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ABSTRACT 

 

Application of Finite Mixture Models for Vehicle Crash Data Analysis. (May 2010) 

Byung Jung Park, B.E., Seoul National University; 

M.S., Seoul National University 

Chair of Advisory Committee: Dr. Dominique Lord 

 

Developing sound or reliable statistical models for analyzing vehicle crashes is very 

important in highway safety studies. A difficulty arises when crash data exhibit over-

dispersion. Over-dispersion caused by unobserved heterogeneity is a serious problem 

and has been addressed in a variety ways within the negative binomial (NB) modeling 

framework. However, the true factors that affect heterogeneity are often unknown to 

researchers, and failure to accommodate such heterogeneity in the model can undermine 

the validity of the empirical results. 

 

Given the limitations of the NB regression model for addressing over-dispersion of crash 

data due to heterogeneity, this research examined an alternative model formulation that 

could be used for capturing heterogeneity through the use of finite mixture regression 

models. A Finite mixture of Poisson or NB regression models is especially useful when 

the count data were generated from a heterogeneous population. To evaluate these 

models, Poisson and NB mixture models were estimated using both simulated and 

empirical crash datasets, and the results were compared to those from a single NB 

regression model. For model parameter estimation, a Bayesian approach was adopted, 

since it provides much richer inference than the maximum likelihood approach. 

 

Using simulated datasets, it was shown that the single NB model is biased if the 

underlying cause of heterogeneity is due to the existence of multiple counting processes. 

The implications could be poor prediction performance and poor interpretation. Using 
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two empirical datasets, the results demonstrated that a two-component finite mixture of 

NB regression models (FMNB-2) was quite enough to characterize the uncertainty about 

the crash occurrence, and it provided more opportunities for interpretation of the dataset 

which are not available from the standard NB model. Based on the models from the 

empirical dataset (i.e., FMNB-2 and NB models), their relative performances were also 

examined in terms of hotspot identification and accident modification factors. Finally, 

using a simulation study, bias properties of the posterior summary statistics for 

dispersion parameters in FMNB-2 model were characterized, and the guidelines on the 

choice of priors and the summary statistics to use were presented for different sample 

sizes and sample-mean values. 
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CHAPTER I 

INTRODUCTION 

 

 

Highway safety has been a major research topic in transportation studies since highway 

crashes account for more than 90% of all transportation-related fatalities and cause 

enormous socio-economic costs.1Although much progress has been made in improving 

highway safety due to various research projects and safety programs, a large number of 

traffic collisions still occur. According to the 2008 Traffic Safety Fact Sheets in the 

United States (NHTSA, 2009), approximately 5,811,000 police-reported traffic crashes 

in 2008 claimed the lives of nearly 37,261 road users and injured 2,346,000 people. This 

means that everyday more than 100 people are still killed on the U.S. highway network. 

The economic cost alone of motor vehicle crashes in 2000 was estimated about $230.6 

billion (NHTSA, 2009).  

 

A motor vehicle crash is generally a consequence of three major elements: driver errors, 

vehicle characteristics, and road environment. However, from a perspective of highway 

safety designers or engineers, it is more important to provide safer roadway environment 

to reduce the number of fatalities and injuries because a highway designed with explicit 

attention to safety can also mitigate the consequences of driver errors. Recognizing the 

importance of providing safer roadway environment, highway authorities have 

established the Highway Safety Improvement Program (HSIP) which is characterized by 

detecting hazardous locations (hotspot identification), diagnosing problems, and 

providing remedies. Especially, in regard to identifying hotspots, statistical models play 

an important role since crash frequency or rate at a specific location is a random variable 

whose underlying mean value is not known. Therefore, identifying locations based on 
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crash history is subject to uncertainty and the statistical techniques should be utilized for 

estimating the expected number of crashes at a location.  

 

On the other hand, during the recent few years, increased emphasis has been placed on 

improving the explicit role of highway safety in making decisions on transportation 

planning, design, and operations. This can be achieved by quantifying the safety effects 

of geometric design elements for various transportation facilities, and incorporating the 

safety information in the planning and design stages of the project development process 

(Bonneson et al., 2007). To evaluate safety in a quantitative way, it is vital to identify the 

relationships between safety and various highway geometric design elements for a 

highway facility. These geometric design elements may include roadway cross-section 

(lane width and shoulder width), horizontal alignment (degree of curvature or radius, 

superelevation, and spiral transition curves), vertical alignment (grade, length of grade, 

and lengths of crest vertical curves), median width, roadside (clear zone width and 

sideslopes), etc (ASHTO, 2001). Statistical models can provide information about the 

impacts of these variables on safety. For example, the forthcoming Highway Safety 

Manual (HSM) uses the concept of accident modification factors derived from the 

statistical modeling results to predict the safety performance for various highway 

facilities before they are open to traffic. 

 

As described above, statistical models play a key role in various highway safety analyses. 

Therefore, developing sound or reliable statistical models for analyzing motor vehicle 

crashes is very important. The primary goal of this research is to introduce a new type of 

statistical model for analyzing vehicle crashes as extensions to the traditional models. 

The remainder of this chapter consists of three sections. Section 1.1 provides the 

problem statement. In Section 1.2, specific objectives of this research are provided. The 

outline of the dissertation is presented in Section 1.3.   

 



 3

1.1 Problem Statement 

From a statistical point of view, we treat highway crashes as random events by assuming 

that there is an underlying mean crash rate for each individual roadway segment or 

intersection. Although a number of statistical models have been used to estimate crash 

frequencies or rates at a specific location over a given interval of time, the primary 

assumption is that crash counts follow the Poisson probability law. What makes the 

analysis difficult in modeling crash data is that this kind of data mostly exhibits “over-

dispersion”. Over-dispersion results when the variability accounted for by the 

homogeneous Poisson process is not sufficient. In this case, we say that the data are 

over-dispersed. There are reasonable explanations of over-dispersion in crash data, 

which will be seen shortly in Chapter II.  

 

To correct for the extra Poisson variation, highway safety analysts used negative 

binomial (NB) regression models since the NB models can effectively approximate the 

underlying crash process by introducing a probabilistic error term related to the mean of 

the Poisson variable. Within the NB regression modeling framework, many studies have 

focused on the structure of the dispersion parameter (φ , or its inverse φα /1= ) of the 

NB distribution. Instead of using a fixed (or common) dispersion parameter, some 

researchers suggested to use a varying dispersion parameter in which the dispersion 

parameter is modeled as a function of the covariates (Heydecker and Wu, 2001; Hauer, 

2001; Miaou and Lord, 2003). Despite the considerable efforts put in place to improve 

the performance of the NB models, several studies have documented important 

limitations associated with these models in a cross-sectional data analysis. First, as 

described above, the development of NB models using a fixed versus a varying 

dispersion parameter is still an on-going issue. Varying dispersion parameter models 

may be preferred because one can determine sources influencing over-dispersion (Hilbe, 

2007). However, finding appropriate covariates that influence the over-dispersion can be 

problematic if it is partly caused by unobserved variables or conditions. If the fixed 

dispersion model is preferred in terms of parameter parsimony, it may not tell us about 
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the nature of the over-dispersion in the data. It only confirms that evidence of over-

dispersion has been found and that this has been taken into account in the NB model 

(Land et al., 1996). Second, a particular distribution (i.e., gamma distribution) assumed 

in a probabilistic error term related to the mean of the Poisson variable would be 

restrictive in terms of its ability to account for heterogeneity across observations. 

Furthermore, it is difficult to justify in practice because there is no a priori reason why 

the empirical frequency of crash data should be well approximated by that particular 

distribution (Lord et al., 2008). Third, NB models are usually estimated at the aggregate 

level for a sample, resulting in a common parameter vector and a dispersion parameter 

for all the cross-sections. This may mask the possibility of heterogeneity in the 

coefficients of the covariates across the sites. Fourth, some have reported that NB 

regression models have difficulties handling the heavily over-dispersed data with a very 

long-tail and relatively high mean value because a negligible probability is usually 

assigned to high counts (Guo and Trivedi, 2002). Last but not least, if the datasets are 

characterized by small sample sizes and low mean values, the performance of the NB 

models can be significantly affected in terms of parameter estimation (Lord, 2006) as 

well as goodness-of-fit (Maher and Summersgill, 1996; Wood, 2002; Park and Lord, 

2008). Especially, many empirical crash data, in addition to over-dispersion, exhibit 

more zero observations that would be allowed for by a NB regression model.  

 

Given the limitations of the NB regression model for addressing over-dispersion of crash 

data due to heterogeneity, this research examined an alternative model formulation that 

could be used for capturing heterogeneity through the use of finite mixture regression 

models. Modeling based on finite mixture distributions has a long history, and with the 

advancement of computing power and technology, it has continued to receive increasing 

attention in many areas, such as biometrics, genetics, medicine, and marketing 

(Frühwirth-Schnatter, 2006). The finite mixtures of Poisson regression models or NB 

regression models (abbreviated as FMP and FMNB, respectively, hereafter) are 

especially useful where count data were drawn from heterogeneous populations. In finite 
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mixture models, it is assumed that the observations of a sample arise from more than two 

unobserved components with unknown proportions. There are many reasons to expect 

the existence of different subpopulations since the crash data are generally collected 

from various geographic, environmental and geometric design contexts over some fixed 

time periods. In such cases, it may be inappropriate to apply one aggregate NB 

regression model and the interpretation of the model could be misleading. Therefore, it 

would be reasonable to hypothesize that the individual crashes on highway entities 

(intersections, segments, etc.) are generated from a certain number (K) of hidden 

subgroups, or components that are unknown to the transportation safety analyst. The 

final outputs of FMNB-K regression models will be the number of components, 

component proportions, component-specific regression coefficients, and the degree of 

over-dispersion within each component. 

 

1.2 Research Objectives 

The primary goal of this research is to examine the application of finite mixture 

regression models (both for Poisson mixtures and NB mixtures) for analyzing motor 

vehicle crashes. To accomplish this goal, following objectives are planned to be 

addressed in this research. 

1. Demonstrate the appropriateness of finite mixture model specification in 

describing a data generation process using simulated datasets. Three hypothetical 

examples will be set up to show that the standard NB regression model is biased 

if the underlying cause of data heterogeneity is due to the existence of multiple 

counting processes. 

2. Apply mixture models to two real-world datasets (one for intersections and the 

other for roadway segments) to examine whether the suggested model would 

discern the underlying distinctions in the data if they exist. The results will be 

compared to those from the standard NB regression model in terms of goodness-

of-fit, variance structure and parameter interpretation. 
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3. Apply the results from the finite mixture model to highway safety analyses and 

examine the relative performances over the standard NB regression model. Two 

application areas will be considered: hotspot identification and accident 

modification factors. 

4. Characterize the bias properties of dispersion parameters of the FMNB-2 model 

through a simulation study and provide the guidelines on sample sizes and 

sample-mean values. The effect of using different prior distributions for the 

dispersion parameters will also be investigated. 

5. Develop recommendations for implementing the mixture models in highway 

safety research and propose several extensions that merit further study in the 

future. 

 
For model estimation, a Bayesian sampling approach will be adopted as a model 

estimation method since it provides much richer inference than the maximum likelihood 

approach. However, the maximum likelihood estimates will also be computed where 

appropriate and those will be compared with the Bayesian counterparts. 

 

1.3 Outline of the Dissertation 

The rest of this dissertation is organized as follows: 

 

Chapter II overviews various crash count data models that have been approached for 

modeling highway safety. These models include crash count models for both over-

dispersion and under-dispersion, and several emerging models. Based on the discussion 

about the shortcomings of some of those models, finite mixture models are introduced.  

 

Chapter III provides basic essentials for a Bayesian estimation method. Then, it presents 

the methodology for analyzing crash data for both single count regression models and 

finite mixture models. Several issues about estimating finite mixture models with a 
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Bayesian approach are discussed including the label switch problem and the 

determination of optimal number of components. 

 

Chapter IV examines the performance of the finite mixture models suing several 

simulated datasets. Three hypothetical examples are set up with different purposes. The 

main objective of this chapter is to show the poor prediction and interpretation of the NB 

regression model if the underlying cause of data heterogeneity is due to the existence of 

population heterogeneity. 

 

Chapter V applies the finite mixture models to actual vehicle crash data and the results 

are compared with those from the NB model in various aspects such as goodness-of-fit, 

variance structure, and parameter interpretation. Analyses are carried out with two 

empirical crash datasets: one for intersection crash data and the other for segment crash 

dataset. 

 

Chapter VI deals with the application side of the developed model in Chapter VI in 

terms of two important highway safety analyses: the identification of hotspots and the 

development of accident modification factors. The comparison of the results between the 

proposed model and the NB model is also summarized. 

 

Chapter VII carries out a simulation study to examine the bias properties of the posterior 

summary statistics (i.e., posterior mean and median) of the dispersion parameters in the 

FMNB-2 model. Simulations are designed for various sample sizes under three sample-

mean values, with two prior specifications for the dispersion parameters.  Based on the 

simulation results, a brief guideline is provided on the choice of priors and the posterior 

summary statistic to use for different sample sizes and sample-mean values. 

 

Chapter VIII summarizes the major results found in this research along with the general 

conclusions and future research. 
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CHAPTER II 

BACKGROUND 

 

 

Over the last few decades, there have been considerable efforts to develop the statistical 

models for crash data. All these models were directed to address three common 

properties observed in crash data: non-equal variance (heteroscedasticity), over-

dispersion (variance > mean) and excess zeros. Especially, over-dispersion caused by 

unobserved heterogeneity in crash data is a serious problem and has been addressed in a 

variety ways. However, the true factors that affect heterogeneity are often unknown to 

researchers and failure to accommodate such heterogeneity in the model can undermine 

the validity of the empirical results. Hauer (2001) reported that over-dispersion observed 

in crash data can be described in terms of “represented traits” and “unrepresented 

traits”; the root cause of over-dispersion is that entities with the same represented traits 

have different means because of the unrepresented traits (measured or unmeasured) not 

included in the model. On the other hand, Lord et al. (2005) provided a more 

fundamental definition in which the over-dispersion arises from the actual nature of the 

crash process. This process dictates that the over-dispersion is the result of Bernoulli 

trials with unequal probability of independent events (known as Poisson trials) and all 

distributions, such as the Poisson-gamma (or negative binomial) or Poisson-lognormal, 

are used as approximation to capture the over-dispersion observed in crash data. 

 

There are numerous ways in which the standard Poisson model may be modified for 

accommodating over-dispersion. The objective of this chapter is to overview various 

crash count models that have been approached for modeling highway safety. The chapter 

is divided into five sections. Section 2.1 provides crash count models for over-dispersion 

with the Poisson regression model as a starting model and moves onto many other 

variants which overcome the limitations of the Poisson model. For completeness, 
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Section 2.2 overviews some crash count models which can accommodate under-

dispersion although under-dispersion is rarely found in crash data. Section 2.3 provides a 

brief overview of several emerging models that have been recently proposed in highway 

safety literature. Section 2.4 provides the structure of finite mixture regression models 

proposed in this study, and briefly introduces several parameter estimation alternatives 

and available software. Section 2.5 summarizes the chapter. 

 

2.1 Crash Count Models for Over-dispersion 

2.1.1 Poisson regression model 

Prior to using Poisson regression models, normal linear regression models with log-

transformed scale of crash count data have been sometimes used to address the non-

equal variance in crash data. As Miaou and Lum (1993) pointed out, however, 

underlying distributional assumption (i.e., normal distribution) of log-transformed 

regression models cannot adequately describe the discreteness and nonnegativity of 

accident occurrence. In addition, the fitted model provides the mean of the log of crash 

not the mean of crash itself, i.e., )](log[)][log( ii yEyE ≠ . Instead, in the Poisson 

regression model, the conditional distribution is assumed to follow the Poisson 

distribution which is a probability distribution for non-negative integers. Joshua and 

Garber (1990) and Miaou et al. (1992) listed the advantages of the use of the Poisson 

model over these conventional models in terms both of theoretical justification and 

appropriateness in the model assumptions and of the improvement in the fit (Maher and 

Summersgill, 1995).  

 

In the basic form of a Poisson model, the number of crashes per year, iy  for a particular 

site i  is assumed to follow a Poisson distribution with the mean crashes per year, iλ : 

 )(~| iii Poissony λλ  (2.1) 
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with a probability function and the corresponding mean and variance by 

 
!

)exp(
)|(

i

y
ii

ii y
yp

iλλλ −=  (2.2) 

 iiiii yVaryE λλλ == )|()|(  (2.3) 

In a regression setting, the expected number of crashes per year, iλ  is conditioned to the 

explanatory variables ix (the traffic flows and geometric characteristics of the site) 

through a log link function: )exp( �xii =λ . The vector �  contains the parameters which 

have to be estimated by various estimation methods. 

 

The Poisson regression model respects most of the properties of accident events by (1) 

providing a model for dealing with heteroscedasticity, and (2) by preserving the original 

nature (i.e., discreteness and nonnegativity) of crash counts without transforming them 

into an another scale. In spite of these advantages, a shortcoming of this model is that the 

variance is restraint to be equal to the mean. In crash data, the variance is usually greater 

than the mean because the vector of ix usually does not explain completely the 

conditional mean because of omitted variables or randomness. For modeling crash count 

data with over-dispersion phenomenon the Poisson regression model is not suitable 

because it fails to capture the extra-variation which exceeds that which would be 

normally expected by the homogeneous Poisson process (McCullagh and Nelder, 1989). 

Under over-dispersion, the Poisson regression model still yields consistent parameter 

estimates, but their standard errors are inconsistent resulting in underestimation 

(Cameron and Trivedi, 1998). This leads to the invalidation of inference based on the 

estimated standard errors. 

 

2.1.2 Quasi-Poisson regression 

The quasi-Poisson regression model is an alternative way of dealing with over-

dispersion in which the dispersion parameter is introduced to relate the mean and the 
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variance from the Poisson regression model and is estimated from the data. This strategy 

leads to the same coefficient estimates as the standard Poisson model but inference is 

adjusted for over-dispersion (Cameron and Trivedi, 1998).  

 

A quasi-likelihood is a function of the data that behaves similarly to a likelihood 

function but can be specified even when the probability distribution of the data is 

unknown. In this approach, first, the analyst must define how the expected number of iy  

depends on the explanatory variables ix , like )exp( �xii =λ . Second, a dispersion 

parameter, or scale parameter ( 0>ϕ ) is introduced into the relationship between the 

variance and the mean (i.e., )()( ii yEyVar ϕ= ) to account for over-dispersion 

(Wedderburn, 1974; McCullagh and Nelder, 1989). When ϕ =1 the ordinary Poisson 

model is obtained, and when 1>ϕ  we have the over-dispersed Poisson model. The 

introduction of the dispersion parameter gives a correction factor testing the regression 

parameter estimates under the Poisson model. That is, the regression parameter estimates 

resulting from the quasi-Poisson model are identical to those from the standard Poisson 

model, but their estimated covariance matrix is inflated by the dispersion parameter. 

McCullagh and Nelder (1989) suggested that the dispersion parameter ϕ  be estimated as 

ratio of the scaled deviance (SD) or the Pearson Chi-Square ( 2χ ) to its associated 

degrees of freedom.  
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Maher and Summersgill (1996) investigated the reliability of the three estimators of ϕ̂  

with a simulation study by changing the proportion of data points with low mean value. 

The estimators included: )/( pNSD − , )/(2 pN −χ , and )(/ SDESD . They found that 



 12

)/( pNSD −  behaved very poorly as the proportion of data points with low mean value 

increases whereas )(/ SDESD  performed only a little better. The Pearson estimator 

)/(2 pN −χ  was the best of the three. However, it also consistently underestimated the 

assumed dispersion parameter when the proportion of data points with low mean value 

was above 60% or so. 

 

2.1.3 Negative binomial (NB) regression as a continuous mixture 

Since the conventional Poisson model does not provide flexibility to accommodate 

frequently observed over-dispersion in crash data, several different mixed-Poisson 

distributions have been applied by assuming a particular distribution in the Poisson mean. 

In the NB regression model, the conditional mean of iy  is replaced with the random 

variable as follows: 

 )exp()exp( iiiii εµελ =⋅= �x  (2.6) 

where, iε  is a random error that is assumed to be uncorrelated with ix . The error iε  can 

be thought either as the combined effects of unobserved variables that have been omitted 

from the model or as another source of pure randomness (Long, 1997). Therefore, even 

for all sites with the same covariate ( x ), there is variation in iλ  due to unobserved 

heterogeneity introduced by iε .  If iε has an arbitrary density )( ig ε , then the probability 

function of iy , )( iyp , can be written as  

 iiiii dgyPoisyp εελ )()|()( ⋅= �  (2.7) 

where )|( iiyPois λ denotes a Poisson distribution with mean iλ .  

 

Depending upon the parametric form imposed on )( ig ε , various mixed-Poisson 

regression models can be derived (e.g. Poisson-gamma, Poisson-lognormal, Poisson-
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Inverse Gaussian, etc.).  The negative binomial (NB) regression model arises if one 

assumes that )( ig ε , or equivalently the distribution of iλ , follows a gamma distribution. 

Specifically, if )exp( iε  follows a ),( φφGamma , the marginal distribution of iy  is a 

),( φµiNB . The same ),( φµiNB can be derived by assuming that the distribution of iλ  

follows a )/,( iGamma µφφ . The probability mass function for ),( φµiNB is given by: 
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The derivation of Equation (2.8) from these two approaches is provided in Appendix A. 

 

The Poisson-gamma distribution is the most common distribution used for modeling 

crash data because its marginal distribution has a closed form and this mixture results in 

a conjugate model (Hauer, 1997).1 The interpretation and derivation of the negative 

binomial as a Poisson-gamma mixture is well described in Cameron & Trivedi (1998). 

Despite its reported limitations (see Lord (2006) and references herein), the NB 

regression model is still very popular, especially since all statistical software programs 

have built-in functions that can handle such models (Hilbe, 2007).  

 

Unfortunately, the continuous parametric mixing distributions assumed in the Poisson 

mean rate may pose limitations in fitting the data, especially, with a small sample size or 

low sample mean value (Lord, 2006, Park and Lord, 2008). Furthermore, the choice of a 

particular distribution imposes a restrictive functional form between the mean and 

variance (e.g., quadratic relationship in the NB model), and is difficult to justify in 

practice because there is no a priori reason why the empirical frequency of crash data 

should be well approximated by that particular distribution, as discussed above.  

 
                                                 
1 For those that use as mixing distribution the log-normal distribution or the inverse-Gaussian distribution, 
the marginal distribution cannot be expressed in a closed form. One may have to use numerical quadrature 
or simulated maximum likelihood to estimate the model (Cameron and Trivedi, 1998). 



 14

In addition, the continuous mixed Poisson models usually estimate a common parameter 

vector (� ) and inverse dispersion parameter (φ ) for all the cross-sections (Ramawamy 

et al., 1994). In other words, they are estimated at the aggregate level with one standard 

probability distribution function, which can mask the possibility of heterogeneity in the 

coefficients of the covariates across the sites. Washington et al. (2003) noted that it 

could lead to inconsistent and biased parameter estimates when the coefficients actually 

vary across observations. Since the crash data are generally collected from various 

geographic, environmental and geometric design contexts, there are many reasons to 

expect the different effects of each variable on the crash occurrence. To capture 

unobserved heterogeneity in these parameters, one can first classify the data based on 

some criteria, and then apply several Poisson or negative binomial regression models at 

a disaggregate level. However, there may be some arbitrariness involved in the criteria 

dividing the groups. Gelman et al. (2004, p. 467) warned that this type of crude analysis 

completely ignores the uncertainty in the dividing indicators and thus can overestimate 

the differences between each model. 

 

2.1.4 Extensions of NB regression Model 

The traditional NB regression model can be extended in several ways depending how we 

parameterize the over-dispersion parameter φ . Up until early 2000s, most of researchers 

in highway safety have developed predictive models using a fixed or common dispersion 

parameter model (Hauer, 2001). In 2001, Heydecker and Wu (2001) suggested that φ  

could be modeled as a function of the covariates of the model (which can be defined as 

the varying dispersion parameter). Hauer (2001) argued that the inverse dispersion 

parameter should be modeled as a function of segment, ii Lδφ = , to correct for the 

unequal variance of the NB regression model. Since then, other researchers have 

investigated various structures of the dispersion parameter, both spatially and temporally 

(Lord and Park, 2008; Miaou and Lord, 2003; Miranda-Moreno et al., 2005; El-

Basyouny and Sayed, 2006; Geedipally and Lord, 2008). Very recently, it was found that 

the structure of the dispersion parameter can greatly depend on how the mean function is 
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modeled (Mitra and Washington, 2007). Models with a well-defined mean function may 

not have a structured variance. The varying dispersion parameter can be defined as 

follows: 

 ),(~,| iiiii NBy φµφµ  , or (2.9) 

 )exp( �z ii δφ =  ( 0>δ ) (2.10) 

where iz is a vector of observable covariates (not necessarily the same as ix ) and �  is a 

vector of associated parameters.  

 
Another extension is done by Greene (2008) which encompasses the two well-known 

variants of the negative binomial model: NB1 and NB2 models, originally termed by 

Cameron and Trivedi (1998). The model by Greene (2008) is termed as a NBP model. In 

the NBP model, iφ  is specified as a function of the conditional mean such that:  

 P
ii

−= 2δµφ   ( 0>δ ) (2.11) 

Under this specification, the NB1 and NB2 models are special cases of 1=P  

and 2=P . While the conditional mean for the NBP model is still iµ , the variance 

structure is as follows: 

 ��
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The NBP model is more flexible than the NB1 and NB2 models since the variance 

function is not restricted to a linear or quadratic form. Greene (2008) effectively applied 
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this type of model to a health care study and used the maximum likelihood method for 

parameter estimation. Considering that no applications of this type of model have yet 

been found in highway safety literature, it is worthwhile to investigate the performance 

of this type of model with various crash data in the future.  

 

On the other hand, Shankar et al. (1998) showed that when spatial and temporal effects 

are not explicitly included in the NB model, the random effect negative binomial model 

offered advantages. Miaou and Song (2005) showed that the inclusion of a spatial effect 

(induced by omitted variables) in the NB model could significantly improve the overall 

goodness-of-fit of the model. 

 

2.1.5 Hurdle and zero-inflated regression models 

Many empirical crash data, in addition to over-dispersion, exhibit more zero 

observations than would be allowed for by the Poisson or NB regression model. In this 

case the over-dispersion can also arise from the nature of the process generating the 

zeros. In highway safety literature, in order to accommodate the excess zeros, some 

researchers have applied the zero-inflated (or zero-altered) regression models (Shankar 

et al., 1997; Shankar et al., 2003; Lee and Mannering, 2002) and the hurdle regression 

models (Son et al., 2009). 

 

The hurdle model relaxes the assumption that the zeros and the positive values come 

from the same data generating process. It partitions the data generating process into two 

parts. The first part models the probability that the zero value is observed, and the 

second part models the probability that positive values cross the zero hurdle (or 

threshold). In principle, the threshold need not be at zero; it could be any value 

(Cameron and Trivedi, 1997). The probability of zero count is determined by 

)0()0( 1pyp i == and the probability of positive values, )0( >iyp  is determined by the 

truncated density ))0(1/()( 22 pyp i − , which is multiplied by )0(1 1p−  to ensure that 



 17

probabilities sum to unity. Thus, the general form of a hurdle model can be formulated 

as  follows: 

 

)0()( 1pyp i = ,                   if 0=iy  

)(
)0(1
)0(1

2
2

1
iyp

p
p

−
−

,   if 1≥iy  
(2.15) 

The hurdle regression model for a Poisson or negative binomial can be obtained by 

specifying )(1 ⋅p  and )(2 ⋅p  to be a Poisson or negative binomial distribution. For 

example, in the Poisson hurdle regression model, the following are specified in Equation 

(2.15). 

 )exp()0( 11 ip λ−=   

 )exp()0( 22 ip λ−=   
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where, , )exp( 11 �xii =λ , and )exp( 22 �xii =λ . 

 

The zero-inflated model is an extension of the hurdle model in which the zero outcomes 

can arise from one of two processes. The underlying assumption is that zero crash counts 

are generated by a dual-state process: a perfect state or an imperfect state with a certain 

mean value. Therefore, zeros may come from both a perfect state and from an imperfect 

state. For modeling the unobserved state, a binary process is assumed. For site i , if the 

binary process takes value 0 with probability iw , then 0=iy . If the binary process takes 

value 1 with probability iw−1 , then iy  takes count values �,2,1,0  from a count 

distribution )(2 ⋅p . Thus, the probability density function is as follows: 
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)0()1()( 2pwwyp iii −+= ,    if 0=iy  

)()1( 2 ii ypw− ,           if 1≥iy  
(2.16) 

The probability iw  can either be a constant or often be parameterized as a certain 

function of the vector of covariates iz . In order to ensure 10 << iw , iw  is determined by 

a logit or probit model. The zero-inflated regressions of the Poisson (ZIP) or negative 

binomial (ZINB) can be obtained by specifying )(2 ⋅p  to be the Poisson or negative 

binomial distributions. For example, in the zero-inflated Poisson regression model with a 

logistic function of iw , the following are specified in Equation (2.16). 
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where, the vector �  contains the parameters associated with the observable covariates iz . 

The mean for both ZIP and ZINB models is the same as follows (Long, 1997): 

 )1(),|( iiiii wyE −= λzx  (2.17) 

The variances of the ZIP and the ZINB model are as follows, respectively (Long, 1997): 

 )1)(1(),|( iiiiiii wwyVar λλ +−=zx   (2.18) 

 ))(1)(1(),|( 1−++−= φλλ iiiiiii wwyVar zx  (2.19) 

For both cases, ),|( iiiyVar zx  is always greater than ),|( iiiyE zx  unless iw  is zero in 

the ZIP model.  
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Although above-described models have provided an improved fit to data as compared to 

other count models, they have undergone some criticism in modeling vehicle crash data 

(Lord et al. 2005, 2007). The underlying assumption may be unrealistic when 

considering the probabilistic structure of data generating process for vehicle crashes. In 

the ZIP or ZINB model, it is assumed that there is a group of sites that never experience 

crashes. This is unrealistic since a roadway segment or an intersection always has a 

likelihood of having crashes unless there is no traffic on it. It is also worth noting the 

researches in other areas such as environment and ecology. For example, Warton (2005) 

argued that many of the uses of excess zero models are probably unnecessary and the 

negative binomial probability model by itself is sufficient to handle most occurrences of 

zero-inflation in environmental and ecological data. 

 

As will be seen shortly in Section 2.4, the ZIP and the ZINB model are the special cases 

of the FMP-2 and the FMNB-2 model where the strict dual-state assumption is relaxed. 

 

2.2 Crash Count Models for Under-dispersion 

Models for under-dispersion have generally been neglected in highway safety analysis 

since crash data rarely exhibit under-dispersion. However, under-dispersed data have 

been sporadically encountered by highway safety researchers and they have tried to deal 

with under-dispersion by introducing some special models, yet relatively unknown. 

Among them are the gamma probability model, the generalized Poisson model, and the 

Conway-Maxwell-Poisson (COM-Poisson) model.  

 

2.2.1 Gamma probability model 

Oh et al. (2006) investigated the performance of the gamma probability model to deal 

with slight under-dispersion observed in railroad crossing related vehicle crashes in 

Korea. They concluded that the gamma probability model was the most appropriate 
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statistical model for their dataset among all the models they considered. The gamma 

probability model for the count data is given by: 

 ),(),()( iii kGammakGammakyp λααλα +−==  (2.20) 

where, )exp( �xii =λ . Similar to the hurdle model, the probability function consists of 

two-parts: the probability that the zero value is observed and the probability that positive 

values are observed. 
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where α  is a dispersion parameter. Depending on the value α , the gamma probability 

model can be used for analyzing under-dispersed and over-dispersed data: 

1>α represents under-dispersion; 1<α  represents over-dispersion. When 1=α , the 

gamma probability model reduces to a Poisson model. 

 

The conditional mean function is given by: 
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and the cumulative distribution function is: 
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Although this model can provide the better goodness-of-fit, it begs the same question as 

in the hurdle model in which the data generation process is split into two processes (zero 

vs. count). 

 

2.2.2 Generalized Poisson regression model 

Although less widely used in highway safety area, the generalized Poisson regression 

(GPR) model proposed by Famoye (1993) has been used in modeling various data sets 

that exhibit either over-dispersion or under-dispersion (e.g. see Wang and Famoye, 1997 

for under-dispersion). The application to accident data can be found in Famoye et al. 

(2004). The probability density function is given by 
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with mean iiyE λ=)( = )exp( �xi , and variance 2)1()( iiiyVar αλλ += . The GPR is a 

natural extension of the Poisson regression model. If 0=α , the model reduces to the 

Poisson regression model. If 0>α , the model represents count data with over-

dispersion. If  0<α , the model represents count data with under-dispersion.  

 

The dispersion parameter α  can be estimated along with the regression parameters 

using the maximum likelihood method (Famoye, 1993). When 0>α , Equation (2.24) 

always sums to 1. However, if 0<α , Equation (2.24) gets truncated and it may not sum 

to 1.  Furthermore, when the iterative programming is implemented for parameter 

estimation, the program should check that when 0<α  (under-dispersion), α  mush 

satisfy both 01 >+ iαλ  and 01 >+ iyα  by placing appropriate restrictions. Ismail and 

Jemain (2007) provided the fitting procedure by showing how the Integrative Weighted 

Least Square (IWLS) method similar to the negative binomial regression model can be 

applied to obtain the maximum likelihood estimates for the GPR model. 
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2.2.3 Conway-Maxwell-Poisson regression model 

The Conway-Maxwell-Poisson (COM-Poisson) distribution, originally proposed by 

Conway and Maxwell (1962), is a two-parameter extension of Poisson, Bernoulli, and 

geometric distributions. This is an improved alternative by allowing both over- and 

under-dispersion. The probabilistic and statistical properties of the distribution were 

derived and summarized by Shmueli et al. (2005). The probability density function of 

the COM-Poisson distribution is given by  

 ν
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where λ  is a centering parameter that is related directly to the mean of the observations 

and ν  is a shape parameter. Depending on the value of ν , the model represents for 

under-dispersed data ( 1>ν ), over-dispersed data ( 1<ν ), and equi-dispersed data 

( 1=ν ), respectively.   

 

Since ),( νλZ  is not a closed form, the COM-Poisson distribution does not have closed-

form expressions for its moments in terms of λ  and ν . Shmueli et al. (2005) used an 

asymptotic expression for Z and derived the mean and variance as follows: 
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The basic COM-Poisson distribution above has been extended to a generalized linear 

model (GLM) framework. Guikema and Coffelt (2008) developed a dual-link GLM 

based on this distribution, and Lord et al. (2008) applied this model to evaluating vehicle 
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crash data. In this new form, λ  is replaced with νλµ /1=  representing a clear centering 

parameter. The pdf, mean and variance are redefined as follows: 
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 νµ /)( ≈iyVar  (2.32) 

Under this formulation, the asymptotic approximations of the mean and the variance are 

especially accurate once 10>µ . The interpretations of ν are the same as before. 

 

In a dual-link COM-Poisson GLM framework, both the mean and the variance depend 

on covariates as follows, but if a single-link model is desired the second link given by 

Equation (2.34) can be removed allowing a single ν  to be estimated directly. 

 )exp( �xii =µ  (2.33) 

 )exp( �z ii =ν  (2.34) 

where, iz  is a vector of covariates associated influencing the variance and �  is a vector 

of corresponding parameters to be estimated. For the parameter estimation, Sellers and 

Shmueli (2008) developed the code for maximum likelihood estimation, and Guikema 

and Coffelt (2008) and Lord et al. (2008) used a full Bayesian estimation approach. The 

model characteristics and the performance with application to vehicle crash data have 

been investigated and the results are well documented in Geedipally (2008).  
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2.3 Other Models  

In addition to the models overviewed in the previous sections, several advances in the 

development of statistical models for analyzing vehicle crashes have been made recently. 

These include (i) the application of the multivariate Poisson-lognormal to model crash 

count data at different levels of severity (Tunaru, 2002; Park and Lord, 2007); (ii) the 

application of Beta-binomial model based on the fact that crash data are the product of 

Bernoulli trials with unequal probability of events (Lord et al., 2005; Tong and Lord, 

2007); (iii) the application of neural Bayesian network models and support vector 

machine models for crash predictions (Xie et al., 2007; Li et al, 2008);  (iv) the use of a 

two-state Markov switching model to analyze crash frequencies by assuming that there 

are two unobserved states of roadway safety over time (Malyshkina et al., 2009); (v) the 

application of random-parameters count models which provides a fuller understanding of 

the factors determining crash frequencies (Anastasopoulos and Mannering, 2009).  

 

The random-parameters models deserve additional comment. In random-parameters 

models it is assumed that some of all model parameters vary across observations while 

most of the traditional models constrain the coefficients to be fixed. A normal error term 

in the coefficients is usually employed to allow them to vary (i.e., ii δββ += , where iδ  

is a normally distributed term with mean 0 and variance 2σ ). Using simulated maximum 

likelihood estimation, Greene (2007) has developed estimation procedures for 

incorporating random parameters in Poisson and NB regression models. The finite 

mixture model which will be described in the following section is different from the 

random-parameters models in that the parameter heterogeneity is approximated by a 

finite number of support points and their probability masses without making a 

distributional assumption on the regression coefficients or mixing variable. The finite 

mixture model allows the data to determine the true relationships by choosing a finite 

number of unobserved latent components. 
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2.4 Finite Mixture Model 

The finite mixture model allows for extremely flexible modeling of heterogeneous data 

because it incorporates a combination of discrete and continuous representation of 

population heterogeneity. Its flexibility and advantages have been extensively 

recognized in many different modeling environments (e.g. Ramaswamy et al., 1994; Deb 

& Trivedi, 1997, Wang et al., 1998; Guo & Trivedi, 2002; Karlis and Rahmouni, 2007, 

to name a few). These models have also been applied before in the traffic safety context: 

for instance, see the work of Viallefont et al. (2002). For a comprehensive list of the 

applications and numerical derivations of finite mixture models, readers are referred to 

Titterington, et al (1985), McLachlan & Peel (2000) and Frühwirth-Schnatter (2006). 

Especially the last reference deals with finite mixture models from a Bayesian viewpoint. 

 

2.4.1 Model structure 

The random vector 'yyy N ),,,( 21 �=y  is said to arise from a finite mixture distribution, 

if the probability density function )(yp  of this distribution has the following form: 

 )()()()( 222111 KKK fwfwfwp �|y�|y�|y�|y +++= �  (2.35) 

where, ),),,,( 21 w���� 'k�= denotes the vector of all parameters, and 

'www K ),,,( 21 �=w  is called a weight distribution whose elements are restricted to be 

positive and sum to unity ( 0>kw  and 1=� kw ). A single density )( kkf �|⋅  is referred 

to as the component distribution for component ),,2,1( Kkk �= , and K  is the number 

of components. In most applications, it is assumed that all component distributions arise 

from the same parametric distribution family, )( kf �|⋅ . In our case, it is a Poisson or a 

NB distribution. 

 

The raw moments of a finite mixture distribution are quite easily derived (Frühwirth-

Schnatter, 2006). The mean and the variance are given, respectively, by 
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provided that the component moments )|( kk E �y=µ  and )|(2
kk Var �y=σ  exist. 

 

Under this formulation, the heterogeneity in the data can be accounted for in two ways. 

First, it accounts for the population heterogeneity by choosing a finite number of 

unobserved latent components, each of which may be regarded as a sub-population. This 

is a discrete representation of heterogeneity in the data since the mean event rate is 

approximated by a finite number of support points. In this respect, the finite mixture 

model assumes that there is more than one component in the data set. If such a distinct 

difference is not observed from modeling using Equation (2.35), in other words, if the 

probability density function does not take the stated mixture density, the resulting 

parameter estimates would be very unstable and inaccurate. In such cases, it is possible 

to choose the traditional regression model (Poisson or NB regression model) that does 

not account for the heterogeneity due to the existence of different sub-populations. This 

can be done by setting K=1 in Equation (2.35). Second, depending on the choice of the 

component distribution, )( �|⋅f , it can also accommodate heterogeneity within each 

component. For example, for FMP-K and FMNB-K regression models, the heterogeneity 

within each component is accounted for by including the explanatory variables in the 

mean event rate function. Using the NB distribution as a component distribution would 

explain additional over-dispersion within component not captured by those explanatory 

variables. Thus, the formulation is flexible enough to allow for both between-component 

and within-component variations. It should be noted that the finite mixture approach 

does not require any distributional assumptions for the mixing variable. 
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2.4.2 FMP-K and FMNB-K regression models 

The general set-ups for FMP-K and FMNB-K regression models can be extended from 

the Equation (2.35) and their means and variances are obtained from Equations (2.36) 

and (2.37). The FMP-K regression model assumes that the marginal distribution of iy  

follows a mixture of Poisson distributions, 
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where )exp(, kiki �x=µ and },)1 w��{(� ',, K�= .  It can be readily seen that unless the 

entire component’s means are the same )( ,1, Kii µµ ==� , the variance is always greater 

than the mean.  

 

For the FMNB-K regression model, it is assumed that the marginal distribution of iy  

follows a mixture of negative binomial distributions, 
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where )exp(, kiik �x=µ and },),) 11 w(��{(� ',,',, KK φφ ��= . In this case, even if all 

the component’s means are the same, the variance of iy  is always greater than the mean. 

When kφ  in each component goes to infinity, the FMNB-K model is reduced to the 

FMP-K model. Thus, the FMNB-K models allow for additional over-dispersion within 

components not captured by the explanatory variables. If additional heterogeneity is 

present within components, the Poisson mixture model is misspecified. An implication 

of such additional heterogeneity is that the standard errors are underestimated (Cameron 

and Trivedi, 1998). 

 

The FMP-K and FMB-K models can be equivalently formulated in a hierarchical 

manner using a latent variable iz representing the allocation of each observation iy  to 

one of the components. The mixture model can thus be written as: 

 
( ) )(,, iikii Poiskzyp λλ ==|  

( ) ki wkzp ==  
(2.44) 

For the FMP-K model, ki,λ  is replaced with ki,µ , and for the FMNB-K model, ki,λ is 

replaced with )exp( ,, kiki εµ  with ),(~, kkki Gamma φφε . Note that under this 

formulation, the posterior probability that the site i  belongs to a certain component k  is 

expressed as: 

 

( ) ( )
)(

)(,
| ,

i

iikii
ii yp

kzpkzyp
ykzp

==
==

λ|
 

              
( )

( )�
=

=

=
= K

k
kikii

kikii

wkzyp

wkzyp

1
,

,

,

,

λ

λ

|

|
 

(2.45) 

Therefore, each site can be classified into one of the K components according to the 

posterior probability of component membership, ( )ii ykzp |= . It is common that each 
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site is assigned to the component with maximum posterior probability. In this case some 

information loss is involved because of disregarding the ‘fuzziness’ of the classifications 

(Wedel et al., 1993). 

 

It should be noted that the weight distribution ( w ) used in both FMP-K and FMNB-K 

was treated as a constant variable. The constant weight model can be extended to a more 

generalized model by parameterizing the weight distribution as a function of covariates 

(Wang, et al., 1998; Frühwirth-Schnatter and Kaufmann, 2006; Gr�n and Leisch, 2007). 

This parameterization allows each observation to have a different weight that is 

dependent on the covariates, similar to the application of the varying dispersion 

parameter for the standard Negative Binomial model (see, e.g., Miaou and Lord, 2003; 

Lord and Park, 2008). Unfortunately, the use of varying weight factors was beyond the 

scope of this study, since the estimation process can be very complex and choosing a 

suitable link function might be an additional problem (i.e., there are various link 

functions that can be used to define the varying weights). The majority of applications in 

the literature have used fixed weights. Furthermore, the varying weight model may not 

always provide the best modeling result (Frühwirth-Schnatter, 2006).  

 

It is noteworthy that the finite mixture of regression models as defined in Equation 

(2.38) or (2.41) embrace the zero-inflated Poisson (ZIP) or zero-inflated negative 

binomial (ZINB) regression models as a special case (Cameron and Trivedi, 1998); see 

Lord et al. (2005, 2007) for a discussion about their use in highway safety. This can be 

obtained by setting K=2 and 0,1 =iµ  for all i . However, the generalized two-component 

mixture model does not make this somewhat strict dual-state process assumption and 

allows mixing with respect to both zeros and positives. The group separation is 

characterized by low mean with low variance and high mean with high variance. 

Recently, Malyshkina et al. (2008) demonstrated a superior statistical fit of two-state 

Markov switching negative binomial models using time series crash data in Indiana 

interstate highway segments. Therefore, the FMP or FMNB models are expected to 
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improve the goodness-of-fit relative to the conventional one-component NB model even 

when the sample mean is very low although this still needs to be verified in the future. 

 

2.4.3 Parameter estimation and available software 

Frühwirth-Schnatter (2006) lists four parameter estimation methods for the finite 

mixture model: method of moments; maximum likelihood-based methods; Bayesian 

method; and distance-based methods. Since the maximum likelihood-based methods are 

most widely used among others, it is briefly reviewed here and the Bayesian method 

which was adopted in this study will be fully described in the following Chapter III.  

 

The maximum likelihood (ML) estimates of �̂  in Equation (2.35) are obtained either by 

directly maximizing the mixture likelihood )( y|�L  with respect to �  using some 

methods such as Newton’s method or a gradient method, or by maximizing the 

likelihood function using an iterative scheme such as the Expectation Maximization 

(EM) algorithm. The mixture likelihood function in the direct maximization method 

takes the form: 
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The advantage of the direct maximization method is that the convergence is very quick if 

it is achieved. However, the convergence greatly depends on the choice of the initial 

values for the model parameters. It can be implemented using the NLMIXED procedure 

in SAS (SAS Institute Inc., 2002) by directly defining the mixture likelihood and initial 

values. The procedure uses a dual quasi-Newton algorithm as a default algorithm. 

According to our experience it was difficult to get stable estimates as the number of 

components increased more than two.  
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An alternative most commonly applied method to find ML estimates is the EM 

algorithm introduced by Dempster et al. (1977). It is known to be much slower to 

converge compared to the direct maximization (Brännäs and Rosenqvist, 1994). The EM 

algorithm is implemented based on the complete-data likelihood function in which the 

mixture likelihood )(ln y|�L in Equation (2.46) is augmented with latent random 

variables as follows: 
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where kiz , is a binary value (0 or 1) of allocation of each site. Starting from (0)
�̂ , the EM 

algorithm iterates between an E-step and an M-step. In the E-step for 1≥r , the 

following estimate of )(
,
r
kiz  is obtained by: 
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and based on the estimate )(
,ˆ r
kiz , all unknown parameters )ˆ,)ˆ,,ˆ,ˆ(ˆ
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obtained in the M-step by maximizing the following: 
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Currently the FlexMix package in R (R development Core Team, 2006) provides a 

general framework for finite mixtures of regression models using the EM algorithm 

(Grün and Leisch, 2007). It provides the finite mixtures of generalized linear models 

including mixtures of normal, binomial, gamma, and Poisson regression models, but it 

does not include support for mixtures of negative binomial regression models.  

 



 32

A Bayesian parameter estimation method relies on the posterior distribution which is a 

product of the mixture likelihood and the prior. However, since there is no natural 

conjugate prior is available for the mixture likelihood in the form of Equation (2.46), the 

resulting posterior distribution does not belong to any tractable distribution family. For 

this reason, Bayesian estimation of even simple mixture problems proved to be a 

challenge. Markov chain Monte Carlo (MCMC) techniques and their application to 

Bayesian estimation of finite mixture models have greatly improved the situation. Like 

the EM algorithm, Bayesian estimation of finite mixture models is based on an 

incomplete data problem by introducing the allocations as missing data. A detailed 

account of data augmentation and Gibbs sampling methods is given in Chapter III. 

Available software for Bayesian estimation of finite mixture models is limited. Currently 

a MATLAB software package called bayesf (version 2.0) 2 allows performing Bayesian 

inference for some of the finite mixture and Markov switching models discussed in 

Frühwirth-Schnatter (2006). Because of lack of software at the time of writing this 

dissertation, we coded the algorithm for finite mixtures of Poisson and negative binomial 

regression models using the R program (R Development Core Team, 2006). Several 

example codes used in this research can be found in Appendix D. 

 

2.5 Chapter Summary 

In this chapter various crash count models have been overviewed in terms of both over-

dispersion and under-dispersion. Since over-dispersion is more frequent in crash data, 

the modeling approaches for accommodating over-dispersion were the main focus of this 

chapter. These approaches can be broadly grouped into three.  

 

The first approach is to use the quasi-Poisson regression in which the mean regression 

function and the variance function from the Poisson GLM are used but the dispersion 

parameter is left unrestricted. The dispersion parameter is not assumed to be fixed at one 

                                                 
2 Available at http://www.ifas.jku.at/e2571/e2626/e2632/index_ger.html (Accessed in Sept. 2009). 
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but is estimated from the data. The second approach for dealing with over-dispersion is a 

parametric mixture model in which a continuous parametric form of the mixing 

distribution is assumed for the Poisson mean rate iλ . For instance, the NB model can be 

derived as a continuous mixture of Poisson-gamma distribution. Another approach is a 

finite mixture model which arises by assuming a discrete random variable for the mixing 

distribution which overcomes the specific distributional assumptions for the Poisson 

mean rate. Furthermore, it includes the ZIP and the ZINB regression models as special 

cases by relaxing the dual-state data generation process. 

 

With the rapid development in statistical modeling for vehicle crash data, producing a 

good statistical fit to data per se may be no longer a challenge as noted by Miaou and 

Lord (2003). The bottom line is that we need to develop a logical model which conforms 

to the crash data generation process. Recall that, in finite mixture models, it is assumed 

that the observations of a sample arise from more than two unobserved components with 

unknown proportions. The estimation of a single aggregate regression model across all 

observations in a sample may be inadequate if the observations arise from a number of 

unknown components in which the regression coefficients or dispersion parameters 

differ. In this sense, the assumption underlying the finite mixture model seems to be 

logical and acceptable. The following Chapter III will provide the methodology for 

estimating the finite mixture model within a Bayesian framework. 
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CHAPTER III 

METHODOLOGY 

 

 

This chapter provides the methodology on how to analyze count data within a Bayesian 

framework. In finite mixture regression models, the component distribution in the 

mixture can be virtually any count distributions, but the attention will be primarily given 

to Poisson, negative binomial, and hierarchical Poisson models since these have been the 

most commonly adopted models in highway safety analyses. The Bayesian approach 

applied to these single count regression models will be used as a building block for the 

subsequent analysis of finite mixture regression models.  

 

This chapter consists of seven sections. Section 3.1 provides the advantages of using the 

Bayesian method along with some practical difficulties with the maximum likelihood 

method. Section 3.2 reviews the Bayesian concept and describes the fundamental 

difference from the Frequentist analysis. Since the empirical Bayes (EB) method is 

widely used in the highway safety analysis, its concept and difference from the full 

Bayesian method are also provided. Section 3.3 provides the Bayesian method for single 

(or standard) count data regression models – that is, Poisson, negative binomial, and 

hierarchical Poisson regression models. In Section 3.4, the methodology for finite 

mixture regression models is provided by introducing a data augmentation and Gibbs 

sampling method. When the Bayesian sampling approach is adopted for finite mixture 

models, a label switching problem can be an issue. Section 3.5 briefly discusses this 

issue and illustrates how this problem will be addressed throughout this study. Given the 

difficulty in determining the correct number of components in finite mixture models, 

Section 3.6 provides alternative methods that this study has adopted. Finally, Section 3.7 

summarizes the chapter. 
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3.1 Maximum Likelihood Method vs. Bayesian Method  

Estimating a finite mixture model demands extensive computational work. Traditionally, 

the expectation-maximization (EM) algorithm has been most commonly applied based 

on the work of Dempster et al. (1977). They realized that a finite mixture model can 

always be expressed in terms of an incomplete data problem by introducing the 

allocations as missing data. While this algorithm is based on a maximum likelihood 

estimation method and is relatively easy to implement, it has several known drawbacks 

(Mclachlan and Peel, 2000, Frühwirth-Schnatter, 2006). According to Frühwirth-

Schnatter (2006), the practical difficulties with the maximum likelihood estimation of 

finite mixture models are as follows: 

 

� It is difficult to find a global maximum of the likelihood numerically: the EM 

algorithm tends to lead to a local maximum and thus a grid of many different 

starting points is needed for finding a global maximum.  

� The algorithm can fail to converge particularly when the sample size is small or 

the components in a dataset are not well separated. 

� Like in any incomplete data problems, it is not straightforward to obtain the 

standard errors of maximum likelihood estimates of a finite mixture model. 

Various methods have been suggested how to obtain approximate standard errors 

from the EM algorithm.  

� The sample size has to be very large because the maximum likelihood method is 

based on the asymptotic theory: the regularity conditions are often violated in 

cases of small datasets, mixtures with small components weights, and over-

fitting mixtures with too many components. 

 

In contrast, a Bayesian approach can provide a smoothing effect on the mixture 

likelihood function by introducing proper priors and reduce the risk of obtaining 

spurious modes in cases where the EM algorithm leads to degenerate solutions. A 
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Bayesian approach is less likely to get stuck in a local optimum of the mixture likelihood 

function because of a more flexible way of searching the parameter space.3 Since a full 

posterior distribution is available, it can also provide much richer inference than the 

maximum likelihood approach in that it can address the issue of parameter uncertainty 

via the full posterior distribution. If we adopt a sampling-based method for a parameter 

estimation method, any summary statistics, such as a posterior mean, median or mode, 

can be computed for a sample from a posterior distribution and they can be used to 

describe the posterior distribution. Furthermore, a Bayesian approach does not rely on 

the asymptotic normality, and yields valid inference in cases where regularity conditions 

are violated. For a full discussion of comparing various estimation methods for finite 

mixture models, see Frühwirth-Schnatter (2006, pp. 49-56). 

  

In this respect, this study adopted the Bayesian sampling approach. Following the work 

of Diebolt and Robert (1994) (data augmentation and Gibbs sampling), Bayesian 

mixture models can be applied routinely when the number of components is assumed to 

be known. According to Richardson and Green (1997), Bayesian method is the only 

sensible way if the number of mixture components is allowed to vary. However, this 

study does not intend to address the mixture models with varying numbers of 

components because it is not only computationally very intensive but also it is still an 

on-going issue in the statistical community: there are some issues with regard to prior 

selection for the number of component (K) and the sensitivity of its posterior distribution 

(Mclachlan and Peel, 2000; Aitkin, 2001; Jasra et al., 2005). Instead, to determine the 

appropriate number of components in the mixture, a series of models with increasing 

numbers of components are fitted and then the most plausible model is selected by 

various model selection criteria, such as a Bayes factor via marginal likelihoods or 

information criteria.  

 

                                                 
3 However, this flexibility may cause a so-called “label switching” problem. This issue will be reviewed in 
Section 3.5. 
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3.2 Introduction to Bayesian Method  

The fundamental difference between Frequentists and Bayesians is the way they view 

the unknown parameter θ . Frequentists regard θ  as a fixed value and estimate the 

probability distribution of the data )(y , )|( θyp , being the result of a sampling event 

from an unknown but fixed parameter space of θ  (Gelman et al., 2004). They estimate 

values θ̂  through maximization of a likelihood function. The curvature of the likelihood 

function provides the accuracy of these maximum likelihood estimates. Thus, in the 

Frequentist method, the uncertainty about parameter estimates is quantified by 

investigating how such estimates would vary one to the next in a repeated sampling from 

the same population. In contrast, Bayesians regard the unknown parameter θ  as a 

random variable and are interested in the probability distribution of a model parameter 

(Gelman et al., 2004). This probability distribution is called a posterior distribution, 

denoted as ),|( ηθπ y  which is a product of a likelihood function )|( θyp  and a prior 

distribution )|( ηθπ , in which η  is a low-dimensional hyper-parameter. The hyper-

parameters can be assumed either to be known or to be drawn from some second-stage 

prior. To Bayesians, the prior distribution on θ  is important. The uncertainty about 

parameter estimates is quantified by determining how much prior opinion about 

parameter values change given the observed data. The posterior distribution takes on the 

following form (Carlin and Louis, 2000):  

 
)|(

)|()|(
),|(

η
ηθπθηθπ

ym
yp

y =  (3.1) 

where =)( ym θηθπθ dyp�Θ )|()|(  does not depend on θ . It is a normalizing constant of 

integration, also known as a marginal likelihood. The normalizing constant is often 

difficult to evaluate unless the inside part of the integral )|()|( ηθπθyp  is a kernel of a 

familiar distribution. Therefore, the standard approach is to omit the normalizing 

constant and write the posterior distribution as follows: 
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 )|()|(),|( ηθπθηθπ ypy ∝  (3.2) 

As will be seen later in this chapter, modern simulation-based methods do not require an 

evaluation of the normalizing constant at all.  

 

The algorithms employed are Markov Chain Monte Carlo (MCMC) sampling techniques 

introduced by Geman and Geman (1984), Tanner and Wong (1987), and Gelfand and 

Smith (1990). The MCMC sampling methods have their roots in the Metropolis-

Hastings (MH) algorithm (Metropolis et al. 1953, Hastings 1970). Before the advent of 

MCMC sampling methods, Bayesians used various numerical approximation methods 

(for example, quadrature methods, Taylor series expansions)4 to summarize a posterior 

distribution since the posterior distribution can be a rather high dimensional form. The 

numerical approximation methods relied upon normality assumptions or asymptotic 

arguments which undermined a key benefit of having a complete posterior distribution.  

 

A sampling-based method (e.g. MCMC) is an alternative to these approximation 

methods. The basic idea of a sampling method is that we generate a large number of 

samples from a posterior distribution, )(θπ , and then use discrete formulas applied to 

these samples to summarize the posterior distribution by approximating the integrals 

necessary to calculate the posterior mean and variance. For example, we can estimate the 

posterior mean and variance of θ  by 

 ��
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4 These methods often require extensive knowledge of advanced numerical methods that non-statisticians 
generally do not have. This also limited the usefulness of the Bayesian approach. 
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where iθ is a draw from the posterior distribution )(θπ  and n  is a very large number. 

Various quantiles can also be computed to create a Bayesian credible interval based on 

the large number of sampled draws. For general introductions to MCMC methods, see 

Gelman et al., (2004) and Gill (2002).  

 

On the other hand, the empirical Bayes (EB) method has been widely used in the 

highway safety literature to better estimate the long-term mean of a site. The EB 

estimates can be used for hotspot identifications and countermeasure analyses via 

before-and-after study (Hauer, 1997). It proved to be the most consistent and reliable 

method in identifying hotspots (Cheng and Washington, 2005; Elvik, 2007). The EB 

approach uses a hierarchy idea. The final stage parameters within a hierarchical model 

(for example, η  above) are estimated from using the observed data, and then the usual 

Bayesian method is proceeded to estimate the unknown parameters as if the priors were 

known. This is where the name “empirical Bayes” originated since we are using the 

observed data to estimate the hyper-parameter η (Carlin and Louis, 2000). If η  was 

known, the posterior inference for θ  would be carried out using Equation 3.1. However, 

since η  is unknown, the marginal distribution of all data )|( ηym  is used to compute an 

estimate η̂  through the maximum likelihood estimation (MLE) or method of moments 

(MOM) methods. Therefore, in EB analysis, inference about the parameters is based on 

the estimated posterior distribution )ˆ,|( ηθπ y . In contrast to the full Bayesian method, a 

significant computational simplification is achieved by replacing the integration in 

Equation 3.1 by maximization. However, Bayesian “purists” do not like the EB approach 

since it uses the data twice: that is, the data are first used to estimate the parameters in 

the hyper-prior distribution and, once these values are determined, the observed crash 

count is used for making inference about the posterior estimation. (Carlin and Louis, 

2000). Moreover, the EB approach does not explicitly account for the uncertainty of 

associations of covariates and safety since the point estimates of all covariate effects will 

be assumed to be true without any uncertainty (Miaou and Lord, 2003). Table 3.1 
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illustrates the above-described differences between the Frequentist, full Bayesian, and 

EB methods.  

 

Table 3.1 Fundamental differences between Frequentist, Bayesian, and EB methods 

Method 
Parameter 
assumption 

Functions for inference Summary statistics 

Frequentist 
Fixed  
(θ ) 

)|( θyp : Likelihood function 

Estimate θ̂  by MLE or MOM 

- MLEθ̂  or MOMθ̂  

- Standard error 
- Confidence interval 

Full- 
Bayesian 

Random 
 (θ ,η ) 

)|(
)|()|(

),|(
η

ηθπθηθπ
ym

yp
y =  

Use hyper-prior on η   

(informative or non-informative) 

- Posterior mean, 
median or mode 
- Quantiles 
- Credible interval Empirical- 

Bayesian 
Fixed 
 (θ ,η ) 

)ˆ|(
)ˆ|()|(

)ˆ,|(
η

ηθπθηθπ
ym

yp
y =  

Estimate η̂  by MLE or MOM 

 

3.3 Bayesian Analysis of Count Data 

3.3.1 Poisson regression model 

Consider regression count data ( iiy x, ), ni ,,1 �= , where iy is crash frequency and ix is 

a vector of observed explanatory variables which includes one in the first column. The 

dimension of ix  is )1( +× pn , where p denotes the number of covariates. In the 

framework of generalized linear models (GLM), a link function is employed to connect 

the mean number of crashes with related covariates.  Given the linear predictor �x ii =η  

with unknown regression parameters, )',,( 10 pβββ �=�  and using a log-linear link 

function (i.e., ii ηµ =log ), the Poisson model assumes conditionally independent 

observations: 



 41

 )(~| iii Poissony µµ  (3.5) 

with probability function given by 

 
!
)exp(

)|(
i

y
ii

ii y
yp

iµµµ −=  (3.6) 

The mean and variance are iiiyE µµ =)|(  and iiiyVar µµ =)|( , respectively. 

 

In a Bayesian approach, priors have to be assigned to all unknown parameters � . Prior 

for � in the linear predictor iη  is usually assumed to follow the ),( 001 Bb+pMVN  

distribution, where 1+pMVN  denotes the multivariate normal distribution with 

1+p dimension, and 0b  and 0B  are prior parameters.5 

 ),(~ 001 Bb� +pMVN  (3.7) 

 ��

�
��

�−∝ − )()'(
2
1

exp)( 0
1

00 b-�Bb-��π  (3.8) 

For a non-informative prior specification, we usually assume )'0,,0(0 �=b  and  a large 

variance such as 10 100 += pIB , where 1+pI  denotes the ( 1+p )-dimensional identity 

matrix.  

 

Then, the Bayesian inference is based on the posterior distribution of all unknown 

parameters.  The posterior distribution is defined by  

 )()|()|( ��yy� ππ p∝  (3.9) 

                                                 
5 An alternative choice is to place independent normal priors on each of the regression parameters, e.g. 

)100,0(~ Normjβ , pj ,,1,0 �= . 
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where )|( �yp is the likelihood of the Poisson model, )(�π  is defined in Equation (3.8). 

If the posterior distribution )|( y�π  belongs to a kernel of any known parametric 

distribution, the evaluation of unknown parameters are relatively easy. Otherwise, an 

MCMC (Markov Chain Monte Carlo) sampling technique can be employed to evaluate 

the exact posterior distribution via Metropolis-Hastings (MH) algorithms (see Appendix 

B). In this case, the posterior density )|( y�π  is proportional to  

 ��

�
��

�−⋅�
�

�
�
�

� −∝ −

=
∏ )()'(

2
1

exp
!
)exp(

)|( 0
1

00
1

b-�Bb-�y�
n

i i

y
ii

y

iµµπ  (3.10) 

and it is not in a standard form. Thus, a Random-Walk Metropolis algorithm using a 

normal proposal density may be implemented. This is a special case of MH algorithms. 

The proposal function is symmetric and the usual choice for the update is the normal 

distribution (Rossi et al., 2005). The new values for  �  is drawn in an iteration step from 

the following relationship: 

 ),(~ ββ Σ⋅sNorm oldoldnew ��|�  (3.11) 

where, βΣ  are the variances for the increments of old�  and βs  is a variance inflation 

factor or a scaling parameter. The efficient work of the Random-Walk Metropolis 

algorithm greatly depends on the choice of βΣ  and βs . Chib et al. (1998) suggested that 

the values for βΣ  can be taken from the asymptotic covariance matrix of �  which can be 

obtained during the maximum likelihood estimation procedure. Another factor that 

should be considered is the scaling parameter βs . The Random-Walk Metropolis 

algorithm must be tuned by choosing an appropriate value of this scaling parameter in 

order to induce good mixing behavior of chains. The statistical literature (Winkelmann, 
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2008; Rossi et al., 2005) recommends that we do the trial runs first during a burn-in 

period and then adjust the value to obtain acceptance rates between 40% and 60%.6  

 

Finally, the probability of move is determined by the following rule: 

 
	


�

�


�

= 1,
)|(
)|(

min)|,(
y�

y�
� �

old

new
newold y

π
πα  (3.12) 

Note that since the proposal density is symmetric in )( newold � ,� and hence it cancelled 

out in the ratio. If )|()|( y�y� oldnew ππ > , the chain moves to  new�  with probability 1. 

Otherwise, it moves with probability 1)|,(0 << ynewold � �α . If rejected, the chain does 

not move and keep the old values for the next evaluation. This step ensures that the 

accepted candidates come from the distribution of interest – that is, the posterior 

distribution of � . 

 

3.3.2 Negative binomial regression model 

Given the same log-link function in the conditional mean (i.e., ii ηµ =log ) and a fixed 

dispersion parameter 0>φ , the negative model assumes conditionally independent 

observations: 

 ),(~,| φµφµ iii NBy  (3.13) 

with the probability function given by 

 
φ

φµ
φ

φµ
µ

φ
φφµ ��
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�
��
�
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+��
�

�
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�
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+Γ+Γ
+Γ=
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i

i
ii
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y
y

yp
)()1(

)(
),|(  (3.14) 

                                                 
6 On the other hand, according to Roberts (1996), about 25% and 45% acceptance rates are generally 
accepted for Metropolis algorithms. 
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The mean and the variance are as follows: 

 iiiyE µφµ =),|(  (3.15) 

 
φ
µµφµ

2

),|( i
iiiyVar +=  (3.16) 

The prior distribution for �  is defined as the same in Poisson regression models (i.e., 

non-informative multivariate normal distribution). For the dispersion parameter φ , we 

assume a Gamma prior to ensure that φ  is positive: 

 ),(~ baGammaφ  (3.17) 

 )exp(
)(

)( 1 φφφ b
a

b
p a

a

−
Γ

= −  (3.18) 

It has a mean baE /)( =φ  and a variance 2/)( baVar =φ . The prior parameters a and b  

can be chosen such that the Gamma distribution has a non-informative prior; for 

example, 01.0=a and 01.0=b . The prior parameters can be defined in a further stage of 

the hierarchy by introducing a hyper-prior. The typical flat Gamma hyper-prior would be 

to set 1=a , and )01.0,1(~ Gammab . It should be noted that other prior specifications 

on the NB dispersion parameter are also possible as alternatives to the Gamma 

distribution. Christiansen and Morris (1997) suggested 2
00 )/()( φφ +∝ aap , where 

00 >a  as a prior guess for the median of φ . Small values of 0a  provide less information. 

Miranda-Moreno et al. (2009) compared the performance this distribution with other 

prior distribution. Frühwirth-Schnatter et al. (2009) assumed 3)/(2)( φφφ +∝ ddp , 

having a median of )21( +d . They used this prior setting for applying the FMNB-K 

models on fabric fault data (Aitkin, 1996).  

 

After specifying priors on each parameter, the Bayesian inference is based on the 

posterior distribution of all unknown parameters. That is, the posterior distribution is 

defined by 
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 ),(),|()|,( φπφφπ ��yy� p∝  (3.19) 

where ),|( φ�yp is the likelihood of the NB model. If we assume an independent 

relationship between �  and  φ , and then we can consider )()(),( φππφπ �� =  and apply 

separate priors for each as defined in Equations (3.8) and (3.18). In this case, since the 

posterior distribution )|,( y� φπ  does not belong to the kernel of any known parametric 

distribution, we explain here the MH algorithm within the Gibbs sampling method. It is 

also known as a “hybrid” or “Metropolis within Gibbs” method (Rossi et al., 2005). This 

algorithm uses the Gibbs sampling technique as an outer loop and within each loop the 

MH algorithm is implemented to draw samples from the full conditionals of parameters 

given the remaining parameters and the data.7 

 

The full conditionals of each parameter for the NB regression model are as follows: 

)(),|()|( ��y� � πφθπ p∝−  (3.20) 
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where, x−θ  denotes all parameters in the posterior other than x  parameter.  

 

                                                 
7 The full conditionals mean the conditional distribution of each variable given all else. For example, if we 
have a joint pdf ),,,( 21 kp θθθ � of unknown parameters kθθθ ,,, 21 � , Gibbs sampling simulates each 
parameter sequentially from the following k full conditional distributions instead of simulating directly 
from the joint distribution: ),,,|(,),,,,|(),,,,|( 121312321 −kkkk ppp θθθθθθθθθθθθ ���� . 
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Under this setup, the expressions above do not belong to any standard distribution family, 

so they have no analytical closed form. Similar to the Poisson regression model, we can 

use the Random-Walk Metropolis algorithm using a normal proposal density. The new 

values for  �  and φ  are drawn in an iteration step from the following relationship: 

 ),(~ ββ Σ⋅sNorm oldoldnew ��|�  (3.22) 

 )),(log(~)log(|)log( φφφφφ VsNorm oldoldnew ⋅  (3.23) 

where,  βΣ  and φV  are the variances for the increments of old�  and )log( oldφ , and βs  

and  φs  are the scaling parameters. Taking the logarithm on φ  is for ensuring that the 

drawn value for φ  is positive. For an efficient sampling the values for βΣ  and φV  can be 

taken from the asymptotic covariance matrix of �  and φ  from the maximum likelihood 

estimation procedure (Chib et al., 1998).  

 

Finally, the probability of move for �  and φ  is determined by the following rule: 
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(3.25) 

Again, the scaling parameters βs  and φs  must be tuned in order to induce good mixing 

behaviors of each chain and to satisfy the acceptance rate range at the same time. 

 

Above-described procedure can be extended to the Bayesian analysis of the varying 

dispersion parameter model, in which iφ  can be a function of a vector of site attributes 

iz . The vector iz may or may not include covariates of the vector ix . In order to prevent 
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a zero or negative values, we can parameterize iφ  using an exponential link function, so 

that  

 )exp( �z ii =φ  (3.26) 

where 'm ),,( 0 γγ �=�  is a vector of parameters. Then, analogous to the vector of 

regression parameters, the non-informative multivariate normal distribution may be 

specified for � .  

 

3.3.3 Hierarchical Poisson regression models 

In hierarchical Poisson regression models, the treatment of over-dispersion is made more 

explicit by introducing the random effects into the Poisson mean ( iλ ). Depending on the 

parametric distribution imposed on the Poisson mean, various mixed Poisson regression 

models can be derived (e.g. Poisson-Gamma, Poisson-Lognormal, Poisson-Inverse 

Gaussian, etc.). In this subsection, we present the cases for Poisson-Gamma and 

Poisson-Lognormal within the Bayesian framework.  

 

The standard two-stage hierarchical Poisson model can be expressed as follows (Carlin 

and Louis, 2000): 

 (Likelihood)  )(~| iii Poissony λλ  (3.27) 

 (First-stage)  )(~| ηπηλ λi  (3.28) 

 (Second-stage)  )(~ ⋅ηπη  (3.29) 

where )(ηπ λ  is the prior distribution imposed on the Poisson mean iλ  with a prior 

parameter η , and )(⋅ηπ  is the hyper-prior on η  with known hyper-parameters (a, b, for 

example). The structure of this two-stage Bayesian hierarchical model is depicted in 

Figure 3.1. It can be readily seen that uncertainty in the parameters is introduced in 
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hierarchical Poisson model by considering a full hyper-prior framework. The posterior 

distribution can be written as: 

 ),|()|()|()|( baypy iiiii ηπηλπλλπ ηλ∝  (3.30) 

 
Figure 3.1 Graphical representation of a two-stage Bayesian hierarchical model 

We will present two hierarchical Poisson models which have been widely used in 

highway safety analysis: Poisson-Gamma and Poisson-Lognormal regression models. 

 

Poisson-Gamma Regression Model. The Poisson-Gamma regression model assumes 

that λπ  is the gamma distribution with two parameters: shape and scale parameters. In 

Equations (3.28) and (3.29), if we specify iii µνλ =  (where �xiei =µ ) where 

),(~ φφν Gammai  in the first stage and ),(~ baGammaφ in the second stage, these 

result in exactly the NB regression model that we described in the previous subsection. 

This is because integrating out the iν  parameters from ),|( iiiyp νµ  results in the 

following marginal distribution of iy  without depending on iν , and this leads to the NB 

regression model (Cameron and Trivedi, 1998; also see Appendix A for derivation): 
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a, b λ  η  y  
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Data 
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For the Poisson-Gamma regression model, the posterior distribution is defined by 

 )()|()(),|()|,,( φπφνππνφνπ iiiii ypy ��� =  (3.32) 

where the Poisson likelihood ),|( iiyp ν�  and )(�π  were previously defined in 

Subsection 3.3.1 (see Equation (3.10)).  Once we know the full conditionals for each 

parameter, we can implement the Gibbs sampling by drawing samples of each parameter 

sequentially. The full conditionals for each parameter are easy to derive and given as 

follows: 

 

)|(),|()|( φνπνθνπ ν iiii yp
i

�∝−  

                         ),( φµφ ++∝ iiyGamma  
(3.33) 

 )(),|()|( ��� � πνθπ iiyp∝−  (given in Equation (3.10))  
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(3.34) 

The expression for �  and φ  have no analytical closed forms, so the MH algorithm with 

a Random walk proposal can be implemented. Instead of programming the code, the 

specialized software WinBUGS can also be utilized in which these algorithms are 

already available (Lunn et al., 2000). The key advantage of WinBUGS is that it derives 

conditional distributions automatically which significantly simplifies the Gibbs sampling 

for a variety of models. In WinBUGS, the analysts are only required to write down the 

probability and specify the priors, which significantly reduce the start-up costs of 

performing the Bayesian analysis.  

 

Since the posterior of iν  is a Gamma distribution, the posterior mean of iλ , )|( ii yE λ  

given that iy  crashes are observed at site i, can be derived: 
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 )()|( iiii EyE νµλ =  (3.35) 

 
φµ
φµ
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i

i
i

y
 (3.36) 

                     iiii yww )1( −+= µ  (where )/( iiw µφφ += ) (3.37) 

The simple expression of )|( ii yE λ  is due to the conjugacy between the gamma and the 

Poisson distributions. Under this form the posterior mean of crashes at site i is a 

weighted average of conditional mean of crashes ( iµ ) and the observed number of actual 

crashes ( iy ). It should be noted that in a full Bayesian approach all the uncertainty about 

unknown parameters ( �  and φ ) was taken into consideration by specifying prior 

distributions on them. In the EB approach, however, �  and φ  are estimated from the 

marginal distribution of iy (i.e., the NB distribution in Equation (3.31)) using the MLE 

or MOM methods. Therefore, it is obvious that the EB approach does not allow for any 

uncertainty in the model parameters and assumes that the mean and the variance of crash 

frequency at the individual site are estimated without errors, which may be not true in 

practice (Miaou and Lord, 2003; Lord and Miranda-Moreno, 2008).  

 

Poisson-Lognormal Regression Model. This model has been used effectively for 

modeling accident frequency especially when the outliers are present, since its tails are 

known to be asymptotically heavier than those of the Gamma distribution (Kim et al., 

2002; Lord and Miranda-Moreno, 2008; El-Basyouny and Sayed, 2009). The only 

difference between this model and the Poisson-Gamma model lies in the assumption of 

the distribution of the random effects. This model assumes a log-normal distribution for 

the i.i.d random effects iν  in the Poisson mean iλ . This can be rewritten by adding an 

additive random effect that is assumed to be normally distributed in the linear link 

function: 

 )(~ ii Poissony λ  (3.38) 
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 )~exp( iiiii νµνλ +== �x  (3.39) 

 ),0(~~ 2τν Normi  (3.40) 

where 2τ is a hyper-parameter that captures the variance of the random effect. The 

expression above is equivalent to writing that ),0(~ 2τν Lognormi . Under this setup, it 

is easy to verify that )2/exp()( 2τν =iE  and }1)){exp(exp()( 22 −= ττν iVar . 8  It 

became evident that 2τ indicates the magnitude of the over-dispersion in the data. The 

lognormal random effects can be comparable to the Gamma random effects by 

specifying ),5.0(~~ 22 ττν −Normi  and )/11log(2 φτ += , which leads to 1)( =iE ν  and 

φν /1)( =iVar . In contrast to the Poisson-Gamma regression model, the marginal 

distribution of the Poisson-Lognormal regression model does not have a closed form 

(Winkelmann, 2008). According to Hinde (1982), the maximum likelihood estimates can 

be obtained using a combination of numerical integration, the EM algorithm and 

iteratively re-weighted least squares. Modern computing power enabled the direct 

computation by Gauss-Hermite quadrature, and the maximum likelihood estimation of 

the Poisson-Lognormal models is as fast as estimation of the Poisson-Gamma models 

(Winkelmann, 2008).  

 

For a hierarchical Bayesian analysis, hyper-prior for variance 2τ is introduced in a 

further stage of the hierarchy. A common choice is the Inverse-Gamma distribution 

which is a conjugate distribution to the normal distribution.9 

 ),(~2 baIGτ  (3.41) 

                                                 
8  If ),(~ 2σµLognormX , then ),(~)log( 2σµNormX  with )2/exp()( 2σµ +=XE  and 

)1))(exp(2exp()( 22 −+= σσµXVar . 
9  A random variable X follows an Inverse-Gamma distribution ),(~ baIGX , if 1/X has a Gamma 

distribution: ),(~/1 baGammaX . The density is proportional to )/exp()/1( 1 XbX a −+ . 
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The hyper-parameters a and b are usually selected as highly dispersed to reflect no prior 

information on 2τ . Given all prior specifications, the posterior distribution for the 

Poisson-Lognormal model can be defined as: 

 )()|()(),|()|,,( 22 τπφνππντνπ iiiii ypy ��� =  (3.42) 

where the Poisson likelihood ),|( iiyp ν�  and )(�π  were previously defined in 

Subsection 3.3.1 (see Equation (3.10)).  Now we can derive the full conditionals for each 

parameter from which we draw samples sequentially. 
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 )(),|()|( ��� � πνθπ iiyp∝−  (given in Equation (3.10))  
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In this case, the expression for �  and iν  have no analytical closed forms, so the 

Random-Walk Metropolis algorithm with a normal proposal can be implemented. Again, 

the specialized software WinBUGS can also be utilized in which the algorithm above is 

already available.  

 

One particular advantage of the Poisson-Lognormal model is that it is readily extended 

to the multivariate case (Winkelmann, 2008).  In highway safety studies, the application 

of multivariate Poisson-Lognormal models using Bayesian methods includes Park and 

Lord (2007) and Ma et al. (2008). They modeled crash counts by severity data based on 

the multivariate Poisson-Lognormal model by considering the correlations that may exist 

among different severity levels.  
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3.4 Estimation of Finite Mixture Regression Models  

Having described how we perform the MCMC updates for parameters within a single 

regression model, we now move onto the estimation of finite mixture of these models. 

Like the EM algorithm, the Bayesian estimation using MCMC methods for a finite 

mixture model is based on the incomplete data problem where the allocations are 

assumed as missing data (Dempster, et al., 1977). In particular, the Gibbs sampling 

(Gelfand and Smith, 1990) coupled with data augmentation method (Tanner and Wong, 

1987) is used to obtain a large number of random variates from the posterior distribution. 

Tanner and Wong (1987) introduced data augmentation as a method for dealing with 

missing data or unknown parameter values by augmenting known information with 

candidate values.  

 

In this section, we will present how to draw samples from the mixture posterior 

distribution using MCMC techniques coupled with data augmentation. For an illustrative 

purpose, a negative binomial regression model will be used as a component model – that 

is, the FMNB-K regression model. The algorithm can be easily modified for other 

component models. 

 

3.4.1 Complete-data likelihood and posterior distribution 

To facilitate the parameter estimation, the data are augmented with a latent random 

variable )',,,( ,2,1, Kiiii zzz �=z .  Here, iz  can be regarded as an unobserved categorical 

variable which indicates the component membership of site i . Each element ikz ,  is 

defined as follows: 
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For a particular site i , the unobserved random variables, iz , are assumed to be 

independently and identically multinomial distributed with probabilities w  (Diebolt and 

Robert, 1994), such that: 

 ∏
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=
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z
ki

kiwp
1

,)|( wz  (3.46) 

where )|( wz ip is the likelihood of observing the component membership vector iz for 

each site i , given the component proportions w . The complete-data likelihood for site i  

is then defined as follows: 
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where ),,|( kkiiyp φ�x  is the likelihood function of the NB model for the kth component. 

Therefore, the complete-data likelihood function over all sites N  now becomes: 
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where  �
=

=
N

i
kik zn

1
, denotes the number of observations allocated to component k .  The 

vector of all parameters �  for the FMNB-K model was defined in Equations (2.41-2.43). 

In practice the component indicators ),,( 1 NzzZ �= are unknown but are considered as 

missing data to be sampled at each iteration during the course of MCMC runs. 

 

By the Bayes’ theorem, the complete-data posterior distribution ),( Xy�Z ,|π  is 

proportional to the complete-data likelihood defined in Equation (3.48) times the prior 

distribution )(�π  for the parameters, and is given by, 
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 )()|,(),( �X�ZyXy�Z ππ ,p,| ∝  (3.49) 

where the matrix '),,( 1 NxxX �=  denotes the covariates across all sites. 

 

3.4.2 Prior distributions 

The choice of suitable prior distributions and their prior parameters should be done 

carefully because the priors, especially for the weight distribution, may have significant 

effects on the posterior distribution (Frühwirth-Schnatter, 2006). For the FMNB model, 

the unknown parameter is }),(),{( 11 w��� KK ,,,, φφ ��= . It is assumed that the 

parameters K,, �� �1 , K,, φφ �1 , and w  are, a priori, mutually independent: 

 )()()()()()( 11 w��� πφπφππππ KK ��=  (3.50) 

For the finite mixture models, the standard conjugate prior for the weight distribution w  

is the ),,( 1 KeeDirichlet � distribution on the simplex }1:),,{( 11 =++ KK wwww �� , 

and the prior parameters are assumed to be the same (i.e. 0eek = ) such that: 

 ∏
=

−∝=
K

k

e
kweeDirichlet

1

1
00

0),,() �(wπ  (3.51) 

Note that the Dirichlet distribution is a multivariate generalization of the beta 

distribution. When 10 =e , the Dirichlet distribution is the uniform one. This is the usual 

choice when no information is available for the weights.  

 

The prior distributions for the regression coefficient k�  and the dispersion parameter 

kφ in each component were already defined in Equations (3.8) and (3.18), respectively. 

They are reproduced here for completeness. 
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 )exp(),()( 1
k

a
kk bbaGamma φφφπ −⋅∝= −  (3.53) 

3.4.3 Full conditional distributions 

Based on the augmented data likelihood (Equation (3.48)) and the given priors 

(Equations from (3.51) to (3.53)), the following full conditional distribution for each 

parameter can be obtained: 
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where x−�  denotes all parameters in the posterior other than x . 

 

Then, conditional on knowing all component parameters, � , the component indicator 

vector iz  allocates the site i  into the kth component by Bayes’ rule. The probability of 

each element of iz  is calculated by the following equation (Frühwirth-Schnatter, 2006). 

 kkkiiK
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iiki wyp
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(3.57) 
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Given the probabilities for all components, the conditional distribution of iz  is a 

multinomial distribution, satisfying  �
=

=
K

k
kiz

1
, 1 . That is, 

 [ ]( )),,|Pr(,),,,|Pr(,1),,|( ,1, iiKiiiiiii yzyzMultinomy x�x�x�z �=π  (3.58) 

3.4.4 Gibbs sampling algorithm 

Now it is straightforward to draw samples from the posterior distribution using the 

Gibbs sampling method. Conditional on Z which classifies each observation into a 

component, the component parameters are drawn sequentially from Equations (3.54) to 

(3.56). On the other hand, conditional on knowing the component parameters, each 

component indicator vector iz  is drawn from the multinomial distribution as defined in 

Equation (3.58). Since the conditional distributions for k�  and kφ  do not belong to any 

standard distribution family, the Random-Walk Metropolis algorithm is utilized within 

the larger Gibbs sampler as described in Subsection 3.3.2.  

 

The MCMC estimation procedure using the Random-Walk algorithm within Gibbs 

sampling, therefore, can be summarized as follows: 

 

Start with initial allocations )0(Z , and initial values )0(
k� and )(0

kφ . Repeat the 

following steps for RRRr += 00 ,,,,1 �� . 

Step 1: Conditional on the allocations )1( −rZ , 

1-1. Draw )(rw  from Equation (3.58). 

1-2. Draw )()(
1

r
K

r ,, �� �  from Equation (3.54) independently for all k . If 

accepted by the Random-Walk algorithm, then =)(r
k� sampled values, 

otherwise )1()( −= r
k

r
k �� . 
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1-3. Draw )()(
1

r
K

r ,, φφ �  from Equation (3.55) independently for all k . If 

accepted by the Random-Walk algorithm, then )(r
kφ = sampled value, 

otherwise )1()( −= r
k

r
k φφ . 

1-4. Store the values of all parameters: 

  }),), )()()(
1

)()(
1

)( rr
K

rr
K

rr ,,,, w(��{(� φφ ��= . 

Step 2: Conditional on knowing )(r� ,  

2-1. Draw iz  for each observation iy  from Equation (3.58) and store all 

allocations as )(rZ . 

2-2. Increase r  by one, and return to Step 1.  

Step 3: Discard the first 0R  draws as a burn-in period. 

 

After equilibrium is reached at the 0R th iteration, sampled values are averaged to provide 

the consistent estimates of the parameters: 

 
R

h

hE

R

Rr

r
k

k

�
+== 1

)(

0

)(
)]([ˆ

θ
θ  

(3.59) 

where kθ denotes any interest parameter in the model. For the initial allocations, )0(Z  

can be generated from the multinomial distribution with the same weight (i.e. 

Kwk /1= ). For )0(
k� and )(0

kφ , the maximum likelihood estimates for a single regression 

model can used. In this research, the Software R (R Development Core Team, 2006) was 

used for coding the algorithm above. The codes were tested with simulated datasets for 

FMP-2 and FMNB-2 models. The example codes are provided in Appendix D and are 

used in Chapter IV. 
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3.5 Label Switching Problem 

In finite mixture regression models, there is a generic identification problem generally 

known as the “label-switching problem” in the literature of finite mixture models 

(Redner and Walker, 1984; Celeux et al., 2000; Stephens 2000b; Früwirth-Schnatter, 

2001). This is caused by the invariance of the mixture likelihood function under a 

permutation of the component labels in� . Since the likelihood is the same under 

relabeling the components of a mixture model, it effectively has K! modes. This problem 

is viewed as a form of model non-identification. The effect of label switching is very 

important when the solution is being searched by an iterative method and there is the 

possibility that the component labels may be switched on different iterations.  

 

Label switching does not create difficulty in maximum likelihood estimation via the EM 

algorithm, because the goal is to find one of the equivalent modes of the likelihood 

function (Früwirth-Schnatter, 2006) and solutions converging to different permutations 

of a single mode are easily identified (Chung, et al., 2004). Although the EM algorithm 

is free from the label switching problem, its solution can be stuck in the local maximum 

since the global maximum will actually occur at K! different locations on the mixture 

likelihood surface.  

 

In the context of Bayesian estimation, label switching is a serious issue because the 

parameters are estimated by averaging the MCMC output during the simulation run. One 

solution to this problem may be to put different priors on the component parameters 

which make the marginal posterior distributions for the parameters be different for each 

mixture component. However, in practice, it would be difficult to obtain such prior 

information that allows one to discriminate between the components of a mixture model 

belonging to the same parametric family. When exchangeable priors are placed on the 

component parameters, component labels may switch during the simulation run because 

the Markov chain may visit different one of K! modes. Therefore, without correcting it, 

it is meaningless to draw inference directly from MCMC output using ergodic averaging 
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(Jasra et al., 2005). Many techniques have been proposed for overcoming this problem: 

imposing identifiability constraints on the parameters (Richardson and Green, 1997); 

clustering methods (Stephens 2000a; Celeux et al., 2000); random permutation sampling 

(Früwirth-Schnatter, 2001).   

 

Imposing identifiability constrains is a rather simpler method which applies an 

appropriate constraint to the posterior draws during the MCMC simulation. The 

constraints usually take the form of ordering the components in terms of their weights  

( Kww >>�1 ) or their regression parameters (e.g. K,11,1 ββ >>� ).  Whenever a draw 

does not satisfy the constraint, the component labels are permuted such that the 

constraint is fulfilled. While this ordering can be easily incorporated into the MCMC 

simulation, it can be done post-simulations – that is, we can run the MCMC simulation 

from the unconstrained posterior distribution and then impose an identifiability 

constraint. This approach has an advantage in that it does not cause any adverse effect on 

simulation (Jasra et al., 2005).  However, according to Celeux (1998) and Celeux et al 

(2000), this approach does not always work. They suggested that the simulations should 

be run without any constraints on the parameters and then, at the end of the simulations, 

a cluster-like method can be applied to change the component labels of the simulation 

values for � .  

 

Früwirth-Schnatter (2001), acknowledging the difficulty in finding suitable 

identifiability constraints because of unbalanced labeling switching in the Gibbs sampler, 

proposed the random permutation sampling method. In this approach, a random 

permutation of the component labels is performed after each draw to ensure that the 

samples explore the whole unconstrained parameter space and jump between the various 

labeling subspaces in a balanced fashion. For example, for K=2, there are only two 

permutations. That is, with probability 0.5 the draws remain unswitched, whereas with 

probability 0.5 the labels are interchanged. The MCMC output from this random 

permutation sampler is explored to find suitable identifiability constraints. Once a 
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suitable identifiability constraint is found, then the MCMC simulation is run again by 

imposing that constraint on the parameters, in which the draws are permuted if the 

identifiability constraint is violated. Geweke (2007) also used this concept and showed 

that widely used MCMC algorithms with data augmentation reliably recover the entire 

posterior distribution.  

 

In this study, we basically adopted the idea of imposing the identifiability constraints. 

The ordering constraints are placed on the component regression parameters (e.g. 

K,11,1 ββ >>� ) or weight parameters ( Kww >>�1 ). In order to find out an appropriate 

constraint, the simulations are first run without any constraints. If there is a sign of label 

switching, different order constraints are tested by trial and error to look for the best 

constraint. It is often obvious from the visual inspection of the MCMC trace plots to tell 

which constraint is most appropriate. Once a suitable ordering constraint is determined, 

then the simulation is run again by reordering the MCMC output by means of inequality 

constraints.  

 

3.6 Determination of Number of Components  

When applying mixture regression models to real data, the actual number of components 

(K) is unknown and must be inferred from the data. The determination of the correct 

number of components is one of the well-known difficulties in finite mixture models, 

and it is still a major contemporary issue in mixture modeling.  

 

Within the Bayesian framework, it has been approached in two ways: one is to assume 

that K is an unknown variable and it is estimated within the modeling process; the other 

is to fit a series of models with increasing numbers of components, and then select the 

most plausible model by various model selection criteria. The first approach may appear 

to be more appealing. The methods in this category include Dirichlet process mixtures 

(Escobar and West, 1995), distributional distances (Mengersen and Robert, 1996), 
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reversible jump MCMC (Richardson and Green, 1997), and Birth-and-Death MCMC 

(Stephens, 2000a). However, these methods are not only computationally intensive, but 

also they have some issues with regards to prior selection for the unknown parameter K 

and the sensitivity of its posterior distribution (Jasra et al., 2005; Aitkin, 2001). The 

discussion of all these issues is beyond the scope of this. Instead, we chose the second 

approach, which is relatively easy to implement and thus widely used.  

 

To determine the best model and the number of components, various model selection 

criteria were examined: Information-based criteria (AIC, BIC, and DIC) and Bayes 

factor via marginal likelihoods. The Akaike Information Criterion, or AIC is defined as 

pLL 22 +− , where LL  is a log-likelihood value and p  is the number of parameters in 

the model. It penalizes the models by the number of parameters included. Smaller values 

represent better overall fits. The Bayesian information criterion, or BIC is uses a penalty 

term of )log(np ⋅ , where n  is the total number of observation. The BIC is more 

conservative than the AIC by requiring a greater improvement in fit before it will accept 

a more complex model. As a rule of thumb, an AIC or BIC difference greater than 10 

indicates very strong evidence in favor of the model with lower values (Kass and Raftery, 

1995; Burnham and Aderson, 2004). The Deviance information criterion, or DIC is 

defined as )ˆ(2ˆ DDD −+ , where D  is the average of the deviance ( LL2− ) over the 

posterior distribution, and D̂  is the deviance calculated at the posterior mean parameters. 

As with AIC and BIC, DIC uses DDpD
ˆ−=  (effective number of parameters) as a 

penalty term on the goodness of fit. Differences in DIC from 5-10 indicate that one 

model is clearly better (Spiegelhalter et al., 2002).  

 

Formal Bayesian model assessment is based on the Bayes factor, 12B , for comparing 

model 1M  to model 2M  after observing the data (Lewis and Raftery, 1997). The Bayes 

factor is the ratio of the marginal likelihoods of the two models being compared if we 

assume that the prior probabilities for the two models are equal 
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( )|(/)|( 2112 MpMpB yy= ). However, in practice, computing Bayes factors for a 

particular set of models can be demanding because it requires either complicated 

multidimensional integrals or some kind of stochastic sampling from the prior 

distribution. For calculating the marginal likelihood, we adopted the method developed 

by Lewis and Raftery (1997), who suggested using the posterior simulation output for 

the computation of the marginal likelihoods (so-called Laplace-Metropolis estimator). 

The approximation of the marginal likelihood is carried out on the natural logarithmic 

scale such as: 

 *)}(log{*)}|(log{|}*log{|
2
1

)2log(
2

)}|(log{ ��yHy ππ +++≈ f
d

Mp j  (3.60) 

where d is the number of parameters, *)}|(log{ �yf  is the log-likelihood of data at *� , 

and *)}(log{ �π  is the log-likelihood of prior distribution at *� . One way of estimating 

*�  is to find the value of �  at which *)}(log{*)}|(log{ ��y π+f  achieves its 

maximum from the posterior simulation output. |*| H  is the determinant of the variance-

covariance matrix estimated from the Hessian at the posterior mode, and it is 

asymptotically equal to the posterior variance-covariance matrix. This can be estimated 

from the sample variance-covariance matrix of the posterior simulation output. 

Assuming that the prior probabilities for the competing models are equal, 12B  is 

expressed as follows: 

 )}|(log{)}|(log{)log( 2112 MpMpB yy −=  (3.61) 

According to Kass and Raftery (1995), the values of )log( 12B  between 1 and 3 are 

positive evidence and the values between 3 and 5 are strong evidence in support of 

model 1 (see Table 3.2). 

 

The advantage of using information criteria is that they are easy to calculate, and do not 
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depend on prior information except for DIC. However, from a Bayesian perspective, 

since the posterior model probability should be the tool for model comparison, the 

information criteria do not have such a formal Bayesian justification in their use for 

model comparison (Koop, 2003). In this study, the log of marginal likelihood of a model, 

which is an essential ingredient in calculating the Bayes factor in Equation (3.61), was 

used as a primary criterion for model selection, whereas the information criteria were 

used as secondary criteria. Higher value of the log of marginal likelihood of a model is 

indicative of an improved model. 

 

Table 3.2 Model selection guidelines (Kass and Raftery, 1995) 

)(log2 12B  )( 12B  Evidence against model 2 ( 2M ) 

0 to 2 1 to 3 Not worth more than a bare mention 

2 to 6 3 to 20 Positive 

6 to 10 20 to 150 Strong 

> 10 > 150 Very strong 

  

3.7 Chapter Summary 

In this chapter, we have provided the fundamental methodology on how to analyze count 

data within the Bayesian framework for both single count regression models and finite 

mixture regression models. Prior to describing these count models in details, basic 

essentials for the Bayesian analysis have also been provided. The fundamental difference 

between Frequentists and Bayesians was the way they view the unknown parameter θ . 

The different perspectives resulted in different ways of quantifying the uncertainty about 

parameter estimates. Frequentists regard θ  as a fixed value and the uncertainty about 

parameter estimates is quantified by the repeated sampling scheme, while Bayesians 

regard θ  as a random variable and the uncertainty about parameter estimates is 

quantified by determining how much prior opinion about parameter values change in 

light of the observed data.  
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There are numerous single count regression models, but in this chapter we have focused 

on the Bayesian methodology for Poisson, negative binomial, and hierarchical Poisson 

regression models in that they have been extensively used in highway safety analyses. 

The degree of complexity for estimating parameters was different from model to model, 

but the general procedure was similar for all models as follows: i) specify a likelihood 

function for the data; ii) specify a prior distribution for the model parameters; iii) derive 

the posterior distribution for the model parameters; iv) simulate the parameter samples 

from the posterior distribution; v) summarize the parameter samples using basic 

descriptive statistics. In sampling from a posterior distribution, the key ingredient was 

the Gibbs sampling technique which draws samples sequentially from full conditional 

posterior distributions of parameters given the remaining parameters and the data. When 

the full conditional posterior distribution of a parameter did not belong to the standard 

distribution, the Random-Walk Metropolis algorithm with a normal proposal could be 

used.  

 

While any single count regression model can be a component model for a finite mixture 

regression model, the estimation method was illustrated with the FMNB-K model since 

the algorithm can be easily adapted for other component models. We showed how the 

Gibbs sampler coupled with data augmentation could be used to draw samples from the 

mixture posterior distribution. The algorithm consisted of three steps: first, the data are 

augmented with a latent random variables, )',,,( ,2,1, Kiiii zzz �=z  which indicates the 

component membership of site i; second, conditional on iz , the component parameters 

are drawn sequentially from the full conditional posterior distribution; third, conditional 

on knowing the component parameters, each component indicator vector iz  is drawn 

from a multinomial distribution, satisfying �
=

=
K

k
kiz

1
, 1 . 

 

While the Bayesian approach has fewer problems with local optima in the likelihood 

function and empty components than the likelihood-based approach (EM algorithm) 
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used in the Frequentist approach, it is susceptible to a label switching problem. It is 

caused by the invariance of a finite mixture model to relabeling the components. 

Although more rigorous methods can be adopted for correcting it, this study chose a 

rather ad-hoc approach by imposing a suitable identifiability constraint on the 

parameters where appropriate.  

 

Finally, to determine the optimal number of components, a series of models is fitted with 

the fixed number of components and then the best model is selected based on the model 

selection criteria. For model selection criteria, while information-based criteria are 

shortcut methods, they are often interpreted as approximations when the Bayesian 

approach is used and hence do not have a formal Bayesian justification. In this chapter, 

we showed how the Bayes factor can be obtained between two competing models by 

calculating the log of marginal likelihood values and it was used as a primary criterion 

throughout this study along with other information criteria as secondary criteria. The 

next two chapters apply the methodology described here to simulated datasets (Chapter 

IV) and empirical crash datasets (Chapter V).  
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CHAPTER IV 

HYPOTHETICAL EXAMPLES 

 

 

In this chapter, we will examine the performance of finite mixture models with several 

simulated datasets. It should be noted that this is not a Monte Carlo study; we only 

consider the results of finite mixture models for a single simulated sample. In Chapter 

VII, however, we will carry out a Monte Carlo simulation study by generating many 

samples to investigate the potential bias and variability in the parameter estimates for 

various combinations of sample sizes and sample mean values. The objectives of this 

chapter are, first, to examine the appropriateness of the mixture model specification in 

describing the count data generation process which exhibits over-dispersion and, second, 

to investigate how the finite mixture models can effectively capture the sub-populations, 

thereby, explain the population heterogeneity existing in the data. Working with the 

numerical examples is effective in illustrating the theoretical aspects of the finite mixture 

models in that we can generate and analyze a random sample with known characteristics.  

 

Three examples are presented in this chapter. The first example described in Section 4.1 

is used to illustrate the mechanism how finite mixture regression models can provide 

good numerical approximations when the underlying mixing distribution is continuous. 

The effects of sample mean, sample size and the degree of dispersion on the number of 

components are also examined. The second and third examples shown in Section 4.2 and 

4.3 are used to illustrate the appropriateness of the mixture model specifications when 

the data were actually generated from a two-component Poisson (FMP-2) or NB 

distribution (FMNB-2). We will show from these examples that how effectively the 

finite mixture regression models can capture the sub-populations, and thereby emphasize 

the disadvantage of using single aggregate NB regression models in such situations.  
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4.1 Example 1 

The objective of this example is to examine how well a K-component Poisson mixture 

regression model (FMP-K) can approximate (or replicate) the data which were originally 

generated by a continuously mixed Poisson distribution. For this purpose, first, various 

datasets will be generated by a Poisson-Gamma (NB) distribution. The NB model 

assumes that the unobserved heterogeneity in the Poisson mean follows a continuous 

gamma distribution. Each generated dataset will be fitted with both the NB regression 

model and the FMP-K models, and the results will be compared. It should be noted that, 

in FMP-K models, no distributional assumption is made on the mixing distribution but a 

few finite number of mass (or support) points and their respective proportions 

approximate the continuous gamma distribution.  

 

4.1.1 Data generation method 

For generating NB random variates, first, we introduced two covariates, T
iii xx ),,1( 21=x , 

in the link function, which were randomly generated from the standard normal 

distribution. The Poisson mean was then constructed from the two covariates by 

assuming a log-linear relationship using known (assigned) regression coefficients 
T

i ),,( 210 βββ=� , which results in )�xexp( ⋅= T
iiµ . Specifically, rather than simulating 

the data directly using the probability density function of the NB distribution, the 

random variables ( y ) were simulated in the following step-wise fashion:   

 

� Step 1: Set  sample size, � , and φ  to the required values (see table on page 78). 

� Step 2: Generate two covariates ),( 21 ii xx from the )1,0(N  distribution. 

� Step 3: Generate the error term )( iei
εν =  from the ),( φφGamma  distribution. 

� Step 4: Set the Poisson mean, iiii xx νβββλ ⋅++= )exp( 22110 . 

� Step 5: Generate the count variable iy  from the )( iPoisson λ  distribution. 

� Step 6: Repeat Steps 3 through 5 N times and save all the generated values. 
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4.1.2 FMP-K model estimation 

Suppose that the Poisson mean parameter iλ  has a random intercept term, and the 

random term enters the conditional mean function multiplicatively, that is, 

 

)exp( iii ελ +⋅= �x  

             )exp( *
0 ii εβ +⋅+= *

�x  

  )( 0
*

ii ee εβ +⋅ ⋅=
*
�x  

(4.1) 

 ii δµ ⋅= *  (4.2) 

where ),( 21 ii
*
i xx=x , '*

i ),( 21 ββ=� , and )( 0 iei
εβδ +=  is interpreted as a random intercept. 

Note that )exp( ** *
�x ⋅= iiµ  contains no intercept term.  

 

The unconditional probability of iy  have the following form: 

 
�

∞
⋅=

0

* )(),|(Pr)(Pr iiiiii dgyy δδδµ  

             iii
y

i dgye ii δδδµδµ
�

∞
⋅=

0

* )(!/)(
*

 
(4.3) 

where ),|(Pr *
iiiy δµ  is the conditional Poisson density for given iδ , and )(⋅g  is a 

mixing distribution. Equation (4.3) indicates that ),|(Pr *
iiiy δµ  is averaged by the 

probability of each value of iδ . If we assume that iδ  has only two mass points 1m  and 

2m , the counterpart to Equation (4.3) is expressed as a two-component mixture: 

)Pr(),|(Pr)Pr(),|(Pr)(Pr 22
*

11
* mmymmyy iiiiiiiii =⋅=+=⋅== δδµδδµ  (4.4) 

This implies that Equation (4.3) can be obtained by weighting ),|(Pr *
iiiy δµ  by )Pr( iδ  

and then adding over all values of iδ . It has been shown that a continuous mixing 
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distribution function )(⋅g  can be consistently estimated with a finite number (K) of mass 

points and their weights (Brännäs and Rosenqvist, 1994):  

 kk

K

k
ii wyy ˆ)ˆ|(Pr)(Pr

1

⋅=�
=

δ  (4.5) 

A maximum likelihood estimator based on the equation above yields a consistent 

estimator *�̂  of *� , where kδ̂  is an estimated mass point and kŵ  is the associated 

estimated probability. 

 

In estimating the parameters of FMP-K models in this exercise, the regression 

parameters for the covariates (slope parameters) were constrained to be fixed across all 

K components assuming that heterogeneity arises from differences in the intercepts only. 

This constraint is reasonable since the original data will be generated from a single set of 

regression parameters from an NB model. The slope-constrained, or random intercept, 

modeling approach has been taken by several authors to account for unobserved 

heterogeneity in count data (Simar, 1976; Laird, 1978; Heckman and Singer, 1984; 

Brännäs and Rosenqvist, 1994). Especially, Heckman and Singer (1984) have shown 

that the coefficients of the covariates estimated from this approach are consistent, and 

asymptotically normal. In Example 2 in the following section, however, we relax this 

constraint and the regression coefficients of the covariates as well as the intercept are 

allowed to vary across the sample. The constrained FMP-K model will be termed as a 

CFMP-K model hereafter. 

 

For parameter estimation, although it can be done within the Bayesian framework, we 

adopted the maximum likelihood method for this exercise. Using the existing software 

package (i.e. R package “FlexMix”) had an advantage to reduce the amount of 

computing time. The FlexMix provides a general framework for the finite mixture of 

regression models using the EM algorithm which is available as an extension package 

for the statistical software R (Grün and Leisch, 2007). 
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4.1.3 Results 

To illustrate the theoretical aspects and compare the results with the estimated NB model 

and CFMP-K models, three datasets were generated based on the moderate mean value 

scenario for =φ 0.5, 2.0, and 5.0, respectively (see table on page 78). Sample size, 

=N 300, was used for this exercise. To determine the number of components, K was 

sequentially increased from 2 until either AIC or BIC value reached its minimum value.  

 

Table 4.1 shows the true values and estimated results for =φ 0.5 (high-dispersed data). 

K=4 was determined as the best for this dataset. Although the NB estimates of slope 

parameters look much closer to the true values than the CFMP-4 model, it is believed 

that repeating the sampling would produce the estimates clustered around the true values. 

When we compared the AIC and BIC values, the approximation by the four components 

seems to be quite satisfactory. 

 

Table 4.1 True values and estimation results ( =φ 0.5) 

 
True 

Values 
NB 

Model 

CFMP-2 CFMP-3 CFMP-4 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0β  1.0 
0.9040 

(0.1006) 
2.0709 

(0.0630) 
-0.3880 
(0.1078) 

2.3897 
(0.0749) 

0.8458 
(0.1080) 

-3.0245 
(0.6929) 

2.4893 
(0.1119) 

1.5949 
(0.2794) 

0.5257 
(0.2167) 

-3.5507 
(0.8821) 

1β  0.5 
0.4529 

(0.0945) 
0.4444 

(0.0369) 
0.3194 

(0.0441) 
0.3461 

(0.0681) 

2β  -0.5 
-0.5038 
(0.1019) 

-0.5298 
(0.0512) 

-0.5956 
(0.0501) 

-0.6120 
(0.0566) 

φ  0.5 
0.403 

(0.047) 
- - - 

w  - - 0.249 0.751 0.140 0.431 0.428 0.104 0.150 0.353 0.393 
-2LL - 1184.2 1340.6 1194.3 1172.3 
AIC - 1192.2 1350.6 1208.3 1190.3 
BIC - 1207.1 1369.1 1234.3 1223.6 

NOTE: Sample mean=3.01; Sample variance=40.79; ( ) indicates the standard error of the estimate. 

 

Figure 4.1 illustrates how the approximation approach operates. The fitted mixing 

density of  4
ˆ

−CFMPδ  is compared to the gamma density based on the true NB )( trueδ and 

estimated NB )ˆ( NBδ models. Since the error term, εe follows the )5.0,5.0(gamma  
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distribution in the true NB model, the random intercept, )( 0.1 εδ += etrue  follows 

the )/5.0,5.0( 1egamma  distribution. In the same manner, the NBδ̂  follows the 

)/403.0,403.0( 904.0egamma  distribution in the estimated NB model. As shown in the 

figure, CFMP-4 model effectively approximates the continuous trueδ  distribution with 

four numbers of mass points 5949.15257.05507.3 ,,( eee− , and )4893.2e and their respective 

probabilities (0.393, 0.353, 0.150, and 0.104). 
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Figure 4.1 Density functions for random intercept, δ )5.0( =φ  

On the other hand, the plot in Figure 4.2 visualizes the goodness-of-fit comparison 

between the generated (or observed) frequencies and the predicted frequencies from each 

model. To make the comparison more informative the histogram was truncated at 39 

counts, while the maximum count was 62. It clearly shows that the CFMP-4 model 

provides almost as good a result as the NB model. The explanation on how to calculate 

the predicted frequencies is in order. The predicted probabilities can be computed for 
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each observation for each count m  that is of interest (0 to 62 in this case). Then the 

mean predicted probability for each count m can be used to summarize the predictions of 

the model (Long, 1997): 

 �
=

===
N

i
ii my

N
my

1

)|Pr(
1

)(Pr x  (4.6) 

Then, the predicted frequencies for each count m can be obtained by )(Pr myN =×  and 

can be compared to the observed frequencies of the sample at each count. This method 

was utilized throughout this study. 
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Figure 4.2 Goodness-of-fit comparison )5.0( =φ  

Table 4.2 shows the results for 0.2=φ  (moderate-dispersed data). In this case, either 

K=2 or K=3 produced as good a result as the NB model. This is in contrast to the result 

in the first exercise where more number of components was required. It seems that as the 

data are less dispersed, smaller number of components is required, and vice versa (This 
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will be confirmed later by the third exercise). Figure 4.3 compares the estimated mixing 

density of 2
ˆ

−CFMPδ  and 3
ˆ

−CFMPδ  to the gamma density based on the true NB )( trueδ and the 

estimated NB )ˆ( NBδ models. Note that the difference between NBδ̂  and trueδ  becomes 

noticeable as the true dispersion parameter become larger.10 The goodness-of-fits are 

compared in Figure 4.4. The predicted frequency plots by CFMP-2 and CFMP-3 do not 

perform very well at very low counts. However, the overall approximation looks very 

satisfactory.  

 

Table 4.2 True values and estimation results )0.2( =φ  

 
True 

Values 
NB 

Model 

CFMP-2 CFMP-3 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 

0β  1.0 
0.9208 

(0.0554) 
1.6602 

(0.0969) 
0.4765 

(0.0901) 
1.8000 

(0.1048) 
0.8618 

(0.1448) 
-0.0439* 
(0.2769) 

1β  0.5 
0.3950 

(0.0507) 
0.3771 

(0.0423) 
0.3676 

(0.0450) 

2β  -0.5 
-0.5719 
(0.0552) 

-0.5818 
(0.0433) 

-0.5628 
(0.0465) 

φ  2.0 
2.318 

(0.384) 
- - 

w  - - 0.251 0.749 0.329 0.509 0.162 
-2LL - 1219.2 1221.5 1213.7 
AIC - 1227.2 1231.5 1227.7 
BIC - 1242.0 1250.0 1253.6 

NOTE: Sample mean=3.10; Sample variance=17.14; *indicates the coefficient which is not significant at 
5% significance level; ( ) indicates the standard error of the estimate. 

 

Table 4.3 shows the results for 0.5=φ  (low-dispersed data). In this case, it is clear from 

the BIC value that only two components are quite enough for the approximation. This 

confirms the speculation in the second example that as the data become less dispersed, 

smaller number of components is required.  

                                                 
10 Using a simulation study, Park and Lord (2008) showed that the bias for the maximum likelihood 
estimate of the dispersion parameter (φ ) is a function of true dispersion parameter (if it is known) as well 
as sample size and sample mean value. The bias is largely due to the size of the true dispersion parameter, 
and it becomes larger as the true dispersion parameter increases. 
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Figure 4.3 Density functions for random intercept, )0.2( =φδ  
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Figure 4.4 Goodness-of-fit comparison )0.2( =φ  
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Table 4.3 True values and estimation results )0.5( =φ  

 True 
Values 

NB 
Model 

CFMP-2 CFMP-3 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 

0β  1.0 
0.9321 

(0.0456) 
1.2800 

(0.0884) 
0.4721 

(0.1307) 
1.2797 

(0.0883) 
0.4714* 
(0.3545) 

0.4714* 
(0.3511) 

1β  0.5 
0.4826 

(0.0401) 
0.4862 

(0.0392) 
0.4861 

(0.0392) 

2β  -0.5 
-0.4205 
(0.0425) 

-0.4347 
(0.0415) 

-0.4347 
(0.0415) 

φ  5.0 
6.540 

(1.750) 
- - 

w  - - 0.468 0.532 0.459 0.271 0.270 
-2LL - 1169.6 1166.0 1165.9 
AIC - 1177.6 1176.0 1179.9 
BIC - 1192.4 1194.5 1205.9 

NOTE: Sample mean=3.10; Sample variance=11.50; *indicates the coefficient which is not significant at 
5% significance level; ( ) indicates the standard error of the estimate. 

 

Figure 4.5 compares the estimated mixing density of  to the gamma density based on the 

true NB )( trueδ  and estimated NB )ˆ( NBδ  models. Note that the CFMP-2 model 

effectively approximates the continuous trueδ  distribution with only two numbers of 

mass points ),( 6602.14765.0 ee and their respective probabilities (0.749, 0.251). It is also 

worth noting that the difference between NBδ̂  and trueδ  is much larger than the more 

dispersed dataset cases. This agrees with the findings in Park and Lord (2008) who 

noticed that the bias of the maximum likelihood estimate MLEφ̂  value in NB distribution 

becomes larger as the true φ  value increases. The goodness-of-fits are compared in 

Figure 4.6. As evidenced by the AIC and BIC values, the goodness-of-fit is almost the 

same between the NB model and the CMFP-2 model.  
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Figure 4.5 Density functions for random intercept, )0.5( =φδ  
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Figure 4.6 Goodness-of-fit comparison )0.5( =φ  
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4.1.4 Effects of sample size and sample mean 

In the previous exercises, the potential effect of the dispersion parameter on the number 

of components was explained. It was evident that assuming that the dataset is within the 

similar sample mean and sample size, the less dispersed the data are, the smaller number 

of components is required.  

 

In order to examine the effects of the sample mean value and the sample size on the 

number of components, we generated the datasets under the various combinations of 

sample size, sample mean value, and the dispersion parameter. In Step 1 described in 

Subsection 4.1.1, the regression coefficients were controlled to produce high 

mean )5( >y , moderate mean )51( << y , and low mean )1( <y , respectively. For φ  

values, 0.5 for high-dispersed, 2.0 for moderate-dispersed, and 5.0 for low-dispersed 

were used. For sample sizes, 50 (small), 100 (moderate), and 500 and 1000 (large) were 

used. Therefore, a total of 36 datasets )433( ××  were generated. Table 4.4 shows the 

values used for data generation.  

 

Table 4.4 Values used for generating NB random variates 

 
Small mean 

)1( <y  
Moderate mean 

)51( << y  
High mean 

)5( >y  

0β  

1β  

2β  

-0.5 
0.5 
-0.5 

1.0 
0.5 
-0.5 

1.7 
0.5 
-0.5 

φ  
0.5 (High-dispersed) 
2.0 (Moderate-dispersed) 
5.0 (Low-dispersed) 

N  
50 (Small sample size) 
100 (Moderate sample size) 
500, 1000 (Large sample size) 
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Table 4.5 shows the number of components in CFMP models required to adequately 

approximate the NB distribution under the various combinations of sample size, sample 

mean value, and the dispersion parameter. As before, the number of components was 

determined in terms of AIC and BIC values. All the simulation results are attached in the 

Appendix C. The results are summarized here as follows: 

 

� In all example scenarios, the NB regression models could be effectively 

approximated by a few mixtures of Poisson regression models (K=2~5).  

� While the AIC values of CFMP-K models were sometimes superior to NB 

models, the CFMP-K models did not perform better than the NB models based 

on the BIC value. 

� As sample mean value increases, there is a trend that more components are 

required. This trend was more pronounced in the more dispersed datasets.  

� As the sample size increases, there is a trend that more components are required. 

This trend was more evident in the higher mean value cases. 

� As the φ  value increases (less dispersed), smaller components were needed. This 

was true regardless of sample mean values and sample sizes. 

 

Table 4.5 Number of components in CFMP models required to approximate NB models 

 
Small mean 

)1( <y  
Moderate mean 

)51( << y  
High mean 

)5( >y  

φ  0.5 2.0 5.0 0.5 2.0 5.0 0.5 2.0 5.0 

50=N  2 2 2 3 2 2 3 2 2 

100=N  2 2 2 3 2 2 4 3 2 

500=N  3 2 2 4 3 2 5 4 3 

1000=N  3 2 2 4 4 2 4 5 4 
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4.2 Example 2 

The objective of this example is to illustrate how the interpretation from the single 

aggregate NB model can be misleading when the data were actually generated by the 

two-component finite mixture of Poisson regression models (FMP-2). This hypothetical 

example is meant to show how poor the prediction capability of the standard NB model 

will be because of the model misspecification. Since the standard NB model estimates a 

single set of regression coefficients, the interpretation of its coefficients may be wrong if 

the population is heterogeneous with respect to the impact of explanatory variables. In 

this example, therefore, the data are to be generated by the FMP-2 whose regression 

coefficients of the covariates as well as the intercept are allowed to vary across the two 

components.  

 

4.2.1 Data generation method 

For generating FMP-2 random variates, similar to Example 1, we introduced two 

covariates, 'xx iii ),,1( 21=x , in the link function, which were randomly generated from 

the standard normal distribution. The Poisson means for each component 1,iµ  and 2,iµ  

were then constructed from the independent variables by assuming a log-linear 

relationship using known (or assigned) regression coefficients '),,( 1,21,11,0 βββ=1� and 

'),,( 2,22,12,0 βββ=2� . This results in each component mean )exp(1, 1�x ⋅= iiµ  and 

)exp(2, 2�x ⋅= iiµ , respectively. Based on these two components’ means, the FMP-2 

random variate for site i was generated by introducing a mixing proportion, w . Thus, 

with probability w , the random variate for the site i is generated from the )( 1,iPoisson µ  

distribution whereas with probability w−1 , it is generated from the )( 2,iPoisson µ  

distribution. The data generation procedures can be summarized as follows: 

 

� Step 1: Set  N (sample size), 1� , 2�  and w to the required values. 
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� Step 2: Generate two covariates ),( 21 ii xx from the )1,0(N  distribution. 

� Step 3: Generate the binary value (0 or 1) from the ),1( wBinom distribution. 

� Step 4: Save the generated binary value as iz  for site i. 

� Step 5: Generate the count variable iy  from the following relationship. 

 )()1()( 2,1, iiii PoissonzPoissonz µµ ⋅−+⋅  (4.7) 

� Step 6: Repeat Steps 3 through 5 N times and save all the generated values. 

 

In this manner, a dataset was generated from a FMP-2 distribution with the sample size 

of 500=N  for this example. Then, it was fitted with the NB and FMP-2 models, 

respectively. In this case, the NB regression model is a misspecification. The assumed 

values for parameters are shown in Table 4.6 and the histograms of the generated count 

data are shown in Figure 4.7. The data appear to be highly dispersed and resemble 

empirical crash frequency plots which are likely to be encountered by highway safety 

analysts. The sample mean and sample variance were 3.14 and 27.54, respectively.  

 

4.2.2 Parameter estimation method 

The Bayesian estimation method was implemented for this example. The method was 

described in details in Chapter III. For prior distributions for each model parameter, non-

informative prior specifications were used: i.e., as prior for the weight distribution kw , 

the )1,1(Dirichlet  was used; as prior for the regression coefficient k� , the 

),( 003 BbMVN  distribution was used, in which ')0,0,0(0 =b  and 30 100IB = , where 3I  

denotes the 3-dimensional identity matrix. For the NB model, the prior for the regression 

coefficients was again ),( 003 BbMVN , and the non-informative )01.0,01.0(Γ  prior was 

used for the dispersion parameter. The codes for data generation and estimation with the 

FMP-2 model are provided in Appendix D. 



 82

0
50

10
0

15
0

y

F
re

qu
en

cy

0 2 4 6 8 10 13 16 20 23 28 37

 
Figure 4.7 Histograms of generated counts from FMP-2 

4.2.3 Results 

For a preliminary NB model assessment, we first fitted the data with the NB distribution 

using the maximum likelihood method and checked the quality of the fit between the 

observed values iy  and the fitted values iµ̂  with the Pearson 2X  statistic. For a well-

fitting, or adequate, model the value of 2X should come from a 2χ  distribution with 

( pN − ) degrees of freedom (McCullagh and Nelder, 1989), where N  is the number of 

observations and p  is the number of parameters which have been estimated. Therefore, 

the ad-hoc assessment is if )/(2 pNX −  is close to 1, we conclude that the model’s 

goodness-of-fit is satisfactory. For this dataset, the Pearson 2X  statistic was 1.09. It 

seems that the NB model produced a very satisfactory goodness-of-fit and addressed the 

over-dispersion. However, the NB regression model is a misspecification and any 

inference or prediction from this model can be misleading because it totally ignores the 

existence of different coefficients. 



 83

For the Bayesian estimation of the FMP-2 model, a total of 5,000 MCMC iterations were 

used without thinning (i.e., keeping every 1st samples), and half the iterations were 

discarded (burn-in period). From the remaining 2,500 samples, the posterior means and 

standard deviations were calculated.  

 

Table 4.6 displays the estimated parameters and computed values of model selection 

criteria for each model. For this dataset, as shown in the table, the coefficients estimated 

from the FMP-2 model are close to the true values and, as expected, all model selection 

criteria supported the choice of FMP-2 model. The NB model, by nature, could not 

explain the heterogeneous impact of the covariates.  

 

Table 4.6 True values and estimation results (FMP-2) 

Model 
Parameters 

True Values NB 
Regression 

FMP-2 

Comp 1 Comp 2 Comp 1 Comp 2 

0β  2.0 0.0 
1.1401 

(0.0648)a 
1.9825  

(0.0493) 
0.0173* 
(0.0622) 

1β  -0.5 0.5 
-0.1107* 
(0.0600) 

-0.5741  
(0.0350) 

0.5198  
(0.0469) 

2β  0.5 -0.5 
0.0861* 
(0.0553) 

0.4389  
(0.0354) 

-0.5118  
(0.0444) 

φ  - - 
0.6040 
(0.049) 

- - 

w  0.2 0.8 1 
0.213 

(0.023) 
0.787 

(0.023) 
-2LL The smaller the better 2242.3 1918.4 
AIC �  2250.3 1932.4 

BIC �  2267.1 1961.9 

DIC �  2250.4 1932.0 
Log(ML) The larger the better -1142.8 -995.5 

NOTE: a indicates the standard deviation of the coefficient; * indicates the coefficient whose 95% credible 
interval includes zero. 
 

Figure 4.8 compares the goodness-of-fits between the NB and FMP-2 models. The NB 

model is showing a very poor predictive capability, especially at the portion of the 

smaller numbers of counts. It results from the fact that the NB model could not consider 
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the population heterogeneity by completely ignoring the discrete nature of the data 

generation process.  
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Figure 4.8 Goodness-of-fit comparison between NB and FMP-2 

Convergence was checked by monitoring the trace plots of the samples, autocorrelations 

and marginal posterior distributions of the model parameters. The MCMC trace plots 

(Figure 4.9) indicate that the chains appear to have reached stationary distributions and 

the chains have good mixing and are dense.  

 

The autocorrelation plots (Figure 4.10) indicate that although there is small evidence of 

autocorrelations between samples, increasing MCMC iterations (for example, 50,000 

iterations) or thinning value did not change the resulting coefficient values very much. 
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Figure 4.9 MCMC trace plots (FMP-2) 
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Figure 4.10 Autocorrelation plots (FMP-2) 
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Finally, the kernel density plots (Figure 4.11) show the uni-modal shape of marginal 

posterior distributions for each model parameter, which is very close to a normal 

distribution. If label switches have occurred, there must be jumps in the trace plots or 

multimodal density plots.  
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Figure 4.11 Marginal posterior distributions (FMP-2) 

4.3 Example 3 

The objective of this example is to examine how well the two-component finite mixture 

of negative binomial regression models (FMNB-2) can replicate the data as compared to 

the standard NB model, when the data were originally generated from a FMNB-2 

distribution. As in Example 2, this example is meant to show how poor the prediction 

capability of the standard NB model will be because of the model misspecification. The 

results of this example also will support the idea of using the FMNB-2 model when the 

data are suspected to belong to different sub-groups and each sub-component exhibits 

over-dispersion. Note that the FMP-2 model can accommodate the population 

heterogeneity, but cannot handle the over-dispersion within sub-groups. 
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4.3.1 Data generation method 

Generating FMNB-2 random variates is very similar to the generation of FMP-2 random 

variates, except that the negative binomial distribution is used in each component. The 

component means 1,iµ  and 2,iµ  are constructed in the same manner as in Example 2. 

Thus, with probability w , the binary value ( iz ) is generated from the ),1( wBinomial  

distribution for each site i, and then the FMNB-2 random variates are generated from 

),()1(),( 22,11, φµφµ iiii NBzNBz ⋅−+⋅ . The data generation procedures are summarized 

as follows: 

 

� Step 1: Set  N (sample size), 21,,, φφ21 �� and w to the required values 

� Step 2: Generate two covariates ),( 21 ii xx from the )1,0(N  distribution. 

� Step 3: Generate the binary value (0 or 1) from the ),1( wBinomial  distribution. 

� Step 4: Save the generated binary value as iz  for site i. 

� Step 5: Generate the count variable iy  from the following relationship. 

 ),()1(),( 22,11, φµφµ iiii NBzNBz ⋅−+⋅  (4.8) 

� Step 6: Repeat Steps 3 through 5 N  times and save all the generated values. 

 

In this example, a dataset was generated from a FMNB-2 distribution with the sample 

size of 500=N , and then it was fitted with three models: NB, FMNB-2 and FMP-2 

models. In this case, both NB and FMP-2 models are misspecifications. The assumed 

values used for data generation are shown in Table 4.7, and Figure 4.12 shows the 

histograms of the generated count data. The data appear to be highly dispersed and 

resemble empirical crash data. The sample mean and sample variance were 2.84 and 

28.85, respectively.  



 88

0
50

10
0

15
0

y

F
re

qu
en

cy

0 2 4 6 8 11 14 18 21 24 27 33 36 42

 
Figure 4.12 Histogram of generated counts from FMNB-2 

4.3.2 Parameter estimation method 

The Bayesian estimation method was implemented for this example. As priors for the 

weight distribution and the regression coefficients, the specifications are the same as in 

Example 2. As prior for the dispersion parameter kφ , the )01.0,01.0(Γ prior was used 

which represents no prior information on this parameter. For the NB model, the prior 

specifications for the parameters are the same as in Example 2. The codes for data 

generation and estimation with the FMNB-2 model are provided in Appendix D. 

 

4.3.3 Results 

As in Example 2, the initial check of the goodness-of-fit of the NB model was checked 

with the )/(2 pNX −  statistic. For this dataset, it was around 1.19 which indicates that 

the observations are slightly over-dispersed with respect to the NB model. However, all 



 89

the coefficients turned out to be significant at 5% significance level. Note that the 

negative binomial can also be over-dispersed. Hilbe (2007) suggests that if the Pearson 
2X  statistic is greater than 1.25 for moderate sized models and 1.05 for large numbers of 

observations, a correction for over-dispersion may be warranted. It is obvious in this 

case that the correction should be made and the source of over-dispersion is the 

population heterogeneity. Thus, the finite mixture model is a good option among others. 

 

For the Bayesian estimation of the FMNB-2 model, a total of 5,000 MCMC iterations 

were used, keeping every 1st samples (thinning), and half the iterations were discarded 

(burn-in period). From the remaining 2,500 samples, the posterior means and standard 

deviations were calculated.  

 

Table 4.7 displays the posterior means of parameters and computed values of model 

selection criteria for each model. For this dataset, as shown in the table, the coefficients 

estimated from the FMNB-2 model are very close to the true values and all model 

selection criteria support the FMNB-2 model. The NB model, by nature, could not 

explain the heterogeneous impact of the covariates. Apparently, the FMP-2 depicts the 

true regression parameters quite well. However, because of the model misspecification, 

it could not account for the additional heterogeneity present within components. Such 

heterogeneity resulted in the underestimation of the standard deviation in the FMP-2 

model. As shown in the table, the standard deviations for each parameter of FMP-2 

model are consistently lower than those of FMNB-2. This is typical of the standard 

Poisson regression model when the over-dispersion was not accounted for.  

 

On the other hand, the posterior mean of 2φ  for the smaller-mean component is by no 

means close to the true value, and its standard deviation is also very large. As already 

observed in Figure 4.14, this is because the posterior distribution of 2φ  included 

implausibly large values during the sampling process, which rendered its posterior to be 

skewed with a long right tail. One probable reason for this is the use of a non-
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informative gamma prior with an extremely large variance. The posterior mean from 

such skewed distribution is biased and its use as a posterior summary statistic is not a 

good option. The posterior medians for 1φ  and 2φ  were 3.893 and 12.715, respectively. 

In contrast, the maximum likelihood estimates for 1φ  and 2φ  were 5.103 and 32.676, 

respectively. Van Dongen (2006) noted that if the posterior is skewed, the mean or 

median of the posterior will not necessarily be close to the maximum likelihood estimate 

even if a non-informative prior is used. This prompts the suggestion that different prior 

specifications should be considered on the dispersion parameter so that its posterior 

distribution is less skewed and the posterior mean or median is less biased.  

 

Table 4.7 True values and estimation results (FMNB-2) 

Model 
Parameters 

True Values NB 
Model 

FMNB-2 FMP-2 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 1 Comp 2 

k,0β  2.0 0.0 
1.0221  

(0.0634) 
1.8333  

(0.1133)a 
-0.0292*  
(0.0674) 

2.0692  
(0.0550) 

-0.0277*  
(0.0576) 

k,1β  -0.5 0.5 
-0.1587 
(0.0627) 

-0.5195  
(0.0828) 

0.4641  
(0.0582) 

-0.3690  
(0.0382) 

0.4344  
(0.0471) 

k,2β  0.5 -0.5 
0.1409 

(0.0614) 
0.6351  

(0.0907) 
-0.5034  
(0.0632) 

0.5284  
(0.0451) 

-0.4729  
(0.0490) 

kφ  5 10 
0.575 

(0.047) 
4.152  

(1.634) 
19.492  

(19.174) 
- - 

kw  0.2 0.8 - 
0.218  

(0.030) 
0.782  

(0.030) 
0.179  

(0.022) 
0.821  

(0.022) 

Model Comparison Criteria 

-2LL The smaller the better 2135.6 1891.6 1943.8 
AIC �  2143.6 1909.6 1957.8 

BIC �  2160.5 1947.6 1987.3 

DIC �  2143.7 1911.8 1957.7 
Log(ML) The larger the better -1089.3 -987.2 -1007.7 

NOTE: *indicates the coefficient whose 95% credible interval includes zero; ( ) indicates the standard 
deviation of the posterior mean. 
 

Figure 4.13 compares the goodness-of-fit of the three models. It is not surprising to see 

that the predicted frequency of the standard NB model does not fit the data very well, 

especially at the smaller numbers of counts. We can clearly see the significant 
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improvement made by the FMNB-2 model which incorporated the population 

heterogeneity in the model. The goodness-of-fit of the FMP-2 model looks as good as 

the one provided by the FMNB-2 model.  
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Figure 4.13 Goodness-of-fit comparisons between NB, FMP-2, and FMNB-2 

The three convergence diagnostic graphs are shown in Figures 4.14-4.16. The MCMC 

trace plots indicate that the chains appear to have reached stationary distributions, and 

the chains have good mixing and are dense. The autocorrelation plots indicate low 

autocorrelation and efficient sampling. The marginal posterior distributions of regression 

parameters are very close to a normal distribution whereas those for dispersion 

parameters are positively skewed with a relatively long right tail because of the 

occasional very large samples. The probable reason for this may be attributed to three 

factors; i.e., the sample size, sample mean, and the use of a non-informative prior with a 

large variance for the dispersion parameters. In Chapter VII, we will investigate the bias 

and variability associated with the estimates of dispersion parameters using both non-



 92

informative prior and weakly-informative prior for various combinations of sample sizes 

and sample-mean values.  
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Figure 4.14 MCMC trace plots (FMNB-2) 
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Figure 4.15 Autocorrelation plots (FMNB-2) 
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Figure 4.16 Marginal posterior distributions (FMNB-2) 

4.4 Chapter Summary 

In this chapter, we have shown with Example 1 that the continuous mixture of 

Poisson/Gamma (NB) model could be effectively approximated with the finite mixture 

of Poisson regression models with a few numbers of support points and their respective 

weights without making a distributional assumption on the mixing variable. The 

necessary number of components was as a function of sample size, sample mean value, 

and the degree of dispersion. It has been also demonstrated with two examples that the 

use of standard NB regression models was disadvantageous because it was incapable of 

addressing the existence of population heterogeneity when the data were actually 

generated in the form of the finite mixture distribution. The implications could be poor 

prediction performance and poor interpretation of parameters. The satisfactory 

goodness-of-fit produced by the NB models could mask the possibility of the different 

effects of covariates on the count frequency. The FMP-2 model could not handle the 

extra-variation within components which may be often the case in vehicle crash data. In 
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both cases, the interpretation of the model could be misleading. Instead, FMNB-2 model 

was shown to be a good candidate model by effectively capturing the population 

heterogeneity by estimating separate sets of regression parameters and dispersion 

parameters for sub-components. In the following chapter, we will apply the finite 

mixture models with more than two components to real crash data. 
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CHAPTER V 

APPLICATION TO EMPIRICAL CRASH DATA 

 

 

In the previous chapter, we have shown using hypothetical examples that the standard 

NB regression model is not a viable option if the source of the over-dispersion is due to 

the population heterogeneity, and the finite mixture models were good alternatives to 

address this unobserved heterogeneity. At this moment, it is worth a while to recall the 

underlying assumption in the finite mixture regression models – that is, it assumes that 

there are a finite number of unobservable categories of observations and the 

heterogeneity arises from different values of regression coefficients caused by missing 

variables. In fact, there are many reasons to expect the existence of different 

subpopulations in vehicle crash data since the crash data are generally collected from 

various geographic, environmental and geometric design contexts over some fixed time 

periods. In such cases, group membership of the individual roadway segments (or 

intersections) is usually unknown or latent, and hence population heterogeneity is 

unobserved. 

 

The objective of this chapter is to apply the finite mixture regression models to actual 

vehicle crash data and to demonstrate the effectiveness in discerning the underlying 

distinctions in the data if they exist. The results of these models will be compared with 

those produced from the standard NB regression model in terms of various aspects.  

 

Two datasets are considered for application: intersection crash data (Section 5.1) and 

segment crash data (Section 5.2). For intersection crash data, Park and Lord (2009) 

applied the finite mixture models to the signalized intersection crash data in Toronto and 

showed the potential advantage of the FMNB-2 model in addressing the unobserved 

heterogeneity as well as providing useful information on features of the population. We 
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will utilize the same dataset in this study, but with a different mean functional form for 

component models. As we will see shortly, many different mean functional forms have 

been suggested for traffic flow-only models.  

 

For segment crash data, this study will utilize the rural multilane segment crash data for 

divided highways in California and Texas, which were analyzed during the NCHRP 17-

29 project (Lord et al., 2009). While the intersection dataset contains only traffic flow 

variables, the segment dataset has more covariates (such as median width, shoulder 

width) as well as traffic flow. Therefore, we can examine whether or not the mixture 

models would work better even in a more fully-specified model.  

 

5.1 Intersection Crash Data Analysis 

This section presents the dataset and the analysis results for intersection crash data. 

 

5.1.1 Data description 

To test the applicability of the finite mixture models for intersection crash data, data 

collected for 1995 at urban 4-legged signalized intersections in Toronto, Canada were 

used. Even though the data are a little outdated, there are two main reasons for using this 

dataset. First, the data have been extensively used for various study purposes and have 

been found to be of relatively good quality (Lord, 2000; Persaud et al., 2002; Miaou and 

Lord, 2003; Lord et al., 2008). Second, more importantly, despite many factors that may 

have influenced crash occurrences around and within intersections, the dataset contains 

only traffic flows for major and minor approaches. There are many evidences in this 

dataset to support the idea that the un-modeled heterogeneity could have come from the 

existence of the several different sub-populations. For example, the data were collected 

across different business environments (e.g. shopping centers, schools, office 

compounds, etc.). The data contain a mix of fixed and actuated traffic signals with 

permissive, semi-protected, and protected left turns. It also includes divided and 



 97

undivided approaches with different speed limits and different number of approaching 

lanes. Therefore, once the mixture model is estimated with several sub-components, one 

can go back to the data and see if there are common traits among the different 

observations that have separated the dataset (if those variables are available). 

 

The summary statistics for the data are provided in Table 5.1. It contains 868 

intersections, which have a total of 10,030 reported crashes. Individual intersections 

experienced crashes from 0 to 54 crashes which resulted in the sample mean equals 

11.56 (crashes/intersection) and the variance around 100 (crashes/intersection)2. Since 

the type of crashes includes both injury and non-injury crashes, the sample mean value 

exhibit pretty high. The observed crash frequency plot is shown in Figure 5.1. Entering 

traffic volumes vary widely from intersections to intersections: from about 5469 to 

72,178 vehicles/day for major approaches and from 53 to about 42,644 vehicles/day for 

minor approaches. The intersection crashes defined here include both intersection and 

intersection-related crashes as reported by the police that are located within about 15 m 

(50 ft) from the center of the intersection. For more detailed descriptions of the dataset, 

the readers are referred to Lord (2000).  

 

Table 5.1 Summary statistics for intersection dataset 

Variable Maximum Minimum Average 
Standard 
Deviation 

Major-Approach 
AADT (F1), (veh/day) 

72,178 5,469 28,045 10,660 

Minor-Approach 
AADT (F2), (veh/day) 

42,644 53 11,010 8,599 

Crashes 54 0 11.56 10.02 
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5.1.2 Mean functional form for component model 

Despite many factors that may influence crash occurrences around and within 

intersections, may transportation safety analysts have often favored using traffic flow-

only models over models with covariates, even though the former models may be 

affected by the omitted variables bias (Hauer, 1997; Persaud et al., 2001). They are often 

preferred over models that include several covariates because they can be easily 

recalibrated when they are developed in one jurisdiction and applied to another (Persaud 

et al., 2002; Lord and Bonneson, 2005). As initially discussed by Miaou and Lord (2003) 

and later confirmed by Mitra and Washington (2007), the un-modeled heterogeneity 

across sites might be structured spatially in some way, especially when a limited number 

of covariates are used in the model. The finite mixture regression models assume that 

part of the heterogeneity come from the existence of the several different sub-

populations because of the omitted variables and/or the interaction between the observed 

and the omitted variables.  
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Figure 5.1 Observed crash frequency plot, intersection dataset 
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Within traffic flow-only models for intersections, Miaou and Lord (2003) listed 

commonly-used five functional forms based on the previous studies and proposed an 

additional one: 

 

  Form 1: 1)( 210
ββµ iii FF +=  

  Form 2: 21
210
βββµ iii FF=  

  Form 3: 1)( 210
ββµ iii FF=  

  Form 4: ( ) 21
12210 /)( βββµ iiiii FFFF +=  

  Form 5: )exp( 23210
21

iiii FFF ββµ ββ=  

  Form 6: )exp()exp( 12
*
022101 iiiii FFFF ββββµ +++=  

 

Among these functional forms, Form 2 is the most popular one which has been favored 

most by transportation safety modelers for modeling crash data at intersections. It should 

be noted, however, it does not appropriately fit the data near the boundary conditions 

since vehicles on the major approach can still be involved in crashes with vehicles on the 

same approach even when F2 is zero.11 To overcome the boundary value limitation, 

Miaou and Lord (2003) proposed an alternative form (Form 6) which represents two 

different risk levels for vehicles entering the two approaches. On the other hand, the 

functional form 4 was used in Lord and Park (2008) for modeling the three-legged rural 

intersections in California and was found as the best fitted model amongst others 

although they didn’t estimate the functional form 6. Note that the functional form 4 also 

suffers from the same boundary limitations.  

 

Within the finite mixture modeling approach, Park and Lord (2009) used the functional 

form 2 for a component model and identified the existence of two distinct sub- 

                                                 
11 “Boundary conditions” refer to (1) when the flow at main approach is close to zero, and (2) when the 
flow at minor approach is close to zero, or equivalently the flow ratio F2/F1 approaches zero (Miaou and 
Lord, 2003). 
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populations, each having different degrees of over-dispersion and regression coefficients 

for the major and minor approach flows.  In this study, we apply finite mixture models to 

the data with a different functional form – that is, the functional form 4 – to examine 

whether or not the finite mixture models will still reveal the existence of different 

regression coefficients and degrees of over-dispersion between components. Under this 

specification the mean functional form for each component is as follows:  

 ( ) kk

iiiikki FFFF ,2,1

1221,0, /)( βββµ +=  (5.1) 

where, 

 ki,µ = k -th component’s estimated number of crashes for intersection i  

 iF1 = entering flows in veh/day from the major approaches at intersection i  

 iF2 = entering flows in veh/day from the minor approaches at intersection i  

 'kkkk ),,( ,2,1,0 βββ=� = estimated regression coefficients for component k  

 

5.1.3 Model estimation 

For the initial check of the standard NB model, it was estimated by the maximum 

likelihood method. The results are shown in Table 5.2. The Pearson Chi-Square statistic 

(indicated as Value/DF in the SAS output) is very close to 1 and all model coefficients 

turn out to be very significant. The estimated dispersion parameter is 7.097 (=0.1409-1). 

While it is evident that the standard NB model works very well and the model need not 

be corrected for the over-dispersion, it does not tell us the source of over-dispersion. The 

purpose of applying the finite mixture models for this dataset is, therefore, to examine 

the possible existence of different sub-populations and identify the best mixture model 

which can separate such sub-populations without deteriorating the goodness-of-fit. 

 

We then fitted the data with increasing number of components for FMP-K and FMNB-K 

models, respectively, until the log of marginal likelihood reached its maximum. Table 



 101

5.3 shows the computed values of log-marginal likelihoods along with other model 

selection criteria. The log-likelihood value (LL) was evaluated at the posterior means of 

model parameters and the AIC and BIC values were computed based on these log-

likelihood values and the number of parameters. 

 

Table 5.2 SAS output for NB model, intersection dataset 

Criteria for Assessing Goodness of Fit 
Criterion DF Value Value/DF 

Deviance 
Scaled Deviance 
Pearson Chi-Square 
Scaled Pearson X2 
Log Likelihood 
Full Log Likelihood 

865 
865 
865 
865 

935.5058 
935.5058 
875.6736 
875.6736 

17031.3689 
-2531.1901 

1.0815 
1.0815 
1.0123 
1.0123 

Maximum Likelihood Parameter Estimates 

Parameter Estimate Standard 
Error Confidence Interval Wald 

Chi-Square Pr>ChiSq 

Intercept 
F1 
F2 
Dispersion 

-11.0518 
1.3082 
0.3873 
0.1409 

0.4927 
0.0459 
0.0214 
0.0122 

(-12.0174, -10.0862) 
(1.2182, 1.3982) 
(0.3455, 0.4292) 
(0.1169, 0.1649) 

503.23 
812.13 
329.01 

< .0001 
< .0001 
< .0001 

 

Table 5.3 Model selection criteria, intersection dataset 

Models No. of 
Parameters LL AIC BIC DIC )]|(log[ KMp y  

Poisson 3 -2793.9 5593.9 5608.2 5594.2 -2813.9 
FMP-2 7 -2558.0 5130.0 5163.3 5130.2 -2596.8 
FMP-3 11 -2529.0 5080.0 5132.5 5079.7 -2582.3 
FMP-4 15 -2518.8 5067.6 5139.1 5068.0 -2584.8 

NB 4 -2531.2 5070.4 5089.5 5070.0 -2556.1 
FMNB-2 9 -2527.3 5072.6 5115.5 5061.7 -2560.2 
FMNB-3 14 NA NA NA NA -2571.3 

 

For FMP-K models, while the number of components were identifiable up to K=4 

without exhibiting the label switching problem, the largest value of log-marginal 

likelihood was achieved at K=3. Nevertheless, this value is still much smaller than that 
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of the standard NB model. For FMNB-K models, on the other hand, the models up to 

K=3 were fitted, but because of unbalanced label switching and difficulty in correcting it 

even with the identifiability constraints, the FMNB-3 model was not identifiable. Under 

this situation the computing of the posterior means for each parameter is invalid, which 

made the log-likelihood and the information criteria unavailable. The marginal 

likelihood, however, can be computed since it is insensitive to label switching. The 

largest marginal likelihood was achieved with the FMNB-2 model, and it is comparable 

to that of the standard NB model.  

 

The results for each Poisson mixture model (from K=2 to K=3) are given in Table 5.4.  

 

Table 5.4 Modeling results for FMP-K models (Bayesian method), intersection dataset 

FMP-K models kw  )( ,0 kLn β  k,1β  k,2β  

Poisson 
Post. mean 
(Std. dev.) 

1.0 
-11.0030 
(0.3047) a 

1.3034 
(0.028) 

0.3844 
(0.0144) 

FMP-2 
Comp. 1 

Post. mean 
(Std. dev.) 

0.504  
(0.039) 

-12.0801 
(0.7323) 

1.3708  
(0.0669) 

0.4497 
(0.0314) 

Comp. 2 
Post. mean 
(Std. dev.) 

0.496 
(0.039) 

-10.1577 
(0.4658) 

1.2460 
(0.0425) 

0.3328 
(0.0233) 

FMP-3 

Comp. 1 
Post. mean 
(Std. dev.) 

0.555 
(0.044) 

-11.7397 
(0.6811) 

1.3570  
(0.0618) 

0.4233 
(0.0311) 

Comp. 2 
Post. mean 
(Std. dev.) 

0.347 
(0.050) 

-9.9319 
(0.5884) 

1.2310 
(0.0539) 

0.3109 
(0.0285) 

Comp. 3 
Post. mean 
(Std. dev.) 

0.098 
(0.030) 

-6.3917* 
(3.4172) 

0.7851 
(0.3212) 

0.5225 
(0.1325) 

NOTE: MCMC iterations=50,000; Burn-in iterations=25,000; N=868 intersections; Non-informative 
priors for the regression parameters and the weight distribution were assumed; a indicates the standard 
deviation of the posterior mean; *indicates the coefficient whose 95% credible interval includes zero. 
 

For the sake of comparison, the results from the maximum likelihood estimation method 

(via EM algorithm) are also provided in Table 5.5. Those were obtained by using the 

FlexMix package in R (R development Core Team, 2006). As can be seen from the two 

tables, the posterior means are very close to the maximum likelihood estimates (MLEs) 
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due to the relatively large sample size (N=868) and the use of non-informative priors for 

regression parameters and weight distribution. Also note that the asymptotic standard 

errors for MLEs are very similar to the standard deviations for posterior means since the 

marginal posterior distributions of regression parameters are very close to a normal 

distribution.  

 

Table 5.5 Modeling results for FMP-K models (Frequentist method), intersection dataset 

FMP-K models kw  )( ,0 kLn β  k,1β  k,2β  

Poisson MLE 
(Std. err.) 1.0 -11.0270 

(0.3014) a 
1.3055 

(0.0277) 
0.3828 

(0.0140) 

FMP-2 
Comp. 1 MLE 

(Std. err.) 
0.502 
(NA) 

-12.1396 
(0.7230) 

1.3766 
(0.0661) 

0.4467 
(0.0308) 

Comp. 2 MLE 
(Std. err.) 

0.498 
(NA) 

-10.1925 
(0.4687) 

1.2493 
(0.0428) 

0.3312 
(0.0228) 

FMP-3 

Comp. 1 MLE 
(Std. err.) 

0.558 
(NA) 

-11.7032 
(0.6821) 

1.3539 
(0.0619) 

0.4186 
(0.0298) 

Comp. 2 MLE 
(Std. err.) 

0.342 
(NA) 

-9.9255 
(0.5826) 

1.2303 
(0.0533) 

0.3084 
(0.0280) 

Comp. 3 MLE 
(Std. err.) 

0.100 
(NA) 

-6.6417* 
(3.4271) 

0.8093 
(0.3222) 

0.5047 
(0.1200) 

NOTE: Each mixture model was estimated after 20 different initializations and choosing the one with the 
maximum likelihood; a indicates the asymptotic standard error of the MLE; *indicates the coefficient 
which is not significant at 5% significance level. 
 

For the FMNB-2 model, three cases were estimated: two cases by the Bayesian 

estimation method with two priors and one case by the maximum likelihood method. 

The results are shown in Table 5.6. Due to the non-informative priors for the regression 

parameters, their posterior means are similar to the corresponding maximum likelihood 

estimates (MLEs). The MLEs were obtained by the nonlinear modeling procedure 

(NLMIXED) in SAS. For the Bayesian approach, two prior specifications for the 

dispersion parameter were compared: a non-informative gamma prior 

( )01.0,01.0(~ Γkφ ) and a weakly-informative prior ( )1.0,5.0(~ Γkφ ). While the 

justification for using the weakly-informative gamma prior will be described in details in 

Chapter VII (Simulation Study), it is intended to reduce the implausibly large values of 
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kφ  in the posterior samples, and thereby improve the behavior of the posterior 

distribution of kφ . As indicated in the table, the use of )1.0,5.0(~ Γkφ  has reduced the 

posterior means for each component’s dispersion parameter and stabilized the estimates 

greatly by reducing their standard deviations. However, the posterior medians were 

estimated rather similar to each other, indicating that the posterior medians were less 

influenced by the choice of priors. This may also imply that the posterior median is a 

more consistent estimator than the posterior mean. This speculation will be confirmed by 

simulation study in Chapter VII. On the other hand, the maximum likelihood estimate of 

the dispersion parameter for component 2 was estimated much larger than that from the 

Bayesian method. This tendency was also observed in Example 3 in Chapter IV.  

 

Table 5.6 Modeling results for FMNB-2 models, intersection dataset 

Model 
Parameters 

NB 

FMNB-2 
)01.0,01.0(~ Γkφ  

FMNB-2 
)1.0,5.0(~ Γkφ  

FMNB-2 
(MLE) 

Comp. 1 Comp. 2 Comp. 1 Comp. 2 Comp. 1 Comp. 2 

k,0β̂  
-11.0154 
(0.4727) 

-10. 1445 
(1.9007) a 

-11.3797 
(1.1972) 

-9.9416 
(2.3049) 

-11.3708 
(1.2611) 

-10.9214 
(1.0554) b 

-11.1492 
(1.1766) 

k,1̂β  
1.3047 

(0.0441) 
1.2208 

(0.1802) 
1.3387 

(0.1121) 
1.2013 

(0.2173) 
1.3376 

(0.1189) 
1.2913 

(0.0966) 
1.3246 

(0.1053) 

k,2β̂  
0.3873 

(0.0206) 
0.5451 

(0.0961) 
0.2831 

(0.0639) 
0.5566 

(0.1176) 
0.2914 

(0.0622) 
0.4935 

(0.0658) 
0.2577 

(0.0767) 

meank ,φ̂  
7.056 

(0.612) 
7.991 

(7.589) 
13.176  
(8.472) 

6.918 
(3.489) 

11.641 
(4.799) 6.825 

(1.453) 
19.090 

(11.019) 
mediank ,φ̂  

7.021 
(0.612) 

6.401  
(7.589) 

11.785  
(8.472) 

6.206 
(3.489) 

11.108 
(4.799) 

kŵ  - 
0.461  

(0.181) 
0.539 

(0.181) 
0.433 

(0.187) 
0.567 

(0.187) 
0.622 

(0.231) 
0.378 

(0.231) 
Model Comparison Criteria 

-2LL 5062.3 5054.6 5052.5 5048.3 
AIC 5070.4 5072.6 5070.5 5066.3 
BIC 5089.5 5115.5 5113.4 5109.2 
DIC 5070.0 5061.7 5064.4 - 

Log(ML) -2556.1 -2560.2 -2557.0 - 

NOTE: MCMC iterations=300,000; Burn-in iterations=150,000; Non-informative priors for the regression 
parameters were assumed; Priors for the dispersion parameters and the weight distribution were described 
in the text; a indicates the standard deviation of the posterior mean; b indicates the asymptotic standard 
error of the MLE. 



 105

There is a noticeable difference in the estimates of weight distribution, kŵ , between the 

two methods (i.e. Bayesian vs. MLE). The usual prior choice for the weight distribution 

so far has been the non-informative )1,1(Dirichlet  distribution. However, when this 

prior was used for this dataset, one of the components with an empty observation was 

often produced after some period of MCMC iterations. It was also noticed that this had 

an undesirable effect on the estimation of k�  and kφ . One of the advantages of a 

Bayesian approach is we can avoid solutions with empty components by using proper 

priors. Because of non-regular characteristics of the likelihood if component k is not 

observed, Frühwirth-Schnatter (2006) suggests using 10 >e  in order to pull the posterior 

of w  away from the boundary of the parameter space. Following the suggestion, 

40 =e was used for this dataset, which is considered a mildly informative prior on the 

weight distribution. This may have caused the difference between the two methods.  

 

Regarding the label switching issue, the MCMC samples for the FMNB-2 model 

exhibited the frequent label switches between components during the course of MCMC 

iterations. Figure 5.2 shows the example of the MCMC trace plots and marginal 

posterior densities of model parameters when no identifiability constraint was imposed. 

It is clear from the figure that we should not take the average of the posterior samples for 

a parameter estimate before correcting the label switching problem. It is also evident that 

a sensible identifiability constraint can be imposed on k,2β . Figure 5.3 provides the 

corrected MCMC trace plots and marginal posterior densities after imposing the 

identifiability constraint (i.e. 2,21,2 ββ > ). While the label switching problem has been 

corrected, the MCMC trajectories for the regression parameters are showing occasional 

distant excursions from the normal course, which rendered their marginal posterior 

densities skewed to the left or right. It was observed that these digressions occurred 

when no or very small number of observations were assigned to one of the components 

(i.e. 0≈kw ). The MCMC trajectories for kw  indicate that one of the components with 

an empty observation was often produced during the course of MCMC iterations. This 



 106

may imply that the data are ill-separated and the component centroids are not sufficiently 

separated for this particular dataset. 
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                                  (c)                                                                  (d) 

Figure 5.2 Unconstrained MCMC trace plots and marginal posterior densities: (a) and 
(b) for component 1, (c) and (d) for component 2. This is an example for the 
FMNB-2 model with )1.0,5.0(~ Γkφ  
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(c)                                                                  (d) 

Figure 5.3 Corrected MCMC trace plots and marginal posterior distributions: (a) and (b) 
for component 1, (c) and (d) for component 2. This is an example for the FMNB-2 
model with )1.0,5.0(~ Γkφ  
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5.1.4 Discussion of the results 

In a strict sense, no finite mixture model could be selected as the best model in terms of 

model selection criteria as compared to the standard NB model for this application 

dataset. NB model itself produced a very satisfactory goodness-of-fit. This is why those 

criteria favored the simpler model. However, the difference between NB model and 

FMNB-2 model is considered small, and the discrepancy of predicted frequencies 

between two models is negligible as shown in Figure 5.4 (The result is for the FMNB 

model with )1.0,5.0(~ Γkφ ). 
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Figure 5.4 Goodness-of-fit comparison between NB and FMNB-2 

Furthermore, the FMNB-2 model can provide more opportunities for interpretation of 

the dataset not available from the standard NB model. First, it seems that the data were 

generated from two sub-populations with each population having different regression 

coefficients and degrees of dispersion although the separation was not so distinct in this 

case. Different regression parameters resulted in different sample averages of fitted 
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means for each component: i.e., 78.91 =µ (crashes/year) for Component 1 and 

49.122 =µ (crashes/year) for Component 2. 12  This indicates that Component 1 is 

associated with smaller-mean value observations and Component 2 with higher-mean 

value observations. The over-dispersion parameter in the NB model (7.056) has been 

split into two values: i.e., 6.918 for Component 1 and 11.641 for Component 1. This 

indicates that the observations in Component 1 are more dispersed than those in 

Component 2.  

 

The different estimates of the over-dispersion parameters for Component 1 and 

Component 2 in the FMNB-2 model have resulted in a different effect on the variance. 

To visualize such effects, Figure 5.5 shows the variance function of the two models with 

respect to the corresponding mean values. The variance function for the NB model 

follows the quadratic function of the mean values with a constant over-dispersion 

parameter which is estimated from Equation (3.16), whereas that of the FMNB-2 model 

does not follow a simple curve but can be estimated from Equation (2.43). The figure 

shows that the variance function of the FMNB-2 model is very close to a quadratic 

function with a few observations deviant from the general trend. Although the difference 

in variance between the two models is small in this case, the FMNB-2 model 

characterizes the uncertainty more accurately in the number of an intersection’s crashes. 

 

Second, after assigning each intersection into the component with the highest posterior 

probability using Equation (3.57), we can identify the population heterogeneity more 

clearly due to the different effects of covariates on crash frequency. We can see from 

Figure 5.6 that there is a clear different effect of total traffic flow (F1+F2) on Component 

1 and Component 2. The total traffic flow has much greater impact on the crash 

frequency for Component 2 than for Component 1. Figure 5.7 also shows the different  
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effects of traffic flow ratio (F2/F1) on crash frequency on each component. This type of 

information is usually difficult to obtain from the standard NB regression models unless 

we divide the data into components based on a pre-specified criterion and estimate the 

parameters separately. If additional descriptive data are available, it enables us to go 

back to the data and relate those variables with the separation of the data. 
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Figure 5.5 Mean-variance relationships for NB and FMNB-2 models 
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Figure 5.6 Effects of total traffic flow (F1+F2) on crash frequency 
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Figure 5.7 Effects of traffic flow ratio (F2/F1) on crash frequency 
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5.2 Segment Crash Data Analysis 

This section presents the dataset and the analysis results for segment crash data. 

 

5.2.1 Data description 

For segment crash data this study utilized the rural multilane segment data for divided 

highways in California and Texas. The data were analyzed during the NCHRP 17-29 

project (Lord et al., 2009). The California data were originally obtained from the 

FHWA’s HSIS maintained by the University of North Carolina, and the Texas data were 

from the Department of Public Safety (DPS) and the Texas Department of 

Transportation (TxDOT). The dataset contained a total of 2,587 roadway segments with 

12-ft lane width only in order to estimate the NB regression models with baseline 

conditions, and used for developing accident modification factors for divided rural 

multilane highways. The same dataset was used in this study to test the applicability of 

the finite mixture regression models. It is suitable for application because the data were 

geographical combined. Since we know the area to which each roadway segment 

belongs, we could build the separate models for California and Texas. However, this 

assumes, a priori, that the area is a main source of heterogeneity. However, we do not 

know whether similar groupings of the sample can be made on the basis of individual-

level segments, or whether statistical criteria of model fit would suggest that fewer or 

more groupings are optimal. Therefore, a general modeling strategy using the finite 

mixture models is more appropriate when drawing inferences from such heterogeneous 

count data.  

 

Table 5.7 shows the summary statistics of the input data for modeling. Unlike the 

intersection crash data modeling, more covariates such as segment length, median width 

and shoulder width along with traffic flow were used when developing the appropriate 

models. Figure 5.8 shows the histograms of the observed crash frequency. 
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Table 5.7 Summary of statistics for segment dataset 

Variable Maximum Minimum Average Standard 
Deviation 

Average AADT (F), (veh/day) 89,264 158 13,799 11,281 
Segment length (L), (mile) 11.21 0.1 0.82 1.05 
Median widtha (MW), (feet) 240 1 47.07 29.41 
Right-shoulder widthb (RSW), 
(feet) 

19 0 7.68 1.98 

Injury crashesc 148 0 3.17 6.30 

NOTE:  a Median width includes the left shoulder widths; b Average right-shoulder width (both sides); c 

Injury crashes include only KAB crashes for five to ten years (K=fatal, A=incapacitating injury, and 
B=non-incapacitating injury). 
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Figure 5.8 Observed crash frequency plot, Segment dataset 
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5.2.2 Mean functional form for component model 

For the component-wise mean functional form for the finite mixture models, the 

following was used.  

 )exp( ,2,1,0, ikikkiiiki RSWMWFLt k βββµ α ++=  (5.2) 

where, ki,µ  is the kth component’s estimated number of injury crashes per year for 

segment i, it is the number of years, and },,,{ ,2,1,0 kkkk βββα  are the parameters to be 

estimated for component k. In the present analysis, three measures (traffic flow, median 

width, and right-shoulder width) were used as independent variables and two variables 

(segment length and number of years) were used as offset variables. This type of 

functional form is very common among highway safety analysts (for example, see Lord 

and Bonneson, 2007; Bonneson et al., 2007). The important characteristics about this 

functional form are: first, the segment length (L) is used as an exposure along with the 

number of years )( it  indicating that it is directly proportional to the segment crash 

frequency; second, rather than using the flow (F) as an direct exposure, flow to a power 

function is used. The exponent α determines the manner in which the segment crash 

frequency depends on F. For example, if 1<α , the number of crashes increases at a 

decreasing rate as the traffic volume increases.  

 

5.2.3 Model estimation 

For the initial check of the goodness-of-fit of the NB model, Table 5.8 shows the results 

of the maximum likelihood estimation. While the regression parameters are significant at 

5% level except for the median width, the Pearson Chi-Square statistic (indicated as 

Value/DF in the SAS output) appears to be rather high (1.212). According to Hilbe 

(2007), a correction for over-dispersion may be necessary for this dataset. The over-

dispersion with respect to the NB model indicates that there remains a factor in the 

variance of segment crashes that the NB regression model does not capture. The 
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indicator variable for state (1 for California and 0 for Texas) indicates that the roadway 

segments in California experience slightly less crashes than those in Texas, assuming 

everything else the same. However, adding or removing the indicator variable did not 

change the Pearson 2
� statistic a lot, signifying that there are other factors that influence 

the variability of the crash occurrence. This supports the application of the finite mixture 

models and, in this case the finite mixture models are expected to increase the goodness-

of-fit as well.  

 

Table 5.8 SAS output for NB model, segment dataset 

Criteria for Assessing Goodness of Fit 
Criterion DF Value Value/DF 

Deviance 
Scaled Deviance 
Pearson Chi-Square 
Scaled Pearson X2 
Log Likelihood 
Full Log Likelihood 

2582 
2582 
2582 
2582 

 

2717.9322 
2717.9322 
3129.4008 
3129.4008 
6747.3098 

-4707.1381 

1.0526 
1.0526 
1.2120 
1.2120 

Maximum Likelihood Parameter Estimates 

Parameter Estimate Standard 
Error Confidence Interval Wald 

Chi-Square Pr>ChiSq 

Intercept 
F 
MW 
RSW 
State (Calif) 
State (Texas) 
Dispersion 

-7.9608 
0.8584 
-0.0009 
-0.0611 
-0.1795 
0.0000 
0.3000 

0.2793 
0.0258 
0.0006 
0.0099 
0.0417 
0.0000 
0.0201 

(-8.5083, -7.4133) 
(0.8078, 0.9090) 
(-0.0022, 0.0003) 
(-0.0806, -0.0416) 
(-0.2611, -0.0978) 
(0.0000, 0.0000) 
(0.2613, 0.3403) 

812.12 
1104.62 

2.13 
37.85 
18.54 

- 

< .0001 
< .0001 
0.1444 
< .0001 
< .0001 

- 

 

We then fitted the data with increasing number of components for FPM-K and FMNB-K 

models, respectively, until the log of marginal likelihood reached its maximum. Table 

5.9 shows the summary of the computed model selection criteria. Again, the log-

likelihood value (LL) was evaluated at the posterior means of model parameters and the 

AIC and BIC values were computed based on the obtained log-likelihood values and the 

corresponding number of model parameters. For FMP-K models, the largest value of 

log-marginal likelihood was achieved at K=4. However, this value is still smaller than 
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that of the standard NB model, which indicates that the FPM-3 model does not perform 

better than the NB model.  

 

Table 5.9 Model selection criteria, segment dataset 

Models 
No. of 

Parameters 
LL AIC BIC DIC )|(log( KMp y  

Poisson 4 -5321.3 10650.5 10673.9 10650.9 -5352.5 

FMP-2 9 -4788.5 9595.1 9647.8 9595.6 -4850.1 

FMP-3 14 -4697.7 9423.4 9505.5 9423.7 -4784.0 

FMP-4 19 -4654.9 9347.8 9459.2 9346.2 -4762.7 

NB 5 -4716.3 9442.7 9472.0 9442.9 -4752.2 

FMNB-2 11 -4650.3 9322.7 9387.1 9323.2 -4708.3 

CFMNB-2 9 -4652.4 9322.8 9375.6 9323.0 -4691.7 

 

For FMNB-K models, the models up to K=3 were fitted, but because of unbalanced label 

switching and difficulty in correcting it even with the identifiability constraints, it was 

not considered for model comparison. Instead, two models were estimated and compared. 

One is a regular two-component mixture model (FMNB-2) and the other is a constrained 

FMNB-2 model (termed as a CFMNB-2) in which some of the model parameters were 

constrained to be zero in one component model because their 95% credible interval 

included zero. The detailed description of each model will be provided later. As shown 

in Table 5.9, the largest log of marginal likelihood value was achieved with the 

CFMNB-2 model. The value is significantly larger than that of the standard NB model 

indicating that the CFMNB-2 model provides a superior goodness-of-fit for this dataset 

as compared to the NB model.  

 

In what follows, detailed modeling results for FMP-K and FMNB-K models are 

presented and the results are compared with those from the maximum likelihood method.  
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Tables 5.10 and 5.11 provide the modeling results for FMP-K models from two 

approaches. As can be seen from the two tables, for models up to K=3, the posterior 

means for regression parameters and weight parameters are very close to the maximum 

likelihood estimates (MLEs) and their standards deviations are very similar to the 

asymptotic standard errors for the MLEs since the marginal posterior distributions of 

parameters were very close to a normal distribution. For the FMP-4 model, however, 

while the regression parameter estimates from the two approaches are similar for 

components and 1 and 2, those for components 3 and 4 are not very close to each other, 

especially for the intercept parameter ( 0β ). This is because, as the number of 

components increases, components with very small observations are produced and hence 

their parameter estimates become unstable because of a possible over-fitting. 

 

Table 5.10 Modeling results for FMP-K models (Bayesian method), segment dataset 

Poisson Mixture w  0β  1β  2β  3β  

Standard 
Poisson 

Post. mean 
(Std. dev.) 

1.0 
-9.0398 

(0.1560) a 
0.9701 

(0.0153) 
-0.0021 
(0.0004) 

-0.0677  
(0.0062) 

FMP-2 
Comp. 1 

Post. mean 
(Std. dev.) 

0.867 
(0.015) 

-8.7890  
(0.2162) 

0.8815 
 (0.0209) 

0.0004* 
(0.0006) 

-0.0284 
(0.0081) 

Comp. 2 
Post. mean 
(Std. dev.) 

0.133 
(0.015) 

-7.6871  
(0.4006) 

0.9943 
(0.0368) 

-0.0101 
(0.0012) 

-0.1277  
(0.0098) 

FMP-3 

Comp. 1 
Post. mean 
(Std. dev.) 

0.551 
(0.043) 

-8.3557  
(0.2671) 

0.8518  
(0.0244) 

-0.0004* 
(0.0008) 

-0.0010* 
(0.0133) 

Comp. 2 
Post. mean 
(Std. dev.) 

0.384  
(0.044) 

-8.0981 
(0.6800) 

0.7688  
(0.0706) 

0.0019* 
(0.0016) 

-0.0495 
(0.0196) 

Comp. 3 
Post. mean 
(Std. dev.) 

0.065 
(0.013) 

-6.4943  
(0.7395) 

0.8911  
(0.0675) 

-0.0148  
(0.0032) 

-0.1116  
(0.0145) 

FMP-4 

Comp. 1 
Post. mean 
(Std. dev.) 

0.489 
(0.053) 

-8.3343 
(0.3342) 

0.8444 
(0.0308) 

0.0002* 
(0.0008) 

0.0064* 
(0.0136) 

Comp. 2 
Post. mean 
(Std. dev.) 

0.391 
(0.051) 

-8.2260 
(0.8095) 

0.7720 
(0.0819) 

0.0039 
(0.0013) 

-0.0390* 
(0.0213) 

Comp. 3 
Post. mean 
(Std. dev.) 

0.080 
(0.023) 

-7.0957 
(3.4960) 

0.9259 
(0.3021) 

-0.0299 
(0.0075) 

-0.1384 
(0.0818) 

Comp. 4 
Post. mean 
(Std. dev.) 

0.040 
(0.011) 

-7.0907 
(0.9341) 

1.0101 
(0.0856) 

-0.0132 
(0.0040) 

-0.1794 
(0.0248) 

NOTE: MCMC iterations: 50,000; Burn-in iterations=25,000; N=2,587 segments; Non-informative priors 
for the regression parameters and the weight distribution were assumed; a indicates the standard deviation 
of the coefficient; *indicates the coefficient whose 95% credible interval includes zero. 
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Table 5.11 Modeling results for FMP-K models (Frequentist method), segment dataset 

Poisson Mixture w  0β  1β  2β  3β  

Standard 
Poisson 

MLE 
(Std. err.) 

1.0 
-9.0494  

(0.1535) a 
0.9705  
(0.0149) 

-0.0021  
(0.0004) 

-0.0669  
(0.0058) 

FMP-2 
Comp. 1 

MLE 
(Std. err.) 

0.867 
(NA) 

-8.7971  
(0.2146) 

0.8824 
 (0.0209) 

0.0004* 
(0.0006) 

-0.0284  
(0.0080) 

Comp. 2 
MLE 

(Std. err.) 
0.133 
(NA) 

-7.7102 
(0.3942) 

0.9964  
(0.0363) 

-0.0100  
(0.0012) 

-0.1278  
(0.0098) 

FMP-3 

Comp. 1 
MLE 

(Std. err.) 
0.554 
(NA) 

-8.3050  
(0.2599) 

0.8471  
(0.0236) 

-0.0004* 
(0.0008) 

-0.0023* 
(0.0119) 

Comp. 2 
MLE 

(Std. err.) 
0.380  
(NA) 

-8.0190  
(0.6495) 

0.7606  
(0.0651) 

0.0019* 
(0.0015) 

-0.0499 
(0.0195) 

Comp. 3 
MLE 

(Std. err.) 
0.066 
(NA) 

-6.8516  
(0.6668) 

0.9222  
(0.0613) 

-0.0126  
(0.0022) 

-0.1139  
(0.0120) 

FMP-4 

Comp. 1 
MLE 

(Std. err.) 
0.495 
(NA) 

-8.2983 
(0.2839) 

0.8374 
(0.0262) 

-0.0000* 
(0.0008) 

0.0043* 
(0.0129) 

Comp. 2 
MLE 

(Std. err.) 
0.380 
(NA) 

-7.8411 
(0.6648) 

0.7339 
(0.0672) 

0.0039 
(0.0013) 

-0.0490 
(0.0200) 

Comp. 3 
MLE 

(Std. err.) 
0.074 
(NA) 

-5.8281  
(0.8641) 

0.7582  
(0.0782) 

-0.0078 
(0.0025) 

-0.0678 
(0.0150) 

Comp. 4 
MLE 

(Std. err.) 
0.051 
(NA) 

-8.6109 
(1.0101) 

1.1391 
(0.0913) 

-0.0348  
(0.0045) 

-0.1617  
(0.0201) 

NOTE: Each mixture model was estimated after 20 different initializations and choosing the one with the 
maximum likelihood; a indicates the asymptotic standard error of the coefficient; *indicates the coefficient 
which is not significant at 5% significance level. 
 

As can be seen from the two tables, for models up to K=3, the posterior means for 

regression parameters and weight parameters are very close to the maximum likelihood 

estimates (MLEs) and their standards deviations are very similar to the asymptotic 

standard errors for the MLEs since the marginal posterior distributions of parameters 

were very close to a normal distribution. For the FMP-4 model, however, while the 

regression parameter estimates from the two approaches are similar for components and 

1 and 2, those for components 3 and 4 are not very close to each other, especially for the 

intercept parameter ( 0β ). This is because, as the number of components increases, 

components with very small observations are produced and hence their parameter 

estimates become unstable because of a possible over-fitting. 
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For the FMNB-K models, the FMNB-2 model was initially fitted, but it was found that 

the estimates for median width and shoulder width in one component (specifically, a 

smaller-mean component) were considered not much different from zero because their 

95% credible interval included zero. Therefore, an alternative model (CFMNB-2) was 

estimated by constraining those parameters to be zero. Tables 5.12 and 5.13 show the 

modeling results for each model based on the two approaches (i.e., Bayesian vs. 

Frequentist).  

 

For both models, non-informative priors for the regression parameters and the weight 

distribution were assumed. For this dataset, the use of a non-informative prior 

)1,1(Dirichlet  for the weight distribution did not cause any problems. For the 

dispersion parameter, two prior specifications were compared as before: a non-

informative gamma prior ( )01.0,01.0(~ Γkφ ) and a weakly-informative prior 

( )1.0,5.0(~ Γkφ ). As shown in both tables, the use of different priors did not have much 

influence on the posterior means of dispersion parameters although the use of a weakly-

informative prior has increased the posterior mean for component 1 slightly upward and 

reduced the posterior mean for component 2 slightly downward. The same trend is true 

for the posterior medians, but the disparity from using different priors appear to be minor. 

This indicates that, because of the large sample size (N=2,587), the posterior means or 

medians are not much influenced by the choice of priors on the dispersion parameter.   

 

For the CFMNB-2 model, the estimated coefficients are all significant at 5% level, and 

the population is considered still heterogeneous in that two subpopulations require 

different component parameters to adequately capture their characteristics. While the 

changes in the parameter estimates from the FMNB-2 model are considered small, the 

improvement in the log of marginal likelihood appears to be large. According to the 

guidelines by Kass and Raftery (1995), the evidence for choosing the CFMNB-2 model 

over the FMNB-2 model is very strong (see, Table 3.2 in Chapter III).  
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Table 5.12 Modeling results for FMNB-2 models, segment dataset 

Model 
Parameters 

NB 

FMNB-2 
)01.0,01.0(~ Γkφ  

FMNB-2 
)1.0,5.0(~ Γkφ  

FMNB-2 
(MLE) 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 1 Comp 2 

k,0β̂  
-8.5574 
(0.2397) 

-8.5239 
(0.3007) a 

-6.9009 
(1.2048) a 

-8.5272 
(0.2862) 

-6.8581 
(1.2664) 

-8.5530 
(0.2884) b 

-7.1243 
(1.0500) b 

k,1̂β  
0.9015 

(0.0234) 
0.8386 

(0.0300) 
0.9125 

(0.1108) 
0.8387  

(0.0286) 
0.9078 

(0.1151) 
0.8378 

(0.0286) 
0.9238 

(0.0961) 

k,2β̂  
-0.0015 
(0.0006) 

0.0012* 
(0.0007) 

-0.0186 
(0.0055) 

0.0013* 
(0.0008) 

-0.0191 
(0.0067) 

0.0015 
(0.0007) 

-0.0163 
(0.0042) 

k,3β̂  
-0.0455 
(0.0094) 

0.0015* 
(0.0114) 

-0.1548 
(0.04137) 

0.0014* 
(0.0113) 

-0.1509 
(0.0412) 

0.0037* 
(0.0112) 

-0.1504 
(0.0364) 

meank ,φ̂  
3.225 

(0.222) 
6.877 

(1.167) 
2.030 

(0.737) 
6.7945 
(1.143) 

2.149 
(0.803) 7.223 

(1.251) 
1.9810 
(0.529) 

mediank ,φ̂  
3.206 

(0.222) 
6.729 

(1.167) 
1.881 

(0.737) 
6.646  

(1.143) 
1.979 

(0.803) 

kŵ  - 
0.856 

(0.038) 
0.144 

(0.038) 
0.857 

(0.040) 
0.143 

(0.040) 
0.836 

(0.041) 
0.164 

(0.041) 
Model Comparison Criteria 

-2LL 9432.7 9300.6 9300.7 9300.1 
AIC 9442.7 9322.6 9322.7 9322.1 
BIC 9472.0 9387.0 9387.1 9386.5 
DIC 9442.9 9323.6 9323.2 - 

Log(ML) -4752.2 -4714.8 -4708.3 - 

NOTE: MCMC iterations=100,000; Burn-in iterations=50,000; Non-informative priors for the regression 
parameters and the weight distribution were assumed; a indicates the standard deviation of the coefficient; b 

indicates the asymptotic standard error of the coefficient; * indicates the coefficient whose 95% credible 
interval or confidence interval includes zero. 

 

When the results from the Bayesian method were compared with those from the 

maximum likelihood method, the parameter estimates were overall very similar to each 

other except the dispersion parameter for a smaller-mean component (Component 1). 

The maximum likelihood estimate of the dispersion parameter for one component tends 

to be greater than the corresponding posterior mean from the Bayesian method. This 

tendency was also true for the intersection crash data in the previous section and for 

Example 3 in Chapter IV. Therefore, it is evident from the analyses of three datasets 

(one artificial dataset and two empirical datasets) that, for a FMNB-2 model, the 

maximum likelihood estimates of the dispersion parameters may be biased by over-
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estimating the true values. This does not necessarily mean that the Bayesian statistics are 

unbiased. In this respect, the bias properties of Bayesian statistics (posterior mean or 

median) will be investigated by a simulation study in Chapter VI.  

 

Table 5.13 Modeling results for CFMNB-2 models, segment dataset 

Model 
Parameters 

NB 

CFMNB-2 
)01.0,01.0(~ Γkφ  

CFMNB-2 
)1.0,5.0(~ Γkφ  

CFMNB-2 
(MLE) 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 1 Comp 2 

k,0β̂  
-8.5574 
(0.2397) 

-8.4226 
(0.2584) a 

-6.8420 
(1.3718) 

-8.4073 
(0.2712) 

-6.8646 
(1.4437) 

-8.4027 
(0.2669) b 

-7.1796 
(1.2334) 

k,1̂β  
0.9015 

(0.0234) 
0.8361 

(0.0270) 
0.9142 

(0.1261) 
0.8344 

(1.4437) 
0.9168 

(0.1327) 
0.8333 

(0.0279) 
0.9369 

(0.1129) 

k,2β̂  
-0.0015 
(0.0006) 

- 
-0.0186 
(0.0063) 

- 
-0.0184 
(0.0065) 

- 
-0.0158 
(0.0050) 

k,3β̂  
-0.0455 
(0.0094) 

- 
-0.1633 
(0.0449) 

- 
-0.1643 
(0.0447) 

- 
-0.1593 
(0.0401) 

meank ,φ̂  
3.225 

(0.222) 
6.483 

(0.988) 
1.829 

(0.750) 
6.448 

(1.006) 
1.893 

(0.789) 6.666 
(1.051) 

1.762 
(0.523) 

mediank ,φ̂  
3.206 

(0.222) 
6.367 

(0.988) 
1.658 

(0.750) 
6.316 

(1.006) 
1.717 

(0.789) 

kŵ  - 
0.880 

(0.031) 
0.120 

(0.031) 
0.880 

(0.033) 
0.120 

(0.033) 
0.866 

(0.034) 
0.134 

(0.034) 
Model Comparison Criteria 

-2LL 9432.7 9304.8 9304.8 9304.5 
AIC 9442.7 9322.8 9322.8 9322.5 
BIC 9472.0 9375.6 9375.6 9375.2 
DIC 9442.9 9322.9 9323.0 - 

Log(ML) -4752.2 -4695.0 -4691.7 - 

NOTE: MCMC iterations=100,000; Burn-in iterations=50,000; Non-informative priors for the regression 
parameters were assumed; Priors for the dispersion parameters and the weight distribution were described 
in the text; a indicates the standard deviation of the coefficient; b indicates the asymptotic standard error of 
the coefficient. 
 

In order to prevent the label switching problem during the MCMC sampling process, 

after testing with various constraints on the model parameters, the order constraint on 

weight parameters (i.e., 21 ww > ) was found to be most appropriate for this dataset. 

Figure 5.9 shows the example of the MCMC trace plots and marginal posterior densities 

of the parameters for the CFMNB-2 model with )1.0,5.0(~ Γkφ .  
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(a)                                                                    (b) 
 

    

(c)                                                                    (d) 
 
Figure 5.9 Constrained MCMC trace plots and marginal posterior density plots: (a) and 

(b) for component 1, (c) and (d) for component 2. This is an example for the 
CFMNB-2 model with )1.0,5.0(~ Γkφ . 

 

The MCMC trajectories exhibit good mixing behaviors without particular jumps in the 

trace plots. The marginal posterior density plots also show the uni-modal shape for each 
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model parameter, which is very close to a normal distribution. For the dispersion 

parameters ( 1φ  and 2φ ), however, it was observed that the occasional very large samples 

skewed the marginal posterior distribution to the right with a long tail. 

 

5.2.4 Discussion of the results 

In the previous subsection, it has been shown that the CFMNB-2 model is the best model 

for this dataset based on the model selection criteria. The goodness-of-fits of negative 

binomial (NB) regression and CFMNB-2 models can be visualized, as in Figure 5.10, by 

comparing the observed and predicted frequencies of each crash count outcome by 

taking the probability distribution into consideration. For aiding a better visual 

comparison, the crash count was truncated at 39 counts, but the maximum count was 148 

(see Figure 5.8). As compared to the NB model, we can see a moderate improvement at 

crash counts 0 and 1 after considering the population heterogeneity in CFMNB-2 model 

(with )1.0,5.0(~ Γkφ ).   
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Figure 5.10 Goodness-of-fit comparison between NB and CFMNB-2 
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While the improvement in goodness-of-fit is moderate, the CFMNB-2 model can 

provide further information about the population. The population consists of two distinct 

sub-populations whose regression parameters and degrees of dispersion are different 

each other. With the coefficients estimated in Table 5.13, the sample averages of the 

estimated means for Component 1 and Component 2 were computed as 

96.21 =µ (crashes/year) and 39.42 =µ (crashes/year), respectively. This indicates that 

Component 1 is associated with smaller-mean value observations and Component 2 with 

higher-mean value observations. The over-dispersion parameter in the NB model (3.225) 

has been split into two values: i.e., 6.448 for Component 1 and 1.893 for Component 2. 

This indicates that the higher-mean value observations (Component 2) are more 

dispersed than the smaller-mean value observations (Component 1).  

 

Figure 5.11 shows the variance functions of the NB and CFMNB-2 models with respect 

to the corresponding mean values.  
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Figure 5.11 Mean-variance relationships for NB and CFMNB-2 models 
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In this case, it is evident from the figure that many data points for the CFMNB-2 model 

do not follow the theoretical quadratic function and some of them are much larger than 

the variances assumed for the NB model. A larger variance does not mean that the 

CFMNB-2 model is less accurate than the NB model, but it means that the former 

characterizes the uncertainty more accurately about the crash occurrence at a particular 

roadway segment. 

 

Figures 5.12, 5.13 and 5.14 show the relationship between each model covariate and 

crash frequency by component. Again, the posterior probability given in Equation (3.57) 

was used to segment data by assigning each observation to the component with 

maximum posterior probability.  Note that some information loss was involved in this 

method because of disregarding the ‘fuzziness’ of the classifications (Wedel et al., 1993). 

This resulted in a very small number of observations (sites) assigned to Component 2 

which accounts for only about 2%. Nevertheless, the use of a finite mixture model 

enables us to identify difference in effects of covariates on crash occurrence across 

observations. For example, as already shown in the parameter estimation results (see 

Table 5.13), the observations in Component 1 are not likely to be much influenced by 

median width and right-shoulder width, whereas the observations assigned to 

Component 2 are significantly affected by those variables. The negative effects by those 

variables in Component 2 are much higher than the effects from the NB model which 

considers the average effect of a covariate across all observations in the sample by 

ignoring the potential presence of population heterogeneity. The difference in the effects 

of covariates on crash occurrence between the two models will result in different shapes 

of accident modification factors, which will be investigated in the next chapter. 
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Figure 5.12 Relationship between average AADT and crash frequency by component 
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Figure 5.13 Relationship between median width and crash frequency by component 



 127

0 5 10 15

0

50

100

150

Right-Shoulder Width

O
bs

er
ve

d 
N

um
be

r o
f C

ra
sh

es
 (y

)

Comp. 1
Comp. 2

 
Figure 5.14 Relationship between right-shoulder width and crash frequency by 

component 
 

5.3 Chapter Summary 

In this chapter we have applied the finite mixture regression models to actual vehicle 

crash data (i.e., intersection crash data and segment crash data) and demonstrated the 

effectiveness in discerning the underlying distinctions in the data. Both application 

datasets exhibited the possible presence of several sub-populations in the sample. The 

FMP-K models generally produced more components than the FMNB-K models, but 

any of the FMP-K models could not be selected as the best model in terms of model 

selection criteria. For FMNB-K models, two components seemed to be quite enough to 

describe the population heterogeneity.  

 

For the intersection crash data, no finite mixture model could be selected as the best 

model in a strict sense. However, the difference in the log of marginal likelihood value 
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between the NB model and the FMNB-2 model was small, and the discrepancy of 

predicted frequencies between the two models was negligible. The choice of the FMNB-

2 model could provide more opportunities for interpretation of the dataset not available 

from the standard NB model. It was also noticed that the use of a non-informative 

)1,1(Dirichlet  distribution as a prior for the weight distribution caused a problem by 

producing an empty component too often during the MCMC iterations. This could be 

indicative of a poor separation for this dataset.  

 

For the segment crash data, the data separation was more distinct and the FMNB-2 (and 

CFMNB-2) model actually improved the goodness-of-fit as compared to the NB model. 

When the variance functions of the NB and CFMNB-2 models were compared, it was 

evident that many data points for the CFNM-2 model did not follow the quadratic 

function and some of them were much larger than the variances assumed for the NB 

model. This clearly illustrated that the CFMNB-2 model characterizes the uncertainty 

more accurately about the crash occurrence at a roadway segment without being 

restrained to a particular variance function. In the following chapter we apply this model 

to highway safety analyses such as hotspot identification and the accident modification 

factor development. 
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CHAPTER VI 

APPLICATION TO HIGHWAY SAFETY ANALYSES 

 

 

The main theme of the previous chapter was developing the most appropriate statistical 

model for a given dataset. For example, the CFMNB-2 model was chosen as the best 

model among many alternative models for the segment crash data. The developed 

statistical model is usually used as the basis for various traffic safety analyses such as the 

hotspot identification or development accident modification factors (AMFs). This 

chapter focuses on the application side of the finite mixture model in evaluating highway 

safety. Given the superior performance of the finite mixture model for a particular 

dataset, there is a need to investigate whether this type of model will result in important 

differences in various highway safety analyses as compared to the standard NB 

regression model. Among many usages of the statistical models in evaluating highway 

safety, this section will focus on two application areas: (i) the identification of hotspots 

or hazardous sites; and (ii) the development of accident modification factors via the 

coefficients of a model.  

 

Thus, the main objective of this chapter is to examine the relative performance of the 

two alternative models (i.e., FMNB-2 model and NB model) in terms of their 

applications to the afore-mentioned two areas. Section 6.1 deals with the hotspot 

identification and compares the two models with both empirical and simulated data. In 

Section 6.2, the accident medication factor equations are derived from the two models 

and their respective characteristics are discussed. Section 6.3 summarizes the chapter. 
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6.1 Hotspot Identification 

This section briefly introduces the hotspot identification in highway safety study and 

compares the results from the FMNB-2 and NB models. 

  

6.1.1 Introduction 

While a hotspot, also referred to as a blackspot (Maher and Mountain, 1988; Elvik, 

2007), site with promise (Hauer, 1996; Hauer et al., 2002), or hazardous location, can be 

generally defined as a location (roadway segment, intersection or interchange) with high 

crash risk, it has been defined in many different ways depending on how to measure the 

crash risk at a particular location. For example, Hakkert and Mahalel (1978) proposed 

that a hotspot be defined as a site that has a crash frequency which is significantly higher 

than expected at some prescribed level of significance. McGuigan (1981) proposed the 

use of potential for accident reduction, as the difference between the observed and 

expected number of crashes at a site given exposure. Recently, Elvik (2008) proposed a 

theoretical definition of a hotspot as being any location that has a higher expected 

number of accidents than other similar locations as a result of local risk factors.  

 

A naïve approach to identifying hotspots is to rank locations based on their observed 

accident frequencies. However, because of a rare and random nature of accident 

occurrence, this approach tends to be very sensitive to random variations. Miaou and 

Song (2005) illustrated the limitation of using naïve or raw crash-risk approach in 

ranking through simple simulations. To better address the random fluctuation of crash 

occurrence, researchers have used the statistical modeling-based approaches that apply 

random effect or Bayesian methods and compared their relative performances in 

identifying hotspots (Miranda-Moreno et al., 2005; El-Basyouny and Sayed, 2006). 

While many alternative statistical models and ranking criteria are available in the 

literature for identifying hotspots, a main difficulty arises from the inability to 

differentiate between sites that are truly high risk and sites that happen to have 
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experienced random fluctuations in crashes during a period of observation (Cheng and 

Washington, 2005). In this respect, recently some researchers have adopted the 

epidemiological criteria such as “sensitivity” or “specificity” 13  to compare different 

statistical models or ranking criteria for identifying hotspots (Cheng and Washington, 

2005; Miranda-Moreno, 2006; Elvik, 2008). These criteria can provide information 

about “false positives” (identifying a safe site as a hotspot) and “false negatives” 

(identifying a hotspot as a safe site). These criteria along with others will be used later in 

this section to compare the relative performance of the FMNB-2 and NB models in 

identifying hotspots. Among many ranking criteria, the following conditional mean of 

crash frequency assumed for both models will be used: 

 )ˆexp(ˆ �xi
NB
i =µ  (for NB model) (6.1) 

 )ˆexp(ˆ)ˆexp(ˆˆ 2211
2

�x�x ii
FMNB
i ww +=−µ  (for FMNB-2 model) (6.2) 

 
6.1.2 Comparison by empirical crash data 

First, in order to compare the difference in ranking orders between the NB and FMNB-2 

models, we calculated NB
iµ̂  and 2ˆ −FMNB

iµ  based on the parameter estimation results in 

Table 5.13. In this case, 2ˆ −FMNB
iµ  was calculated for the CFMNB-2 model with 

)1.0,5.0(~ Γkφ . Figure 6.1 illustrates the relationship between the hotspot identification 

lists ranked by the two models. For comparison, 500 sites were selected from the top of a 

list sorted according to 2ˆ −FMNB
iµ  values. Smaller values in the ranking order imply more 

hazardous roadway segments (i.e., higher values in terms of 2ˆ −FMNB
iµ ) and vice versa.  

 

The figure shows that there is a strong positive association between the two rankings 

although the discrepancy in rankings becomes a little larger as the ranking order 

                                                 
13 

hotspots  trueofnumber 
hotspots detected ofnumber

ySensitivit = , 
hotspots-non  trueofnumber 

hotspots-non detected ofnumber
ySpecificit =  
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increases. We then compared the ranking orders from the NB model with those from the 

CFMNB-2 model with differing numbers of total hotspots denoted as m  in the figure. 

The value m  represents the total number of hazardous sites selected from the top of the 

list sorted by the CFMNB-2 model. When 100 sites ( 100=m ) were selected as hotspots 

from the CFMNB-2 model, six sites of them were not included as hotspots by the NB 

model. Likewise, 9 sites for 200=m , 11 sites for  300=m , 10 sites for 400=m , and 

11 sites for 500=m were excluded from a hotspot list by the NB model, whereas the 

CFMNB-2 model included them as hotspots.  

0 100 200 300 400 500

0

100

200

300

400

500

CFMNB-2 Rankings

N
B

 R
an

ki
ng

s

m=500
m=400
m=300
m=200
m=100

 
Figure 6.1 Comparison of rankings between NB and CFMNB-2 models 

The percentage deviation can be computed as follows to compare two ranking orders for 

the number of sites that are different in two lists of hotspots (Miranda-Moreno et al., 

2005).  
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 % deviation = )/1(100 ms−×  (6.3) 

where s is the number of hotspots that are common in the two lists and m is defined 

previously. Table 6.1 shows the computation results. As m  increases the difference 

tends to decrease. Although the difference is not large, the ranking results from the 

CFMNB-2 model may be more reliable than the NB model because of a better model 

specification. 

 

Table 6.1 Percent deviation between NB and CFMNB-2 models 

m  100 200 300 400 500 

s  94 191 289 390 489 

% deviation 6.0% 4.5% 3.7% 2.5% 2.2% 

 

6.1.3 Comparison by simulation 

While the previous analysis showed the possible difference in ranking orders between 

the two models, it is difficult to count false positives or negatives from a respective 

model since we do not know, a priori, which sites are truly hazardous or safe. For this 

reason, some researchers prefer the simulation approach to using empirical crash data in 

assessing the relative performance of different models or various ranking criteria (Cheng 

and Washington, 2005; Miranda-Moreno, 2006). The simulation-based approach was, 

therefore, adopted in this study to compare the performance of the two models in the 

identification of hotspots. In simulation, the true hotspot is defined as a site whose 

expected conditional mean is greater than a pre-specified threshold value. Once the true 

hotspots are identified from the true crash frequency distribution, those are then 

compared with the detected hotspots determined by the two alternative models. In what 

follows, the performance evaluation criteria and simulation design will be described in 

details. 
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Table 6.2 shows the possible outcomes when n  sites are classified according to a given 

hotspot identification method (Miranda-Moreno, 2006). V and R correspond to the Type 

I and Type II errors, respectively. When a threshold-based strategy is used for selecting 

hotspot lists, the threshold value should be selected so that both Type I and Type II 

errors are minimized. However, these two errors conflict each other: the lower the Type 

I error is, the higher the Type II error, and vice versa. No specific guideline exists for 

identifying hotspots (Elvik, 2008). In a real application, however, the optimal threshold 

value should be carefully selected based on the objective that we want to achieve in 

order to reduce the costs induced by false positives or false negatives. In this study we 

carried out the sensitivity analysis by using different threshold values to examine their 

impacts on each performance criteria.  

 

Table 6.2 Possible outcomes of classification (Miranda-Moreno et al., 2006) 

 
Number of sites 

“detected” as non- 
hotspots 

Number of sites 
“detected” as 

hotspots 
 

Number of  “true” 
non-hotspot 

U  V  0n  

Number of  “true” 
hotspot R  S  1n  

 Dn −  D  n  

where:  n 

n0 

n1 

U 

V 

R 

S 

D 

� Total number of sites in the set under analysis 

� Number of “true” non-hotspots 

� Number of “true” hotspots 

� Number of sites correctly classified as non-hotspots 

� Number of false positives or Type I errors 

� Number of false negatives or Type II errors 

� Number of sites correctly classified as hotspots 

� Number of sites detected hotspots as hotspots 
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In order to evaluate the relative performance of the two models in detecting the true 

hotspots, the following five measures were used as performance criteria. (Miranda-

Moreno, 2006): 

 

� False Discovery Rate (FDR): the ratio of false positives (Type I errors) among all 

the detected hotspots by a model. A model with a smaller value is considered to 

be a better model. 

 
D
V

FDR =  (6.4) 

� False Negative Rate (FNR): the ratio of false negatives (Type II errors) among all 

the detected non-hotspots by a model. A model with a smaller value is preferred.  

 
Dn

R
FNR

−
=  (6.5) 

� Sensitivity (SENS): the ratio of correctly detected hotspots by a model among the 

true hotspots. A model with a larger value is preferred. 

 
1n

S
SENS =  (6.6) 

� Specificity (SPEC): the ratio of correctly detected non-hotspots by a model 

among the true non-hotspots. A model with a larger value is preferred. 

 
0n

U
SPEC =  (6.7) 

� Risk (RISK): the ratio of total number of false positives and false negatives 

among all the sites under analysis. A model with a smaller value is preferred. 

 
n

RV
RISK

+=  (6.8) 
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In simulation design, we utilized the same covariates and model parameters used for 

Example 3 in Chapter IV. That is, the crash frequency at each site was assumed to 

follow the FMNB-2 distribution with known parameters. The simulation was carried out 

based on the following steps: 

 

� Step 1: The “true” crash mean at site i is generated using the following 

conditional mean functional form: )exp()exp( 2211 �x�x ii
true
i ww +=µ . The 

covariates ( ix ) and the parameters ( 1w , 2w , 1� , and 2� ) are defined as the same 

in Example 3 in Chapter IV (see Table 4.7). The data are generated for 500 sites. 

 

� Step 2: Specify a threshold value k . In this study, four alternative threshold 

values are considered: sample mean, 80th-percentile, 85th-percentile, and 90th-

percentile crash in the sample. Under each specified k value, the following 

selection rule is applied for each site: 

� If ktrue
i >µ , set 1=ih  and site i is defined as a “true” hotspot 

� Otherwise, set 0=ih  and site i is defined as a “non-true” hotspot 

Then, summing ih  over n  sites results in the total “true” number of hotspots: 

 �
=

=
n

i
ihn

1
1   

� Step 3: For each site, simulate crash frequency based on the method described in 

Subsection 4.3.1. 

 

� Step 4: Based on the simulated crash frequency, the model parameters are 

estimated for the NB and FMNB-2 models, respectively. The parameter 

estimation method follows the one described in Subsection 4.3.2. This step 

results in NB
iµ̂  and 2ˆ −FMNB

iµ  as defined in Equations in (6.1) and (6.2).  
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� Step 5: Once NB
iµ̂  and 2ˆ −FMNB

iµ  are obtained for each site, the following selection 

rule is applied for identifying the “detected” hotspots: 

� If ki >µ̂ , set 1=id  and site i is defined as a “detected” hotspot 

� Otherwise, set 0=id  and site i is defined as a “non-detected” hotspot 

Summing id  over n  sites results in the total “detected” number of hotspots (D): 

 �
=

=
n

i
idD

1

  

� Step 6: At the end of each simulation replication, the five performance criteria 

(FDR, FNR, SENS, SPEC and RISK) are computed, which were defined in 

Equations (6.4) to (6.8). 

 

The simulation was replicated 100 times by repeating Steps 3 to 6. The average of the 

100 replications was used as final results.  

 

6.1.4 Results 

Table 6.3 shows the results of five performance criteria for the two models. Note that the 

results were obtained from using the sample mean value as a threshold value ( k ). The 

average values of five performance criteria for the FMNB-2 model are all superior to 

those for the NB model. This was expected because the data were generated from the 

FMNB-2 model. Nevertheless, this simulation can demonstrate what the consequences 

will be if a mis-specified model is used for the hotspot identification.  

 

The results show that the false discovery rate for the NB model (0.578) is considerably 

larger than the corresponding value for the FMNB-2 model (0.128) and the sensitivity 

rate for the NB model (0.691) is much smaller than that for the FMNB-2 model (0.888). 

This means that, on average, 57.8% of the hotspots detected by the NB model are 

actually non-hotspots. This false positive rate is very high and may be unacceptable in 
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practice. Furthermore, the sensitivity value, 0.691 for the NB model means that, on 

average, the NB model was able to detect only 69.1% among all the true hotspots. This 

power to detect the true hotspots is also considered very low.  

  

Table 6.3 Results of performance criteria measures 

Criteria FMNB-2 model NB model 
Average Min. Max. Average Min. Max. 

FDR 
(Smaller is better) 0.128 0.000 0.471 0.578 0.323 0.801 

FNR 
(Smaller is better) 0.060 0.000 0.271 0.204 0.058 0.571 

SENS 
(Larger is better) 0.888 0.624 1.000 0.691 0.245 0.795 

SPEC 
(Larger is better) 0.946 0.811 1.000 0.584 0.188 0.767 

RISK 
(Smaller is better) 0.080 0.018 0.192 0.385 0.246 0.682 

 

On the other hand, another simulation was carried out with different threshold values for 

the FMNB-2 model. This simulation was meant to examine the effects of different 

threshold values on the performance criteria. The results from this simulation can 

provide an insight into how the threshold value can be selected in practice. Table 6.4 

shows the simulation results from using four alternative threshold values which include 

the sample mean, 80th-percentile, 85th-percentile, and 90th-percentile crash in the sample. 

The effects of those values on the performance criteria are visualized in Figure 6.2. As 

higher threshold values are used, the total error rate indicated by RISK is decreasing in 

general. However, the FDR and SPEC criteria are exhibiting an increasing trend and the 

FNR and SENS tend to decrease. Using a higher threshold value reduces the number of 

target hotspots for treatment. The results demonstrate that if we increase the threshold 

value with the hope of reducing target hotspots, we are more likely to have the increased 

number of false positives (identifying non-hotspots as hotspots) and less power in 

detecting true hotspots. At the same time, we can reduce false negatives (identifying 

hotspots as non-hotspots) and increase the specificity. This is a conflict result.  
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The costs associated with false positives and false negatives may be different depending 

on the type of crashes and the improvement expenses. For example, false positives incur 

unnecessary improvement costs by improving actually safe sites without any safety 

benefits. Similarly, false negatives will cause crash-related costs by leaving true hotspots 

untreated. Therefore, a decision on the threshold value can be made by considering the 

trade-off between these two costs so that it can minimize the unnecessary costs.  

 

Table 6.4 Simulation results of four different threshold values for FMNB-2 model 

Criteria 
Alternative threshold values, k  

Sample mean 80th percentile 85th percentile 90th percentile 
FDR 0.128 0.138 0.169 0.236 
FNR 0.060 0.017 0.012 0.004 
SENS 0.888 0.898 0.842 0.785 
SPEC 0.946 0.977 0.986 0.994 
RISK 0.080 0.035 0.024 0.010 
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Figure 6.2 Effects of different threshold values on performance criteria 
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6.2 Accident Modification Factors 

This section introduces the concept of the accident modification factor (AMF) and 

discusses the results from the two models (NB model and FMNB-2 model). 

 

6.2.1 Introduction 

The statistical model developed for vehicle crash data can also be used to developing 

accident modification factors of interest highway geometric variables such as shoulder 

width or median width. An AMF represents the change in safety when a particular 

geometric design element changes in size with respect to the base (or typical) condition. 

An AMF greater than 1.0 represents the situation where the design change is associated 

with more crashes while an AMF less than 1.0 indicates fewer crashes. The development 

and use of AMFs in highway safety has gained a lot of popularity because of the recent 

efforts to quantify and incorporate safety proactively into design process. The Highway 

Safety Manual (HSM)14, which is envisioned to become a nationwide predictive tool, is 

currently under development and utilizes the AMF concept to evaluate the safety 

performance for various highway facilities (Fitzpatrick et al, 2008).  

 

AMFs have been developed by various techniques which include the before-and-after 

study, cross sectional study, use of expert panels, and regression-based models 

(Bonneson and Lord, 2005; Li et al., 2009). In this study, we are particularly interested 

in deriving AMFs from regression-based models. The AMFs are estimated directly from 

the coefficients of the model. This approach for AMF development explicitly assumes 

that each AMF is independent, since the model parameters are assumed independent. In 

practice, however, AMFs may not be completely independent since changes in 

geometric design characteristics on highways are not done independently (e.g., lane and 

shoulder width may be changed simultaneously) and the combination of these changes 

                                                 
14 The first edition of the HSM is expected for public release shortly, and it will contain safety prediction 
methodologies for rural two-lane highways, rural multilane highways, and urban and suburban arterials. 
Additional information is available on the HSM website (http://www.highwaysafetymanual.org/). 
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can influence crash risk. Nevertheless, experience in deriving AMFs in this manner 

indicates that the assumptions are reasonable and, with thoughtful model development, 

the resulting AMFs can yield useful information about the first-order effect of a given 

variable on safety. Others who have used this approach for developing AMFs include 

Fitzpatrick et al. (2008), Lord and Bonneson (2007) and Washington et al. (2005). On 

the other hand, Bonneson et al. (2007) and Gross et al. (2009) have argued that the 

interaction between design features should be included in the development of AMFs. In 

line with this effort, Li et al. (2009) tried to incorporate the interactions by using general 

additive models. Addressing this issue may be beyond the scope of this study. The 

objective of this section is to compare the relative performance of the two models (i.e., 

NB and FMNB-2) in terms of the difference in determining AMFs as a result of different 

model coefficients.  

 

Once we obtained the AMFs for various highway geometric design elements, they are 

applied multiplicatively for adjusting crash frequency estimated from a baseline model. 

The baseline model represents the calibrated statistical model using data that meet 

specific base conditions, such as 12-ft lane width and 8-ft shoulder width for divided 

rural multilane highway segments. Therefore, the finally predicted number of crashes is 

computed as follows: 

 nbaselinefinal AMFAMF ×××= �1µµ  (6.9) 

where, finalµ = final predicted number of crashes per unit of time 

baselinelµ = baseline predicted number of crashes per unit of time 

nAMFAMF ××�1 =accident modification factors (assumed to be independent) 
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6.2.2 Deriving AMFs from NB model 

In additive models, such as a linear regression with pipii xx βββµ ˆˆˆˆ 110 +++= � , the 

coefficient jβ̂  for a covariate jx is readily interpreted as the effect of a one-unit change 

in jx on the conditional mean.15 That is, a unit increase in jx is associated with a jβ̂  

increase in iµ̂ . In multiplicative models, such as the Poisson or negative binomial 

regression models, the conditional mean functional form is usually expressed as a log-

linear form: pipii xx βββµ ˆˆˆ)ˆln( 110 +++= � . In such a case, the difference between two 

conditional means ( iµ̂∆ ) induced by a one-unit change in jx  is no longer constant 

across sites and depends on the values of the covariates. A more convenient way to 

examine the effect of a covariate is to take the ratio of the two conditional means as 

below instead of focusing on their difference. 

 )ˆexp(
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 (6.10) 

The ratio in Equation (6.10) is now constant across all sites without depending on the 

values of any covariates. Hence, the effect of a covariate is interpreted as follows: a one-

unit increase in jx  is associated with a factor of )ˆexp( jβ  increase in iµ̂  (Long, 1997).  

 

In developing the AMF for a covariate jx , however, we are not interested in the safety 

effect of a covariate jx  by changing a one-unit, but interested in the safety effect of 

jx when it changes from its base condition value. In this way, the AMF for jx  can be 

derived in a continuous functional form with respect to jx . If we condition the 

                                                 
15 ( ) ( ) jpipjijipipjijijijii xxxxxxxx βββββββββµµµ ˆˆˆˆˆˆ)1(ˆˆˆ)(ˆ)1(ˆˆ 110110 =+++++−++++++=−+=∆ ����  
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denominator in Equation (6.10), )( ji xµ  on the base condition value for jx , i.e., 

)(ˆ base
jji xx =µ , the accident modification function for jx  is derived as follows: 

 [ ])(ˆexp
)ˆˆˆˆexp(
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110
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pp
base
jj
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xxx
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 (6.11) 

Without loss of generality the subscript i was removed from Equation (6.11) since the 

jxAMF is identical for all sites. The 
jxAMF represents the change in the expected crash 

frequency when the variable jx  changes from its base condition value, and it follows an 

exponential function with 1=
jxAMF  when base

jj xx = . If 0ˆ >jβ , the 
jxAMF is an strictly 

increasing function, and if 0ˆ <jβ , it is an strictly decreasing function. This relationship 

is depicted in Figure 6.3. 

 

 

Figure 6.3 Concept of AMF 

6.2.3 Deriving AMFs from FMNB-2 model 

In the FMNB-2 model, coefficient interpretation is not as straightforward as in the NB 

model since the relationship between the conditional mean and the covariates is a mix of 

0ˆ <jβ  

0ˆ >jβ  
jxAMF  

1 

base
jx  jx  
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additive and multiplicative forms as expressed in Equation (6.2).  The effect of an 

individual covariate on the conditional mean is determined by two sets of interactions 

between parameters and covariates. For instance, analogous to Equation (6.10), if we 

examine the effect of a one-unit change in covariate jx  by taking the ratio of the two 

conditional means, the ratio is expressed as follows: 
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=
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1
1,1,01, )ˆˆexp(ˆ ββµ  and �

=
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p

k
kiki x

1
2,2,02, )ˆˆexp(ˆ ββµ . As can be seen in 

Equation (6.12) the difficulty arises because the conditional mean ratio varies across all 

sites, and also depends on the coefficients of the other covariates. Two options can be 

considered when we want to report a single value for the effect of a one-unit change in 

jx . One option is first to calculate the Equation (6.12) for all sites and then to take the 

average value. Another option is to evaluate the Equation (6.12) at selected values of the 

covariates (e.g., sample average). 

 

In developing the AMF of jx , the same problem arises. Analogous to Equation (6.11), 

the AMF of jx  in the FMNB-2 model is expressed as follows: 
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In this case, the 
jxAMF differs across sites by depending on the values of covariates. In 

order to obtain a single continuous function of the 
jxAMF  with respect to jx like the one 

in Figure 6.3, we need to fix each covariate (except for the interest covariate jx ) at a 

selected value. For this purpose, we used the sample average of each covariate. This is, 

kix  values for site i is replaced with kx  which is �
=

N

i
kixN

1

)/1( . This leads the Equation 

(6.13) to the following form: 
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6.2.4 AMFs comparison  

Based on the AMF functions provided in Equations (6.11) and (6.13), a comparison was 

carried out between the two models with the parameter estimation results for the 

segment crash data in Chapter V. The AMF function for the FMNB-2 model was 

calculated for the CFMNB-2 model with )1.0,5.0(~ Γkφ . For the base condition for 

each variable, the values recommended in NCHRP Project 17-29 (Lord et al., 2009) 

were basically adopted: i.e., 30 ft for median width including left shoulder widths and 8 

ft for right-shoulder width. Since the median width used for modeling in this study also 

included the left shoulder width for both sides (see Table 5.7 in Chapter V), we can used 

30 ft as a base condition for the median width. The summary statistics of the variables 

are reproduced in Table 6.5 along with the respective base condition value. Note that the 

base condition value for the right-shoulder width is very close to the average of the 

sample data, while the base condition value for the median width is much smaller than 

the sample average. 
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Table 6.5 Summary statistics of variables and their base condition values 

Variable Min. Max. Average 
Standard 
Deviation 

Base 
Condition 

Median width (feet) 1 240 47.07 29.41 30 

Right-shoulder width, (feet) 0 19 7.68 1.98 8 

 

The resultant AMF functions of median width and right-shoulder width are presented in 

Figures 6.4 and 6.5, respectively. While the AMF functions of the NB model are very 

close to a straight line for both variables, those of the CFMNB-2 model take on a more 

marked curve-shape. The difference in the shape mainly results from the fact that the NB 

model takes the average effect of a covariate across all sites, whereas the CFMNB-2 

model takes into account the differential responsiveness of crash frequency to the 

covariate. As already noticed in the parameter estimation results (see Table 5.13 in 

Chapter V), the observations assigned to Component 1 (smaller-mean component) were 

not influenced by median width and right-should width, whereas the observations in 

Component 2 (higher-mean component) were significantly affected by these variables. 

This effect was reflected in the shape of AMF derived from the CFMNB-2 model.  

 

Another good property about the shape of AMF in the CFMNB-2 model is that the 

safety effect of a covariate eventually levels off as the covariate increases significantly 

from the base condition. For example, it can be seen from Figure 6.4 that the safety 

effect of median width stabilizes after around 150 ft. The same tendency is noticed for 

right-shoulder width after around 16 ft. These trends are not observable in the NB model. 

This is partly supported by a few researchers who have noted that design elements, such 

as shoulder or lane width could follow a U-shaped relationship with safety (Hauer, 2000; 

Xie et al., 2007; Li et al., 2008). In a U-shaped relationship, narrow and wide widths 

experience more crashes. McLean (1996) explained the U-shaped relationship between 

safety and should width by suggesting that very wide shoulders can often be used as an 

additional lane, which may lead to an increase in accidents rates (Hauer, 2000).  
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Figure 6.4 AMF function of median width (CFMNB-2 vs. NB) 
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Figure 6.5 AMF function of right-shoulder width (CFMNB-2 vs. NB) 
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The AMF curves from the current CFMNB-2 model did not exhibit a complete U-shaped 

relationship within the sample boundary, but when the coefficients from the FMNB-2 

model (see Table 5.12 in Chapter V) was used, the AMF curve for median width 

revealed a U-shaped relationship (Figure 6.6). Although this relationship can be 

debatable, the bottom line is that the AMF functions derived from the FMNB-2 model is 

more flexible and leave much more possibilities about the true effect of a design element 

on crash occurrence.  
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Figure 6.6 AMF function of median width (FMNB-2 vs. NB) 

On the other hand, the AMF curve for right-shoulder width from the FMNB-2 model 

(Figure 6.7) did not exhibit a U-shaped curve and remained almost unchanged from the 

CFMNB-2 model. This is because the coefficient of the right-shoulder width in 

component 2 was much larger than that in component 1 (i.e., -0.1509 vs. 0.0014). The 

small value, even with the large weight, exercised little influence on the calculation of 

the AMF curve. 
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Figure 6.7 AMF function of right-shoulder width (FMNB-2 vs. NB) 

 
6.3 Chapter Summary 

Given the superior performance of the finite mixture model for a particular dataset, this 

chapter has focused on the application side of this type of model in terms of two 

important highway safety analyses: the identification of hotspots and development of 

accident modification factors. 

 

With the modeling results for the segment crash data in Chapter V, the hotspot rankings 

were compared between the NB and CFMNB-2 models. The difference was measured 

by the percentage deviation in ranking orders between the two models, but the difference 

seemed to be small for this dataset. However, the ranking results from the CFMNB-2 

model may be more reliable than the NB model because of a better model specification, 

Depending on the dataset under consideration there is a possibility that the difference 

can be more pronounced. A simulation study was also carried out to demonstrate what 
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the consequences will be if a mis-specified model is used for the hotspot identification. 

The consequences turned out to be significant by producing a high number of false 

positives and negatives. This will lead to a waste of federal, state and local government 

resources by investing them into the improvement of wrong sites. In order to gain an 

insight into the selection of an optimal threshold value for identifying hotspots, another 

simulation was designed with four different threshold values: sample mean, 80th-

percentile, 85th-percentile, and 90th-percentile crash in the sample. The use of a higher 

threshold value can reduce the number of target hotspots for treatment, but the results of 

simulation indicated that there is a conflict between false discovery rate (increasing) and 

false negative rate (decreasing), and also between sensitivity (decreasing) and specificity 

(increasing). Since the costs associated with false positives and false negatives are 

different, a decision on the optimal threshold value can be made by considering the 

trade-off between these two costs so that it can minimize the unnecessary costs. 

 

The accident modification factor (AMF) function for the FMNB-2 model has been 

derived in this chapter. Its form was not as simple as in the NB model since the 

conditional mean takes on the mix of additive and multiplicative terms. However, the 

AMF function from the FMNB-2 model has an advantage over the one from the NB 

model since it can consider the interactions between parameters and covariates, and 

hence can better account for the differential responsiveness of crash frequency with 

respect to a certain covariate. The AMF curves for median width and right-shoulder 

width were derived based on the CFMNB-2 model results and they were compared with 

those from the NB model. The AMF shapes produced by the CFMNB-2 model had a 

better property in that the safety effect of a covariate eventually levels off as the 

covariate increases significantly from the base condition. On the other hand, when the 

FMNB-2 model – which is inferior to the CFMNB-2 model, but superior to the NB 

model – was used, the AMF curve for median width showed a U-shaped relationship. 

This is arguable, but the AMFs from the FMNB-2 model may open up interesting new 

prospects for finding the true effect of a design element on crash occurrence.  
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CHAPTER VII 

SIMULATION STUDY 

 

 

In Chapter IV, we have shown the usefulness of finite mixture of regression models for 

accommodating over-dispersion with a single random sample – that is, the results were 

evaluated with only one-time simulated dataset under a specific condition. If we adopt a 

Bayesian method for parameter estimation and summarize the posterior distribution with 

a single point estimate,1 it is important to obtain consistent posterior summary values for 

model parameters under a repeated random sampling. In order to appreciate the potential 

bias and variability in posterior summary values, we need to run the simulation as many 

times as possible under the same condition. This point is illustrated in this chapter by 

means of a Monte Carlo simulation. As we already observed, the posterior mean of the 

dispersion parameters in the FMNB-2 model was biased upwards, and hence the 

objective of the simulation is primarily to investigate the bias associated with the 

posterior summary values of dispersion parameters. While the posterior mean is often 

favored as a summary statistic because it minimizes the posterior expected mean squared 

loss, the posterior median is also a useful summary value especially in a skewed 

distribution. To this end, the simulation is carried out under various sample sizes and 

sample-mean categories and then we investigate the biases associated with the posterior 

mean and median values. In addition, since the prior specification for the dispersion 

parameter has a potential influence on the posterior mean and median values, the results 

from non-informative and informative prior specifications are compared in terms of the 

magnitude of the bias introduced by various sample sizes and sample-mean values.  

 

                                                 
1 However, remember that the full posterior distribution of a parameter provides much richer information 
than a single posterior summary value (i.e. posterior mean, median or mode), as it incorporates all 
information, and all uncertainty about the parameter.  
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This chapter consists of four sections. Section 7.1 briefly reviews previous work on the 

bias properties of the dispersion parameter within a standard NB modeling framework. 

Section 7.2 describes the simulation design for the FMNB-2 model in details, in which 

sample sizes, sample mean values, and two prior specifications for the dispersion 

parameters are defined. Section 7.3 presents the simulation results for three different 

sample-mean value scenarios. Finally, Section 7.4 summarizes the results and 

recommends a brief guideline about the choice of priors and the posterior summary 

statistics to use for different sample sizes and sample-mean values. 

 

7.1 Previous Work 

Within the standard NB modeling framework, many researchers have examined the 

biasness of the various estimators of the NB dispersion parameter under different 

scenarios. All the researchers used the simulation method. The key studies are 

summarized in Table 7.1. Note that the majority of the studies are based on the 

Frequentist method. Although earlier researches mainly focused on the impact of a small 

sample size on the performance of the maximum likelihood estimator (MLE) and 

compared the results with other estimators, more recent studies have examined more 

extreme cases in terms of sample mean values and true dispersion parameters (φ ). For 

example, Lord (2006) examined the effects of a very low sample mean ( 1<µ ) 

combined with a small samples size on the estimation of the dispersion parameter. The 

sample-mean values used for developing NB models for vehicle crash data are often 

below 1.0 (crashes/unit of time). In another example, Lloyd-Smith (2007) explored the 

bias, precision, and confidence interval coverage of the MLE of the dispersion parameter 

when the data are highly over-dispersed ( 1<φ ). Highly dispersed data are commonly 

found in epidemiological studies.  

 

It is worth noting that although researchers working on this topic are from a wide variety 

of fields their findings have much in common. First, when the dataset is characterized by 
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a small sample size, the MLE of φ  is less accurate than other estimators, such as the 

method of moment or the quasi-likelihood method. Second, small sample sizes tend to 

overestimate the true dispersion parameter under all conditions. Third, the bias for the 

MLE gets larger as sample mean decreases and the true φ  increases (if known). It 

should be noted that unless a sufficiently large sample size is used, the bias for the MLE 

seems to be inevitable.  

 

Table 7.1 Summary of previous studies for biasness of dispersion parameter estimate 

Authors (year) Estimators Results 

Clark and Perry (1989) 
 

MMEa, 
MQLEb 

Both become biased when 3≤µ , 20<n . 
Bias becomes worse when φ �∞ . 

Piegorsch (1990)  MME, MQLE, 
MLEc 

MLE is less accurate than MQLE and MME 
when n is small. α was allowed to have 
negative values. 

Dean (1994) MME, MLE 
MLE produces a biased estimate as 
n decreases and φ  increases. The bias 
influences coefficients of NB model.  

Toft et al. (2006) MLE 
Estimator is unstable (even for 10=µ  and 

100=n ) as α �0 (i.e.φ �∞ ). 

Lord (2006) MME, WREd, 
MLE 

All three estimators are biased and skewed 
when n and µ  are small. MLE method 
overestimates true dispersion parameter. 

Lloyd-Smith (2007) MLE 
MLE becomes more biased and less precise 
for higher φ . MLEs are not biased 
downward by any of the factors considered. 

Zhang et al. (2007) MME, MLE, 
BMLEf 

BMLE is more accurate and stable, and the 
improvements are more pronounced with 
small sample sizes and low sample means. 

Lord and Miranda-
Moreno (2008) HBMEg 

An appropriate non-vague prior minimizes 
the bias in the posterior mean. Poisson-
lognormal models are recommended over 
Poisson-gamma models when assuming 
vague priors for a low sample-mean sample. 

NOTE: a Method of moment estimator; b Maximum Quasi-likelihood estimator, 
                   c Maximum likelihood estimator; d Weighted regression estimator, 
                   f Bootstrapped Maximum likelihood estimator; g Hierarchical Bayes Method estimator 



 

 

154

In highway safety studies, it is not unusual that the analysts have to develop models 

under the limited sample size because of the prohibitive costs involved in collecting the 

crash data (Lord, 2000; Oh et al., 2003). At the same time, many of the analysis units 

(highway segments or intersections) tend to have a zero crash because of a rare and 

random nature of a crash occurrence. This may result in a low sample mean value. The 

sample mean values used for developing NB regression models are often below 1.0 

(crashes/unit of time). In this context, Lord (2006) examined the effects of low sample 

mean values and small sample size on the estimation of the fixed dispersion parameter, 

and recommended that no Poisson-gamma (NB) models be estimated for a sample size 

below 100, even when the sample mean is equal to 5 in highway safety analysis. To 

reduce the bias in the estimation of the dispersion parameter, Zhang et al. (2007) 

proposed to use the bootstrapped maximum likelihood estimator because it produced the 

most accurate and stable estimates for the data with low sample mean and small sample 

sizes. On the other hand, recently Bonneson et al. (2007), and Park and Lord (2008) tried 

to adjust the bias induced by the MLE method by deriving a reasonable relationship (a 

quadratic function) between estimated and true values of the dispersion parameter.  

 

As a follow-up research to Lord (2006), Lord and Miranda-Moreno (2008) examined 

how low sample mean values and small sample sizes affect the posterior mean of the 

dispersion parameter of Poisson-gamma models estimated using the hierarchical Bayes 

method. Especially, they looked into the role of prior specifications for dispersion 

parameter. They found that the posterior mean of the dispersion parameter was seriously 

affected by a small sample size and low sample mean values as the MLE approach. This 

was more pronounced when a non-informative prior was used. However, the bias started 

at a lower sample mean value and smaller sample size than that found for the MLE, 

which suggests that a Bayesian method is more robust than an MLE method in such case.  

 

In summary, judging from the previous work no estimators seem to be free from the bias 

in the NB dispersion parameter caused by small sample sizes and low sample mean 
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values. Therefore, from an application-oriented point of view, it is important to know 

what sample size or sample mean is required at minimum in order to guarantee unbiased 

or bias-reduced estimates of model parameters. Within the finite mixture models, 

however, the necessary sample size may depend on the data at hand – that is, the sample 

size need not be large for well-separated data, but it can be huge for a poorly-separated 

case. Therefore, rather than searching for the minimum sample size, it would be better to 

focus on the bias and variability properties of an estimator we choose. A Bayesian 

approach can provide an asset in this respect since we can simply choose the best 

posterior summary statistic that minimizes the bias. This can also obviate an additional 

correction process.  

 

7.2 Simulation Design 

We first designed the simulation scenarios for generating FMNB-2 random variates. The 

regression parameters ( k� ), mixing proportions ( kw ), and dispersion parameters ( kφ ) 

were controlled in order to generate three sample mean categories: high mean )5( >y , 

moderate mean )51( << y , and low mean )1( <y . For each sample-mean value category, 

fixed values of φ  and w  were used. To allow for a high level of heterogeneity the 

higher-mean component (Component 1) was combined with a lower φ  value, and the 

smaller-mean component (Component 2) was combined with a higher φ  value. Note that 

to appreciate the sensitivities of different φ  and w  values, it is necessary to test with 

more combinations of their values. However, since the number of combinations can be 

prohibitive, the simulation was limited to the one provided in Table 7.2.  
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Table 7.2 True values used for generating FMNB-2 random variates for simulation 

Parameters 

High mean 
)5( >y  

Moderate mean 
)51( << y  

Small mean 
)1( <y  

Comp. 1 Comp. 2 Comp. 1 Comp. 2 Comp. 1 Comp. 2 

k,0β  

k,1β  

k,2β  

2.5 
-0.5 
0.5 

1.0 
0.5 
-0.5 

2.0 
-0.5 
0.5 

0.0 
0.5 
-0.5 

0.5 
-0.5 
0.5 

-1.0 
0.5 
-0.5 

kφ  5 10 5 10 5 10 

kw  0.4 0.6 0.2 0.8 0.2 0.8 

Sample size 
N  

100 ~ 1,000  
(one-hundred step) 

and 2,000 

100 ~ 1,000  
(one-hundred step) 

and 2,000 

500 ~ 3,500 
(five-hundred step) 

and 5,000 
 

Second, two prior specifications for the dispersion parameter are compared. The first one 

is the non-informative gamma prior: )01.0,01.0(~ Γkφ . This is by far the most common 

prior distribution within the standard NB models (e.g., Miaou et al., 2003). This prior 

has a spike near zero with a mean=1 and a large variance which is 100. However, the 

automatic assignment of such flat or wide priors can be problematic in some cases (Van 

Dongen, 2006; Lord and Miranda-Moreno, 2008), so the prior specification should be 

done with great care. The extremely large variance can create problems especially when 

the sample size is small or sample mean is low. Recently, less vague priors have been 

proposed to use in analyzing vehicle crash data (Washington and Oh, 2006; Miranda-

Moreno et al., 2008). Nevertheless, in the FMNB-2 model, it is difficult to assign 

informative priors on each component model because such information is rarely 

available. Therefore, as a comparative purpose, we introduced the weakly-informative 

gamma prior: )1.0,5.0(~ Γkφ , and investigated its performance in terms of the bias. 

This prior also has a mode near zero, but it has a mean=5 and the much reduced variance 

which is 50. This prior was suggested in this paper with the hope of reducing the 

implausibly large values of kφ  in the posterior samples, thereby improving the behavior 
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of the posterior distribution of kφ . In addition, it is unlikely that this prior will prevent 

the chain from exploring the plausible space of the dispersion parameter since the prior 

variance is still large. Within the standard NB model, Lord and Miranda-Moreno (2008) 

found that the priors with very small mean and variance (for example, )0.1,1.0(~ Γkφ ) 

often generated extremely small values for the dispersion parameter, which resulted in a 

significant underestimation of the true value. Figure 7.1shows three different gamma 

distributions.  
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Figure 7.1 Shapes of three different gamma distributions 

Based on the above-described simulation scenarios, the FMNB-2 random variable 

generation process was replicated 100 times for each category, and then for each of the 

datasets, Bayesian estimation was carried out using 2,500 draws after a burn-in of 2,500 

draws. The prior specifications for the weight distribution and the regression parameters 

are the same as in Example 2. Due to the partial manual manipulations needed to adjust 

the acceptance rates in the Random Walk Algorithm and the amount of computing time, 
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the numbers of replications and MCMC iterations were limited to 100 times and 5,000 

runs, respectively. Another special consideration was also taken during the simulation to 

prevent the label switching which is caused by the invariance of a finite mixture 

distribution to relabeling the components. According to Frühwirth-Schnatter (2006), 

finding identifiability constraints is not trivial in the finite mixture regression models. 

After trying with several datasets from each mean value category, the order constraint on 

the weight parameters (i.e., 21 ww < ) was found to be appropriate for the moderate and 

the small mean value scenarios. For the high mean scenario, the order constraint on the 

intercepts (i.e., 2,01,0 ββ > ) was found to be most appropriate.  

 

At the end of each replication, the posterior summary statistics such as posterior mean, 

median, standard deviation for each parameter estimate were computed. This provides 

the bias information ])ˆ([ truerE φφ −  in the parameter estimation, where r is the number of 

replications. The mean squared error, MSE )ˆ(2
rVarBias φ+= , is another appropriate 

measure to check the quality of an estimator since it comprises both bias and variability. 

 

7.3 Simulation Results 

This section presents the simulation results for the three sample-mean value scenarios: 

high-mean, moderate-mean, and small-mean value scenarios. 

 

7.3.1 High-mean value scenario 

Table 7.3 shows the ranges of generated sample means and variances for each sample 

size. The minimum and maximum values of the generated sample means indicate that 

every dataset generated during 100 replications falls into the high-mean value 

category )5( >y . Based on the values from Tables 7.4 and 7.5, the bias trends by sample 

size for the high-mean value scenario are visualized in Figure 7.2. The upper figures are 

for the non-informative prior and the lower ones are for the weakly-informative prior. If 
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there is no bias, all the points would rest on the true values indicated as dotted lines. As 

shown in the figure, the biases for the regression parameters and weight parameters are 

considered to be very small regardless of the different prior choices on kφ .  

 
Table 7.3 Ranges of generated sample means and variances (High-mean) 

Sample size 100 200 300 400 500 600 700 800 900 1000 2000 

y  
Min. 5.84  6.59  7.07  7.05  6.83  7.36  7.37  7.43  7.18  7.38  7.72  

Max. 10.98  11.53  10.69  9.46  9.91  9.18  9.91  9.38  9.42  9.24  9.36  

)var(y  
Min. 30.86  66.77  68.56  69.36  75.54  93.81  101.40  96.37  106.10  105.20  106.50  

Max. 233.00  283.10  362.60  171.50  271.50  208.10  550.40  226.50  244.70  204.10  224.40  

 

For the dispersion parameters, the bias is negligible for the higher-mean component 

(component 1) unless the sample size is too small (about 300=N ) for both priors. The 

bias is more significant in the smaller-mean component (component 2). This is 

particularly true if we choose the posterior mean as a summary statistic with the non-

informative prior. For the non-informative prior case, there is an upward-bias trend for 

both posterior mean and median in component 2. It is evident that the posterior median 

has much better bias properties than the posterior mean. On the other hand, for the 

weakly-informative prior case, there is a slightly upward-bias for the posterior mean, but 

the bias appears to be small. For the posterior median, there is a downward-bias in 

component 2 when the sample size is less than 1,000, but as the sample size increases 

this trend disappears and the bias becomes negligible. We can see that even though the 

prior information is weak, it introduces a bias in posterior median for the smaller mean 

value component when the sample size is small or moderate. On the other hand, as 

shown in the mean squared errors (MSE) for each case in Tables 7.6 and 7.7, because of 

the reduced variance in the weakly-informative prior case, its posterior mean and median 

perform better than those for the non-informative prior case. In sum, for the high mean 

value scenario, if we use the non-informative prior, the choice of posterior mean should 

be avoided in terms of bias and MSE. The bias risks for other cases seem to be minimal. 

However, as the sample size becomes larger (more than 000,1=N ), the posterior 

median with a weakly-informative prior seems to be preferred.  
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Table 7.4 Averages and standard deviations (High-mean, )01.0,01.0(~ Γφ ) 

Sample size 100 200 300 400 500 600 700 800 900 1000 2000 

)ˆ( 1,0βE  2.312  2.431  2.413  2.474  2.493  2.505  2.498  2.501  2.488  2.501  2.496  

)ˆ( 1,0βsd  0.476  0.317  0.664  0.222  0.049  0.043  0.040  0.041  0.033  0.036  0.026  

)ˆ( 1,1βE  -0.386  -0.456  -0.479  -0.478  -0.499  -0.501  -0.503  -0.498  -0.497  -0.499  -0.500  

)ˆ( 1,1βsd  0.353  0.223  0.173  0.147  0.050  0.040  0.041  0.037  0.032  0.031  0.025  

)ˆ( 1,2βE  0.380  0.448  0.490  0.480  0.502  0.502  0.501  0.498  0.503  0.502  0.498  

)ˆ( 1,2βsd  0.330  0.213  0.110  0.161  0.043  0.041  0.034  0.033  0.036  0.032  0.023  

)ˆ( ,1 meanE φ  6.743  5.696  5.098  5.302  5.178  5.143  5.025  5.030  4.885  5.059  4.972  

)ˆ( ,1 meansd φ  4.754  3.688  1.517  1.533  1.404  0.953  0.844  0.822  0.619  0.509  0.474  

)ˆ( ,1 medianE φ  5.344  5.178  4.897  5.122  5.070  5.051  4.957  4.969  4.836  5.011  4.950  

)ˆ( ,1 mediansd φ  3.319  2.620  1.422  1.316  1.314  0.919  0.830  0.816  0.606  0.500  0.472  

)ˆ( 1wE  0.404  0.408  0.400  0.403  0.400  0.402  0.404  0.405  0.405  0.401  0.402  

)ˆ( 1wsd  0.053  0.045  0.057  0.032  0.029  0.027  0.023  0.025  0.021  0.020  0.016  

)ˆ( 2,0βE  1.184  1.068  1.035  1.037  1.003  1.000  1.013  0.997  0.998  0.998  1.001  

)ˆ( 2,0βsd  0.472  0.300  0.202  0.214  0.054  0.045  0.046  0.039  0.041  0.036  0.026  

)ˆ( 2,1βE  0.370  0.465  0.478  0.482  0.486  0.506  0.489  0.499  0.501  0.497  0.501  

)ˆ( 2,1βsd  0.320  0.218  0.133  0.148  0.053  0.041  0.035  0.037  0.038  0.032  0.021  

)ˆ( 2,2βE  -0.404  -0.450  -0.483  -0.468  -0.507  -0.498  -0.495  -0.496  -0.500  -0.500  -0.500  

)ˆ( 2,2βsd  0.339  0.208  0.134  0.143  0.042  0.040  0.034  0.039  0.030  0.031  0.022  

)ˆ( ,2 meanE φ  11.328  15.389  12.474  13.920  12.000  12.553  11.783  11.299  11.850  12.035  10.875  

)ˆ( ,2 meansd φ  6.345  8.833  6.978  7.287  5.616  6.000  4.700  5.353  5.634  5.100  2.612  

)ˆ( ,2 medianE φ  7.431  10.597  9.580  10.895  9.920  10.426  10.111  9.936  10.499  10.707  10.374  

)ˆ( ,2 mediansd φ  3.763  5.819  4.498  4.764  3.888  4.121  3.446  4.023  4.240  3.805  2.306  

)ˆ( 2wE  0.596  0.592  0.600  0.597  0.600  0.598  0.596  0.595  0.595  0.599  0.598  

)ˆ( 2wsd  0.053  0.045  0.057  0.032  0.029  0.027  0.023  0.025  0.021  0.020  0.016  
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Table 7.5 Averages and standard deviations (High-mean, )1.0,5.0(~ Γφ ) 

Sample size 100 200 300 400 500 600 700 800 900 1000 2000 

)ˆ( 1,0βE  2.312  2.431  2.413  2.474  2.493  2.505  2.498  2.501  2.488  2.501  2.496  

)ˆ( 1,0βsd  0.476  0.317  0.664  0.222  0.049  0.043  0.040  0.041  0.033  0.036  0.026  

)ˆ( 1,1βE  -0.386  -0.456  -0.479  -0.478  -0.499  -0.501  -0.503  -0.498  -0.497  -0.499  -0.500  

)ˆ( 1,1βsd  0.353  0.223  0.173  0.147  0.050  0.040  0.041  0.037  0.032  0.031  0.025  

)ˆ( 1,2βE  0.380  0.448  0.490  0.480  0.502  0.502  0.501  0.498  0.503  0.502  0.498  

)ˆ( 1,2βsd  0.330  0.213  0.110  0.161  0.043  0.041  0.034  0.033  0.036  0.032  0.023  

)ˆ( ,1 meanE φ  6.743  5.696  5.098  5.302  5.178  5.143  5.025  5.030  4.885  5.059  4.972  

)ˆ( ,1 meansd φ  4.754  3.688  1.517  1.533  1.404  0.953  0.844  0.822  0.619  0.509  0.474  

)ˆ( ,1 medianE φ  5.344  5.178  4.897  5.122  5.070  5.051  4.957  4.969  4.836  5.011  4.950  

)ˆ( ,1 mediansd φ  3.319  2.620  1.422  1.316  1.314  0.919  0.830  0.816  0.606  0.500  0.472  

)ˆ( 1wE  0.404  0.408  0.400  0.403  0.400  0.402  0.404  0.405  0.405  0.401  0.402  

)ˆ( 1wsd  0.053  0.045  0.057  0.032  0.029  0.027  0.023  0.025  0.021  0.020  0.016  

)ˆ( 2,0βE  1.184  1.068  1.035  1.037  1.003  1.000  1.013  0.997  0.998  0.998  1.001  

)ˆ( 2,0βsd  0.472  0.300  0.202  0.214  0.054  0.045  0.046  0.039  0.041  0.036  0.026  

)ˆ( 2,1βE  0.370  0.465  0.478  0.482  0.486  0.506  0.489  0.499  0.501  0.497  0.501  

)ˆ( 2,1βsd  0.320  0.218  0.133  0.148  0.053  0.041  0.035  0.037  0.038  0.032  0.021  

)ˆ( 2,2βE  -0.404  -0.450  -0.483  -0.468  -0.507  -0.498  -0.495  -0.496  -0.500  -0.500  -0.500  

)ˆ( 2,2βsd  0.339  0.208  0.134  0.143  0.042  0.040  0.034  0.039  0.030  0.031  0.022  

)ˆ( ,2 meanE φ  11.328  15.389  12.474  13.920  12.000  12.553  11.783  11.299  11.850  12.035  10.875  

)ˆ( ,2 meansd φ  6.345  8.833  6.978  7.287  5.616  6.000  4.700  5.353  5.634  5.100  2.612  

)ˆ( ,2 medianE φ  7.431  10.597  9.580  10.895  9.920  10.426  10.111  9.936  10.499  10.707  10.374  

)ˆ( ,2 mediansd φ  3.763  5.819  4.498  4.764  3.888  4.121  3.446  4.023  4.240  3.805  2.306  

)ˆ( 2wE  0.596  0.592  0.600  0.597  0.600  0.598  0.596  0.595  0.595  0.599  0.598  

)ˆ( 2wsd  0.053  0.045  0.057  0.032  0.029  0.027  0.023  0.025  0.021  0.020  0.016  
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E(ŵ1)

E(ŵ2)
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Figure 7.2 Bias trends for model parameters by sample size (High-mean scenario) 
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Table 7.6 MSEs for dispersion parameters (High-mean, )01.0,01.0(~ Γφ ) 

Sample size 100 200 300 400 500 600 700 800 900 1000 2000 

)ˆ( ,1 meanMSE φ  25.64  14.09  2.31  2.44  2.00  0.93  0.71  0.68  0.40  0.26  0.23  

)ˆ( ,1 medianMSE φ  11.13  6.90  2.03  1.75  1.73  0.85  0.69  0.67  0.39  0.25  0.23  

)ˆ( ,2 meanMSE φ  42.02  107.06  54.81  68.47  35.54  42.52  25.27  30.34  35.16  30.15  7.59  

)ˆ( ,2 medianMSE φ  20.76  34.22  20.40  23.50  15.12  17.16  11.89  16.19  18.23  14.98  5.46  

 

Table 7.7 MSEs for dispersion parameters (High-mean, )1.0,5.0(~ Γφ ) 

Sample size 100 200 300 400 500 600 700 800 900 1000 2000 

)ˆ( ,1 meanMSE φ  5.12  4.89  2.11  1.97  1.76  1.14  0.72  0.68  0.39  0.26  0.23  

)ˆ( ,1 medianMSE φ  3.65  3.72  1.91  1.59  1.61  1.07  0.69  0.66  0.39  0.25  0.23  

)ˆ( ,2 meanMSE φ  14.00  11.82  9.96  10.97  10.24  9.05  7.60  8.40  10.52  9.42  4.81  

)ˆ( ,2 medianMSE φ  19.80  11.98  10.19  8.70  9.13  7.55  6.19  7.42  8.35  7.12  4.00  

 

7.3.2 Moderate-mean value scenario 

Many empirical crash data fall in the moderate sample-mean value scenario. Table 7.8 

shows the ranges of generated sample means and variances for each sample size. 

Although the simulation objective was to generate samples ranging 51 << y , the 

generated sample means were much narrower with a minimum of 1.93 and a maximum 

of 3.86 under the parameter setting in Table 7.2. 

 

Table 7.8 Ranges of generated sample means and variances (Moderate-mean) 

Sample size 100 200 300 400 500 600 700 800 900 1000 2000 

y  
Min. 1.93  2.07  2.28  2.36  2.54  2.48  2.40  2.38  2.66  2.60  2.66  

Max. 3.80  3.75  3.80  3.79  3.61  3.52  3.86  3.57  3.65  3.52  3.28  

)var(y  
Min. 9.28  11.02  12.63  14.87  15.59  15.89  18.31  18.75  18.29  19.61  22.73 

Max. 68.98  85.37  143.20  52.85  69.33  67.21  129.90  55.47  67.32  57.55  58.32 

 

Tables 7.9 and 7.10 provide the computed averages and standard deviations for all 

parameters. It should be noted that when 100=N some of the generated datasets failed 

to converge or showed a frequent label switching even with the identifiability constraint 
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(i.e. 21 ww < ) when they were fitted with the FMNB-2 model. This phenomenon was 

more frequently observed when the non-informative prior was used: there were 26 

datasets for )01.0,01.0(~ Γkφ  and 9 datasets for )1.0,5.0(~ Γkφ . Therefore, those 

datasets were removed from the calculation for 100=N . This may also reflect that the 

use of a non-informative should be avoided when the sample size is very small.  

 

Table 7.9 Averages and standard deviations (Moderate-mean, )01.0,01.0(~ Γkφ ) 

Sample size 100 200 300 400 500 600 700 800 900 1000 2000 

)ˆ( 1,0βE  1.761  1.888  1.951  1.956  1.964  1.988  1.978  1.965  1.982  1.988  1.991  

)ˆ( 1,0βsd  0.211  0.155  0.111  0.106  0.094  0.075  0.083  0.066  0.074  0.061  0.045  

)ˆ( 1,1βE  -0.572  -0.532  -0.523  -0.504  -0.506  -0.516  -0.496  -0.511  -0.507  -0.508  -0.495  

)ˆ( 1,1βsd  0.260  0.132  0.110  0.089  0.072  0.068  0.060  0.053  0.054  0.047  0.035  

)ˆ( 1,2βE  0.585  0.522  0.508  0.507  0.504  0.507  0.515  0.515  0.504  0.502  0.496  

)ˆ( 1,2βsd  0.229  0.137  0.099  0.078  0.062  0.073  0.065  0.061  0.054  0.053  0.031  

)ˆ( ,1 meanE φ  3.928  5.480  5.300  5.362  4.992  5.533  5.358  5.022  5.337  5.446  5.121  

)ˆ( ,1 meansd φ  3.073  3.893  2.853  3.906  2.310  1.955  2.376  1.642  1.568  1.848  0.786  

)ˆ( ,1 medianE φ  2.348  4.162  4.501  4.707  4.631  5.177  5.080  4.828  5.150  5.266  5.044  

)ˆ( ,1 mediansd φ  1.692  2.466  2.137  2.854  1.968  1.750  1.973  1.532  1.470  1.716  0.756  

)ˆ( 1wE  0.277  0.228  0.217  0.212  0.208  0.206  0.207  0.209  0.203  0.204  0.202  

)ˆ( 1wsd  0.060  0.048  0.034  0.032  0.026  0.023  0.023  0.020  0.019  0.020  0.013  

)ˆ( 2,0βE  -0.009  -0.008  -0.002  0.001  0.001  0.006  -0.002  0.006  0.008  -0.001  -0.003  

)ˆ( 2,0βsd  0.173  0.108  0.085  0.080  0.073  0.062  0.053  0.051  0.054  0.056  0.032  

)ˆ( 2,1βE  0.553  0.535  0.506  0.499  0.504  0.498  0.507  0.500  0.497  0.503  0.499  

)ˆ( 2,1βsd  0.148  0.100  0.073  0.071  0.051  0.053  0.040  0.044  0.040  0.038  0.025  

)ˆ( 2,2βE  -0.558  -0.511  -0.498  -0.497  -0.502  -0.497  -0.498  -0.501  -0.501  -0.503  -0.503  

)ˆ( 2,2βsd  0.138  0.094  0.071  0.056  0.050  0.045  0.049  0.037  0.041  0.039  0.025  

)ˆ( ,2 meanE φ  10.679  13.275  12.199  13.513  14.303  14.013  13.943  14.569  13.037  13.340  13.311  

)ˆ( ,2 meansd φ  4.295  6.492  5.852  7.144  7.461  7.447  7.448  7.045  7.644  6.498  6.650  

)ˆ( ,2 medianE φ  5.841  8.093  7.957  9.209  10.093  10.004  9.970  10.537  10.047  10.144  11.194  

)ˆ( ,2 mediansd φ  2.511  4.123  3.526  4.618  4.802  4.900  4.799  4.481  5.090  4.105  4.792  

)ˆ( 2wE  0.723  0.772  0.783  0.788  0.792  0.794  0.793  0.791  0.797  0.796  0.798  

)ˆ( 2wsd  0.060  0.048  0.034  0.032  0.026  0.023  0.023  0.020  0.019  0.020  0.013  
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The bias trends for this scenario were similar to the high mean value scenario as depicted 

in Figure 7.3. The biases associated with the regression parameters and weight 

parameters are negligible unless the sample size is too small, and they are not affected 

by the choice of priors on kφ .  

 

Table 7.10 Averages and standard deviations (Moderate-mean, )1.0,5.0(~ Γkφ ) 

Sample size 100 200 300 400 500 600 700 800 900 1000 2000 

)ˆ( 1,0βE  -0.595  -0.534  -0.525  -0.505  -0.508  -0.515  -0.495  -0.511  -0.505  -0.508  1.994  

)ˆ( 1,0βsd  0.273  0.130  0.108  0.087  0.071  0.069  0.060  0.053  0.054  0.046  0.045  

)ˆ( 1,1βE  0.575  0.526  0.508  0.507  0.505  0.505  0.514  0.517  0.503  0.501  -0.495  

)ˆ( 1,1βsd  0.236  0.135  0.097  0.076  0.064  0.075  0.064  0.061  0.054  0.053  0.035  

)ˆ( 1,2βE  3.533  4.758  4.968  4.996  4.906  5.528  5.326  5.022  5.370  5.469  0.496  

)ˆ( 1,2βsd  1.767  2.287  1.982  2.340  1.825  1.784  1.882  1.452  1.498  1.780  0.032  

)ˆ( ,1 meanE φ  2.538  4.069  4.431  4.577  4.614  5.215  5.091  4.836  5.188  5.294  5.147  

)ˆ( ,1 meansd φ  1.368  1.926  1.741  2.060  1.668  1.639  1.728  1.373  1.420  1.665  0.766  

)ˆ( ,1 medianE φ  0.264  0.224  0.216  0.211  0.207  0.204  0.206  0.208  0.201  0.203  5.079  

)ˆ( ,1 mediansd φ  0.063  0.045  0.034  0.031  0.026  0.023  0.023  0.020  0.019  0.019  0.743  

)ˆ( 1wE  -0.012  -0.004  0.000  0.004  0.004  0.009  0.000  0.009  0.010  0.001  0.201  

)ˆ( 1wsd  0.171  0.108  0.084  0.080  0.073  0.062  0.052  0.051  0.053  0.057  0.012  

)ˆ( 2,0βE  0.540  0.534  0.505  0.498  0.504  0.496  0.506  0.499  0.496  0.502  -0.001  

)ˆ( 2,0βsd  0.147  0.101  0.073  0.071  0.052  0.052  0.040  0.044  0.040  0.037  0.031  

)ˆ( 2,1βE  -0.545  -0.510  -0.497  -0.495  -0.501  -0.496  -0.497  -0.500  -0.500  -0.503  0.499  

)ˆ( 2,1βsd  0.139  0.093  0.071  0.056  0.049  0.045  0.049  0.036  0.042  0.040  0.024  

)ˆ( 2,2βE  6.184  7.985  8.009  8.907  9.565  9.527  9.497  10.001  9.678  9.836  -0.501  

)ˆ( 2,2βsd  1.976  2.605  2.529  2.847  3.073  3.100  3.089  2.971  3.363  2.890  0.025  

)ˆ( ,2 meanE φ  4.707  6.461  6.686  7.553  8.186  8.241  8.256  8.734  8.599  8.736  10.777  

)ˆ( ,2 meansd φ  1.693  2.332  2.138  2.530  2.632  2.692  2.706  2.595  2.941  2.504  3.078  

)ˆ( ,2 medianE φ  0.736  0.776  0.784  0.789  0.793  0.796  0.794  0.792  0.799  0.797  9.891  

)ˆ( ,2 mediansd φ  0.063  0.045  0.034  0.031  0.026  0.023  0.023  0.020  0.019  0.019  2.742  

)ˆ( 2wE  -0.595  -0.534  -0.525  -0.505  -0.508  -0.515  -0.495  -0.511  -0.505  -0.508  0.799  

)ˆ( 2wsd  0.273  0.130  0.108  0.087  0.071  0.069  0.060  0.053  0.054  0.046  0.012  
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Figure 7.3 Bias trends for model parameters by sample size (Moderate-mean scenario) 
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For the biases associated with the dispersion parameters, the upward or downward trends 

are more pronounced, especially for the smaller-mean component. Furthermore, it 

requires higher sample sizes than the high mean value scenario to obtain the similar 

amount of bias for components 1 and 2 (about 500=N ). Obviously the posterior mean 

with the non-informative prior is not an option. It is interesting to notice that up to 

000,1=N , the bias for the posterior median with the non-informative prior is at its 

minimum, but as the sample size increases significantly larger (i.e. 000,2=N ), it starts 

to exhibit the upward bias trend (for component 2). A similar tendency is also observed 

in the posterior mean with a weakly-informative prior. On the other hand, the posterior 

median with the weakly-informative prior is consistently lower than the true value up to 

sample size 000,2=N . The MSE information for both priors is provided in Tables 7.11 

and 7.12, respectively. Even though there is a downward bias in the posterior mean and 

median when a weakly-informative prior is used, because of the reduced variability in 

the estimates they are performing better than the posterior median with the non-

informative prior in all sample sizes.  

 

Table 7.11 MSEs for dispersion parameters (Moderate-mean, )01.0,01.0(~ Γkφ ) 

Sample size 100 200 300 400 500 600 700 800 900 1000 2000 

)ˆ( ,1 meanMSE φ  10.59  15.37  8.23  15.39  5.34  4.11  5.78 2.70  2.57 3.61  0.63  

)ˆ( ,1 medianMSE φ  9.89  6.78  4.82  8.23  4.01  3.09  3.90  2.38  2.18  3.01  0.57  

)ˆ( ,2 meanMSE φ  18.91  52.88  39.08  63.38  74.18  71.56  71.02  70.51 67.65  53.37  55.19 

)ˆ( ,2 medianMSE φ  23.60  20.64  16.61  21.95  23.07  24.01  23.03  20.37  25.91  16.87  24.39  

 

Table 7.12 MSEs for dispersion parameters (Moderate-mean, )1.0,5.0(~ Γkφ ) 

Sample size 100 200 300 400 500 600 700 800 900 1000 2000 

)ˆ( ,1 meanMSE φ  5.27  5.29  3.93  5.48 3.34  3.46  3.65 2.11  2.38  3.39  0.61  

)ˆ( ,1 medianMSE φ  7.93  4.58 3.36  4.42  2.93  2.73  2.99  1.91  2.05  2.86  0.56 

)ˆ( ,2 meanMSE φ  18.47 10.85  10.36  9.30  9.64 9.83  9.80  8.83  11.41  8.38  10.08  

)ˆ( ,2 medianMSE φ  30.88  17.96  15.55  12.38  10.22  10.34  10.36  8.34  10.61  7.87  7.53  
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7.3.3 Small-mean value scenario 

For the small-mean value scenario, much larger sample size was necessary to obtain 

stable parameter estimates and hence examine the bias properties. When the sample size 

was below 500, the parameter estimates were very unstable and a lot of generated 

datasets showed the label switching problem even with the order constraints. Table 7.13 

shows the ranges of generated sample means and variances for sample sizes which start 

from 500=N with a five-hundred step. 

 

Table 7.13 Ranges of generated sample means and variances (Small-mean) 

Sample size 500 1000 1500 2000 2500 3000 3500 5000 

y  
Min. 0.67  0.70  0.74  0.75 0.76  0.73  0.76  0.76  

Max. 0.98  0.96  0.890  0.89  0.90  0.87  0.88  0.86  

)var(y  
Min. 1.14  1.40  1.682  1.78  1.82  1.80  1.79  1.94  

Max. 3.46  4.50  3.203  3.52  3.78  2.84  2.96  3.07  

 

Tables 7.14 and 7.15 provide the computed averages and standard deviations for all 

parameters. It should be noted that when 500=N some of the generated datasets failed 

to converge or showed a frequent label switching even with the identifiability constraint 

(i.e. 21 ww < ) when they were fitted with the FMNB-2 model. This phenomenon was 

more frequently observed when the non-informative prior was used: there were 13 

datasets for )01.0,01.0(~ Γkφ  and 5 datasets for )1.0,5.0(~ Γkφ . Therefore, those 

datasets were removed from the calculation for 500=N .  
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� . shows the bias trends for this scenario. The 

posterior mean estimates associated with the regression parameters and weight 

parameters appear to be still consistent considering a very small bias, and they are not 

affected by the choice of priors on kφ  like other sample-mean value scenarios.  
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Table 7.14 Averages and standard deviations (Small-mean, )01.0,01.0(~ Γkφ ) 

Sample size 500 1000 1500 2000 2500 3000 3500 5000 

)ˆ( 1,0βE  0.350  0.417  0.454  0.470  0.465  0.486  0.479  0.482  

)ˆ( 1,0βsd  0.197  0.149  0.110  0.093  0.088  0.087  0.074  0.058  

)ˆ( 1,1βE  -0.515  -0.498  -0.494  -0.508  -0.499  -0.501  -0.499  -0.506  

)ˆ( 1,1βsd  0.128  0.094  0.061  0.061  0.056  0.052  0.041  0.042  

)ˆ( 1,2βE  0.507  0.528  0.499  0.507  0.508  0.498  0.499  0.506  

)ˆ( 1,2βsd  0.136  0.084  0.075  0.055  0.050  0.049  0.040  0.038  

)ˆ( ,1 meanE φ  6.262  5.917  5.903  6.845  5.589  5.559  5.895  5.195  

)ˆ( ,1 meansd φ  4.650  4.347  4.025  3.914  3.091  2.368  2.681  1.747  

)ˆ( ,1 medianE φ  3.869  4.379  4.694  5.590  4.917  4.969  5.309  4.925  

)ˆ( ,1 mediansd φ  2.614  2.712  2.575  2.572  2.247  1.788  2.015  1.463  

)ˆ( 1wE  0.231  0.221  0.215  0.206  0.209  0.206  0.206  0.205  

)ˆ( 1wsd  0.041  0.036  0.031  0.024  0.020  0.020  0.019  0.015  

)ˆ( 2,0βE  -1.017  -0.999  -1.005  -1.003  -1.000  -1.005  -1.000  -1.001  

)ˆ( 2,0βsd  0.158  0.092  0.084  0.068  0.057  0.059  0.051  0.041  

)ˆ( 2,1βE  0.493  0.502  0.506  0.501  0.497  0.500  0.504  0.501  

)ˆ( 2,1βsd  0.091  0.066  0.064  0.048  0.042  0.039  0.037  0.032  

)ˆ( 2,2βE  -0.526  -0.513  -0.507  -0.499  -0.510  -0.506  -0.496  -0.501  

)ˆ( 2,2βsd  0.096  0.068  0.061  0.036  0.039  0.046  0.042  0.030  

)ˆ( ,2 meanE φ  11.894  13.503  14.692  14.935  14.427  14.399  14.599  14.340  

)ˆ( ,2 meansd φ  5.192  5.412  7.764  7.706  7.627  7.479  7.501  7.486  

)ˆ( ,2 medianE φ  6.888  8.335  9.402  9.989  9.882  10.036  10.448  10.619  

)ˆ( ,2 mediansd φ  3.088  3.230  4.957  4.967  4.908  4.747  4.794  4.712  

)ˆ( 2wE  0.769  0.779  0.785  0.794  0.791  0.794  0.794  0.795  

)ˆ( 2wsd  0.041  0.036  0.031  0.024  0.020  0.020  0.019  0.015  
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Table 7.15 Averages and standard deviations (Small-mean, )1.0,5.0(~ Γkφ ) 

Sample size 500 1000 1500 2000 2500 3000 3500 5000 

)ˆ( 1,0βE  0.355  0.428  0.463  0.466  0.468  0.492  0.482  0.483  

)ˆ( 1,0βsd  0.169  0.137  0.100  0.089  0.087  0.079  0.071  0.057  

)ˆ( 1,1βE  -0.511  -0.496  -0.493  -0.509  -0.499  -0.499  -0.499  -0.507  

)ˆ( 1,1βsd  0.133  0.092  0.062  0.063  0.056  0.050  0.041  0.042  

)ˆ( 1,2βE  0.504  0.526  0.499  0.508  0.508  0.497  0.499  0.506  

)ˆ( 1,2βsd  0.127  0.086  0.073  0.057  0.052  0.049  0.040  0.039  

)ˆ( ,1 meanE φ  4.510  5.057  5.223  5.932  5.312  5.455  5.696  5.163  

)ˆ( ,1 meansd φ  2.251  2.434  2.196  2.382  2.091  1.816  2.020  1.463  

)ˆ( ,1 medianE φ  3.505  4.262  4.568  5.285  4.851  5.025  5.287  4.915  

)ˆ( ,1 mediansd φ  1.843  2.006  1.842  2.009  1.785  1.574  1.765  1.319  

)ˆ( 1wE  0.230  0.218  0.212  0.207  0.208  0.204  0.205  0.204  

)ˆ( 1wsd  0.040  0.033  0.029  0.023  0.019  0.019  0.018  0.015  

)ˆ( 2,0βE  -1.018  -0.999  -1.001  -1.002  -0.998  -1.003  -0.997  -0.998  

)ˆ( 2,0βsd  0.157  0.095  0.083  0.068  0.058  0.059  0.051  0.043  

)ˆ( 2,1βE  0.491  0.499  0.503  0.501  0.496  0.498  0.501  0.499  

)ˆ( 2,1βsd  0.089  0.065  0.063  0.048  0.041  0.037  0.036  0.032  

)ˆ( 2,2βE  -0.524  -0.512  -0.503  -0.499  -0.508  -0.504  -0.494  -0.499  

)ˆ( 2,2βsd  0.090  0.069  0.061  0.038  0.038  0.046  0.041  0.030  

)ˆ( ,2 meanE φ  7.098  8.277  8.827  9.310  9.379  9.522  9.865  10.121  

)ˆ( ,2 meansd φ  2.048  2.158  3.051  2.987  3.103  3.015  3.055  3.119  

)ˆ( ,2 medianE φ  5.553  6.749  7.342  7.857  8.027  8.179  8.569  8.940  

)ˆ( ,2 mediansd φ  1.763  1.899  2.642  2.576  2.673  2.611  2.632  2.682  

)ˆ( 2wE  0.770  0.782  0.788  0.793  0.792  0.796  0.795  0.796  

)ˆ( 2wsd  0.040  0.033  0.029  0.023  0.019  0.019  0.018  0.015  
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Figure 7.4 Bias trends for model parameters by sample size (Small-mean scenario) 
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For the biases associated with the dispersion parameters, the posterior mean exhibits a 

high upward bias for component 1, not to mention for component 2 when the non-

informative prior was used. The posterior median seems to be working fine for both 

components after 500,1=N , but as the sample size grows the upward bias trend 

becomes noticeable especially for component 2. For the weakly-informative prior case, 

the dispersion parameter for component 2 is consistently underestimated for both 

posterior mean and median. This tendency was already observed in the moderate sample 

mean value scenario. We can infer from this result that the weakly-informative prior is 

exercising much influence when the component mean value is low and its sample size is 

small. It is pulling down the posterior mean toward the prior mean which is 5, which 

deteriorates the bias properties of posterior mean or median. However, in terms of MSE 

(Tables 7-16 and 7-17), in spite of the significant underestimation, the summary 

statistics for the weakly-informative prior perform better than those of the non-

informative prior in most sample sizes.  

 

Table 7.16 MSEs for dispersion parameters (Small-mean, )01.0,01.0(~ Γkφ ) 

Sample size 500 1000 1500 2000 2500 3000 3500 5000 

)ˆ( ,1 meanMSE φ  23.22  19.73  17.02  18.73  9.90  5.92  7.99  3.09  

)ˆ( ,1 medianMSE φ  8.12  7.74  6.72  6.96  5.05  3.20  4.16  2.15  

)ˆ( ,2 meanMSE φ  30.54  41.56  82.30  83.74  77.77  75.29  77.41  74.87  

)ˆ( ,2 medianMSE φ  19.22  13.21  24.93  24.67  24.11  22.54  23.19  22.58  

 

Table 7.17 MSEs for dispersion parameters (Small-mean, )1.0,5.0(~ Γkφ ) 

Sample size 500 1000 1500 2000 2500 3000 3500 5000 

)ˆ( ,1 meanMSE φ  5.31  5.93  4.87  6.54  4.47  3.50  4.57  2.17  

)ˆ( ,1 medianMSE φ  5.63  4.57  3.58  4.12  3.21  2.48  3.20  1.75  

)ˆ( ,2 meanMSE φ  12.62  7.62  10.69  9.40  10.02  9.32  9.35  9.74  

)ˆ( ,2 medianMSE φ  22.88  14.18  14.05  11.23  11.04  10.13  8.98  8.32  
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7.4 Chapter Summary and Recommendation 

The simulation study conducted on the FMNB-2 model showed that the posterior mean 

using the non-informative prior exhibited a high bias for the dispersion parameter 

especially, in the smaller-mean value component. The posterior median, instead, had 

much better bias properties than the posterior mean, particularly at small sample sizes 

and small sample-mean values. However, as the sample size increases significantly for 

both small to moderate mean value scenarios, the posterior median using the non-

informative prior also began to exhibit the upward bias trend. This is because as the 

sample size increases the posterior median is getting closer to the posterior mean which 

exhibits the upward bias. The use of the weakly-informative prior had the advantage of 

reducing the variability in the estimates for the posterior mean and median, but it tended 

to underestimate the true value by pulling the estimates toward its prior mean. As the 

sample-mean value decreases this tendency was more pronounced.  

 
Based on the results of this chapter, we suggest guidelines about the selection of priors 

and the corresponding summary statistics to use in terms of their bias properties. The 

guidelines are tabulated in Table 7.18 for different sample sizes and sample mean values. 

As indicated in the introduction, since the necessary sample size in FMNB-2 model 

greatly depends on the current dataset, the sample size ranges suggested in Table 7.18 

are for a relatively well-separated data. The minimum sample sizes in each sample mean 

range (i.e. 300=N  for high mean, 500=N  for moderate mean, and 500,1=N  for 

small mean) was basically determined by the bias associated with the dispersion 

parameters, but they also minimize the biases in the regression coefficients and the 

mixing proportions. The bias related to the regression coefficients and the mixing 

proportions were almost negligible regardless of sample sizes and sample-mean values, 

as compared to the bias associated with the dispersion parameters.   
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Table 7.18 Recommended priors and summary statistics in terms of bias properties 

Sample Mean 
Range 

Sample Size 
Range 

Recommended 
Priors 

Recommended 
Summary Statistics 

High 

)5( >y  

300 – 1,000 
Non-informative prior Posterior median 

Weakly-informative prior Posterior mean 

> 1,000 Weakly-informative prior Posterior median 

Moderate 

)51( << y  

500 – 1,000 
Non-informative prior Posterior median 

Weakly-informative prior Posterior mean 

1,000 – 2,000 Weakly-informative prior Posterior mean 

> 2,000 Weakly-informative prior Posterior median 

Small 

)1( <y  

1,500 – 3,000 Non-informative prior Posterior median 

> 3,500 Weakly-informative prior Posterior mean 
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CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

 

 

Over-dispersion caused by unobserved heterogeneity is very common in motor vehicle 

crash data and failure to accommodate such heterogeneity in the model can undermine 

the validity of the model results. The negative binomial regression model, which is a 

continuous mixture of Poisson/Gamma distributions, has been a usual choice for 

accommodating over-dispersion in highway safety study. However, it is often likely that 

empirical frequencies of crash data do not follow the particular distribution assumed for 

the Poisson mean rate. In this respect, the primary objective of this research was to 

examine the applicability of an alternative model formulation that could be used for 

capturing heterogeneity through the use of finite mixtures of regression models. In finite 

mixture models, it is assumed that the observations of a sample arise from two or more 

unobserved components with unknown proportions. The advantage of using a finite 

mixture model is that it allows the data to determine the true relationships by choosing a 

finite number of unobserved latent components without making a particular 

distributional assumption on the mixing variable. The downside of the model is the 

difficulty in determining the optimal number of components. The final outputs of finite 

mixture models are the number of components, the proportion of each component and 

the component-specific regression parameter estimates.  

 

In order to investigate the performance of the finite mixture models in vehicle crash data, 

finite mixtures of Poisson regression models (FMP-K) and finite mixtures of negative 

binomial regression models (FMNB-K) were formulated and their respective 

performances were compared to that of the single negative binomial regression model 

(NB) using both simulated and empirical crash datasets. For model parameter estimation, 

a Bayesian approach was adopted since it provides much richer inference than the 
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maximum likelihood approach. For a comparative purpose, the maximum likelihood 

estimates were also computed where appropriate. 

 

This chapter highlights the main findings from this research and suggests a few 

recommendations for using the mixture models in highway safety research. This 

dissertation ends with a discussion on possible directions in which the research can be 

extended. 

  

8.1 Main Findings 

Using simulated datasets, first, it was shown that the CFMP-K model (i.e., a FMP-K 

model with regression parameters constrained to be the same) could effectively 

approximate the continuous mixture of Poisson/Gamma model with only a few numbers 

of mass points and their respective proportions. The necessary number of components 

depended on the sample size, sample mean and the degree of dispersion. Second, the 

examples for FMP-2 and FMNB-2 models demonstrated that the single NB regression 

model was not a viable option in terms of model prediction and parameter interpretation 

if the source of over-dispersion is due to population heterogeneity. If there is an extra-

variation within each component, which may often be the case in crash data, the FMP-2 

model was not preferred because such heterogeneity resulted in the under-estimation of 

standard errors of the model parameters. In both cases, the FMNB-2 model was a good 

candidate model. 

 

The applications with two empirical crash datasets showed that a two-component finite 

mixture of NB regression models was quite enough to characterize the randomness of 

crash occurrence and it provided useful information on features of the population under 

study. For the intersection crash dataset, the FMNB-2 model did not improve the 

goodness-of-fit per se. However, it showed a possibility of the different effects of 

approaching traffic flows on each component, which could not be detected if we used the 

single aggregate NB model. This information is valuable because we are often interested 
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in assessing the effect of a covariate on crash occurrence from the estimated coefficient. 

The coefficients estimated from the FMNB-2 model are considered more realistic in that 

it takes account of the different effects on the different subpopulations. In contrast, the 

coefficients from the NB model only consider the average effect of a covariate across all 

intersections in the sample. On the other hand, for the segment crash dataset, the data 

separation was more distinct and the FMNB-2 (or CFMNB-2) model actually improved 

the goodness-of-fit. For both cases, the FMP-K model had a tendency to produce too 

many components, making it difficult to interpret the effects of model parameters. From 

an application point of view, the FMNB-2 model was considered more useful and 

parsimonious. However, it may be premature to conclude that crash data can always be 

approximated with only two components. 

 

In Chapter VI, we applied the developed model (i.e., CFMNB-2 model) for the segment 

crash dataset to the hotspot identification and the accident medication factor 

development. Although the difference in the hotspot rankings between the NB and 

CFMNB-2 models was minor, it is quite possible that the difference can be more 

pronounced depending on the data under study. In such a case, the ranking results from 

the CFNB-2 model should be preferred because of the better model specification. This 

was supported by the simulation study that aimed to demonstrate a high number of false 

positives and negatives when the mis-specified model was used for identifying hotspots. 

The simulation study also identified the relationship between the threshold values and 

the hotspot identification performance criteria. For a judicious use of transportation 

funds, highway safety managers are recommended to estimate the cost difference 

resulting from the false positives and the false negatives, and should decide the optimal 

threshold value based on the trade-off between the two costs. On the other hand, the 

accident modification factor (AMF) curve equation for the FMNB-2 model was derived. 

The resultant AMF function for a certain covariate had two good properties over the one 

from the NB model. The first one was that the safety effect of a covariate was better 

reflected by the AMF function from the FMNB-2 model, since the model takes into 
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account the differential responsiveness of crash frequency to the covariate. The second 

one was that the safety effect of a covariate did not increase continuously without a limit, 

but leveled off after a certain value of the covariate. This made more logical sense. 

However, there was also a possibility that a U-shaped relationship could be found. This 

may raise some debate among highway safety community. 

 

Finally, given the superior performance of the FMNB-2 model in crash data, we 

characterized the bias properties of posterior summary statistics (posterior mean and 

median) for the dispersion parameters in FMNB-2 model through the simulation study. 

The result from this study is important if we are to use the calibrated model for future 

prediction. The biased parameters will degrade the reliability of the predicted values and 

their confidence intervals as well. While the bias associated with the regression 

parameters was minimal regardless of sample sizes and sample-mean values considered, 

the bias for the dispersion parameter was significant. The results showed that the 

posterior mean using a non-informative prior exhibited a high bias for the dispersion 

parameter and should be avoided when the dataset contains less than 2,000 observations 

(even for high sample-mean values). The posterior median showed much better bias 

properties, particularly at small sample sizes and small sample mean values. However, as 

the sample size increases, the posterior median using a non-informative prior also began 

to exhibit an upward bias trend. In such cases, the posterior mean or median with the 

weakly-informative prior provided a smaller bias. Based on the simulation results, 

general guidelines were also provided about the choice of priors and the summary 

statistics to use for different sample sizes and sample mean values. The minimum 

sample sizes for each sample-mean category were 300=N  for high mean, 500=N  for 

moderate mean, and 500,1=N  for small mean. 

 

8.2 Recommendations 

Based on the findings from this research, we are suggesting the following 

recommendations for using the mixture models in highway safety research: 
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1. Highway safety analysts should consider the use of finite mixture models before 

the single aggregate NB model if crash data are suspected to be generated from 

different sup-populations. 

2. If the data are fitted with a single NB regression model and the resulting Pearson 
2χ /(degree of freedom) is much larger than 1.0, this indicates that the variance 

structure in the residuals is not distributed in the negative binomial manner. In 

this case, the NB model specification should be questioned and the finite mixture 

models may be good candidate models for this dataset. 

3. Even when the goodness-of-fit of the NB model is satisfactory, the consideration 

of using finite mixture models is still valid since the over-dispersion might have 

been caused by heterogeneity in the covariates. The NB model ignores such 

heterogeneity in the data by taking the average effect of each covariate across all 

observations. 

4. When there is a significantly large number of zeros in a dataset, researchers often 

resorted to the zero-inflated type of models to increase the model fit statistics. 

Because of the logic problems regarding the crash data generation process 

inherent in those models, the use of finite mixture models can be considered. In 

fact, the latter embraces the ZIP or ZINB model as a special case. However, 

many zeros may result in a very small sample-mean value unless the data are 

highly dispersed with many large numbers as well. In such a case, the sample 

size should be sufficiently large enough to obtain the unbiased or less biased 

parameter estimates. 

5. A certain degree of caution has to be exercised when developing the accident 

modification factor function for an interest covariate. The AMF curve shape 

produced by a finite mixture model has a better property in that the safety effect 

of a covariate eventually levels off as the covariate increases significantly from 

the base condition. However, this is not always the case. A U-shaped curve can 
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be sometimes produced. The U-shaped relationship was partly supported by 

some researchers, but is not yet widely accepted by highway safety community. 

 

8.3 Future Research Areas 

Although the objectives of this research have been achieved, there are some limitations 

and valuable extensions that merit further study in the future.  

� In this research, we allowed each mixture component to have its own regression 

coefficients as well as dispersion parameters in the FMNB-K model. This is a 

general setup, but many variants are possible in which one can appreciate the 

mixed-effects of model parameters. For example, model parameters can be 

allowed to vary for all components, vary between groups of components, or to be 

fixed over all components. In order to encompass all these variants, we may need 

a more general sampling algorithm than the one provided in Subsection 3.4.4 in 

Chapter III. During this research we tried only a limited number of variants, such 

as the CFMP-K model in which only intercepts were allowed to vary across 

components, and the CFMNB-2 in which some regression parameters in one 

component were constrained to be zero.  

� Along the same line as above, the weight distribution ( w ) used in both FMP-K 

and FMNB-K can be generalized by including some covariates in the discrete 

mixing distribution. As mentioned in Subsection 2.4.2, the use of varying weight 

factors was beyond the scope of this research because of estimation complexity. 

Although there is no guarantee that this generalized model would improve the fit, 

it is worthwhile to compare it with the constant weight model. The advantage of 

the varying weight model is that we can identify the covariates that contribute to 

the separation of data. 

� Another interesting research area is to compare model performances between the 

two-component finite mixture models (FMP-2 and FMNB-2) and the zero-inflated 
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models (ZIP and ZINB) when data contain many zeros. This can be done with 

either simulated data or empirical crash data if available. The findings can answer 

some important issues about adopting zero-inflated models for modeling highway 

safety data. Recall that if the finite mixture model is restricted to have two 

components and the mean for one of the components is constrained to be zero, 

then we have the zero-inflated model. 

� Among the ranking criteria for the identification of hotspots, we only used the 

conditional mean of crash frequency obtained from Equations (6.1) and (6.2). 

Alternatively, several estimators from the posterior distribution can also be 

considered including the posterior mean of crash frequency, the potential of 

accident reduction, and the posterior expectation of ranks (Miranda-Moreno, 

2006). If the empirical Bayesian (EB) method is preferred, the derivation of EB 

estimates for the finite mixture models may be necessary. 

� In the simulation study in Chapter VII, we provided the guidelines on the 

minimum sample sizes for different sample-mean categories. However, these 

guidelines are based on the results from the limited combinations of simulation 

design values. To fully understand the bias properties, larger scale simulation 

studies may be required in the future. 

� Finally, despite many advantages of using finite mixture models, there are still 

several unresolved issues especially for the label switching problem and the 

determination of optimal number of components. Judging from the literature 

review on this area, it seems that there is no consensus method for these issues yet. 

In this research, some of unidentified models (such as FMP-4 or 5 and FMNB-3) 

were excluded for further analyses and confined the analyses to the models whose 

label switching problems can be easily corrected by imposing identifiability 

constraints on the component’s parameters. This may be an obvious limitation of 

this research and further work should be carried out with more advanced 

technologies. 
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APPENDIX A 

DERIVATION OF NEGATIVE BINOMIAL DISTRIBUTION FROM 

A POISSON-GAMMA MIXTURE 
 

The negative binomial distribution can be derived from two approaches. 
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Derivation 2: 
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The marginal mean and variance of iy  are obtained from the following relationships. 
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Alternatively, the negative binomial distribution can also be obtained by assuming iλ  

has a gamma distribution with shape iφµ  and scale φ  (McCullagh and Nelder, 1989). 

Analogous to the derivation above, it can be shown that )( iyp  is expressed as: 

ii y

ii

ii
i y

y
yp ��

�

�
��
�

�

+��
�

�
��
�

�

+Γ+Γ
+Γ=

1
1

1)()1(
)(

)(
φφ

φ
φµ

φµ
φµ

 

In this case, using iterated expectation and variance, it can be shown that the marginal 

mean and variance of iy  are: 

   iiyE µ=)(  

   �
	



�
�


 +=
φ

µ 1
1)( iiyVar  

This is the NB1 model termed by Cameron and Trivedi (1998) and corresponds to 

Equation (2.13) in Chapter II. 
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APPENDIX B 

METROPOLIS-HASTINGS ALGORITHM 

 

A Metropolis-Hastings (MH) is a generic MCMC algorithm that generates samples from a 

probability distribution, using a full joint density function, )(�π  of unknown parameters  � . 

The algorithm relies on a so-called proposal distribution ( q ) and consists of the following 

steps: 

1. Set a starting value, ),,( )0()0(
1

)0(
pθθ �=� . Set 1=t . 

2. Generate a candidate value from a proposal distribution: 

)|(~),,( )1()()(
1

)( −⋅= tc
p

cc q �� θθ �  

3. Compute the ratio 
)|()(
)|()(
)1()()1(

)()1()(

−−

−

= tct

ctc

q
q

R
���

���

π
π

. 

4. Set )()( ct
�� =  with probability ),1(min)|( )1()( Rtc =−

��α  

Otherwise, )1()( −= tt
��  

5. Set 1+= tt  and return to step 2 until enough samples are obtained. 

In Step 4, if R is greater than 1, the candidate will be accepted with probability of 1. If 

10 << R , the comparison is done between R and some random probability draw (e.g. 

)1,0(~ Uu ). If uR > , the candidate is accepted, otherwise it is rejected. Especially in a 

Random-Walk Metropolis algorithm, a symmetric proposal distribution (usually, a normal 

distribution) is considered i.e., one satisfying |)(|)|( )1()1( −− −= tt qq ���� . With such a 

proposal, )|()|( )()1()1()( cttc qq ����
−− = and thus the acceptance probability in Step 4 

becomes ��
�

�
��
�

�
= −

−

)(
)(

,1min)|( )1(

)(
)1()(

t

c
tc

�

�
��

π
πα . It turns out that the series of � generated in 

this manner forms a Markov chain whose stationary distribution is the desired posterior 

distribution )(�π . 
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APPENDIX C 

SIMULATION RESULTS FOR EXAMPLE 1 (TABLE 4.5) 

 

For small-mean value and phi=0.5 
 
N=50 (mean=0.76, variance=2.3) 

 True 
Value NB FMP-2 

Comp 1 Comp 2 

0 -0.5 -1.158 -11.718* -0.217* 

1 0.5 1.736 1.219 

2 -0.5 -0.133* -0.149* 

� 0.5 0.585 - 
w 1 1   

-2LL - 97.1  
AIC - 105.1 106.7 
BIC - 112.8 116.3 

NOTE: * indicates the non-significance at 0.05 level. 

N=100 (mean=0.78, variance=3.1) 
 True 

Value NB FMP-2 
Comp 1 Comp 2 

0 -0.5 -0.533 -11.623* 0.142* 

1 0.5 0.645 0.561 

2 -0.5 -0.969 -0.911 

� 0.5 0.649 - 
w 1 1 0.468 0.532 

-2LL - 113.6 112.5 
AIC - 121.6 122.5 
BIC - 129.3 132.0 

 

 
 
N=500 (mean=0.76, variance=2.6) 
 True 

Value NB 
FMP-2 FMP-3 FMP-4 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 -0.5 -0.529 0.795 -1.475 1.071 -0.456 -3.018     

1 0.5 0.471 0.513 0.459  

2 -0.5 -0.452 -0.429 -0.484  

� 0.5 0.497 - -  
w 1 1 0.184 0.816 0.101 0.430 0.468     

-2LL - 1096.3 1108.4 1088.5  
AIC - 1104.3 1118.4 1102.5  
BIC - 1121.1 1139.5 1132.0  

 
 
N=1000 (mean=0.78, variance=3.9) 
 True 

Value NB FMP-2 FMP-3 FMP-4 
Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 -0.5 -0.512 0.910 -1.474 2.191 0.779 -1.514     

1 0.5 0.433 0.464 0.391  

2 -0.5 -0.568 -0.504 -0.482  

� 0.5 0.473 - -  
w 1 1 0.170 0.830 0.065 0.255 0.680     

-2LL - 2185.8 2242.3 2211.7  
AIC - 2193.8 2252.3 2225.7  
BIC - 2213.5 2276.9 2260.1  
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 For small-mean value and phi=2 
 
N=50 (mean=0.76, variance=1.1) 
 True 

Value NB FMP-2 FMP-3 FMP-4 
Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 -0.5 -0.524 -0.7095 0.974*        

1 0.5 0.729 0.874   

2 -0.5 -0.313* -0.287*   

� 2 8.9* -   
w 1 1 0.874 0.126        

-2LL - 108.2 107.9   
AIC - 116.2 117.9   
BIC - 123.9 127.5   

NOTE: * indicates the non-significance at 0.05 level. 

 
N=100 (mean=0.48, variance=0.6) 
 True 

Value NB FMP-2 FMP-3 FMP-4 
Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 -0.5 0.177 0.262* -1.184        

1 0.5 0.172* 0.081*   

2 -0.5 0.188 -0.545   

� 2 2.80 -   
w 1 1 0.123 0.877        

-2LL - 177.4 176.7   
AIC - 185.4 186.7   
BIC - 195.8 199.8   

 
 
N=500 (mean=0.74, variance=1.9) 
 True 

Value NB FMP-2 FMP-3 FMP-4 
Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 -0.5 -0.604 0.201 -1.080        

1 0.5 0.464 0.450   

2 -0.5 -0.488 -0.480   

� 2 2.121 -   
w 1 1 0.256 0.744        

-2LL - 1069.6 1070.1   
AIC - 1077.6 1080.1   
BIC - 1094.4 1101.2   

 
 
N=1000 (mean=0.78, variance= 1.6) 
 True 

Value NB 
FMP-2 FMP-3 FMP-4 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 -0.5 0.529 0.313 -1.013        

1 0.5 0.527 0.529   

2 -0.5 -0.513 -0.532   

� 2 2.058 -   
w 1 1 0.231 0.769        

-2LL - 2189.6 2186.2   
AIC - 2197.6 2196.2   
BIC - 2217.2 2220.8   
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For small-mean value and phi=5 
 
N=50 (mean=0.80, variance=1.2) 
 True 

Value NB 
FMP-2 FMP-3 FMP-4 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 -0.5 -0.367* -0.503 0.965*        

1 0.5 0.230* 0.230*   

2 -0.5 -0.619 -0.676   

� 5 6.9* -   
w 1 1 0.838 0.162        

-2LL - 112.0 111.8   
AIC - 120.0 121.8   
BIC - 127.6 131.3   

NOTE: * indicates the non-significance at 0.05 level. 

 
N=100 (mean=0.82, variance=1.5) 
 True 

Value NB FMP-2 FMP-3 FMP-4 
Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 -0.5 -0.560 -2.546 -0.298*        

1 0.5 0.715 0.749   

2 -0.5 -0.409 -0.525   

� 5 2.72 -   
w 1 1 0.287 0.713        

-2LL - 222.7 220.5   
AIC - 230.7 230.5   
BIC - 241.1 243.5   

 
 
N=500 (mean=0.79, variance=1.5) 
 True 

Value NB FMP-2 FMP-3 FMP-4 
Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 -0.5 -0.586 -0.268* -1.347        

1 0.5 0.484 0.494   

2 -0.5 -0.577 -0.566   

� 5 4.86 -   
w 1 1 0.527 0.473        

-2LL - 1068.0 1066.9   
AIC - 1076.0 1076.9   
BIC - 1092.9 1097.9   

 
 
N=1000 (mean=0.77, variance=1.3) 
 True 

Value NB 
FMP-2 FMP-3 FMP-4 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 -0.5 -0.512 -0.193* -1.203        

1 0.5 0.482 0.486   

2 -0.5 -0.450 -0.503   

� 5 5.10 -   
w 1 1 0.512 0.488        

-2LL - 2152.8 2151.6   
AIC - 2160.8 2161.6   
BIC - 2180.5 2186.2   
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For moderate mean value and phi=0.5 
 
N=50 (mean=2.86, variance=31.3) 
 True 

Value NB 
FMP-2 FMP-3 FMP-4 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1 0.656 1.964 -0.121* 2.024 0.487 -3.721*     

1 0.5 0.694 0.747 0.819  

2 -0.5 -0.672 -0.864 -0.622  

� 0.5 0.475 - -  
w 1 1 0.167 0.833 0.147 0.471 0.382     

-2LL - 187.6 203.5 180.5  
AIC - 195.7 213.5 194.5  
BIC - 203.3 223.0 207.8  

NOTE: * indicates the non-significance at 0.05 level. 

 
N=100 (mean=3.64, variance=102.0) 
 True 

Value NB FMP-2 FMP-3 FMP-4 
Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1 0.741 1.843 -0.397 1.915 0.305* -1.870     

1 0.5 0.630 0.863 0.839  

2 -0.5 -0.689 -0.823 -0.791  

� 0.5 0.540 - -  
w 1 1 0.228 0.772 0.199 0.408 0.393     

-2LL - 406.5 432.6 398.1  
AIC - 414.5 442.6 412.1  
BIC - 424.9 455.6 430.3  

 
 
N=500 (mean=3.32, variance=33.9) 
 True 

Value NB FMP-2 FMP-3 FMP-4 
Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1 1.005 2.195 -0.132* 2.343 0.938 -1.478 2.699 1.920 0.592 -2.089 

1 0.5 0.385 0.307 0.344 0.312 

2 -0.5 -0.456 -0.387 -0.459 -0.373 

� 0.5 0.465 - - - 
w 1 1 0.235 0.765 0.165 0.357 0.478 0.061 0.169 0.385 0.384 

-2LL - 2138.0 2345.5 2184.8 2129.8 
AIC - 2146.0 2355.5 2198.8 2147.9 
BIC - 2162.8 2376.5 2228.3 2185.9 

 
 
N=1000 (mean=3.56, variance=43.2) 
 True 

Value NB 
FMP-2 FMP-3 FMP-4 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1 0.974 2.226 0.014* 2.455 1.215 -0.872 2.558 1.658 0.600 -1.781 

1 0.5 0.535 0.344 0.536 0.537 

2 -0.5 -0.553 -0.351 -0.471 -0.451 

� 0.5 0.506 - - - 
w 1 - 0.223 0.777 0.116 0.331 0.552 0.087 0.161 0.359 0.393 

-2LL - 4250.2 4813.3 4362.4 4268.8 
AIC - 4258.2 4823.3 4376.5 4286.8 
BIC - 4277.8 4847.8 4410.8 4330.9 
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For moderate mean value and phi=2 
 
N=50 (mean=2.54, variance=7.5) 
 True 

Value NB 
FMP-2 FMP-3 FMP-4 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1 0.604 0.670 -0.926*        

1 0.5 0.664 0.767   

2 -0.5 -0.679 -0.743   

� 2 7.32 -   
w 1 1 0.876 0.124        

-2LL - 171.7 168.4   
AIC - 179.7 178.4   
BIC - 187.3 188.0   

NOTE: * indicates the non-significance at 0.05 level. 

 
N=100 (mean=2.40, variance=4.4) 
 True 

Value NB FMP-2 FMP-3 FMP-4 
Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1 0.718 1.489 0.267        

1 0.5 0.252 0.267   

2 -0.5 -0.467 -0.470   

� 2 6.06 -   
w 1 1 0.133 0.867        

-2LL - 369.4 368.4   
AIC - 377.4 378.4   
BIC - 387.8 391.4   

 
 
N=500 (mean=3.46, variance=21.6) 
 True 

Value NB FMP-2 FMP-3 FMP-4 
Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1 0.903 1.696 0.433 1.803 0.778 -0.434     

1 0.5 0.554 0.538 0.521  

2 -0.5 -0.515 -0.479 -0.462  

� 2 1.992 - -  
w 1 1 0.247 0.4332 0.175 0.582 0.244     

-2LL - 2109.5 2153.9 2121.4  
AIC - 2117.5 2163.9 2135.4  
BIC - 2134.3 2185.0 2164.9  

 
 
N=1000 (mean=3.39, variance=18.0) 
 True 

Value NB 
FMP-2 FMP-3 FMP-4 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1 0.981 1.610 0.356 1.942 1.133 -0.048* 1.976 1.256 0.396 -1.618 

1 0.5 0.4842 0.468 0.502 0.485 

2 -0.5 -0.475 -0.459 -0.461 -0.468 

� 2 1.904 - - - 
w 1 1 0.353 0.647 0.121 0.476 0.403 0.100 0.367 0.429 0.104 

-2LL - 4291.7 4383.9 4308.9 4292.3 
AIC - 4299.7 4393.9 4322.9 4310.3 
BIC - 4319.4 4418.5 4357.3 4354.5 
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For moderate mean value and phi=5 
 
N=50 (mean=3.5, variance=12.8) 
 True 

Value NB 
FMP-2 FMP-3 FMP-4 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1 0.918 1.266 0.675        

1 0.5 0.760 0.753   

2 -0.5 -0.554 -0.550   

� 5 14.2 -   
w 1 1 0.365 0.635        

-2LL - 189.5 188.9   
AIC - 197.5 198.9   
BIC - 205.2 208.5   

NOTE: * indicates the non-significance at 0.05 level. 

 
N=100 (mean=3.49, variance=10.8) 
 True 

Value NB FMP-2 FMP-3 FMP-4 
Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1 0.951 1.414 0.708        

1 0.5 0.561 0.555   

2 -0.5 -0.480 -0.464   

� 5 7.75 -   
w 1 1 0.288 0.712        

-2LL - 401.9 401.7   
AIC - 409.9 411.7   
BIC - 420.3 424.8   

 
 
N=500 (mean=3.66, variance=17.8) 
 True 

Value NB FMP-2 FMP-3 FMP-4 
Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1 0.994 1.393 0.574        

1 0.5 0.512 0.516   

2 -0.5 -0.467 -0.435   

� 5 5.260 -   
w 1 1 0.438 0.562        

-2LL - 2065.8 2073.7   
AIC - 2073.8 2083.7   
BIC - 2090.6 2104.7   

 
 
N=1000 (mean=3.53, variance=17.3) 
 True 

Value NB 
FMP-2 FMP-3 FMP-4 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1 1.001 1.438 0.589        

1 0.5 0.497 0.501   

2 -0.5 -0.487 -0.495   

� 5 4.742 -   
w 1 1 0.386 0.614        

-2LL - 4119.8 4130.1   
AIC - 4127.8 4140.1   
BIC - 4147.5 4164.6   
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For high mean value and phi=0.5 
 
N=50 (mean=5.5, variance=113.3) 
 True 

Value NB 
FMP-2 FMP-3 FMP-4 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1.7 1.336 2.892 0.563 2.699 1.205 -2.553     

1 0.5 0.717 0.078* 0.873  

2 -0.5 -0.563 -0.829 -0.517  

� 0.5 0.438 - -  
w 1 1 0.184 0.816 0.143 0.468 0.389     

-2LL - 239.5 292.9 230.9  
AIC - 247.5 302.9 244.9  
BIC - 255.1 312.5 258.3  

NOTE: * indicates the non-significance at 0.05 level. 

 
N=100 (mean=6.1, variance=127.3) 
 True 

Value NB FMP-2 FMP-3 FMP-4 
Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1.7 1.463 2.391 -0.045* 2.962 1.703 -0.769 3.238 2.107 0.862 -1.530 

1 0.5 0.676 0.693 0.788 0.479 

2 -0.5 -0.464 -0.173 -0.086* -0.244 

� 0.5 0.440 - - - 
w 1 1 0.347 0.653 0.126 0.332 0.542 0.061 0.303 0.216 0.420 

-2LL - 512.8 656.8 527.7 515.9 
AIC - 520.8 666.8 541.7 533.9 
BIC - 531.2 679.9 559.9 557.3 

 
 
N=500 (mean=7.5, variance=170.5) 
 True 

Value NB FMP-2 FMP-3 FMP-4 
Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1.7 1.669 2.706 0.519 3.058 1.917 -0.285 3.118 2.236 1.310 -0.799 

1 0.5 0.535 0.344 0.456 0.483 

2 -0.5 -0.544 -0.405 -0.427 -0.398 

� 0.5 0.487 - - - 
w 1 1 0.294 0.706 0.134 0.321 0.545 0.113 0.191 0.249 0.446 

-2LL - 2723.2 3480.2 2871.5 2779.7 
AIC - 2731.2 3490.2 2885.5 2797.7 
BIC - 2748.1 3511.2 2915.0 2835.6 

NOTE: FMP-5: AIC=2769.9, BIC=2816.3 
 
N=1000 (mean=7.5, variance=238.7) 
 True 

Value NB 
FMP-2 FMP-3 FMP-4 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1.7 1.703 2.730 0.420 3.076 1.867 -0.296 3.273 2.469 1.323 -1.007 

1 0.5 0.487 0.420 0.472 0.404 

2 -0.5 -0.586 -0.587 -0.591 -0.604 

� 0.5 0.489 - - - 
w 1 1 0.274 0.726 0.129 0.345 0.526 0.078 0.172 0.345 0.405 

-2LL - 5444.5 7151.4 6021.7 5610.4 
AIC - 5452.5 7161.4 6035.7 5628.4 
BIC - 5472.1 7185.9 6070.1 5672.5 
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For High mean value and phi=2 
 
N=50 (mean= 5.7, variance=36.9) 
 True 

Value NB 
FMP-2 FMP-3 FMP-4 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1.7 1.416 1.814 1.086        

1 0.5 0.565 0.507   

2 -0.5 -0.765 -0.727   

� 2 8.11 -   
w 1 1 0.395 0.605        

-2LL - 221.5 221.2   
AIC - 229.5 231.2   
BIC - 237.1 240.8   

NOTE: * indicates the non-significance at 0.05 level. 

 
N=100 (mean=6.3, variance=73.8) 
 True 

Value NB FMP-2 FMP-3 FMP-4 
Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1.7 1.399 2.269 1.016 2.302 1.330 0.102     

1 0.5 0.654 0.545 0.589  

2 -0.5 -0.674 -0.542 -0.521  

� 2 2.069 - -  
w 1 1 0.216 0.784 0.175 0.576 0.249     

-2LL - 513.1 543.7 522.9  
AIC - 521.1 553.7 536.9  
BIC - 531.6 566.8 555.2  

 
 
N=500 (mean=7.4, variance=97.5) 
 True 

Value NB FMP-2 FMP-3 FMP-4 
Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1.7 1.654 2.250 1.129 2.570 1.732 0.605 2.624 2.002 1.492 0.448 

1 0.5 0.501 0.496 0.514 0.499 

2 -0.5 -0.542 -0.627 -0.492 -0.510 

� 2 2.149 - - - 
w 1 1 0.324 0.676 0.132 0.355 0.513 0.100 0.248 0.374 0.278 

-2LL - 2730.4 2915.7 2758.5 2744.4 
AIC - 2738.4 2925.7 2772.5 2762.4 
BIC - 2755.3 2946.7 2802.0 2800.3 

NOTE: FMP-5: AIC=2769.9, BIC=2816.3 
 
N=1000 (mean=7.2, variance=78.5) 
 True 

Value NB 
FMP-2 FMP-3 FMP-4 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1.7 1.689 2.325 1.079 2.452 1.598 0.573 2.771 2.199 1.379 0.386 

1 0.5 0.505 0.476 0.455 0.490 

2 -0.5 -0.519 -0.517 -0.491 -0.529 

� 2 1.852 - - - 
w 1 1 0.341 0.659 0.244 0.406 0.351 0.061 0.272 0.405 0.262 

-2LL - 5505.6 5745.9 5581.9 5507.0 
AIC - 5513.6 5755.9 5595.9 5525.0 
BIC - 5533.2 5780.4 5630.3 5569.2 

NOTE: FMP-5: AIC=5515.0, BIC=5569.0 



 206

For High mean value and phi=5 
 
N=50 (mean=6.9, variance= 33.9) 
 True 

Value NB 
FMP-2 FMP-3 FMP-4 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1.7 1.688 1.896 1.317        

1 0.5 0.594 0.560   

2 -0.5 -0.561 -0.547   

� 5 15.64 -   
w 1 1 0.575 0.425        

-2LL - 234.6 232.9   
AIC - 242.6 242.9   
BIC - 250.3 252.5   

NOTE: * indicates the non-significance at 0.05 level. 

 
N=100 (mean=6.5, variance=26.4) 
 True 

Value NB FMP-2 FMP-3 FMP-4 
Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1.7 1.643 2.162 1.465        

1 0.5 0.355 0.388   

2 -0.5 -0.543 -0.545   

� 5 10.32 -   
w 1 1 0.192 0.808        

-2LL - 489.4 486.7   
AIC - 497.4 496.7   
BIC - 507.8 509.8   

 
 
N=500 (mean=7.4, variance=66.0) 
 True 

Value NB FMP-2 FMP-3 FMP-4 
Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1.7 1.697 2.093 1.269 2.499 1.937 1.161     

1 0.5 0.519 0.492 0.530  

2 -0.5 -0.487 -0.490 -0.496  

� 5 5.220 - -  
w 1 1 0.425 0.575 0.050 0.482 0.468     

-2LL - 2596.1 2610.6 2591.4  
AIC - 2604.1 2620.6 2605.4  
BIC - 2621.0 2641.7 2634.9  

NOTE: FMP-5: AIC=2769.9, BIC=2816.3 
 
N=1000 (mean=7.3, variance=63.2) 
 True 

Value NB 
FMP-2 FMP-3 FMP-4 

Comp 1 Comp 2 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 Comp 4 

0 1.7 1.702 2.087 1.271 2.274 1.702 0.903 2.484 2.066 1.573 0.789 

1 0.5 0.522 0.503 0.529 0.528 

2 -0.5 -0.522 0.494 -0.517 -0.532 

� 5 4.740 - - - 
w 1 1 0.439 0.561 0.194 0.537 0.268 0.055 0.279 0.467 0.199 

-2LL - 5189.6 5276.7 5196.2 5187.5 
AIC - 5197.6 5286.7 5210.2 5205.5 
BIC - 5217.2 5311.2 5244.6 5249.6 
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APPENDIX D 

EXAMPLES OF R CODES FOR FMP-2 AND FMNB-2 MODELS 

 

This appendix provides example codes for generating the FMP-2 and FMNB-2 random 

variates, and for implementing the MCMC sampling method for each model. The 

MCMC algorithm for a single negative binomial regression is available from an R 

function (rnegbinRw) within the R package called a “Bayesm” (Rossi, 2008). The 

rnegbinRw function implements a Random-Walk Metropolis algorithm for the NB 

regression model. Therefore, the codes were modified to implement the MCMC 

sampling procedure for the finite mixture regression model used in Chapter III (Data 

augmentation and Gibbs sampling). 

 

1. Generating FMP-2 random variates and MCMC sampling for FMP-2 model 

library(bayesm) 
 
## Generating FMP-2 random variates ## 
set.seed(1) 
N=500 
b=matrix(c(2,-0.5,0.5,0,0.5,-0.5), nrow=3, ncol=2) 
X=cbind(rep(1,N),rnorm(N,mean=0,sd=1),rnorm(N,mean=0,sd=1)) 
offset=c(rep(0,N)) 
xbeta=X%*%b 
m=exp(xbeta) 
 
set.seed(1) 
w=rbinom(N, 1, .2) 
y=w*rpois(N,m[,1])+(1-w)*rpois(N,m[,2]) 
table(y); mean(y); var(y) 
plot(table(y),col='red',ylab='Frequency',cex.lab=1.2) 
 
## MCMC sampling for FMP-2 model ## 
 
nobs=N 
nvar=ncol(X) 
ncomp=2 
 
# Data info # 
Data=list(y=y,X=X,offset=offset,nobs=nobs,nvar=nvar,ncomp=ncomp) 
 
# Prior info # 
betabar=rep(0,nvar) 
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A=0.01*diag(nvar) 
alpha=c(rep(1,ncomp)) 
weight=c(rep(1/ncomp,ncomp)) 
z=rmultinom(nobs,size=1,weight) 
Prior=list(betabar=betabar,A=A,alpha=alpha,weight=weight,z=z) 
 
# MCMC implementation # 
R=5000;keep=1;burnin=(R/keep)/2+1;B=burnin;E=R/keep 
s_beta1=2.5; s_beta2=3.3  # need to be adjusted to induce a good mix 
Mcmc=list(R=R,keep=keep,s_beta1=s_beta1,s_beta2=s_beta2) 
source("C:/FMP_K2_unconst.txt")  
out.fmp=mcmcpoismix(Data,Prior,Mcmc) 
 
# Acceptance rate check # 
out.fmp$acceptrbeta1; out fmp$acceptrbeta2 
 
 
The “FMP_K2_unconst.txt” file above contains the following function (mcmcpoismix) 

for implementing an MCMC sampling for the FMP-2 model. The following is an 

example in which no identifiability constraint is placed on the parameters. 

 
mcmcpoismix=function(Data,Prior,Mcmc){ 
 llpois=function(par,X,y,nvar){ 
    beta = par[1:nvar] 
       mean = exp(X %*% beta+offset) 
  out = .Internal(dpois(y,mean,TRUE)) 
  return(sum(out)) 
     } 
 llpoismix=function(beta1,beta2,X,y,weight){  
  mean1=exp(X%*%beta1+offset) 
  out1=dpois(y,mean1) 
  mean2=exp(X%*%beta2+offset) 
  out2=dpois(y,mean2) 
  sum1=weight[1]*out1+weight[2]*out2 
  sum2=sum(log(sum1)) 
  return(sum2) 
 } 
 lpostbeta1=function(beta,X,y,z,betabar,A){   
  out=log(dpois(y,exp(X%*%beta+offset))) 
  residual=as.vector(beta-betabar) 
  sumlpostbeta1=z[1,]%*%out-0.5*(t(residual)%*%A%*%residual) 
  return(sumlpostbeta1) 
 } 
 lpostbeta2=function(beta,X,y,z,betabar,A){  
  out=log(dpois(y,exp(X%*%beta+offset))) 
  residual=as.vector(beta-betabar) 
  sumlpostbeta2=z[2,]%*%out-0.5*(t(residual)%*%A%*%residual) 
  return(sumlpostbeta2) 
 } 
 postz=function(beta,ncomp,X,y,weight){              
  avg=exp(X%*%beta+offset) 
  z=matrix(0,nrow=ncomp,ncol=nobs) 
  for(i in 1:nobs){ 



 209

   num=weight*dpois(y[i],avg[i,]) 
   num=ifelse(num<1e-100,1e-100,num) 
   z[,i]=rmultinom(1,size=1,prob=num) 
  } 
  return(z) 
 } 
 postweight=function(z,ncomp,alpha){                 
  nalpha=NULL 
  for (i in 1:ncomp){ 
   nalpha[i]=sum(z[i,])+alpha[i] 
  } 
  weight=rdirichlet(nalpha) 
  return(weight) 
 } 
 

X=Data$X;y=Data$y;nobs=Data$nobs;nvar=Data$nvar;ncomp=Data$ncomp 
offset=Data$offset;betabar=Prior$betabar;A=Prior$A 
alpha=Prior$alpha;weight=Prior$weight;z=Prior$z 
R=Mcmc$R;keep=Mcmc$keep;s_beta1=Mcmc$s_beta1;s_beta2=Mcmc$s_beta2 

 
 cat(" ", fill = TRUE) 
 cat("Starting Random Walk Metropolis Sampler for Poisson Regression", 
fill = TRUE) 
 fsh() 
 
 par=rep(0,nvar) 
 mle = optim(par,llpois,X=X,y=y,nvar=nvar,method="L-BFGS-B",  
     upper=c(rep(Inf,nvar)),hessian=TRUE,control=list(fnscale=-1)) 
 fsh() 
 
 beta_mle=mle$par[1:nvar] 
 varcovinv = -mle$hessian 
 
 betacvar1 = s_beta1 * solve(varcovinv[1:nvar, 1:nvar]) 
 betaroot1 = t(chol(betacvar1)) 
 betacvar2 = s_beta2 * solve(varcovinv[1:nvar, 1:nvar]) 
 betaroot2 = t(chol(betacvar2)) 
 cat("beta_mle = ", beta_mle, fill = TRUE) 
 fsh() 
 
 beta=matrix(c(beta_mle,beta_mle),nrow=nvar,ncol=ncomp) 
 beta1=beta[,1]; beta2=beta[,2] 
 
 nacceptbeta1=0; acceptrbeta1=0 
 nacceptbeta2=0; acceptrbeta2=0 
 
 betadraw=matrix(double(floor(R/keep)*(nvar*ncomp)),ncol=nvar*ncomp) 
 weightdraw = matrix(double(floor(R/keep)*(ncomp)),ncol=ncomp) 
 llike=rep(0,floor(R/keep)) 
 itime = proc.time()[3] 
 cat(" ", fill = TRUE) 
 cat("MCMC Iteration (est time to end - min) ", fill = TRUE) 
 fsh() 
 
 for (r in 1:R) { 
  tempweight=postweight(z,ncomp,alpha) 
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  newbeta1=beta1+betaroot1%*%rnorm(nvar) 
  oldlpostbeta1=lpostbeta1(beta1,X,y,z,betabar,A) 
  newlpostbeta1=lpostbeta1(newbeta1,X,y,z,betabar,A) 
  ldiff=newlpostbeta1-oldlpostbeta1 
  acc=min(1,exp(ldiff)) 
 
  if (acc<1){unif=runif(1)} else {unif=0} 
  if (unif<=acc) { 
        beta1=newbeta1 
   nacceptbeta1=nacceptbeta1+1 
  } 
 
  newbeta2=beta2+betaroot2%*%rnorm(nvar) 
  oldlpostbeta2=lpostbeta2(beta2,X,y,z,betabar,A) 
  newlpostbeta2=lpostbeta2(newbeta2,X,y,z,betabar,A) 
  ldiff=newlpostbeta2-oldlpostbeta2 
  acc=min(1,exp(ldiff)) 
 
  if (acc<1){unif=runif(1)} else {unif=0} 
  if (unif<=acc) { 
        beta2=newbeta2 
   nacceptbeta2=nacceptbeta2+1 
  } 
   
  beta=matrix(c(beta1,beta2),nrow=nvar,ncol=ncomp) # Update beta 
  z=postz(beta,ncomp,X,y,weight)  # Update z 
 
  if (r%%100 == 0) { 
   ctime = proc.time()[3] 
   timetoend = ((ctime - itime)/r) * (R - r) 
   cat(" ",r," (",round(timetoend/60, 1),")",fill=TRUE) 
   fsh() 
  } 
  if(r%%keep==0){ 
  mkeep=r/keep 
  betadraw[mkeep,]=beta 
     weightdraw[mkeep,]=weight 
  llike[mkeep]=llpoismix(beta1,beta2,X,y,weight) 
  } 
 } 
 ctime = proc.time()[3] 
 cat("  Total Time Elapsed: ", round((ctime - itime)/60, 2), "\n") 
 
 return(list(llike=llike,betadraw=betadraw,weightdraw=weightdraw, 
 acceptrbeta1=nacceptbeta1/R*100,acceptrbeta2=nacceptbeta2/R*100)) 
} 
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2. Generating FMNB-2 random variates and MCMC sampling for FMNB-2 model 

library(bayesm) 
 
## Generating FMNB-2 random variates ## 
set.seed(1) 
N=500 
b=matrix(c(2,-0.5,0.5,0,0.5,-0.5), nrow=3, ncol=2) 
phi_true=c(5,10) 
X=cbind(rep(1,N),rnorm(N,mean=0,sd=1),rnorm(N,mean=0,sd=1)) 
offset=c(rep(0,N)) 
xbeta=X%*%b 
m=exp(xbeta) 
 
set.seed(11) 
w=rbinom(N, 1, 0.2) 
y=w*rnbinom(N,mu=m[,1],size=phi_true[1])+(1-
w)*rnbinom(N,mu=m[,2],size=phi_true[2]) 
table(y); mean(y); var(y) 
plot(table(y),col='red',ylab='Frequency',cex.lab=1.2) 
 
## MCMC sampling for FMNB-2 model ## 
nobs=N; nvar=ncol(X); ncomp=2 
 
# Data info # 
Data=list(y=y,X=X,offset=offset,nobs=nobs,nvar=nvar,ncomp=ncomp) 
 
# Prior info # 
betabar=rep(0,nvar) 
A=0.01*diag(nvar) 
a=0.01;b=0.01 
alpha=c(rep(1,ncomp)) 
weight=c(rep(1/ncomp,ncomp)) 
z=rmultinom(nobs,size=1,weight) 
Prior=list(betabar=betabar,A=A,a=a,b=b,alpha=alpha,weight=weight,z=z) 
 
# MCMC implementation # 
R=5000;keep=1;burnin=(R/keep)/2+1;B=burnin;E=R/keep 
s_beta1=1.2;s_beta2=1.8;s_phi1=300;s_phi2=60  # need to be adjusted 
Mcmc=list(R=R,keep=keep,s_beta1=s_beta1,s_beta2=s_beta2,s_phi1=s_phi1,s_phi
2=s_phi2) 
source("C:/FMNB_K2_const_w.txt") 
out.fmnb=mcmcnbmix(Data,Prior,Mcmc) 
 
# Acceptance rate check # 
out.fmnb$acceptrbeta1;out.fmnb$acceptrbeta2 
out.fmnb$acceptrphi1;out.fmnb$acceptrphi2 
 

The “FMNB_K2_const_w.txt” file above contains the following function (mcmcnbmix) 

for implementing an MCMC sampling for the FMNB-2 model. The following is an 

example in which the identifiability constraint is placed on the weight parameter (w). 
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mcmcnbmix=function(Data,Prior,Mcmc){ 
 llnegbin=function(par,X,y,nvar){ 
  beta = par[1:nvar] 
        phi = exp(par[nvar + 1]) + 1e-50 
  mean = exp(X %*% beta+offset) 
  prob = phi/(phi + mean) 
  prob = ifelse(prob < 1e-100, 1e-100, prob) 
  out = .Internal(dnbinom(y, phi, prob, TRUE)) 
  return(sum(out)) 
     } 
 llnbmix=function(beta1,beta2,phi,X,y,weight){  
  lambda1=exp(X%*%beta1+offset) 
  p1=phi[1]/(phi[1]+lambda1) 
  p1=ifelse(p1<1e-100,1e-100,p1) 
  out1=dnbinom(y,phi[1],p1) 
  lambda2=exp(X%*%beta2+offset) 
  p2=phi[2]/(phi[2]+lambda2) 
  p2=ifelse(p2<1e-100,1e-100,p2) 
  out2=dnbinom(y,phi[2],p2) 
  sum1=weight[1]*out1+weight[2]*out2 
  sum2=sum(log(sum1)) 
  return(sum2) 
 } 
 lpostbeta1=function(beta,phi,X,y,z,betabar,A){  
  mean=exp(X %*% beta+offset) 
  prob=phi/(phi + mean) 
  prob=ifelse(prob < 1e-100, 1e-100, prob) 
  out=.Internal(dnbinom(y, phi, prob, TRUE)) 
  residual=as.vector(beta-betabar) 
  sumlpostbeta1=z[1,]%*%out-0.5*(t(residual)%*%A%*%residual) 
  return(sumlpostbeta1) 
 } 
 lpostbeta2=function(beta,phi,X,y,z,betabar,A){  
  mean = exp(X %*% beta+offset) 
  prob = phi/(phi + mean) 
  prob = ifelse(prob < 1e-100, 1e-100, prob) 
  out = .Internal(dnbinom(y, phi, prob, TRUE)) 
  residual=as.vector(beta-betabar) 
  sumlpostbeta2=z[2,]%*%out-0.5*(t(residual)%*%A%*%residual) 
  return(sumlpostbeta2) 
 } 
 lpostphi1=function(beta,phi,X,y,z,a,b){      
  mean = exp(X %*% beta+offset) 
  prob = phi/(phi + mean) 
  prob = ifelse(prob < 1e-100, 1e-100, prob) 
  out = .Internal(dnbinom(y, phi, prob, TRUE)) 
  sumlpostphi1=z[1,]%*%out+(a-1)*log(phi)-b*phi 
  return(sumlpostphi1) 
 } 
 lpostphi2=function(beta,phi,X,y,z,a,b){      
  mean = exp(X %*% beta+offset) 
  prob = phi/(phi + mean) 
  prob = ifelse(prob < 1e-100, 1e-100, prob) 
  out = .Internal(dnbinom(y, phi, prob, TRUE)) 
  sumlpostphi2=z[2,]%*%out+(a-1)*log(phi)-b*phi 
  return(sumlpostphi2) 
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 } 
 postz=function(beta,phi,ncomp,X,y,weight){   
  avg=exp(X%*%beta+offset) 
  z=matrix(0,nrow=ncomp,ncol=nobs) 
  for(i in 1:nobs){ 
   num=weight*dnbinom(y[i],mu=avg[i,],size=phi) 
   num=ifelse(num<1e-100,1e-100,num) 
   z[,i]=rmultinom(1,size=1,prob=num) 
  } 
  return(z) 
 } 
 postweight=function(z,ncomp,alpha){    
  nalpha=NULL 
  for (i in 1:ncomp){ 
   nalpha[i]=sum(z[i,])+alpha[i] 
  } 
  weight=rdirichlet(nalpha) 
  return(weight) 
 } 
 
 X=Data$X;y=Data$y;nobs=Data$nobs;nvar=Data$nvar;ncomp=Data$ncomp 
 offset=Data$offset;betabar=Prior$betabar;A=Prior$A;a=Prior$a 
 b=Prior$b;alpha=Prior$alpha;weight=Prior$weight;z=Prior$z;R=Mcmc$R 
 keep=Mcmc$keeps_beta1=Mcmc$s_beta1;s_beta2=Mcmc$s_beta2 
 s_phi1=Mcmc$s_phi1;s_phi2=Mcmc$s_phi2 
 
 cat(" ",fill = TRUE) 
 cat("Starting Random Walk Metropolis Sampler for NB Regression", 
fill = TRUE) 
 fsh() 
 
 par=rep(0,(nvar+1)) 
 mle=optim(par,llnegbin,X=X,y=y,nvar=nvar,method="L-BFGS-B",upper= 
c(rep(Inf,nvar),log(1e+08)),hessian=TRUE,control=list(fnscale=-1)) 
 fsh() 
 
 beta_mle=mle$par[1:nvar] 
 phi_mle = exp(mle$par[nvar + 1]) 
 varcovinv = -mle$hessian 
 
 betacvar1 = s_beta1 * solve(varcovinv[1:nvar, 1:nvar]) 
 betaroot1 = t(chol(betacvar1)) 
 phicvar1 = s_phi1/varcovinv[nvar + 1, nvar + 1] 
 phicroot1 = sqrt(phicvar1) 
 
 betacvar2 = s_beta2 * solve(varcovinv[1:nvar, 1:nvar]) 
 betaroot2 = t(chol(betacvar2)) 
 phicvar2 = s_phi2/varcovinv[nvar + 1, nvar + 1] 
 phicroot2 = sqrt(phicvar2) 
 
 beta=matrix(c(beta_mle,beta_mle),nrow=nvar,ncol=ncomp) 
 beta1=beta[,1]; beta2=beta[,2] 
 phi =rep(phi_mle,ncomp); phi1=phi[1]; phi2=phi[2] 
 
 nacceptbeta1=0; acceptrbeta1=0 
 nacceptbeta2=0; acceptrbeta2=0 



 214

 nacceptphi1=0; acceptrphi1=0 
 nacceptphi2=0; acceptrphi2=0 
 
 betadraw=matrix(double(floor(R/keep)*(nvar*ncomp)),ncol=nvar*ncomp) 
 phidraw=matrix(double(floor(R/keep)*(ncomp)),ncol=ncomp) 
 weightdraw=matrix(double(floor(R/keep)*(ncomp)),ncol=ncomp) 
 llike=rep(0,floor(R/keep)) 
 
 itime = proc.time()[3] 
 cat(" ", fill = TRUE) 
 cat("MCMC Iteration (est time to end - min) ", fill = TRUE) 
 fsh() 
 
 for (r in 1:R) { 
  tempweight=postweight(z,ncomp,alpha)  
 
  newbeta1=beta1+betaroot1%*%rnorm(nvar) 
  oldlpostbeta1=lpostbeta1(beta1,phi1,X,y,z,betabar,A) 
  newlpostbeta1=lpostbeta1(newbeta1,phi1,X,y,z,betabar,A) 
  ldiff=newlpostbeta1-oldlpostbeta1 
  acc=min(1,exp(ldiff)) 
 
  if (acc<1){unif=runif(1)} else {unif=0} 
  if (unif<=acc) { 
   beta1=newbeta1 
   nacceptbeta1=nacceptbeta1+1 
  } 
 
  logphi1=rnorm(1,mean=log(phi1),sd=phicroot1) 
  oldlpostphi1=lpostphi1(beta1,phi1,X,y,z,a,b) 
  newlpostphi1=lpostphi1(beta1,exp(logphi1),X,y,z,a,b) 
  ldiff=newlpostphi1-oldlpostphi1 
  acc=min(1,exp(ldiff)) 
 
  if (acc<1){unif=runif(1)} else {unif=0} 
  if (unif<=acc) { 
   phi1=exp(logphi1) 
   nacceptphi1=nacceptphi1+1 
  } 
 
  newbeta2=beta2+betaroot2%*%rnorm(nvar) 
  oldlpostbeta2=lpostbeta2(beta2,phi2,X,y,z,betabar,A) 
  newlpostbeta2=lpostbeta2(newbeta2,phi2,X,y,z,betabar,A) 
  ldiff=newlpostbeta2-oldlpostbeta2 
  acc=min(1,exp(ldiff)) 
 
  if (acc<1){unif=runif(1)} else {unif=0} 
  if (unif<=acc) { 
   beta2=newbeta2 
   nacceptbeta2=nacceptbeta2+1 
  } 
 
  logphi2=rnorm(1,mean=log(phi2),sd=phicroot2) 
  oldlpostphi2=lpostphi2(beta2,phi2,X,y,z,a,b) 
  newlpostphi2=lpostphi2(beta2,exp(logphi2),X,y,z,a,b) 
  ldiff=newlpostphi2-oldlpostphi2 



 215

  acc=min(1,exp(ldiff)) 
 
  if (acc<1){unif=runif(1)} else {unif=0} 
  if (unif<=acc) { 
   phi2=exp(logphi2) 
   nacceptphi2=nacceptphi2+1 
  } 
 
# Permutation based on the constraint # 
  tempbeta=matrix(c(beta1,beta2),nrow=nvar,ncol=ncomp) 
  tempphi=c(phi1,phi2) 
  tempz=postz(tempbeta,tempphi,ncomp,X,y,tempweight) #updating z 
  if (tempweight[1]>tempweight[2]){ 
   beta=tempbeta; phi=tempphi; weight=tempweight; z=tempz
   
  } 
  else{ 
   beta=matrix(c(beta2,beta1),nrow=nvar,ncol=ncomp) 
   phi=c(phi2,phi1) 
   weight=c(tempweight[2],tempweight[1]) 
   z=matrix(c(tempz[2,],tempz[1,]),nrow=ncomp,ncol=nobs, 
byrow=T) 
  } 
  beta1=beta[,1]; beta2=beta[,2] # updating beta 
  phi1=phi[1]; phi2=phi[2] # updating phi 
 
  if (r%%100==0){ 
   ctime=proc.time()[3] 
   timetoend=((ctime-itime)/r)*(R-r) 
   cat(" ",r," (", round(timetoend/60, 1), ")", fill=TRUE) 
  fsh() 
  } 
 
  if(r%%keep==0){ 
   mkeep=r/keep 
   betadraw[mkeep,]=beta 
   phidraw[mkeep,]=phi 
   weightdraw[mkeep,]=weight 
   llike[mkeep]=llnbmix(beta1,beta2,phi,X,y,weight) 
  } 
 } 
 ctime = proc.time()[3] 
 cat("  Total Time Elapsed: ",round((ctime-itime)/60,2),"\n") 
 
 return(list(llike=llike,betadraw=betadraw,phidraw=phidraw,weightdraw
=weightdraw,acceptrbeta1=nacceptbeta1/R*100,acceptrbeta2=nacceptbeta2/R*100
,acceptrphi1=nacceptphi1/R*100,acceptrphi2=nacceptphi2/R*100)) 
} 
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