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ABSTRACT 

 

PSCAD/EMTDC-Based Modeling and Analysis of a Microgrid with Renewable Energy 

Sources. (May 2010) 

Zhengguo Chu, B.E., Tsinghua University 

Chair of Advisory Committee: Dr. Karen L. Butler-Purry 

 

 Microgrid is a relatively new concept which has gained significant attention 

recently due to the increasing penetration of distributed energy sources. It brings many 

benefits to the traditional distribution system. Couples of microgrid testbeds in the forms 

of either hardware facilities or software simulation systems have been developed to 

study microgrid issues in many institutes throughout the world.  

In the work presented in this thesis, a microgrid system model in 

PSCAD/EMTDC was developed. The proposed microgrid system includes fundamental 

power system component models, two renewable energy source models (wind & solar) 

and one energy storage source model.  

Different case studies were conducted. The results from the simulation case 

studies showed that the proposed microgrid system in PSCAD had satisfactory 

performance under different scenarios with renewable energy sources. The proposed 

microgrid system model can be used for further research on microgrid issues. 
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NOMENCLATURE 

 

AWG American Wire Gauge 

CERTS The Consortium for Electric Reliability Technology Solutions 
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KERI Korea Electrotechnology Research Institute 
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1. INTRODUCTION 

 

1.1. Introduction 

A microgrid is a system that has at least one distributed energy resource (DER) 

and associated loads in it and can form intentional island in electrical distribution system 

[1]. A microgrid should be able to operate in two different modes: grid-connected mode 

and islanded mode (also defined as autonomous mode). Microgrids bring many benefits 

for integrating distributed energy resources into the existing distribution systems. Since 

the microgrid is a new rising concept, studies on microgrids have been done which use 

either real hardware test facilities or software simulation testbeds.   

In the work presented in this manuscript, a simulation model of a microgrid with 

renewable energy sources was implemented in PSCAD/EMTDC. The models developed 

in this work include fundamental power system components, three DER units with 

control (including a wind energy source, a solar energy source, and an energy storage 

source component), the protective relays, and other necessary components for a 

microgrid. The voltage level of the microgrid in this work was rated at 480V for line-to-

line and 277V for line-to-ground. Using the microgrid model, simulation case studies 

were conducted to observe the performance and operational scenarios of the developed 

microgrid models and system.  

 

____________ 
This thesis follows the style of IEEE Transactions on Power Systems. 
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1.2. Organization of Thesis 

The thesis is organized into 5 sections. Section 1 provides the introduction and 

overall implementation and research objectives for this work. Section 2 provides the 

literature review conducted in the areas of microgrid, distributed energy resource unit 

control and renewable energy sources, and the problem statement. Section 3 provides the 

details of the PSCAD/EMTDC-based implementation of the microgrid model. Section 4 

presents various simulation case studies conducted to demonstrate the different aspects 

of the microgrid system model that was developed. Finally, Section 5 presents the 

conclusions and future work. 
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2. LITERATURE REVIEW AND PROBLEM STATEMENT 

 

2.1. Microgrid Concept 

There is a trend that the power distribution systems now served by large power 

generators will be enhanced with more distributed energy resource (DER) architectures 

are less restrictive [2]. However, the increasing number of the distributed generation 

with less restriction can cause as many problems as it may solve. A system approach to 

view generation and associated loads as a subsystem or a “microgrid” is a better way to 

realize the emerging potential of distributed generation. The microgrid can be considered 

as a controllable cell of the power system [3]. 

Even though there is no universally accepted standard definition for a microgrid, 

certain characteristics are generally common in the existing microgrids. A microgrid is 

composed of interconnected distributed energy resources which are capable of providing 

sufficient and continuous energy to a large percent of the microgrid internal load demand. 

Also, a microgrid possesses independent controls and intentional islanding takes place 

with minimal service interruption [4]. For instance, in the CERTS microgrid concept, a 

microgrid must be able to operate parallel with the grid, and also should have the ability 

to isolate itself from the utility seamlessly with little or no disruption to the loads within 

the microgrid during a disturbance [5]. A microgrid should be able to operate in both 

grid-connected mode and islanded mode (autonomous mode). Many publications present 

the benefits that microgrids can bring. For example, it can maximize the use of 
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renewable energy, increase the reliability level, and enhance power quality for local 

customers’ loads [6]. A typical microgrid configuration is shown in Fig. 2.1 [1]. 

 

 

 

Fig. 2.1.  A typical microgrid configuration [1] 
 

 

2.2. Microgrid Classification 

According to the microgrid whitepaper from the U.S. Department of Energy, 

microgrids can be grouped into a number of different classes based on the control 

systems as shown in Table 1 [7]. Additional criteria to classify microgrids have been 

presented in the literature. For example, from microgrid architectures and their 

characteristics based on applications, ownership structure, and type of loads served, 
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microgrids can be classified into three categories: utility microgrids, commercial and 

industrial microgrids, and remote microgrids [8]. 

 

 

Table 1 Microgrid characteristics for different classes [7] 

 Simple (class I) Master 

Control (class 

II) 

Peer-to-Peer Control 

(Class III) 

Specific  

Microgrid 

Characteristics 

for different 

classes 

Generators located 

in central power 

plant 

Generators 

distributed in 

separate buses 

No master control exists.  

Local control at each generator’s 

location maintaining voltage and 

frequency stability. 

Master control system to both meet 

the loads and provide voltage and 

frequency support to the microgrid. 

 

Common 

Microgrid 

Characteristics  

o Multiple generators serving loads in multiple locations 

o The generators and facilities are connected by a distribution grid 

which is interconnected with utility-owned area electrical power 

system 

o Event detection and response control 
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2.3. Control of Distributed Energy Resources Units 

Distributed energy resources (DERs) are the key components in microgrid 

systems. DERs are small-scale power generation or storage technologies that are located 

close to the load they serve. The typical range of the DERs is between 3kW to 10kW. 

The small-scale power generation is called distributed generation (DG), and the small-

scale storage is called distributed storage (DS). They are used to provide an alternative to 

or enhancement of the traditional electric power systems, etc. [9]. DERs may refer to the 

devices and technologies including combined heat power, fuel cells, microturbines, 

photovoltaic systems, small wind power systems, etc. They play essential roles in the 

microgrids. Power electronics technologies, such as rectifiers, inverters and DC to DC 

converters are involved to integrate DERs into microgrid systems.  

 Control strategies for DER units within a microgrid should be selected based on 

the required functions and possible operational scenarios. The main control functions for 

a DER unit are voltage/frequency control (V/F control) and active/reactive power control 

(PQ control). A general categorization of the major control methods of a DER unit is 

shown in Table 2 [10].  
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Table 2 Classification of control strategies for electronically coupled DER units [10] 

Control Method Grid-Following Controls Grid-Forming Controls 

Noninteractive  Power export with/without 

maximum power point tracking 

(MPPT) 

Voltage and frequency 

control 

Interactive  Power dispatch 

Real and reactive power support 

Load sharing (droop control) 

 

 

In Table 2, grid-following control means the voltage and frequency of a DER 

unit follow those of the utility grid or other sources, thus it is mainly applied in grid-

connected mode. In contrast, grid-forming control means a DER unit itself determines 

the voltage and frequency in islanded mode. Each of the two ways can be classified into 

noninteractive control and interactive control. The term “interactive” means the output 

power of DER unit depends on the conditions of other units or loads.   

Local frequency control is always one of the main issues when a microgrid 

operates in islanded mode. The reason is that an electronically coupled DG unit does not 

exhibit any inertia during the microgrid transients and thus has no capability to maintain 

the microgrid frequency [10]. When a microgrid transfers from grid-connected mode to 

islanded mode, the DG units in the microgrid need to maintain the frequency. 

The Grid-Forming control strategy emulates behavior of a “swing source” in an 

islanded microgrid [10]. The reason is when the microgrid transfers from grid-connected 
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mode to islanded mode, the power balance between supply and demand do not match at 

the moment. Due to the low inertia of the system, the system frequency may fluctuate 

[11]. The grid-forming strategy as a “swing source” picks up the unbalanced load and 

maintains the system frequency in a tight range. 

If only one DER unit is in the system, it can be assigned to regulate the voltage at 

the interconnecting point and dominantly set the system frequency. When two or more 

DER units exist in a microgrid, the droop control technique is one technique that is 

commonly used [10]. Droop control technique is a method to achieve the peer-to-peer 

control as mentioned in Table 1.  The droop control technique includes frequency-droop 

(f-P droop) and voltage-droop (v-Q droop). This technique is a way to make the inverters 

in the microgrid system to perform a load sharing function in islanded mode. The droop 

control technique was first developed for inverter parallel operations [12]. It has been 

widely used in many microgrid cases. A typical microgrid with droop control techniques 

is the CERTS microgrid testbed facilities. In the CERTS microgrid, the three DGs use 

the droop control technique to control the voltage and frequency levels in islanded mode 

operation [5]. As shown in Table 2, in this class of microgrids, interactive control is used 

for the DER units. 

According to Table 1, besides the peer-to-peer control, another class of 

microgrids uses master control method. In the master control class microgird, the droop 

control technique is not necessarily applied in DER units. When the microgrid transfers 

from grid-connected mode to islanded mode and there is no droop control to perform 

load sharing functions to pick up the unbalanced load, a “swing source” with enough 
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reserved energy is used. This “swing source” performs function of load sharing and 

maintains the system voltage and frequency. Obviously, in this situation, some energy 

storage source (ESS) must be included in the microgrid system to balance the load 

requirement. The ESS plays an important role to maintain the system frequency and 

voltage in this type of microgrid. A typical example of this class of microgrids is the 

hardware-in-loop simulation system (HILS) for micrgorid management system 

developed by Korea Electrotechnology Research Institute using RTDS [11]. In this class 

of microgrids, the DER units use noninteractive control, as shown in Table 2, when they 

operate in islanded mode to enable grid-forming control. 

2.4. Microgrid Testbed Facilities 

Microgrid testbed facilities or test sites have been built in different locations such 

as in the United States, Japan, Canada, and Europe [1]. For example, the microgrid 

developed by the Consortium for Electric Reliability Technology Solutions (CERTS) in 

the United States is a test site based on the class III microgrid concept. The renewable 

energy sources have not been installed into it as of yet [13]. The Aichi microgrid project 

in Japan utilizes renewable energy sources, battery storage, and also the capability for 

heat supply [14]. In the European Union (EU) microgrid projects, a couple of test sites 

with different topologies have been built up [15]. The microgrid system implemented in 

the Remote Islands in the Republic of Maldives has incorporated wind, PV and diesel 

energy sources together [16]. These three microgrid example are based on class II 

microgrid concept. Besides the physical facilities, software simulation systems for 

microgrids have also been developed, such as the RTDS model of a test microgrid 



 

  

10 

 

  

  

developed by Korea Electrotechnology Research Institute (KERI) as previously 

mentioned [11].  

2.5. Wind Energy Sources 

Renewable energy is energy generated from natural resources which are 

renewable (naturally replenished) such as sunlight, wind, rain, tides and geothermal heat, 

[17]. Renewable energy sources (RESs) such as wind turbine and photovoltaic systems 

are favored for DERs for their advantages, such as low maintenance and low pollution. 

In recent decades, wind energy has become increasingly important throughout the world. 

Through wind turbines, wind energy is converted into electrical energy. For a typical 

three blades horizontal axis MOD-2 wind turbine, the blade dynamics are approximated 

by the equations (1) – (3) [18], 

         (1) 

     (2) 

     (3) 

where 

   

   

  ] 

   

  ] 
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  ] 

Another way to define tip speed ratio (TSR) as instead of   is shown in 

equation (4) [19], 

          (4) 

where 

    

The tip speed ratio λ for wind turbines is the ratio between the rotational linear 

speed of the tip of a blade and the actual velocity of the wind.  is the ratio between the 

actual velocity of the wind and the rotational angular speed of the tip of a blade. 

The wind turbine characteristic is shown in Fig. 2.2 [20]. The first figure shows 

the curve of the power coefficient versus tip ratio. The second figure shows the curves 

for the relationship between the output power and the rotor speed. 

 

 

Fig. 2.2.   (i)  Power coefficient vs. tip ratio and (ii) output power vs. rotor speed for three different wind 
speeds 

 

 

http://en.wikipedia.org/wiki/Lambda
http://en.wikipedia.org/wiki/Wind_turbine
http://en.wikipedia.org/wiki/Rotation
http://en.wikipedia.org/wiki/Velocity
http://en.wikipedia.org/wiki/Velocity
http://en.wikipedia.org/wiki/Rotation
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Due to the fast development on technologies both for generators and for power 

electronics, the wind turbines mix and match many innovative concepts with the proven 

technologies. Four types of configurations for wind energy sources are shown in Fig. 2.3 

[21]. In this figure, SCIG = squirrel cage induction generator; WRIG = wound rotor 

induction generator; PMSG = permanent magnet synchronous generator; WRSG = 

wound rotor synchronous generator. Each of the configurations above has its own 

specifics which will be introduced in the following paragraphs [21]. 

Type A is a fixed speed wind-turbine with an induction generator. Type B 

corresponds to a limited variable speed wind turbine with variable generator rotor 

resistance. Type C is known as doubly fed induction generator (DFIG), where the wind 

turbine with limited variable speed is connected with a partial scale frequency converter. 

All of these three types are not able to work independently in an islanded mode. The 

reason is that an induction generator has to receive its exciting current from another 

source and consumes reactive power. Reactive power may be supplied by the grid or by  
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a power electronic system. The generator’s magnetic field is established only if it is 

connected to the grid or another source. When a microgrid transfers from grid-connected 

mode into islanded mode, lack of excitation current from the external sources may lead 

to the induction generator not working. Thus when one of these types of configurations 

for a wind turbine is used, it usually comes with other DG units. An example is the 

microgrid system in M. Shahabi et al.’s work [22], where a doubly fed induction wind 

generator works together with a gas-turbine synchronous generator in the islanded mode. 

Type D is a synchronous generator together with a full scale frequency converter. 

Compared to the previous three types, type D has two advantages: first, its rotor speed 

can change in a large range thus it has the capability for variable speed control, which 

makes the maximum power point tracking function possible; second, it can use an 

excitation system which is independent from the grid or other sources so that it can 

operate alone without other external provided excitation. An example of this 

configuration applied into microgrid is the work done by KPRI [11] .  
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Fig. 2.3.  Typical wind energy source configurations [21] 
 

 

2.6. Solar Energy Sources 

Solar energy refers to energy that is collected from sunlight. By the photovoltaic 

effect, the energy from the sunlight can be directly converted into electricity by using a 

photovoltaic cell (PV cell). Besides the wind energy source, solar energy source with PV 
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cells is another favored source as distributed generation. PV arrays as the DER units are 

used in the microgrids in Japan, Maldives and Europe [14] [15] [16].  

A simplified equivalent circuit model which represents the electrical behavior of 

the actual cell module is shown in Fig. 2.4 [23].  The output current of a PV module can 

be obtained from equation (5), 

 

 

 

Fig. 2.4.  Equivalent circuit of a PV module 
 

 

    (5) 

where 
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A typical PV module characteristic is shown in Fig. 2.5 [20]. The first figure 

shows the curves of the output current versus output voltage of a PV module. The 

second figure shows the relationship between the output power and the output voltage of 

a PV module. 

 

 

 

Fig. 2.5.  (i) I-V characteristics of a PV module and (ii) P-V characteristics of a PV module 
 

  

Usually a PV array consists of a group of PV modules for obtaining high power. 

Those modules in a PV array are connected in series-parallel combinations. The output 

current of a PV array can be obtained from equation (6), 
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    (6) 

where 

   

   

The current versus voltage and power versus voltage characteristics of a PV array 

are similar as the characteristics of a single module shown in Fig. 2.5.  

A PV array usually connects with a DC/DC converter, which is used to step up 

the output voltage of the PV array. Through the control of the DC/DC converter, some 

advanced technique could be used for a PV array, such as the maximum power point 

tracking (MPPT) function. In order to connect a PV array in an AC grid system, an 

inverter should be used to convert the DC output of a PV array into AC output. 

2.7. Problem Statement 

Since the microgrid is a new rising concept, studies on microgrids are being 

performed which require either hardware test facilities or software simulation testbeds. 

Implementing a microgrid simulation model with renewable energy source models 

enables us to do further studies and research on microgrids.  

PSCAD, also known as PSCAD/EMTDC [24] is a powerful electromagnetic time 

domain transient simulation environment and study tool. It is widely used in power 

system simulations, including systems with DER units. Therefore PSCAD/EMTDC is 

used for the proposed microgrid system model and simulation in this work.  



 

  

18 

 

  

  

The  implementation of the simulation model of the proposed microgrid system 

in PSCAD includes several parts: 1) develop the fundamental power system component 

models; 2) develop the DER unit models and their controller including wind energy, 

solar energy and energy storage sources; 3) integrate the individual component models 

into the system and develop the protection scheme and component models.  

Based on the microgrid system model in PSCAD, case studies were conducted to 

observe the performance and operational scenarios of the microgrid models and systems. 
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3. MICROGRID SYSTEM MODEL 

 

3.1. Introduction 

To implement a microgrid system, the initial step is to determine the microgrid 

structure and topology. The CERTS microgrid basic structure and topology were chosen 

and a portion of components were used in this work. The reason is that the CERTS 

microgrid is one of existing sites with the most publications and information available. 

The main differences between the CERTS microgrid reported and the proposed 

microgrid model in this work are as following: First, the CERTS microgrid only contains 

diesel generators, but in the proposed microgrid system reported in this thesis, wind, PV 

and energy storage units are included. Second, the CERTS microgrid applied droop 

control to each source, which is class III microgrid as presented in Section 2. The 

microgrid modeled in this work applied PQ control and voltage source inverter control 

for different sources, which is a class II microgrid.  Even though its DER unit control 

method is different from the proposed method in this work, the rating level, basic 

components, and protection scheme can still be used after proper modification.  

A one-line diagram of the proposed system modified from the CERTS microgrid 

is shown in Fig. 3.1. The system is divided into six zones. Zone 3, Zone 4 and Zone 5 

are defined as critical loads zones. Each of them has one DER unit, one 75 yard cable, 

one transformer, and one load bank (including resistive load and inductance load). Zone 

6 is defined as a noncritical load zone, which includes one 75 yard cable and one load 
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bank. Additionally, each of these zones has a point to connect a possible fault load. The 

electrical nodes are marked in the system. Cables are used to connect the neighboring 

nodes. The interconnection switch is the point which connects the microgrid with the 

utility grid. The load in Zone 6 is not considered to be a part of the microgrid.  

 

 

 

Fig. 3.1.  The structure and topology of the proposed microgrid system 
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The implementation process includes modeling all of the necessary component 

models of the microgrid system. Some of the component models exist in the PSCAD 

library. The parameters needed in PSCAD were specified based on the functions and 

ratings for each of these components. Some other component models are not directly 

available in the PSCAD library, thus they were developed in PSCAD. 

3.2. Fundamental Power System Component Models 

Fundamental power system components refer to the basic components in a 

distribution system besides the DER units and protection relay. The basic components 

consist of transformers, cables, resistive loads, inductive loads, motors, etc. Most of 

these component models exist in the PSCAD library. The functions, ratings, and 

parameters for each component in PSCAD were determined. For example, as presented 

in Fig. 3.1, six transformers are used in the proposed microgrid system. The data are 

shown in Table 3. 

 

 

Table 3 Transformers summary 

Transformer Primary 
Voltage(V) 

Secondary 
Voltage(V) Rating(kVA) X/R Z% 

T11 480 480 500 6 5 
T31 480 480 112.5 5 1 
T41 480 480 112.5 5 1 
T51 480 480 112.5 5 1 
T52 480 480 112.5 5 1 
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An ideal AC source was used for modeling the utility grid.  The utility grid’s line 

to line RMS voltage level was 480V. The utility interface was modeled as a three-phase, 

480V/60Hz AC voltage source, with no inner resistance. Thus an ideal source with 

resistance 0  was used. 

The resistive and the inductive load model in the original reference microgrid 

testbed are shown in Fig. 3.2 and Fig. 3.3, respectively [13]. Each of the resistive load 

banks contains one 5kW, one 10kW and four 20kW resistive loads. All of these loads are 

three-phase, with switches in branches of each phase. The resistive load bank can vary 

from 0kW to 95kW with single phase or three phases connected. In this work, a 

combination of constant resistive loads was used to represent the resistive load bank in 

PSCAD. The inductive load banks were modeled in a similar way as the resistive load 

bank. The inductive loads can vary from 0kVar to 60kVar with a single phase or three 

phases connection. 
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Fig. 3.2.  Resistive load model in the original schematic [13] 
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Fig. 3.3.  Inductance load model in the original schematic [13] 

 

 

Cable models are necessary to connect the neighboring electrical nodes in the 

proposed system. Assumptions were made for the cables used in the proposed system as 

shown in Table 4. Due to the nodes limitation in the PSCAD version for this work, some 

cables were neglected. Only five long cables with length information in Fig. 3.1 were 

used to represent the distance between different zones. All of the cables were modeled in 

PSCAD/EMTDC as  section models, where the cable parameters are represented by an 

equivalent circuit composed by resistance, inductance and capacitance.  
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Table 4 Cables information 

Cable Section Number 1 2 3 4 5 
From (node number) 64 31 36 41 51 

To (node number) 65 35 37 45 55 
Location Zone6 Zone3 Zone3 Zone4 Zone5 

Maximum Load Real 
power (kW) 

180 290 180 180 180 

Maximum Load Reactive 
power (kVar) 

60 120 60 60 60 

Maximum Current per 
phase (A) 

228.5 377.7 228.5 228.5 228.5 

Rating Line to Line 
Voltage (V) 

480 480 480 480 480 

Length (m) 68.58 68.58 22.86 68.58 68.58 
Neutral Yes Yes Yes Yes No 

Size (AWG or kcmil) AWG 2 AWG 2/0 AWG 2 AWG 2 AWG 2 
 

 

3.3. Wind Energy Source Model 

3.3.1. Introduction of the Wind Energy Source Model 

In the microgrid system, a wind energy source model was designed. As discussed 

in the literature review section, there are four main types of configurations for wind 

turbine operation. After comparing these configurations, the variable speed wind turbine 

with a synchronous machine was chosen for this model. This configuration has the 

advantages of full variable-speed control maximum power point tracking (MPPT) 

capabilities with proper control method [21], [25]. The configuration is shown in Fig. 3.4. 

Wind energy source model includes four main parts: wind turbine, synchronous 

generator, rectifier and inverter. The wind turbine output torque serve as the input torque 

of the synchronous generator. The three phase output voltages of the synchronous 
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generator are input to the rectifier. A capacitor serves as a DC link between the rectifier 

and the inverter.   

 

 

 

Fig. 3.4.  The wind energy source configuration 
 

 

 

Among these parts, the wind turbine component and synchronous generator 

component are available in the PSCAD library directly. The model in the PSCAD library 

was used with proper parameters based on the ratings. The rectifier and inverter models 

are not available in PSCAD, so they were developed in this work. 

3.3.2. Wind Turbine Model  

Three models related to wind energy are available in the PSCAD library as 

shown in Fig. 3.5, including the wind source model, wind turbine model and wind 

governor model. In this work, the wind source model and the wind turbine model were 

used. 
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In PSCAD, the wind source model generates the wind speed variable. The wind 

speed variable can be composed by four components as shown in equation (6) [18]. The 

values of those four components can be independently set when necessary.  

      (6) 

Where  
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Fig. 3.5.  Components in PSCAD library related to wind energy 

 

 

As previously mentioned, the wind turbine model produces the output torque . 

It follows the turbine equation (1) – (4). The low frequency mechanical dynamic effects 

of a wind turbine such as tower shadow and wind shear effects were not taken into 

consideration. In the microgrid system, the parameters for the wind turbine were set as 

shown in Table 5. The gear ratio was set to be 1 to model a gearless turbine, thus the 

wind turbine rotor speed would be the same as the synchronous generator mechanical 

speed. A given wind speed, a rotor speed and the parameters in Table 5 determine the 

output mechanical torque .  is then fed into the connected synchronous machine. 

 

 

Wind Turbine 
Governor Model 

Wind 
Source 
Model 

Wind Turbine 
Model 
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Table 5 Wind turbine parameters 

 Value Unit 
Generator Rated MVA 0.15 MVA 
Machine rated angular mechanical speed 0.4 Hz 
Rotor Radius 10 m 
Rotor Area 314  
Gear Ratio 1  
Gear Box Efficiency 1 pu 
Equation for power coefficient MOD2  

 

 

The wind turbine governor in the PSCAD library is designed for enabling the 

pitch control function when necessary. It output pitch angle value as “Beta” shown in 

Fig. 3.5. However, this component was not used in this work since the pitch angle 

control scheme was not used. A constant value was given as the pitch angle for the wind 

turbine. 

The relationship between the output power and rotor speed of the wind turbine in 

this work, for different wind speeds, is shown in Fig. 3.6. The five curves represent the 

wind turbine characteristic when the wind speed is 5m/s, 7m/s, 10m/s, 12 m/s, and 15 

m/s, respectively.  
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Fig. 3.6.  Output power vs. rotor speed for different wind speeds of the wind turbine 

 

 

3.3.3. Synchronous Generator Parameters 

The synchronous generator model and the related exciter are directly available in 

the PSCAD library. Based on the ratings of the 0.15MW wind turbine, a synchronous 

generator with the same power rating was chosen. The pole pairs number was set to be 

150. The parameters of the synchronous generator were specified as shown in Table 6. 

Those parameters were obtained from linear extrapolation of two distributed 

synchronous generator with pre-known parameters. The exciter component for a 

synchronous machine is also directly available in PSCAD library. The IEEE type AC1A 
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exciter model and a group of typical data for it from [26] were used. Some parameters 

were used as the default values provided in PSCAD. 

 

 

Table 6 Synchronous generator parameters 

Category Parameters Value Unit 

Basic Data Rated RMS Line-to-Neutral Voltage 0.48 kV 

Rated RMS Line Current 0.1042 kA 

Base Angular Frequency 60 Hz 

Inertia Constant 0.413 s 

Mechanical Friction and Windage 0.01 pu 

Neutral Series Resistance 20 pu 

Neutral Series Reactance 0 pu 

Iron Loss Resistance 80 pu 

Generator Data Format Armature Time Constant [Ta] 0.332 s 

Potier Reactance [Xp] 0.130 pu 

D: Unsaturated Reactance [Xd] 2.55 pu 

D: Unsaturated Transient Reactance [Xd`] 0.229 pu 

D: Unsat. Transient Time (Open) [Tdo`] 0.011 s 

D: Unsat. Sub-Trans. Reactance[Xd``] 0.222 pu 

D: Unsat. Sub-Trans. Time (Open) [Tdo``] 0.035 s 

Q: Unsaturated Reactance [Xq] 1.17 pu 

Q: Unsaturated Reactance [Xq``]] 0.289 Pu 

Q: Unsa. Sub-Trans. Time (Open) [Tqo``] 0.010 s 

Air Gap Factor 1.0  

Initial Conditions Terminal Voltage Magntitude at Time = 0- 1.05 pu 

Terminal Voltage Phase at Time = 0- 0.406 rad 

Initial Conditions if 

Starting as a Source 

Time to Ramp Source Limit to Rated 0.1 s 



 

  

32 

 

  

  

3.3.4. Frequency Converter 

A frequency converter is composed of a rectifier, a DC link capacitor, and an 

inverter. The output power of the frequency converter can be controlled through the 

proper method [25] [27]. Part of the method developed by S. K. Kim et al was applied in 

the microgrid system. The circuit model of the frequency converter is shown in Fig. 3.7. 

The output electrical nodes of the synchronous generator are connected into a diode 

bridge rectifier. The inductance L serves as a filter. A capacitor is in parallel with the 

output of the rectifier to serve as a DC link. The DC capacitor was set to be 50mF, which 

is a proper value to obtain a good performance. A much smaller or much larger capacitor 

could lead stability problem. During a transient, when the output power of the 

synchronous generator is more than the required power of the inverter, the extra energy 

could be absorbed into the capacitor and lead the DC link voltage to increase.  

The inverter is connected after the inductance L and the paralleling DC link 

capacitor. The pulse-width modulation (PWM) technique has been applied for the 

inverter control. The inverter uses the PQ control mode which allows the output power 

to be a constant value. The control scheme is shown in Fig. 3.8. 
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Fig. 3.7.  The frequency converter modeled in PSCAD 
 

 

 

Fig. 3.8.  The current control scheme in the PQ control mode 
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As shown in Fig. 3.8, in the PQ control mode of the inverter, the real power 

reference  and reactive power reference  are set as the prerequisite reference 

values. The errors between power references  and  and the measured power 

values   and  are processed through PI controllers. From the output values of the 

PI controllers, the references of q-axis current  and d-axis current  can be 

obtained. Then  and  are transformed into abc phase current 

reference , , and . In a current controller, the current references are 

compared with the measured current values. These current errors are sent to another PI 

controller to generate the reference signals of the three phase voltages ,  

and . The phase-lock-loop (PLL) generates a signal synchronized in phase to the 

converter input voltage  to provide the reference phase angle for the rotational 

inverse dq transformation. Then the PWM technique is applied to create the switching 

signals for the six Insulated Gate Bipolar Transistor (IGBT) switches. The six IGBTs g1, 

g2, g3, g4, g5, and g6 are controlled to turn on or turn off so that the inverter is able to 

output required AC voltage and current based on the power reference. 

An LC filter is connected at the output end of the frequency converter to improve 

the output power waveforms. 

3.4. Solar Energy Source Model 

As presented in literature review section, energy from PV cells is another favored 

resource as distributed generation. As shown in Fig. 3.9, PV energy source model 
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includes three parts. PV array module and the DC/DC converter were developed by A. 

Rajapakse in University of Manitoba [28], the parameters were slightly modified for this 

curve. In this model, the module developed by A. Rajapakse is used as shown in Fig. 

3.10. Two PV modules are connected in series and then a large capacitor is connected in 

parallel with them to serve as energy buffer for the transient. The part is the same one 

used in the wind energy source model. The parameters of the PV array module are 

shown in Table 7. 

 

 

 

Fig. 3.9.  The solar energy source configuration 
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Fig. 3.10.  Model of PV arrays and the parameters setting dialogue in PSCAD 

 
 

Table 7 PV arrays parameters 

 Suggested values 
Number of modules connected in series/array 20 
Number of module strings in parallel/array 20 
Number of cells connected in series/module 108 
Number of cells in parallel/module 4 
Reference irradiation ( ) 1000 
Reference cell temperature ( ) 25 
Effective area/cell 0.01 
Series resistance/cell (Ω) 0.02 
Shunt resistance/cell 1000 
Diode ideality factor 1.5 
Band gap energy (eV) 1.103 
Saturation current at ref. conditions/cell (A) 1e-9 
Short circuit current at ref. conditions/cell (A) 2.5 
Temp. coeff. of photo current 0.001 
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The relationship between the output current and output voltage for the PV arrays 

in this work is shown in Fig. 3.11. The curves show the relationship between the voltage 

and the output power in Fig. 3.12. The five curves in each figure represent the PV 

module characteristics when the solar radiation is 100 , 250  , 500  , 

750 , and 1000 , respectively. 

 

 

 

Fig. 3.11.  Output current vs. voltage for different solar radiation of the PV arrays 
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Fig. 3.12.  Output power vs. voltage for different solar radiation of the PV arrays 

 

 

3.5. Energy Storage Source Model 

As discussed in previous sections, the droop control method is not used for the 

inverter control for DER units in the microgrid system. During the microgrid islanding 

process, the energy storage source (ESS) device is used to pick up the load immediately 

and enable the voltage and frequency control (V/F control) in the microgrid island 

operation mode. The most common energy storage devices include battery, super-

capacitor, flywheel, superconducting magnetic energy storage (SMES), hydrogen, and 

compressed air. In this microgrid system, a DC battery was chosen to serve as the ESS 

unit.  
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A DC source was used for modeling a battery as energy storage source. An 

assumption has been made that the DC source can output as much power as required, so 

its limitation is not considered. A useful way to control the ESS in different modes was 

presented in the work of J. Y. Kim et al [29]. The ESS should be able to operate in PQ 

control mode when the microgrid is grid-connected, and it should also be able to operate 

in V/F mode when the microgrid is islanded. V/F mode means the ESS unit serves as a 

voltage source inverter, which sets the voltage and frequency values of the microgrid 

system. 

The PQ mode control method is the same as used in the frequency converter for 

the wind energy source model. The method of V/F control mode is shown in Fig. 3.13. A 

feedback loop control for the output voltage RMS value was used. The overall control 

scheme of the ESS unit is shown in Fig. 3.14. When the microgrid is operating in grid-

connected mode, the ESS unit operates in PQ control mode to output constant real and 

reactive power. When the microgrid transfers into the islanded mode, the ESS unit 

switches into V/F control mode to set up the system voltage and frequency values. 
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Fig. 3.13.  The control method for V/F mode of the ESS unit 

 

 

 

Fig. 3.14.  The overall control scheme for the ESS unit 
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The ESS unit operating characteristics are shown in Fig. 3.15 for V/F control mode 

and Fig. 3.16 for PQ control mode. The x axis Pd is defined as the mismatch part 

between the total load in the microgrid and the output of other DER units. In V/F mode, 

the ESS picks up all of the mismatch part. In PQ control mode, the ESS output power is 

predetermined by a reference value. 

 

 

 

Fig. 3.15.  ESS unit characteristics in V/F control mode 
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Fig. 3.16.  ESS unit characteristics in PQ control mode 

 

 

3.6. Protection Scheme and Component Models 

Based on the system model, a protection scheme and the corresponding 

protective relay component models were developed. The relay components are able to 

monitor the currents and voltages in both phase and sequence domain. The protection 

components were coordinated so that they can protect the microgrid system from 

different faults, including single-line-to-ground (SLG) fault, line-to-line (LL) fault, etc.  

The main structure of the proposed microgrid system is the same as the CERTS 

microgrid testbed. Thus a similar protection scheme as the CERTS Microgrid scheme 

was used [13].  
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The relay locations in the proposed microgrid are the same as the CERTS 

microgrid shown in Fig. 3.17. As shown in the figure, four main relays in the microgrid 

monitor the branch current and the node voltage levels. The protection schemes used in 

the microgrid are as follows [13]: 1) primary protection uses differential current and 

symmetric approach to protect a microgrid against all SLG and LL faults; 2) if the 

primary protection fails, the conventional over-current protection is the first back-up; 3) 

the second back-up are mainly under voltage monitoring. For the interconnection switch, 

the peak current limitation and the voltage quality are also monitored.  

The protection scheme coordination is shown in Table 8. In this table,  is the 

differential current which defined as . and  is the zero 

sequence and negative current flowing through the relays. I is the current RMS value. If 

any of those conditions in Table 8 happens, the protective relays will send corresponding 

tripping signals to the related breakers. Four relay component models in this work for 

Zone 2, Zone 3, Zone 4 and Zone 5. 
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Fig. 3.17.  Protective relays location in the CERTS microgrid [13] 
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Table 8 Protection scheme settings and coordination 

Protection Relay Trip Conditions Relay Type 
Up-stream 
SLG faults 

Down-stream 
SLG faults 

Line-to-Line faults 

Primary 2 >50A 
Delay = 

0ms 

| |>15A 
Delay = 0ms 

| |>9A 
Delay = 0ms 

a. Residual 
current 

 
b. Zero-sequence 

current             
 

c. Negative 
sequence current 

3 >50A 
Delay = 
167ms 

| |>15A 
Delay = 
167ms 

| |>15A 
Delay = 50ms 

4 >50A 
Delay = 

50ms 

| |>15A 
Delay = 50ms 

| |>9A 
Delay = 50ms 

5 >50A 
Delay = 

50ms 

|I0|>15A 
Delay = 50ms 

| |>15A 
Delay = 50ms 

1st 
Back-up 

2 |I|>480A, ABB-Westinghouse CO-8 Time 
overcurrent 3 |I|>225A, ABB-Westinghouse CO-8 

4 |I|>125A, ABB-Westinghouse CO-8 
5 |I|>125A, ABB-Westinghouse CO-8 

2nd  
Back-up 

2 Peak 
Current 
|I|>750A 

Voltage power quality levels a. Instantaneous 
over current 

 
b. Under voltage 

 
c.  Over/under 

frequency 
3  50% under voltage delay 30 cycles Under voltage 
4  50% under voltage delay 30 

cycles 
5  50% under voltage delay 30 

cycles 
 

 

The interconnection switch is controlled by protective relay 2, which is more 

complicated than other relays. Basically, the interconnection switch should be able to 
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disconnect the microgrid from the utility grid under the following conditions [30]: 1) 

poor voltage quality from the utility, like unbalances due to nearby asymmetrical loads; 

2) frequency of the utility falls below a threshold, indicating lack of generation on the 

utility side; 3) voltage dips that last longer than the local sensitive loads can tolerate; 4) 

faults in the system that keep a sustained high current injection from the grid; 5) any 

current that is detected flowing from the microgrid to the utility system for a certain 

period of time. These functions are incorporated into the protective relays for the 

interconnection switch. 

The settings of the relays were coordinated with ideal AC sources instead of the 

DER units. Therefore the protection scheme needs future proper enhancement to obtain 

correct performances. 
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4. SIMULATION CASE STUDIES 

 

4.1. Introduction 

4.1.1. Objective of Simulation Case Studies 

The objective of the simulation case studies was to verify that the proposed 

microgrid simulation model can operate in different modes with high DER penetration, 

and to analyze its performance and operational scenarios.  

4.1.2. Assumptions and Limitations of Simulation Case Studies 

In PSCAD simulation software, there are always start-up transients due to the 

initializing and computing requirement in the software. For example, the starting-up 

process of a synchronous generator in PSCAD is a complicated process [24]. The start-

up sequence includes three steps. First, at time t = 0s, the machine is modeled as a 

simple fixed three-phase voltage source at its terminals, while its voltage magnitude and 

phase is as entered by the user. Second, after a certain time period, the machine switches 

from an ideal voltage source to a machine with constant speed. The mechanical 

dynamics are not in place during this period and the rotor will be spinning at a constant 

speed corresponding to the base angular frequency specified by the user. Finally, after 

another time period, the machine switches from a constant speed machine to a variable-

speed machine. In this work, the machine switches to step two at t = 0.25s and switches 

to step three at t = 0.5s. At the point in time when the machines are running free and the 

excitation and governor systems are stable a snapshot can be taken, which allows the 
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user to use the condition at this time point to be the initial conditions for the following 

simulation. 

The DC and AC sources in PSCAD also include initial ramp up time to reach 

steady state. The start-up transient occurs during the initializing of the software, which is 

usually not taken into consideration when doing analysis. 

The largest switching frequency of the power electronics devices in the system is 

10 kHz. In order to obtain reasonable results for the power electronics related simulation, 

the time step was set to be 10 us for all of the cases, which is considered to be valid and 

reasonable in the case studies. The channel plot time step was set to be 50 us, which is 

small enough for most variables. 

The basic one-line diagram of the microgrid system for the simulation case 

studies is shown in Fig. 4.1. The monitored variables included voltage, current, power 

and other variables of the DER units and the measurement points 2, 3, 4, 5, 6 in Fig. 4.1. 

The instantaneous values of voltage and current were measured directly. The calculated 

voltage RMS value and three-phase real and reactive power in were smoothed through a 

real pole function to simulate a transducer delay and to reduce output ripple by the meter 

component in PSCAD. The time constant of the real pole function was left to its default 

value of 0.02s in each measurement. 
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Fig. 4.1.  One-line diagram of the microgrid system for case studies 



 

  

50 

 

  

  

49 

4.1.3. Overview of the Simulation Case Studies 

A 480V AC source served as the utility grid connection. The system included 

three DER units: one ESS unit, one wind energy source and one solar energy source. A 

group of simulation case studies were conducted. Many variables in the system could be 

monitored. As shown in Fig. 4.1, the point 2, 3, 4, 5 and 6 are actually the locations for 

protective relays in each zone. The line-to-line voltage RMS values were measured. For 

each DER units, the output real power and reactive power were monitored. Some other 

important parameters were also measured. 

Since the PQ control mode was used for the wind and the solar energy sources, 

the input parameters of the wind turbine and PV array did not influence the results as 

long as the reference power value was smaller than the DER unit output limitation. The 

wind and solar energy source would reach their steady state operating points according 

to the output power references. In the simulation case studies, the default input wind 

speed for the wind source model was set to be 12m/s, the default solar radiation of the 

PV arrays was set to be 600 , and the cell temperature was set to be 50 . 

4.2. Simulation Case Studies 

4.2.1. Case Study 1: The Steady State 

Case Study 1 presented the microgrid system reaching a steady state after the 

start-up transient. In this case, all of the three DER units operated in PQ control mode. 

The power output references and the load levels were set as shown in Table 9. The initial 

output power references of these three units were set to be 20kW, 60kW+j20kVar and 
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40kW+j10kVar respectively. The load banks in three zones were 60kW+j20kVar, 

40kW+j10kVar and 40kW+j10kVar. Thus in Case 1, the total output power of the DER 

units was 120kW+j30kVar, and the total load level in the microgrid was 140kW+20kVar. 

The mismatch part was expected to be supplied by the utility grid. 

 

 

Table 9 The DER units power references and load levels in each zone in Case 1 

 Load Level DER unit output reference 
values 

Real load 
level (kW) 

Reactive load 
level (kVar) 

DER unit 
output real 

power (kW) 

DER unit 
output reactive 
power (kVar) 

Zone 3 60 20 60 20 
Zone 4 40 10 40 10 
Zone 5 40 10 20 0 
Zone 6 40 0 NA NA 
 

 

The simulation running stopped after t = 10s. The output real power values of the 

DER units are shown in Fig. 4.2. The corresponding reactive power values are shown in 

Fig. 4.3. The values of real and reactive power injected by the utility grid are shown in 

Fig. 4.4. Those figures show that after the start-up transient, the output power values of 

the DER units reached steady state values. The real power values for DER units were 

around 60kW, 40kW and 20kW. Take t =10s as example, at this time point, the DER 

units output are shown in Table 10, which were very close to the reference values in 

Table 9. The grid injected real and reactive power also reached steady state. The grid 
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injected reactive power was larger than the load requirement value because of the 

leakage reactance of the transformers. 

 

 

Fig. 4.2.  Real power output values of DER units in Case 1 
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Fig. 4.3.  Reactive power output values of DER units in Case 1 

 

 

 
 

Fig. 4.4.  Power injected from the utility grid in Case 1 
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The line-to-line voltage RMS values of the measurement points at t =10s are 

shown in Table 11. All of these RMS values were close to the rated value at 480V.  

The wind turbine output power and mechanical torque are shown in Fig. 4.5. The 

output power and rotor speed of the synchronous machine which connected with the 

wind turbine are shown in Fig. 4.6. These two figures show that the wind turbine and 

synchronous generator reached steady state after the start-up process. The output power 

of the wind turbine was about 67kW, slightly larger than the output power of the 

synchronous generator about 60kW, which is due to the efficiency of the synchronous 

generator around 89%. 

The output voltage, current and power of the PV arrays are shown in Fig. 4.7, 

which indicates that the PV arrays also reached steady state.  

 

 

Table 10 The output power of DER units in Case 1 at t = 10s 

 Real power output 
(kW) 

Reactive power 
output (kVar) 

Microsouce A1 (Wind Energy Source) 60.0 19.9 
Microsouce A2 (Solar Energy Source) 40.1 10.3 

Microsouce B1 (Energy Storage Source) 20.2 0 
Grid Injecting 18.8 14.3 

  

 

Table 11 The line-to-line voltage RMS values at the measurement points in Case 1 at t = 10s 

 Point 2 Point 3 Point 4 Point 5 Point 6 
Line-to-line Voltage RMS (V) 479.8 479.7 477.7 479.5 475.4 
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Fig. 4.5.  Wind turbine output power and mechanical torque in Case 1 

 

 

 

Fig. 4.6.  The synchronous generator output power and mechanical speed in Case 1 
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Fig. 4.7.  The PV arrays responses in Case 1 

 

 

The simulation results in Case 1 show that the PQ control method applied to the 

DER units effectively controlled the output real power and reactive power. The wind 

energy source and the solar energy source worked as expected.  

As discussed in previous part, the start-up transient is required for initializing 

computation in the software, which is usually not taken into consideration when doing 

analysis. The most important part in this case was the final steady state it reached. After 

the system entered steady state in Case 1, a snapshot was taken at t = 10s, which saved 

the system steady state condition for the following case studies to use. All of the 
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following case studies were applied after the system reached steady state, which means 

the following case studies started with the conditions in Case 1 at time = 10s. 

4.2.2. Case Study 2: The Impact of Changes in DER Units 

Case Study 2 presents the impact of changes in DER units in microgrid. The load 

level and the power references of DER units were the same as in Case 1. The output 

power references of three DER units were set to be 20kW, 60kW+j20kVar and 

40kW+j10kVar respectively. The load banks in three zones were 60kW+j20kVar, 

40kW+j10kVar and 40kW+j10kVar. 

a) Case 2a: The impact when the input wind speed changed for the wind source 

model in the microgrid 

In Case 2a, the input wind speed for the wind turbine changed from 12m/s to 

13m/s at t = 0.5s. The output real power values of the DER units at are shown in Fig. 4.8, 

and the corresponding reactive power values are shown in Fig. 4.9. The wind turbine 

outputs are shown in Fig. 4.10. The synchronous generator responses are shown in Fig. 

4.11. Those figures show that when the wind speed suddenly changed to a new value, 

the output power of the inverter part of the wind energy source model did not change but 

still held as reference values. Inside the wind energy source model, the wind turbine 

output power increased immediately. This extra energy led the synchronous generator 

rotor speed to increase. Since the synchronous generator mechanical speed was the same 

as the rotor speed of the wind turbine, the output power of wind turbine then decreased. 

After a certain time period, the wind turbine output power and its mechanical speed 

reached a new steady state operating point. 
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Fig. 4.8.  Real power output values of DER units in Case 2a 

 

 

 

Fig. 4.9.  Reactive power output values of DER units in Case 2a 
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Fig. 4.10.  Wind turbine output power and mechanical torque in Case 2a 

 

 

 

Fig. 4.11.  The synchronous generator responses in Case 2a 
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b) Case 2b: The impact when the solar radiation changes for the solar energy 

source in the microgrid 

In Case 2b, the solar radiation changed from 600  to 750  at t = 

0.5s. The output real power values of the DER units are shown in Fig. 4.12. The 

corresponding reactive power values are shown in Fig. 4.13. The PV arrays responses 

are shown in Fig. 4.14. Those figures show that when the solar radiation suddenly 

changed to a new value, the output power of the inverter part of the solar energy source 

model did not change but still held as reference values. Inside the solar energy source 

model, the PV modules output power increased immediately. This extra energy led the 

output DC voltage of the PV arrays to increase and the capacitor absorbed the extra 

energy. The PV output current decreased as the voltage increased. After a certain time 

period, the PV output current and its voltage reached a new steady state operating point. 
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Fig. 4.12.  Real power output values of DER units in Case 2b 

 

 

 

Fig. 4.13.  Reactive power output values of DER units in Case 2b 
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Fig. 4.14.  The PV arrays responses in Case 2b 

 

 

Case 2 showed that in the grid-connected mode, when a limited change occurred 

inside of the DER units, the DER units reached a new steady state after transients. This 

case showed the PQ control method for the DER units were effective. However, in this 

case the power references for the DER units did not change as the wind speed and solar 

radiation changed. Therefore the efficiency is not optimized, which needs to be 

improved in the future work such as incorporating the maximum power point tracking 

function into the wind energy source model and the solar energy source model. 
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4.2.3. Case Study 3: The Impact of Load Changes in Grid-connected Mode 

Case Study 3 presents the impact when the load changes in the microgrid. Case 

Study 2 presented the impact of changes in DER units in microgrid. Two sub-cases were 

conducted. In Case 3, the initial load level and power references of the DER units were 

the same as in Case 1. The output power references of three DER units were 20kW, 

60kW+j20kVar, and 40kW+j10kVar, respectively. The load banks in three zones were 

60kW+j20kVar, 40kW+j10kVar and 40kW+j10kVar. 

a) Case 3a: The impact of resistive load changes 

Case 3a presents the impact when the resistive load changes in the micogrid. The 

resistive load in Zone 5 changed from 40kW to 60kW at t = 1s. The simulation stopped 

at t = 2.5s. 

The output real power values for the DER units are shown in Fig. 4.15, and the 

reactive power values for the DER units are shown in Fig. 4.16. The values of real and 

reactive power values injected by the grid are shown in Fig. 4.17. It shows that in the 

grid-connected mode when these three DER units were in PQ control mode, the resistive 

load changed in the microgrid at t = 1s was picked up by the grid. The DER units output 

real and reactive power did not change during this process. 
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Fig. 4.15.  Real power output values of DER units in Case 3a 

 
 
 

 

Fig. 4.16.  Reactive power output values of DER units in Case 3a 
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Fig. 4.17.  Power injected from the utility grid in Case 3a 
 

 

 (b). Case 3b: The impact of inductive load changes 

Case 3b presents the impact when the inductive load changes in the microgrid. 

The inductive load in Zone 5 changed from 0 to 10 at t = 1s. The simulation stopped at t 

= 2.5s. 

The output real power values for the DER units are shown in Fig. 4.18, and the 

reactive power values for the DER units are shown in Fig. 4.19. The values of real and 

reactive power values injected by the grid are shown in Fig. 4.20. It shows that in the 

grid-connected mode when these three DER units were in PQ control mode, the 



 

  

66 

 

  

  

49 

inductive load changed in the microgrid at t = 1s led the grid injected reactive power 

decrease. The DER units output real power and reactive did not change during this 

process. 

 

 

 

Fig. 4.18.  Real power output values of DER units in Case 3b 
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Fig. 4.19.  Reactive power output values of DER units in Case 3b  

 

 

 

Fig. 4.20.  Power injected from the utility grid in Case 3b 
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The simulation results in Case 3 show that when the resistive or inductive load 

changes in the microgrid where all the DER units operate in PQ control mode, the 

changing of the real power or reactive power demand did not influence the DER units. 

The changed part of the load was picked up by the utility grid.  

4.2.4. Case Study 4: Pre-planned Islanding 

The objective of this study was to investigate transient behavior of the micro-grid 

due to a pre-planned islanding process. Prior to the islanding, the system initial settings 

were the same as in Case 1. The initial output powers of these three units were set to be 

20kW, 60kW+j20kVar, and 40kW+j10kVar, respectively. The load banks in three zones 

were 60kW+j20kVar, 40kW+j10kVar and 40kW+j10kVar. The load part supplied by the 

grid was 20kW+j10kVar. At = 1s, the interconnection switch was opened and the 

microgrid transferred from the grid-connected mode into the islanded mode.   

The simulation stopped at t = 2.5s. The output real power values for the DER 

units are shown in Fig. 4.21, and the reactive power values for the DER units are shown 

in Fig. 4.22. The values of real and reactive power values injected by the grid are shown 

in Fig. 4.23. Those figures show that after the islanding process, the mismatch part of the 

load in the microgrid was totally picked up by the ESS unit after transients. Take t =2.5s 

as example, at this moment, the DER units output are shown in Table 12. The wind and 

solar energy sources output power values were still around the reference values. 

 The line-to-line voltage RMS value at point 5 is shown in Fig. 4.24. The 

instantaneous output voltage of the ESS unit when the microgrid transferred into 
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islanded mode at t = 1s is shown in Fig. 4.25. These two figures show that after a 

transient the system voltage level could be maintained to the expected value. The line-to-

line voltage RMS values of the measurement points at t = 2.5s are shown in Table 13. 

All of these values were close to 480V rating. 

Wind turbine output power and mechanical torque are shown in Fig. 4.26. The 

synchronous generator output power and mechanical speed are shown in Fig. 4.27. The 

PV arrays responses are shown in Fig. 4.28. These figures indicate that the wind and 

solar energy sources experienced very small transients during the islanding process, and 

after that they reached a new steady with the reference power outputs. 

 

 

 

Fig. 4.21.  Real power output values of DER units in Case 4 
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Fig. 4.22.  Reactive power output values of DER units in Case 4 

 
 

 
 

Fig. 4.23.  Power injected from the utility grid in Case 4 
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Fig. 4.24.  The line-to-line voltage RMS value at point 5 in Case 4 

 

 

 

Fig. 4.25.  The instantaneous output voltage of the ESS unit when the microgrid transfers into islanded 
mode at t = 1s in Case 4 
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Fig. 4.26.  Wind turbine output power and mechanical torque in Case 4 

 
 

 

Fig. 4.27.  The synchronous generator output power and speed in Case 4 
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Fig. 4.28.  The PV arrays responses in Case 4 

 

 

Table 12 The output power of DER units in Case 4 at t = 2.5s 

 Real power output 
(kW) 

Reactive power 
output (kVar) 

Microsource A1 (Wind Energy Source) 59.4 19.6 
Microsource A2 (Solar Energy Source) 40.1 9.9 

Microsource B1 (Energy Storage Source) 37.3 14.0 
Grid Injecting 0 0 

  
 

Table 13 The line-to-line voltage RMS values at the measurement points in Case 4 at t = 2.5s 

 Point 2 Point 3 Point 4 Point 5 Point 6 
Line-to-line Voltage RMS (V) 479.7 479.6 476.8 481.4 475.3 
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The simulation results in Case 4 show that when a pre-planned islanding 

happened, the microgrid could successfully transfer from grid-connected mode into 

islanded mode after a short transient.  

4.2.5. Case Study 5: Islanding Due to a Fault 

The objective of this study was to investigate the transient behavior when a fault 

happens in the upstream of the system. Two sub-cases were conducted. The fault 

location in Case 5 was between the point 1 and the interconnection in Fig. 4.1. 

In Case 5, the initial load level and power references of the DER units were the 

same as in Case 1. The output power references of three DER units were 20kW, 

60kW+j20kVar and 40kW+j10kVar respectively. The load banks in three zones were 

60kW+j20kVar, 40kW+j10kVar and 40kW+j10kVar. 

a) Case 5a: Islanding due to a SLG fault 

Case 5a presents the islanding process due to a SLG fault. At t = 1s, there was a 

single line to ground fault occurred in point 1, which is in the upstream of the 

interconnection switches and outside of the microgrid. The simulation stopped at t = 2.5s.  

The output real power values for the DER units are shown in Fig. 4.29, and the 

reactive power values for the DER units are shown in Fig. 4.30. The zero sequence 

current and the interconnection switch status are shown in Fig. 4.31. These figures 

indicate that after the SLG fault happened, the protective relay 2 detected a large zero 

sequence current immediately and sent the trip signal to the interconnection switch. The 

interconnection switch opened and the microgrid transferred from the grid-connected 

mode into islanded mode. 
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Fig. 4.29.  Real power output values of DER units in Case 5a 

 
 

 

Fig. 4.30.  Reactive power output values of DER units in Case 5a 
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Fig. 4.31.  The zero-sequence current and the interconnection switch status in Case 5a 

 
 

b) Case 5b: Islanding due to a LL fault 

Case 5b presents the islanding process due to a LL fault. At t = 1s, there was a 

line to line fault occurred outside of the microgrid. The simulation stopped at t = 2.5s. 

The negative sequence current and the interconnection switch status are shown in Fig. 

4.32. The initial negative-sequence current was due to the harmonics existing in the 

system, which was smaller. When the fault occurred, the protective relay 2 detected a 

large negative sequence current immediately and sent the trip signal to the 

interconnection switch. The interconnection switch disconnected the microgrid from the 

utility grid, and the microgrid transferred from the grid-connected mode into islanded 

mode. The dynamics of other variables were very similar to those in Case 5a. 

 

 



 

  

77 

 

  

  

49 

 

Fig. 4.32.  The negative-sequence current and the interconnection switch status in Case 5b 

 
Case 5 indicates that when a fault occurred upstream of the interconnection 

switches, the microgrid disconnected itself from the grid and transferred from grid-

connected mode into the islanded mode.  

4.2.6. Case Study 6: The Secondary Control after Islanding 

Secondary control refers to the power reference values adjustment after the 

microgrid transfers into the islanded mode. The objective of this case study was to 

investigate the secondary control capability of the microgrid system. Two sub-cases 

were conducted. 

In Case 6, the initial load level and power references of the DER units were the 

same as in Case 1. The output power references of the three DER units were 20kW, 

60kW+j20kVar, and 40kW+j10kVar, respectively. The load banks in the three zones 

were 60kW+j20kVar, 40kW+j10kVar and 40kW+j10kVar. 
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a)  Case 6a: Real power reference changes after islanding  

In Case 6a, the microgrid transferred into islanded mode at t = 1s. After that, at t 

= 2s, the real power reference of wind energy source changed from 60kW to 70kW. At t 

=3s, the real power reference of solar energy source changed from 40kW to 50kW. The 

simulation ended at t = 5s. The output real power values for the DER units are shown in 

Fig. 4.33, and the output reactive power values for the DER units are shown in Fig. 4.34. 

Those two figures show that in the islanded mode, the real power output values of wind 

and solar energy source changed to the new reference values. The ESS unit output real 

power decreased accordingly from 40kW to 20kW.    

Wind turbine output power and mechanical torque are shown in Fig. 4.35. The 

synchronous generator output power and mechanical speed are shown in Fig. 4.36. The 

PV arrays responses are shown in Fig. 4.37. These figures indicated that after the real 

power reference values changed, the wind and solar energy sources reached new steady 

state and the real power values were the same as the new reference values. 
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Fig. 4.33.  Real power output values of DER units in Case 6a 
 

 

 

Fig. 4.34.  Reactive power output values of DER units in Case 6a 
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Fig. 4.35.  Wind turbine output power and mechanical torque in Case 6a 

 
 

 

Fig. 4.36.  The synchronous generator responses in Case 6a 
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Fig. 4.37.  The PV arrays responses in Case 6a 

 
 

b)  Case 6b: Reactive power reference changes after islanding  

In Case 6b, the microgrid transferred into islanded mode at t = 1s. After that, at t 

= 2s, the reactive power reference of wind energy source changed from 20kVar to 

10kVar. At t =3s, the reactive power reference of solar energy source changed from 

10kW to 0. 

The simulation stopped at t = 5s. The output real power values for the DER units 

are shown in Fig. 4.38, and the reactive power values for the DER units are shown in 

Fig. 4.39. These two figures show that in the islanded mode, the reactive power output 

values of wind and solar energy sources changed to the new reference values. The ESS 

unit output reactive power increased accordingly from 15kVar to 35kVar.    
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Wind turbine output power and mechanical torque are shown in Fig. 4.40. The 

synchronous generator output power and mechanical speed are shown in Fig. 4.41. The 

PV arrays responses are shown in Fig. 4.42. These figures indicate that the reactive 

power references adjustment did not obviously influence the wind turbine, synchronous 

generator and PV arrays. The wind and solar energy sources output reactive power 

values were the same as the new reference values. 

 

 

Fig. 4.38.  Real Power output values of DER units in Case 6b 
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Fig. 4.39.  Reactive power output values of DER units in Case 6b 

 
 

 

Fig. 4.40.  Wind turbine output power and mechanical torque in Case 6b 
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Fig. 4.41.  The synchronous generator responses in Case 6b 

 
 

 

Fig. 4.42.  The PV arrays responses in Case 6b 
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Case 6 shows that in the islanded mode, the DER units were able to perform the 

secondary control function. If the real or reactive power reference values changed for the 

wind and solar energy source, the DER units would readjust the output power to the new 

reference values. 
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5. CONCLUSIONS AND FUTURE WORK 

 

5.1. Conclusions 

A microgrid simulation model was developed in PSCAD/EMTDC software. The 

microgrid system model includes the fundamental power system components, the 

renewable energy sources and protective relays. Three DER units were modeled in this 

work, which were a wind energy source, a solar energy source, and an energy storage 

source. The PQ control methods are used in all of these three DER units. For the energy 

storage source, the voltage and frequency control method is also used. The microgrid 

system voltage was rated at 480V/277V. 

 Using the microgrid system model developed in this work, a group of case 

studies were conducted. From the results, various observations were made: 

a) The PQ control method was effective to control the output power of the DER 

units. 

b) The microgrid was able to transfer from the grid-connected into the islanded 

mode due to the pre-planned islanding or a fault outside a microgrid. 

c) The ESS unit was able to operate in either PQ control mode or the V/F 

control mode. The V/F control mode enabled the ESS to maintain the system 

voltage level at 480V after islanding. 
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5.2. Future Work 

The settings for the protection scheme in the microgrid were based on ideal AC 

sources rather than the DER units. A DER unit is different from an ideal source. For 

example, a DER unit has more complicated dynamic characteristics. Also a DER unit 

output voltage and current usually contain harmonic components. The power output of a 

DER unit is limited. These differences could lead the existing protection scheme to not 

work as expected. Therefore, the protection scheme should be enhanced in future. 

Several applications and extensions can be made to the microgrid system model 

reported in this work. For example, the control methods of each DER units could be 

more deeply investigated to enable the re-synchronizing function of the interconnection 

switch. The re-synchronizing function should make the microgrid be able to switch from 

the islanded-mode into grid-connected mode without stability problems.  

Another issue might be further studied is to improve the controllers of the DER 

units, so that the output power of the wind energy source and solar energy source can 

follow external conditions such as wind speed and solar radiation. The maximum power 

point tracking (MPPT) function could be incorporated which will maximize the 

efficiency of the DER units. MPPT functions for wind energy source and solar energy 

source could be applied into the microgrid system to achieve the advanced master 

control and maximize the use of the renewable energy sources.  

 



 

  

88 

 

  

  

49 

REFERENCES 

 

[1] B. Kroposki, R. Lasseter, T. Ise, S. Morozumi, S. Papathanassiou, and N. 
Hatziargyriou, "Making microgrids work," IEEE Power Energy, vol. 6, no. 3, pp. 
40-53, May 2008. 

 
[2] N. Miller and Z. Ye, "Report on distributed generation penetration study," 

National Renewable Energy Laboratory, Golden, CO, NREL/SR-560-34715, 
Aug. 2003. 

 
[3] P. Piagi and R. H. Lasseter, "Microgrid: A conceptual solution," in Proc. 2004 

35th Annual IEEE Power Electronics Specialists Conf., pp. 4285-4290. 
 
[4] Distibuted Energy Resources Integration Research Program, Public Interest 

Energy Research Program, and California Energy Commission. (Dec. 2004). 
"Microgrid business cases," [Online]. Available: http://www.electricdi-
stribution.ctc.com/pdfs/Microgrid_Assessment_Phase_1.pdf. [Accessed: Oct. 
2009]  

 
[5] CERTS microgrid concept.  [Online]. Available: http://certsmicrogrid.com/. 

[Accessed: Oct. 2009] 
 
[6] R. H. Lasseter, "MicroGrids," in Proc. Power Engineering Society Winter 

Meeting, vol.1, pp. 305-308, Jan. 2002. 
 
[7] Resource Dynamics Corporation. (2005, Jan.). Characterization of Microgrids in 

the United States. Vienna, VA. [Online]. Available: http://www.electricdistributi-
on.ctc.com/pdfs/RDC_Microgrid_Whitepaper_1-7-05.pdf.  

 
[8] J. Driesen and F. Katiraei, "Design for distributed energy resources," IEEE 

Power Energy, vol. 6, no. 3, pp. 30- 40, May 2008. 
 
[9] N. R. Friedman. (2002, Sep.). "Distributed energy resources interconnection 

systems: Technology review and research needs," Resource Dynamics 
Corporation, Vienna, VA. [Online]. Available: http://www.electricdistributi-
on.ctc.com/pdfs/32459.pdf. [Accessed: Oct. 2009] 

 
[10] F. Ktiraei, R. Iravani, N. Hatziargyriou, and A. Dimeas. "Microgrids 

management - controls and operation aspects of microgrids," IEEE Power 

Energy, vol. 6, no. 3, pp. 54- 65, May 2008. 
 

http://certsmicrogrid.com/


 

  

89 

 

  

  

49 

[11] J.-H. Jeon, J.-Y. Kim, S.-K. Kim, and J.-B. Ahn, "Development of HILS 
(Hardware In-Loop Simulation) system for MMS (Microgrid Management 
System) by using RTDS," in Proc. Power Electronics and Motion Control Conf., 
pp. 2492-2497, Sep. 2008. 

 
[12] D. M. Divan, M. C. Chandorkar, and R. Adapa, "Control of parallel connected 

inverters in standalone AC supply systems," IEEE Trans. Ind. Appl., vol. 29, no.1, 
pp. 136-143, Jan. 1993. 

 
[13] E. Joseph, R. Lasseter, B. Schenkman, J. Stevens, H. Volkommer, D. Klapp, E. 

Linton, H. Hurtado, J. Roy, N. J. Lewis, and Consortium for Electric Reliability 
Technology Solutions (CERTS). (2008). CERTS Microgrid Laboratory Test Bed. 
California Energy Commission and Public Interest Energy Research Program. 
Tech. Rep. CEC-500-2008-XXX. [Online]. Available: http://certs.lbl.gov/certs-
derkey-mgtb.html. [Accessed: Oct. 2009] 

 
[14] S. Morozumi, "Micro-grid demonstration projects in Japan," in Proc. Power 

Conversion Conf., pp. 635-642, Apr. 2007. 
 
[15] EU Microgrids Project. [Online]. Available: http://www.microgrids.eu. 

[Accessed: Oct. 2009] 
 
[16] C. Nayar, M. Tang, and W. Suponthana, "Wind/PV/diesel micro grid system 

implemented in remote islands in the Republic of Maldives," in Proc. IEEE 

Sustainable Energy Technologies International Conf., pp. 1076-1080, Nov. 2008. 
 
[17] Renewable Energy. [Online]. Available: http://en.wikipedia.org/wiki/Ren-

ewable_energy. [Accessed: Nov. 2009] 
 
[18] P. M. Anderson and A. Bose, "Stability simulation of wind turbine systems," 

IEEE Trans. Power App. Syst., vol. PAS-102, no. 12, pp. 3791-3795, Dec. 1983. 
 
[19] A. Murdoch, J. R. Winkelman, S. H. Javid, and R. S. Barton, "Control design and 

performance analysis of a 6 MW wind turbine-generator," IEEE Trans. Power 

App. Syst., vol. PAS-102, no. 5, pp. 1340-1347, May 1983. 
 
[20] P. Nema, R. K. Nema, and S. Rangnekar, "A current and future state of art 

development of hybrid energy system using wind and PV-solar: A review," 
Renew. Sust. Energ. Rev., vol. 13, no. 8, pp. 2096-2103, Oct. 2009. 

 
[21] T. Ackermann, Wind Power in Power Systems. Stockholm: John Wiley & Sons 

Ltd, 2005. 
 

http://certs.lbl.gov/certs-derkey-mgtb.html
http://certs.lbl.gov/certs-derkey-mgtb.html
http://www.microgrids.eu/


 

  

90 

 

  

  

49 

[22] M. Shahabi, M. R. Haghifam, M. Mohamadian, and S. A. Nabavi-Niaki, 
"Microgrid Dynamic Performance Improvement Using a Doubly Fed Induction 
Wind Generator," IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 137-145, Mar. 
2009. 

 
[23] S.-K. Kim, J.-H. Jeon, C.-H. Cho, E.-S. Kim, and J.-B. Ahn, "Modeling and 

simulation of a grid-connected PV generation system for electromagnetic 
transient analysis," Solar Energy, vol. 83, no. 5, pp. 664-678, May 2009. 

 
[24] Manitoba HVDC Research Center, PSCAD/EMTDC power system simulation 

software users' manual, Version 4, Winnipeg, Manitoba, Canada, 2003. 
 
[25] S.-K Kim and E.-S Kim, "PSCAD/EMTDC-based modeling and analysis of a 

gearless variable speed wind turbine," IEEE Trans. Energy Convers., vol. 22, no. 
2, pp. 421-430, Jun. 2007. 

 
[26] IEEE Committee Report, "Computer representation of excitation systems," IEEE 

Trans. Power App. Syst., vol. PAS-87, no. 6, pp. 1460-1464, Jun. 1968. 
 
[27] Z. Chen and E. Spooner, "Grid power quality with variable speed wind turbines," 

IEEE Trans. Energy Convers., vol. 16, no. 2, pp. 148-154, Jun. 2001. 
 
[28] A. Rajapakse, "Simulation of grid connected photovoltaic systems," Pulse - The 

manitoba HVDC Research Centre Journal, pp. 6-7, Oct. 2008. 
 
[29] J.-Y. Kim, S.-K. Kim and J.-H. Park, "Contribution of an energy storage system 

for stabilizing a microgrid during islanded operation," Journal of Electrical 

Engineering & Technology, vol. 4, no. 2, pp. 194-200, May 2009. 
 
[30] R. H. Lasseter and P. Piagi. (2006, Jan.). Control and design of microgrid 

components. PSERC, Ithaca, NY.  [Online]. Available: http://certs.lbl.go-
v/pdf/microgrid-control.pdf. [Accessed: Nov. 2009] 

  
  



 

  

91 

 

  

  

49 

VITA 

 

Zhengguo Chu received his B.E. in electrical engineering in 2007 from Tsinghua 

University, Beijing, China. He enrolled in the master’s program in electrical engineering 

at Texas A&M University in the fall of 2007. He joined the Power System Automation 

Laboratory in spring 2008. He received his M.S. in electrical engineering in May 2010. 

His research interests are distributed generation, microgrid and power system simulation. 

 Zhengguo Chu can be reached by mail at the Department of Electrical and 

Computer Engineering, Texas A&M University, MS 3128, College Station, TX, 77843. 

His email address is: chuzg03@gmail.com. 

 


