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ABSTRACT

Multiprocessor Scheduling with Availability Constraints. (May 2010)

Liliana Gentiana Alex Grigoriu, Diplom, Technical University of Berlin

Chair of Advisory Committee: Dr. Donald Friesen

We consider the problem of scheduling a given set of tasks on multiple pro-

cessors with predefined periods of unavailability, with the aim of minimizing the

maximum completion time. Since this problem is strongly NP-hard, polynomial ap-

proximation algorithms are being studied for its solution. Among these, the best

known are LPT (largest processing time first) and Multifit with their variants.

We give a Multifit-based algorithm, FFDL Multifit, which has an optimal worst-

case performance in the class of polynomial algorithms for same-speed processors

with at most two downtimes on each machine, and for uniform processors with at

most one downtime on each machine, assuming that P 6= NP . Our algorithm finishes

within 3/2 the maximum between the end of the last downtime and the end of the

optimal schedule. This bound is asymptotically tight in the class of polynomial

algorithms assuming that P 6= NP . For same-speed processors with at most k

downtimes on each machine our algorithm finishes within (3
2

+ 1
2k

) the end of the

last downtime or the end of the optimal schedule. For problems where the optimal

schedule ends after the last downtime, and when the downtimes represent fixed jobs,

the maximum completion time of FFDL Multifit is within 3
2

or (3
2
+ 1

2k
) of the optimal

maximum completion time.

We also give an LPT-based algorithm, LPTX, which matches the performance

of FFDL Multifit for same-speed processors with at most one downtime on each

machine, and is thus optimal in the class of polynomial algorithms for this case.

LPTX differs from LPT in that it uses a specific order of processors to assign tasks
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if two processors become available at the same time.

For a similar problem, when there is at most one downtime on each machine

and no more than half of the machines are shut down at the same time, we show

that a bound of 2 obtained in a previous work for LPT is asymptotically tight in the

class of polynomial algorithms assuming that P 6= NP .
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CHAPTER I

INTRODUCTION

Nonpreemptive scheduling of a set of tasks on multiple resources is a widely encoun-

tered problem. Applications range from assigning waiting airplanes to departure

lanes, or assigning terminals to airplanes that need to be loaded, to scheduling tasks

on computing units or packets waiting in a buffer to links of a multilink connec-

tion. The jobs are usually assumed to be given as an integer number of time units

representing computing units on the slowest processor or other suitable units.

The multiprocessor scheduling problem, whether it is possible to nonpreemp-

tively schedule a set of independent tasks on m processors to meet a given deadline

(with m considered to be an input parameter) is strongly NP-hard [3], and so are

most related problems. As a consequence, the study of this area has been mainly

concentrating on approximation algorithms: the largest processing time first (LPT)

algorithm was first proposed [5] and shown to have a makespan within 4/3 the op-

timal makespan, and later the MULTIFIT algorithm was considered [8], and was

shown to have a better performance of 13/11 in [18].

Due to maintenance or failures, machines might exhibit periods of unavailability.

A recent result on this subject was obtained by Sadfi et al. for nonpreemptive

scheduling on one processor [12], where they give an approximation algorithm to

minimize the total completion time with an error bound of 3/17.

A review of deterministic scheduling in 1997 is given by C.Y. Lee, L. Lei, and

M. Pinedo in [9], while a review of scheduling with availability constraints is given

by Sanlaville and Schmidt in [13].

This dissertation follows the style of SIAM Journal of Discrete Optimization.
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We focus on the static variant of the problem, when downtimes are known

in advance. A dynamic variant can also be conceived, when downtimes can occur

unexpectedly. In the case of nonpreemptive scheduling, the interruption of a task at

the beginning of a downtime would lead to its reexecution from scratch, either by

adding the task back to the set of tasks that need to be assigned to machines, or

by waiting until the machine to which it was assigned starts processing again and

processing it there. In the first case we have a variant of online scheduling, since

tasks can be added to the set of tasks to be assigned at runtime.

While our focus is on offline scheduling, results have been obtained for online

scheduling as well. For two identical-speed machines with availability constraints,

online scheduling has been studied by Tan and He in [16]. They give an optimal

algorithm to minimize the maximum completion time for a fixed set of jobs, for the

situation when each machine shuts down only once, and the unavailability periods

do not overlap.

A special case for scheduling on multiple processors in the presence of machine

shutdowns is the case when all downtimes are at the beginning of the schedule, that

is when the processors start processing at different times. C.Y. Lee [10] and Chang

and Hwang [1] give worst-case analyzes of the multiprocessor scheduling problem for

scheduling parallel machines that do not start simultaneously, when using LPT and

MULTIFIT respectively.

When downtimes are not necessarily at the beginning of the schedule, resumable

and non-resumable scheduling can be considered.

In resumable scheduling tasks can be interrupted by a downtime, and then

resume after the end of that downtime. Resumable scheduling is different from

preemptive scheduling because tasks can only be interrupted by machine shutdowns.

C.Y. Lee showed in [11] for this case that the makespan of LPT is at worst m+1
2

times
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as long as the optimal makespan when one machine never shuts down and all others

shut down at most once.

Given that all downtimes could be infinite, the strong NP-hardness of multipro-

cessor scheduling results in the NP-hardness of the problem of finding an approx-

imation algorithm that ends within a multiple of the time needed by the optimal

schedule, unless assumptions about the downtimes are made. This can be shown

by attaching to any multiprocessor scheduling problem example infinite downtimes

that start on each processor at the deadline of the considered example. This reduces

the multiprocessor scheduling problem to the problem of finding an approximation

algorithm that ends within a multiple of the time needed by the optimal schedule for

the multiprocessor scheduling with machine shutdowns problem. Prohibiting infinite

downtimes does not allow for better results, as the lengths of the downtimes can be

chosen to be longer than any multiple of the optimal schedule.

For the case when there is at most one downtime on each machine, the authors

in [6] make the assumption that no more than half the machines are unavailable at

any time. They show that for this situation the LPT algorithm ends within twice

the time needed by the optimal schedule. In [7], the result is generalized to the case

when an arbitrary number of machines, λ ∈ 1, ..,m − 1, can be unavailable at the

same time. In that case the makespan generated by the LPT schedule is not worse

than the tight worst-case bound of 1 + 1
2
[m/(m − λ)] times the optimal makespan.

In [14] Scharbrodt et al. give a polynomial-time approximation scheme for the

problem of scheduling with “fixed” jobs, that is jobs that have to execute at certain

predefined times. The approximation scheme is for minimizing the makespan of the

schedule for all the jobs, it does not consider the number of processors as a part of

the input, and there can be more than one fixed job on one machine.

In the case of same-speed processors, we first consider the problem of nonpre-



4

emptive (and nonresumable) scheduling of a set of independent tasks on multiple

machines, each of which may become unavailable for an predefined period of time

at most once. For this case, we give a polynomial algorithm, LPTX, (LPT with a

specific ordering of processors to assign tasks when two processors become available

at the same time), the schedule of which finishes within the latest among 3/2 the op-

timal maximum completion time or 3/2 the time until the end of the last downtime,

if there is at most one downtime on each machine. This implies that, when LPTX

finishes after 3/2 the end of the last downtime, or when the downtimes represent

fixed jobs, it also finishes within 3/2 the end of the optimal schedule. Also, if there is

another way of determining that the optimal schedule ends after the end of the last

downtime, such as when the sum of all task and downtime lengths is greater then

the end of the last downtime multiplied by m, then LPTX finishes within 3/2 the

optimal schedule length. Recall that m is the number of processors in the problem

instance. In cases where it can not be determined in polynomial time whether the

optimal schedule ends after the last downtime, or if the optimal schedule ends before

the end of the last downtime, our result has no immediate implication on whether

LPTX finishes within 3/2 the optimal schedule length or not.

We also consider the case when there can be multiple downtimes on one machine.

We give a Multifit-based algorithm which finishes finishes within 3
2
+ 1

2k
the optimal

schedule or the end of the last downtime when there are at most k downtimes on

each machine. The classic Multifit algorithm assigns upper and lower bounds for the

schedule length, then uses a binary search while assigning schedule deadlines between

the initially chosen upper and lower bound. It uses the First Fit Decreasing (FFD)

algorithm to assign tasks to the time slots resulting from an deadline assigned by

Multifit and he start of the schedule, and if a feasible schedule is found the deadline

is decreased, and otherwise it is increased, until a desired accuracy is achieved. Our
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algorithm orders the time slots formed by the times between the start of the schedule

and the downtimes, by the times between the downtimes, and by times that start at

the end of a downtime and end at the Multifit assigned deadline in increasing order

before assigning tasks to time slots. We also show that the bound can be improved

when there are at most 2 downtimes on each machine. For this case the bound is 3/2,

and this implies that our algorithm is optimal in the class of polynomial algorithms

when there are at most two downtimes on each machine assuming P 6= NP .

Unlike in [6], we do not have any restriction on the times when the machines shut

down. The problem in [14] is similar to our problem in that the machine downtimes

are equivalent to the fixed jobs. The difference is that the maximum completion time

of the optimal schedule with fixed jobs cannot be less than the maximum completion

time of the last fixed job, which corresponds to the end of the last downtime in our

setting.

Scheduling on uniform processors has also been studied extensively in the past.

In [2], the authors show that for nonpreemptive scheduling a variant of Multifit

finishes within 1.4 the optimal schedule length. In [17], the performance of LPT for

scheduling on uniform processors with nonsimultaneous machine available times is

studied, and it is shown that LPT finishes within 5/3 the optimal schedule length,

and that the bound is better when there are only 2 machines or when the speed ratio

is small. The paper also presents a polynomial algorithm that finishes within 6/5 the

optimal schedule length if there are only 2 processors in the system. In this work, we

consider the more general case when machines may have a downtime which does not

necessarily start at the beginning of the scheduling period. We give a polynomial

algorithm that finishes within 3
2

the optimal schedule length or the end of the last

downtime independent of the speed ratios are or the number of processors in the

system. Our algorithm is shown to be optimal in the class of polynomial algorithms
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for scheduling on uniform processors with at most one shutdown on each machine

assuming P 6= NP .

According to the notation used in [15] the problem with same-speed processors

can be classified as (P,NCwin||Cmax): scheduling on multiple machines the number

of which is not fixed and which are not continuously available, with given tasks that

cannot be interrupted and are available at time 0, while minimizing the maximum

completion time. To indicate a maximum number of unavailability periods on each

machine, an integer can be added after NCwin. For example, when there are at most

k downtimes on each machine, we would have the notation (P,NCwink||Cmax). The

uniform processor scheduling problem can be classified as (Q,NCwin1||Cmax).

In addition to the upper bound results we show that in the cases we consider the

bound of 3/2 is asymptotically tight in the class of polynomial algorithms assuming

that P 6= NP (our proof bases on the proof presented in [15]). We also prove that the

bound of 2 for scheduling on same-speed processors with at most one shutdown on

each machine when at most half of the machines are shut down at any time, which

was obtained in [6], is asymptotically tight in the class of polynomial algorithms

assuming that P 6= NP .

Chapter II considers scheduling on same-speed processors with at most one

shutdown time on each machine, and contains the tightness results. In Chapter III

we consider scheduling on uniform processors with at most one downtime or fixed

job on each machine. In Chapter IV we analyze the performance of an adapted

FFDL Multifit, the algorithm we present in Chapter III, for scheduling on same-

speed processors in the case when there are multiple downtimes on each machine.

Chapter V contains concluding remarks and an enumeration of the most important

methods used in our proofs.
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CHAPTER II

SCHEDULING ON SAME-SPEED PROCESSORS WITH AT MOST ONE

DOWNTIME ON EACH MACHINE

In this chapter we introduce the LPTX scheduling algorithm, and show that it finishes

within 3
2

the end of the optimal schedule or the end one the last downtime. We also

show that the bound is tight in the class of polynomial algorithms assuming that

P 6= NP . The next subsection contains the upper bound result while subsection B

contains tightness results. Subsection C contains some conclusive remarks.

A. Upper bound for LPTX Schedule Length

In this subsection we introduce the LPTX scheduling algorithm, and we show that

its schedule finishes within 3/2 of the optimal schedule’s end or of the end of the last

downtime.

The LPTX scheduling algorithm starts with ordering the processors, such that

the LPT algorithm breaks ties among processors that are available at the same time

in a predefined way. Given a set of processors P with downtimes starting at time

δp and ending at time γp for each processor p ∈ P , and a set of tasks T , the LPTX

algorithm is:

5T

4T

1T

2T

3T

Fig. 1. Order of processors in which LPTX assigns tasks if two processors are available

at the same time; darker shaded areas represent the downtimes.
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LPTX(P, T )

Initialize P1 and P2 as empty lists

for p ∈ P

if (δp > 0)

append p to P1;

else

append p to P2.

end for

Sort P1 by δp in increasing order

Sort P2 by γp in increasing order

P ′ = P1oP2

LPT(P ′, T )

When a processor has no downtime, we assume δp = γp = 0. After sorting the

ordered sets P1 and P2 in increasing order of δp and γp respectively, the algorithm

executes a concatenation of the two lists and saves it in a list P ′. Then the LPT-

algorithm is used to assign tasks to processors. Recall that LPT sorts the tasks

in decreasing order of their required processing time and assigns them to the first

processor on which they can be processed at the earliest time. Ties are broken by

the order in which the processors are ordered in the input list. For LPTX, this order

is also represented in Figure 1.

This algorithm is polynomial if all comparisons necessary to sort the tasks and

all operations necessary to compute the next available processor can be done in

polynomial time. This condition is given when all arguments are integers or rational

numbers.

The task assignment strategy was mainly chosen to facilitate the proof. It has
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some similarity to best fit bin packing for the assignment of the first task.

We call pretime the available time of a processor before its downtime starts.

The length of a pretime of a processor p will be denoted with prep, and the start and

end of its downtime with δp and γp respectively. Figure 2 shows a possible LPTX

schedule of a processor p.

We denote with lpt the end of the LPTX-schedule and with opt the end of the

optimal schedule.

Most of the remainder of this subsection is devoted to proving the following

theorem:

Theorem A.1 (Bound for LPTX-schedules)

The maximum completion time of an LPTX-schedule is less or equal to 3/2 the

maximum completion time of the optimal schedule or 3/2 the maximum end of a

downtime,

lpt ≤
3

2
max(opt,maxp∈P (γp)).

First we will define a minimal counterexample, which is shown to exist whenever

there is a counterexample. Then we prove several properties of a minimal counterex-

ample, at last resulting in the fact that such a counterexample does not exist. Several

theorems and lemmas contribute to this proof.

In subsection B we will show this bound to be asymptotically tight within the

class of polynomial algorithms assuming that P 6= NP .

A problem instance (P, T ) is given by a set P of processors with their downtimes

and a set T of tasks with their durations. We denote the last task scheduled by

the LPTX-schedule with X. In a minimal counterexample this will be the task that

breaks the 3/2 bound.

In the following we shall assume that the 3/2 bound is broken and derive a

contradiction.
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PP

idle time

pre p

tasks downtime 

Fig. 2. LPTX-schedule of a processor p

Definition A.2 (Order relation on problem instances)

Given two problem instances C1=(P1,T1), C2=(P2,T2) where T1 and T2 are sets

of tasks with their execution times and P1 and P2 sets of processors with downtimes

we say that C1 < C2 if any of the following holds:

a) |T1| < |T2|

b) |T1| = |T2| and |P1| < |P2|

c) |T1| = |T2|, |P1| = |P2|, and the number of processors with pretimes in C1 is less

than the number of processors with pretimes in C2.

Here |S| represents the number of elements in a set S.

Definition A.3 (Minimal Counterexample)

A minimal counterexample is a pair C= (P,T) where P is a set of processors with

downtimes, and T is a set of tasks with their execution times such that the LPTX

schedule exceeds 3
2
opt and 3

2
max
p∈P

(γp), such that C is minimal with regard to the order

relation defined in Definition A.2. Recall that γp denotes the end of the downtime

of processor p ∈ P .

If there is a counterexample then there also is a minimal counterexample, ac-

cording to the following argument. Suppose we have a set S of counterexamples.

Then there must be a subset S1 of counterexamples that have a minimum number of

processors. Among those there must be a subset with a minimum number of tasks.
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There must be a subset of counterexamples of this last set that have a minimum

number of processors with pretimes.

From now on we will assume that the counterexample we are considering is

minimal.

Recall that X is the task in the LPTX-schedule that breaks the 3/2 bound. All

tasks that the LPTX schedule would schedule after X are irrelevant to the fact that

the LPTX schedule breaks the bound, thus a minimal counterexample only contains

tasks that have a length that is greater or equal to that of the task that breaks the

bound and that task is the last task scheduled by the LPTX algorithm.

Notation A.4 (Measure of time)

In the following we normalize the length of every time interval to the length of the

last task X, that is, a number will represent that same number times the task length

X in the measuring of time.

We continue by showing some more properties.

Lemma A.5 (≥ 1 tasks in LPTX pretimes)

In a minimal counterexample the LPTX-schedule has at least one task in the pretime

of each processor that has a pretime.

Proof: If the pretime of a processor p is empty in the LPTX-schedule, then the

last task X did not fit in that pretime. But X is the least task, and thus the

optimal schedule could also fit nothing in that pretime. Then we can build a lesser

counterexample by maintaining the same processors and tasks with the difference

that the pretime of p is replaced by downtime. Both the optimal schedule and

the LPTX schedule will remain the same, and the new counterexample has fewer

pretimes. △
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Lemma A.6 (2 tasks in optimal pretimes)

The optimal schedule of a processor with a pretime has at least two tasks in the

pretime.

Proof: Suppose this is not the case and that we have a minimal counterexample

(P,T) where a processor p ∈ P has only one task X in its pretime in the optimal

schedule.

The LPTX-schedule must have at least one task on p (by Lemma A.5). Let X ′

be the first task in the LPTX-schedule of p. If X ′ ≥ X then we can get a lesser

counterexample by removing X ′ and any other tasks scheduled in the pretime of p

by LPTX, and by filling the pretime of p with downtime: in the optimal schedule X

can be put where X ′ was before resulting in a schedule for the new set of tasks and

processors that is at least as good as in the initial example, and the LPTX-schedule

does not change. If X ′ is the same as the task X then the problem of finding a place

for X in the optimal schedule disappears as X ′ is removed from the task set.

Thus X ′ < X. Let q be the processor on which LPTX has scheduled X. Then

preq ≤ prep, else X would have been scheduled by LPTX on p. Removing X and any

other tasks scheduled by LPTX in the pretime of q from the task set and filling the

pretime of q with downtime we get a lesser counterexample: there are less tasks, opt

will stay the same in the worst case, since we can move anything that was scheduled

in the pretime of q to the pretime of p, and the LPTX schedule will stay the same.

Note that X can not be in the pretime of any machine, since it is supposed to

finish after the end of all pretimes, and thus its position is not affected by the above

changes.

△

Lemma A.7 (Corollary)

The pretimes end at or after time 2 for all processors with pretimes.
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Lemma A.8

There are processors with (nonzero) pretimes.

Proof: In [10] C.Y. Lee has shown that the LPT schedule for a multiprocessor

scheduling problem with nonsimultaneous processing start times has a makespan

bounded by 3
2
− 1

2m
, where m is the number of processors. Thus, since our algorithm

uses LPT after ordering the processors, any counterexample must have at least one

processor with a (nonzero) pretime. △

Lemma A.9 (Tasks different from X after each downtime in LPTX)

In the LPTX-schedule of a minimal counterexample there are tasks different from

the last scheduled task X after each downtime. That is, X is scheduled on top of a

task that is scheduled after a downtime.

Proof: Let q be the processor the downtime of which ends last.By Lemma A.7 all

downtimes end after time 2 if there is a pretime. By Lemma A.8 there are pretimes.

So γq > 2, and γq + 1 < 3
2
γq ≤

3
2
(max(max

p∈P
(γp), opt)). Thus X starts executing after

γq, else LPTX would end at or before time 3
2
(max(max

p∈P
(γp), opt)), and we would not

have a counterexample. Thus there must be another task between X and the end of

any downtime. △

Lemma A.10 (The start of X)

The start time L of the last task X in the LPTX schedule is greater than 3
2
opt − 1.

Also, the LPTX-schedule must be busy until that time on all processors (except for

the idle time in the pretimes). Also, L > 2, L > opt, and

L − opt >
1

2
opt − 1

Proof: The LPTX-schedule ends when task X ends, thus lpt = L + 1 Since

lpt > 3
2
opt we have L > 3

2
opt − 1. If the LPTX-schedule on a processor would end
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before time L, the LPTX-algorithm would have scheduled X there and not at time

L. Since there are processors with pretimes, Lemma A.6 we have opt ≥ 2, thus

L > 3
2
opt − 1 ≥ 2. We also have L > 3

2
opt − 1 ≥ 3

2
opt − 1

2
opt = opt, proving

L > opt. Last, since the 3
2

bound is broken L = lpt − 1 > 3
2
opt − 1, implying

L − opt > 3
2
opt − 1 − opt, and L − opt > 1

2
opt − 1. △

Lemma A.11 (opt≥ 3)

The length of the optimal schedule is greater or equal to 3.

Proof: Suppose this is not true and let (P, T ) be a counterexample where the

optimal schedule OPT has a length opt < 3. We consider the LPTX-schedule of

(P, T\{X}), denoted LPTX − X for legibility, and show that this schedule has at

least as many tasks as the optimal schedule of (P, T ), a contradiction. We denote

with TLPTX−X the number of tasks in the LPTX-schedule excluding X, and with

TOPT the number of tasks in the optimal schedule. To show is

TLPTX−X ≥ TOPT .

For a particular processor p the inequality becomes TLPTX−X(p) ≥ TOPT (p),

and for a set P ∗ of processors we write the inequality as TLPTX−X(P ∗) ≥ TOPT (P ∗).

The inequality holds for each processor that has a pretime, since TLPTX−X(p) ≥ 2

as shown above, and TOPT (p) ≤ 2, since we assumed opt < 3.

For processors with no pretime, the downtime of which ends after time 1, the

inequality holds again, since the optimal schedule can’t put more than one task on

them, and LPTX − X must have at least one task on them by Lemma A.9.

Let P ∗ be the set of the remaining processors (with no pretime, and with γp < 1).

If LPTX has two tasks on such a processor p the inequality holds for p since OPT

can’t put more than two tasks on it. If p has only one task Y in its LPTX-schedule,
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then Y > L − γp > L − 1 > opt − 1, since γp < 1 and L > opt. Thus OPT must

schedule Y alone on a processor q (Y > opt − 1), and this processor can’t have a

pretime (on processors with pretimes OPT has two tasks), and γq < 1, so q ∈ P ∗.

The inequality to prove follows for P ∗, as there are at least as many processors with

only one task on them in the optimal schedule as there are in the LPTX-schedule.△

Lemma A.12 (Idle times in LPTX schedules)

The idle time in the LPTX-schedule of the pretime of any processor is shorter than

1.

Proof: Suppose this is not the case and we have a processor p on which this

situation is encountered. We know by Lemma A.9 that the last task X starts after

the end of all pretimes. Thus at the time when X is scheduled the LPTX-algorithm

would first try to fit it in a pretime, and succeed in doing that in the idle time of

p. Thus X can’t have been scheduled after the end of the last downtime, which

contradicts Lemma A.9. △

Next we derive a lemma concerning the difference between the end of the optimal

schedule and the time L defined in Lemma A.10.

Lemma A.13 (opt < 4)

The length of the optimal schedule is less than 4.

Proof: Suppose there is a minimal counterexample with opt ≥ 4. Then by Lemma

A.10 we have L − opt > 1
2
opt − 1 ≥ 1, and so the LPTX-schedule ends on each

processor after a time interval of length 1 after the end of the optimal schedule. This

additional busy time, however, must be compensated by busy time in the optimal

schedule that occurs at a time when the LPTX-schedule is idle, before the downtimes.

This implies that the LPTX-schedule contains in total before its downtimes an idle

time of length at least |P |, which averages in an idle time of length 1 per processor,

contradicting Lemma A.12, which states that all idle times are less than 1. △
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To better describe schedules on processors we will use the following notation for

each processor schedule: [ will denote start of the schedule, time 0, | will represent

the downtime, and [A1A2 . . . An|B1B2 . . . Bm will denote a schedule that has the tasks

A1, A2, . . . An in the pretime in the given order and the tasks B1, B2, . . . Bm in the

given order after the pretime.

We call Y-tasks all tasks the length of which is in the interval [1.5, 2), and

R-tasks all tasks of length 2 or longer.

Also, we denote with busyALG(p) length of the total processing time of processor

p in an ALG-schedule, and with LPTX−X the LPTX-schedule of (P, T\{X}), where

(P, T ) is the considered problem instance. For a processor p, OPT (p) and LPTX(p)

denote its optimal schedule and respectively its LPTX-schedule.

Theorem A.14 (Constraint for LPTX-schedule)

If there is a minimal counterexample, then there is at least one processor p the

LPTX-schedule of which is one of the following:

(a) [Y1|Y2 or

(b) [|Y1Y2 with busyLPTX(p) > 3.5 + 3
2
γp (this implies Y1 > 1.75 + 3

4
γp),

where Y1 and Y2 are Y -tasks, that is Y1, Y2 ∈ [1.5, 2).

The last Y -task in the LPTX-schedule is scheduled after time 1.75.

Proof: We use a weighing argument. Consider the following task categories:

X ∈ [1, 2) with w(X) = 1 and R1 ∈ [2, 3.5) with w(R1) = 2. All longer tasks are

called R2 and have a weight of 3. Suppose (a) and (b) do not occur in the LPTX

schedule.

We consider the total weight of the tasks in the LPTX-schedule omitting X,

and compare it to the total weight of the tasks in the optimal schedule. We do this

by considering each processor separately. For a given processor p we denote with
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wp(ALG) the sum of the weights of the tasks scheduled by the algorithm ALG on

the processor p.

We show that wp(LPTX − X) ≥ wp(OPT ) for each processor p which leads to

a contradiction since we should have w(LPTX) = w(OPT ). Since opt < 4, we have

wp(OPT ) ≤ 3 for all processors. To consider is the case when wp(LPTX − X) < 3

on a processor p. In this case the LPTX-schedule of p has no R2-tasks.

If p has a pretime, then we could have the situation [X1|X2 (X1 and X2 are X-

tasks) in the LPTX −X schedule. Both tasks need to be there by Lemmas A.5 and

A.9. The optimal schedule has two tasks in the pretime so it could have schedules

[XX| or [XX|X. [R1X| is impossible since then the LPTX schedule would also have

another task in the pretime after X1, as X would fit. If OPT = [XX| we have

wp(OPT ) = 2 and then wp(LPTX − X) ≥ wp(OPT ). So OPT (p) = [X3X4|X5, for

some X-tasks X3, X4 , and X5. We denote with endLPTX(X) the time when task

X ends in the LPTX schedule, and with endOPT (X) the time when task X ends in

the optimal schedule. We have endLPTX(X2) ≥ L and endOPT (X5) ≤ opt, and thus

endLPTX(X2) − endOPT (X5) ≥ L − opt, and X2 − X5 ≥ L − opt ≥ 0.5, by Lemma

A.10 and Lemma A.11. Recall that in order for the weight of X2 to be 1 it had

to have length less than 2. Thus X2 is a Y -task and we have case (a). (X1 must

be a Y -task as well since if it were shorter than X2, then X2 would not have been

scheduled outside the pretimes by LPTX, because prep ≥ 2 by Lemma A.6.) Also,

X2 is a Y -task scheduled after time 2 > 1.75.

If a processor p with wp(LPTX−X) < wp(OPT ) has no pretime, then wp(OPT ) >

wp(LPTX − X) ≥ 1, so busyOPT (p) ≥ wp(OPT ) ≥ 2 and L ≥ opt ≥ busyOPT (p) +

γp ≥ 2 + γp. Thus the busy time of LPTX on processor p before X starts is greater

than 2, and LPTX needs 2 X-tasks or an R1-task to fill it. So wp(LPTX −X) ≥ 2.

In order for OPT to have a greater weight, we need OPT (p) = [|XXX (or OPT (p) =
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Y1 Y2

Y1 Y2

> 3.5 

(b)

(a)

Fig. 3. Cases (a) and (b) from Theorem A.14

[|R1X or [|R2), and so opt ≥ 3 + γp. Then L > 3
2
opt − 1 ≥ 3(3+γp)

2
− 1 = 3.5 + 3

2
γp.

Thus if wp(LPTX −X) < 3 we need [|X1X2 with both X1 < 2 and X2 < 2 (else the

sum of their weights will be greater).

Also X1 + X2 ≥ L, and thus X1 ≥ 1.75 + 3
4
γp, since it was scheduled before X2.

Also since X1 < 2, and X1 + X2 > 3.5 we need X2 > 1.5, and thus both X1 and X2

are Y -tasks. We have case (b). △

The two cases one of which must occur according to the previous theorem are

shown in Figure 3.

The previous Theorem shows that the last Y-task appears after 1.75 in the

LPTX-schedule. Together with Lemma A.7, which states that pretimes are longer

or equal to 2, we know that the LPTX schedule has at least one task longer than or

equal to 1.5 in each pretime, which we state in the following Corollary.

Corollary A.15 (Long tasks in LPTX-pretimes)

In each LPTX-pretime there is a task the length of which is at least 1.5.

Definition A.16 (Compensating processor)

A processor that has less busy time in the LPTX-schedule, without considering the

last task X, than in the optimal schedule is called a compensating processor.

Lemma A.17 (Existence of compensating processors)

There is at least one compensating processor.
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Proof: The total busy time of the LPTX-schedule without the last task X is less

than the total busy time of the optimal schedule since this one contains task X. Thus

there must be a processor on which OPT has more busy time than LPTX without

task X.

Lemma A.18 (Structure of a compensating processor)

Let p be a compensating processor. Then p has a pretime and:

(a) the optimal schedule on p is of the following form: [X1X2|X3, where X1, X2, and

X3 are arbitrary tasks.

(b) the LPTX schedule on p is of the form [Y |X4X5, where Y is a Y -task, and

X4, X5 ∈ T .

Proof: If p does not have a pretime, then busyLPTX(p) − busyOPT (p) ≥ L − opt >

1
2
opt− 1 and p is not compensating. If p has a pretime, then the LPTX schedule on

p has more busy time than the length of the pretime. Thus the optimal schedule on

p must have a task X3 after the downtime. We already know from Lemma A.6 that

the optimal schedule has two tasks in the pretime and (a) follows. From Corollary

A.15, we know that the LPTX schedule on p has a task ≥ 1.5 in the pretime. The

busy time after the downtime in the LPTX schedule is > X3 + 0.5opt − 1 ≥ 1.5. If

there were two tasks in the pretime of the LPTX-schedule, the busy time would be

≥ 1.5 + 1 + 1.5 = 4 and p could not be compensating by Lemma A.13. Thus there

is only one task, Y1, during the pretime. If there were only one task, Z, after the

downtime, then there are two cases depending on whether Z would fit in the pretime.

Case 1. If Z ≤ prep, then Y1 ≥ Z > X3 + 0.5opt − 1 ≥ 0.5opt and Z + Y1 >

2(0.5opt) = opt and p is not compensating. This argument also works if Y1 is an

R-task, since then Y1 is still greater than Z.
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OPT(cp)

LPTX(cp)

Fig. 4. Schedules of a compensating processor

Case 2. If Z > prep, then Z > X1 + X2 and so X3 > Y1 ≥ 1.5. Then Z + Y1 >

X3 + L− opt + Y1 ≥ X3 + 0.5opt− 1 + Y1 ≥ 2Y1 − 1 + 0.5opt ≥ 2 + 0.5opt > opt and

again p is not compensating. Thus LPTX scheduled two tasks after the downtime of

p.

Next we consider the size of Y1. If Y1 ≥ 2, then busyLPTX(p) ≥ 4, and the

optimal schedule can not be longer than that. Thus Y1 cannot be an R-task. This

completes the proof of (b). △

Possible optimal and LPTX schedules of a compensating processor are repre-

sented in Figure 4. Next, we show that no minimal counterexample exists, completing

the proof of Theorem A.1.

Proof: We show that a compensating processor can not coexist with situations (a)

and (b) in Theorem A.14. Suppose they can coexist.

Let the LPTX-schedule of a compensating processor cp be [Ycp|X4X5 where Ycp

is a Y -task. We can’t have [Ycp|Rcp because of Lemma A.18. Also, let [X6X7|X8 be

OPT (cp). We thus have

busyLPTX(cp) > 2 + Ycp,

since the processor is compensating.

We consider the cases from Theorem A.14 (also see Figure 3):
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(a) There is a processor p with [Y1|Y2 in the LPTX-schedule, and [X1X2|X3 in

the optimal schedule. Y2 − X3 ≥ L − opt > 1
2
opt − 1. This is because Y2 and X3

start at the same time and the end of Y2 occurs after L (or at time L) and the end

of X3 occurs before the end of the optimal schedule or at that time. The second

inequality results from Lemma A.10. Then Y2 > X3 + 1
2
opt − 1 ≥ 1

2
opt. From the

order in which LPTX assigns tasks to processors we know that Ycp ≥ Y2, and thus

Ycp > 1
2
opt. We have

busyOPT (cp) > busyLPTX−X(cp) ≥ Ycp + 2 > 2Ycp ≥ opt,

a contradiction.

(b) [|Y1Y2 with busyLPTX−X(p) > 3.5 + 3
2
γp,

where Y1 and Y2 are both Y -tasks, that is Y1, Y2 ∈ [1.5, 2). Recall that OPT (cp) =

[X6X7|X8, and thus opt ≥ γcp + 1. Also since opt < 4, and cp is compensating, we

can’t have busyLPTX−X(cp) ≥ 4, and thus X4+X5 < 4−Ycp ≤ 2.5, so X4 < 1.5 ≤ Y2.

The start time of Y2 must be before the start time of X4 due to the LPTX scheduling

policy, and thus Y2 starts before time γcp. Also Y2 must end after time L. So

Y2 > X8 + L − opt > 1 +
1

2
opt − 1,

by Lemma A.10 and because X8 ≥ 1. So Y2 > 1
2
opt. Also, Y2 ≤ Ycp by LPTX

scheduling policy, and so Ycp > 1
2
opt implying a contradiction as in the previous

case. △

We give an example that shows that the bound above is asymptotically tight.

The two schedules are represented in Figure 5. There are two processors, the down-

time of the first processor starts at time 1, and ends at time 1+ǫ, the second processor

has no downtime, and the tasks have lengths of T2 = 1
2
, T3 = 1

2
, T4 = 1

2
, and T1 = 1

2
+ǫ

respectively. Then the quotient between the time needed by the LPTX-schedule and
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Fig. 5. Example showing that the 3/2 bound is asymptotically tight

that needed by the optimal schedule is 3
2(1+ǫ)

. Since ǫ can be arbitrarily small, the

bound proved in Theorem A.1 is asymptotically tight.

The bound in Theorem A.1 implies that whenever lpt > 3
2
γp for all p ∈ P , we also

have lpt < 3
2
opt. Also if there is some other way to conclude that opt ≥ maxp∈P (γp),

such as when the sum of the task lengths and the downtime lengths divided by |P |

is greater or equal to maxp∈P (γp), then it can also be determined that lpt ≤ 3
2
opt

from this Theorem.

B. Asymptotically tight lower bounds for scheduling with machine shutdowns

In this subsection we show that the bound derived in subsection II is asymptotically

tight within the class of polynomial algorithms (assuming that P 6= NP ), and that

the bound derived in [6] for the performance of LPT with respect to a related problem

is also tight.

To this end, we first derive the NP-hardness of a problem we called 3-Partition

with fixed bottom elements, that is a restatement of Numerical Matching with Target

Sums, which has been shown to be NP-complete in [4]. Then we proceed with the

proofs.
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We next state Numerical Matching with Target Sums, as given in [4].

Definition B.1 (Numerical Matching with Target Sums (NMTS))

INSTANCE: Disjoint sets X and Y , each containing m elements, a size s(a) ∈ Z+

for each element a ∈ X ∪ Y , and a target vector < B1, B2, . . . Bm >, with positive

integer entries.

QUESTION: Can X ∪ Y be partitioned into m disjoint sets A1, A2, . . . Am, each

containing exactly one element from each X and Y , such that, for 1 ≤ i ≤ m,
∑

a∈Ai
s(a) = Bi?

Definition B.2 (3-Partition with fixed bottom elements (3PFB))

INSTANCE: A finite set A of 3n elements, and a subset Q of n distinguished elements

of A, a bound B ∈ Z+, and a size s(a) ∈ Z+ for each a ∈ A, such that s(A) satisfies

B/4 < s(a) < B/2, and such that
∑

a∈A s(a) = nB,

QUESTION: Can A be partitioned into n disjoint sets S1, S2, . . . , Sn such that for

1 ≤ i ≤ n,
∑

A∈Si
s(A) = B, and each set Si contains exactly one distinguished

element?

The following lemma states that the 3-Partition with fixed bottom elements

problem is NP-hard.

Lemma B.3

3-Partition with fixed bottom elements is NP-hard.

Proof: Follows directly from the NP-hardness of NMTS. △

Next we show the asymptotical tightness of the 3
2
-bound obtained in the previous

section within the class of polynomial algorithms assuming that P 6= NP . In [14],

the authors prove that the scheduling with fixed jobs problem when one machine can

have more than one fixed job, can not be solved in polynomial time within 3/2 − ǫ

times the optimal makespan, and while doing that they do not use the assumption
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that machines can have more than one fixed job. Since fixed jobs are interchangeable

with shutdown times in this context, their proof, which they say was suggested by

Gerhard Woeginger, also results in the following theorem.

Theorem B.4 (Tightness of the 3
2

bound)

If P 6= NP then no polynomial algorithm can always produce a solution that ends

before k ∗ opt for a constant k < 3
2
, and where opt is the time when the optimal

schedule ends.

In the following we refer to the problem considered by [6] where the authors have

studied how well LPT performs for scheduling tasks on machines that have predefined

shutdown times, assuming that no more than half of the available machines are shut

down at any time. They prove that an upper bound for an LPT-schedule is 2, and

that this bound is tight. The bound would be infinity if the machines were allowed

to be shut down all at the same time, for any amount amount of time, which is why

assumptions like the above are needed. We show that an asymptotic lower bound for

any algorithm to solve this problem is also 2, by reducing 3PFB to finding a schedule

with a bound less than two by a constant for the scheduling problem.

The following lemma restates 3PFB in a form more suitable for our proving the

lower bound, and Theorem B.6 states the result.

Lemma B.5 (Variation of 3-Partition with fixed bottom elements)

Let {a1, a2, .., a3m}, with the first m elements being the distinguished ones be an in-

stance of 3-Partition with fixed bottom elements, where all elements are positive and

non-zero. Let ni = ai/a1. Then for any positive λ a solution of the 3-Partition with

fixed bottom elements {n1λ, n2λ, . . . , n3mλ} (with n1λ, n2λ, . . . , nmλ distinguished

elements) implies a solution of the initial instance.

Proof: By multiplying the elements allotted to each set by the factor a1/λ, we get
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a solution of the initial problem. △

Theorem B.6 (Asymptotic Result)

Solving scheduling with machine shutdowns, where at most half of the processors

can be shut down simultaneously (SMS1/2), within a constant bound less than 2 as

compared to the optimal schedule is NP-hard. The asymptotic result is that any

scheduling algorithm will miss the

2 −
20ǫ

1 + 8ǫ

bound for some problem instances, where ǫ can be arbitrarily small.

Proof: Let {a1, a2, .., a3m} with a1, a2, .., am distinguished elements be an instance

of 3-Partition with fixed bottom elements, and ǫ < 0.1 be a given value that is

arbitrarily close to 0.

We build an instance of the SMS1/2-problem, the solution of which, within a

factor less than 2 compared to the optimal solution, would correspond to a solution

of the 3-Partition with fixed bottom elements instance.

According to Lemma B.5 this problem is equivalent to any 3-Partition with fixed

bottom elements-instance {n1λ, n2λ, . . . , n3mλ} with the ni = ai/a1 calculated as in

the lemma, and with λ = ǫ/(3nmax + 1), where nmax is the maximum among the

ni’s. The set size for this problem is B = (
∑3m

i=1 niλ)/m. Note that B < ǫ, since

B ≤ 3mnmax
λ
m

< 3λnmax + λ = ǫ.

We are constructing now an instance of the SMS1/2-problem. The number of

machines is p := 2m. The jobs are given as follows:

• 2m big jobs with processing time: 1/2 + 4ǫ

• 2m normal jobs with processing times: niλ+ 1
2
−ǫ for i ∈ {m+1,m+2, . . . , 3m}
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The first m machines are shut down in the following intervals:

(1 − 2ǫ − njλ + B,
3

2
− 3ǫ]

for j ∈ {1, 2, . . . m}. Recall that for this j-range the njλ were the distinguished

elements.

The other m machines shut down at times:

(
3

2
− 3ǫ,

3

2
]

Note that this transformation can be done in polynomial time.

The following statement is of major importance to the proof:

(1) There is a solution of the 3PFB-instance if and only if there is a schedule of

the SMS-instance that ends at time 1 + 8ǫ.

Given the 3PFB solution schedule for each set’s composition (aj, ai, ak) — we have

j ∈ [1..m] and i, k ∈ [m + 1..3m] — the normal jobs of length niλ + 1
2
− ǫ and

nkλ + 1
2
− ǫ on the machine that shuts down at 1 − 2ǫ − njλ + B. This is possible

since niλ + nkλ + njλ = B. These schedules end before time 1− 2ǫ + B < 1− ǫ. To

each of the remaining machines we can assign two big jobs, thus ending the schedule

at 1 + 8ǫ.

Now given a schedule ending at most at time 1 + 8ǫ we show that there is a

solution of 3PFB that can be derived from it.

Such a schedule must have all jobs scheduled before the machine shutdowns.

Then we have:

(∗) There must be exactly two jobs on each processor.
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(∗∗) No big job can be scheduled on the first m machines.

Proof of (∗): All processing times are greater than 1/2−ǫ thus no three jobs executed

one after the other can be executed within 3/2−3ǫ time, and this is more than 1+8ǫ

for small ǫ.

Due to the number of jobs there need to be exactly two jobs on each processor

for the schedule to end at 1 + 8ǫ.

Proof of (∗∗): Adding the least possible job to the processing time of a big job we get

a quantity greater than 1− ǫ, which is greater than the start of any of the downtimes

of the first m machines: 1
2
+4ǫ+ 1

2
−ǫ > 1+2ǫ ≥ 1−ǫ−nj +B for any j, since B < ǫ.

From (∗∗) and (∗) we conclude that the given schedule must have two normal

jobs on each of the first m machines and two big jobs on each remaining machine.

From the schedules on the first m machines we can find a solution of the 3PFB-

instance, which completes the proof for (1).

Next, we show that the ratio between the length of the optimal schedule sopt

and the length of the next best schedule s can be arbitrarily close to 2. We proceed

by proving the following statement:

(2) Finding a schedule that ends at 1 + 8ǫ is NP-hard. Thus any polynomial al-

gorithm will sometimes miss the solution, assuming P 6= NP . This follows from (1).

If the schedule does not end at 1 + 8ǫ, one job needs to be scheduled after the

shutdown: no sum of two jobs is greater then 1+8ǫ, and no three jobs can fit in any

pretime, as their sum is greater than 3
2
− 3ǫ, thus the late end of the schedule must
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come from a job being scheduled after a downtime. Its first possible start time is

when the first processors wake up, i.e. 3/2− 3ǫ. Then its finish time is greater than

s = 3/2 − 3ǫ + 1/2 − ǫ, which is 2 − 4ǫ. The ratio is

s

sopt

≥
2 − 4ǫ

1 + 8ǫ
= 2 −

20ǫ

1 + 8ǫ
.

△

C. Conclusion

In this chapter we have presented an LPT-based algorithm, the schedule of which

ends within 3/2 of the time needed by the optimal schedule or of the end of the

last downtime. This bound is tight in the class of polynomial algorithms assuming

that P 6= NP . The difference between our algorithm and LPT is that it orders the

processors before applying LPT in a way that facilitates the proof.

The proof of the upper-bound result based on the existence of a compensating

processor, a processor that has more processing time in the optimal schedule than in

the schedule of our algorithm.

A second result concerns the tightness in the class of polynomial algorithms

assuming P 6= NP of the bound of 2 when no more than half the machines shut

down at the same time, which was obtained for LPT in [6].

Depending on the setting of the problem, i.e. which assumptions about the

downtimes apply, our result or results in other papers provide more information about

the worst-case bound of polynomial algorithms when scheduling in the presence of

machine shutdowns (assuming that P 6= NP ).

The LPTX-algorithm achieves best worst-case bounds in both considered situ-

ations.
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CHAPTER III

SCHEDULING ON UNIFORM PROCESSORS WITH AT MOST ONE

DOWNTIME ON EACH MACHINE

In this chapter we consider nonpreemptive scheduling on uniform processors each of

which have at most one period of unavailability or at most one fixed job. In the

next subsection we formally define the problem and introduce the FFDL Multifit

scheduling algorithm, while subsection B contains the upper bound result.

A. Preliminary remarks

In this subsection we introduce the FFDL Multifit scheduling algorithm, and set the

stage for showing that its schedule finishes within 3/2 of the optimal schedule’s end

or of the end of the last downtime. According to the tightness result in from subsec-

tion B of Chapter II, this bound is asymptotically tight in the class of polynomial

algorithms assuming that P 6= NP .

Definition A.1 (Problem Instance)

A problem instance is given by a tuple (P, T, α : P → Q, γ : P → Q, δ : P → N, d :

T → N), such that for all p ∈ P we have α(p)γ(p) ∈ N. N represents the set of

natural numbers, while Q is the set of rational numbers. Here,

• P is a set of processors,

• T is a set of tasks,

• d(X) denotes the duration of a task X, as a number of time units the task

needs to execute on the slowest processor, or of computing units.

• δ(p) denotes the start of the downtime of a processor p,

• γ(p) denotes the end of the downtime of the processor p,



30

• α(p) is the speed factor of the processor p, meaning that the time a task X

takes to execute on p is d(X)
α(p)

.

When processors do not have periods of unavailability, the multifit algorithm first

assigns upper and lower bounds for the schedule lengths, and then proceeds with a

binary search to find a schedule length that is within a desired degree of accuracy,

using the FFD (first fit decreasing) algorithm to assign tasks to processors, each time

a schedule length is considered. On uniform processors, the time slots to be filled

with tasks can be ordered in increasing order of α(p) times the length of the time

slot. The first fit decreasing (FFD) algorithm orders the tasks in decreasing order

and then assigns each task to the first time slot encountered in which it fits. Our

algorithm is:

Multifit(ǫ, upper bound, lower bound)

0) if (upper bound − lower bound < ǫ){

print(upper bound);

return;

}

1)Set schedule length at m = upper bound + lower bound
2

2)for p ∈ P {

let prep = δ(p) ∗ α(p), and

postp = (m − γ(p)) ∗ α(p);

}

3) Order all time slots prep and postp with p ∈ P in increasing order of their length

and record then in an array TS[1..2|P |]

4) Order all tasks in decreasing order of their duration and record in an array T [1..|T |]

5) for (i = 1; i ≤ |T |; i + +)
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for (j = 1, ; j ≤ |TS|; j + +)

if (d(T [i]) ≤ TS[j]): {

TS[j] = TS[j] − d(T [i]);

T [i] = nil;

}

6) if (all array entries T [i] are nil)

Multifit(ǫ, m, lower bound);

else

Multifit(ǫ, upper bound, m);

We call pretime of a processor p the length prep as defined above, and posttime

the length postp. They are the available times of a processor before its downtime

starts and after its downtime ends, respectively. We also denote with γp = α(p)γ(p),

and δp = α(p)δ(p).

We denote with Multifit the end of the Multifit FFDL-schedule and with opt

the maximum between end of the optimal schedule and the end of the last downtime:

opt = max(Cmax(OPT ),maxp∈P γ(p)), where OPT is the optimal schedule.

B. Upper bound for FFDL Multifit schedule length

In this subsection we prove the following theorem:

Theorem B.1 (Bound for Multifit schedules)

The maximum completion time of a Multifit schedule is less or equal to 3/2 the

maximum completion time of the optimal schedule or 3/2 the maximum end of a

downtime,

Multifit <
3

2
max(Cmax(OPT ),maxp∈P (γ(p)) + ǫ.

Here, ǫ > 0 is the first input parameter of the Multifit algorithm.
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We call a problem instance that fails to fulfill Theorem B.1 counterexample. We

define a minimal counterexample, which is shown to exist whenever there is a coun-

terexample. Then we prove several properties of a minimal counterexample, at last

resulting in the fact that such a counterexample does not exist. Several theorems

and lemmas contribute to this proof. We shall assume that the 3/2 bound is broken

and derive a contradiction.

Definition B.2 (Order relation on problem instances)

Given two problem instances C1 = (P1, T1, α1, γ1, δ1, d1), and C2 = (P2, T2, α2, γ2, δ2,

d2), we say that C1 < C2 if any of the following holds:

a) |T1| < |T2|

b) |T1| = |T2| and |P1| < |P2|

c) |T1| = |T2|, |P1| = |P2|, and the number of processors with pretimes in C1 is

less than the number of processors with pretimes in C2.

d) |T1| = |T2|, |P1| = |P2|, the number of processors with pretimes of both in-

stances is the same, and, if T1 = T2, there is at least a task X ∈ T1 such that

d1(X) < d2(X), and ∀X ∈ T1, d1(X) ≤ d2(X). |S| represents the number of ele-

ments in a set S.

Definition B.3 (Minimal Counterexample)

A minimal counterexample is a problem instance C = (P, T, α, γ, δ, d), such that the

Multifit schedule of C exceeds or is equal to 3
2
opt + ǫ and 3

2
max
p∈P

(γ(p)) + ǫ, where ǫ is

the last input parameter of the Multifit FFDL algorithm, and such that C is minimal

with regard to the order relation from Definition B.2.

Recall that ǫ > 0 is a value chosen by the user, and thus, if it can be shown that

there is no counterexample for any ǫ, then Multifit FFDL delivers a schedule that

is within 3
2

the optimal schedule or 3
2

the end of the last downtime, if the value ǫ is

chosen to be small enough.
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Lemma B.4 (Existence of minimal counterexample)

If there is a counterexample then there also is a minimal counterexample.

Proof: Suppose we have a set S of counterexamples. Then there must be a sub-

set S1 of counterexamples which have a minimum number of processors. Among

those there must be a subset with a minimum number of tasks. Last there must

be a subset of counterexamples of this last set that have a minimum number of

processors with pretimes. Among these counterexamples, for each counterexample

C1 = (P1, T1, α1, γ1, δ1, d1), there is a finite set of counterexamples S(C1) that have

tasks of lesser or equal durations to their task lengths, and the same task names.

The counterexample C2 = (P1, T1, α1, γ1, δ1, d2) with the least durations for each

task name in T1, is the minimal counterexample corresponding to C1. Thus if there

is a counterexample then there also is a minimal counterexample. △

From now on we will assume that the counterexample we are considering is

minimal. For convenience we will have the task names also represent their durations

when this creates no ambiguity, for example if there is a task X its duration will be

denoted by X.

Next we consider the FFDL-schedule of a minimal counterexample (P, T, α, γ, δ, d)

when the Multifit assigned deadline is set at m ≥ max(3
2
Cmax(OPT ),maxp∈P (γ(p))).

such that FFDL fails to return a successful schedule.

Let X be the first task that FFDL can not fit when m is set as a deadline.

All tasks that are less than X FFDL would schedule after X are irrelevant to the

fact that the FFDL schedule breaks the bound, thus a minimal counterexample only

contains tasks that are greater or equal to X. We state this in the following lemma.

Lemma B.5 (Length of tasks)

A minimal counterexample contains only tasks that are greater or equal to the first

task that can not be scheduled by FFDL when the deadline assigned by Multifit is
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equal to or greater than max(3
2
Cmax(OPT ),maxp∈P (γ(p))).

Note that X does not belong to the FFDL-schedule of (P, T, α, γ, δ, d), when the

Multifit bar is set at m.

In the following we normalize everything to the length X of the task X, that is,

a number will represent that same number times the task length X in the measuring

of time. We continue by showing some more properties.

Lemma B.6 (≥ 1 tasks in FFDL pretimes)

In a minimal counterexample the FFDL-schedule has at least one task in the pretime

of each processor that has a pretime.

Proof: If the pretime of a processor p is empty in the FFDL-schedule, then the

last task X did not fit in that pretime. But X is the least task, and thus the

optimal schedule could also fit nothing in that pretime. Then we can build a lesser

counterexample by maintaining the same processors and tasks with the difference

that the pretime of p is replaced by downtime. Both the optimal schedule and

the FFDL schedule will remain the same, and the new counterexample has fewer

pretimes. △

Notation B.7 (Lengths of Time)

In addition to normalizing every time length to the length of the task X we also use

the following notations. Let p∗ be the processor with the slowest speed.

• optp = α(p)opt for any p ∈ P

• γp = α(p)γ(p)

• δp = α(p)δ(p)

• Given a weight function w : T → R, the task density of a task X is ρ(X) =

w(X)
X

. Here R represents the set of real numbers. Given a set of task types
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SQ = {Q1, Q2, . . . , Qn} with lengths Xi ∈ [ai, bi) and weights w(Xi) = ai for

all tasks Xi of type Qi (or Qi-tasks), we denote with ρQi
= ai

bi
. Note that

ρQi
< ρ(Xi) for all Qi-tasks Xi .

Lemma B.8 (Task density)

To fill a number t of computation units (or a time t) with tasks of types belonging

to a set SQ the FFDL Multifit algorithm needs to use tasks of total weight

walg > min
Q∈SQ

ρQ ∗ t.

Here we assume that SQ = {Q1, Q2, . . . , Qn} with lengths Xi ∈ [ai, bi) and weights

w(Xi) = ai for all tasks Qi-tasks Xi.

Proof: Since ρQi
< ρ(Xi) for all Qi-tasks Xi, the total weight of a set of tasks that

fill time t will be greater than min
Q∈SQ

ρQ ∗ t. △

Lemma B.9 (Idle times in FFDL schedules)

The idle time in the FFDL-schedule of the pretime or posttime of any processor is

shorter than 1.

Proof: Suppose this is not the case and we have a processor p on which this

situation is encountered. Suppose there is a time slot prep or postp with an idle time

that is greater or equal to 1. Then FFDL would have scheduled X in that pretime

or posttime and finished within 3/2 the end of the optimal schedule or 3/2 the last

end of a downtime and we would not have a counterexample. △

To better describe schedules on processors we will use the same notation as

in the previous chapter for processor schedules:[ will denote start of the schedule,

time 0, | will represent the downtime, and [A1A2 . . . An|B1B2 . . . Bm will denote a

schedule that has the tasks A1, A2, . . . An in the pretime in the given order and the



36

tasks B1, B2, . . . Bm in the given order after the downtime.

We call Y-tasks all tasks the length of which is in the interval [1.5, 2). Also,

we denote with busyALG(p) length of the total processing time of processor p in an

ALG-schedule.

Theorem B.10 (Constraint for FFDL-schedule)

There is a processor p the FFDL-schedule of which contains a Y -task in its pretime

and prep ≥ 2.5 or in its posttime and postp ≥ 2.5. Recall that Y -tasks are tasks of

the length [1.5, 2).

Proof: We use a weighing argument. Consider the following task categories:

X ∈ [1, 2) with w(X) = 1 and Ri ∈ [i, i + 1) for i ≥ 2 with w(Z) = i for all Ri-tasks

Z.

We consider the total weight of the tasks in the FFDL-schedule omitting X

(which would not have fit if the Multifit bar was at max(3
2
opt, 3

2
maxp∈P (γp))), and

compare it to the total weight of the tasks in the optimal schedule. We do this

by considering each processor separately. For a given processor p we denote with

wp(ALG) the sum of the weights of the tasks scheduled by the algorithm ALG on

the processor p. We denote with OPT an optimal algorithm.

We show that wp(FFDL) ≥ wp(OPT ) for each processor p which leads to

a contradiction since we should have w(FFDL) = w(OPT ) − 1, as the FFDL-

schedule does not contain X when the Multifit assigned deadline is m. Denote

with walg.after(p) the total weight of the tasks scheduled by the FFDL algorithm

in the posttime of p, and with walg.pre(p) the weight on the tasks scheduled by

FFDL in the pretime of p. Recall that we are considering the FFDL schedule

when the Multifit assigned deadline is m, and X does not fit in this schedule. Let

walg(p) = walg.after(p)+walg.pre(p) be the weight of the FFDL-schedule in p. Suppose

that the optimal schedule has a weight n in the pretime of p and weight m on the
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posttime of p. Then wopt(p) = n + m.

First, we consider pretimes and posttimes that are greater or equal to 2.5. We

assume that there are no Y -s in pretimes or posttimes that are greater or equal to

2.5, and thus the maximum task type density for the tasks we have in those times is

1
1.5

. From Lemma B.8 we have:

walg.after(p) >
3
2
m + n

2
− 1

1.5
= m +

n − 2

3
,

and thus walg.after(p) ≥ m + ⌊n−2
3
⌋ + 1, where ⌊x⌋ denotes the highest integer value

less or equal to x. Suppose there are no Y-tasks in the pretimes of processors that

are greater or equal to 2.5. Suppose p ∈ P and prep ≥ 2.5, and postp ≥ 2.5. Then,

again, min
Q∈SQ\{Y }

ρQ = 1
1.5

. Then we have

walg.pre(p) >
n − 1

1.5
=

2n − 2

3
,

since the idle time in the pretime is less than 1, and by Lemma B.8. Thus walg.pre(p) ≥

⌊2n−2
3

⌋ + 1. Replacing for n ∈ {3k, 3k + 1, 3k + 2} we get walg(p) = walg.pre(p) +

walg.pre(p) ≥ m + n ≥ wopt(p). For n = 3k, we have walg(p) ≥ m + ⌊n−2
3
⌋ +

1 + ⌊2n−2
3

⌋ + 1 = m + k − 1 + 1 + 2k − 1 + 1 = m + n. For n = 3k + 1 we have

walg(p) ≥ m+⌊n−2
3
⌋+1+⌊2n−2

3
⌋+1 = m+k−1+1+2k+1 = m+n. For n = 3k+2

we have walg(p) ≥ m + ⌊n−2
3
⌋ + 1 + ⌊2n−2

3
⌋ + 1 = m + k + 1 + 2k + 1 = m + n.

Next, we consider processors that have pretimes or posttimes that are less than

2.5. If n = 0, and m ≤ 1 we have walg(p) ≥ wopt(p), since FFDL needs to schedule

a task different from X on p if m = 1 (since postp − 1 > 0), and wopt(p) = 0 if

m = 0. If m = 2 we have postp ≥ 3
2
∗ 2 = 3, and so FFDL would need at least

two X-tasks or one Ri-task to fill the time postp − 1, and so walg(p) ≥ wopt(p).

For m ≥ 3, by assumption there are no more Y -tasks, and so, as shown above,
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walg.after(p) ≥ m + ⌊n−2
3
⌋ + 1 = m, and walg(p) ≥ wopt(p).

Next, we consider n = 1. Since X would fit in this pretime (and not break the

3/2 bound), at least one task (different from X) must be scheduled by FFDL in it. If

m = 0, the inequality to prove holds. If m = 1, walg.after(p) ≥ 1, and the inequality

holds again. If m ≥ 2, we have postp ≥
3
2
optp − γp ≥

1
2
γp + 3

2
m ≥ 3.5. Thus we have

walg.after(p) ≥ m + ⌊n−2
3
⌋ + 1 = m, and walg(p) ≥ wopt(p).

If n = 2, walg.pre(p) ≥ 1, else X would fit in p’s pretime. If m = 0, we have

walg.after(p) ≥ 1, and walg(p) ≥ wopt(p). If m ≥ 1, postp ≥ 3
2
m + 1

2
n = 2.5, and we

have walg.after(p) ≥ m + ⌊n−2
3
⌋+ 1 = m + 1, and thus walg(p) ≥ m + 2 = wopt(p). △

Corollary B.11 (Long tasks in FFDL-pretimes)

In each FFDL-pretime or posttime that is less long than 2.5, but greater than than

or equal to 2, there is at least one task the length of which is at least 1.5.

Definition B.12 (Compensating processor)

A processor that has less busy time in the FFDL-schedule, without considering the

last task X, than in the optimal schedule is called a compensating processor.

Lemma B.13 (Existence of compensating processors)

There is at least one compensating processor.

Proof: The total busy time of the FFDL-schedule without the last task X is less

than the total busy time of the optimal schedule since the optimal schedule contains

task X. Thus there must be a processor on which OPT has more busy time than

FFDL without task X. △

Theorem B.14 (Structure of a compensating processor)

Let p be a compensating processor. Then p has a pretime and:

(a) optp < 4. The total number of computation units (task units/time units on

slowest processor) needed by the tasks in the optimal schedule on p is < 4
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(b) the optimal schedule on p is of the following form: [X1X2|X3, where X1, X2, and

X3 are arbitrary tasks, or [Z1|X3, where Z1 ≥ 2.

(c) the FFDL schedule on p is of the form [Y |X4X5, where Y is a Y -task, and

X4, X5 ∈ T .

Proof: Suppose p has no pretime. If busyOPT (p) ≥ 2 then busyFFDL(p) > postp −

1 ≥ 3
2
busyOPT (p) + 1

2
γp − 1 ≥ busyOPT (p) + (busyOPT (p)−2)

2
≥ busyOPT (p), and thus p

is not compensating.

Thus busyOPT (p) < 2, and so the optimal schedule has only one task X1 on p,

and X1 < 2. Since p is compensating, busyFFDL(p) < X1 < 2, and thus FFDL also

has only one task X2 on p and X2 < X1. Let X01, X02, ..., X0n be all tasks in T such

that X1 ≥ X0i > X2, for all i ∈ {1, 2, . . . n} and X0i ≥ X0i+1 for i ∈ {1, 2, . . . n − 1}.

With other words X1 ≥ X01 ≥ X02 ≥ · · · ≥ X0n > X2. Since X2 was scheduled

alone in a posttime that would have fit X1 as well (postp ≥ 3
2
X1), it results that

X1 was scheduled before the posttime postp was encountered, and must have been

scheduled in a pretime or posttime t2 < postp. Since all tasks X0i ≤ X1 and would

also have fit in postp, they also must have been scheduled in time slots ts0i ≤ postp.

Reducing the durations of X1, X01, . . . X0n to the duration of X2, we obtain a lesser

counterexample. The FFDL schedule stays the same, since X and no other tasks

would not fit in any of the increased spaces, and the order in which FFDL schedules

tasks stays the same, while the optimal schedule can either improve or stay the same

by scheduling the reduced tasks in the same places where they were scheduled in the

optimal schedule of (P, T, α, γ, δ, d). Thus p is not a part of a minimal counterexample

if it is compensating, has no pretime, and busyOPT (p) < 2. Thus p has a pretime.

Suppose optp ≥ 4. Then 3
2
optp − 1 − optp ≥

1
2
optp − 1 ≥ 1. By Lemma B.9, the

idle time in the FFDL pretime of p is less than 1, and p is not compensating. Thus
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optp < 4.

The FFDL schedule on p has more busy time than the length of the pretime of

p, since the idle time in the pretime is less than 1, and FFDL must schedule a task

after the downtime since postp − 1 ≥ 1
2
γp − 1 > 0. Thus the optimal schedule on p

must have a task X3 after the downtime.

Suppose the optimal schedule has only one task X1 in the pretime of p. We

know that FFDL must contain at least a task X4 in the pretime and a task X5 after

the downtime. Then we have X5 ≥
1
2
X1 + 3

2
X3 − 1 ≥ X3 + 1

2
X1 + 1

2
X3 − 1 ≥ X3. For

p to be compensating we need to have X1 > X4. If X4 has not been scheduled alone

in the pretime of p, then X1 must exceed the length of two tasks for the processor to

be compensating, X1 ≥ 2, and (b) holds. Suppose X4 is the only task scheduled by

FFDL in the pretime of p. Then FFDL scheduled X4 in a pretime where X1 would

have fit. Thus X1 was scheduled before that in a pretime or posttime that is less or

equal to prep. Suppose X01, X02, . . . , X0n are all tasks in T with X1 ≥ X0i > X4,

and X1 ≥ X01 ≥ X02 · · · ≥ X0n > X4. Reducing all tasks X0i with i ∈ {1, . . . , n}

to the duration of X4 we get a lesser counterexample as the FFDL schedule still

breaks the 3
2

bound.

Thus the optimal schedule has two tasks in the pretime and (b) follows.

From Corollary B.11, we know that the FFDL schedule on p has a task ≥ 1.5 in

the pretime, if prep < 2.5. If prep ≥ 2.5, then FFDL would need at least one Y -task,

two tasks of length less than 1.5 to fill prep − 1, or a task that is greater or equal to

2.

The busy time after the downtime in the FFDL schedule is greater than postp −

1 = X3 + 1
2
optp − 1 ≥ 1.5, since from Statement (b) we have optp ≥ 3. If there

were two tasks in the pretime of the FFDL-schedule, one of which is a Y -task, the

busy time would be ≥ 1.5 + 1 + 1.5 = 4 and p could not be compensating because
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optp < 4, and we have (a). Thus there is only one task, Y1, or two X-tasks during

the pretime. Note that postp − prep = −1
2
prep + 3

2
X3 ≥ −1

2
prep + 1.5 > 0 (because

prep + X3 < 4), and thus prep < postp.

If there were only one task, Z, scheduled by FFDL after the downtime, then we

have Z > postp − 1 ≥ 1.5, and there are two cases depending on whether Z would fit

in the pretime. We consider case 1, when Z ≤ prep. Then there can not have been

two X-tasks in the pretime, since FFDL would have tried to schedule Z there first.

So there is only one task Y1 in the pretime, and Y1 ≥ Z > X3 + 1
2
optp − 1 ≥ 1

2
optp

and Z + Y1 > 2(1
2
optp) = optp and p is not compensating. This argument also

works if Y1 ≥ 2, since then Y1 is still greater than Z. We consider case 2, when

Z > prep. Then there can not have been two tasks scheduled by FFDL in the

pretime of p, as then busyOPT (p) > busyFFDL(p) > 4. Thus FFDL scheduled only

a task Y1 in the pretime of p, and since Z > X1 + X2, X3 > Y1 ≥ 1.5. Then

Z + Y1 > X3 + (3
2
optp − 1 − optp) + Y1 > X3 + 1

2
optp − 1 + Y1 ≥ 2Y1 − 1 + 1

2
optp ≥

2 + 1
2
optp > optp and again p is not compensating. Thus FFDL scheduled two tasks

after the downtime of p.

Next we consider the size of Y1. If Y1 ≥ 2, then busyFFDL(p) ≥ 4, and the

optimal schedule can not be longer than that. Thus Y1 < 2. This completes the

proof of (c). △

Lemma B.15 (Small tasks in some time slots)

If prep ≥ 3.5, or postp ≥ 3.5 then any X-tasks scheduled by FFDL in prep or postp

respectively have a length < 1.25. In particular, if the optimal schedule has tasks

≥ 1.5 in the posttime of p, and prep ≥ 2.5, any X-tasks scheduled in the posttime

of p are < 1.25. In this context, we consider X-tasks to be of length [1, 1.5).
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Proof: Consider a compensating processor cp, which exists by Theorem B.14. Note

that postcp < 3.5, else the tasks scheduled by FFDL on cp (which do not include

X) would add up to 2.5 + 1.5 = 4, and since cp compensating, we would have

optp > 4, which is not possible according to Theorem B.14. Thus the two X-tasks

scheduled in postcp by FFDL are greater or equal to any X-tasks scheduled in postp

if postp ≥ 3.5. Since the sum of the X-tasks scheduled by FFDL in postcp is less

than 2.5 (else busyOPT (cp) > busyFFDL(cp) ≥ 4), at least one of them is less than

1.25, and thus any tasks scheduled by FFDL in a pretime or posttime that is greater

than 3.5 are less than 1.25.

Particularly, if prep ≥ 2.5, and postp includes a task Y ≥ 1.5 in the optimal

schedule we have postp = 3
2
optp − γp ≥

3
2
(Y + γp) − γp ≥ 2.25 + 1.25 = 3.5 △

Theorem B.16 (Constraint for FFDL-schedule)

There is a processor p with a pretime 2.5 ≤ prep < 3, the FFDL-schedule of which

is [Y1|Y2 with both Y1 ≥ 1.75 and Y2 ≥ 1.75, and the optimal schedule of which is

[Y3X1|X2 or [Z|X4, where Z ≥ 2.5, Y3 ∈ [1.5, 2), and X1, X2, X3 ∈ [1, 1.5).

Proof: Suppose there is no such processor. We consider the following task types:

X-tasks ∈ [1, 1.5), Y -tasks ∈ [1.5, 2), Z1-tasks ∈ [2, 2.5), Z2-tasks ∈ [2.5, 3), R11-

tasks ∈ [3, 3.5), R12-tasks ∈ [3.5, 4) and Ri-tasks in the range [i, i + 1) for i ≥ 4.

For all task types Q that have tasks in the range [a, b) let w(Q1) = a if Q1 is a task

of type Q. For a processor p let m be the weight of the optimal schedule after the

downtime and n be the weight of the optimal schedule before the downtime. We use

the notations walg.after(p), walg.pre(p), walg(p), wopt(p) from Theorem B.10.

We first consider the cases when n < 3.5. We show that inequality

wopt(p) ≤ walg(p) (1)
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holds.

Suppose n = 0. If m = 0 or m = 1 (1) holds since in the second case postp−1 ≥

0.5 and FFDL needs to schedule at least one task in postp. If m ≥ 1.5, m < 2, then

the optimal schedule has only one task X1 after the downtime of p. If FFDL has

two or more tasks in postp, (1) holds. Suppose FFDL has also scheduled only one

task, X2, in postp, and X1 > X2. Then X1 must have been scheduled in a time slot

that is ≤ postp, and all tasks X01, X02, . . . , X0n with X2 < X0i ≤ X1, and X1, can be

reduced to the length of X2, creating a lesser counterexample, as the FFDL-schedule

does not change, while the optimal can me at least maintained at the same length by

putting the reduced tasks where they had been scheduled by OPT in the first place.

So we have X2 ≥ X1 and thus w(X2) ≥ w(X1), and (1) holds.

If m = 2, postp − 1 ≥ 3
2
m− 1 = 2, and FFDL needs two tasks, or a task longer

than 2 to fill this space. Thus (1) holds.

If m = 2.5, we have postp − 1 = 3.75 − 1 = 2.75, and since 2 X-tasks or a

Y -task, or a Z1-task are not enough to fill this space, FFDL must have at least a Y -

task and an X-task, or a Z2-task or a bigger task, or 3 X-tasks in this space and

walg(p) ≥ 2.5 ≥ wopt(p).

If m = 3, we have postp − 1 ≥ 3.5, and there are no more Y -tasks, and X-tasks

are < 1.25. Thus there are at least 3 X-tasks or a R12-task, or a R11 or a (Z1 or a)

Z2-task and an X-task necessary to fill this space. (1) holds.

If m ≥ 3.5 we have, since in this case all task densities are > 1/1.25 = 4/5,

walg(p) >
4( 3

2
m−1)

5
= 6m−4

5
. Then walg(p) ≥ m if m ≥ 4. Also walg(p) ≥ ⌊6m−4

5
⌋ +

0.5 = ⌊m⌋ + ⌊5(m−⌊m⌋)+m−4
5

⌋ + 0.5. For m = 3.5 we get walg(p) ≥ 3.5 + ⌊2.5+3.5−4
5

⌋ ≥

wopt(p). If m > 3.5, m ≥ 4, and the statement to prove holds.

Suppose n ∈ [1, 2). There can be only one task, X1, in the pretime of the optimal

schedule. FFDL must also schedule a task X2 in this pretime. If X1 > X2 a lesser
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counterexample can be created by reducing X1 and all tasks greater than X2 and

≤ X1 to the length of X2. Since all these tasks have been scheduled by FFDL before

X2, they must have been assigned to smaller time slots, so the FFDL-schedule does

not change. The optimal schedule stays the same or gets better, since all reduced

tasks can be placed in their former places. Thus X2 ≥ X1, and w(X2) ≥ w(X1). We

have shown above that if n = 0 walg.after(p) ≥ m for all m.

Let walg.after(p)(n1,m1) and postp(n1,m1) be the minimum total task weight

and respectively the minimum postp a minimal counterexample can have after the

downtime if n = n1 and m = m1. We have postp(q,m) > postp(0,m) for all q > 0.

Thus for n ≥ 1 we have walg.after(p)(n,m) ≥ walg.after(p)(0,m) ≥ m. Thus walg(p) =

walg.after(p)(n,m) + w(X2) ≥ walg.after(p)(0,m) + w(X1) ≥ m + w(X1) = wopt(p).

Suppose n = 2. By Theorem B.10 there are still Y -tasks remaining when FFDL

first reaches this pretime, and so the FFDL-schedule has a Y -task in the pretime of

p. If m = 0, we have postp − 1 > 3
2
optp − 1 ≥ 0, and FFDL must have at least one

task in postp. If m = 1, postp ≥ 2.5, and FFDL must have at least one task of length

≥ 1.5 or two tasks in postp. If m = 2, postp ≥ 3 + 1 = 4, thus FFDL must fill a

space of at least 3, requiring at least an R11- or greater task, a Z1- or Z2-task and at

least an X-task, one Y -task and one X-task, two Y -tasks, or three X-tasks. Then

walg(p) ≥ wopt(p).

If m ∈ {2.5, 3}, postp ≥ 4.75, and a duration of 3.75 needs to be filled by the

tasks assigned by the FFDL-schedule to postp. By Lemma B.15 all X-tasks FFDL

can have scheduled in postp are < 1.25, and there are no more Y -tasks. At least 4

X-tasks, one Z1-task and two X-tasks, a Z2-task or an R11-task and one X-task, or

an R12- or greater task are needed to fill this time, and thus walg.after(p) ≥ 3.5. Then

walg(p) ≥ 5 ≥ wopt(p).
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If m ≥ 3.5, we have

walg.after(p) >
4(3

2
m + 1

2
n − 1)

5
=

6m + 4 − 4

5
=

6m

5

Thus walg.after(p) ≥ ⌊m+5(m−⌊m⌋)
5

⌋ + m + 0.5. If m = ⌊m⌋ we have walg.after(p) ≥

m + 0.5 + ⌊m
5
⌋ ≥ m + 0.5 and so walg(p) ≥ 1.5 + m + 0.5 = m + 2 = wopt(p). If

m = ⌊m⌋+ 0.5 we have walg.after(p) = ⌊m⌋+ 0.5 + ⌊m+2.5
5

⌋ ≥ m + ⌊3.5+2.5
5

⌋ = m + 1.

Then walg(p) ≥ m + 2.5 > wopt(p).

Suppose n = 2.5. We have walg.pre(p) ≥ 1.5, since at least a Y -task is needed to

fill the time prep − 1. If m = 0, postp ≥ 1.25, so FFDL must have scheduled at least

one task in postp, and walg(p) ≥ 2.5 = wopt(p).

If m = 1, we have postp ≥ 1.25 + 1.5 = 2.75. FFDL must have at least a Y-task

Y1, with Y1 ≥ 1.75, a task longer than 2, or two tasks in postp. Suppose prep ≥ 3.

Then FFDL must have scheduled at least 2 X-tasks, a Y-task and an X-task, or

a Z1- or greater task in the pretime of p. Then walg(p) ≥ 2 + 1.5 = wopt(p). We

consider the case pre < 3. If walg.after(p) ≥ 2, we have walg(p) ≥ 2 + 1.5 = wopt(p).

If not, then FFDL must have scheduled a Y -task, Y0 in the pretime of p. Note that

postp − prep ≥
3
2
m + 1

2
prep − prep = 1.5− 1

2
prep > 0, and prep < postp. Thus Y0 has

been scheduled by FFDL before Y1, and so Y0 ≥ Y1 ≥ 1.75. A processor with this

FFDL-schedule has been outruled, however, at the beginning of this proof (since the

weight of the pretime of the optimal schedule is 2.5 it must have a Y -task and an

X-task or a Z2-task scheduled there, and the only way to produce a weight of 1 in

the posttime of p is to have an X-task in it).

If m = 1.5, wopt(p) = 4.5. We have postp ≥ 2.25 + 1.25 = 3.5. By Lemma

B.14 there are no more Y -tasks and all X-tasks are < 1.25. Also there are no more

Z1-tasks. Thus there are at least 3 X-tasks or an Z2 or longer -task needed to fill in

postp − 1. Then walg(p) ≥ 1.5 + 2.5 = 4 = wopt(p).
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If m = 2, we have postp ≥ 1.25 + 3. To fill a time of 3.25 is the FFDL-schedule

needs to have either 3 X-tasks, a Z1 or Z2-task and an X-task, or an R11- or longer

task in the posttime of p.

If m = 2.5, wopt(p) = 5. postp ≥ 3.75+1.25 = 5. To fill a time of 4 FFDL needs

at least 4 X-tasks that are < 1.25, a Z2-task, R11 or R12 task and an X-task, or a

task that has at least weight 4. Thus walg.after(p) ≥ 3.5, and walg(p) ≥ 1.5 + 3.5 =

5 = wopt(p).

If m = 3, postp ≥ 1.25 + 4.5 = 5.75. m + n ≥ 5.5, To fill a time of 4.75

FFDL needs 4 X-tasks, a Z2-task and two X-tasks, a R11 or R12 task and an X-

task, or a task longer than 4 in the posttime of p. Then walg.after(p) ≥ 4, and

walg(p) ≥ 4 + 1.5 ≥ 5.5 = wopt(p).

If m ≥ 3.5 we have

walg.after(p) >
4(1.5m + 0.5n − 1)

5
=

6m + 2n − 4

5
≥

6m + 1

5
.

Then walg.after(p) ≥ ⌊m⌋ + 0.5 + ⌊m+5(m−⌊m⌋)+1
5

⌋. If ⌊m⌋ = m, then also m ≥ 4, and

we have walg.after(p) ≥ m + 0.5 + ⌊m+1
5

⌋ ≥ m + 0.5 + 1. If ⌊m⌋ + 0.5 = m we have

walg.after(p) ≥ m + ⌊m+2.5+1
5

⌋ ≥
m≥3.5

m + 1 In both cases walg.after(p) ≥ m + 1, and

walg(p) ≥ m + 1 + 1.5 = wopt(p).

Suppose n = 3. Then walg.pre(p) ≥ 2, since an X-task alone or a Y -task alone

in the pretime of p would leave an idle time that is ≥ 1. By always consider-

ing the minimum weight possible for n = 2.5 and all possible weight sums m that

the optimal schedule can have scheduled after a downtime of a processor, we have

shown above that for all m, walg.after(p)(2.5,m) ≥ m + 1. We have walg.after(p)(p) ≥

walg.after(p)(3,m) ≥ walg.after(p)(2.5,m) ≥ m + 1, and walg(p) ≥ wopt(p) follows.
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Suppose n ≥ 3.5. We have, since the weights of all remaining tasks are less than

4
5
:

walg.pre(p) >
4(n − 1)

5
,

and postp ≥ n
2
≥ 1.75. If n = 3.5, we have walg.pre(p) > 2, thus walg.pre(p) ≥ 2.5.

We have shown when considering the case n = 2.5 that walg.after(p)(2.5,m) ≥ m+1.

also walg.after(p)(3.5,m) ≥ walg.after(p)(2.5,m), and so walg(p) ≥ m + 1 + n − 1 =

m + n = wopt(p).

Suppose n = 4. To fill a time of 3 FFDL needs to put at least 3 X-tasks, a

Z2-task and an X-task, or a task of type R11 or bigger in the pretime of p. Thus

walg.pre(p) ≥ 3 = n − 1. We have walg.after(p)(4,m) ≥ walg.after(p)(2.5,m) ≥ m + 1,

and walg(p) ≥ m + 1 + n − 1 = m + n = wopt(p).

Suppose n = 4.5, and γp < 5. Then, as in the previous case, walg.pre(p) ≥ 3.

If m = 0, and γp < 5, we have 2.5 > postp ≥ 2.25. Thus there is a Y -task in the

posttime of p, and walg(p) ≥ 3 + 1.5 = 4.5 = wopt(p). If γp ≥ 5, then postp ≥ 2.5,

and walg.pre(p) ≥ 1.5, since a time of postp − 1 = 1.5 can either be filled by a Y - or

greater task or two X-tasks.

If m = 1, postp ≥ 2.25 + 1.5 = 3.75. When postp ≥ 3.5 we have:

walg.pre(p) >
4(3

2
m + 1

2
n − 1)

5
=

6m + 2n − 4

5
, and

walg(p) >
4n − 4

5
+

6m + 2n − 4

5
= m + n +

m + n − 8

5
.

Thus if m+n−8
5

≥ −0.5, walg(p) ≥ m+n. This is true because all weights are multiples

of 0.5, so the weight of all tasks scheduled by FFDL on a processor p can not be in

the interval (m+n−0.5,m+n). We have m+n−8
5

≥ −0.5 if m+n ≥ (−0.5)∗5+8 =

8 − 2.5 = 5.5. When n = 4.5, we have m + n ≥ 5.5 whenever m ≥ 1.
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Suppose n = 5. Then we have walg.pre(p) > (4prep − 4)/5 = 3.2. Thus

walg.pre(p) ≥ 3.5. If m = 0 we have postp ≥ 2.5, and so a task of at least length 1.5,

or two tasks are scheduled by FFDL in the posttime of p. We have walg.after(p) ≥ 1.5

and walg(p) ≥ 1.5 + 3.5 = 5 = wopt(p).

If n ≥ 5.5 we have m + n ≥ 5.5, and walg(p) ≥ wopt(p), as shown above.

We have shown above that for any processor p we have walg(p) ≥ wopt(p), a

contradiction since
∑

p∈p walg(p) =
∑

p∈P wopt(p)− 1, since the task X is part of the

optimal schedule but not part of the FFDL schedule. △

Lemma B.17 (Compensating processor)

(a) The posttime of any compensating processor cp is < 3.25.

(b) At least one task in its posttime is < 1.125.

Any pretimes or posttimes prep ≥ 3.25 or postp ≥ 3.25 have an FFDL-schedule with

the following properties:

(c1) It does not contain any Y -tasks.

(c2) Any X-tasks it contains are < 1.125.

(c3) It does not contain any tasks with the length in the interval [2, 2.5).

Proof: Let cp be a compensating processor, which exists by Lemma B.13. Let

[Ycp|X1X2. be the schedule of cp. By Theorem B.16 we have a processor p with an

FFDL schedule of [Y0|Y2, with Y0 ≥ 1.75, and Y2 ≥ 1.75, and an optimal schedule of

Y4X3|X4. We have postp ≥ 1
2
∗ 2.5 + 1.5 = 2.75. Suppose precp ≥ 2.75. Then, since

cp can only have an idle time of less than 1 in the pretime we have Ycp ≥ 1.75. If

precp < 2.75, then the assignment of Ycp by FFDL happened before the assignment

of Y2 in postp, and thus Ycp ≥ Y2 ≥ 1.75. Thus Ycp ≥ 1.75. Since 4 > bustOPT (cp) >

busyFFDL−X(cp) = Ycp + X1 + X2, we have X1 + X2 < 4 − 1.75 = 2.25. Thus

X2 < 1.125, since it was scheduled after X1, and so X2 ≤ X1 (and because their

average is < 2.25). We have (b). Also since X1 + X2 must fill a time of at least
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postcp − 1 we must have postcp < 3.25. We have (a). (c1) and (c2) follow from the

fact that all pretimes or posttimes that are greater or equal to 3.25 are considered

by FFDL after the posttime of cp.

Let p be the processor that was proved to exist in Theorem B.16. Its optimal

schedule had a Y -task and an X-task in the pretime of p. Thus preP ≥ 2.5. FFDL

scheduled a Y -task in prep. Thus at the time it encountered prep there were no more

tasks of length in the interval [2, 2.5) available. Thus no tasks of that type can be

scheduled in a pretime or posttime of length ≥ 3.25, and (c3) holds. △

We continue by finishing the proof of Theorem B.1.

Proof: We consider the following task types and weights: X-tasks ∈ [1, 1.5), Y1-

tasks ∈ [1.5, 1.75), Y2-tasks ∈ [1.75, 2), Z1-tasks ∈ [2, 2.5), Z21-tasks ∈ [2.5, 2.75), and

Z22-tasks ∈ [2.75, 3), R11-tasks ∈ [3, 3.5), R12-tasks ∈ [3.5, 4), R41-tasks ∈ [4, 4.5),

R42-tasks ∈ [4.5, 5), and Ri-tasks ∈ [i, i + 1) for i ≥ 5, i ∈ N. The weights of each

task type are equal to the smallest length a task of that type can have, for example

if Y is of type Y2, then w(Y ) = 1.75.

Note that all weights are the same as those in the proof of Theorem B.16 with

the sole exceptions of the weights of Y2-tasks, Z22-tasks, and R42-tasks, all of which

are greater than the weights tasks of their type had in that proof.

The FFDL-schedule of a minimal counterexample (P, T, α, γ, δ, d) will not in-

clude X if the bar that defines the scheduling times after the downtime is at

max(3
2
opt,maxp∈P (3

2
γ(p))). Therefore we have

∑
p∈P wFFDL(p) <

∑
p∈P wOPT (p).

We next prove that for any p ∈ P we have

walg(p) ≥ wopt(p) (1)

deriving a contradiction to the previous statement.
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Since the new weights of the task types Y2, Z22, and R42 are greater than the

weights the tasks those types had in the proof of Theorem B.16, all arguments

regarding minimal weight of tasks in FFDL pretimes and aftertimes remain valid.

Thus, in all cases considered in Theorem B.16 where we had walg(p) ≥ wopt(p)

this still holds true.

The one case considered in the proof of Theorem B.16 where this did not hold

was the processor p with n = 2.5 and m = 1, with a pretime prep < 3, for which the

FFDL-schedule was [Y3|Y4 with both 2 > Y3 ≥ 1.75, and 2 > Y4 ≥ 1.75. With the

new weights we have walg(p) = 3.5 = wopt(p), so inequality (1) holds in this case as

well.

The new weights introduce the following new cases:

• n ∈ {1.75, 2.75, 3.25, 3.75, i+0.25, i+0.75|i ∈ N and i ≥ 4}, where N represents

the natural numbers, and

• m ∈ {1.75, 2.75, 3.25, 3.75, i + 0.25, i + 0.75|i ∈ N and i ≥ 4}.

We first handle the cases when n < 3.5.

Suppose n = 0. If m = 1.75, we must have OPT = [|X1 for some task X1. If

FFDL scheduled two or more tasks on p, we have (1). If it scheduled only one task

X2 on p we can use the same argument as in the proof of Theorem B.16 to show that

is X2 ≥ X1. Thus (1) holds.

If m = 2.75, we have postp ≥ 4.125. By Lemma B.17 there are no more Y -tasks

or Z1-tasks, and so to fill a time of 3.125 either 3 X-tasks or a Z2 task and an X-task

or a R11 or longer task are needed. We have walg(p) ≥ 3.

The task density of all tasks scheduled by FFDL in time slots ≥ 3.25 is > 5/6,

which results from Lemma B.17(c1), (c2) and (c3).
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If m ≥ 3.25 we have

walg(p) >
5(3

2
m − 1)

6
=

15m − 5

12
= m +

3m − 5

12
≥ m + 0.4

Thus walg.after(p) > m = wopt(p).

Suppose n ∈ [1, 2). The same argument as in the proof of Theorem B.16 holds:

the FFDL pretime will include a task that is greater or equal to the task in the optimal

pretime, thus walg.pre(p) ≥ n, and since postp(0,m) < postp(n,m) if n > 0 we have

walg(p)(n,m) ≥ walg(p)(0,m) + walg.pre(p) ≥ walg(p)(0,m) + n ≥ m + n = wopt(p).

Suppose n = 2. If prep ≥ 2.5 we could have n = 2.5, which is handled in the next

case. We assume prep < 2.5 We have walg.pre(p) ≥ 1.75, since the processor proved

to exist in Theorem B.16 had a Y2-task in a pretime that is ≥ 2.5. If m = 1.75,

postp ≥ 3.625. To fill a time ≥ 2.625 either 3 X-tasks, or a Z2 or greater task are

needed. We have walg(p) ≥ 2.5 + 1.75 > wopt(p).

If m = 2.75, postP ≥ 5.125. At least a task greater than R11, or an R11 or

R12 and one X-task or Z2-task and more than X-task, or 4 X-tasks, or a task of

type R12 or greater are needed to fill a time of 4.125. Thus walg.after(p) ≥ 3.5, and

walg(p) ≥ 3.5 + 1.75 = 5.25 > wopt(p)

When m ≥ 3.25 we have

walg.after(p) >
5(3

2
m + 1

2
n − 1)

6
=

15m

12
= m +

3m

12
≥ m + 0.81

Thus, since both walg.after(p) and the weight m must be multiples of 0.25 we

have walg.after(p) ≥ m + 1, and walg(p) > m + 1 + n − 1 = wopt(p).

Suppose n ≤ 2.5, and prep ≥ 2.5. We have walg.pre(p) ≥ 1.5.

If m = 1.75, postp = 3.875. To fill a time of 2.875 We know that for a compen-

sating processor cp, postcp ≥ 2.875, since opt ≥ busyFFDL(cp) ≥ 3.75, since FFDL

had a Y2-task in the pretime, and 3
2
opt − opt + X3 ≥ 2.875, where X3 is the task



52

scheduled by the optimal schedule after the downtime. Thus no tasks less than 2.875

are scheduled in time slots greater that postcp. Need Z22-tasks in the range [2.75, 3)

of weight 2.75.

To fill a time of length 2.875 either 3 X-tasks or a task of type Z22 or higher is

needed, and walg(p) ≥ wopt(p).

If m = 2.75, postp ≥ 5.375. Since all task densities are greater than 5
6

we have

walg.after(p) > 5
6
∗ 4.375 > 3.645. Thus walg.after(p) ≥ 3.75, and walg(p) ≥ wopt(p).

If m ≥ 3.25 we have walg.after(p) > 5
6
(3

2
m− 1 + 1.25) = 5

6
(3

2
m + 0.25) = 15m+0.5

12
,

and

walg.after(p) > m +
3m + 0.5

12
≥ m +

9.75 + 0.5

12
> m + 0.854,

and thus walg.after(p) ≥ m + 1, and walg(p) ≥ m + n = wopt(p).

Suppose n = 2.75. Since the idle time in the pretime is less than 1 there must

be at least a task of type Y2 or bigger, or two X-tasks in the pretime of p, and

walg.pre(p) ≥ 1.75. We have shown in the previous case that walg.after(p)(2.5,m) ≥

m + 1. We have walg.after(p)(2.75,m) ≥ walg.after(p)(2.5,m) ≥ m + 1, and walg(p) ≥

m + n = wopt(p).

Suppose n = 3. No Y -task by itself can fill a time of 2, so either a task of

type Z1 or bigger or two tasks are scheduled by FFDL in the pretime of p. thus

walg.pre(p) ≥ 2. Since postp(3,m) > postp(2.5,m), we have walg.after(p)(3,m) ≥

walg.after(p)(2.5,m) ≥ m + 1, and walg(p) ≥ m + n = wopt(p).

Suppose n = 3.25. By Lemma B.17, all X-tasks in this pretime have a length

that is less than 1.125, and thus 2 X-tasks can not fill a length of 2.25. Also, by the

same lemma, there are no Z1-tasks in this pretime. Thus either 3 X-tasks, a Y -task

and an X-task, or a task of type Z2 or greater is needed to fill a space of 2.25, and

walg.pre(p) ≥ 2.5 > n − 1.
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Then walg.pre(p) ≥ 2.5 > n − 1. Since postp(3.25,m) > postp(2.5,m), we have

walg.after(p)(3.25,m) ≥ walg.after(p)(2.5,m) ≥ m + 1, and walg(p) ≥ m + n = wopt(p).

If n = 3.5. We already had in the previous case walg.pre(p) ≥ 2.5 = n − 1.

walg(3.5,m) ≥ walg(3.25,m) ≥ 2.5 + m + 1 = m + n = wopt(p).

Suppose n ≥ 3.75. For all tasks Q that can be scheduled by FFDL in the

pretime of p we have ρQ < 5
6
. Thus walg.pre(p) ≥ 5(n−1)

6
. If m ≥ 1.75 we have

postp ≥ 2.625 + 1.75 = 4.375 > 3.25. Thus all task densities in the posttimes are

also < 5
6
. We have: walg.after(p) >

5( 3

2
m+ 1

2
n−1)

6
= 15m+5n−10

12
= m + 3m+5n−10

12
.

Thus:

walg(p) > m + 10n−10+3m+5n−10
12

= m + n + 3n+3m−20
12

(2)

Thus if 3(m+n)−20
12

> −0.25, or m + n ≥ 5.67, we have walg(p) ≥ wopt(p). This is

because all weights are multiples of 0.25, and thus if walg(p) > m + n − 0.25, then

walg(p) ≥ m + n.

If n = 3.75, we have: Since there are no more Y - or Z1-tasks the FFDL-schedule

must contain either 3 X-tasks, a task of type Z21 and at least one other task, or a

task of type Z22 or a longer task in the pretime of p. walg.pre(p) ≥ 2.75 ≥ n − 1.

Because walg.after(p)(3.75,m) ≥ walg.after(p)(2.5,m) ≥ m + 1, we have walg(p) ≥

n − 1 + m + 1 = n + m = wopt(p).

If m ≥ 3.25 we have from inequality (2) that walg(p) > m + n.

Suppose n = 4. busyalg.after(p) ≥ 3. Thus the FFDL-schedule contains at least

3 X-tasks, one Z2-task and at least one more task, more than one Z2-task, or a

task of length 3 or greater in the pretime of p. walg.pre(p) ≥ 3 = n − 1. Because

walg.after(p)(4,m) ≥ walg.after(p)(2.5,m) ≥ m+1, we have walg(p) ≥ n− 1+m+1 =

n + m = wopt(p).

Suppose n = 4.25, prep < 4.5 As in the case n = 4, we have walg.pre(p) ≥ 3.
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If m = 0, 2.25 ≥ postp ≥ 2.125, and walg.after(p) ≥ 1.5, since Y -tasks are still

available when the time slot postp is encountered by FFDL.

If m = 1, postp ≥ 1.5 + 2.125 = 3.625. To fill a time of 2.625 when no Y - or

Z1-tasks are available, at least 3 X-tasks, or a task of type Z2 or longer must be used

by FFDL in the posttime of p. walg.pre(p) ≥ 2.5 ≥ m + 1.5, and walg(p) ≥ wopt(p).

if m ≥ 1.5 we have m + n ≥ 5.75, and thus walg(p) ≥ wopt(p).

Suppose n ∈ {4.25, 4.5}, prep ≥ 4.5. This case has been handled in Theorem

B.16, when we considered n = 4.5 and assumed the pretime also to be ≥ 4.5. to

restate this for all m ≤ 1.5. If m ≥ 1.5 we have m + n ≥ 5.75, and walg(p) ≥ wopt(p).

If n = 4.75, the FFDL-schedule must have either 4 X-tasks, a Z21-task and

at least two X-tasks or another Z2-task, Z22-task or an R11-task and at least an

X-task, or at least a task of type R12 or longer. Thus walg.after(p) ≥ 3.5. We

have shown that walg(4.25,m) ≥ m + 1.25, thus walg(4.75,m) ≥ m + 1.25, and

walg(p) ≥ m + 1.25 + 3.5 = m + 4.75 = wopt(p).

Suppose n ∈ {5, 5.25}. If m > 0, then n + m ≥ 6, and walg(p) ≥ wopt(p). If

m = 0, postp ≥ 2.5, and walg.after(p) ≥ 1.5. The FFDL-schedule must contain either

4 X-tasks, a Z21-task and at least 2 X-tasks or another Z2-task, a Z22-task or an

R11- or R12-task and at least an X-task, or an R41- or longer task in the pretime of

p. Thus walg.pre(p) ≥ 3.75. We have walg(p) ≥ 5.25 ≥ wopt(p).

Suppose n = 5.5. If m > 0, then n + m ≥ 6, and walg(p) ≥ wopt(p). If m = 0,

postp ≥ 2.75, and walg.after(p) ≥ 1.75. We had in the previous case walg.pre(p)(5, 0) ≥

3.75. Thus also walg.pre(p)(5.5, 0) ≥ 3.75, since walg.pre(p)(5.5, 0) ≥ walg.pre(p)(5, 0).

Thus walg(p) ≥ 1.75 + 3.75 = 5.5 = wopt(p).

If n ≥ 5.75, we have m + n ≥ 5.75, and the inequality to prove holds. △
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CHAPTER IV

SCHEDULING ON SAME-SPEED PROCESSORS WITH MULTIPLE

SHUTDOWNS ON EACH MACHINE

In this chapter we consider scheduling on same-speed processors with possibly multi-

ple downtimes on each machine. We adapt the FFDL Multifit scheduling algorithm

from the previous chapter to this situation, and show that it finishes within 1.5 + 1
2k

multiplied by the end of the optimal schedule or by the end of the last downtime. We

also show that the algorithm finishes within 3/2 the optimal maximum completion

time or 3/2 the end of the last downtime when there are are most 2 downtimes on

each machine.

The next subsection contains definitions and other preliminary considerations,

subsection B contains the proof for the upper bound result, while subsection C

contains the proof of an upper bound of 3/2, which is asymptotically tight in the

class of polynomial algorithms assuming that P 6= NP , for the case when there are

at most two downtimes on each machine.

A. Preliminaries

In this subsection we define a problem instance, describe the algorithm we use, and

prove some theorems and lemmas which will be used in later subsections.

Definition A.1 (Problem Instance)

A problem instance is given by a tuple (P, T, k ∈ N, δ : [1..k]×P → N, γ : [1..k]×P →

N, d : T → N). Here, N represents the set of natural numbers, and

• P is a set of processors,

• T is a set of tasks,
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• k is the maximum number of downtimes of the problem instance,

• d(X) denotes the duration of a task X, as a number of time units the task

needs to execute, or of computing units,

• δ(i, p) denotes the start of the ith downtime of processor p if it exists, and is 0

otherwise,

• γ(i, p) denotes the end of the ith downtime of processor p if it exists, and is 0

otherwise.

Let γp denote the end of the last downtime of processor p and be 0 if there is

no downtime on p. Also, let preip denote the time slot starting at γ(i − 1, p), and

ending at δ(i, p), where γ(0, p) is defined to be 0.

When processors do not have periods of unavailability, the multifit algorithm

first assigns upper and lower bounds for the schedule lengths, and then proceeds with

a binary search to find a schedule length that is within a desired degree of accuracy,

using the FFD (first fit decreasing) algorithm to assign tasks to processors each time

a schedule length is considered. On processors with downtimes, the time slots to be

filled with tasks can be ordered in increasing order of the length of the time slot.

The first fit decreasing (FFD) algorithm orders the tasks in decreasing order and

then assigns any task that fits to the first time slot encountered. Our algorithm is:

Multifit(ǫ, upper bound, lower bound)

0) if (upper bound − lower bound < ǫ){

print(upper bound);

return;

}

1)Set schedule length at m = upper bound + lower bound
2
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2) Order all time slots preip = δ(i, p)− γ(i− 1, p), and postp = m− γp with p ∈ P in

increasing order of their length and record them in an array TS[1..|TS|], and discard

the empty ones,

3) Order all tasks in decreasing order of their duration and record in an array T [1..|T |]

4) for (i = 1; i ≤ |T |; i + +)

for (j = 1, ; j ≤ |TS|; j + +)

if (d(T [i]) ≤ TS[j]): {

TS[j] = TS[j] − d(T [i]);

T [i] = nil;

}

5) if (all array entries T [i] are nil)

Multifit(ǫ, m, lower bound);

else

Multifit(ǫ, upper bound, m);

We call posttime of a processor p the time length postp. It is the available time

of a processor after its last downtime ends, given a set Multifit schedule length.

Most of the remainder of this subsection is devoted to proving the following

theorem, for problem instances with k ≤ 2.

Theorem A.2 (Bound for Multifit schedules)

The maximum completion time of a Multifit schedule is less or equal to 3/2 the

maximum completion time of the optimal schedule or 3/2 the maximum end of a

downtime,

Cmax(Multifit) ≤
3

2
max(Cmax(OPT ),maxp∈P (γp)) + ǫ,
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if the maximum number of downtimes in the problem instance is 2. Else

Cmax(Multifit) ≤ (
3

2
+

1

2k
)max(Cmax(OPT ),maxp∈P (γp)) + ǫ,

where k is the maximum number of downtimes of the considered problem instance.

Here OPT denotes the optimal schedule, and ǫ the user-defined parameter of FFDL

Multifit.

Note that, given that all time lengths are given as integer multiples of one unit,

choosing ǫ to be less than half that unit will lead, if the theorem holds, to a schedule

which ends within 1.5opt if there are at most two downtimes on one machine, and

(1.5 + 1
2k

)opt if there are more than two downtimes on at least one machine. This is

because the schedule ends at a time moment denoted by an integer and if the upper

and lower bound are less far away than half a unit the upper bound can not be a

unit above a schedule that ends within 3/2opt, and so any schedule the upper bound

produced ends within 3/2opt. Here, opt = max(Cmax(OPT ),maxp∈P γp).

We call a counterexample any problem instance the FFDL Multifit schedule of

which ends after 3
2
opt. Next, we define a minimal counterexample, which is shown

to exist whenever there is a counterexample. Then we prove several properties of

a minimal counterexample, at last resulting in the fact that such a counterexample

does not exist. Several Theorems and Lemmas contribute to this proof.

We denote the last task scheduled by the Multifit schedule with X. In a minimal

counterexample this is the only task which can not be scheduled when the multifit

bar is at a time b ≥ 3/2(maxp∈P γp, Cmax(OPT )).

We denote with FFDL the end of the FFDL-schedule and with opt the maxi-

mum between the end of the optimal schedule and the end of the last downtime.
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In the following we shall assume that the 3/2 bound is broken and derive a

contradiction for the case when there are maximum 2 downtimes, and prove that

FFDL < (1.5 + 1
2k

)opt if the maximum number of downtimes on one processor (k)

is greater or equal to 3.

Definition A.3 (Order relation on problem instances)

Given two problem instances C1 = (P1, T1, k1, δ1, γ1, d1), and C2 = (P2, T2, k2, δ2, γ2,

d2) where T1 and T2 are sets of tasks with their execution times and P1 and P2 sets

of processors with downtimes we say that C1 < C2 if any of the following holds:

a) k1 < k2 b) k1 = k2 and |T1| < |T2|

c) k1 = k2, |T1| = |T2| and |P1| < |P2|

d) k1 = k2, |T1| = |T2|, |P1| = |P2|, and the number of processors with pretimes in

C1 is less than the number of processors with pretimes in C2.

e)k1 = k2, |T1| = |T2|, |P1| = |P2|, the number of processors with pretimes of both

instances is the same, and, if T1 = T2, there is at least a task X ∈ T1 such that

d1(X) < d2(X), and ∀X ∈ T1, d1(X) ≤ d2(X).

Definition A.4 (Minimal Counterexample)

A minimal counterexample is a problem instance C = (P, T, k, δ, γ, d), where such

that the Multifit schedule exceeds 3
2
Cmax(OPT ) and 3

2
max
p∈P

(γp), such that C is mini-

mal with regard to the order relation defined in Definition A.3. Recall that γp denotes

the end of the downtime of processor p ∈ P .

We shall denote with opt the maximum between Cmax(OPT ) and maxp∈P (γp).

Lemma A.5 (Existence of minimal counterexample)

If there is a counterexample then there also is a minimal counterexample.

Proof: Suppose we have a set S of counterexamples. Then there must be a subset

S1 of counterexamples which have a minimum k. Among these there must be a
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subset which have a minimum number of processors. Among those there must be a

subset with a minimum number of tasks. Last there must be a subset of counterex-

amples of this last set that have a minimum number of processors with pretimes.

Among these counterexamples, for each counterexample C1 = (P1, T1, k1, δ1, γ1, d1),

there is a finite set of counterexamples S(C1) that have tasks of lesser or equal

durations to their task lengths, and the same task names. The counterexample

C1 = (P1, T1, k1, δ1, γ1, d2), with the least durations for each task name in T1, is

the minimal counterexample corresponding to C1. Thus if there is a counterexample

then there also is a minimal counterexample. △

From now on we will assume that the counterexample we are considering is

minimal. For convenience we will have the task names also represent their durations

when this creates no ambiguity, for example if there is a task X its duration will be

denoted by X.

Let X be the first task in the FFDL-schedule that FFDL can not fit when the

Multifit schedule length is set at a time b, which is equal to or greater than 3/2 the

optimal makespan or 3/2 the end of the last downtime. All tasks that are less than

X are irrelevant to the fact that the FFDL schedule is unable to fit all tasks when

the bound is set at time b, thus a minimal counterexample only contains tasks that

are greater or equal to X.

Lemma A.6 (Length of tasks)

A minimal counterexample contains only tasks that are greater or equal to the first

task that can not be scheduled by FFDL Multifit within a time that is ≥ 3/2opt.

In the following we normalize every time length to the length X of the task X,

that is, a number will represent that same number times the task length X in the

measuring of time.

We continue by showing some more properties.
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Lemma A.7 (≥ 1 tasks in FFDL pretimes)

In a minimal counterexample the FFDL-schedule has at least one task in the pretime

of each processor that has a pretime.

Proof: If a pretime on a processor p is empty in the FFDL-schedule, then the

last task X did not fit in that pretime. But X is the least task, and thus the

optimal schedule could also fit nothing in that pretime. Then we can build a lesser

counterexample by maintaining the same processors and tasks with the difference

that the mentioned pretime of p is replaced by downtime. Both the optimal schedule

and the FFDL schedule will remain the same, and the new counterexample has fewer

pretimes. △

To better describe schedules on processors we will use the following notation for

each processor schedule: [ will denote start of the schedule, time 0, | will represent

the downtime, and [A1A2 . . . An|B1B2 . . . Bm|C1C2 . . . Cm will denote a schedule that

has the tasks A1, A2, . . . An in the first pretime in the given order and the tasks

B1, B2, . . . Bm in the given order in the second the pretime, and tasks C1C2 . . . Cm

after the pretimes.

We denote with busyALG(p) length of the total processing time of processor p

in an ALG-schedule, and busyFFDL(p) denotes the length of the busy time of FFDL

on p when the Multifit bar is set at max(3/2opt,maxp∈p(γp)), and thus this schedule

does not include X in a minimal counterexample.

Since the bound of 3/2 for Multifit FFDL in the case when there is at most

one downtime on each machine was proved for uniform processors in Chapter III, a

counterexample must contain at least one processor with two downtimes.

Lemma A.8 (Idle times in FFDL schedules)

The idle time in the FFDL-schedule of all pretimes and posttimes of a minimal

counterexample, when the Multifit bar is set at b ≥ 3
2
max(opt,maxp∈P γp), is shorter
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than 1.

Proof: Suppose this is not the case and we have a processor p with a time slot

ts which has an idle time that is greater or equal to 1. Then the task X, which is

assumed not to fit in any time slot when the algorithm attempts to schedule it with

the Multifit bar set at b would fit in the time slot ts. △

Lemma A.9 (Single tasks in time slots)

If in a pretime or a posttime ts, with 2 ≤ ts < 3 there is only one task X1 < 2 in

the optimal schedule and only one task X2 < 2 in the FFDL-schedule of a minimal

counterexample, we have X1 ≤ X2.

Proof: Suppose X1 > X2. Let the tasks X01 ≥ X02 ≥ .. ≥ X0q be all tasks that

fulfill the inequality X1 ≥ X0i > X2. X1 and all tasks X0i are scheduled by FFDL

in a pretime or posttime ts1 ≤ ts and respectively ts0i ≤ ts, else they would have

been scheduled in ts instead of task X2. Reducing all tasks X1 and X0i to the length

of task X2 leaves the FFDL-schedule unchanged, since the order in which these are

scheduled stays the same and no space ≥ 1 is created by reducing their length in this

manner, while the optimal schedule can only get better. An schedule that is at least

as good as the initial optimal schedule can be constructed by leaving the reduced

tasks in the time slots in which they were scheduled by the optimal schedule on the

initial problem instance.

This operation creates a lesser counterexample, thus the one initially considered,

where X1 > X2, is not minimal.

Lemma A.10

In a minimal counterexample each pretime is of length 2 or longer than that.

Proof: Let prei < 2 be a pretime on a processor p. Then the optimal schedule can

have at most one task X1 in prei. If there is no task in the optimal schedule in prei,
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prei can be filled with downtime and any tasks scheduled by FFDL in prei can be

removed, creating a lesser counterexample, since the optimal schedule can only get

better as it has less tasks to schedule, and the FFDL-schedule stays the same.

Suppose FFDL also scheduled a task X2 in prei. Then by Lemma A.9 X2 ≥ X1.

Removing prei and X2 we get a lesser counterexample, as the FFDL-schedule stays

the same, while the optimal schedule can only get better, since replacing X2 with the

lesser task X1 in the initial optimal schedule produces a schedule that at least as good

as that schedule. Thus there is no pretime prei < 2 in a minimal counterexample.

△

As a consequence, the maximum between the end of the optimal schedule and

the last end of a downtime is > 4 in a minimal counterexample, as we state in the

following Lemma.

Lemma A.11 (opt > 4)

max(Cmax(OPT ),maxp∈P (γ(p))) > 4.

Lemma A.12 (Single tasks in FFDL schedules of time slots)

If the FFDL-schedule of two pretimes or posttimes ts1 ∈ [2, 3) and ts2 ∈ [2, 3) has

exactly one task X1 < 2 in ts1 and exactly one task X2 < 2 in ts2, then X1 = X2.

Proof: Suppose X1 > X2. Then ts1 < ts2, as X1 was scheduled by FFDL before

X2, and X1 < 2 ≤ ts2 (also see Lemma A.10). Let X0i with X2 < X0i ≤ X1 be all

tasks scheduled by FFDL between after it scheduled X1 and before it scheduled X2.

All these tasks have been scheduled alone in time slots tsi ≤ ts1. Reducing X1 and all

tasks X0i to the length of task X2 creates a lesser counterexample, since the FFDL-

schedule stays the same as no idle time that is ≥ 1 is created by these reductions,

while the optimal schedule can stay the same or get better when the reduced tasks

(and the other tasks) are left in their original positions (in the time slots where they
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were scheduled by the optimal schedule of the initial counterexample). △

Definition A.13 (Compensating processor)

A processor that has less busy time in the FFDL-schedule, without considering the

last task X, than in the optimal schedule is called a compensating processor.

Lemma A.14 (Existence of compensating processors)

There is at least one compensating processor.

Proof: The total busy time of the FFDL-schedule without the last task X is less

than the total busy time of the optimal schedule since this one contains task X. Thus

there must be a processor on which OPT has more busy time than FFDL without

task X. △

B. General upper bound for FFDL Multifit

In this subsection we prove a general upper bound for the FFDL Multifit schedule

length. We show that, given a problem instance with at most k downtimes on one

processor, FFDL Multifit ends within (3
2

+ 1
2k

)opt.

A problem instance the FFDL Multifit schedule of which ends after this bound

also ends after time 3
2
opt, and so is a counterexample as defined above. Thus all

theorems and lemmas from subsection A apply to it.

Lemma B.1 (Number of downtimes on cp)

A compensating processor cp belonging to a minimal counterexample has a number

of downtimes that is equal to the maximum number of downtimes that appear on

any processor of the counterexample.

Proof: We shall call kp the number of downtimes on a processor p, and let k be

the maximum number of downtimes on a processor in the given problem instance.

By Lemma A.10 opt ≥ 2k. Let b ≥ 3
2
opt be the schedule length set by Multifit when
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FFDL failed to schedule X within the allocated time. A bound of b + 1 would allow

for scheduling all tasks, and so Cmax(Multifit) ≤ b + 1.

Since cp is a compensating processor, and since in each pretime there is at most

an idle time of 1, the maximum time difference between the end of the FFDL-schedule

on cp, fdlcp and the end of the optimal schedule on cp, optcp, is kcp. Thus

opt + kcp ≥ optcp + kcp > fdlcp ≥ Cmax(Multifit) − 1 >
3

2
opt − 1 ≥ opt + k − 1.

Thus kcp > k − 1, and so kcp = k. △

Next we show the upper bound.

We have Cmax(Multifit) − 1 < optcp + kcp ≤ opt + k. Then

Cmax(Multifit)

opt
<

opt + k + 1

opt
= 1 +

k + 1

opt
≤

opt≥2k
1 +

k + 1

2k
= 1.5 +

1

2k
.

For small k this bound is not very accurate, as we have shown in the previous

chapter that FFDL Multifit finishes within 3
2
opt if there is at most one downtime on

each machine. In the next subsection we study the case when there are at most 2

downtimes on each machine. For k ≥ 3, the above result implies that FFDL Multifit

finishes within 5
3
opt, and the bound gets better as k increases.

C. Upper bound for k=2

In this subsection we consider the case when there are at most 2 downtimes on each

machine.

Lemma C.1 (Optimal schedule length)

The length of the optimal schedule and the last end of a downtime are both < 6.

Proof: Suppose that is not the case. Then a compensating processor cp would

have an FFDL-schedule busy time after the downtime of cp that is greater than
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1
2
max(opt,maxp∈P γp) − 1 ≥ 2, since postcp has an idle time that is less than 1.

Also, the idle time in the pretimes of the FFDL-schedule of cp adds up to less

than 2. Thus busyFFDL(cp) > pre1cp−1+pre2cp−1+busyopt.after(cp)+2 ≥ busyopt(cp),

and cp is not compensating. △

Theorem C.2 (Structure of a compensating processor)

(a) a compensating processor cp has two downtimes,

(b) busyopt(p) ≥ 2 in each pretime.

(c) If the optimal schedule has at least a task after the downtime of cp then

(c1) busyalg.after(cp) > 1
2
opt,

(c2) there is either one task U3 > 2.5 and U3 > 1
2
opt, or three tasks in the FFDL-

schedule of the posttime of cp,

(c3) there is exactly one task Ui the FFDL-schedule of each pretime preicp of cp, and

U1 + U2 < 3.

(d) If the optimal schedule has no task after the downtime of cp, when the Multifit

bar is at 3/2 or higher and FFDL fails to schedule all tasks, the FFDL-schedule of

cp is of type [U1|U2|U3, where

(d1) U1, U2, U3 > 1
2
opt − 1, and

(d2) All tasks U1, U2, U3 are < 2, and U1 = U2 = U3.

Proof: Suppose cp has no downtime. Then busyalg(cp) > 3
2
busyopt(cp), and cp is

not compensating. Suppose cp has only one downtime. Then the idle time in that

downtime is < 1. We also have busyalg.after(cp) > 1
2
max(opt, maxp∈P (γ(p)))− 1 ≥ 1,

and so busyalg(cp) > busyopt(cp). We have (a).

Suppose busyopt(ts) < 2 in one of the pretimes ts of cp. Then at most one task is

scheduled in the optimal pretime ts of cp, and this task is less long or equal to the task

in the FFDL schedule of ts or there are more than one tasks in the FFDL-schedule

of ts. In both cases busyopt(ts) ≥ busyalg(ts). Let ts2 be the other pretime of cp.
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busyopt(ts2)−busyalg(ts2) < 1, and thus, since busyalg.after(cp) > busyopt.after(cp)+1,

we have busyalg(cp) > busyopt(cp), and cp is not compensating. (b) follows.

Suppose the optimal schedule has a task X3 after the downtime of cp. Then

busyalg.after(cp) > X3 + 1
2
opt − 1 ≥ 1

2
opt.

If there are two tasks scheduled by FFDL in any pretime of cp then the sum

of the tasks scheduled by FFDL in the pretimes or cp is ≥ 3, and busyFFDL(cp) ≥

1
2
opt + 3 ≥ 1

2
opt + 1

2
opt = opt, and cp is not compensating. Thus each pretime prei

of cp has exactly 1 task Ui scheduled in it.

If there are 2 tasks X6 and X7 scheduled by FFDL after the downtime in that or-

der we have X6+X7 > 1
2
opt, and X6 > 1

4
opt since it was scheduled first. Also if a pre-

time preicp ≥ postcp > 1
2
opt+1, we must have Ui > 1

2
opt, and Ui + busyalg.after(cp) >

opt, and cp is not compensating. Thus preicp < postcp, thus Ui was scheduled in

preicp before X6 in postcp, and Ui > 1
4
opt. Then U1 + U2 + busyalg.after(cp) >

1
4
opt + 1

4
opt + 1

2
opt = opt, and cp is not compensating. Thus the FFDL-schedule

of the posttime of cp does not contain exactly two tasks.

There can not be more than 3 tasks in the FFDL-schedule of the posttime of

cp, because then busyFFDL(cp) > 6 > opt, and cp would not be compensating.

If there is only one task U3 scheduled by FFDL after the downtime on cp, and

U3 ≤ preicp then U3 ≤ Ui, where Ui is the task scheduled by FFDL in preicp, in case

preicp ≤ postcp. Then U3 + Ui ≥ 2U3 > opt If preicp > postcp = 1
2
opt + X3, then

Ui > preicp − 1 ≥ 1
2
opt, then Ui + U3 ≥ opt, and cp is not compensating.

Thus U3 > pre1cp and U3 > pre2cp, and since U3 > 1
2
opt, U3 > 2.5 We have (c).

If the optimal schedule of a compensating processor does not have a task after

the downtime, busyalg.after(cp) > 1
2
opt − 1. Suppose there are two tasks or one task

longer than or equal to 2 in one of the pretimes of cp. Then the other pretime can

only have one task in it, else busyalg(cp) > 4 + 1
2
opt − 1 = 3 + 1

2
opt ≥ opt, and cp
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would not be compensating.

Suppose there are 2 tasks in the FFDL-schedules of both pretimes of cp. Then

busyalg(cp) > 4 + 1
2
opt − 1, and cp would not be compensating. Suppose the FFDL-

schedule has two tasks in one of the pretimes on cp. Let Ui be the task the FFDL-

algorithm scheduled in the other pretime, preicp. Suppose there are two tasks in

the FFDL-schedule of postcp. Then the idle time in the pretimes of the FFDL-

schedule, which must be greater than busyalg.after(cp) if cp is compensating, must

be greater than 2, which is not possible, as each one must be less than 1. Thus

busyalg.after(cp) < 2, and there is only one task, U3, in the posttime of cp.

Then U3 = Ui > 1
2
opt−1, from Lemma A.12 and busyalg(cp) = U3+U1+U2 > opt.

Thus busyalg(preicp) < 2, and there must be exactly one task, Ui < 2, in each

pretime preicp, i ∈ {1, 2}. By Lemma A.12 and from the above deductions we have

U1 = U2 = U3 > 1
2
opt − 1, and U1 < 2. △

Theorem C.3 (No compensating processor of type C.2(c))

(a) If there is a compensating processor with a task after the downtime in the optimal

schedule then there is a Y -task (a task the length of which is in the interval [1.5, 2))

in the FFDL-schedule of a time slot ts ≥ 2.5.

(b) There is no compensating processor with the structure described in the statement

(c) of Theorem C.2.

Proof: Suppose statement (a) is incorrect, and there is no Y -task in any time slot

ts ≥ 2.5. We use a weighing argument. Let X-tasks be in the interval [1, 2) and

have the weight 1, Z-tasks be in the interval [2, 1
2
opt] and have weight 2, Z ′-tasks be

in the interval (1
2
opt, 3) and have the weight 3, Ri-tasks in the interval [i, i + 1) and

have the weight i for i ∈ {3, 4, 5}. There can be no tasks that are ≥ 6 by Lemma

C.1.
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Recall that the FFDL-schedule of any processor does not contain the task X

when the multifit bar is set at a bound b ≥ 3/2max(opt,maxp∈P γp) whereas the

optimal schedule does, and so the total weight of the tasks in the optimal schedule

is greater than that of the FFDL-schedule.

We show that for every processor p ∈ P :

walg(p) ≥ wopt(p) (1),

where walg(p) is the total weight of the FFDL-schedule of processor p, and wopt(p) is

the total weight of its optimal schedule.

We also denote with walg(ts), and wopt(ts) the total weight the FFDL-schedule

and respectively that of the optimal schedule of time slot ts.

Let cp be a compensating processor as described in the statement (c) of Theorem

C.2.

Let p be an arbitrary processor in a minimal counterexample. Then opt ≥ 5, and

for any processor p we have postp ≥
1
2
opt ≥ 2.5. According to the assumption at the

beginning of this proof there are no tasks in the interval [1.5, 2) in postp. We know

that busyFFDL(postp) > postp − 1 = 1.5, and thus there are at least two X-tasks or

a Z- or greater task scheduled by FFDL in postp and

walg(postp) ≥ 2 (a1).

Suppose p has no pretime.

If the weight of the optimal schedule of p is 0, 1, or 2, (1) holds, from walg(postp) ≥

2.

Suppose wopt(postp) = 3. Then busyopt(p) ≥ 3, and busyalg(p) > postp − 1 ≥

3 + 1
2
opt− 1 = 3 + 1.5 = 4.5. Since there are no Y -tasks in the FFDL-schedule of p,

at least 4 X-tasks, a Z-task and two X-tasks, an R3-task and an X-task or an R4-

or greater task must be in the FFDL-schedule of postp, and then walg(p) ≥ 4.
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Suppose wopt(p) = 4. We either have an optimal schedule with busyopt(p) ≥ 4

or busyopt(p) > 1
2
opt + 1. In the first case busyalg(p) > postp − 1 ≥ 4 + 1.5 = 5.5.

At least 4 X-tasks of length less than 1.5, a Z, Z ′, and R3-task and 2 X-tasks, or a

schedule containing an R4 or greater task must be scheduled by FFDL in postp, and

walg(p) ≥ 4.

If busyopt(p) ≥ 1
2
opt + 1, we have busyalg(p) > busyopt(p) + 1

2
opt − 1 ≥ opt ≥ 5.

The argument above holds, except that this busy time can also be achieved by

scheduling an R3-task and one X-task in postp, and walg(p) ≥ wopt(p).

Suppose wopt(p) = 5. Then busyopt(p) ≥ 5 or busyopt(p) ≥ 1
2
opt + 2. We have

busyalg(p) > busyopt(p)+ 1
2
opt−1 ≥ 5+1.5 = 6.5, or busyalg(p) ≥ 4.5+1.5 = 6. Since

all X-tasks are less than 1.5, at least 5 X-tasks, a Z- or Z ′-task and 3 X-tasks, an

R3-task and 2 X-tasks, an R4-task and one X-task or an R5-task must be scheduled

by FFDL in postp. We have walg(p) ≥ 5.

The weight of the optimal schedule can not be 6 or greater, since busyopt(p) < 6

by Lemma C.1, because 2 Z ′-tasks scheduled on the same processor would have

a length that is greater than that of the optimal schedule, and since one Z ′-task

Z1 and additional busy time of 3 in the optimal schedule of p would imply that

opt ≥ Z1 + 3 > 1
2
opt + 3, and then 1

2
opt > 3, contradicting again Lemma C.1.

Thus inequality (1) holds for all processors with no pretime.

Suppose p has one pretime. We call this pretime prep in the following argument.

From Lemma A.10, prep ≥ 2. Also, walg(prep) ≥ 1, since the idle time in prep can’t

be less than 1. Suppose wopt(prep) ≤ 2.

Then, since walg(postp) ≥ 2, (1) holds when wopt(postp) ∈ {0, 1}.

Suppose wopt(postp) = 2. Then busyalg(postp) > busyopt(postp) + 1
2
opt − 1 ≥

2 + 1.5 = 3.5. Since the X-tasks in postp are less than 1.5, the FFDL-schedule of

postp must contain at least 3 X-tasks, a Z or Z ′-task and one X-task, or an R3- or
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greater task in postp, and walg(postp) ≥ 3. Then walg(p) ≥ 4 ≥ wopt(p).

Suppose wopt(postp) = 3. Then, as shown for the same situation (wopt(postp) =

3) when p was assumed to have no pretime, we have walg(postp) ≥ 4.

We can not have wopt(postp) ≥ 4, since then wopt(p) ≥ 6, and we have shown

above that this is not possible. The same argument as in the case when p has no

pretime hold in this case as well, and in any situation in which the weight of the

optimal schedule adds up to 6 or more than that. We shall thus not consider such

cases in the remainder of this proof.

Suppose wopt(prep) = 3. Then either prep ≥ busyopt(p) ≥ 3, or prep ≥

busyopt(p) > 1
2
opt. In the first case we have busyalg(prep) ≥ 2 = prep − 1, and

at least 2 X-tasks or a Z- or greater tasks must be in the FFDL-schedule of prep,

and then walg(prep) ≥ 2.

If a Z ′-task is scheduled in the optimal schedule of prep, busyalg(prep) > 1
2
opt−

1 ≥ 1.5, since opt > 5. We also know that prep > 1
2
opt ≥ 2.5, and so and X-task

scheduled by FFDL in prep is < 1.5. Thus at least 2 X-tasks or a Z- or greater task

are scheduled by FFDL in prep. Concluding, walg(prep) ≥ 2 ≥ wopt(prep) − 1.

Note that for any weight wopt(postp) ≤ 2 we have shown in the case when

wopt(prep) = 2 that walg(postp) ≥ wopt(postp) + 1, using arguments that did not use

length of the pretime, and so we also have walg(p) ≥ wopt(p) for all processors where

wopt(prep) = 3.

Suppose wopt(prep) = 4. If there is no Z ′-task in the optimal schedule, we

have busyopt(prep) ≥ 4, and busyalg(prep) ≥ 3. Since all X-tasks are less than

1.5, at least 3 X-tasks, a Z or Z’-task and an X-task, or an R3 or greater task are

scheduled by FFDL in the pretime of p, and walg(p) ≥ 3. If there is a Z’-task in

the pretime of p, we have busyalg > prep − 1 > busyopt(prep) > 1
2
opt + 1 − 1 = 1

2
opt

Suppose FFDL scheduled only two X-tasks X1 and X2 with X1 ≥ X2 in prep.
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Note that prep > 3 > preicp for any i ∈ {1, 2}. Thus 1
4
opt < X1 < Ui. Then

busyalg(cp) = U1 + U2 + busyalg.after(cp) ≥ 1
4
opt + 1

4
opt + 1

2
opt = opt, and cp is not

compensating. Thus at least 3 X-tasks, a Z- or Z ′-task and an X-task or an R3- or

greater task are scheduled by FFDL in prep. Thus walg(prep) ≥ 3. Since as shown

above walg(postp) ≥ 2, walg(p) ≥ 5 geqwopt(p), since wopt(p) < 6.

Suppose wopt(prep) = 5. If there is no Z ′-task in prep, we have busyalg(p) >

prep − 1 ≥ busyopt(p)− 1 ≥ 4. If there is a Z ′-task in prep, busyopt(prep) > 1
2
opt + 2,

and busyalg(prep) > busyopt(prep) − 1 > 1
2
opt + 1 ≥ 3.5. At least 3 X-tasks (since

prep ≥ 2.5 and they must be less long than 1.5), a Z- or Z ′-task and an X-task

or an R3- or greater task are scheduled by FFDL in prep, and walg(p) ≥ 3. Since

walg(postp) ≥ 2, we have walg(p) ≥ 5 ≥ wopt(p).

Suppose p has 2 pretimes pre1 and pre2. Without loss of generality we may

assume that wopt(pre1) ≥ wopt(pre2).

We have walg(pre1) ≥ 1, and walg(pre2) ≥ 1.

Suppose wopt(pre1) ≤ 2, and wopt(pre2) ≤ 2. Then, if wopt(postp) = 0, (1) holds,

since walg(postp) ≥ 2, and so walg(p) ≥ 4 ≥ wopt(p).

If wopt(postp) = 1, we have busyalg(postp) > postp − 1 ≥ busyopt(postp) + 1
2
opt−

1 ≥ 1
2
opt. We have postp ≥ 1

2
opt > preicp, for i ∈ {1, 2}. Thus if only two X-

tasks X1 and X2, X1 ≥ X2 are scheduled in postp we have Ui ≥ X1 ≥ 1
4
opt, and

busyalg(cp) = U1 +U2 +busyalg.after(cp) > opt, and cp is not compensating. Also note

that busyalg(postp) > Z1 for any Z-task Z1. Thus at least 3 X-tasks, a Z-task and

an X-task, or a Z ′- or greater task are scheduled by FFDL in postp. walg(postp) ≥ 3,

and (1) holds.

Suppose wopt(pre1) = 3. Then by the same argument as in the case when p has

only one pretime and wopt(prep) = 3, we have walg(pre1) ≥ 2. Since walg(postp) ≥ 2

we have walg(p) = walg(pre1) + walg(pre2) + walg(postp) ≥ 5 ≥ wopt(p). There was no
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loss of generality assuming wopt(pre1) ≥ wopt(pre2), so all possible cases for processors

with two pretimes have been considered and (1) holds.

Thus statement (a) of this theorem holds. We proceed with proving statement

(b).

Suppose there is a compensating processor cp as described in the statement

(c) of Theorem C.2. Then, by statement (a) of this theorem there is at least one

Y -task Y1 in a time slot ts ≥ 2.5. Let i ∈ {1, 2}. Suppose preicp ≥ 2.5. Then

Ui ≥ preicp − 1 ≥ 1.5. Suppose preicp < 2.5. Then Ui has been considered by

FFDL before the Y -task was scheduled in ts, and thus Ui ≥ Y1 ≥ 1.5. We have

busyalg(cp) = U1 + U2 + busyalg.after(cp) > 1.5 + 1.5 + 1
2
opt > 1

2
opt + 1

2
opt = opt, and

cp is not compensating. △

As a consequence there must be a compensating processor as described in state-

ment (d) of Theorem C.2.

Lemma C.4 (U-task length)

Let ǫ = 1
2
opt− 2. Let cp be a compensating processor, and U1, U2, and U3, the tasks

in its FFDL-schedule. Then

U1 < 1.(3) +
2

3
ǫ

and all U -tasks are less or equal to U1 in a minimal counterexample.

Proof: Suppose this is not the case, and U1 ≥ 1.(3) + 1.(6)ǫ. Since cp is compen-

sating we have busyopt(cp) > 3U1 ≥ 4 + 2ǫ = opt, a contradiction.

Suppose there is a U -task U4 > U1. Then U4 must have been scheduled by

FFDL in a time slot ts ≤ pre1cp < 3, since otherwise it would have been scheduled in

pre1cp. Therefore U4 is alone in its time slot, and by Lemma A.12 we have U4 = U1,

contradiction. △
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Theorem C.5 (Constraint for FFDL-schedule)

Let ǫ = 1
2
opt−2. The end of the optimal schedule or the maximum end of a downtime

occur at a time that is greater or equal to 5, or the following statement is true:

(s1) there is a task X ∈ (1 + 1
2
ǫ, 1 + ǫ] in a time slot ts ∈ [3 + ǫ, 3 + 2ǫ).

Proof:

Let cp be a compensating processor, and U1, U2, and U3 the tasks in its FFDL-

schedule. We use the following task types and weights: X-tasks ∈ [1, 1
2
opt− 1], with

weight 1, U -tasks ∈ (1
2
opt − 1, 2) with weight 4

3
if they are < U1, and weight 4.(3)

3

otherwise, Z1-tasks ∈ [2, 1
2
opt] with weight 2, Z21-tasks ∈ (1

2
opt, 1

2
opt+ǫ), with weight

2+ 1
3
, Z22-tasks ∈ [1

2
opt+ ǫ, 3), with weight 2+ 2

3
. We shall call Z2-task any task that

is either a Z21-task or a Z22-task. In case U1 < 1.5 we also consider a subcategory

of Z22-tasks, Zcp-tasks ∈ (2U1, 3), with weight 8.6
3

. We will consider Z22-tasks to be

a subcategory of Z2-tasks while knowing that all Z2-tasks have a weight of 2 + 1
3

or greater. Furthermore we consider R3-tasks ∈ [3, 4) with subcategories R31-tasks

∈ [3, 3+ǫ) with weight 3 and R32-tasks ∈ [3+ǫ,min(3+2ǫ, 4)) and weight 3+ 1
3
, and

R33-tasks ∈ [3+2ǫ,min(4, 3+3ǫ)) with weight 3+ 2
3
, and R34-tasks ∈ [3+3ǫ, 4) with

weight 4. Last we consider R4-tasks ∈ [4, 5) with weight 4. A special type of U -task,

Ucp, weighed at 4.(3)
3

, is made of tasks that equal to the U -tasks of the compensating

processor, while all other U -tasks, which are weighed at 4/3, will be called Ua-tasks.

Define wmin(ts) as the minimum weight that the FFDL-schedule of a minimal

counterexample can have in a time slot of size ts when the Multifit bar is set at

b ≥ 3
2
max(opt,maxp∈P γp) and FFDL fails to schedule all tasks. Also we denote with

opt the maximum between the end of the optimal schedule and the last end of a

downtime in this proof.
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Let p∗ be the processor on which FFDL schedules the last U -task. We next show

that, assuming that opt < 5 and statement (s1) is not true, we have

∑

p∈P

walg(p) ≥
∑

p∈P

wopt(p) − 1/3,

which is untrue, since we know that

∑

p∈P

walg(p) =
∑

p∈P

wopt(p) − 1,

because the optimal schedule contains X, while the FFDL-schedule does not.

For every processor p we show that:

(1) either p is not p∗, and walg(p) ≥ wopt(p),

or walg(p) ≥ wopt(p) − 1
3

when p is p∗.

Let p be an arbitrary processor. We shall first consider case (a), when processor

p does not contain a Ucp-task in its schedule, except if the Ucp-task is in the posttime

and p has exactly one pretime. Note that any Ucp-task is also a U -task, and is

weighed higher than U -tasks.

Suppose p has no pretime. If wopt(p) ≤ 1, (1) holds, since the FFDL-schedule

must have at least a task on p, as postp − 1 ≥ 1
2
opt − 1 ≥ 1.

Suppose wopt(p) = 4/3. Then there is a U -task in the optimal schedule after the

downtime of p, and busyopt(p) > 1
2
opt − 1 = 1 + ǫ. Also, ǫ > 0, since opt > 4.

Then busyalg(postp) > 1
2
opt − 1 + 1

2
opt − 1 = opt − 2 ≥ 2. Since no single X- or

U -task can fill this time, we have walg(postp) ≥ 2.

Suppose wopt(p) = 2. Then busyopt(postp) ≥ 2, and busyalg(postp) > 2 + 1
2
opt −

1 ≥ 3. Note that 1
2
opt − 1 < 5/2 − 1 = 1.5, and so two X-task can not result in a

busy time that is greater than 3, thus walg(postp) ≥ 2 + 1
3
.
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Suppose wopt(p) = 2 + 1
3
. Then busyopt(postp) ≥ 1

2
opt, and busyalg(postp) >

1
2
opt + 1

2
opt− 1 = opt− 1 > 3. By the same argument as above, walg(postp) ≥ 2 + 1

3
.

Suppose wopt(p) = 2 + 2
3
. Then there are 2 U -tasks in the optimal schedule.

Then busyalg(p) > 2(1
2
opt − 1) + 1

2
opt − 1 = 3

2
opt − 3 = 3 + 3ǫ. Two X-tasks or a

U -task and an X-task would have a busy time that is less than 2 + 1 + ǫ = 3 + ǫ,

thus at least two U -tasks are needed to fill this time. Note that a Z1 or a Z2-task

alone also can not fill busyalg(postp). Then walg.after(p) ≥ 2 + 2
3
.

Suppose wopt(p) = 3. Then busyalg(postp) > 3 + 1
2
opt − 1 ≥ 4. Two U -tasks are

one Z1 or Z2-task are not enough to fill a time of 4, thus a combination of at least 3

tasks, a Z1 or Z2-task and an X or U -task, or an R3- or greater tasks are scheduled

in postp. Thus walg(postp) ≥ 3.

Suppose wopt(p) = 3 + 1
3
. Then busyopt(p) > 2 + 1

2
opt − 1, and busyalg(p) > 2 +

2(1
2
opt−1) = opt = 4+2ǫ. Three X-tasks add up to at most 3+3ǫ < 3+2ǫ+1 < 4+2ǫ.

At least 2 X-tasks and a U -task, or 2 U -tasks and an X-task, or 3 U -tasks, or a

Z1-task and two tasks or a Z2- or greater task, or a Z2-task and a U - or greater task,

or an R3-task and another task, or an R4- or greater task are scheduled by FFDL in

postp, and walg(postp) ≥ 3 + 1
3
.

Suppose wopt(p) = 3+ 2
3
. busyopt(p) > opt− 1. busyalg(p) > opt− 1+ 1

2
opt− 1 =

3 + 2ǫ + 1 + ǫ = 4 + 3ǫ. A U -task and 2 X-tasks add up to less than 2 + 1 + ǫ + 1 + ǫ

busy time, and thus walg(postp) ≥ 3 + 2
3
.

Suppose wopt(p) = 4. Suppose there is no U -task in the optimal schedule.

busyalg(postp) > busyopt(p) + 1
2
opt − 1 ≥ 4 + 1 + ǫ = 5 + ǫ. Two U -tasks and an

X-task add up to less than 4 + 1 + ǫ, and so at least 3 U -tasks are needed to fill

postp − 1 ≥ 5 + ǫ. Also, at least Z1- or Z2-task and at least two tasks that are less

than 2, or an R3-task and a U - or greater task, or an R4-task and an X- or greater

task are needed to fill postp − 1. Thus walg(postp) ≥ 4. Suppose there are U -tasks
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in the optimal schedule. Then the optimal schedule of p is made of 3 U -tasks. Then

busyalg(postp) > 4 + 4ǫ. We know any X-task is < 1 + ǫ. Suppose 2 U -tasks U4 and

U5, U4 ≥ U5 can fill a time of 3+3ǫ. Then U1 ≥ U4 > 1.5+1.5ǫ, where U1 is the task

scheduled in pre1cp., which can not happen by Lemma C.4. Thus at least 4 X-tasks,

an X-task, 2 U -tasks and another task, or 3 U -tasks, or a Z1-task or a Z2-task and

tasks of weight more than 2, a Z22-task and a U -task or two X-tasks, an R3-task

and at least another task or an R4- or greater task are scheduled by FFDL in postp.

We have walg(postp) ≥ 4.

Suppose wopt(p) = 4+1
3
. Then busyopt(p) > 1

2
opt−1+3 = 1

2
opt+2 busyalg(postP ) >

4 + ǫ + 1 + ǫ = 5 + 2ǫ > 2 + 2 + 1
2
opt − 1 + ǫ. Suppose the FFDL-schedule of p is

composed of 3 U -tasks. Then the average length of these tasks is > (5 + 2ǫ)/3 >

1+2/3+2ǫ/3. Since postp > postcp, the U -tasks of the compensating processors are all

> 1+2/3+2ǫ/3. Thus busyopt(cp) > busyalg(cp) > 3(1+2/3+2ǫ/3) = 3+2+2ǫ > 5,

contradiction to the assumption that opt < 5.

Suppose wopt(p) = 4+ 2
3
. Then busyopt(p) > 4+2ǫ. busyopt(p) > 2(1

2
opt−1)+2 =

opt, contradiction.

Suppose p has one pretime prep. Here, we consider the case when there are no

Ucp-tasks in OPT (prep), but there can be Ucp-tasks in OPT (postp).

We know that prep ≥ 2. Suppose wopt(p) ≤ 2. Suppose that there is a single task

U0 < 2 in the FFDL-schedule of prep. Then, by Lemma A.12 U0 = U1 > 1
2
opt − 1,

where U1 is the task in the first pretime of the compensating processor cp. Thus

walg(prep) ≥
4.(3)

3
.

If wopt(postp) = 0, we have walg(postp) ≥ 4.(3)
3

, and thus walg(p) > wopt(p). If

wopt(postp) ∈ {1, 4
3
, 4.(3)

3
}, we have busyalg(postp) > 1 + 1

2
opt − 1 ≥ 2, and thus at

least 2 tasks of length less than 2 or a Z1- or greater task are scheduled in postp. We

have walg(postp) ≥ 2, walg(p) ≥ 3 + 1.(3)
3

≥ wopt(p).
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If wopt(postp) = 2. Then busyalg(postp) > 2 + 1 + ǫ. A U - and an X-task can

not fill this time (U < 2, X ≤ 1 + ǫ), thus at least 3 X-tasks, 2 U -tasks, or a Z1-

or Z2-task and an X-task or an R3- or greater task are scheduled by FFDL in postp.

Thus wopt(postp) ≥ 2 + 2
3
, and walg(p) ≥ 4 ≥ wopt(p).

Suppose wopt(postp) ∈ {2 + 1
3
, 2+1.(3)

3
}. busyalg(postp) > 2 + ǫ + 1 + ǫ = 3 + 2ǫ.

Suppose the FFDL-schedule of postp is composed of 2 U -tasks. Then their average

is > 1.5 + ǫ, which is impossible by Lemma C.4. Thus 2 U -tasks can not be the

FFDL-schedule of postp. At least 3 X-tasks, a U -task and 2 X-tasks, a Z1- or Z2-

task and an X-task, or an R3- or greater task are scheduled by FFDL in postp. Then

walg(postp) ≥ 3. Note that we have just shown, since in the proof of this case we

only used that postp ≥ 4 + 2ǫ, that:

(C.5.2) wmin(4 + 2ǫ) = 3.

walg(p) ≥ 4.(3)/3 + 3 = 2 + 2 + 1.(3)/3 ≥ wopt(p).

If wopt(postp) ≥ 2 + 2
3
, we have γp + busyopt(postp) > 2 + 2(1

2
opt − 1) = opt, a

contradiction.

Suppose wopt(prep) = 2 + 1
3
. Again walg(prep) ≥ 4.(3)

3
. If wopt(postp) = 0, we

have (1), and walg(postp) ≥
4
3
.

Suppose wopt(postp) = 1 then busyalg(postp) > 1 + 1 + ǫ, and walg(postp) ≥ 2,

since no single task less than 2 can fill a busy time that is greater than 2.

Suppose wopt(postp) ∈ {4
3
, 4.(3)

3
}. We have busyalg(postp) > 1 + ǫ + 1 + ǫ. No

two X-tasks or Z1-task alone can fill this time. At least 3 X-tasks, a U -task and an

X-task, a Z1-task and an X-task or a Z2- or greater task are scheduled by FFDL in

postp. Thus walg(postp) ≥ 2 + 1
3
, and walg(p) ≥ 3 + 2.(3)

3
≥ wopt(p).

Suppose wopt(postp) = 2. busyalg(postp) > 2 + 1 + ǫ. Suppose 2 U -tasks could

fill this time. Then their average is > 1.5 + 1
2
ǫ, and since pre1cp < 3 < postp, we

have U1 > 1.5 + 1
2
ǫ, and busyalg(cp) = 3U1 > 4.5 + 3

2
ǫ = 1

2
opt − 1 + 3.5 + 1

2
ǫ =
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1
2
opt + 2.5 + 1

2
ǫ >

opt<5
opt + 1

2
ǫ, and cp is not compensating.

Suppose wopt(postp) = 2+ 1
3
. Then busyopt(p) = busyopt(prep)+ busyopt(postp) >

1
2
opt + 1

2
opt = opt, contradiction. the same happens if wopt(postp) > 2 + 1

3
.

Suppose wopt(prep) = 2+ 2
3
. Then prep > 2+2ǫ. Suppose there is a single U -task

U0 in the pretime of p. Then we have U0 = U1 by Lemma A.12. If wopt(postp) = 0, (1)

holds. If wopt(postp) = 1, busyalg(postp) > 2+ ǫ. If postp > 3+2ǫ, postp −1 > 2+2ǫ,

and walg(postp) ≥ 2+1/3, since no two X-tasks and no Z1-task can fill busyalg(postp).

Then (1) holds. If postp < 3 + 2ǫ, and only 2 X-tasks are in OPT (postp), at least

one of them must be > 1 + 1
2
ǫ, and we have statement (s1) of this theorem. Thus

there are at least a U -task and an X-task, a Z1-task and another task, a Z2- or

greater task, or three X-tasks in FFDL(postp). We have walg(postp) ≥ 2 + 1/3, and

walg(p) ≥ w(U1) + 2 + 1/3 ≥ 2 + 2/3 + 1 = wopt(p). Also we have shown that:

(C.5.3) wmin(3 + ǫ) ≥ 2 + 1
3
.

If wopt(postp) ∈ {4/3, 4.(3)/3}, busyalg(postp) > 2 + 2ǫ, and postp ≥ 3 + 2ǫ

since there must be is a U -task in OPT (postp). Then busyalg(postp) > 2 + 2ǫ, and

postp > 3 + 2ǫ. No two X-tasks or Z1- or Z21-task alone can fill busyalg(postp). Sup-

pose there are a U -task U4 and an X-task in postp. Suppose that after scheduling U4

there is still a U -task U5 that can be scheduled by FFDL. We have U5 ≤ U4. Suppose

postp−U4 < U5. Then U4 ≥ 1.5+ ǫ, and since we have U1 ≤ U4, busyopt(cp) > 3U1 ≥

4.5 + 3ǫ ≥ opt − 2 + 2.5 + 3ǫ > opt, contradiction. If postp − U4 ≥ U5, then we have

two U -tasks in postp, or at least a Z22-task or a Z21 or a Z1-task and another task,

or three X-tasks in the FFDL-schedule of postp, and walg(postp) ≥ 2 + 2
3
. Then (1)

holds. The only other case is when there is no more U -task remaining to scheduled

by FFDL after U4, thus p is the processor with the last scheduled U -task by FFDL,
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p∗, and we have wopt(p) ≥ wopt(prep)+1+ 4
3

> 3+ 2.(3)
3

≥ wopt(p)− 1
3
. Note that this

holds even when the U -task in OPT (postp) is a Ucp-task. We have that if p is not p∗

(C.5.4) wmin(3 + 2ǫ) ≥ 2 + 2
3
,

and if p is p∗, then wmin(3 + 2ǫ) ≥ 2 + 1
3
.

If wopt(prep) = 3 we have walg(prep) ≥ 2, and by the same arguments as in the case

before, which showed that in all cases that can occur for postp we have wopt(postp) ≤

walg(postp) − 1, (1) holds.

If wopt(prep) = 3 + 1
3
, prep ≥ busyopt(prep) = 3 + ǫ, and busyalg(prep) ≥ 2 + ǫ.

If we have 2 X-tasks in the FFDL-schedule of the pretime of p then there are X-

tasks > 1 + 1
2
ǫ in time slots that are greater than 3 + ǫ, but less than 3 + 2ǫ (else the

time to fill would be at least 2 + 2ǫ, and two X-tasks add up to less than that), and

we have statement (s1) of this theorem. Any Z1-task is less than 2+2ǫ, so FFDL can

not have scheduled only a Z1-task in prep. If we have at least one task that is ≥ Z2

or two tasks one of which is a U -task, the weight difference to the optimal schedule’s

weight in prep is at most 1, and (1) holds.

Suppose wopt(prep) = 3+ 2
3
. busyopt(prep) > 3+2ǫ, and since wmin(3+2ǫ) ≥ 2+ 2

3
,

we have walg(prep) ≥ 2 + 2
3
. Since opt ≤ 4 + 2ǫ, no task can be in OPT (postp). So

(1) holds, since walg(postp) > 1.

Suppose wopt(prep) = 4: OPT (prep) is either made of three U -tasks, or we have

busyopt(prep) ≥ 4. No task can be fit after the downtime in the optimal schedule: if

there were a task in the optimal schedule of postp, in the first case we would have

busyopt(p) > 3 + 3ǫ + 1 = 1
2
opt + 2(1

2
opt − 1) = opt + 1

2
opt − 2 > opt, and in the
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second case the optimal schedule would be > 5.

Suppose OPT (p) is made of 3 U -tasks. Then prep > 3 + 3ǫ > 3 + 2ǫ. Recall

that wmin(3 + 2ǫ) = 2 + 2
3

by statement (C.5.4). Thus walg(prep) ≥ 2 + 2
3
, and since

walg(postp) > 4
3
, and no task can be in OPT (postp), (1) holds.

Suppose busyopt(prep) ≥ 4. Then busyalg(prep) ≥ 3. Suppose there are 2 tasks

only in the FFDL-schedule of prep. If one of them is ≥ 2 we have walg(prep) ≥ 3, and

since walg(postp) ≥ 4.(3)/3, (1) holds. Suppose both tasks, X1 and X2, with X1 ≥ X2

are < 2. Since prep > 3 > pre1cp, we have X1 ≤ U1. Also 1.5 < (X1 + X2)/2 ≤ X1.

Since opt < 5 we have ǫ = opt/2−2 < 0.5, and thus X1 is a U -task. If X2 is also a U -

or greater task, we have walg(p) ≥ 2(4/3) + 4.(3)/3 > 4 = wopt(p). Otherwise, since

postp − X1 ≥ 2, and any U -task can fit in that time, X2-being an X-task implies

that there are no more U -tasks after X1 to schedule, and thus p = p∗. In this case

we have walg(p) ≥ wopt(p) − 1/3.

Suppose wopt(prep) = 4 + 1
3
. busyopt(prep) ≥ 4 + 1 + ǫ. busyalg(prep) > 3 + ǫ. A

U - and an X-task can not fill this space, since U tasks are less than 2 and X-tasks

are < 1 + ǫ. Thus at least 2 U -tasks, 3 X-tasks, a Z-task and another task, or an

R3- or greater task are scheduled in the FFDL-schedule of prep, and walg(prep) ≥ 3

unless the FFDL-schedule of p is made of 2 U -tasks U4 and U5, in which case we

have from Lemma C.4

prep − U4 − U5 ≥ 4 + ǫ − 2(1.(3) + 0.(6)ǫ) = 1.(3) − 0.(3)ǫ >
ǫ<1

1.

Thus FFDL(prep) can not be made of two U -tasks and we have walg(prep) ≥ 3.

Since walg(postp) ≥ 4.(3)/3, (1) holds. Also, we have shown that:

wmin(4 + ǫ) ≥ 3.
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Suppose there are 2 pretimes on p. If both pretimes have weight 2 then, since

in both pretimes and in the posttime there must be at least a U -task (or more than

one task), (1) holds.

Suppose wopt(pre1p) = 2 + 1/3. Then opt ≥ pre1p + pre2p ≥ 4 + ǫ. Suppose

there is only one task U5 in the FFDL-schedule on pre1p, and only one task U6

in pre2p, and one task U7 < 2 in postp. Note that if there are more than one

task or a task longer or equal to 2 in any of those time slots (1) holds. We have

U5 = U6 = U7 = U1, and all these tasks are of type Ucp. (1) holds: If U1 < 1 + 2ǫ we

have walg(p) = 4 + 1/3 = wopt(p), and otherwise we have walg(p) = 5.

Next, we consider the case when there is at least one Ucp-task in the optimal

schedule of p. Let all U -tasks that are not Ucp-tasks be called Ua-tasks.

Suppose there is no pretime on processor p. Suppose there is one Ucp-task on

it. If the optimal schedule has only one Ucp-task on it, (1) holds, as busyalg(postp) ≥

U1 + 1
2
opt − 1 ≥ 2, and thus wopt(p) ≥ 2.

If the optimal schedule has a Ucp-task Ucp1 and an X-task or a U -task in postp,

we must have busyalg(p) > U1 +1+ 1
2
opt− 1 ≥ U1 +2+ ǫ. Any X-task is < 1

2
opt− 1,

any U -task that is not a Ucp-task is < U1, and any U that was scheduled by FFDL

in postp is ≤ U1 ≤ Ucp1, since postp > pre1cp. Suppose there is a U -task or an X-task

U4 in postp. We have busyalg(p)−U4 > 2+ǫ, a time that can be filled only with tasks

that have a total weight of at least 2, and walg(p) ≥ 3 > wopt(p). Suppose there is

no U - or X-task in FFDL(postp). Any Z-task can not fill busyalg(p), and thus we

have walg(p) ≥ 3 > 2w(U1) ≥ wopt(p). We have also shown that

wmin(U1 + 2ǫ) ≥ 3

Suppose there are 2 X-tasks X1 and X2 in the optimal schedule (in addition to

the Ucp-task Ucp1). Three X-tasks are not enough to fill busyalg(cp) > 2+U1+1+ǫ ≥
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2 + 1 + ǫ + 1 + ǫ, since (X) < 2, and (X) < 1 + ǫ for any X-task (X). Thus if there

are 3 X-tasks on p walg(p) ≥ 4. If there are only 2 X-tasks X4 and X5 on p we have

busyalg(p) − X4 − X5 > 2, and walg(p) ≥ 4.

Suppose there is at most 1 X-task on p. Suppose there is a U -task U4 in the

FFDL-schedule of p. We have U4 ≤ U1 ≤ Ucp1. busyalg(p) − U4 ≥ 3 + ǫ. Any X- or

U -task is < 2, and any X-task is < 1+ǫ, thus at least 2 U - or greater tasks, a Z-task

and at least an X-task, an R3- or greater task, or 3 tasks are in the FFDL-schedule

in addition to U4 on p, and walg(p) ≥ 4/3 + 2 + 2/3 = 4 ≥ 3 + 2
3
≥ wopt(p).

Suppose there is no U -task on p. Suppose a Z1- or Z21-task Z4 is on p. Z4 <

2 + 2ǫ. busyalg(p)−Z4 > 2, and walg(p) ≥ w(Z4) + 2 ≥ 4. A Z22-task and an X-task

can only fill a time that is < 3 + 1 + ǫ < busyalg(p), and thus at least a Z22-task and

two tasks that are less than 2 or a U -task are needed to fill busyalg(p). We have in

this case, again, walg(p) ≥ 4. An R3-task can not fill busyalg(p), and weighs at least

3, thus walg(p) ≥ 4 ≥ wopt(p) if such a task occurs in the FFDL-schedule of p. We

have just shown that

wmin(U1 + 3 + ǫ) ≥ 4

Suppose OPT (p) = [|Ucp1Ua1X1, where the tasks are of types Ucp, Ua and X

respectively. We have wopt(p) ≤ 4 and busyalg(p) > 3 + 2ǫ + 1 + ǫ. Note that the

busy time to be filled is greater than in the case above, and thus, as in the previous

case we have walg(p) ≥ 4 ≥ wopt(p).

Suppose OPT (p) ∈ {[|Ucp1Ua1Ua2, [|Ucp1
(Z4)}, where the first task is of type

Ucp and the second and third tasks is of type Ua, and Z4 is a Z22-task. In case

Ucp1 < 1 + 2ǫ we have busyalg(p) > busyopt(p) + 1 + ǫ ≥ Ucp1 + 3 + 3ǫ ≥ 4 + 4ǫ.

Suppose there are X-tasks in the FFDL-schedule of p. 4 X-tasks are not enough to

fill this time, as each one is < 1 + ǫ, thus at least (a) 5 X-tasks, (b) 3 X-tasks and
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a U - or longer task, (c) 2 X-tasks or a Z21-task (or Z1-task) and a Z22 or greater

task, or (d) 1 X-task and a Ua-task, a Ucp-task and tasks filling a busy time > 2,

and thus which also have a weight ≥ 2, are in the FFDL-schedule of postp, and we

have walg(p) ≥ 4 + 1
3
≥ wopt(p). Suppose there are no X-tasks in the FFDL-schedule

of p.

Suppose there are no X-tasks in FFDL(p). Any Ucp-task that is scheduled by

FFDL in postp must be equal to U1, since otherwise it would have been scheduled on

the compensating processor. Thus any U -task on p is less or equal any Ucp-task. So,

if there is one in FFDL(p) the remaining time to be filled is > 3 + 3ǫ. If there is no

second U -task on p we must have at least a Z-task and another task, or an R3- or

greater task, and walg(p) ≥ 4 + 1/3. If there is a second U -task U5, it is < 2, and so,

any single task U6 completing the FFDL-schedule of p must fulfill U5 + U6 > 3 + 3ǫ,

implying that, if U6 is a U -task, U1 ≥ max(U4, U5) ≥ 1.5 + 1.5ǫ, contradiction to

Lemma C.4. Thus more than one task < 2 or a task ≥ 2 completes the FFDL-

schedule of p (together with the two U -tasks), and we have walg(p) ≥ 4 + 2/3 ≥

wopt(p). If there is no second U -task at least a Z-task and an X-task or an R3-task

are required to complete the FFDL-schedule of p, and walg(p) ≥ 4 + 1/3.

Suppose there is no U -task or X-task on p. Two Z1-tasks or two Z21 or a

Z1-task and a Z21-task can not fill a time > 4 + 4ǫ. Thus at least a Z22-task and

another Z-task, or an R3 or R4-task and another task greater than 2 are scheduled

in FFDL(postp), and walg(postp) ≥ 4 + 1/3.

Suppose OPT (p) = [|Ucp1Ucp2Ua1. busyalg(p) ≥ Ucp1 +Ucp2 +Ua1 +1+ǫ ≥ 4+4ǫ.

Since all X-tasks are less than 1 + ǫ, 4 X-tasks are not enough to fill this time. So

if there are 4 X-tasks in the FFDL-schedule of p we have walg(p) ≥ 5. If there are

3 X-tasks X1, X2, X3 in the FFDL-schedule of p, we note that any U -task U4 must

be less than or equal to U1, since postp is considered by FFDL after pre1cp, and thus
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less than or equal to to Ucp1 and Ucp2. So busyalg(cp) − X1 − X2 − X3 − U4 > 0,

and thus we have walg(p) > 5 + 1/3. If there is a task greater than a U -task on p in

addition to the 3 X-tasks we have walg(p) ≥ 5.

Suppose we have another U -task U5, in addition to tasks X1, X2, U4 instead of

X3 on p. Then we have U5 ≤ Ucp1, and U4 < Ucp2, and X1 + X2 < Ua1 + 1 + ǫ, and

so X1 + X2 + U4 + U5 < busyalg(p), and thus walg(p) > 5 + 2/3. Any combination of

tasks that can fill Ua1 + 1 + ǫ weighs more than 2, thus any possible FFDL-schedule

on p if there are 2 U -tasks in it weighs at least 4/3 + 4/3 + 2 = 4 + 2/3 ≥ wopt(p).

Suppose there is only 1 U -task U4 ≤ U1 ≤ Ucp1 on p. The time remaining to be

filled is > Ucp2 + Ua1 + 1 + ǫ. 3 X-tasks are not enough to fill the remaining busy

time. Any Z-task can also not fill a time that is > 3. An R31-task is also not enough

for that.Thus walg(p) ≥ w(U4) + 3 + 1/3 ≥ wopt(p).

Suppose there are no U -tasks, and less than 3 X-tasks in the schedule of p.

Suppose there are 2 X-tasks. The remaining busy time is > Ucp1 + Ucp2. If this time

can be filled by a Z-task it must be a Z22-task and we have walg(p) ≥ 4 + 2/3 ≥

wopt(p). If a task greater than a Z-task is on p we have walg(p) ≥ 5.

Suppose there at most one X-task on p. Suppose there is a Z1- or a Z21-task

on p. The remaining busy time is > 2 + 2ǫ. Any Z-task filling this time must be a

Z22-task, and we would have walg(p) ≥ 4 + 2/3. If there is an X-task in this time,

then there must be at least another task, that is neither an X- or a U -task, and we

have walg(p) ≥ 5. If there is an R3- or greater task we have walg(p) ≥ 5 > wopt(p).

Suppose there is a Z22-task on p. The remaining busy time is > 2, and can be

filled only with tasks the weight of which is at least 2. Then we have walg(p) ≥ 4+2/3.

Suppose there is an R31-task or R32-task M3 (and at most one X-task) in the

FFDL-schedule of p. busyalg(p)−M3 ≥ 3 + 2ǫ, and since wmin(3 + 2ǫ) ≥ 2 + 2/3, we

have walg(p) ≥ 3 + 2 + 2/3 > wopt(p).
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Suppose there is a R33- or greater task M on p. If M is a R33-task, busyalg(p)−

M > 1 + ǫ, and so, since there are no U -tasks on p, walg(p) > 3 + 2/3 + 2 > wopt(p).

Suppose M is an R34 or an R4-task. We know that M < 4 + 2ǫ = opt < 4 + 4ǫ <

busyalg(p). Thus walg(p) ≥ 5.

Suppose OPT (p) ∈ {[|Ucp1X1X2X3, [|Ucp1R31, [|Ucp1Z4X1}, where Z4 is a Z1-

task, Ucp1 is a Ucp-task, and X1, X2, and X3 are X-tasks.

We have wopt(p) = 3+w(Ucp1) = 4.(3)/3. We have busyalg(postp) = busyalg(p) >

Ucp1 + 3 + 1 + ǫ > 5 + 2ǫ

Suppose the maximum task on p is an R4-task. Then at least another task is

needed to fill busyalg(p), and we have walg(p) ≥ 5. Suppose the maximum task on

p is an R32-task. The remaining time to be filled is > 1 + 2ǫ, and at least a U - or

greater task or 2-tasks are needed for that. We then have walg(p) ≥ 3 + 1/3 + 4/3 =

4 + 2/3 ≥ wopt(p). Suppose the maximum task on p is an R31-task. The remaining

time to be filled is > 2 + ǫ, and only tasks weighing at least 2 can do that. We

have walg(p) ≥ 5. Suppose the maximum task on p is a Z22-task or a Z21-task. The

remaining time to be filled is > 2 + 2ǫ. We have walg(p) ≥ 2 + 1/3 + 2 + 1/3, since a

Z21-task or a U -task alone or 2 X-tasks are not enough to fill a time of 2 + 2ǫ.

Suppose the maximum task on p is a Z1-task M1. busyalg(p)−M1 > 3+ǫ. If there

is another Z1-task there must be at least another task and busyalg(p) ≥ 5. If there is

a U -task U4, we must have U4 ≤ U1 ≤ Ucp1, and busyalg(p)−U4−M1 > 4+ǫ−M1 > 2,

and walg(p) ≥ 2 + 4/3 + 2 = 5 + 1/3.

Suppose the maximum task in FFDL(p) is a U -task U4. We have U4 ≤ Ucp1, and

busyalg(p)−U4 > 4 + ǫ. Suppose there is another U -task U5. busyalg(p)−U4 −U5 >

2 + ǫ, a time length which can be filled only by tasks with a weight of at least 2. We

have walg(p) ≥ 4/3 + 4/3 + 2 = 4 + 2/3 ≥ wopt(p).



87

Suppose there is no second U -task in FFDL(p). There must be at least three

tasks X1, X2, and X3 in the FFDL-schedule of p in addition to U4, since two X-tasks

can not fill a time of 4. We have 1 + ǫ > X1, and thus X2 + X3 > 3, and thus

max(X1, X2) > 1.5 >
opt<5

1
2
opt − 1. Then there is a second U -task in prep, which

contradicts the assumption at the beginning of this paragraph. Thus there must be

at least 4 X-tasks in addition to U4 on p. walg(p) > 5

Suppose there are only X-tasks on p. Since in the case above 3 X-tasks and a

U -task were not enough to fill busyalg(p), neither are 4 X-tasks. Thus there must be

at least 5 X-tasks, and walg(p) ≥ 5.

Suppose OPT (p) = Ucp1Ucp2Ucp3. We have busyalg(p) > 3U1+1+ǫ. Suppose the

maximum task on p is an R4-task or an R34-task. We know that R4 ≤ 4 + 2ǫ = opt.

Thus another task is needed to fill the time busyalg(p), and walg(p) ≥ 5.

Suppose the maximum task on p, M1, is an R3-task that is less than 3 + 3ǫ, or

a Zcp-task. Then busyalg(p) − M1 > Ucp1, since M1 < 3 + 3ǫ ≤ Ucp2 + Ucp3 + 1 + ǫ.

Thus at least a U -task U4 ≤ Ucp1 and another task or or 2 X-tasks, or a Z-task are

necessary to fill this space. If a U -task U4 is scheduled by FFDL in postp we must

have U4 ≤ U1 ≤ Ucp1, because of U4 was considered by FFDL after U1, and because

by definition U1 has the least length a Ucp-task can have. So walg(p) ≥ 2 + 8.(6)/3 ≥

wopt(p).

Suppose the maximum task on p is a Z2-task M2 < 2U1. If M2 is a Z22-task,

we have busyalg(p)−M2 > Ucp1 + 1 + ǫ ≥ 2 + 2ǫ. At least a Z2-task, or a U - and an

X-task, or 3 X-tasks must also be in FFDL(p), and walg(p) ≥ 5. If M2 is a Z21-task

or a Z1-task. We have busyalg(p)−M2 > Ucp1 +Ucp2, since M2 < 2+2ǫ ≤ 1+ǫ+Ucp3.

No other Z21-task alone can fill this space, neither can two U -tasks that are ≤ U1,

and thus, at least a Z21-task and another task, or any combination of 3 tasks < 2

are also in the FFDL-schedule of p, and we have walg(p) ≥ 5 ≥ wopt(p).
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Suppose the maximum task on p is a U -task U4. Suppose there are two more

U -tasks U5 and U6 in the FFDL-schedule of p. We have U4, U5, U6 ≤ U1 ≤ Ucpi for

i ∈ {1, 2, 3}. Thus at least another U -task or two X-tasks are needed to fill busyalg(p),

and we have walg(p) > 5. Suppose there is only one more U -task U5 in addition to

U4 on p. At least three X-tasks are needed to fill busyalg(p)−U4 −U5 > Ucp3 +1+ ǫ,

and walg(p) > 5. Suppose there is no other U -task on p. At least 4 X-tasks are

needed to fill busyalg(p)−U4 > 3+3ǫ. Suppose there are only X-tasks on p. At least

5 X-tasks are needed to fill busyalg(p) > 4 + 4ǫ. We have walg(p) ≥ 5 ≥ wopt(p).

Suppose there is one pretime prep on p. Suppose there is a Ucp-task Ucp1 in the

optimal schedule of prep. If this is the only task in OPT (prep), since there is at least

a Ucp-task Ucp2 or two tasks in FFDL(prep), and walg(postp) > wopt(postp) as shown

in the case when there was no Ucp-task in OPT (prep), we have walg(p) > wopt(p).

Suppose there is also an X-task X1 in OPT (prep), and no other task. Any single

task in FFDL(prep) must be greater than Ucp1 ≥ U1, and, if it is less than 2, equal

to U1, by Lemma A.12. Then we have walg(prep) ≥ 2. If wopt(postp) = 0, we have

walg(postp) ≥ 4/3, and (1) holds.

If wopt(postp) ∈ {1, 4/3, 4.(3)/3} we have busyalg(postp) ≥ 1 + 1 + ǫ, and if

there are only 2 X-tasks in FFDL(postp) we have statement (s1) of this theorem.

walg(postp) ≥ 2.(3). Then walg(p) ≥ 4.(3) > 3.(8) = 4.(3)/3 + 1 + 4.(3)/3 ≥ wopt(p).

Suppose wopt(postp) = 2. Then busyalg(postp) > 2+1+ ǫ. We have shown above

that in this case walg(postp) ≥ 2 + 2/3. Then walg(p) ≥ 2 + 2 + 2/3 ≥ wopt(p).

Suppose OPT (prep) = Ucp1U4, where Ucp1 is a Ucp-task and U4 is another U -task.

busyalg(prep) > U1, and thus walg(prep) ≥ 2. Then wopt(postp) < 2, walg(postp) −

wopt(postp) ≥ 2.(3) − 4.(3)/3 = 2.(6)/3 (from walg(postp) ≥ 2.(3) when there is a

single task < 2 in OPT (postp)), and (1) holds.
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Suppose OPT (prep) = Ucp1X1X2. If there are only 2 X-tasks in the FFDL-

schedule of this pretime we have statement (s1) of this theorem. A Z1-task is <

2 + ǫ < busyopt(prep)− 1 < busyalg(p). Thus walg(prep) ≥ 2 + 1/3. If there is no task

in the optimal schedule of postp, (1) holds. If there is an X-task in OPT (postp),

busyalg(postp) > 1 + 1 + ǫ , and if there are only 2 X-tasks in FFDL(postp) we have

statement (s1) of this theorem. We have walg(postp) ≥ 2 + 1/3, since either a U -

and an X-task or a Z1-task and another task or at least a Z2-task are scheduled in

FFDL(postp). We have walg(p) ≥ 2 + 1/3 + 2 + 1/3 = 4 + 2/3 ≥ wopt(p).

Any task that is greater than an X-task can not be in OPT (postp), because

then we would have busyopt(p) > 2(1/2opt − 1) + 2 = opt, a contradiction.

Suppose OPT (prep) = Ucp1U4X1, where Ucp1 is a Ucp-task, U4 is a U -task, and

X1 is an X-task. busyalg(prep) ≥ U1 + 1 + ǫ. If there is a R3- or greater task in

FFDL(prep), walg(prep) ≥ 3. If there is only one Z-task in FFDL(prep), it must be

a Zcp-task in case U4 is a Ucp-task, and then walg(prep) ≥ 8.(6)/3. Else there must

be at least 2 U -tasks or 3 X-tasks in FFDL(prep), and walg(prep) ≥ 3. Concluding,

if U4 is a Ucp-task, walg(p) ≥ 8.(6)/3 + 4.(3)/3 > wopt(p). Suppose U4 is not a

Ucp-task. Then, if there is only a Z-task in FFDL(prep), it must be a Z2-task, and

walg(prep) ≥ 2.(3). Concluding, in all cases, walg(p) ≥ 2.(3)+4.(3)/3 = 3+2.(3)/3 =

wopt(p).

Suppose OPT (prep) = Ucp1X1X2X3, where Ucp1 is a Ucp-task and the other

tasks are X-tasks. No task can be in OPT (postp). Also walg(postp) ≥ U1, since

if there is a single U -task in postp it will be equal to U1 by Lemma A.12. We

have busyalg(prep) ≥ 3 + ǫ. We have shown above that wmin(4 + ǫ) ≥ 3, and thus

walg(prep) ≥ 3.

Suppose OPT (prep) = Ucp1Ucp2XorU1, where XorU1 is an X-task or a U -task of

any type. No tasks fit in OPT (postp). We show walg(prep) ≥
8.(6)

3
. This holds when
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an R3 or greater task or a Zcp- or greater task are in prep. If the maximum task in prep

is a Z-task M2, which is not a Zcp- task we have prep −M2 ≥ 1, and walg(prep) ≥ 3.

Suppose there are only tasks that are < 2 in prep. Any such task is less than the

Ucp-tasks, thus at least three tasks that are less than 2 are scheduled in FFDL(prep),

or X would fit in prep in addition to its FFDL-schedule. Again walg(p) ≥ 3. There

are no tasks in OPT (prep), but there must be at least a Ucp-task or a schedule of

greater weight, and thus we have walg(p) ≥ 8.(6)
3

+ 4.(3)
3

= 3(4.(3)
3

) ≥ wopt(p).

Suppose there are two pretimes on p. Suppose without loss of generality that

pre1p ≤ pre2p. No Ucp-task fits in postp if opt < 5.

Suppose that a Ucp-task is in pre1p. If there is no other task in OPT (pre1p), (1)

holds, as there are at least one Ucp-task or two tasks in each pretime and in postp in

the FFDL-schedule. If OPT (pre1p) = Ucp1 + X1, where X1 is an X-task, we must

have walg(pre1) ≥ 2, since any U -task U4 scheduled in pre1p by FFDL is ≤ U1, since

pre1p ≥ Ucp1 + 1 ≥ U1 + 1 > pre1cp, and U4 < 2 would have fit in pre1cp.

No second Ucp-task can be scheduled on p, except if it is scheduled alone in pre2p,

in which case (1) holds. If it is scheduled in pre1p we have opt > pre2p +2+2ǫ ≥ opt,

and if it is scheduled with another task in pre2 we have opt ≥ busyopt(pre1p) +

busyopt(pre2p) > 2(1 + ǫ + 1) ≥ opt.

Since pre1p and pre2p are exchangeable in this argument, we we conclude that

(1) holds for p if there are two pretimes on p and there is a Ucp-task in OPT (p). △

The next definition is useful for writing more concise proofs. It assumes a given

set of task types and a monotonic weight function defined for these task types.

Definition C.6 (Minimal configuration)

We call minimal configuration of a schedule of a time slot ts an ordered set of task

types, ordered in decreasing order of their weights and sizes, such that a set of tasks

of those types satisfy a certain condition such as a minimum busy time which results
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from the fact that the processor on which the time slot occurs is part of a minimal

counterexample, such that the removal of any of the tasks from the set leads to the

fact that the set does not satisfy the condition any more.

Lemma C.7

There are no tasks in the range [2, 2 + ǫ] in time slots ≥ 3.

Proof: Any Z1-task fits in postcp, since postcp ≥ 1/2opt = 2 + ǫ. We know that a

U -task, U3, is scheduled in postcp. If there is a Z1-task M1 in a time slot ts ≥ 2 + ǫ,

we have M1 ≤ 2 + ǫ ≤ postcp < ts, and U3 < M1, which implies that the FFDL

would have scheduled M1 in postcp and not in ts, since postcp was empty when M1

was scheduled, and it would have been considered by FFDL before ts. △

Next we show that statement (s1) of Theorem C.5 does not hold if opt < 5.

Theorem C.8 ((s1) does not hold)

Statement (s1) of Theorem C.5 does not hold if opt < 5.

Proof: We use the weights and notations from Theorem C.5 with the following

exceptions: there are Xb-tasks in the range (1+ ǫ/2, 1+ ǫ] weighed at 1.1(6), U -tasks

∈ (1 + ǫ, 2) weighed at 1.(3) unless they are equal to U1, with the subcategory Ucp-

tasks of size U1 which are weighed at 1.5, Z2-tasks∈ (2 + ǫ, 3] are weighed at 2.(3),

R32-tasks∈ (3 + ǫ, 4] weighed at 3.(3), and R42-tasks∈ {4 + ǫ, 5} weighed at 4.(3).

We shall call Xa-tasks X-tasks that are not Xb-tasks, Z1-tasks Z-tasks that are not

Z2-tasks, and R31-tasks R3-tasks that are not R32-tasks.

Let p∗∗ be the processor on which the last Xb-task is scheduled by FFDL. We

show that, unless p = p∗∗, walg(p) ≥ wopt(p), and otherwise walg(p) ≥ wopt(p) − 0.5.

Statement (s1) implies that:

(a3) there are no tasks in the range (1 + ǫ, 3 + ǫ] in time slots which are greater than

3 + 2ǫ.
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Suppose there is no pretime on p.

Suppose wopt(postp) = 0. Then walg(postp) ≥ 1.5.

Suppose wopt(postp) ∈ {1, 1.1(6)}. Then busyalg(postp) ≥ 2+ ǫ. If there are only

2 X-tasks in this time slot then at least one of them is a Xb-task, and either p = p∗∗

and walg(postp) ≥ 2.1(6) or walg(postp) ≥ 2.(3). If there is a U - or greater task in

FFDL(postp), walg(postp) ≥ 2.(3).

Suppose wopt(postp) ∈ {1.(3), 1.5, 2}. busyalg(postp) > 2 + 2ǫ, and postp >

3 + 2ǫ. Two X-tasks can not fill this time. Suppose there is a U -task or a Z-task in

FFDL(postp). This can not be by statement (a3). Thus walg(postp) ≥ 3.

Suppose wopt(postp) ∈ {2.1(6), 2.(3), 2.5, 2.(6), 2.8(3), 3}. In all possible cases

busyopt(postp) ≥ 2 + 1
2
ǫ. busyalg(postp) > 3(1 + 1

2
ǫ). Thus, if there are only 3 X-

tasks in FFDL(postp), at least one of them is a Xb-task, and we have: if p = p∗∗

walg(postp) ≥ 3.1(6), and else walg(postp) ≥ 3.5, if there is enough place for 3 Xb-

tasks in postp. Suppose there is not enough place. If a third Xb-task does not fit in

postp the other two must add up to 4+3/2ǫ− 1+ ǫ = 3+1/2ǫ, which is not possible

for 2 X-tasks if opt < 5.

Suppose wopt(postp) ∈ {3.1(6), 3.(3), 3.5}. busyalg(postp) > 3 + ǫ/2 + 1 + ǫ.

Suppose 3 X-tasks can fill this time. Then one of them has to be > 4/3 + ǫ/2, and

so it is a Xb-task. The other two tasks need to add up to 3+ ǫ/2, so at least a second

one must be a Xb-task and be > 1.5 + ǫ/4. However, since opt < 5, ǫ < 0.5, and

there can not be any X-tasks that are > 1.5. Thus 3 X-tasks can not fill this time,

and if there are only X-tasks in FFDL(postp), walg(postp) ≥ 4. If there is a R32 or

greater task in FFDL(postp), we have walg(postp) ≥ 3.5.

Suppose there is a Ucp-task, a U -task and an X-task in OPT (postp), and we have

wopt(postp) ∈ {3.8(3), 4, 4.08(3), 4.1(6), 4.25} or busyalg(postp) > U1+1+ǫ+1+1+ǫ ≥

4+3ǫ If there is a R32- or greater task in FFDL(postp), walg(postp) ≥ 4.(3). If there
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are only X-tasks in FFDL(postp) there must be at least 4 of them, since 3 of them

can not add up to U1 +2+(1+ ǫ)+ ǫ. If there are more than 4 tasks walg(postp) ≥ 5.

Since busyalg(postp) > 4+2ǫ, at least one of the four tasks is a Xb-task. Thus, either

p = p∗∗, and walg(postp) ≥ 4.1(6), or p 6= p∗∗, and walg(postp) ≥ 4.5, as any three

Xb-tasks fit in a time of length (1 + ǫ) + (1 + ǫ) + 2.

Suppose wopt(postp) ∈ {4, 4.1(6), 4.25, 4.(3), 4.5}, and there is no Ucp-task in

OPT (postp) except when the weight is 4.5. busyalg(postp) > 4 + 1 + ǫ. If there is a

R3- (+1 + ǫ) or greater task in FFDL(postp) we have walg(postp) ≥ 5. Else we have

X-tasks. 3 or less of them add up to < 2 + 2 + 1 + ǫ. If there are 4 of them, one of

them has a length > 1 + 0.25 + ǫ/4. We know that ǫ < 1, and thus 0.25 > eps/4.

Then at least one of the tasks is a Xb-task. Thus, if p = p∗∗, walg(postp) ≥ 4.1(6),

and else walg(postp) ≥ 4.5.

Suppose there are 3 Ucp-tasks in OPT (postp). Then busyalg(postp) > 4(1 + ǫ).

If there is a R4- or greater task in FFDL(postp), walg(postp) ≥ 4.5. If there is a

R33-task walg(postp) ≥ 5, and the same happens if we have a smaller R3-task. If there

are only X-tasks there must be at least 5 of them, since all X-tasks are < 1 + ǫ, and

walg(postp) ≥ 5. In all cases walg(postp) > wopt(p)

Suppose there is a pretime on p. Then there can not be 2 U -tasks in OPT (postp),

else prep + busyopt(postp) > opt.

Suppose wopt(prep) ≤ 2. Then walg(prep) ≥ 1.5. For wopt(postp) ≤ 3.25 we

have walg(postp) ≥ wopt(prep) + 0.5, unless p = p∗∗ or p = p∗, and else walg(postp) ≥

wopt(postp) + 0.1(6).

Suppose wopt(prep) ∈ {2.1(6), 2.(3)}. Then wopt(postp) < 3. walg(prep) ≥ 1.5,

and the statement to prove holds, since in these cases walg(postp) ≥ wopt(postp) +

0.8(3), or p = p∗∗ and walg(postp) ≥ wopt(postp) + 0.5.
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Suppose wopt(prep) ∈ {2.5, 2.(6), 3}. Then, walg(prep) ≥ 2 since busyalg(prep) >

prep−1 ≥ busyopt(prep)−1 ≥ U1. Also, wopt(postp) < 2.(3), since busyopt(postp) < 2+

ǫ = 1
2
opt ≤ opt− busyopt(prep). In these cases we have walg(postp) ≥ wopt(postp) + 1,

and the statement to prove holds.

Suppose wopt(prep) ∈ {3.1(6), 3.(3)}. There are no Z1-tasks in FFDL(prep).

If there is a Z2-task, we have walg(prep) ≥ 2.(3), and the same happens if there

is a U -task in FFDL(prep). If prep < 3 + ǫ, there are two Xb-tasks in prep. Else

there must be at least one Xb-task in prep, and, if p = p∗∗, walg(prep) ≥ 2.1(6),

and else walg(prep) ≥ 2.(3). Then, unless FFDL scheduled the last Xb-task in prep,

walg(prep) ≥ wopt(prep) − 1, and else walg(prep) ≥ wopt(prep) − 1.1(6), and the

statement to prove holds.

Suppose wopt(prep) ∈ {3.5, 3.(6), 3.8(3)}. busyalg(prep) > U1 + 1. prep > 3 + ǫ.

If there is a U -task U4 in FFDL(prep), there is also a X-task in OPT (prep). If

there is a R3-task, we have walg(prep) ≥ 3. Else there must be either three or more

X-tasks in prep, or at least one of the two tasks is a Xb-task. Then, if p = p∗∗,

walg(prep) ≥ 2.1(6), and else walg(prep) ≥ 2.(3). In either case, the statement to

prove holds, as walg(postp)−wopt(postp) ≥ 1.5, as no task fits in the optimal schedule

of postp.

Suppose there are 2 Ucp-tasks in prep. Then wopt(prep) ≥ 3. busyopt(prep) ≥

U1 + 1 + ǫ. No single task < 2 can fill prep − 1, and be scheduled alone in prep, since

then, by Lemma A.12 they would be equal. Thus walg(prep) ≥ 2, and the statement

to prove holds.

Suppose the optimal configuration on prep is UcpUcpX > 3+2ǫ. busyalg(postp) >

2 + 2ǫ, and at least 3 X-tasks are needed to fill this time. walg(prep) ≥ 3 =

wopt(prep) − 1, and (1) holds.
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Suppose wopt(prep) ∈ {4, 4.1(6), 4.(3), 4.5}. busyalg(prep) > 3. If opt < 5, 3

X-tasks are needed to fill this time, and (1) holds.

Suppose wopt(prep) ∈ {4.(6), 4.8(3)}. These weights represent configurations of

the optimal schedule for which busyopt(p) > 4 + 2ǫ > opt, so they can not occur.

Suppose there are 2 pretimes on p. If opt < 5 there can not be 3 tasks in either

pretime. We assume wopt(pre1p) ≥ wopt(pre2p) for convenience. If wopt(pre1p) > 2.(6),

there must be 2 U -tasks or tasks of length at least 3 in pre1p, which can not occur.

Suppose wopt(pre1p) = 2.(6). Then there are a Ucp- and a Xb-task in pre1p.

Then busyalg(pre1p > U1, walg(pre1p) ≥ 2.(3), or pre1p > 3 + ǫ (which can not occur

if opt < 5). We have wopt(pre2p) ≤ 2, and wopt(p) ≤ 4.(6) < 2.(3) + 1.5 + 1.5 =

5.(3) ≤ walg(p).

Suppose wopt(pre1p) = 2.5. Then there are a U -task and a Xb-task in FFDL(pre1p.

We have wopt(pre2p) ≤ 2, and wopt(p) ≤ 4.5 ≤ 3w(U1) ≤ walg(p).

Suppose wopt(pre1p) = 2.(3). Then there are a U -task and a X-task or 2 Xb-tasks

in FFDL(pre1p. We have wopt(pre2p) ≤ 2.1(6), and wopt(p) ≤ 4.5 ≤ walg(p).

Suppose wopt(pre1p) ≤ 2.1(6). We have wopt(pre2p) ≤ 2.1(6), and wopt(p) ≤

4.5 ≤ walg(p). △

Theorem C.9 (Constraint if opt ≥ 5)

If opt ≥ 5, one of the following statements is true:

(s2) There is a task X ∈ (1 + ǫ/2, 1 + ǫ] in a time slot ts ∈ (3 + ǫ, 3 + 2ǫ). X is not

the only task of length ≤ 1 + ǫ in FFDL(ts).

(s3) There is a task X1 ∈ (1.(3), 1 + ǫ] in the FFDL-schedule of a time slot ts ≥ 5.

There are at least two other tasks the length of which is less than or equal to 1 + ǫ

in ts.



96

Proof: We consider the following types of tasks: X-tasks ∈ [1, 1
2
opt − 1], with

weight 1, U -tasks ∈ (1
2
opt− 1, 2) with weight 1.5, Z-tasks ∈ [2, 3) with subcategories

Z1-tasks∈ [2, 1
2
opt] with weight 2 and Z2-tasks ∈ (1

2
opt, 3) with weight 2.5, and Ri-

tasks ∈ [i, i + 1) with weight i, for i ∈ {3, 4, 5}. No task of length 6 or greater can

exist, since opt < 6.

Suppose statements (s2) and (s3) do not hold. We show that for every p ∈ P ,

(1) walg(p) ≤ wopt(p),

which is a contradiction, since the FFDL-schedule does not contain the task X, while

the optimal schedule does, and
∑

p∈P walg(p) =
∑

p∈P wopt(p) − 1.

Let p ∈ P be an arbitrary processor. Let cp be a compensating processor, and

U1, U2, and U3 be the tasks in the FFDL-schedule of pre1cp, pre2cp, and postcp. Let

wmin be defined as in the proof of Theorem C.5.

Let ǫ = 1
2
opt − 2. Note that ǫ ≥ 0.5, since opt ≥ 5, and that 1

2
opt − 1 ≥ 1.5.

Thus all U -tasks are ≥ 1.5.

Suppose p has one pretime prep.

We know that there must be at least a U - or greater task or two tasks in

FFDL(prep), and if prep < 3 and there is only one task in FFDL(prep), it must be

equal to U1 by Lemma A.12. So if prep < 3 we have walg(prep) ≥ 1.5.

Suppose wopt(prep) ≤ 2. walg(prep) ≥ 1.5. Suppose there is no task in OPT (postp).

Then there must be at least a U -task or two tasks in FFDL(postp) and we have

walg(postp) ≥ 1.5.

Suppose there is an X-task in OPT (postp), and wopt(postp) = 1. busyalg(postp) >

postp − 1 ≥ 1 + 1.5 = 2.5. No single task of length less than 2 can fill this time, and

so walg(postp) ≥ 2.

Suppose wopt(postp) = 1.5. busyalg(postp) > 1 + ǫ + 1 + ǫ. No two X-tasks can

fill this time, and we have walg(postp) ≥ 2.5.
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Suppose wopt(postp) = 2. Then busyalg(postp) > 2 + 1 + ǫ, and no U -task (< 2)

and X-task (< 1 + ǫ) or two X-tasks, or Z-task alone can fill this time, and we have

walg(postp) ≥ 3.

Suppose wopt(postp) = 2.5. Then busyalg(postp) > 1 + 1 + ǫ + 1 + ǫ. As in the

previous case walg(postp) ≥ 3.

Suppose wopt(postp) ≥ 3. No two U -tasks can be in OPT (postp), since then

we would have opt > 2 + 2 + 2ǫ ≥ opt, contradiction. Also busyopt(postp) < 4, else

opt ≥ prep + busyopt(postp) ≥ 6. Thus busyopt(postp) ≥ 3, postp ≥ 3 + 2 + ǫ, and

busyalg(postp) ≥ 3 + 1 + ǫ. A Z-task (< 3) and an X-task (< 1 + ǫ) can not fill

this time. If 3 X-tasks fill this time, then at least 1 X-task which is > 1.5 is in

FFDL(postp), and we have statement (s3). Else walg(postp) ≥ 3.5.

Concluding (1) holds in all cases when walg(prep) ≤ 2.

Also,

(2) if wopt(postp) ≤ 2 we have walg(postp) ≥ wopt(postp) + 1.

Suppose wopt(prep) = 2.5. We have busyopt(postp) < 3, else busyopt(p) ≥ 1
2
opt + 3 >

opt, and wopt(postp) 6= 2.5, else busyopt(p) > 2(2 + ǫ) = opt.

So wopt(postp) ≤ 2, and (1) holds, by statement (2) which we have shown above.

Suppose wopt(prep) = 3. busyalg(p) > 2, and we have walg(p) ≥ 2, since no

single task that is < 2 can fill this time. Again wopt(postp) ≤ 2, and we have from

statement (2) from above: wopt(p) ≤ walg(prep) + 1 + walg(postp) − 1 = walg(p).

Suppose wopt(prep) = 3.5. If there are 2 X-tasks in this time slot we have

statement (s2) of this theorem. Else we have walg(prep) ≥ 2.5, and (1) holds.

Suppose wopt(prep) = 4. Then busyopt(prep) ≥ 4, since any combination of tasks

resulting in this weight will fulfill this statement. busyalg(prep) ≥ 3. If FFDL(prep)
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is made of 2 X-tasks X1 ≥ X2 we must have busyalg(postp) ≤ 2 + 2ǫ, and postp <

3 + 2ǫ. Also we know that (X1 + X2)/2 ≥ 1.5 > 1 + ǫ/2, and 4 > 3 + ǫ. Thus we

have (s2).

Else there is a U -task in FFDL(prep), and we have walg(prep) ≥ 2.5. No

Z-task can fill busyalg(prep), and thus we have walg(prep) ≥ 2.5 in all cases. If

wopt(postp) = 0, we have walg(postp) ≥ 1.5, and (1) holds. If wopt(postp) = 1, we

have postp ≥ 3 + ǫ, and busyalg(postp) > 2 + ǫ. Only a Z2- or greater task can fill

this time by itself. If postp ≥ 3 + 2ǫ, and there are two tasks with length < 2 in

FFDL(postp), at least one of them must be a U -task, and we have walg(postp) ≥ 2.5,

and (1). Else, if there are only 2 X-tasks in FFDL(postp), we have statement (s2).

Thus, in all cases we have either statement (s2) or walg(postp) ≥ 2.5, and (1). No U -

or greater task can be in OPT (postp), since then busyopt(p) > 1/2opt − 1 + 4 > opt.

Suppose wopt(prep) = 4.5. busyalg(prep) > 3 + ǫ. One U - or smaller task (< 2)

and one X-task (< 1 + ǫ), or one Z-task, can not fill this time. Thus walg(prep) ≥ 3.

Since no task can be in OPT (postp), else busyopt(p) ≥ 4 + ǫ + 1 = 1
2
opt + 3 > opt,

we have (1).

Suppose wopt(prep) = 5. We have wopt(postp) = 0, and walg(postp) ≥ 1.5.

busyalg(prep) > 4.

Suppose the maximum task in prep is a Z2-task. Then at least another task

is scheduled in FFDL(prep), and we have walg(prep) ≥ wopt(prep) − 1.5, and (1)

holds. If the maximum task in FFDL(prep) is an R3-task, at least another task

is scheduled there, and we have walg(prep) ≥ 4, and (1). The same happens if an

R4-task is scheduled in FFDL(prep).

Suppose there is a Z1-task M1 in prep. If postp ≥ prep ≥ 5, then walg(postp) > 3,

and (1) holds. Else, since 2 + ǫ ≤ postp < prep, there must be another Z1-task

M2 ≥ M1 in prep, else M1 would have been scheduled in postp. Also, M1 < prep − 2,
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so there must be at least one other task in FFDL(prep) in addition to M1. So we

have walg(p) ≥ 5 = wopt(p).

Suppose the maximum task in FFDL(prep) is a U -task U4. We have busyalg(prep)−

U4 > 2, and so walg(prep) ≥ 1.5 + 2 = 3.5, and then walg(p) ≥ wopt(p). If there are

only X-tasks in FFDL(prep) we have the case when there are at least 4 of them and

(1) holds, and the case when there are only 3 of them and we have statement (s3),

as at least one must be > 4/3 for the three of them to fill busyalg(prep) > 4.

We can not have wopt(prep) ≥ 5.5, since if wopt(p) = 5.5, we have busyopt(p) >

5 + ǫ ≥ 1
2
opt + 3 > opt, a contradiction, and wopt(p) < 6, since opt < 6, and all

weights in the current proof are less or equal to the lengths of the tasks to which

they are assigned.

Suppose there is no pretime on p. We have shown above that walg(postp) >

wopt(postp) when wopt(postp) ≤ 2.5.

Suppose wopt(postp) = 3. Then busyalg(postp) ≥ 4 + ǫ. We have shown above

that wmin(3 + ǫ) ≥ 3, when we considered the case wopt(postp) = 2, so (1) holds in

this case too.

Suppose wopt(postp) = 3.5. Then busyalg(postp) ≥ 4 + 2ǫ. If there is an R4-task

in FFDL(postp), (1) holds. If there is an R3-task, then at least one other task

is needed to fill busyalg(postp). If there is a Z-task M2 in FFDL(postp) we have

busyalg(postp) > 1 + 2ǫ ≥ 2, and the remaining weight of FFDL in postp at least 2,

thus walg(postp) ≥ 4 > 3.5 = wopt(p). Suppose there are only U - and X-tasks in

FFDL(postp). Suppose there is at least a U -task U4. We have busyalg(postp)−U4 >

2 + 2ǫ, and since wmin(2 + 2ǫ) ≥ 2.5, as 2 X-tasks or a Z1-task can not fill this time,

we have walg(postp) ≥ 4 > wopt(postp). If there is no U -task in FFDL(postp), we

must have at least 3 X-tasks, as two X-tasks can’t fill a time of 4. From Lemma

C.4 we have U1 < 1.(3) + 2
3
ǫ < 1

3
busyalg(postp), and any X-task is less long than U1.
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Thus there are at least 4 X-tasks in FFDL(postp), and we have walg(postp) ≥ 4.

Note that in all cases we had walg(postp) ≥ 4, and so wmin(4 + 2ǫ) ≥ 4.

Suppose wopt(postp) = 4. busyalg(p) > 5 + ǫ > 4 + 2ǫ. Then walg(postp) ≥

wmin(4 + 2ǫ) ≥ 4 ≥ wopt(p).

Suppose wopt(postp) = 4.5. busyalg(postp) > 3+1+ǫ+1+ǫ = 5+2ǫ. If there is an

R4-task in FFDL(p), there is at least another task there and walg(p) ≥ 5. If there is

an R3-task M3 in FFDL(p), we have busyalg(postp)−M3 > 1+2ǫ ≥ 2, and walg(p) ≥

5. Suppose there is a Z2-task M2 in FFDL(postp). Then busyalg(postp)−M2 > 2+2ǫ,

and walg(p) ≥ 2.5 + 1.5 = 5, since no two X-tasks or Z1-task can fill this time.

Suppose there is a Z1-task M1 in FFDL(postp). Then busyalg(postp) − M1 > 3 + ǫ.

Note that a time of 3 + ǫ can only be filled with tasks the total weight of which is

at least 3: a U - or X-task must be < 2, and an X-task is < 1 + ǫ, and a Z-task

can not fill this time. Thus walg(p) ≥ 5 Suppose the maximum task in FFDL(p)

is a U -task U4. busyalg(postp) − U4 > 3 + 2ǫ > 3 + ǫ. We have just shown that

a time of 3 + ǫ can only be filled by tasks the total weight of which is at least 3,

and thus walg(p) > 1.5 + 3. Suppose there are only X-tasks in FFDL(postp). Let

X1 ≥ X2 ≥ X3 be the longest X-tasks in FFDL(p). We have busyalg(p)−X1 > 4+ǫ,

busyalg(p) − X1 − X2 > 3. If X3 and only another X-task are in FFDL(p) we have

X3 > 3/2 = 1.5, and we have statement (s3) of this theorem. Else there must be two

more tasks in FFDL(p) and we have walg(p) ≥ 5.

Suppose wopt(p) ≥ 5. We can not have wopt(p) ≥ 5.5, as shown above. Thus

wopt(p) = 5. We have busyalg(p) > 6 + ǫ >
ǫ<1

5 + 2ǫ. We have shown in the previous

case that when busyalg(postp) > 5+2ǫ, and there is either an R4-task, an R3-task, or

a Z2- or Z1-task on p we have walg(p) ≥ 5. Suppose there is a U -task U4 on p. Then

busyalg(postp) − U4 > 4 + ǫ ≥ 4.5. If three X-tasks fill this time we have statement

(s3) of this theorem, and else we have walg(p) ≥ 1.5 + 3.5 = 5. Suppose there are
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only X-tasks in FFDL(p). If there are only 4 of them we have statement (s3), and

else we have walg(p) ≥ 5.

Suppose there are 2 pretimes on p. Suppose wopt(postp) = 0. Note that walg(p) ≥

4.5, since the minimum possible total weight of the FFDL-schedule is achieved when

all time slots of p have a U -task in them. If wopt(preip) ≤ 2.5 and wopt(prejp ≤ 2 we

have (1), where i 6= j, and wopt(preip) ≥ wopt(prejp).

If both pretimes have a weight that is ≥ 2.5, we have busyopt(p) > 1/2opt +

1/2opt = opt, contradiction. If wopt(preip) ≥ 3, then walg(preip) ≥ 2, and walg(p) ≥

5 = wopt(p).

Suppose there is a task in OPT (postp). If it is a U - or greater task, or if there

is more than one task, we have opt > 4 + 1
2
opt − 1 = 1/2opt + 3 > opt. Thus there

is a single X-task in OPT (postp). Both pretimes must have a weight that is ≤ 2,

else we have opt > 2 + wopt(preip) + 1 ≥ 3 + 1
2
opt > opt. Also, walg(postp) ≥ 2, since

busyopt(postp) ≥ 2 + ǫ. So walg(p) ≥ wopt(p).

Theorem C.10 (Tasks ≥ 1.5)

Let ǫ = 1
2
opt − 2. If opt ≥ 5.(3) there are no tasks ≥ 1.5 and ≤ 1 + ǫ in a time slot

that is ≥ 4.

Proof: Suppose opt ≥ 5.(3) and there are tasks ≥ 1.5 in a time slot ts1 ≥ 4.

Consider the following tasks types: X-tasks which are either Xa-tasks ∈ [1, 1.(3)),

weighed 1 or Xb-tasks ∈ [1.(3), 1.5) weighed 1.1(6) Y -tasks ∈ [1.5, U1) weighed 1.5,

Ucp-tasks = U1, weighed 1.(6) if U1 < 1.8(3) and 1.(7) otherwise, Z-tasks which are

either Z1-tasks ∈ [2, 2 + ǫ] weighed 2 or Z2-tasks ∈ [2 + ǫ, 3) weighed 2.5, Ri-tasks

∈ [i, i + 1) weighed i for i ∈ {3, 4, 5}.

Let p∗ be the processor on which FFDL scheduled the last Y -task and p∗∗ be

the processor on which it scheduled the last Xb-task. We show that (1): if p 6= p∗
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and p 6= p∗∗, walg(p) ≥ wopt(p), and else, if p = p∗, walg(p) ≥ wopt(p) − 0.5, and else,

if p = p∗∗, walg(p) ≥ wopt(p) − 0.(3).

We next consider postp. If wopt(postp) = 0, walg(postp) ≥ 1.(6).

Suppose wopt(postp) ∈ {1, 1.1(6), 1.5, 1.(6), 1.(7), 2} busyalg(postp) ≥ 1 + 1 + ǫ.

If wopt(postp) = 1, we have walg(postp) ≥ 2.5.

If wopt(postp) ≥ 1.1(6), busyalg(postp) ≥ 1.(3) + 1 + ǫ ≥ 3. If there is a Z2- or greater

task in FFDL(postp), walg(postp) ≥ 3. Else, if there is a Y -task in FFDL(postp),

either p = p∗, and walg(postp) ≥ 2.5, and else walg(postp) ≥ 3. If there is no Y -task

in FFDL(postp), there must be at least three X-tasks and again walg(postp) ≥ 3,

unless p = p∗.

Suppose wopt(postp) ∈ {2.1(6), 2.(3), 2.5, 2.(6), 3, 3.(3)}. busyalg(postp) > 2.(3)+

1+ǫ ≥ 4. If there is a Z2- or greater task in FFDL(postp), walg(postp) ≥ 3.5. Else, if

there is a Y -task Y1 in FFDL(postp), busyalg(postp)−Y1 > 2, and walg(postp) ≥ 3.5.

Else, if there are only X-tasks, if there are only 3 of them and we don’t have p = p∗∗,

walg(postp) ≥ 3.5. Else walg(postp) ≥ 3.1(6).

Note that in the cases wopt(postp) ∈ {2.(7), 2.8(3), 2.9(4), 3.1(6), 3.2(7)}, we have

busyalg(postp) > busyopt(postp) + 1 + ǫ > 4.5 = 2.8(3) + 1 + 0.(6). Recall that a Ucp-

task weighing 1.(7) has a length > 1.8(3). The relevant minimal configurations for

FFDL(postp) are R5, R4, R3X, Z2Y , Y Y X, Y XaXa, XXXX, and walg(postp) ≥ 4

unless p = p∗ and the last Y -task is scheduled by FFDL in postp, in which case

walg(postp) ≥ 3.5.

Suppose wopt(postp) ∈ {3.5, 3.(5), 3.(6), 3.(7), 3.9(4), 4}. busyalg(postp) > 3.5 +

1+ ǫ. If there is R3- or greater task in FFDL(postp) walg(postp) ≥ 4. Else if there is

a Z2-task M2 in FFDL(postp), busyalg(postp)−M2 > 1.5+ ǫ, and walg(postp) ≥ 4.5.

If there is a Y -task Y1 in FFDL(postp), busyalg(postp) − Y1 > 2.5 + ǫ ≥ 3. If there

is a second Y -task, walg(postp) ≥ 4, and else walg(postp) ≥ 4.5, since 2 X-tasks can
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not fill a time of 3. We have walg(postp) ≥ 4.

Suppose wopt(postp) ∈ {4.(1), 4.1(6), 4.2(7), 4.(3), 4.(4), 4.5, 4.(5), 4.(6), 4.7(2), 5}.

busyalg(postp) > 4.(3) + 1 + ǫ ≥ 6. If there is a R3- or greater task in FFDL(postp),

walg(postp) ≥ 5. If there is a Z2-task M in FFDL(postp), busyalg(postp) − M ≥ 3,

and walg(postp) ≥ 5. Suppose there is a Y -task Y1 in FFDL(postp) If there is a sec-

ond Y -task, walg(postp) ≥ 5. Else, since busyalg(postp) − Y1 > 4, at least 3 X-tasks

are in FFDL(postp), and at least one of them is ≥ 1.(3). Then walg(postp) ≥ 4.(6)

if p = p∗∗, and walg(postp) ≥ 5 otherwise.

Suppose wopt(postp) ∈ {5.0(5), 5.1(6), 5.(3), 5.(4), 5.5}. busyalg(postp) ≥ 5.(3) +

1 + ǫ ≥ 7. If there is a R3- or greater task in FFDL(postp), walg(postp) ≥ 5.5. Else

if there is a Z2- task M in FFDL(postp), busyalg(postp)−M > 4, and thus another

Z2-task is not enough to fill this time. If there is a Y -task Y1 in the remaining time,

busyalg(postp) − M − Y1 > 2, and walg(postp) ≥ 2.5 + 1.5 + 2 = 6. If there are

only X-tasks in the remaining time, at least 3 are necessary to fill a time > 4, and

walg(postp) ≥ 5.5. If the maximum task in postp is a Y -task, the remaining time

to fill is > 5. If there is a second Y -task, the remaining time to fill is > 3, and

walg(postp) ≥ 5.5. If there are only X-tasks in FFDL(postp), there must be at least

5 of them, and their average is > 7/5 > 1.(3). Then walg(postp) ≥ 5.1(6) if p = p∗∗,

and walg(postp) ≥ 5.5 otherwise.

We have just shown that on processors without pretimes the statement to prove

holds. Suppose there is a pretime on p.

Suppose wopt(prep) ≤ 2. Then walg(prep) ≥ 1.(6). We have wopt(postp) ≤ 3.5,

and there can not be any 2 U -tasks in FFDL(postp). Suppose wopt(postp) = 3.(3),

and there are 2 Xb-tasks in OPT (postp). busyalg(postp) ≥ 3.(6) + 1 + ǫ ≥ 5.(3). The

same argument as in the case when wopt(postp) = 3.5 holds, and walg(postp) ≥ 4. (1)

holds.
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Suppose wopt(prep) = 2.1(6). walg(prep) ≥ 1.(6). wopt(postp) ≤ 3.5, wopt(p) 6=

3.(3), else opt ≥ 6, and the statement to prove holds.

Suppose wopt(prep) = 2.(3). walg(prep) ≥ 1.(6). wopt(postp) ≤ 3, and the state-

ment to prove holds, unless wopt(postp) = 3. In that case busyalg(postp) ≥ 4 + ǫ,

and ǫ ≥ 1.(6)/2 = 0.8(3). If there is a R3- or greater task in FFDL(postp),

walg(postp) ≥ 4. If there is a Z2-task in FFDL(postp), the remaining time filled

by the FFDL-schedule is > 1.8(3), and walg(postp) ≥ 4. If there is a Y -task in

FFDL(postp), the remaining time to fill is 2.8(3), and at least 2 Xb-tasks are neces-

sary to fill this time, and thus walg(postp) ≥ 3.8(3) in case p = p∗, and walg(postp) ≥ 4

otherwise. If there are only X-tasks in FFDL(postp), there must be at least 4 of

them, and walg(postp) ≥ 4. In all cases the statement to prove holds.

Suppose wopt(prep) = 2.5. walg(prep) ≥ 1.(6). wopt(postp) ≤ 3.1(6), and the

statement to prove holds unless wopt(prep) = 3. In that case busyalg(postp) ≥ 4 + ǫ,

and ǫ ≥ 5.5/2 − 2 = 0.75. The relevant minimal configurations are R4, R3X, Z2Y ,

Y XbX, Y XaXaXa, XXXX, and walg(postp) = 4 or p = p∗ and walg(postp) = 3.(6).

The statement to prove holds in this case.

Suppose wopt(prep) ∈ {2.(6), 2.(7), 2.9(4)}. The optimal schedule of prep is

either a Ucp-task and an X-task or a Y -task and an Xb-task. In the first case we

have walg(prep) ≥ 2, since busyalg(prep) > U1, and any single task < 2 in prep would

be ≤ U1 by Lemma A.12, and then (1) holds. In the second case wopt(prep) = 2.(6),

busyopt(prep) ≥ 2.8(3), thus busyopt(postp) < 3.1(6). Suppose U1 > 1.8(3). Then

walg(prep) ≥ 1.(7). Again wopt(postp) ≤ 3, and the statement to prove holds in

all cases except wopt(postp) = 2.(6). Suppose wopt(postp) = 2.(6). busyalg(postp) >

2.8(3) + 1 + ǫ ≥ 4.(6). The possible minimal configurations for FFDL(postp) are:

R3X, Z2Y , Y Y X, Y XbX, XXXX, and thus walg(postp) ≥ 3.(6), and the statement

to prove holds.
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Suppose wopt(prep) = 3. busyalg(prep) ≥ 2, and the statement to prove holds.

Suppose wopt(prep) = {3.1(6), 3.2(7), 3.(3), 3.5, 3.(5)}. busyalg(prep) ≥ 2.(3).

There are no Z1-tasks in prep by Lemma C.7. If there is a Z2- or greater task in

FFDL(prep), walg(prep) ≥ 2.5. Else there must be a Y -task in FFDL(prep), or

prep ≥ 4, and walg(prep) ≥ 3, since 2 X-tasks can not fill a time of prep − 1 = 3.

Then walg(prep) ≥ 2.5. Concluding walg(prep) ≥ 2.5, and since when OPT (prep) has

2 Ucp-tasks in it wopt(postp) < 2, (1) holds.

Suppose wopt(prep) = {3.(6), 3.(7), 3.9(4), 4, 4.(1), 4.1(6), 4.2(7), 4.(3), 4.(4), 4.5,

4.(5), 4.(6)}. The possible minimal configurations of FFDL(prep) are: R4, R3,

Z2X, Y Y , Y XX, XXX, and walg(prep) ≥ 3. If wopt(prep) ≥ 4, wopt(postp) < 2,

and walg(postp) − wopt(postp) ≥ 1.(3). Thus the statement to prove holds when

wopt(prep) ≤ 4.(3). If wopt(prep) ≥ 4.5, the minimal optimal configurations are

R3XX,R4X, Z2XX, UcpXXX, Y XbXX, Y XXX, Z1Y X, Z1XXX, XXbXbXb

wopt(postp) = 0, and walg(postp) − wopt(prep) ≥ 1.(6), unless OPT (prep) = Y XXX,

in which case wopt(prep) ≤ 1. Then walg(postp) − wopt(prep) ≥ 1.5, and (1) holds

unless OPT (prep) = Y XbXX, and OPT (postp) = Xa. Then we have busyalg(prep) =

3.8(3). busyalg(postp) ≥ 1+1+ǫ ≥ 2.(6). The minimal configurations of FFDL(postp)

are Z2, Y X, XbX, and walg(postp) ≥ 2.1(6), and walg(p) ≥ wopt(p).

Suppose wopt(prep) ∈ {4.7(2), 5, 5.0(5), 5.1(6), 5.(3), 5.5, 5.(6)}. The optimal

configuration may be UcpUcpXb (and U1 > 1.8(3)),UcpUcpY (and U1 > 1.8(3)),

UcpUcpUcp, XXXXX, XbXbXbX, Y Y XX, XbXXXX, XbXbXXX, Y XbXXX. In

all possible cases busyopt(prep) ≥ 5, and thus busyalg(prep) > 4, and there is no task

in OPT (postp). The minimal configurations of FFDL(prep) are R5, R4, R3X, Z2Y ,

Z2X, Y Y X, Y XX, XbXbXb, XbXaXa and p = p∗∗, XaXaXaXa. Thus, unless p =

p∗∗, walg(prep) ≥ 3.5, and else walg(prep) = 3.1(6). Thus the statement to prove holds

if wopt(prep) ∈ {4.7(2), 5, 5.0(5), 5.1(6)}. Suppose wopt(prep) ∈ {5.(3), 5.5, 5.(6)}. If
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there are 3 Ucp-tasks in OPT (postp), busyopt(postp) > 3 ∗ 1.8(3) = 5.5, and when

the optimal configuration is Y XXXX or XbXbXXX, and any other configuration

with this weight we also have busyopt(prep) ≥ 5.5. Then busyalg(prep) > 4.5. The

minimal configurations of FFDL(prep) are R5, R4, R3X, Z2Y , Z2XX, Y Y X, Y XX

and p = p∗, XbXbXbX, XXXX, and walg(prep) ≥ 4 unless p = p∗, and we have the

statement to prove in all cases.

Suppose there are 2 pretimes on p. Assuming without loss of generality that

wopt(pre1p) ≥ wopt(pre2p), we must have wopt(pre1p) ≤ 3.(6).

Suppose wopt(pre1p) = 3.(6). Then walg(pre1p) ≥ 3, since the same argument

from above, when we considered walg(prep) = 3.(6), applies. Also wopt(pre2p) ≤ 2,

and walg(pre2p) ≥ 1.(6). Since busyopt(pre1p)+pre2p ≥ 5, no task fits in OPT (postp),

and we have walg(p) ≥ 3 + 1.(6) + 1.(6) = 6.(3) ≥ wopt(p).

Suppose wopt(pre1p) ∈ {3.1(6), 3.(3), 3.5}. Then walg(pre1p) ≥ 2.5, since the

same argument from above, when we considered walg(prep) ∈ {3.1(6), 3.(3), 3.5},

applies. Also wopt(pre2p) ≤ 2.5, and walg(pre2p) ≥ 1.(6). Since busyopt(pre1p) +

pre2p ≥ 5, no task fits in OPT (postp), and we have walg(p) ≥ 2.5 + 1.(6) + 1.(6) =

5.8(3) ≥ wopt(p), since, if wopt(pre1p) ∈ {3.5, 3.(3)} wopt(pre2p) ≤ 2.1(6).

Suppose wopt(pre1p) = 3. busyalg(prep) ≥ 2. pre1p < 4, thus there are Y -

tasks available to be scheduled in FFDL(pre1p). The minimal configurations for

FFDL(pre1p) are R3, Z2, Y X, and walg(pre1p) ≥ 2.5. wopt(pre2p ≤ 2.(6), and we

have walg(p) ≥ 2.5 + 1.(6) + 1.(6) ≥ 3 + 2.(6) ≥ wopt(p).

Suppose wopt(pre1p) ∈ {2.(6), 2.(7)}, and there is a Ucp-task in OPT (pre1p).

Then busyalg(pre1p) > U1, and no single task < 2 can be in FFDL(pre1p). We have

walg(pre1p) ≥ 2, and walg(p) ≥ 2 + 2w(U1) ≥ wopt(p).

Suppose wopt(pre1p) = 2.(6), and OPT (prep) = Y Xb. busyalg(pre1p) > 1.8(3),

and, if U1 > 1.8(3), walg(prep) ≥ 1.(7) and if wopt(postp) = 0 we have walg(p) ≥
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5.(3) ≥ wopt(p) while if wopt(postp) = 1 we have walg(p) ≥ 1.(7) + 1.(7) + 2.5 ≥

6.0(5) ≥ 5.(6) = wopt(p. Else (if U1 ≤ 1.8(3)), walg(prep) ≥ 2, and if wopt(postp) = 1

we have walg(p) ≥ 2 + 1.(6) + 2.5 ≥ wopt(p), and else there is no task in OPT (postp)

and walg(p) ≥ 5.(3) ≥ wopt(p). Recall that wopt(pre2p ≤ wopt(pre1p).

Suppose wopt(pre1p) = 2.5. If wopt(pre2p) = 2.5 no task is in OPT (postp), and

(1) holds. If wopt(pre2p) = 2.25 there may be an Xa task in OPT (postp). Then

walg(postp) ≥ 2.5, and wopt(p) ≥ 5.8(3) > 5.75 ≥ wopt(p). If wopt(pre2p) ≤ 2, we have

wopt(postp) ≤ 1.25, and wopt(p) ≥ 5.8(3) > 5.75 ≥ wopt(p).

Suppose wopt(pre1p) = 2.25. wopt(pre2p) ≤ 2.25. wopt(postp) ≤ w(U1). Then

walg(postp) ≥ 2.5. If there is no task in OPT (postp), walg(p) ≥ 5 > wopt(p). Else

if there is a U1-task in OPT (postp), we have busyalg(postp) ≥ U1 + 1 + ǫ > 3. A

Z2-task can not fill this time by itself. If there is a U -task U4 in FFDL(postp),

U4 ≤ U1, and at least another U -task or two X-tasks must also be in FFDL(postp).

No two X-tasks can fill a time of U1 + 1 + ǫ, thus, if there are only X-tasks in

FFDL(postp) we have walg(postp) ≥ 3, which is true in all other cases as well.

Thus walg(p) ≥ 3 + 2w(U1) ≥ 4.(6) + w(U1) > 4.5 + w(U1) ≥ wopt(p). Suppose

wopt(postp) ∈ {1.25, 1.5}. Then busyopt(pre1p) + busyopt(postp) ≥ 4.(6), and since

opt < 6, wopt(pre2p) ≤ 2. walg(p) ≥ 2.5 + 1.(6) + 1.(6) = 5.8(3) > 5.75 ≥ wopt(p).

Suppose wopt(postp) = 1. Then walg(p) ≥ 2.5+1.(6)+1.(6) > 1+2.25+2.25 ≥ wopt(p).

Suppose wopt(pre1p) = 2 ≥ wopt(pre2p). If there is a U1-task in OPT (postp), as

shown in the previous case we have walg(postp) ≥ 3. Then walg(p) ≥ 3.(3) + 3 >

4 + w(U1) ≥ wopt(p). Else if wopt(postp) ∈ {1, 1.25, 1.5}, walg(p) ≥ 2.5 + 3.(3) =

5.8(3) ≥ 4 + 1.5 ≥ wopt(p). Else walg(p) ≥ 5 > wopt(p). △

Theorem C.11

If opt ≥ 5, then statement (s3) of Theorem C.9 does not hold.
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Proof: Suppose opt ≥ 5 and statement (s3) of Theorem C.9 holds. Then there

is a time slot ts ≥ 5 in the FFDL-schedule of which there is at least one task

X1 ∈ (4
3
, 1 + ǫ] and one other task ∈ [1, 1 + ǫ]. This implies in that every time slot

ts1 < 5, tasks that are longer than 4/3 fill a time that is > ts1 − X1. Also all time

slots in which there is place for a task ∈ (4/3, 1+ ǫ] but a task ∈ [1, 4/3] is scheduled

are considered after ts and have a minimum weight that is ≥ wmin(5). We shall refer

to the previous statement as (a2).

We shall consider the weights used in the proof of Theorem C.9, with the follow-

ing exceptions. Xb-tasks are X-tasks the length of which is in the range (4
3
, 1+ǫ], and

their weight is 1.25. Ucp-tasks are U -tasks that are equal to the U -tasks scheduled by

FFDL on the compensating processor, and are weighed at 1.(6), if they are < 1.(6),

and at 1.75 otherwise. Z12-tasks are Z-tasks in the range (2.(3), 2 + ǫ], and their

weight is 2.25. R32-tasks are R3-tasks in the range (3 + ǫ, 4), and weigh 3.5.

We also use all other notations used in the proof of Theorem C.9. Also, X-tasks

that are not Xb-tasks will be called Xa-tasks. Z1-tasks that are not Z12-tasks will

be called Z11-tasks. U -tasks that are not Ucp-tasks will be called Ua-tasks. R31-tasks

are R3-tasks that are ≤ 3 + ǫ.

Let p∗∗ be the processor on which the last Xb-task was scheduled by FFDL and p∗

the processor on which the last U -task was scheduled by FFDL. We show that for all

p ∈ P , p 6∈ {p∗∗, p∗}, we have (1): wopt(p) ≤ walg(p), and that walg(p) ≥ wopt(p)−0.25

if p ∈ {p∗, p∗∗} and p∗ 6= p∗∗, and walg(p) ≥ wopt(p) − 0.5 if p = p∗ = p∗∗. This is

a contradiction, since it implies
∑

p∈P walg(p) ≥
∑

p∈P wopt(p) − 0.5, when in truth
∑

p∈P walg(p) ≥
∑

p∈P wopt(p) − 1, since all tasks occur in the optimal schedule and

X does not occur in the FFDL-schedule.

Let p be an arbitrary processor.
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Since the new task types have a weight that is greater than that it had in the

proof of Theorem C.9, we have walg(p) ≥ wopt(p) unless there is at least an Xb-task

or a Ucp-task in OPT (p) or the fact that p fulfills statement (s3) or statement (s2)

was used in the proof.

Statement (s3) was used in the proof when we had wopt(prep) = 5, there were

only 3 X-tasks in FFDL(prep), and at least one of them was an Xb-task.

Then, if there is only one Xb-task X2 in FFDL(prep), we have p = p∗∗, since

any other Xb-task would fit in the remaining time prep − X2 > 5 − (1 + ǫ), and we

have wopt(p) − 0.25 ≤ walg(p). Else, there are two or more Xb-tasks on p, and we

have walg(p) ≥ 3 + 0.5 + 1.5 ≥ 5 = wopt(p). We have also shown that

wmin(5) ≥ 3.25.

Suppose there are 2 pretimes on p. There can not be a U -or greater task in

OPT (postp), since then opt > 1 + ǫ + 4 ≥ opt.

Suppose there is an Xb-task is in OPT (postp). Then we have busyalg(postp) >

2 + ǫ, and postp ≥ 3 + ǫ. Suppose postp ≥ 5. Then walg(postp) ≥ wmin(5) ≥ 3.25.

Suppose postp < 5. Then, by (s3) there are enough Xb-tasks left to be scheduled on p,

and since one Xb-task can fill a time of at most 1+ǫ, there is enough space for two on

them in postp ≥ 3+ ǫ. Then we have walg(postp) ≥ 2.5. The same is true when there

is a Z2-task or a U -task in FFDL(postp). Since wopt(pre1p) + wopt(pre2p) ≤ 4.25,

as no 3 Xb-tasks and any combination of tasks weighing at least 2 can fit in any

optimal schedule. Neither can a combination of tasks weighing at least 4 and a U -

task do that (else busyopt(p) > 4 + 1
2
opt − 1 > opt). Then we have wopt(p) ≤ 5.5 ≤

1.(6) + 1.(6) + 2.5 ≤ walg(pre1p) + walg(pre2p) + walg(postp) = walg(p).

Suppose there is an Xa-task in OPT (postp). The same argument as above

can be used to show that walg(postp) ≥ 2.5. wopt(pre1p) + wopt(pre2p) ≤ 4.5, and
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walg(p) ≥ 5.8(3) > wopt(p).

Suppose there is no task in OPT (postp). If the weights of both pretimes are

≤ 2, we have (1). Let i, j ∈ {1, 2} such that wopt(preip) ≥ wopt(prejp).

Suppose wopt(preip) ≤ 2.25. Then we have walg(p) ≥ 3 ∗ 1.(6) = 5 ≥ wopt(p).

Suppose wopt(preip) = 2.5, and there are 2 Xb-tasks in OPT (preip). We have

wopt(prejp) ≤ 2.5, and since walg(p) ≥ 5, (1) holds.

Suppose there is a U -task and an X-task in OPT (preip). If it is an Xa-task we

have wopt(preip) = 2.5, and (1) holds. If it is an Xb-task we have busyopt(preip) ≥

1.(3) + 1.5. Suppose there is a single task that is < 2 in FFDL(preip). Then

U1 > 1.8(3) and opt ≥ busyopt(cp) > 5.5. Then ǫ = 1/2opt − 2 ≥ 1.75. Then

busyopt(preip) ≥ 1.75 + 1.(3) > 3, and busyalg(prep) > 2, contradiction. Thus

walg(preip) ≥ 2. Then walg(p) ≥ 2 + 5/3 + 5/3 = 5 + 1/3 ≥ 2.75 + 2.5 ≥ wopt(p). If

there is a U and an X-task in OPT (preip), then there can not be a U and an X-task

or a Z2-task in OPT (prejp), thus wopt(prejp) ≤ 2.5, as the most weight is created

when there are 2 Xb-tasks in the optimal schedule of that time slot.

Suppose wopt(preip) = 1.(6) + 1.25 = 2.91(6), or wopt(preip) = 1.75 + 1.25 = 3,

and there is a Ucp-task and an Xb-task in OPT (preip). We have walg(preip) ≥ 2.

Also wopt(prejp) ≤ 2.25, and walg(prejp) = w(U1) = walg(postp). In both cases we

have walg(p) ≥ 2 + 5/3 + 5/3 = 5 + 1/3 > 5.25 ≥ wopt(p).

Suppose there is only one pretime, prep on p. We have shown above that if

wopt(prep) ≤ 2.5, we have walg(prep) ≥ 5/3, since all arguments apply to prep as

they applied to preip in the previous case. We also showed that, if wopt(prep) ∈

{2.75, 2.91(6)}, walg(p) ≥ 2.

If wopt(prep) = 3, we have again walg(prep) ≥ 2.

We next consider postp.

Suppose wopt(postp) = 0. Then walg(postp) ≥ w(U1) ≥ 1.(6).
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Suppose wopt(postp) ∈ {1, 1.25}. Then busyalg(postp) ≥ 2 + ǫ. We have sown

above that in this case walg(postp) ≥ 2.5.

Suppose wopt(postp) = 1.5. Then we have busyalg(postp) > 1 + ǫ + 1 + ǫ ≥ 3.

No two X-tasks can fill this time. No Z-task by itself can do that either. Suppose

there is a U -task U4 in FFDL(postp). If there is only a U -task and an X-task in

FFDL(postp), we have p = p∗, and walg(postp) ≥ 2.75, since there must be Xb-

tasks available if postp is considered before ts from statement (s3), and else we have

walg(postp) ≥ 3.

Suppose wopt(postp) ∈ {1.(6), 1.75}. Then one Ucp-task is in OPT (postp), and

busyalg(postp) > U1 + 1 + ǫ ≥ 3. A Z2-task can not fill this time alone. Any U -task

U4 scheduled by FFDL in postp fulfills U4 ≤ U1, so another U -task or tasks of total

weight ≥ 2 are needed to fill busyalg(postp) − U4, since one X-task is not enough.

Suppose there are only X-tasks in FFDL(postp). There must 3 at least 3 of them.

We have walg(postp) ≥ 3.

Suppose wopt(postp) = 2. The argument in the proof of Theorem C.9 holds and

we have walg(postp) ≥ 3.

Suppose wopt(postp) = 2.25. busyalg(postp) > 2.(3) + 1 + ǫ. An R31-task can’t

fill this time, and neither can a Z1-task and an Xa-task. A Z2-task can’t fill this

time alone. Suppose FFDL scheduled a U -task U4 in postp. busyalg(postp) − U4 >

1+ǫ+0.(3) ≥ 1.8(3). Suppose there is a U -task ≥ 1.8(3) in postp. Then U1 ≥ 1.8(3),

busyopt(cp) > 3U1 ≥ 5.5, and ǫ > 0.75. Then busyalg(postp)−U4 > 1+0.75+0.(3) > 2,

and so there can not be only one other U -task besides U4 in postp, and we have

walg(postp) ≥ 3.5 in this case. Suppose there are only X-tasks in FFDL(postp).

Suppose there are only 3 of them. Suppose postp ≥ 5. Then at least one X-task is an

Xb-task and we have walg(postp) ≥ 3.25 if p = p∗∗, and else walg(postp) ≥ 3.5}. Else

there are still Xb-tasks left according to statement (s3), and we have walg(p) ≥ 3.5,
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as at least two of them fit in postp, no matter how big they are. We have in all cases

walg(postp) ≥ 3.5 unless p = p∗∗, and if p = p∗∗, walg(p) ≥ 3.25.

Suppose wopt(postp) = 2.5, and there are 2 Xb-tasks in OPT (postp). We have

busyalg(postp) > 2+2/3+1+ ǫ > 4. An R3-task can not fill this time. Suppose there

is a Z2-task M2 in FFDL(postp). Then we have busyalg(postp)−M2 > 2/3 + ǫ, and

walg(postp) ≥ 3.5. Suppose there is a Z1-task M2 in FFDL(postp). This can not

happen by Lemma C.7, since postp > 3 > postcp. Suppose there is a U -task U4 in

FFDL(postp). U4 < 2, and any task with length < 2 can not fill busyalg(postp)−U4 >

1+2/3+ǫ. If there is another U -task in postp, we have walg(postp) ≥ 1.5+1.5+1 = 4,

else p = p∗, and if there are Xb-tasks at all we have walg(postp) ≥ 3.75, else we have

walg(postp) ≥ 3.5. Suppose there are only X-tasks in FFDL(postp). If there are 4

of them we have walg(postp) ≥ 4. Suppose that there are only 3 X-tasks in postp.

3 Xa-tasks can not fill busyalg(postp). Suppose we have 1 Xb-task X2 among them.

Then busyalg(postp) − X2 > 2 + 2/3, and at least one more Xb-task and another

X-task are needed to fill this time. Suppose there are two Xb-tasks and an Xa-

task in FFDL(postp). Then we have p = p∗∗ and walg(postp) = 3.5, else we have

walg(postp) = 3.75. In all cases walg(postp) ≥ 3.5.

Suppose wopt(postp) ∈ {2.5, 2.(6)}, and there are a U -task and an X-task in

OPT (postp). busyalg(postp) ≥ 3 + 2ǫ ≥ 4. No Z1-task can be in this time slot

by Lemma C.7. If there is a Z2-task or an R3- or greater task in postp we have

walg(postp) ≥ 3.5, since a Z2- or R3-task can not fill this time by itself. Two U -tasks

can not fill a time greater than 4. So if there are at least 2 U -tasks in postp we have

walg(postp) ≥ 4. If there is only one U -task and X-tasks in FFDL(postp), we must

have at least 2 X-tasks in addition to the U -task, and walg(postp) ≥ 3.5. Suppose

there are only X-tasks in postp. If there are 4 of them we have walg(postp) ≥ 4. Else

the biggest X-task in postp must be > 4/3, thus it must be an Xb-task. Thus, if
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p = p∗∗ we have walg(postp) ≥ 3.25, and else we have walg(p) ≥ 3.5.

Suppose wopt(postp) = 2.75. There are a U -task and an Xb-task in OPT (postp),

or there is a Ucp-task greater than 1.(6) and an Xa-task in OPT (postp). The same

argument as above applies.

Suppose wopt(postp) ∈ {2.91(6), 3}, and there are a Ucp-task and an Xb-task

in OPT (postp). busyalg(postp) > U1 + 1.(3) + 1 + ǫ ≥ 4.(3). If there is an R4 or

an R3-task in FFDL(postp), we have walg(postp) ≥ 4. If there is a Z2-task M2 in

FFDL(postp) we have busyalg(postp) − M2 > 1.(3), at least an Xb-task is needed

to fill this time, and walg(postp) ≥ 3.8(3). Suppose there is a U -task U4 in postp.

busyalg(postp) − U4 > 1.(3) + 1 + ǫ, and if there is another U -task in FFDL(postp)

we have walg(postp) ≥ 4. Else at least 2 Xb or 3 Xa-tasks are needed to fill this

time, and again walg(postp) ≥ 4. Suppose there are only X-tasks in FFDL(postp).

If there are 4 of them we have walg(postp) ≥ 4. If there are only 3 of them, there

must be an Xb-task X2 among them. busyalg(postp) − X2 > U1 + 1.(3). There must

be at least a second Xb-task, else this time can not be filled. Since this task is < U1,

the last X-task must also be an Xb-task a,d we have walg(postp) ≥ 4. Thus in all

cases walg(postp) ≥ 3.8(3).

Suppose wopt(postp) = 3, and there is a combination of tasks of length at least

3 in OPT (postp). We have busyalg(postp) ≥ 4 + ǫ. If there is an R3 or an R4-

task in FFDL(postp), walg(postp) ≥ 4. Else if there is a Z2-task M2 in postp,

busyalg(postp)−M2 > 1 + ǫ, and thus walg(postp) ≥ 2.5 + 1.5 = 4. Suppose there are

only U - and X-tasks in FFDL(postp). Suppose there is a U -task U4 in FFDL(postp).

Then busyalg(postp) − U4 > 2 + ǫ. Then, if p 6= p∗ we have walg(postp) ≥ 4. Else

U4 is the last scheduled U -task. Suppose ts from statement (s3) fulfills ts > postp,

or that ts is considered by FFDL after it considers postp when FFDL assigns tasks

to time slots. Then there are Xb-tasks available for FFDL to schedule in postp, and
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walg(postp) ≥ 4. Suppose ts ≤ postp, and FFDL considers ts before postp. Then U4

or other U -tasks would have been scheduled in ts, a contradiction. Recall that the

statement affirms that at least 2 X-tasks are scheduled in ts. Suppose there are no

U -tasks in postp. If there are at least 4 X-tasks in postp we have walg(p) ≥ 4. Else

at least one X-task X2 must be an Xb-task. Then we have busyalg(postp) − X2 > 3,

and there must be at least a second Xb-task in postp. Then we have,if p = p∗∗,

walg(p) ≥ 3.5, and else walg(postp) ≥ 3.75. We have also shown that wmin(5+ǫ) ≥ 3.5.

If there is a pretime on p there can not be two U -tasks in postp, since then opt ≥

prep + busyopt(postp) > opt. Concluding, if wopt(postp) ≤ 3, we have walg(postp) ≥

wopt(postp) + 0.75, if p 6= p∗∗, and walg(postp) ≥ wopt(postp) + 0.5 if p = p∗∗.

Suppose wopt(prep) = 2. Then walg(prep) ≥ 1.(6), and in all situations con-

sidered above for postp, that is, whenever wopt(postp) ≤ 3, (1) holds. We con-

sider wopt(postp) > 3. Suppose wopt(postp) = 3.25. Then we have busyalg(postp) >

3.(3) + 1 + ǫ, since no two U -tasks can be in OPT (postp). We have shown in the

previous case that a time of 4 + ǫ can only be filled by tasks that weigh together at

least 3.75 (in which case walg ≥ 1.(6) + 3.75 > 5.25 = wopt(p)), unless p = p∗∗, and

there are 2 Xb-tasks and one Xa-task on p, in which case walg(postp) = 3.5. The

statement to prove holds.

Suppose wopt(postp) = 3.5. Then there are 2 Xb-tasks in OPT (postp), and we

have busyalg(postp) > 4.(6) + ǫ > 5. Also opt > 3.(6) + 2 = 5.(6), and ǫ > 0.8(3).

Thus walg(prep) = w(U1) = 1.75, since in this case we must have U1 > 1.(6). Again,

we have walg(postp) ≥ 3.75 (and walg(p) ≥ 5.5 = wopt(p)) unless p = p∗∗, and

walg(postp) ≥ 3.5, and walg(p) ≥ wopt(p) − 0.25 otherwise.

There can not be 3 Xb-tasks in OPT (postp), as then opt ≥ prep + 4 ≥ 6, a

contradiction.
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Suppose wopt(prep) = 2.25. We again have walg(prep) ≥ 1.(6). Whenever

wopt(postp) ≤ 3, the statement to prove holds, as then walg(postp) ≥ wopt(p) + 0.75 if

p 6= p∗∗, and walg(postp) ≥ wopt(p) + 0.5 otherwise.

Suppose walg(postp) = 3.25. busyalg(postp) > 4.(3) + ǫ, opt > 3.(6) + 2 = 5.(6),

and ǫ > 0.8(3). Then busyalg(postp) > 5.1(6). If there is an R3- or greater task in

FFDL(postp), we have walg(postp) ≥ 4, and (1) holds. If there is a Z2-task M in

FFDL(postp) we have busyalg(postp) − M > 2.1(6), and we have walg(postp) ≥ 4.5.

There can not be a Z1-task in FFDL(postp) Lemma C.7. Suppose there is a U -task

U4 in FFDL(postp). busyalg(postp) − U4 > 3.1(6). If there is another U -task on p,

we have walg(p) ≥ 4. If there is no other U -task on p, and there are only Xa-tasks in

addition to U4 in FFDL(postp), statement (s3) can not be true, as there is at least

Xb-task and another X-task in a time slot ts. If ts is considered by FFDL before

postp, then there would be one or more U -tasks instead of the X-tasks in ts, and

else, there must be Xb-tasks left after FFDL schedules tasks in postp, and thus there

are Xb-tasks available to be scheduled in postp. Then we have walg(postp) ≥ 4. In

all cases, walg(postp) ≥ 4, and (1) holds.

If wopt(prep) ≥ 2.25, we can not have wopt(postp) ≥ 3.5, and 2 Xb-tasks and an

X-task in OPT (postp) since then opt ≥ 1 + 1.(3) + 1.(3) + 1.(3) + 1 ≥ 6.

Suppose wopt(prep) = 2.5, and there are 2 Xb-tasks in OPT (prep). We have

walg(prep) ≥ 1.75, since, if there is a single task U4 in FFDL(prep) we must have

U4 = U1 > 1.(6), and thus w(U4) = 1.75. In this case we have wopt(postp) ≤ 3, since

otherwise there must be a third Xb-task and tasks of length at least 2 in OPT (postp),

and then opt ≥ prep + 3.(3) ≥ 6. Thus the statement to prove holds, as then we

have walg(postp) ≥ wopt(postp) + 0.75 if p 6= p∗∗, and walg(postp) ≥ wopt(postp) + 0.5

if p = p∗∗.
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Suppose wopt(prep) = 2.5, and there is a U -task and an X-task in OPT (prep).

We have walg(prep) ≥ 1.(6). There can not be a U -task and an X-task in FFDL(postp),

and neither can 3 X-tasks, and wopt(postp) ≤ 2.5. We have shown above that in these

cases, walg(postp) ≥ wopt(postp) + 1, and thus (1) holds.

Suppose wopt(prep) ∈ {2.(6), 2.75, 2.91(6), 3}. In these cases we have walg(prep) ≥

2 ≥ wopt(prep) − 1, as busyalg(postp) > U1, and no single task weighing less then 2

can fill this time. (1) holds, since in all relevant cases walg(postp) ≥ wopt(postp) + 1.

Suppose wopt(prep) = 3.25, and there is an Xb-task in OPT (prep). busyalg(prep) ≥

2.(3). There are no Z1-tasks in this time slot by Lemma C.7. If there is a U -task in

prep we have walg(prep) ≥ 2.5. Suppose there are only X-tasks in FFDL(prep). If ts

from statement (s3) was considered by FFDL after prep, there is at least one Xb-task

in FFDL(prep), and walg(prep) ≥ 2.25. Otherwise prep ≥ 5 and walg(prep) ≥ 3.25

We have in all cases walg(prep) ≥ 2.25 ≥ wopt(prep) − 1, and (1) holds, since in all

relevant cases walg(postp) ≥ wopt(postp) + 1.

Suppose there are 2 U -tasks in OPT (prep). Then we have wopt(postp) < 2, and

walg(postp) ≥ wopt(postp)+1.25. Suppose OPT (prep) is made of 2 Ua-tasks or a Ucp-

task and a Ua-task, and wopt(prep) ≤ 3.25 Then busyalg(prep) ≥ 2, walg(prep) ≥ 2,

and (1) holds. Suppose there are 2 Ucp tasks in OPT (prep). Any two Xb-tasks would

fit in prep, as they would be less than the Ucp-tasks. Suppose prep < ts. Then there

are Xb-tasks to schedule when FFDL reaches prep, and walg(prep) ≥ 2.5 if there are

2 X-tasks in prep. If there is at least a U -task in prep we have walg(prep) ≥ 2.5,

since at least another task fits in prep besides the U -task. Note that prep > 3, thus

there is no Z1-task in prep. In all cases walg(prep) ≥ 2.5, and we have (1), if prep is

considered before ts by FFDL. Suppose prep is considered after ts by FFDL. Then

we have prep ≥ 5, and walg(prep) ≥ 3.25, and (1) holds.
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Suppose wopt(prep) = 3.5, and OPT (p) is not made of 2 U -tasks. Either there

is a U -task and 2 X-tasks or there are 2 Xb-tasks and an Xa-task in OPT (prep).

In the first case we have busyalg(prep) ≥ 2 + ǫ, and any two Xb-tasks fit in prep ≥

2 + 1 + ǫ. If prep < 5 ≤ ts, the relevant minimal configurations are Z2, UX, XbXb,

and walg(prep) ≥ 2.5, and else walg(prep) ≥ 3.25. (1) holds. In the second case,

OPT (prep) = XbXb, we have busyalg(prep) ≥ 2.(6), and if FFDL(prep) is made of

2 X-tasks, at least one of them must be a Xb-task. If there is a U -task or a Z2- or

greater task, or there are 3 X-tasks in FFDL(prep), walg(prep) ≥ 2.5, and (1) holds.

If there is one Xb-task X2 in FFDL(prep) we have busyalg(prep) − X2 > X3, where

X3 is any of the two Xb-tasks scheduled in OPT (prep). Thus if X2 was not the last

Xb-task to be scheduled by FFDL, we have walg(prep) ≥ 2.5 ≥ wopt(prep) − 1, and

else we must have prep ≥ ts ≥ 5, and walg(prep) ≥ 3.25. In all cases we have (1).

Suppose wopt(prep) ∈ {3.(6), 3.75}, and there is a Ucp-task and tasks the to-

tal length of which is at least 2 in OPT (prep). We have wopt(postp) ≤ 1.25, and

walg(postp) ≥ wopt(postp)+1.25. busyalg(prep) ≥ U1 +1. If there are tasks of type Z2

or greater in FFDL(prep) we have walg(prep) ≥ 2.5. No task of type Z1 can be in

prep. If there is a U -task U4 in prep, U4 ≤ U1, and walg(prep) ≥ 2.5. Suppose there

are only X-tasks in prep. If FFDL considers prep before ts, there are 2 Xb-tasks in

FFDL(prep), and walg(prep) ≥ 2.5. Else prep ≥ 5, and walg(prep) ≥ 3.25. We have

walg(prep) ≥ 2.5, and the statement to prove holds.

Suppose wopt(prep) ∈ {3.75, 4}, and there are either 3 Xb-tasks or another com-

bination of tasks of length at least 4 in OPT (prep). We have busyalg(prep) ≥ 3. A

Z2-task is not enough to fill this time. If there is a U -task U4 in FFDL(prep), FFDL

must have considered prep before ts, else U4 would be scheduled in ts. If there is a

second U -task, we have walg(prep) ≥ 3. If there is no second U -task we have p = p∗,

since a second U -task would fit in prep. Also since any Xb-task would fit in postp−U4,
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and FFDL considered prep before ts, there must also be an Xb-task in prep, and

walg(prep) ≥ 2.75. Suppose there are only X-tasks in prep. If there are 3 or more of

them we have walg(prep) ≥ 3, and (1) holds for this and all the previous cases, since

walg(prep) ≥ 2.75, wopt(postp) ≤ 1.25, and in then wopt(postp) ≤ walg(postp) − 1.25.

Suppose there are only 2 X-tasks X1 ≥ X2 in FFDL(prep). If prep was considered by

FFDL before ts walg(prep) = 2.5 (and else walg(prep) ≥ 3.25 and there can not be only

2 X-tasks in FFDL(prep)). We have prep ≥ 4, and thus X1 > (prep − 1)/2 = 1.5.

Thus, by Theorem C.10 we have opt < 5.(3). Then busyopt(postp) < 1.(3), thus

wopt(postp) ≤ 1. Then walg(postp) − wopt(postp) ≥ 1.5, and (1) holds.

Suppose wopt(prep) = 4.25. Unless there are only 2 X-tasks in FFDL(prep)

the same argument as in the previous case holds, and walg(prep) ≥ 3 unless p = p∗,

in which case walg(prep) ≥ 2.75. There can be no U -task in OPT (postp), thus

wopt(postp) ≤ 1.25, and we have: if p = p∗, walg(p) ≥ wopt(p)−0.25, and else walg(p) ≥

wopt(p). Suppose there are only 2 X-tasks in FFFL(prep). Since busyopt(prep) ≥

4.(3), there can be no task in OPT (postp) by Theorem C.10. The X-tasks scheduled

in FFDL(postp) must average ≥ 3.(3)/2 = 1.(6), thus w(U1) = 1.75. Then walg(p) ≥

4.25 = wopt(p).

Suppose wopt(prep) = 4.5, and there are 2 Xb-tasks and 2 X-tasks in OPT (prep).

Then wopt(postp) ≤ 1, and either p = p∗∗, and walg(p) ≥ wopt(p) + 1.25, or walg(p) ≥

wopt(p) + 1.5. The same argument as in the previous case holds, and we have: if

p = p∗ 6= p∗∗ or if p = p∗∗ 6= p∗ walg(p) ≥ wopt(p) − 0.25, if p = p∗∗ = p∗ and else

walg(p) ≥ wopt(p) − 0.5, and else walg(p) ≥ wopt(p).

Suppose walg(prep) ∈ {4.5, 4.(6), 4.75}, and there are a U -task and tasks the

total length of which is ≥ 3 in in OPT (prep). No task can be in OPT (postp),

and walg(postp) ≥ w(U1). busyalg(prep) ≥ 3 + ǫ. If there is a Z2- or greater task

in FFDL(prep), walg(prep) ≥ 3. If there is a U -task U4 in FFDL(prep) we have
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busyalg(prep) − U4 ≥ 1 + ǫ, so walg(prep) ≥ 3 again. Suppose there are only X-tasks

in FFDL(prep). At least 3 of them must be there to fill a time of 2+1+ ǫ. We have

walg(postp) ≥ 3, and walg(p) ≥ w(U1) + 3 ≥ wopt(p).

Suppose wopt(prep) ∈ {4.75, 4.8(3), 5} there is a U -task U0, an Xb-task, and 2

Xa-tasks or a Z11-task in OPT (prep). busyalg(p) ≥ 1+ǫ+2.(3) ≥ 1.5+2.(3) ≥ 3.8(3).

A R31-task or a Z2-task can not fill this time. If a task of any of those types or a task

that is longer than that is in prep we have walg(prep) ≥ 3.5. No Z1-task can be in

FFDL(prep). If there is a U -task U4 in FFDL(prep) we have busyalg(prep) − U4 >

1.(3) + ǫ ≥ 1.8(3). If there is a U -task > 1.8(3) in prep, then U1 > 1.8(3), and

opt > 3U1 > 5.5, ǫ > 0.75, and busyalg(prep)−U4 > 1.(3)+ǫ > 2, and walg(prep) ≥ 3.5

if there is a second U -task in prep. Else, if there is no second U -task in prep, again

walg(prep) ≥ 3.5. Suppose there are only X-tasks in FFDL(prep). Then, if prep < 5,

there must be at least 2 Xb-tasks and another X-task in FFDL(prep). Then we have

walg(p) ≥ 3.5 + w(U1) > wopt(p) Else if prep ≥ 5, we have from wmin(5) = 3.25, that

walg(p) ≥ 3.25 + w(U1) ≥ 3.25 + w(U0) = wopt(p).

Suppose wopt(prep) ∈ {5, 5.1(6), 5.25}, and there are 2 Xb-tasks, a Xa-task and

a U -task, or 5 Xa-tasks in OPT (prep). We have prep ≥ 5, and walg(prep) ≥ 3.25 if

p = p∗, and walg(prep) ≥ 3.5 otherwise, as shown when we considered wopt(prep) = 5

at the beginning of this proof. We have walg(p) ≥ 3.25 + w(U1) ≥ wopt(p) − 0.25 if

p = p∗∗, and walg(p) ≥ wopt(p) if p 6= p∗∗.

Suppose there are 1 Xb-task and tasks of length at least 4 in OPT (prep), and

wopt(prep) = 5.25. busyalg(prep) > 4.(3). If there is an R3- or greater task in

FFDL(prep), we have walg(prep) ≥ 4. If there is a Z2-task M in FFDL(prep),

busyalg(prep) − M ≥ 1.(3), at least a Xb-task is required to fill this time, and

walg(prep) ≥ 3.75. If there is a U -task U4 in FFDL(prep) we have busyalg(prep) −

U4 > 2.(3). If there is a second U -task in FDDL(prep), walg(prep) ≥ 4. Since there
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is a U -task in prep, FFDL considered prep before ts, and there are Xb-tasks left for

FFDL to schedule in prep: walg(prep) ≥ 3.75. Suppose there are only X-tasks in prep.

If there are at least 4 of them we have walg(prep) ≥ 4, and else at least one of them,

X2, is > 1.(3). Suppose ǫ ≤ 0.(6). Then busyalg(prep) − X2 > 4.(3) − 1.(6) = 2.(6),

and so at least one second task in FFDL(prep) is an Xb-task. We have, if p = p∗∗,

walg(prep) ≥ 3.5, and walg(p) > wopt(p) − 0.25, and else walg(prep) ≥ 3.75, and

walg(p) ≥ wopt(p). If ǫ > 0.(6), we have walg(p) ≥ 3.25 + 1.75 ≥ wopt(p) − 0.25 if

p = p∗∗, and walg(p) ≥ 3.5 + 1.75 ≥ wopt(p) if p 6= p∗∗.

Suppose wopt(prep) ≥ 5.5, and there are 2 Xb-tasks and tasks of length at least 3

in OPT (prep). busyalg(prep) ≥ 4.(6), ǫ > 0.(6), and w(U1) = 1.75 . If this time slot

is considered after ts, there are only X-tasks and possibly R5-tasks left to schedule

for FFDL in prep. Suppose there are only X-tasks in prep. If there are 4 or more

X-tasks in FFDL(prep) we have walg(prep) ≥ 4. If there are only 3 X-tasks in

FFDL(prep) at least 2 of them must be Xb-tasks, since busyalg(prep) − 2 > 2.(6),

and any first Xb-task is < 2. We have walg(p) ≥ 3.5 + 1.75 ≥ wopt(p) − 0.25 if

P = p∗∗, and walg(p) ≥ wopt(p) if p 6= p∗∗. Note that after scheduling 2 Xb-tasks in

prep, the remaining space is > 1.(6), and that there are Xb-tasks < 1.(6) that can be

scheduled in prep (if p 6= p∗∗), because the Xb-tasks in the optimal schedule of this

processor must fulfill this condition, else busyopt(p) ≥ 6. If prep is considered before

ts we have, as in the previous case, walg(prep) ≥ 3.75, and (1).

Suppose there is no pretime on p. We have already considered the cases when

wopt(postp) ≤ 3.5, and the task configuration in postp is compatible with adding a

time of length 2 without exceeding the length of the optimal schedule.

Next, we consider the case when there are a U -task and two X-tasks, 3 Xb-tasks,

or task combinations with the same weight which have not been considered before

in OPT (postp). We have already considered the case when there are 2 Xb-tasks and



121

one Xa-task in postp.

Suppose wopt(postp) ∈ {3.5, 3.(6), 3.91(6), 3.75, 4} busyalg(postp) > 4 + 2ǫ ≥ 5.

If there is an R4- or an R3-task in FFDL(postp), (1) holds. If postp is considered

after ts, there are no Z or U -tasks in postp. Then, at least 4 X-tasks are needed to

fill a time > 4 + 2ǫ = 2 + (1 + ǫ) + (1 + ǫ). Suppose postp is considered by FFDL

before ts. If there is a Z2-task M in FFDL(postp), busyalg(postp)−M > 1+2ǫ ≥ 2,

and we have walg(postp) ≥ 4.5. Suppose there is a U -task U4 in FFDL(postp).

busyalg(postp) − U4 > 2 + 2ǫ, and there are also either another U -task and an Xb-

task, or 3 X-tasks in FFDL(postp), and walg(postp) ≥ 4.25. Suppose there are only

X-tasks in FFDL(postp). They are all Xb-tasks, and there are at least 4 of them.

We have (1).

Suppose wopt(postp) ∈ {4.1(6), 4.25, 4.(6), 4.75, 4.8(3), 4.91(6), 5}, and there are

2 Xb-tasks and a Ucp-task, or a Ucp-task and tasks of a total weight of 3 or 3.25

or 3.1(6) in OPT (postp). The following argument holds for any optimal schedule

configuration of postp containing a Ucp-task and any configuration of tasks with

length > 2.6 and a total weight that is ≤ 3.25.

busyalg(postp) > U1 + 2.(6) + 1 + ǫ = U1 + 3.(6) + ǫ ≥ 5.(6). If there is an

R5-task or an R4-task in FFDL(postp) we have (1). If there is a R3-task M3 in

FFDL(postp) we have busyalg(postp)−M3 > U1, and thus walg(postp) ≥ 5, since no

single task < 2 is > U1. Else, if postp is considered after ts we have only X-tasks in

postp. If there are at least 5 of them we have walg(postp) ≥ 5. Else, if there are only

4 of them at least 3 must be Xb-tasks, since all X-tasks are < U1 and < 1 + ǫ, and

any two X-tasks that add up to more than 2.(6) must have a Xb-task among them.

We have again walg(p) ≥ 5.

Suppose postp is considered before ts. Suppose there is a Z2-task M2 in postp.

busyalg(postp) − M2 > U1 + 0.(6) + ǫ. If there is another Z2-task there we have
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walg(postp) ≥ 5 Else, if there also is U -task in postp, there must be at least another

task there, and walg(postp) ≥ 2.5 + 1.5 + 1 ≥ 5.

If the maximum task in postp is a U -task U4, and there is a second U -task U5 in

postp we have busyalg(postp)−U4 −U5 > 1.(6) + ǫ > 2, and walg(postp) ≥ 5. If there

are only X-tasks in postp, we have, by the same argument as above, walg(postp) ≥ 5.

In all cases walg(p) ≥ 5, and (1) holds.

We have also shown that wmin(U1 + 2.(6) + 1 + ǫ) ≥ 5. If in OPT (postp) there

are two Xb-tasks and tasks with a total weight of 2, or one Xb-task and one Ua-task

and tasks with a total weight of 2, or one Ua-task, two Xb-tasks and one Xa-task, we

have postp > 2 + 2.(6) + 1 + ǫ > U1 + 2.6 + ǫ, and walg(postp) ≥ 5 ≥ wopt(postp).

Suppose there are 4 X-tasks such that there is at least one Xb-task among

them, or one Xb-task and tasks of weight 3 in OPT (postp). Then wopt(postp) =

4.25. busyalg(postp) > 4.(3) + 1 + ǫ. If there is an R5-task or an R4-task in

FFDL(postp) we have walg(postp) ≥ 5. If there is a R3-task M3 in FFDL(postp)

we have busyalg(postp) − M3 > 1.(3) + ǫ. At least a U -task is needed to fill this

time and walg(postp) ≥ 4.5. If postp is considered before ts, and if there is a

Z2-task M in FFDL(postp), busyalg(postp) − M > 2.(3) + ǫ. If there is another

Z2-task walg(postp) ≥ 5. If there is a U -task in addition to M , walg(postp) ≥

2.5 + 1.5 + 1 = 5, If there are only two X-tasks, they must be Xb-tasks, and

walg(postp) ≥ 2.5 + 1.25 + 1.25 ≥ 5. If the maximum task in FFDL(postp) is a

U -task U4, busyalg(postp) − U4 > 2.(3) + 1 + ǫ, and to fill this time a weight of at

least 3 is needed, thus walg(postp) ≥ 4.5. If there are only X-tasks in FFDL(postp),

and there are no more than 4 of them, the average length of an X-task is > 1.458(3).

Thus at least one of them is an Xb-task, and walg(p) ≥ 4.25.

Suppose there are 3 Ucp-tasks in OPT (postp), and U1 ≤ 1.(6). wopt(postp) = 5,

and since two Ucp-tasks have a total length > 2.(6), and wmin(U1 +2.(6)+1+ ǫ) ≥ 5,
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we have walg(postp) ≥ 5 ≥ wopt(p).

If U1 > 1.(6), and there are 3 Ucp-tasks in OPT (postp), busyopt(postp) ≥ 5.

busyalg(postp) ≥ 5+1+ǫ ≥ 6.(6). The same is true when there is a Ucp-task, two Xb-

tasks, and one Xa-task, or a Ua-task, two Xb-tasks and one Xa-task in OPT (postp).

Then busyalg(postp) ≥ 1.5+3.(6)+1+ǫ ≥ 6.(6). This also holds when there are tasks

of a total weight of 3 and 2 Xb-tasks in OPT (postp), and busyalg(postp) > 6.5+ǫ ≥ 7,

and wopt(postp) = 5.5, and when there are tasks of total weight 4 and one Xb-task in

OPT (postp), and busyalg(postp) ≥ 5.(3) + 1 + ǫ ≥ 6.8(3).

Note that no U -task and 4 X-tasks can be scheduled in OPT (postp), thus we

can not have wopt(postp) = 5.1(6).

In the above described cases wopt(postp) ∈ {5, 5.25, 5.5}. We have busyalg(postp) >

5 + 1 + ǫ. If there is an R5-task in FFDL(postp), walg(postp) ≥ 6. If there

is an R4-task in FFDL(postp), walg(postp) ≥ 5.5. If there is an R32-task M3,

busyalg(postp) − M3 > 2 + ǫ, and walg(postp) ≥ 5.5. If there is a R31-task M3,

busyalg(postp)−M3 > 3, and at least one Xb-task and one other X-task, or a U -task

and one other task, or a Z-task and one other task, or another R3-task are needed

to fill this time. Then walg(postp) ≥ 5.25 if p = p∗∗, and walg(postp) ≥ 5.5 otherwise.

If there is a Z2-task M2 in FFDL(postp), busyalg(postp) − M2 > 3 + ǫ, and

walg(postp) ≥ 5.5.

If the maximum task in FFDL(postp) is a U -task U4, busyalg(postp)−U4 > 4+ǫ.

If there is a second U -task U5 in FFDL(postp), busyalg(postp)−U4−U5 > 2+ ǫ, and

if there is a third U -task, walg(postp) ≥ 5.5. If there is no third U -task, but there are

U -tasks in FFDL(postp), postp must have been considered by FFDL before ts, and

there are Xb-tasks available for FFDL to schedule in postp. Then walg(postp) ≥ 5.5.

Suppose there is no second U -task. Then there must be at least 3 Xb-tasks in

FFDL(postp) in addition to U4, and walg(postp) ≥ 5.5. Suppose there are only X-
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tasks in FFDL(postp). If there are 6 or more of them, (1) holds. If there are 5 of

them, at least one is > (6 + ǫ)/5 > 6.(6)/5 = 4/3. Then walg(p) ≥ 5.25 if p = p∗∗,

and walg(p) ≥ 5.5 otherwise.

If there are only 4 X-tasks in FFDL(postp), their average is > (busyopt(p) +

1 + ǫ)/4. Suppose opt < 5.(3). Then wopt(postp) = 5, and since at least one task

in FFDL(postp) is a Xb-task, and the other ones average at a time length > 5/3 =

busyalg(postp) − 1 − ǫ, there are at least 2 Xb-tasks in FFDL(postp). So, either

p = p∗∗, and walg(postp) ≥ 4.5 ≥ wopt(p) − 0.5, or walg(postp) ≥ 5 ≥ wopt(postp).

Suppose wopt(postp) ∈ {5.25, 5.5}. No U -task and 4 other tasks can be in

OPT (postp). We have busyopt(postp) ≥ 5.(3), and by Theorem C.10 there can not be

any X-tasks greater than 1.5 in FFDL(postp). busyalg(postp) ≥ 5.(3)+1+0.(6) = 7.

If there were only 4 or less X-tasks in FFDL(postp), their average would be > 1.75,

contradicting Theorem C.10, thus there can not be only 4 X-tasks in FFDL(postp).

We have shown above that in all other cases the statement to prove holds. △

Theorem C.12 ((s2) does not hold)

Statement (s2) of Theorem C.9 does not hold if opt ≥ 5.

Proof: We use the weights and notations from Theorem C.9 with the following

exceptions: there are Xb-tasks in the range (1 + ǫ/2, 1 + ǫ] weighed at 1.25 if they

are < 1.75, with the subcategory Xc-tasks in the range [1.75, 1 + ǫ] weighed at 1.(3),

U -tasks ∈ (1+ ǫ, 2) weighed at 1.5 unless they are equal to U1, with the subcategory

Ucp-tasks of size U1 which are weighed at 1.(6) if they are ≤ 1 + ǫ + ǫ/2, and at 1.75

otherwise. Z2-tasks∈ (2 + ǫ, 3] are weighed at 2.5, R32-tasks∈ (3 + ǫ, 4] weighed at

3.5, and R42-tasks ∈ [4 + ǫ, 5), weighed at 4.5. We shall call Xa-tasks X-tasks that

are not Xb-tasks, Z1-tasks Z-tasks that are not Z2-tasks, and R31-tasks R3-tasks that

are not R32-tasks.
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Let p∗∗ be the processor on which the last Xb-task is scheduled by FFDL. Let

p∗ be the processor on which the last Xc-task is scheduled by FFDL. We show that,

unless p = p∗∗ or p = p∗, walg(p) ≥ wopt(p), and otherwise walg(p) ≥ wopt(p) − 0.5 if

p = p∗∗ 6= p∗, and walg(p) ≥ wopt(p)−0.25 if p = p∗ 6= p∗∗, and walg(p) ≥ wopt(p)−0.75

if p = p∗ = p∗∗.

Statement (s2) implies that:

(a3) there are no tasks in the range (1 + ǫ, 3 + ǫ] in the FFDL-schedule of time slots

which are greater than 3 + 2ǫ, which follows from the scheduling policy.

Suppose there is no pretime on p.

Suppose wopt(postp) = 0. Then walg(postp) ≥ 1.5.

Suppose wopt(postp) ∈ {1, 1.25, 1.(3)}, and there is a X-task in postp. Then

busyalg(postp) ≥ 2 + ǫ. If there are only 2 X-tasks in this time slot then at least one

of them is a Xb-task, and either p = p∗∗ and walg(postp) ≥ 2.25 or walg(postp) ≥ 2.5.

If there is a U - or greater task in FFDL(postp), walg(postp) ≥ 2.5.

Suppose wopt(postp) ∈ {1.5, 1.(6), 1.75, 2}. busyalg(postp) > 2 + 2ǫ, and postp >

3 + 2ǫ. Two X-tasks can not fill this time. U -task or a Z-task can not be in

FFDL(postp) by statement (a3). Thus walg(postp) ≥ 3.

Suppose wopt(postp) ∈ {2.25, 2.(3), 2.5, 2.(6), 2.8(3), 3, 3.08(3), 3.25, 3.5} Here,

we assume the weight of 3.25 is obtained from a Ucp-task and a Ua-task, and the

weight of 3.5 is obtained from 2 Ucp-tasks. In all possible cases busyopt(postp) ≥ 2+ 1
2
ǫ.

busyalg(postp) > 3(1 + 1
2
ǫ). Thus, if there are only 3 X-tasks in FFDL(postp), at

least one of them is a Xb-task, and we have: if p = p∗∗ walg(postp) ≥ 3.25, and else

walg(postp) ≥ 3.5.

In case wopt(postp) ≥ 2.5, we have busyopt(postp) ≥ 2 + ǫ, busyalg(postp) ≥ 3 + 2ǫ,

and postp ≥ 4 + 2ǫ = 2 + (1 + ǫ) + (1 + ǫ). Then any three Xb-tasks fit in postp, and

we have either walg(postp) ≥ 3.75, or p = p∗∗, and walg(postp) ≥ 3.25 in these cases.
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Suppose wopt(postp) ∈ {3.25, 3.5, 3.(3)}. busyalg(postp) > 3+ǫ/2+1+ǫ. Suppose

3 X-tasks can fill this time. Then one of them has to be > 4/3 + ǫ/2, and so it is

an Xb-task. The other two tasks need to add up to 3 + ǫ/2, so at least a second one

must be an Xb-task, which actually it is an Xc-task, since it is > 1.5 + ǫ/4 ≥ 1.75.

The Xc-task is < 1 + ǫ, and so the other two tasks need to add up to > 3 + ǫ/2,

implying that there is a second Xc-task. Then, if p = p∗∗, walg(postp) ≥ 3.(6), and

else walg(postp) ≥ 3.8(3).

If p is not the processor with the last Xc-task on it we have walg(postp) ≥ 4.

Suppose OPT (postp) has the configuration XcXaXa, and there is a pretime on p.

Then opt > 5.(6), ǫ > 0.8(3), postp > 3.(6) + 1 + 0.8(3) > 4.(6) + ǫ. postp − Xc =

2 + Xc1, where Xc1 is the Xc-task the optimal schedule has in postp. Either a task

≤ Xc1 was already scheduled on FFDL(p) and any other two Xc-tasks fit, or Xc1

and any other task fits in the remaining time. Therefore, if wopt(postp) = 3.25, either

p = p∗, the last processor with a Xc-task scheduled on it, and walg(postp) ≥ 3.(6) (2

Xc-tasks and a Xa-task), if p is also p∗∗, or walg(postp) ≥ 3.91(6) if p is not also p∗∗,

and else walg(postp) ≥ 4.

Suppose there is a Ucp-task, a U -task and an X-task in OPT (postp), and

that wopt(postp) ∈ {4, 4.25, 4.(3), 4.5, 4.58(3), 4.(6), 4.75} Note that OPT (postp) can

not be made of one Xc-task and two Ucp-tasks if U1 > 1 + ǫ + ǫ/2, since then

busyopt(postp) ≥ 2U1+1.75 > 3.75+2ǫ+2(ǫ/2) > 4+ǫ = opt. We have busyalg(postp) >

U1 + 1 + ǫ + 1 + 1 + ǫ ≥ 4 + 3ǫ ≥ 5 + 1/2ǫ. If there is a R32- or greater task in

FFDL(postp), walg(postp) ≥ 4.75. If there are only X-tasks in FFDL(postp) there

must be at least 4 of them, since 3 of them can not add up to U1 + 2 + (1 + ǫ) + ǫ.

If there are more than 4 tasks walg(postp) ≥ 5. Since busyalg(postp) > 4 + 2ǫ, at

least one of the four tasks is a Xb-task. Thus, either p = p∗∗, and walg(postp) ≥ 4.25,

or p 6= p∗∗, and walg(postp) ≥ 4.75, as any three Xb-tasks fit in a time of length
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(1 + ǫ) + (1 + ǫ) + 2.

Recall that there can not be a U -task and any combination of tasks of length at

least 4 in OPT (postp), else busyopt(postp) > opt.

Suppose wopt(postp) ∈ {4, 4.1(6), 4.25, 4.(3), 4.41(6), 4.5, 4.(6), 4.75}, and there

is no Ucp-task in OPT (postp) except when the weight is 4.1(6) and 4.41(6). We

have busyalg(postp) > 4 + 1 + ǫ. If there is a R32- or greater task in FFDL(postp)

we have walg(postp) ≥ 5. Else we have only X-tasks. 3 or less of them add up to

< 2+2+1+ ǫ. If there are 4 of them, one of them has a length > 1+0.25+ ǫ/4. We

know that ǫ < 1, and thus 0.25 > eps/4. Then at least one of the tasks is a Xb-task.

Thus, if p = p∗∗, walg(postp) ≥ 4.25, and else walg(postp) ≥ 4.75.

Suppose there are 3 Ucp-tasks in OPT (postp). Then busyalg(postp) > 4(1 + ǫ) ≥

6. If there is a R32- or greater task in FFDL(postp), walg(postp) ≥ 5.5. If there are

only X-tasks there must be at least 5 of them, since all X-tasks are < 1 + ǫ, and

walg(postp) ≥ 5. Thus if Ucp < 1 + ǫ + eps

2
the statement to prove holds. Suppose

U1 > 1 + ǫ + ǫ/2. Then busyalg(postp) ≥ 3 + 3ǫ + 3
2
ǫ ≥

ǫ>0.5
4 + ǫ + 3

2
ǫ > opt, a

contradiction.

We can not have the optimal configuration XXcXcXc, since the busy time would

add up to 6. Neither is XbXbXbXb > 4+2ǫ = opt possible. We treated the cases when

the weight adds up to 4.75 and 4.(6) (configurations XaXbXbXb, and XaXaXcXc in

postp) previously.

Suppose the configuration of OPT (postp) is XaXbXcXc or XaXbXbXc. In this

case ǫ > 0.75, and wopt(postp) = {4.91(6), 4.8(3)}. busyalg(postp) ≥ 4 + 3
2
ǫ + 1 + ǫ ≥

5+ 5
2
ǫ. If there is a R32, a R4 or R5-task in postp, we have walg(postp) ≥ 5. Else there

are only X-tasks in FFDL(postp). Suppose there are only 4 of them. Then at least

one of them, X1, is a Xb-task since busyalg(postp) > (1 + ǫ) + (1 + ǫ) + 2 + (1 + ǫ/2).

We have X1 < 1 + ǫ, and at least a second one X2, is a Xb-task. X1 + X2 < 2 + 2ǫ,
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and at least a third one, X3, must be a Xb-task. X3 < 2, and the last task must be

a Xb-task as well. walg(postp) ≥ 5.

Suppose wopt(postp) = 5. busyalg(postp) > 6 + ǫ. If there is a R32-task or

a R4-task in FFDL(postp), walg(postp) ≥ 5.5. Else there are only X-tasks in

FFDL(postp). Three of them can not add up to more than 6. If there are only 4 of

them, at least one of them must be a Xb-task, since their average is > 1.62 > 1+ 1
2
ǫ.

The first Xb-task is < 1 + ǫ, so the other 3 add up to more than 5. Then at least

one of them must be greater than 5/3, and so it is a Xb-task. The last two tasks add

up to > 3. Thus at least one of them must be > 1.5, and thus be a Xb-task. Thus,

unless p = p∗∗, we have walg(postp) = 5, and otherwise we have walg(postp) ≥ 4.75.

Suppose wopt(postp) ∈ {5.25, 5.(3)}. Then ǫ > (1 + 1
2
ǫ)/2, and ǫ > 2/3. Also,

busyalg(postp) ≥ 5 + 1
2
ǫ + 1 + ǫ = 6 + 3

2
ǫ. If there is a R32, R4 or R5-task in postp, we

have walg(postp) ≥ 5.5, since busyalg(postp)−5 ≥ 1+3/2ǫ). If there are only 4 X-tasks

in FFDL(postp) their average is > 1.5+ 3
8
ǫ ≥ 1.75. Thus at least one of the tasks Xc1

is a Xc-task. If p 6= p∗, walg(postp) ≥ 5.(3) ≥ wopt(postp), since postp ≥ 8 and any 4

X-tasks fit in this time slot. We have busyalg(postp) − Xc1 >
ǫ>0.75

7.125 − 2 = 5.125.

Then the average of the remaining tasks is > 1.70, and there must be at least

another Xb-task X2, in FFDL(postp). We then have busyalg(postp) − Xc1 − X2 >

5.125 − 1.75 = 3.375, and thus there must also be a third Xb-task in FFLD(postp).

Subtracting 1.75 from 3.375, we conclude that the fourth task is also a Xb-task, and

walg(postp) ≥ 5.08(3). Suppose there are 5 X-tasks in FFDL(postp). Then their

average is > 1.425. Suppose
busyalg(postp)

5
< 1 + ǫ/2. Then

6+ 3

2
ǫ

5
< 1 + ǫ/2, and

6 + 3
2
ǫ < 5 + 5ǫ/2. Then 1 < ǫ, contradiction. Thus there is at least one Xb-task

in FFDL(postp). Then, if p = p∗∗, walg(postp) ≥ 5.25, and else walg(postp) ≥ 6.25.

Concluding, if p = p∗, we have walg(p) ≥ 5.08(3) ≥ wopt(p)−0.25, if p = p∗∗, we have

walg(p) ≥ 5.25, and else walg(postp) ≥ 5.(3) ≥ wopt(postp).
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Suppose there is a pretime on p. Then there can not be 2 U -tasks in OPT (postp),

else prep + busyopt(postp) > opt.

Suppose wopt(prep) ∈ {2, 2.25}. Then walg(prep) ≥ 1.(6). wopt(postp) ≤ 3.(3),

and there are no 2 U -tasks in FFDL(postp) we have walg(postp) ≥ wopt(prep) + 0.5,

unless p = p∗∗ or p = p∗, and else walg(postp) ≥ wopt(postp) + 0.25). Then wopt(p) ≤

walg(p) if p 6= p∗∗, and wopt(p) − 0.25 ≤ walg(p) otherwise.

Suppose wopt(prep) ∈ {2.25, 2.(3)}. Then wopt(postp) ≤ 3.08(3), since there

can not be 2 Xb-tasks and 3 other tasks in OPT (p) (else busyopt(p) ≥ 5 + ǫ >

opt). walg(prep) ≥ 1.(6), and the statement to prove holds, since in these cases

walg(postp) ≥ wopt(postp) + 0.(6), or p = p∗∗ and walg(postp) ≥ wopt(postp) + 0.1(6).

Suppose wopt(prep) = {2.5, 2.(6)}. Then busyopt(prep) ≥ 2 + ǫ. Then there can

not be a U -task and an X-task or two Xb-tasks in OPT (postp). We have walg(prep) ≥

1.(6). Whenever wopt(postp) ≤ 2.(3), we have walg(postp) ≥ wopt(postp) + 1.

Suppose wopt(prep) = 2.75, and there is a U -task and an Xb-task in OPT (prep).

Then, if there is a single task U4 < 2 in FFDL(prep), we must have U4 = U1 ≥

1 + ǫ + 1
2
ǫ, and thus w(U4) = 1.75, and walg(p) ≥ wopt(p).

Suppose there is a Ucp-task and an X-task in OPT (prep), and wopt(prep) ∈

{2.75, 2.91(6), 3, 3.08(3)}. There are no Z1-tasks in the FFDL-schedule of time slots

> 2 + ǫ. If there is a U -task in FFDL(prep), then there is at least another task in

that time slot. If there are only 2 X-tasks in FFDL(prep), either prep < 3 + ǫ, and

both X-tasks are Xb-tasks, or prep ≥ 3 + ǫ, and at least one X-task is an Xb-task,

and then we have walg(prep) ≥ 2.25. The statement to prove holds, since in all cases

walg(postp) ≥ wopt(postp) + 1.

Suppose there are only 2 U -tasks in OPT (prep). wopt(prep) ∈ {3, 3.1(6), 3.(3), 3.5}.

There can be either no task or one X-task in OPT (postp), and thus walg(postp) ≥

wopt(postp)+0.91(6) if the last Xb-task is scheduled in FFDL(postp), and walg(postp) ≥
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wopt(postp)+1.1(6) otherwise. Also walg(prep) ≥ 2.25 if p = p∗∗, and walg(prep) ≥ 2.5

otherwise. The statement to prove holds,

Suppose there are one X-task and two Xa-tasks or a Z1-task, or a Ua-task and

2 Xa-tasks or a Z1-task, or two Xb-tasks which are not Xc-tasks and one Xa-task in

OPT (prep). wopt(prep) ∈ {3, 3.25, 3.(3), 3.5}. The same argument as in the previous

case holds in this case as well.

Suppose there are one Xb-task, one Xc-task and another X-task in OPT (prep).

Then wopt(prep) ∈ {3.58(3), 3.(6), 3.91(6), 4}. busyopt(prep) > 1.75 + 1.375 + 1 =

4.125. busyalg(prep) > 3.125, and busyalg(prep) > 2 + ǫ. Since there is at most one

X-task in FFDL(postp), walg(postp) ≥ wopt(postp) + 0.91(6) if the last Xb-task is

scheduled in FFDL(postp), and walg(postp) ≥ wopt(postp) + 1.1(6) otherwise.

If there is a U - or greater task in FFDL(prep), walg(prep) ≥ 2.5. Otherwise,

either there are 3 or more X-tasks in FFDL(prep), and walg(prep) ≥ 3, or there

must be at least one Xb-task in that time slot. If it is not an Xc-task there must

be at least a second Xb-task in FFDL(prep), and walg(prep) ≥ 2.5. Else, either

p = p∗ = p∗∗, and the last Xb-task coincides in this case with the last Xc-task and

is scheduled by FFDL in prep, and walg(prep) ≥ 2.(3), or walg(postp) ≥ 2.58(3). The

statement to prove holds for the cases wopt(prep) ∈ {3.58(3), 3.(6)}.

Suppose we have wopt(prep) ∈ {3.91(6)}, and there are 2 Xc-tasks in OPT (prep).

busyalg(prep) ≥ 3.5. Also, busyopt(postp) < 1.5, and so there is not enough place for

an Xc-task in OPT (postp). then walg(postp) − wopt(postp) ≥ 1 if the last Xb-task

is scheduled by FFDL in postp, and walg(postp) − wopt(postp) ≥ 1.25 otherwise. If

there is a Z2- or greater task in FFDL(prep), walg(prep) ≥ 3. If there is a U -task

U4 in FFDL(prep), busyalg(prep) − U4 > 1.5, and walg(prep) ≥ 2.75. Suppose there

are only X-tasks in FFDL(prep). If there are 3 of them the statement to prove

holds. Suppose there are only 2 of them. then at least one of them is an Xc-task,
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since both of them add up to a time that is ≥ 3.5. If p 6= p∗, walg(prep) ≥ 2.(6),

and (1) holds. If p = p∗, the second task in FFDL(prep) must be an Xb-task, and

walg(prep) ≥ 2.58(3), and the statement to prove holds again.

Note that 3 Xc-tasks have a time length that is ≥ 5.25, and a weight of 4. When

we shall handle the case of wopt(prep) = 5, we shall also include this case.

Next we handle the cases when there is a Ucp-task and 2 X-tasks or a Z-task,

or 2 Xb-tasks and one X-task, or 3 Xb-tasks in OPT (prep).

Suppose wopt(prep) ∈ {3.(6), 3.75, 3.91(6), 4}. busyalg(prep) > U1 + 1. prep >

3+ǫ. If there is a U -task U4 in FFDL(prep), there is also an X-task in FFDL(prep).

If there is a R3-task, we have walg(prep) ≥ 3. Else there must be either three or more

X-tasks in prep, or at least one of the two tasks is a Xb-task. Then, if p = p∗∗,

walg(prep) ≥ 2.25, and else walg(prep) ≥ 2.5. In either case, the statement to prove

holds, as, if the last Xb-task is not scheduled by FFDL in postp and wopt(postp) >

3.75, walg(postp) − wopt(postp) ≥ 1.5, as no Xb-task can be in the optimal schedule

of postp if wopt(prep) ≥ 3.75, and if wopt(prep) = 3.(6), walg(postp) − wopt(postp) ≥

1.1(6). If the last Xb-task is scheduled by FFDL in postp we have walg(p) ≥ wopt(p)−

0.25.

Suppose there is a U -task and 2 Xb-tasks in OPT (prep). wopt(prep) ∈ {4.1(6),

4.25, 4.(3), 4.41(6)}. No Xb-task fits in OPT (postp), thus walg(postp)−wopt(postp) ≥

1.5, unless the last Xb-task was scheduled by FFDL in postp, in which case walg(postp)−

wopt(postp) ≥ 1.25. Also, busyalg(prep) > 1 + ǫ + 1 + ǫ
2

+ ǫ
2

= 2 + 2ǫ ≥ 3. No two

X-tasks or Z2-task can fill this time. Suppose there is a U -task U4 in FFDL(prep).

If there is a Ucp-task in OPT (prep), busyalg(prep) − U4 > 1 + ǫ, and walg(prep) ≥ 3

in all cases.

Suppose there is a Ua-task and 2 Xb-tasks in OPT (prep) wopt(prep) ∈ {4, 4.08(3),

4.1(6)}. No two X-tasks or Z2-task can fill this time. Suppose there is a U -task U4
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in FFDL(prep). If there is a second U -task in FFDL(prep), walg(prep) ≥ 3. Else

there must be the biggest Xb-task in FFDL(prep). If there are no Xc-tasks at

all, wopt(prep) = 4, and walg(prep) = 2.5, and the statement to prove holds. Else

walg(prep) ≥ 3.8(3), and the statement to prove holds again.

Suppose there are 2 Ucp-tasks in prep. wopt(prep) ∈ {3.(3), 3.5}. Then we have

walg(prep) ≥ 2.5 if p 6= p∗∗, and else walg(prep) ≥ 2.25. The statement to prove holds,

as wopt(postp) < 2.

Suppose the optimal schedule of prep is contains 2 U -tasks or tasks of length at

least 3 with weight 3 and one X-task. Then we may have wopt(prep) ∈ {4, 4.25, 4.(3),

4.1(6), 4.41(6), 4.5}. busyalg(prep) > 2 + 2ǫ, and at least 3 X-tasks are needed to

fill this time. There can not be any U -tasks in FFDL(prep) by theorem C.10.

walg(prep) ≥ 3 = wopt(prep) − 1.5, and (1) holds.

Suppose there are 2 U -tasks and one Xc-task in OPT (prep), and wopt(prep) >

4.5. wopt(prep) ∈ {4.58(3), 4.(6), 4.75, 4.8(3)}, and in both cases there are 2 Ucp-tasks

and one Xc-task in OPT (prep). No task can be in OPT (postp), thus walg(postp) −

wopt(postp) ≥ w(U1). busyalg(prep) > 2U1. We have, as in the previous case,

walg(prep) ≥ 3, and (1) holds if w(U1) = 1.(6).

Else, if there is a Xc-task in OPT (prep) we have busyalg(prep) > 2+3ǫ+0.75 >

3.25 + 2ǫ. If there is an R32- or greater task in FFDL(prep), walg(prep) ≥ 4. Else,

if there is a U -task U4 in FFDL(prep), busyalg(prep) − U4 > 1 + 3/2ǫ + 0.75 ≥

1.25 + 2ǫ >
ǫ>0.75

2.75, and walg(postp) ≥ 3.5. Suppose there are only X-tasks in

FFDL(postp). Two X-tasks can’t fill a time > 4. If there are only 3 of them, since

busyalg(prep) > (1 + ǫ) + (1 + ǫ) + ǫ + 0.75, we conclude that the smallest among

them must be > 0.75 + ǫ ≥ 1.5 > 1 + ǫ/2. Thus all 3 X-tasks are Xb-tasks, and

walg(postp) ≥ 3.75. If there is no Xc-task in OPT (prep), wopt(prep) = 4.75. Also

walg(postp) ≥ 1.75, and wopt(postp) = 0. Then, since walg(prep) ≥ 3, walg(p) ≥
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wopt(p).

Suppose there are 2 Xc-tasks and another X-task in FFDL(prep). Then we

have busyopt(prep) ≥ 4.5. wopt(prep) ∈ {3.(6), 3.91(6), 4} wopt(postp) < 1.(3) since no

U -task or Xc-task fits in OPT (postp). busyalg(prep) > 3.5. If there is a U -task U4

in FFDL(prep), busyalg(prep) − U4 > 1.5, and either another U -task or the biggest

X-task, in our case an Xc-task is scheduled in FFDL(prep) in addition to U4, and

walg(prep) ≥ 2.8(3), and the statement to prove holds. If there are only X-tasks in

FFDL(prep), walg(prep) ≥ 1.(3) + 1.25 = 2.58(3) ≥ wopt(prep) − 1.08(3), in case

wopt(prep) = 3.(6). If wopt(prep) ∈ {3.91(6), 4}, there also is an Xb-task in addition

to the two Xc-tasks in OPT (prep), and busyalg(prep) ≥ 3.5+ǫ/2 ≥ 3.875. If there are

only 2 X-tasks in FFDL(prep), 1 + ǫ > (3.5 + ǫ/2)/2. Then 3ǫ/4 > 1.75− 1 = 0.75,

and ǫ > 1, contradiction. thus there can not be only 2 X-tasks in FFDL(prep), and

walg(prep) ≥ 3.

Suppose there are 4 X-tasks in OPT (prep), and there is at most one Xb-task

among these. We have walg(prep) ≥ 2.5, and the statement to prove holds in the

case wopt(prep) = 4. Suppose wopt(prep) = 4.24. Then busyalg(prep) = 3 + 1
2
ǫ. This

time can only be filled by 2 Xb-tasks, the average of which is > 1.5, contradiction

Theorem C.10. If there are more than 2 X-tasks or 2 tasks, or a U -task and an

Xb-task or a Z2- or greater task in FFDL(prep), we have walg(prep) ≥ 3, and the

statement to prove holds.

Suppose there is a U -task and tasks of lengths between 3 and 4, with weights 3,

3.25, 3.(3), or an equivalent configuration of tasks (such as a Z2-task or two Xb-tasks

and tasks of a total length between 2 and 3) in OPT (prep).

wopt(prep) ∈ {4.5, 4.75, 4.8(3), 4.(6), 4.91(6), 5, 5.08(3)}. Note that a Ucp-task weighed

at 1.75 is not possible if there are Xc-tasks, else U1 > 1 + 0.75 + 0.375 > 2.

busyalg(postp) > 1 + ǫ + 2. 2 X-tasks can’t fill this time, so walg(postp) ≥ 3.
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If there is no Xb-task in OPT (prep),wopt(prep) ∈ {4.5, 4.(6), 4.75}, and the statement

to prove holds, since walg(postp) − wopt(postp) ≥ w(U1).

If there is an Xb-task in OPT (prep), busyalg(prep) > 1 + ǫ + 2 + 1
2
ǫ, and there must

be at least one Xb-task among the 3 X-tasks in FFDL(postp). If there is no Xc-task

in OPT (postp), or the U -task is not a Ucp-task, the statement to prove holds again.

If the last Xb-task is scheduled in FFDL(prep), walg(prep) ≥ 3.25, and else we have

walg(prep) ≥ 3.75. Also, walg(postp) ≥ w(U1), while wopt(prep) ≤ w(U1) + 3.25.

Suppose wopt(prep) ∈ {5, 5.25, 5.(3)}, and there are no 3 U -tasks in OPT (prep).

We can not have walg(prep) ≥ 5.5, since then busyalg(prep) ≥ 5+ ǫ ≥ 3+ 1
2
opt > opt.

prep > 5. busyalg(prep) > 4. Suppose there are 3 X-tasks in FFDL(prep). This can

not happen by Theorem C.11. Else the statement to prove holds, as the relevant

minimal configurations for FFDL(prep) are R5, R4, R32X, XXXX.

Suppose there are 2 pretimes on p. We assume wopt(pre1p) ≥ wopt(pre2p) for

convenience. There is no loss of generality since the pretimes are interchangeable.

Recall that there can not be two U -tasks and two X-tasks in any optimal schedule

of one processor.

If wopt(pre1p) > 3.(3), we must have busyopt(pre1p)+pre2p ≥ 3+ǫ+2 ≥ (2+ǫ)+

3 > opt, a contradiction. Suppose wopt(pre1p) = 3.(3). If wopt(pre2p) ≥ 2.25, we have

busyopt(p) ≥ 3.75+2+ǫ/2 ≥ 6 > opt, a contradiction. Then we have wopt(p) = 5.(3).

busyalg(pre1p) ≥ 2.75 > 2+ ǫ/2. pre1p < 3+ ǫ, else opt ≥ pre1p +pre2p > 5+ ǫ > opt,

and thus there are Xb-tasks available for FFDL to schedule from statement (s2). If

there is a U -task or a Z2- or greater task in FFDL(postp), we have walg(pre1p) ≥ 2.5.

If there are only X-tasks in FFDL(pre1p) we again have walg(pre1p) ≥ 2.5, since

there are two Xb-tasks that fit in this time slot (for example the Xb-task scheduled

in the optimal schedule and another Xb-task), and FFDL schedules the bigger tasks

first. walg(p) ≥ 2.5 + 1.(6) + 1.(6) = 5.8(3) > wopt(p).
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Suppose wopt(pre1p) = 3.25. wopt(pre2p) < 2.25, since otherwise busyopt(p) >

3 + ǫ/2 + 2 + ǫ/2 = 5 + ǫ > opt. The same argument as in the previous case holds.

If wopt(pre1p) = 3.08(3), there is a Ucp-task and an Xc-task in OPT (pre1p). Then

walg(pre1p) ≥ 2, walg(p) ≥ 2 + 1.75 + 1.75 = 5.5 ≥ wopt(p), since wopt(p) < 2.(3).

Suppose wopt(pre1p) = 3. wopt(pre2p) ≤ 2.(3), else opt ≥ 5+ǫ > opt. walg(pre1p) ≥

2, since busyalg(pre1p) > pre1p − 1 ≥ 2, and walg(p) ≥ 2 + 1.(6) + 1.(6) = 5.(3) ≥

wopt(p).

Suppose wopt(pre1p) ∈ {2.58(3), 2.(6), 2.75}. Note that if there are 2 Xc-tasks

or an Xb-task and an Xc-task in OPT (pre1p) we have pre1p ≥ 1.75 + 1.(3) > 3.

Since U -task greater than U1 can be in FFDL(pre1p) alone if the configuration of

OPT (pre1p) is UcpX, walg(pre1p) ≥ 2. Also, in all cases busyopt(pre1p) > 2 + ǫ, and

thus wopt(pre2p) ≤ 2.(3). walg(p) ≥ 2 + 1.(6) + 1.(6) = 5.(3) ≥ wopt(p).

Suppose wopt(pre1p) = 2.5. busyopt(pre1p) ≥ 2 + ǫ, thus wopt(pre2p) ≤ 2.(3), and

there can be no task in OPT (postp). walg(p) ≥ 5 > wopt(p).

Suppose wopt(pre1p) ∈ {2.(3), 2.25, 2}, or wopt(pre1p) < 2. If there is no task

in OPT (postp), walg(p) ≥ 5 > wopt(p), since we assumed wopt(pre1p) ≥ wopt(pre2p).

Else we must have walg(postp) ≥ 2.25 since busyalg(postp) > 2 + ǫ. Then walg(p) ≥

2.5 + 1.(6) + 1.(6) ≥ 5.58(3) ≥ wopt(p). We have wopt(p) ≤ 1.25 + 1.(3) + 3 = 5.58(3)

since no three Xb-tasks or two Xc-tasks can be in an optimal schedule with 5 tasks.

Also note that there can not be a U -task or more than one task on OPT (postp),

since then opt ≥ pre1p + pre2p + 1 + ǫ > 5 + ǫ > opt. △

From Theorems C.5, C.8, C.9, C.11, and C.12, it results that there is no minimal

counterexample with at most two downtimes on each processor and in this case we

have Cmax(Multifit) ≤ 3
2
opt if the parameter ǫ of FFDL Multifit is chosen to be less

then half the time unit used in the specification of the problem instance. With this,

the proof of Theorem A.2 is completed.
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CHAPTER V

CONCLUSION

A. Summary

In this thesis we have presented algorithms for scheduling on multiple processors in

the presence of machine shutdowns. We considered the case when there is only one

shutdown on each machine and presented an LPT-based algorithm the schedule of

which ends within 3/2 of the time needed by the optimal schedule or of the end of the

last downtime. This bound is tight in the class of polynomial algorithms assuming

that P 6= NP . LPT and its derivate algorithms give a better balance of tasks on

processors than FFD and Multifit-based algorithms, which first fill one processing

space before moving on to the next one, but the worst-case bound of Multifit-based

algorithms is better in many situations.

The second result presented in this work concerns scheduling on uniform pro-

cessors with at most one shutdown time on each machine and the aim of minimizing

the maximum completion time. LPT has been shown to have a tight bound higher

than 3
2

even for scheduling problems without availability constraints, and thus was

not a likely candidate for an optimal algorithm for the class of polynomial algorithms

for this case. We considered a variant of Multifit, which first orders the time slots

created by the assigning of the deadline (times the processor’s speed ratio) in in-

creasing order, and only then uses FFD to assign tasks to time slots. We showed

this algorithm finishes within 3
2

+ ǫ (where ǫ can be chosen by the user) the end of

the optimal schedule or the end of the last downtime, which is optimal in the class of

polynomial algorithms for same-speed processors, and thus is optimal for the more

general case of uniform processors as well.
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Last we considered scheduling on same-speed processors with possibly multiple

downtimes on each machine. We used the same algorithm as in the previous case

(except that there is no need to compensate for variable speed ratios when ordering

the time slots), and showed that its schedule finishes within 3
2

the optimal schedule’s

end or the end of the last downtime when there are at most 2 downtimes on each

machine, and within (3
2

+ 1
2k

) of the same in case there are more than 2 downtimes

on at least one machine.

B. Methods of argument

To prove the upper bound results several methods were used. A classic method is to

define and prove the existence of a minimal counterexample assuming that the upper

bound is broken, and then show that it can not exist.

In the cases we considered, a minimal counterexample had multiple properties

common to all three situations. First, the task that the algorithm scheduled last in

the case of LPTX, and which FFDL Multifit first was unable to schedule when a

deadline at or above the bound was assigned, was the smallest task in the task set of

a minimal counterexample. In the case of LPTX, this task is the only one LPTX can

not schedule within 3/2 the optimal schedule length or the end of the last downtime.

This allowed for normalization of all time lengths to the length of this task.

Second all idle times were smaller than this last task.

In Chapters III and IV we showed that in small pretimes with only one task in

the optimal schedule and in the FFDL-schedule, the task in the FFDL-schedule is

greater than or equal to that in the optimal schedule. Also, in Chapter IV we showed

that all tasks less than 2 scheduled alone in a time slot of length between 2 and 3 by

the FFDL- algorithm are equal in a minimal counterexample.
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The concept of task density allowed us to make arguments about the weight in

time slots of any given length. The concept of minimal configuration allowed for

collapsing arguments which would have taken a paragraph without it, into a row.

Most of each of the proofs is based on the existence of a compensating processor, a

processor that has more processing time in the optimal schedule than in the schedule

of our algorithm without the last task. Proving that such a compensating processor

can not exist led in each case to the completion of the proofs.
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