do not perform

PM and take NA at the current period. Here, [·] denotes the closest integer. This rule

compensates the limitation of the closed decision boundaries described in Table 11

when the remaining periods to the upcoming next season are few.

VII.1.4. Real-time algorithm

Now, let δR(π) denote the policy from the real-time algorithm at a state π. Suppose

that the number of remaining periods to the terminal period is n. We summarize the

approximate algorithm as follows:

Algorithm VII.1. Construction of a real-time algorithm

Input: λ(l), µ(l), CCM(l), CPM(m), COB, l = 1, · · · , L,m = 1, · · · ,M − 1.

Step 1. Based on the most recent weather forecasting information, estimate the weather

related parameters, τn, τλ(l)−n−1, WCM(l),λ(l)−n−1, and

WPM(m),n, · · · ,WPM(m),n−K(m) where K(m) =
[

1
1−WPM(m),n

]
Step 2. Compute CR

CM(l), C
R
PM(m) using (7.6) and (7.7), respectively

Step 3. Compute the biases at the extreme points, bR(ei), i = 1, · · · ,M + L and

average cost gRn by applying the standard policy iteration (or value iteration)

to the states along the extreme sample paths

Step 4. Then, apply the following decision rules:

( a) Find the most preferable PM action PM(m∗) which gives the minimum

CR
PM(m) in (7.7), m = 1, · · · ,M − 1
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( b) Suppose that
∑L

l=1(CR
CM(l)−CR

PM(m∗))Hl(π)−gR > 0. δR(π) = PM(m∗)

if CR
PM(m) < COB +

∑M
i=1 bn(ei)πi. Otherwise, δR(π) = OB

( c) Suppose that
∑L

l=1(CR
CM(l) − CR

PM(m∗))Hl(π) − gR ≤ 0. δR(π) = NA if∑L
l=1(CR

CM(l) − COB −
∑
bn(ei)π)Hl(π) + R(π)(

∑
bn(ei)(π

′
i(π) − πi) −

gR) < 0. Otherwise, δR(π) = OB

Step 5. Take NA (i.e. set δR(π) = NA) if δR(π) = PM(m∗), but WPM(m∗),n−k <

WPM(m∗),n for any k = 1, · · · , K(m∗)

Remark. Note that in Step 3, the policy iteration (or value iteration) is applied

only to extreme sample paths to obtain gR and bR(ei) values, leading to substantial

reduction of computational time and complexity when compared with the dynamic

program algorithm (Algorithm V.1). More approximation can be made by using

fixed gR and bR(ei) values. The preliminary results using a wide range of weather

parameters (WCM(m),n,WPM(m),n) show that these gR and bR(ei) values are not sen-

sitive to the weather parameters. Consequently, as an alternative to Step 3, we can

compute the gR and bR(ei) a priori using average values of WCM(m),n,WPM(m),n and

use the numbers as input parameters.

The decision rules will determine the best maintenance action that minimizes

the operational costs using the current information of the system’s physical condition

and exogenous weather conditions. An advantage of this algorithm is that economic

objectives and operational limits due to harsh weather conditions can be handled

directly in a systematic manner. In addition, the rigorous model, which is based

on optimization tasks, is always used and adapted online. Consequently, parameter

tuning (or estimation) tasks can be considerably reduced.
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VII.2. Preliminary results

To evaluate the performance of the real-time algorithm, we apply Algorithm VII.1

to the same case study described in Section V.3. Suppose that the weather parameter

estimates presented in Table 4 are perfectly accurate throughout the year, and thus

the policy discussed in Section V.3 is the true optimal policy. In order to evaluate

the performance of the real-time algorithm with the optimal policy as a benchmark,

we superimpose the real-time decision boundaries on the optimal policy in Figs. 36

& 37. We omit the results for fall and winter because they are similar to the results

for spring and summer. In the figures, the PM region from the real-time policy is

defined as the area above the two lines of “PM vs. OB” and “PM vs. NA” (let

us ignore the PM level for the time being; it is discussed in the next paragraph).

Similarly, NA region is the area below the two lines of “PM vs. NA” and “OB vs.

NA”. The in-between area is OB region.

In most cases, the results from the real-time strategy are close to the optimal

policy. We believe that the real-time strategy approximates the optimal policy well.

We have a few remarks to explain the results of the real-time strategy.

• The decision boundaries to define the preference conditions over “PM vs. OB”

and “PM vs. NA” approximate the optimal policy very well. On the contrary,

there is a small discrepancy between the real-time policy and the optimal policy

in separating NA area with OB area in the lower side of the figures. Recall

that in the static CBM model, we derive necessary and sufficient conditions for

the first two comparisons (“PM vs. OB” and “PM vs. NA”), but only the

sufficient condition for NA to be preferred to OB is derived rigorously, and we

approximate this sufficient condition as a necessary and sufficient condition in

the real-time algorithm. One possible explanation for the discrepancy could be
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Fig. 36. Approximate decision rules during spring season superimposed on optimal

policy

explained by this approximation.

• During the summer season (except the ending periods of the summer season),

the optimal policy suggests taking the minor PM when the system condition is

very bad, whereas the real-time algorithm suggests the major PM . In selecting

the best PM level in the real-time algorithm, we use CR
PM(m) in (7.7). Note that

the minor PM returns the system state to the alert state (e2) in this example.

But the bias at e2, bR(e2), turns out to be relatively higher, compared to the
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(c) At the end of summer

Fig. 37. Approximate decision rule during summer season superimposed on optimal

policy

difference between the major PM cost and the minor PM cost. We conjecture

that incorrect suggestions of the PM level from the real-time algorithm during

summer periods may be explained by the imperfect parameter setting in cost

factors and the elements of the transition matrix. We believe that much refined

parameter setting will improve the quality of the real-time algorithm.

• At the end of summer storm seasons, weather conditions dramatically change in

the next upcoming periods and better weather conditions are expected. Hence,
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the real-time algorithm sets the best action as NA in all states as suggested

by Step 5 of Algorithm VII.1, and leads to the same results as the dynamic

optimal policy.

VII.3. Incorporation of optimization results in the simulation model

Recall that in our simulation platform, the experimental frame (EF) coupled model

and operation and maintenance (OPMNT) coupled model are designed to be sep-

arated from the wind farm (WF) model. The advantage of this structure is that

the addition of new O&M polices or changes in the current policies can be done

independently without making changes to the other models.

The real-time O&M strategy can be implemented by embedding Algorithm VII.1

in the OPMNT model in our simulation platform. At each decision point, the main-

tenance scheduler (MSCHEDR) in the OPMNT model will decide the proper main-

tenance action proposed by the real-time algorithm, based on the real-time weather

information from the wind generator (WGENR) atomic model and the estimated

state information from the state evaluation (STEVAL) atomic model. When PM or

OB is recommended, the maintenance generator (MGENR) dispatches maintenance

crew to the turbine. Once the repair is done, the report is sent to the transducer

(TRANSD) atomic model to collect the performance information over the lifetime of

wind turbines.

The EF model allows us to choose a simulation experiment of interest. Once the

real-time algorithm is embedded in the OPMNT model, the real time O&M strategy

can be selected in the EF. Finally, the collected information from the simulation

runs can be compared with the results from other O&M strategies to validate the

effectiveness of the real-time O&M strategy.
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CHAPTER VIII

CONCLUSION

Based on a literature review and technical discussions with our industry partners, we

observe that a comprehensive simulation tool and an effective O&M strategy are badly

needed to address the approaching challenges faced by the global wind power industry.

This chapter summarizes our proposed models and highlights the contributions of this

dissertation. We conclude with suggestions for further research.

VIII.1. Summary

In this study we construct new probabilistic models for choosing cost-effective main-

tenance actions and scheduling adaptive on-site observations for wind turbine opera-

tions and maintenance. We develop dynamic optimal policies to respond to stochastic

weather conditions. We also examine other aspects unique to turbine maintenance,

including failure modes, partial as well as perfect repairs, and stochastic revenue

losses.

We develop two optimization models by formulating the problem as a POMDP,

which considers the costs associated with different actions and other critical aspects.

To the best of our knowledge, the models proposed are the first mathematical models

for condition-based wind turbine maintenance. In the first optimization model with

homogeneous weather parameters, the static CBM model, we analytically derive a

set of closed-form expressions for the optimal policy and show how the results can

be utilized to solve large size problems. We extend the AM4R structure under

weaker assumptions than previous literature, and also demonstrate the conditions

under which this AM4R structure becomes an AM3R structure. We suggest that the
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static CBM model is feasible for in-land wind farms where weather patterns are quite

stable.

The second optimization model, the dynamic CBM model, uses heterogeneous

parameters to reflect seasonal weather fluctuations commonly exhibited in very windy

(usually high-altitude) or offshore sites. We show how to alter the decision rules based

on weather characteristics to minimize O&M costs while maximizing the availability

of wind power production. We introduce an algorithm to find the optimal policy of

the dynamic CBM model using a backward dynamic programming. Applying the

model to a case study we show that it can translate into considerable savings in

operational costs and number of failures.

We also develop a simulation model which provides profound insights into the

stochastic behavior of wind power systems. We use DEVS formalism because it

provides a formal modeling and simulation framework based on dynamical systems

theory and allows for hierarchical and modular model construction (Zeigler et al.,

2000). The simulation platform represents actual operations with sufficient details.

We consider the condition of each component in a turbine and the correlation of wind

generation among turbines, which is not generally addressed in the extant literature.

We validate the simulation platform with several calibration criteria using field data

and data from the literature. The criteria selected to account for both the dynamic

response of turbines and their degradation include: capacity factor, availability of the

wind power systems, and number of failures. We fine-tune a number of parameters

so that the simulation results match the actual wind farm output.

The simulation model provides a tool for wind farm operators to select the

most cost-effective O&M strategy. The two maintenance policies studied are SchM

and CBM. Here, the SchM, which performs preventive repairs regularly, represents

the standard practice in the industry, whereas the CBM is the strategy adopted
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recently as condition monitoring techniques have advanced. In the CBM strategy,

preventive repairs are carried out when sensors send alarm signals. The CBM strategy

implemented in the simulation model is not the one based on the optimization models

discussed in this study, but a simplified strategy. However, even with this simpler form

of a CBM strategy, the implementation results demonstrate that the CBM strategy

provides appreciable benefits over the SchM under all of the performance measures

considered. For example, the failure frequency and the overall O&M costs drop by

11.7% and 31.5%, respectively, when the CBM is used instead of the SchM.

Finally, we present the integrated framework in which we incorporate the result-

ing optimization tools in our simulation model. We provide a real-time algorithm to

decide a proper maintenance action based on the health status of a turbine component

and the weather conditions. The set of decision rules consists of the specification of a

pre-defined algorithm described by a set of if-then rules, which can be easily incorpo-

rated in the simulation model and easily implemented in practice. Determining the

best maintenance policy will always rely on the available real-time weather forecasting

data for the near future.

VIII.2. Suggestions for future research

We suggest extending the current framework to incorporate different levels of op-

erations which include the electric grid and network, as shown in Fig. 38. At the

finest granularity, we have already established modeling of each turbine (Fig. 38(c)).

The finely grained models for wind turbines can be coupled to the model for wind

farms (Fig. 38(b)) and also possibly to the models representing the grid and network

(Fig. 38(a)). This extended framework will be able to evaluate the reliability of the

grid with hybrid generation systems including conventional sources and storage.
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Fig. 38. Modeling and optimization of wind power systems at all different levels of

operations: (a) power grid and network, (b) wind farm; (c) wind turbine

This vision opens up several research directions. First, the current simulation

and optimization models can be extended to include degradation of multiple wind

turbine components, such as gearboxes, generators and blades. The current study

only considers gearbox maintenance because gearboxes are one of the most critical

components and are prone to major failures. It would be interesting to study how

robustly the recommended CBM policy performs when multiple components are

considered.

Another direction is to develop a comprehensive methodology for multi-time scale

decision-making. Note that the dispatching decisions at the network level (Fig. 38(c))

are analyzed on a short-term basis (hourly or daily), while the decisions related to
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O&M (Fig. 38(b)) are made on a medium-term basis (weekly, bi-weekly, monthly,

or seasonally). The two decision types affect one another, e.g., repairing a turbine

may require temporarily stopping its production. No optimization tool is yet capable

of handling the operations of a wind farm at different time scales. Comprehensive

modeling and optimization efforts will be required to handle these inter-relationships.

The extended framework we have proposed provides a platform for a broad array

of potential applications related to wind generation. For example, the simulation

model can be extended to site evaluation (Acker et al., 2007), correlation studies for

multiple facilities (Wan et al., 2003), wind power system reliability analysis (Karki and

Patel, 2009, Wen et al., 2009), and evaluation of generation adequacy of power systems

(Karki and Billinton, 2004, Kaviani et al., 2009). The framework can also be extended

to assess generation capacity of hybrid models with different power generators such

as conventional fuel-fired power, battery and wind energy (Nelson et al., 2006).

In conclusion, acknowledging that the global economic recession is expected to

continue, and that every dollar of private investment and government subsidies must

“stretch”, we have designed our proposed framework for easy understanding and

application, for it, too, can be “stretched” to encompass a single farm, or multiple

facilities.
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APPENDIX A

MATHEMATICAL EXPRESSIONS OF THE ATOMIC MODELS IN

PARALLEL DEVS

A.1. Power Generator (PWRGEN) Model

In this section a mathematical definition of the PWRGEN atomic model is

provided. A “cut off” boolean variable is used to notify when the wind speed is

within a specified threshold (true) or not (false). Another boolean variable called

“degradation” is used to notify when degradation has occurred (true) in the compo-

nent or not (false). STI is used to denote a short time interval. An entity called msg

is used to carry out the output information of the model.

DEV SPWRGEN = (XM , YM , S, δext, δint, δcon, λ, ta) (A.1)

where,

IPorts = {“turb on off”, “wind in”, “deg in”, “corr mnt”, “prev mnt”, “obsv”,

“req status”}, where Xturb on off = V1, Xwind in = V2, Xdeg in = V3 , Xcorr mnt =

V4, Xprev mnt = V5, Xobsv = V6, Xreq status = V7 are arbitrary sets;

XM = {(p, v)|p ∈ IPorts, v ∈ Xp} is the set of input ports and values;

OPorts = {“pwr out”, “deg on off”, “status out”}, where Ypwr out, Ydeg on off ,

and Ystatus out are arbitrary sets;

YM = {(p, v)|p ∈ OPorts, v ∈ Yp} is the set of output ports and values; and

S = {“off normal”, “off normal waiting”, “on normal”,“off alert”,

“off alert waiting”, “on alert”, “off alarm”, “off alarm waiting”, “on alarm”,
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“failed”, “report status n”, “report status t”, “report status m” } × <+
0 × V1 ×

V2 × V3 × V4 × V5 × V6 × V7 is the set of sequential states.

External Transition Function :

δext((phase, σ), e, (p, v))

= (“off normal”, ∞), if



p = “turb on off”;

phase = “off alert” ∧ p = “prev mnt”;

phase = “off alarm” ∧ p = “prev mnt”;

phase = “failed” ∧ p = “corr mnt”;

phase = “on normal” ∧ p = “turb on off”;

phase = “on normal” ∧ p = “prev mnt”.

= (“off normal waiting”, ∞), if



phase = “off normal” ∧

p = “turb on off” ∧

cut off = false;

phase = “on normal” ∧

p = “wind in” ∧

cut off = false.

= (“on normal”, ∞), if



phase = “off normal” ∧ p = “turb on off”

∧ cut off = true;

phase = “off normal waiting” ∧

p = “wind in” ∧

cut off = true.

= (“off alert”, ∞), if

 phase = “on alert” ∧ p = “turb on off”;

phase = “on alert” ∧ p = “prev mnt”.
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= (“off alert waiting”,∞), if



phase = “off alert” ∧ p = “turb on off”

∧ cut off = false;

phase = “on alert” ∧ p = “wind in”

∧ cut off = false.

= (“on alert”, ∞), if



phase = “off alert” ∧ p = “turb on off”

∧ cut off = true;

phase = “off alert waiting” ∧ p = “wind in”

∧ cut off = true;

phase = “on normal” ∧ p = “deg in”

∧ degradation = true.

= (“off alarm”, ∞), if

 phase = “on alarm” ∧ p = “turb on off”;

phase = “on alarm” ∧ p = “prev mnt”.

= (“off alarm waiting”,∞), if



phase = “off alarm” ∧ p = “turb on off”

∧ cut off = false;

phase = “on alarm” ∧ p = “wind in”

∧ cut off = false.

= (“on alarm”,∞), if



phase = “off alarm” ∧ p = “turb on off”

∧ cut off = true;

phase = “off alarm waiting” ∧ p = “wind in”

∧ cut off = true;

phase = “on alert” ∧ p = “deg in”

∧ degradation = true;

phase = “on normal” ∧ p = “deg in”

∧ degradation = true.
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= (“failed”, ∞), if



phase = “on normal” ∧ p = “deg in”

∧ degradation = true;

phase = “on alert” ∧ p = “deg in”

∧ degradation = true;

phase = “on alarm” ∧ p = “deg in”

∧ degradation = true.

= (“report status n”, STI), if

 phase = “on normal” ∧

p = “req status”;

= (“report status t”, STI), if

 phase = “on alert” ∧

p = “req status”;

= (“report status m”, STI), if

 phase = “on alarm” ∧

p = “req status”.

= (phase, σ − e), otherwise.

Internal Transition Function :

δint(phase, σ)

= (“on normal”, STI ), if phase = “report status n”

= (“on alert”, STI ), if phase = “report status t”

= (“on alarm”, STI ), if phase = “report status m”

Confluence Function :

δcon(s, ta(s), x) = δext(δint(s), 0, x).

Output Function :

λ(phase, σ)
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= (“pwr out”, msg) if



phase =“off normal”;

phase =“off alert”;

phase =“off alarm”;

phase =“failed”.

= (“deg on off”, msg) if



phase =“off normal”;

phase =“off normal waiting”;

phase =“off alert”;

phase =“off alert waiting”;

phase =“off alarm”;

phase =“off alarm waiting”;

phase =“failed”.

= (“status out”, msg) if


phase =“report status n”;

phase =“report status t”;

phase =“report status m”.

Time Advance Function :

ta(phase, σ) = σ

A.2. Component Degradation (CMPDEG) Atomic Model

Similarly the CMPDEG atomic model is defined in Parallel DEVS. The boolean

variable deg is used to denote a change in degradation (true) or no change (false).

Another boolean is defined named LTI which assumes the value of true when a large

time interval is elapsed.

DEV SCMPDEG = (XM , YM , S, δext, δint, δcon, λ, ta) (A.2)
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where,

IPorts = {“wind on off”, “maint on off”, “manual on off”}, where

Xwind on off = V1, Xmaint on off = V2, and Xmanual on off = V3 are arbitrary sets;

XM = {(p, v)|p ∈ IPorts, v ∈ Xp} is the set of input ports and values;

OPorts = {“deg out”, “status out”}, where Ydeg out, and Ystatus out are arbitrary

sets;

YM = {(p, v)|p ∈ OPorts, v ∈ Yp} is the set of output ports and values; and

S = {“passive”, “active”, “passive wind”, “report status”, “report deg”, “pas-

sive service”} × <+
0 × V1 × V2 × V3 is the set of sequential states.

External Transition Function :

δext((phase, σ, status, deg), e, (p, v))

= (“passive”, ∞, status, deg), if



p = “manual on off”;

phase = “active” ∧

p = “manual on off”;

phase = “passive service” ∧

p = “maint on off”.

= (“active”, ∞, status, deg), if



phase = “passive” ∧

p = “manual on off”;

phase = “passive wind” ∧

p = “wind on off”.

= (“passive wind”, ∞, status, deg), if phase = “active” ∧

p = “wind on off”
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= (“passive service”,∞, status, deg), if



phase = “active” ∧

p = “maint on off”;

phase = “passive wind” ∧

p = “maint on off”.

= (phase, σ − e), otherwise.

Internal Transition Function :

δint((phase, σ, status, deg), e, (p, v))

= (“report status”, STI, status, deg), if


phase = “active” ∧

LTI = true;
phase = “passive wind” ∧

LTI = true.

= (“report deg”, STI, status, deg), if

{
phase = “active” ∧ deg = true;
phase = “passive wind” ∧

deg = true.

= (“active”, ∞, status, deg), if


phase = “report status” ∧

status = true;
phase = “report deg” ∧

status = true.

= (“passive wind”, ∞, status, deg), if


phase = “report status” ∧

status = false;
phase = “report deg” ∧

status = false.

Confluence Function :

δcon(s, ta(s), x) = δext(δint(s), 0, x).

Output Function :

λ(phase, σ, status, deg)

= (“status out”, msg) if phase = “report status”

= (“deg out”, msg) if phase = “report deg”

Time Advance Function :

ta(phase, σ, status, deg) = σ
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A.3. Sensor (SENSR) Atomic Model

We consider a SENSR with the input and outports ports shown in Fig. 39. The

model has two input ports, “sensor on off” and “status in”. When an input is received

at the “sensor on off” input port the model transitions from the off state to the on

state. A change from the on state to the retrieving info state will occur if an input

is received at the “status in” input port. After retrieving the information the model

goes back to the on state. The SENSR has one output port, named “status out”.

This outport is used to send information to the STEVAL model.

status_out SENSR
status_in 

sensor_on_off

Fig. 39. Sensor with input and output ports

The Sensor (SENSR) atomic model has 3 basic states shown in Fig. 40; off, on,

and retrieving info.

onoff retrieving 

info

sensor_on

STIsensor_off

component_status

Fig. 40. Sensor state transition diagram

Mathematically, an atomic model for Component sensor in Parallel DEVS can

be defined as follows:

DEV SSENSR = (XM , YM , S, δext, δint, δcon, λ, ta) (A.3)

where,
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IPorts = {“sensor on off”, “status in”}, where Xsensor on off = V1 and

Xstatus in = V2 are arbitrary sets;

XM = {(p, v)|p ∈ IPorts, v ∈ Xp} is the set of input ports and values;

OPorts = {“status out”}, where Ystatus out is an arbitrary sets;

YM = {(p, v)|p ∈ OPorts, v ∈ Yp} is the set of output ports and values; and

S = {“off”, “on”, “retrieving info”}×<+
0 ×V1×V2 is the set of sequential states.

External Transition Function:

δext((phase, σ, info), e, (p, v))

= (“off”, ∞, info), if p = “sensor on off”

= (“off”, ∞, info), if phase = “on” ∧ p = “sensor on off”

= (“on”, ∞, info), if phase = “off” ∧ p = “sensor on off”

= (“retrieving info”, STI, info), if phase = “on” ∧ p = “status in”

turbineStatus = getCurrentStatus(info);

= (phase, σ − e), otherwise.

Internal Transition Function:

δint((phase, σ, info), e, (p, v))

= (“on”, ∞, status), if phase = “retrieving info” ∧ STI = true

Confluence Function:
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δcon(s, ta(s), x) = δext(δint(s), 0, x).

Output Function:

λ(phase, σ, info)

= (“status out”, msg) if phase = “retrieving info”

Time Advance Function:

ta(phase, σ) = σ

A.4. Smart Sensor (SMSENSR) Atomic Model

The Smart Sensor (SMSENSR) atomic model has 4 basic states; off, on, check status

and retrieving info. We consider a SMSENSR with the input and outports ports

shown in Fig. 41. The model has three input ports, “sensor on off”, “turbine status”,

and “status in”.

status_out 

SMSENSRstatus_in 

sensor_on_off

request_status turbine_status 

Fig. 41. Smart sensor with input and output ports

When an input is received at the “sensor on off” input port the model transitions

from the off state to the on state. A change from the on state to the check status

state will occur if a message is received at the “turbine status” input port. This

message is a request for additional information about the component status. The

SMSENSR atomic model is in charge of obtaining the information needed by sending

a message to the PWRGEN atomic model. A transition from the check status state

to the “retrieving info” state will occur when a message is received at the “status in”
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input port containing the information requested. After retrieving the information the

model goes back to the on state.

The SMSENSR has two output ports, named “status out” and “request status”.

The “status out” output port is used to send requested status information to the

MSCHEDR atomic model and the “request status” output port is used to request

the real status of the PWRGEN atomic model. The operation of the SMSENSR

model is depicted in Fig. 42.

onoff retrieving 

info

sensor_on

STI

check 

status

sensor_off

check component_status

Fig. 42. Smart sensor state transition diagram

Mathematically, an atomic model for Smart sensor in Parallel DEVS can be

defined as follows:

DEV SSMSENSR = (XM , YM , S, δext, δint, δcon, λ, ta) (A.4)

where,

IPorts = {“sensor on off”, “status in”, “turbine status”}, whereXsensor on off =

V1, Xstatus in = V2 and Xturbine status = V3 are arbitrary sets;

XM = {(p, v)|p ∈ IPorts, v ∈ Xp} is the set of input ports and values;
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OPorts = {“status out”, “check status”}, where Ystatus out and Ycheck status are

arbitrary sets;

YM = {(p, v)|p ∈ OPorts, v ∈ Yp} is the set of output ports and values; and

S = {“off”, “on”, “check status”, “retrieving info”} × <+
0 × V1 × V2 × V3 is the

set of sequential states.

External Transition Function:

δext((phase, σ, info), e, (p, v))

= (“off”, ∞, info), if p = “sensor on off”

= (“off”, ∞, info), if phase = “on” ∧ p = “sensor on off”

= (“on”, ∞, info), if phase = “off” ∧ p = “sensor on off”

= (“check status”, ∞, info), if phase = “on” ∧ p = “turbine status”

= (“retrieving info”, STI, info), if phase = “check status” ∧ p =

“status in”

turbineStatus = getCurrentStatus(info);

= (phase, σ − e), otherwise.

Internal Transition Function:

δint((phase, σ, info), e, (p, v))

= (“on”, ∞, info), if phase = “retrieving info” ∧ STI = true

Confluence Function:

δcon(s, ta(s), x) = δext(δint(s), 0, x).
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Output Function:

λ(phase, σ, info)

= (“request status”, request) if phase = “check status”

= (“status out”, msg) if phase = “retrieving info”

Time Advance Function:

ta(phase, σ) = σ

A.5. State Evaluation (STEVAL) Atomic Model

The State evaluation (STEVAL) atomic model has 3 basic states; off, on, and

retrieving info. We consider a STEVAL with the input and outports ports shown

in Fig. 43. The model has two types of input ports, namely; “se on off” and “sen-

sor x in”. The number of input ports of type “sensor x in” depends on the number

of sensors existing in the component.

status_out STEVAL
sensor_1_in 

se_on_off

sensor_2_in 

sensor_n_in 

Fig. 43. State evaluation with input and output ports

When an input is received at the “se on off” input port the model transitions

from the off state to the on state. A change from the on state to the retrieving info

state will occur if an input is received in one of the “sensor x in” input ports. After

retrieving the information the model goes back to the on state.

The STEVAL has one output port, named “status out”. This outport is used to

send information to the MSCHEDR model. The operation of the STEVAL model is
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depicted in Fig. 44.

off on retrieving 

info

se_on

se_off

sensors_status

STI

Fig. 44. State evaluation state transition diagram

Mathematically, an atomic model for State evaluation in Parallel DEVS can be

defined as follows:

DEV SSTEV AL = (XM , YM , S, δext, δint, δcon, λ, ta) (A.5)

where,

IPorts = {“se on off”, “sensor 1 in”, “sensor 2 in”, .... , “sensor n in”}, where

Xse on off = V1, Xsensor 1 in = V2, Xsensor 2 in = V3, .... , Xsensor n in = Vn+1 are

arbitrary sets;

XM = {(p, v)|p ∈ IPorts, v ∈ Xp} is the set of input ports and values;

OPorts = {“status out”}, where Ystatus out is an arbitrary sets;

YM = {(p, v)|p ∈ OPorts, v ∈ Yp} is the set of output ports and values; and

S = {“off”, “on”, “retrieving info”} × <+
0 × V1 × V2× .... ×Vn+1 is the set of

sequential states.
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External Transition Function:

δext((phase, σ, info), e, (p, v))

= (“off”, ∞, info), if p = “se on off”

= (“off”, ∞, info), if phase = “on” ∧ p = “se on off”

= (“on”, ∞, info), if phase = “off” ∧ p = “se on off”

= (“retrieving info”, STI, info), if phase = “on” ∧ p = “sensor x in”

turbineStatus = getSensorStatus(info);

= (phase, σ − e, info), otherwise.

Internal Transition Function:

δint((phase, σ, info), e, (p, v))

= (“on”, ∞, info), if phase = “retrieving info” ∧ STI = true

Confluence Function:

δcon(s, ta(s), x) = δext(δint(s), 0, x).

Output Function:

λ(phase, σ, info)

= (“status out”, msg) if phase = “retrieving info”

Time Advance Function:

ta(phase, σ, info) = σ

A.6. Maintenance Scheduler (MSCHEDR) Atomic Model

The MSCHEDR atomic model is in charge of determining maintenance schedules

for the system components. The modeler can implement any scheduling algorithm
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using this model. The MSCHEDR atomic model has 3 basic states; “passive”, “up-

date schedule”, and “active”. The model has only one input port, called “status in”.

Fig. 45 shows the input and output ports for the model.

MSCHEDRstatus_in 
check_turbine_status 

scheduled_maint 

Fig. 45. Maintenance scheduler with input and output ports

A transition to the “active” state occurs when the model is on an “passive”

state and a message is received at the “status in” input port. A method, named

getMaintSchedule(); takes the information provided and perform the scheduling using

the algorithm defined by the modeler. If the scheduling is successfully performed, the

MSCHEDR atomic model transitions to the “update schedule” state where the sched-

ules of the resources seized to perform maintenance are updated. After completing

the schedules updates the MSCHEDR atomic model transitions to the “idle” state.

The model will also transition back to the “idle” if it is on the “active” state and no

schedule for maintenance is assigned or if additional information is needed to make

the decision.

The MSCHEDR has two types of output ports, namely; “check turbine status”

and “scheduled maint”. Messages are sent using the “check turbine status” output

port when additional information from one components is needed to schedule main-

tenance. The “scheduled maint” output port is used to send information to the

Maintenance generator (MGENR) atomic model. The operation of the MSCHEDR

atomic model is depicted in Fig. 46.

Mathematically, the Maintenance scheduler model can be represented as follows.
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active
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status_in no schedule \ check turbine
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Fig. 46. Maintenance scheduler state transition diagram

DEV SMSCHEDR = (XM , YM , S, δext, δint, δcon, λ, ta) (A.6)

where,

IPorts = {“status in”}, where Xstatus in = V1 is an arbitrary set;

XM = {(p, v)|p ∈ IPorts, v ∈ Xp} is the set of input ports and values;

OPorts = { “check turbine status”, “scheduled maint”}, where Ycheck turbine status,

Yscheduled maint are arbitrary sets;

YM = {(p, v)|p ∈ OPorts, v ∈ Yp} is the set of output ports and values; and

S = {“active”, “update schedule”, “passive”} × <+
0 × V1 is the set of sequential

states.
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External Transition Function:

δext((phase, σ, info), e, (p, v))

= (“active”, STI, info), if phase = “passive” ∧ p = “status in”

maintenance = scheduleMaintenance(info);

= (phase, σ − e, calli), otherwise.

Internal Transition Function:

δint((phase, σ, info), e, (p, v))

= (“update schedule”, STI, info), if phase = “active” ∧ schedule = true

= (“passive”,∞, info), if


phase = “update schedule” ∧ STI = true;

phase = “active” ∧ schedule = false;

phase = “active” ∧ check turbine = true.

Confluence Function:

δcon(s, ta(s), x) = δext(δint(s), 0, x).

Output Function:

λ(phase, σ, info)

= (check turbine status, msg) if phase = “active” ∧ check turbine =

true,

= (sched maint, maintenance) if phase = “update schedule”

Time Advance Function:

ta(phase, σ, calli) = σ
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