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ABSTRACT 

 

Evaluation of Hot Water Wash Parameters to Achieve Maximum Effectiveness in 

Reducing Levels of Salmonella Typhimurium, Escherichia coli O157:H7 and 

Coliforms/Escherichia coli on Beef Carcass Surfaces. (May 2010) 

Melissa Ann Davidson, B.S., Texas A&M University;  

M.S., University of Arkansas 

Co-Chairs of Advisory Committee: Dr. Kerri B. Harris  
             Dr. Jeffrey W. Savell 
 

This study measured and compared different temperatures and dwell times of hot 

water treatment on the reduction of Escherichia coli O157:H7 and Salmonella 

Typhimurium on beef carcass surfaces. Two different types of beef surfaces, lean and fat, 

were inoculated with a fecal slurry containing E. coli O157:H7 and S. Typhimurium at 

ca. 7-log CFU/g, washed to remove gross fecal matter, and rinsed with hot water between 

66 and 82ºC (150 to 180ºF water) for either 5, 10, or 15 s. There were no differences (P > 

0.05) in the log reductions of S. Typhimurium and E. coli O157:H7 on the lean surfaces 

for all three temperature treatments (66, 74, and 82°C). Although the 15 s treatment 

resulted in a numerically higher log reduction than the other treatments, each of the times 

resulted in at least a 1 log reduction of both S. Typhimurium and E. coli O157:H7 for 

lean surfaces. For the fat surfaces, all time treatments for the 82°C and the 10 and 15 s 

treatments for the 74°C resulted in the highest log reduction for S. Typhimurium. The 5 

and 10 s dwell times for treatments at 66°C and the 5 s dwell time at 74°C resulted in the 

lowest log reduction of S. Typhimurium and E. coli O157:H7. For E. coli O157:H7 all 
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temperature and time treatments resulted in at least a 1 log reduction for the fat surfaces 

of the outside round. Therefore, hot water treatment is a proven method for reducing both 

coliforms and pathogenic bacteria. 
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NOMENCLATURE 

 

C Celsius 

CFU Colony Forming Unit 

cm Centimeter 

h Hour 

L Liter 

min Minute 

ml Milliliter 

kgf/mm2 Kilogram-force per square millimeter 

s Second 
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               CHAPTER I 
 

     INTRODUCTION 

 

 The beef industry continues to battle foodborne pathogens every day. In 1999, it 

was found that pathogens such as S. Typhimurium and E. coli O157:H7, which can be 

found on raw beef, have been associated with causing approximately 6 million illnesses 

and 9,000 deaths each year (24). Although in 2004 that number had started to decrease, 

the beef industry still faces pathogen control every day. There are various interventions 

that the industry employs such as hide interventions, steam vacuuming, organic acids, 

trimming, and hot water usage to decrease pathogen presence. These have proven to 

decrease pathogen numbers when used properly. 

Hot water has been shown to be an effective microbial intervention for beef 

products standing alone or in conjunction with organic acids (8, 9, 13, 14, 22). It has been 

reported that the surface type, fat or lean, can have an impact on the microbial reduction 

when subjected to the same water wash treatment (9). Temperatures and dwell times also 

can vary depending on the facility’s ability to maintain the hot water temperature, line 

speed, and safety to workers.  

The objectives of this project were to determine the potential of hot water applied 

over varying exposure times and temperatures to reduce the levels of Salmonella 

Typhimurium, Escherichia coli O157:H7, and coliforms/Escherichia coli on beef carcass 

surfaces, and to evaluate the effect of various exposure times and temperatures of hot 

water on meat surface type (fat and lean). 

 

This thesis follows the style of the Journal of Food Protection. 
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CHAPTER II 

LITERATURE REVIEW 

 

Generic Escherichia coli  

Generic Escherichia coli, once known as Bacterium coli commune, is a member 

from the family Enterobacteriaceae. Other members of the Enterobacteriaceae family 

include many other known enteric pathogens such as Salmonella spp., Shigella spp, and 

Yersinia spp, all of which could be pathogenic to humans. Escherichia coli is a gram 

negative, rod shaped, facultative anaerobe, oxidase-negative, which ferments glucose 

with the production of gas and acid (19). Escherichia coli is a predominant part of 

intestinal microflora for various species, which includes cattle, sheep, dogs, and humans. 

Humans have over 400 beneficial bacteria species including Escherichia coli in the 

intestinal tract mostly residing in the ileum and lower bowel (18). E. coli is 

approximately 0.1% of the total normal microflora bacteria within an adult's intestines 

(on a Western diet), and, in a newborn infant's intestines, E. coli, along with lactobacilli 

and enterococci, represent the most abundant bacterial flora (6). Escherichia coli is an 

established part of the normal microflora which aids in the digestion of food, synthesizing 

vitamin K and B complex, and preventing the chance for pathogenic bacteria to colonize 

the intestine by suppressing their growth (18, 43). 

From humans to chickens, E. coli is a symbiotic bacterium, able to inhibit 

pathogenic bacteria from becoming established in the intestine by means of out-

competing for space and/or nutrients. Gorbach (18) illustrates (Figure 1) that most of the 

beneficial bacteria reside in the ileum and large bowel in humans. 
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Figure 1. Concentration of the bacterial flora in regions of the gastrointestinal tract. 

 

 

 

When the generic non-pathogenic E. coli reaches its optimum growth 

environment, the replication time for one cycle is as little as 20 min (29). This somewhat 

prophylactic use is also known as probiotics, or Competitive Exclusion (CE) (36). It is 

able to outgrow other bacteria thus hindering other bacteria from growing in the crypts of 

the intestine.  
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Pathogenic Escherichia coli 

 Escherichia coli O157:H7 is a part of the E. coli family, but is known to be 

pathogenic to humans. Its sources are usually from eating raw beef. It first enters the 

body via food eaten by an individual. Once inside the body, the microorganism can 

become established and begin to cause discomfort harm to the individual who consumed 

it.  

Because of the ability of E. coli O157:H7 to replicate quickly, one or two cells in 

food could easily turn into an infectious dose (27). After surviving the harsh stomach 

conditions in a human, Enterohemorrhagic E. coli (EHEC) attaches to the host’s 

epithelial cells in one of two ways. It can form either tight clusters or microcolonies 

forming an even, single layer over the epithelial (32). The four mechanisms that cause 

gastroenteritis in humans are: adherence to mucosa cells, invasion of mucosa cells, 

disruption of the microvillus brush border, and the toxin release (43). Once the toxins are 

released by the E. coli O157:H7 bacterium, damage occurs to the intestinal epithelium 

(43). When the verotoxins are absorbed through the intestinal tract, complications occur 

in other organs in the body.  

The pathogenic categories of E. coli are broken into five main categories: 

Enterotoxigenic E. coli (ETEC), Enteroaggregative E. coli (EAEC), Enteropathogenic E. 

coli (EPEC), Enteroinvasive E. coli (EIEC), and Enterohemorrhagic E. coli (EHEC). 

Figure 2 from Evens (15) illustrates the relationship of some of these bacteria. 
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              Figure 2. Virulence mechanisms of E coli.  

 

 

 

Enterohemorrhagic E. coli (EHEC), or Vero Cytotoxin-Producing E. coli (VTEC) 

and Shiga-toxin Producing E. coli (STEC) are the last of the E. coli segments to date. 

This set comprises unusual bacteria that can produce hemolytic uremic syndrome (HUS) 

and/or thrombotic thrombocytopenic purpura (TTP). E. coli O157:H7 is included in this 

category.  

Escherichia coli O157:H7  

Escherichia coli O157:H7 is a facultative anaerobe that is gram negative and 

produces a Shigella-like toxin (Slt). It is thought that E. coli O157:H7 evolved from E. 

coli O55:H7, a pathogen associated with infant diarrhea worldwide (3). Although the E. 

coli O55:H7 bacterium possessed the mechanism for adherence to the mucosal cells, it 

did not produce any toxin. When it acquired the Slt genes from Shigella through 

horizontal gene transfer, O157:H7 was created(3).  
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There are two types of shiga toxins: Slt1 and Slt2. Toxin typing can help identify 

E. coli O157:H7. Human isolates that produce Slt1 and Slt2 or only produce Slt2 are 

common, whereas those that only produce Slt1 are uncommon (19). Although they are 

called shiga-like toxins, Slt1 shares very similar gene coding with that of Shigella 

dysenteriae but Slt2 only shares 58% overall homology with that of Slt1 (19). This 

explains why Slt1 can be neutralized with anti-Shiga toxin and Slt2 cannot (19).  

E. coli O157:H7’s average onset is approximately 3 to 4 days. However, it has 

been known to have short incubation times of 1 to 2 days, or as long as 5 to 8 days. The 

complications begin with watery-like diarrhea, abdominal cramps, and mild, to no, fever. 

Within days, the diarrhea was come bloody with increased cramping which normally 

lasts from 4 to 10 days (11). With severe O157:H7 cases, there may be all blood and no 

stool.  

Most of E. coli O157:H7 infections occur in the younger population (less than 5 

years of age) and the elderly (over 65 years of age) (1). People who are immuno-

compromised such as people who are taking, chemotherapy or have HIV, are not 

considered to have a special risk factor and do not have an increased probability of 

contracting E. coli O157:H7 compared to a normal, healthy middle-aged individual.  

Most of the people infected with E. coli O157:H7 will recover completely without 

the use of antibiotics, but 10% of the patients, mostly the young and the elderly, acquire 

hemolytic uremic syndrome (HUS) or thrombotic thrombocytopenic purpura (TTP). 

Although in most bacterial infection cases antibiotics will help the situation, however, 

with E. coli, antibiotics will only increase the chance of kidney complications (11). 
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Although almost all strains of E. coli O157:H7 are susceptible to ampicillin, 

trimethoprim-sulfamethoxazole, tetracycline and quinolones, they are resistant to many 

other antibiotics such as erythromycin, metronidazole, and vancomycin (1). Studies have 

shown that the use of such antibiotics, while they may kill the bacteria, could leave more 

damage in their wake such as an increasing HUS development because of the toxin 

released by the dead cells (1). 

Due to the severity of Escherichia coli O157:H7 and the damage it causes, it is 

recognized as a reportable organism, and, as such, confirmed stool specimen cases should 

be reported to the county and state health departments where the case occurs (11). 

Hemolytic uremic syndrome (HUS) 

 Hemolytic uremic syndrome (HUS) is caused by the E. coli O157:H7 cell being 

lysed, (cut) or killed. When this happens the cell releases toxins in the blood stream that 

causes the red blood cells in the blood stream to lyse.  

According to the CDC, 20,000 people are infected with E. coli O157:H7, and of 

those 20,000, approximately 250 will die, mostly from HUS and other complications 

(33). One third of the people who develop HUS will have permanent kidney damage, and 

another 8% will have other lifelong complications such as hypertension (11, 33). In the 

United States, Hemolytic Uremic Syndrome (HUS) has become the leading cause of 

pediatric renal failure requiring a kidney transplant (33).  

Thrombotic thrombocytopenic purpura (TTP)  

Thrombotic thrombocytopenic purpura is a rare, yet often fatal condition in which 

a blood clot gets in the brain and causes some symptoms such as “neuologic 

abnormalities, microangiopathic hemolytic anemia, thrombocytopenia, and potentially 
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renal failure” (11). Most patients who develop this condition have had an E. coli 

O157:H7 infection in the past. In fact, most patients who have had TTP have the same 

pathologic features, yet do not develop gastrointestinal infections. Although neurologic 

manifestations and fever are usually the main signs of TTP, HUS rarely has the same 

symptoms; however, it is possible.  

Salmonella  

Salmonellosis is reported to be the most common foodborne illness in the US (9). 

Although there is a reported 47,500 cases reported annually in the US, because of the 

unreported cases, the actual number is estimated to well over 2,000,000 a year (28). It can 

be found in various food sources ranging from poultry, eggs, lettuce, ground beef, veal, 

turkey, swine, pork, and peanut butter (21).  

 Salmonellosis develops usually 12-14 hours after consumption of ingestion of the 

food source depending on the person. Symptoms can include vomiting, nausea, 

abdominal pain, chills, headache, and diarrhea lasting 2-3 days (21, 28). Although the 

mortality is usually low (4.1%) it ranges in people from under a year (5.8%), between 1-

50 years old (2%), and over 50 years of age (15%) (21). The infectious dose ranges from 

105-106/g have been suggested to cause salmonellosis (21). This dose again, will depend 

on the individuals’ health, age, and ability to fight off an infection. If these could be a 

factor, the infective dose could be lowered to 103-104/g for that individual. 

 Most people recover from Salmonella without any treatment. Although there is no 

known sequelle to Salmonella, this pathogen can reside in macrophages and invade the 

body destroying the Peyer’s patches, part of the mucosal-associated lymphoid tissue that 

samples the small intestine for foreign antigens (28). This is a problem in the beef 
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industry. Although most of the lymph nodes are discarded during evisceration, there are 

some lymph nodes located in the fatty tissue of the beef carcass that does not get trimmed 

out and can lead to contamination if the infection is bad enough (2).  

Escherichia coli O157:H7 and the beef industry  

E. coli O157:H7 was coined the “hamburger disease” in 1993 because of an 

outbreak from the Jack-in-the-Box chain of hamburgers (5, 22). This outbreak led to the 

deaths of three children and hundreds of other people becoming ill (24) in as many as 

four states (11). Because of the damage this pathogen caused and the publicity it 

received, the United States Department of Agriculture Food Safety Inspection Service 

(USDA, FSIS) changed the way meat and poultry establishments were inspected from 

then on. The Pathogen Reduction /Hazard Analysis and Critical Control Points (HACCP) 

regulation was finalized in 1996. 

Between the years of 1982 and 1994, 50% of E. coli O157:H7 infections were due 

to hamburgers (5). The U. S. beef industry has incurred significant cost due to E. coli 

O157:H7 (24). In the past 10 years, the beef industry has lost $2.7 billion due to recalls, 

increased operating costs, government and industry research, etc., and a decrease in 

demand for beef, which cost the beef industry $1.6 billion alone (24).  

The first recorded incident of O157:H7 occurred in 1975 when a woman having 

bloody diarrhea was admitted to a hospital. Her blood tested positive for antibodies to the 

O157 and H7 antigens, specific components of E. coli O157:H7 (26, 41). However, 

because she was the only one who was sick, it was not considered an outbreak of the 

organism, and the public was not made aware of the bacterial infection (41). The Centers 
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for Disease Control (CDC) kept an isolate in reference in case it was to appear in later 

cases (41). 

 Because of the seriousness of this pathogen and the illness it can cause, processors 

must understand how to prevent and control E. coli O157:H7 (17). Since the 1993 

outbreak, E. coli O157:H7 has been a growing problem with the beef industry. Today, 

people are more aware of the serious issues with E. coli O157:H7, and the beef industry 

continues to seek ways to minimize the risk associated with beef.  

Frequency of Salmonella and Escherichia coli on meat  

In September 1999, FSIS began using a method for analyzing samples of products 

that may contain O157:H7 that was four times more sensitive than the previous tests 

being used (16). When testing this new method using the same product, 40% (21 out of 

53) of the samples tested positive for E. coli O157:H7 with the new system (16). With the 

old system (used since 1994), the samples tested negative with lower levels of E. coli 

O157:H7 (16). This suggests that the tests using the old system were not as sensitive in 

detecting lower levels of E. coli O157:H7 and this pathogen are more prevalent than once 

was thought. These tests were made because of the severity of the damage that E. coli 

O157:H7 caused due to its high virulence and relatively low doses in which it could 

cause such damage. Experts have stated the infective doses can range from 10-100 

organisms, depending on the age and health of the individual (16, 35), but Rhee et al. said 

the infectious dose might be as low as two (37). 

Many experiments have been performed on the bovine species to determine where 

in the gastrointestinal tract the bacteria are present. Researchers have found the presence 

of O157:H7 in the colon region of the cattle tested, as well as in other parts of the animal 
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(3). However, Brown et al. (6) reported the fore stomach as the prime location for 

proliferation and localization. Buchko et al. (7) found the cecum and rectum were sites of 

colonization.  

Cattle hides have been found to be a source for E. coli O157:H7. It has been 

determined that during processing, the primary source of contamination is the transfer of 

matter from the animal’s hide to the carcass (31). Particular regions, which have tested 

positive, are the back and tail areas. This is probably due to the fecal contamination from 

the feces on the tail, which, in turn, swipes the back region to keep flies away. When the 

hide is removed during processing, the bacteria can contaminate the carcass. Because 

cattle are asymptomatic, presence of this particular organism will not show through 

mortality or morbidity (3).  

Some variables that contribute to the prevalence of this organism include the 

season, frequency, timing between testing, and the geographic location of herds (3). 

Seasons tend to influence the prevalence of the O157:H7 bacterium. Belongia at al. (4) 

conducted an experiment concerning rural and non-rural resident children and their 

antibody levels for E. coli O157:H7. Belongia et al. (4) found that rural children had a 

higher antibody level for O157:H7 than non-rural children. Belongia et al. (4) also 

discovered that the occurrences of these IgM antibodies in children were higher in the 

summer months, July through September, and lower in the cooler months of January 

through March. This coincides with the outbreaks in cattle (3, 4). Buchko et al. (7) 

performed several studies that concluded the peak fecal shedding of E. coli O157:H7 was 

during the spring and summer months. 
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 Salmonella can be a seasonal pathogen like E. coli. The fluctuation can range 

anywhere from a 2.1% fecal prevalence to a 9.1% within a year’s time (8). This also is 

parallel with the carcass contamination, immediately after hide removal, having reported 

numbers ranging from 3%-24.9% within a year (8). This shows us that even in 

Salmonella’s low season it is still able to contaminate around 3% of the carcasses pre-

evisceration.  

Cost to producers  

The cost estimated stems not only from recalls, but also to the decrease in 

confidence the consumers have in the safety of eating beef. It is said that recalls 

themselves might have cost the industry $1.6 billion of the $2.7 billion total (24). Due to 

the bad publicity E. coli O157:H7 has received in past years; many consumers are 

concerned about eating undercooked hamburger because of the fear of being infected 

with this pathogen (35). Not only did it change the minds of the consumers, but it also 

changed the way the government looked at the way meat and poultry were inspected for 

pathogens.  

After the 1993, outbreak mandatory Hazard Analysis and Critical Control Point 

(HACCP) was implemented in all meat and poultry plants. Hazard Analysis and Critical 

Control Point made the plants identify all potential biological, chemical or physical 

hazards in the process (34). The Pathogen Reduction/ HACCP Rule in 1996 was a direct 

consequence in the identification and ongoing presence of E. coli O157:H7 in ground 

beef (24). The Food Safety and Inspection Service was originally estimated to be a 

fraction of a cent per pound by the government in order to be implemented; however, 
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university studies proved otherwise and estimate costs to be as high as 17 cents for beef 

(24).  

Other interventions  

Other interventions have been used in plants to retard or inhibit growth of 

microorganisms. It has been proven that in large US processing plants when 53.9% of 

beef carcasses were positive with at least one strain of non-O157 STEC prior to 

evisceration can be reduced to 8.3% with various intervention strategies (25).  

Chemical dehairing works using sodium sulfide to dissolve the hair from the hide 

then neutralities it with hydrogen peroxide (9). Although this process may raise some 

questions about its effectiveness, in combination with other interventions could decrease 

the pathogen presence. 

Spray wash using ambient temperature can remove 1 log/CFU of aerobic bacteria 

per cm2 (10). Using an organic acid can also aid in retarding the growth of or eliminating 

the presence of pathogens of concern. Lactic acid is commonly used in commercial 

practice and applied prior to placing in the hot box(25). The effectiveness of these acids 

can lose their efficacy if they are applied to the surface after chilling (20).  

How heat processing affects the cell  

Heat is often a way producers try to control potential pathogens on meat surfaces. 

High temperature water washes have been proven to reduce pathogen presents.  

Although high temperatures can affect the Escherichia coli O157:H7 bacteria, no 

one single event of heating is responsible for the effects of the cell because all of the 

components of the cell are affected. Escherichia coli O157:H7, like most non-sporulating 

bacteria, are inactivated or killed, at ≥50°C.  
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The cell wall and outer membrane protect the bacterium from outside harm. If 

heated, morphological and structural changes to the wall and membrane occur which can 

alter the permeability of the cell, releasing essential periplasmic proteins, UV-absorbing 

materials, and cations, and letting in otherwise impermeable hydrophobic antibiotics, thus 

injuring the cell (39, 42). Russell and Harries (39) discovered that temperatures ranging 

from 50°C to 60°C on E. coli O157:H7 in suspensions increased the leakage of the cells 

with an increase of time and temperature. Although heat can cause damage to the cell 

wall, it is probably not significant in the role of the cell’s destruction or inactivation. 

The next layer known as the cytoplasmic (inner) membrane is located beneath the 

cell wall. It is responsible for controlling the entry of solutes into and out of the interior 

of the cell. In particular, the membrane has many functions that are essential for cell 

growth and survival. One in particular is the maintenance of the cell’s integrity (23). 

Damaging this membrane can cause serious injury to the cell because the cell cannot 

regulate any activity going into or leaving the cell (38). However, Welker (44) states 

there is little direct evidence that any membrane damage is important in the thermal 

injury to the cell. Although the cell’s membrane damage is not the major cellular site for 

destruction, it is important for the cell to repair the damage in order for it to survive (23). 

Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are next in line that 

could be affected by heat. Mild heating can degrade RNA, which precedes the loss of 

viability. However, it is not solely responsible for cell death (38). Heat application to 

DNA could possibly hold the key to inactivation. If the entire DNA is degraded or 

destroyed, then the cell will not survive (38). The loss of viability of cells is a correlation 

between mild heat and the introduction of single-strand breaks in the cell’s DNA (44). 
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However, if a functional fraction of the DNA structure is intact, it can reconstitute the 

other parts of the double stranded or single stranded breaks of the DNA thus enabling the 

cell to repair itself (38). Russell (38) stated that pyruvate present in the medium was a 

key part in the recovery of E. coli O157:H7.   

Another key part in the inactivation of E. coli O157:H7 is protein denaturation 

and enzyme inactivation. Structural and functional proteins are prime targets for heat 

inactivation (38). Protein denaturation is the disruption of an original, natural, largely 

hydrogen-bonded, and complex structure (38). Russell has overwhelming evidence that 

protein denaturation correlates with death rates in mesophilic bacteria.  

Although the destruction of the pathogenic bacteria may prove to be beneficial to 

humans, it is also beneficial to other heat injured survivor cells. Material leaked from 

dead cells can act as a nutrient to survivors and could possibly aid in the recovery and 

survival of others (38).  

How can water wash impact the industry  

Because heat can have a great impact on a bacterial cell when the conditions are 

right, the hot water wash can be a tool used in the processing plant that will help keep the 

bacterial load down. These two pathogens are chosen because they represent the top 

human pathogens in meat (12). Although hot water washes experiments have either 

observed combination or “multiple hurdle” interventions (9), and have not looked at the 

hot water wash as the only source of intervention. This experiment was designed to look 

at that and help industry better understand about how these pathogens react to different 

surface types and different temperatures.  
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CHAPTER III 

MATERIALS AND METHODS 

 

Strains and inoculum preparation  

Rifampicin-resistant strains were derived from parent strains of S. Typhimurium 

ATCC 13311 and E. coli O157:H7 (Phillip I. Tarr strain) were used as marker organisms 

to inoculate the fecal slurry and beef carcass surfaces to be treated in this study. Growth 

curves, heat resistance, and acid sensitivity of the mutant strains were previously 

determined to be virtually indistinguishable from the parent strains (20). 

The selected rifampicin-resistant cultures were maintained on tryptic soy agar 

(TSA; Becton Dickinson, Sparks, MD) slants at 4°C. Before inoculation into feces, these 

cultures were transferred into tryptic soy broth (TSB; Becton Dickinson, Sparks, MD) 

and incubated at 37°C for 18 h. A bacterial cocktail was prepared by mixing equal 

volumes of each culture for addition into fecal slurries and subsequent inoculation onto 

meat surfaces. Fecal slurries were prepared from bovine feces collected from the Texas 

A&M University Beef Center, College Station, Texas. Ten-gram portions of feces were 

weighed out into individual stomacher bags for subsequent inoculation. Ten ml of the 

bacterial cocktail were added to each bag and hand-kneaded for 1 minute to ensure 

homogeneous distribution of the marker organisms. The inoculum was used within 6 h 

after preparation. Preliminary investigations indicated the marker organisms would not 

increase in number for up to 6 h when held at ambient temperatures. Additional portions 

of fecal slurry were prepared with 10 ml of 0.1% peptone water for inoculation of 

controls to evaluate reductions in naturally-occurring E. coli and total coliforms. A 
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portion of uninoculated feces and the inoculated fecal suspension was assayed each test 

day to confirm the amount of background E. coli, total coliforms, and the number of 

marker organisms per gram. 

Inoculation  

Hot-boned inside (IR) and outside rounds (OR), similar to Institutional Meat 

Purchase Specifications #168 and #170, respectively, were obtained from cattle (n=14) 

harvested at the Rosenthal Meat Science and Technology Center (RMSTC), Texas A&M 

University (30). The cattle were typical of those entering the United States meat supply 

and were harvested following typical procedures in an inspected establishment. Exterior 

surfaces from each cut (representing subcutaneous fat for the OR and lean for the IR) 

were used for the decontamination trials. These exterior surface types represent types of 

carcass surfaces commonly trimmed when fecal contamination occurs during harvest and 

dressing. The cuts were removed from the carcass just subsequent to splitting and before 

washing. After removal, the hot subprimal cuts were covered with shrouds, placed in 

insulated containers, and transported to the Food Microbiology Laboratory (located in the 

adjacent building). Immediately upon arrival, the carcass surface region was inoculated 

with the previously prepared fecal slurry, containing either inoculated or non-inoculated 

feces, using a sterile stainless-steel spatula. Inside round pieces were trimmed of excess 

fat as needed, using a sterile knife, to expose a greater lean surface area for treatment. 

The concentration of each pathogen, coliforms and E. coli on the meat surface was 

approximately 6 and 5 log CFU/ cm2, respectively. 
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Sampling and microbiological analysis  

Thirty min after inoculation, two composite samples were collected from the 

surface to obtain background and initial inoculum levels. A composite sample was 

collected consisting of two 10-cm2
 pieces excised from the meat surface with a sterile 

surgical blade and sterile forceps. Both pieces were transferred to a stomacher bag with 

99 ml of sterile 0.1% peptone water and pummeled in a stomacher (A.J. Seward, London, 

UK) for 1 min. Rifampicin-resistant pathogens were enumerated by plating appropriate 

dilutions of the composite samples on pre-poured and dried lactose-sulfitephenol red-

rifampicin (LSPR) agar (10). Plates were incubated at 35ºC for 24 h before colonies were 

counted. Total coliform and E. coli counts were determined from rounds inoculated with 

feces containing naturally-occurring background flora. Appropriate dilutions were plated 

on Petrifilm E. coli/coliform count plates (3M, St. Paul, MN) and incubated at 35ºC for 

24 h. 

Treatments  

After inoculation with the fecal suspension, a water wash was applied to each 

inside and outside round to remove gross fecal contamination. The initial water wash 

consisted of ~1.5 liters of water and was applied at 25ºC and 0.01 kgf/mm2 for 90 s using 

a polyethylene hand sprayer (Ortho Heavy Duty Sprayer, Fountainhead Group, Inc., 

Newark Mills, NY). Following each initial water wash, the inside or outside round were 

sectioned into four pieces using a flame-sterilized knife. Following division of the initial 

round into subsample pieces, composite samples consisting of two 10-cm2
 pieces excised 

with a sterile surgical blade and sterile forceps were collected from the carcass surfaces to 

establish initial background counts before treatment. Each piece was assigned randomly 
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to each treatment. Treatments evaluated were: a) hot water at 66 ± 1ºC for 5, 10 and 15 s; 

b) hot water at 74 ± 1ºC for 5, 10 and 15 s;  c) 82 ± 1ºC for 5, 10 and 15 s. The treatments 

were applied in a model spray cabinet (Chad Company, Lenexa, KS) using a flat-spray 

nozzle (50/50) at a pressure of 0.02 kgf/mm2 from a average distance of approximately 

16.5 cm. The water was heated in a hot water tank (Chad Company, Lenexa, KS). The 

temperature of the water at the source and at the nozzle opening was measured using type 

K thermocouples connected to a total range digital thermometer (VWR International, 

West Chester, PA). The temperature of the carcass surface during the treatment was 

measured by placing type K thermocouples threaded through the meat to lay on the meat 

surface and connected to the same type of thermometer previously described. In addition, 

temperature indicator labels (Omega, Stamford, CT; Palmer-Wahl, Asheville, NC) and an 

infrared thermometer (VWR International, West Chester, PA) were assigned randomly to 

pieces for supplementary monitoring of meat surface temperatures during treatment. The 

experiment was repeated three times. Following each treatment, two composite samples 

as previously described were collected from the treated surface. Both pieces were 

transferred to a stomacher bag with 99 ml of sterile 0.1% peptone water and pummeled in 

a stomacher (A.J. Seward, London, UK) for 1 min. Appropriate decimal dilutions were 

plated on pre-poured and dried LSPR agar plates for recovery and enumeration of 

rifampicin resistant pathogens (E. coli O157:H7 and S. Typhimurium). All plates were 

incubated at 35ºC for 24 h before colonies were counted. 
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Color evaluation 

Carcass surface regions were evaluated visually for initial color and changes in 

color before treatment, after treatment, and after 24 h storage at refrigeration (4 ± 1ºC) 

temperature by a trained evaluator using meat color evaluation scales adapted from Hunt 

et al.  

Statistical analysis 

Plate counts for each organism were converted to log CFU per ml or square 

centimeter before analysis. Log reductions (CFU/cm2) of indicator organisms and 

pathogens were calculated by subtracting the log counts (CFU/cm2) obtained after hot 

water treatment from the log count (CFU/cm2) obtained after water were before any 

treatment was applied. Data were analyzed using PROC GLM of SAS as a randomized 

incomplete block design with temperature and time as the main effects and processing 

day as the block. Temperature by time interaction was included in the model. Least 

squares means were calculated and where Analysis of Variance indicates significance (P 

< 0.05), differences of least squares means were determined using the pdiff procedure of 

SAS. 
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CHAPTER IV 

   RESULTS 

 

The results from this study support the findings of previous research that 

demonstrated hot water treatments effectively reduce microbes on beef carcass surfaces. 

One objective of the project was to determine if there were differences existed in log 

reductions between application times of 5, 10, and 15 s for three different hot water 

temperatures (66 ,74 , and 82°C). The second objective was to observe the hot water 

temperatures (66, 74, and 82°C) on reduction potential. 

Table 1 provides the log reductions of S. Typhimurium and E. coli O157:H7 on 

the lean surfaces of the beef inside round. Even though statistical differences occurred, 

overall,  no differences (P > 0.05) existed in log reductions of S. Typhimurium and E. 

coli O157:H7 on the inside round regardless of temperature (66, 74, and 82°C) (data not 

shown). Differences between 5 and 15 s was observed for overall treatments, regardless 

of the temperature for both pathogens. Applying the hot water treatment for ten seconds 

proved not to have a statistical difference from either of the two times. 

Table 2 shows the interaction of time and temperature on log reduction of 

pathogens on fat surfaces of beef outside rounds. The sixty-six degree treatment proved 

to be the only temperature that showed a difference between 5 and 15 s, with 10 s 

showing no statistical difference, while other temperatures showed no statistical 

difference between the 5 and 15 s treatments for either pathogen. The time temperature 

interaction proved that the higher the temperature, the less time is required for reduction, 

whereas the lower the temperature, the longer the treatment needs to be applied for the 

same results. 
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Table 1. Effect of hot water application times on the log reductionc (SEM)d of each 
pathogen on lean surfaces. 
 Time (s) 
Pathogen 5 10 15 
Salmonella Typhimurium 1.2b 1.5ab 1.8a 
  (0.18)  (0.18)  (0.18) 
Escherichia coli O157:H7 1.1b 1.6ab 2.1a 
  (0.27)  (0.23)  (0.23) 
a,b, LSMeans within a row without a common letter are significantly different (P < 0.05). 
cLog reduction = (log CFU/cm2 before treatment)-(log CFU/cm2 after treatment). 
dSEM is the standard error of the least squares means. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Table 2. Interaction of temperature and time of hot water application on the log reductione (SEM)f of pathogens on fat surfaces. 

 Temperature and Times 
  66°C   74°C    82°C  
Pathogen 5 (s) 10 (s) 15 (s) 5 (s) 10 (s) 15 (s)  5 (s) 10 (s) 15 (s) 
Salmonella Typhimurium 0.7d 1.4cd 2.1bc  1.8cd 3.5a 2.6abc  3.4a 3.2ab  2.9abc 
  (0.47)      (0.53)   (0.47) (0.42)  (0.42)  (0.42)   (0.47) (0.47)   (0.47) 
           
Escherichia coli O157:H7 1.0c 1.5bc 2.6ab  2.1bc 4.1a 3.0ab  3.6a 4.0a  3.0ab 
  (0.56)      (0.63)   (0.56) (0.50)  (0.50)  (0.50)   (0.56) (0.56)   (0.56) 
  

 a,b,c,d LSMeans within a row without a common letter are significantly different (P < 0.05). 
eLog reduction = (log CFU/cm2 before treatment)-(log CFU/cm2 after treatment). 
fSEM is the standard error of the least squares means. 
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Table 3 shows the effect of varying temperatures on log reduction on both lean 

and fat surfaces of beef inside and outside rounds. There were no differences (P > 0.05) 

in log reductions based on time of application (data not shown). For the lean surfaces, the 

82°C temperature had a (P < 0.05) higher log reduction of both E. coli (2.0) and 

coliforms (2.1) than the 74°C (1.1 and 1.2) or 66°C (0.8 and 0.8) treatments.  

Table 4 shows the effects of temperature on color recovery on both lean and fat 

surfaces. When exposed to hot water, exposed lean surfaces turn from a reddish raw color 

to a brown cooked color. A major discrepancy of using this method is the muscle color is 

unable to return to its once red color which means more trimming for producers in turn 

means loss of money. For the lean surfaces, there were differences (P < 0.05) in color for 

all three temperature treatments. Looking at the 66ºC treatment, the color change was the 

lowest color recovery value resulting in a moderately pink color; however, the 82ºC color 

change resulted in a classified moderately pink color. The fat surface did not differ (P < 

0.05) in regards to the temperature increase. After 24 hours, the three temperatures all 

returned to a classified white to yellow white, which is an industry accepted fat color. 
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Table 3. Effect of hot water temperature application on the log reductiond (SEM)e of 
Escherichia coli (E.coli) and coliforms on both  lean and fat surfaces. 
 Temperature (°C) 
 66 74 82 
Lean surfaces    
            E. coli 0.8b 1.1b 2.0a 
  (0.23)  (0.18)  (0.23) 
       Coliforms 0.8b 1.2b 2.1a 
  (0.25)  (0.20)  (0.24) 
Fat surfaces    
           E. coli 0.2c 1.5b 2.7a 
  (0.31)  (0.24)  (0.31) 
      Coliforms 0.4b 1.7b 2.8a 
 (0.29)  (0.23)  (0.29) 
a,b,cLSMeans within a row without a common letter are significantly different (P < 0.05). 
dLog reduction = (log CFU/cm2 before treatment)-(log CFU/cm2 after treatment). 
eSEM is the standard error of the least squares means. 
 
 
 
 
Table 4. Effect of hot water temperature application on recovery colord (SEM)e values on 
both lean and fat surfaces.  
 Temperature(°C) 
 66 74 82 
Lean surfaces   2.54c   3.72b  5.27a 
 (0.29) (0.28) (0.29) 
 
Fat surfaces 

   
1.94c 

   
2.17c 

   
2.03c 

 (0.28) (0.29) (0.28) 
a,b,cLSMeans within a row without a common letter are significantly different (P < 0.05). 
dRecovery color values were recorded 24 h post treatment. 
dRecovery color scale for lean: 1 = red, 2 = moderately red, 3 = slightly red, 4 = pink, 5 = moderately pink,   

6 = slightly pink, 7= slightly grey or tan, 8 = moderately grey or tan, 9 = grey or tan, 10 = slightly brown, 
11 = moderately brown, 12 = brown, 13 = extremely brown. 

d Recovery color scale for fat:1 = white fat, 2 = yellow white, 3 = yellow, 4 = yellow/brown, 5 = brown 
fat/greenish. 

eSEM is the standard error of the least squares means. 
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Figure 3 observed the accuracy of temperature labels, in comparison to 

thermocouples, that can sometimes be used in industry to determine if the hot water being 

used is at the correct temperature. The highest partial change, a circle not completely 

filled in, was on fat surfaces at 66ºC, and the second highest partial change was on lean 

surface at 66 ºC. This shows that there were more variation within the temperature labels 

at lower temperatures than higher, and there were also more variation when the labels 

were placed on the fat surfaces than the lean surface. 

Figure 4 compared the thermocouples to the infrared thermometer reader. 

Although the industry sometimes uses infrared readers to verify the water temperature, it 

proved not to be a reliable source of information in this experiment. The readings were 

lower than the actual thermocouple readings. The difference between the thermocouple 

and infrared temperatures appears to be greater as the temperature of the water treatment 

increased. 
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Figure 3. Percent accuracy of temperature labels during hot water treatment of lean and 
fat surfaces. 
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Figure 4. Comparison of thermocouple and infrared thermometer temperatures. 
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CHAPTER V 

DISCUSSION 

 

Lean versus fat surfaces  

Observing the differences on the lean surfaces between the two pathogens, were 

similar. Both had differences with the extreme times (5s and 15 s) by one log difference. 

If I were a plant that had this thesis to reference, I would have to look at my past tests of 

generic E. coli and coliforms. If they were high, I would definitely use the 15 s, but if 

they were lower, I believe the 5 s treatment may work.  

 The outside rounds only temperature statistical difference was 66ºC. The other 

two temperatures (74ºC and 82ºC) had no statistical differences between the 

temperatures. In this case, if I had to use either 74ºC or 82ºC, the 5 s would be the logical 

time to use as to not waste hot water, thus time. If I were to use the 66ºC, I again would 

look at past tests and go from there. If the bacterial loads need a longer time for a higher 

kill, then because there is not a statistical difference between 10 s and 15 s, I would use 

the 10 s. 

Regaining normal color  

It was reassuring to see the cooked pieces of meat in the 82ºC treatment turn 

pinkish again the next day. It is known that meat begins to turn brown shades when it 

reaches higher temperatures. Smith and Graham (40) reported the same findings after 

using 80ºC for 10 s. This lets the producer use the hotter water for the pathogen 

intervention, yet reduces the amount of trim that will need to be cut off once the product 

is cooled. The inside rounds tended to come out a moderate pink at 82ºC where the 66ºC 
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exited the cooler looking redder. Although it is not the brown as the day prior, it was still 

a color the meat producer could keep. The fat was perfect for this experiment. There was 

not a difference statistically, or visibly, between the 66 ºC and 82 ºC pieces.   

Temperature labels  

Temperature labels are sometimes used in industry but from the data gathered in 

this experiment, they are not that reliable. There was a lot of variation at the lower 

temperatures than the higher temperatures. Partial changes could have been due to the pin 

insertion itself by placing it on the meat, causing the dot to change color before getting 

into the cabinet. Although in theory it is a good concept, if the temperature label is made 

properly and can withstand the temperatures without falling apart from the water pressure 

or changing colors during pinning them to the meat for use, then a reassessment may 

need to be made. Until then, thermocouples would be the most accurate readings. 

Infrared thermometers  

The infrared thermometer read lower than the actual temperature. Once the higher 

temperature treatments were being administered, it was harder to get accurate 

measurements due to the steam that was being produced. Because of this, when reporting 

the readings if an infrared thermometer is used then a plant may not meet their 

requirements, or they may overcook the product thinking the water is running cold. 

Again, my recommendation would be to use a thermocouple to get the readings. 

Although easy to use, infrared thermometers are not meant to work with this kind of 

project. 

 

 

 



                                                                                                                                             31
 

CHAPTER VI 

CONCLUSIONS 

 

These data have shown that depending on the initial data load entering the plant, 

this intervention, would be a good process in someone’s HACCP plan. Although at 

higher temperature applications the meat may have a cooked appearance, this is proven 

that within 24 hours, the meat will once again rebloom and return to its reddish color. 

Although the lower temperatures (66ºC) may require longer amounts of time to achieve 

the same pathogen reduction as the higher temperatures, it still has a log reduction of 2 

logs at 15 seconds for both pathogens tested. This is a good log reduction for plants that 

have low levels of pathogen contamination. For the plants with higher levels of 

contamination, the 74ºC temperature application may be the treatment of choice. It 

proved to have a log pathogen reduction of 3.5 and 4.1 for Salmonella and E. coli 

O157:H7 respectively. This treatment should ensure a higher decrease at a lower cost to 

the producer because they will not have to heat the water to hotter temperatures or have 

more trim from any grey color of the meat that didn’t return to its natural color. 

Overall, this is a very good process that can be employed easily and can be used 

as a hurdle intervention to reduce both non-pathogenic and pathogenic bacteria that may 

be present due to contamination during processing. 
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	Pathogenic Escherichia coli
	 Escherichia coli O157:H7 is a part of the E. coli family, but is known to be pathogenic to humans. Its sources are usually from eating raw beef. It first enters the body via food eaten by an individual. Once inside the body, the microorganism can become established and begin to cause discomfort harm to the individual who consumed it. 
	Cost to producers 
	The cost estimated stems not only from recalls, but also to the decrease in confidence the consumers have in the safety of eating beef. It is said that recalls themselves might have cost the industry $1.6 billion of the $2.7 billion total (24). Due to the bad publicity E. coli O157:H7 has received in past years; many consumers are concerned about eating undercooked hamburger because of the fear of being infected with this pathogen (35). Not only did it change the minds of the consumers, but it also changed the way the government looked at the way meat and poultry were inspected for pathogens. 

