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ABSTRACT 

 

Investigation on Gas-phase Ion Structures of Biomolecules  

Using Ion Mobility-mass Spectrometry. (May 2010) 

Lei Tao, B.A., Fudan University, Shanghai, China; 

M.S., The University of Akron 

Chair of Advisory Committee: Dr. David H. Russell 

 

 IM-MS is a 2-D technique which provides separations based on ion shape (ion-

neutral collision cross-section, Ω) and mass (m/z ratio).  Ion structures can be deduced 

from the measured collision cross-section (Ωmeas) by calculating the collision cross-

sections (Ωcalc) of candidates generated by molecular dynamics (MD) and compared with 

the experiment results. 

A database of Ωs for singly-charged peptide ions is presented.  Standard proteins are 

digested using different enzymes (trypsin, chymotrypsin and pepsin), resulting in 

peptides that differ in amino acid composition.  The majority (63%) of the peptide ion 

correlates well with the globular structures, but some exhibit Ωs that are significantly 

larger or smaller than the average correlation. Of the peptide ions having larger Ωs, 

approximately 71% are derived from trypsin digestion, and most of the peptide ions that 

have smaller Ωs are derived from pepsin digestion (90%).  

We use computational simulations and clustering methods to assign backbone 

conformations for singly-protonated ions of the model peptide (NH2-Met-Ile-Phe-Ala-
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Gly-Ile-Lys-COOH) formed by both MALDI and ESI and compare the structures of 

MIFAGIK derivatives to test the ‘sensitivity’ of the cluster analysis method.  Cluster 

analysis suggests that [MIFAGIK + H]+ ions formed by MALDI have a predominantly 

turn structure even though the low energy ions prefer partial helical conformers.  

Although the ions formed by ESI have Ωs that are different from those formed by 

MALDI, the results of cluster analysis indicate that the ions backbone structures are 

similar. Chemical modifications (N-acetyl, methylester, as well as addition of Boc or 

Fmoc groups) of MIFAGIK, alter the distribution of various conformers.  The most 

dramatic changes are observed for the [M + Na]+ ion, which show a strong preference 

for random coil conformers, owing to the strong solvation by the backbone amide groups.   

 Ωmeas of oligodeoxynucleotides in different length have been measured in both 

positive and negative modes.  For a given molecular weight and charge state, Ωmeas of 

the oligodeoxynucleotide, ions are smaller than those of the peptides, indicating their 

different packing efficiency.  A novel generalized non-Boltzman sampling MD has been 

utilized to investigate the gas-phase ion conformations of dGGATC based on the free 

energy values.  Theory predicts only one low-energy conformer for the zwitterionic form 

of dGGATC- while dGGATC+ ions have several stable conformers in both canonical and 

zwitterionic form in the gas phase, in good agreement with the experiment. 
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CHAPTER I 

INTRODUCTION 

Understanding the molecular basis of biomolecule structure and function is 

currently a major focus of biological research.  The predominant techniques for 

determining atomic-resolution structures of biomolecules are X-ray crystallography [1] 

and Nuclear Magnetic Resonance (NMR) [2].  However, high throughput analysis of 

complex biological mixtures obtained by using these techniques is underdeveloped, and 

serves as major bottleneck. 

 A major advantage of mass spectrometry is the ability to characterize 

biomolecules rapidly at very high sensitivity, and with high accuracy.  The development 

of electrospray ionization (ESI) [3] and matrix-assisted laser desorption/ionization 

(MALDI) [4] has resulted in rapid adavance in biomolecular analyses at physiological 

levels.  MALDI and ESI are both soft ionization techniques and are sufficiently gentle to 

generate ions of intact biomacromolecules with molecular masses above a few thousand 

Daltons (Da) even beyond 100 kDa [5, 6] without fragmentation.  In addition to the 

accurate determination of molecular weights, these desorption/ionization MS methods 

have several established applications to primary structure analysis of proteins, such as 

full or partial sequence determination, characterization of intracellular proteolytic 

processing pathways and the identification of covalent post-translational structure 

modification with the combination of specific chemical (e.g., enzymatic) modification or 

____________ 
This dissertation follows the style of Journal of the American Society for Mass 

Spectrometry. 
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collision-induced fragmentation technique [7, 8].  The emphasis of mass spectrometry 

based biological chemistry is shifting from compound identification to structural studies 

of large biomolecules and biomolecule complexes [9-15], including membrane proteins 

[16].  Recently, applications designed to obtain additional information of higher-order 

structures, such as secondary, tertiary, and quaternary structures, to study structure-

function and even to probe specific non-covalent interactions between peptides and 

proteins, proteins and their substrates, and nucleic acids are becoming the new topics of 

mass spectrometry [5, 17, 18].   

However, the investigations of biomolecules using mass spectrometry are carried 

out in the gas phase and while the aqueous phase (ε=78) presents the ‘natural’ 

environment for biomolecules.  As for any gas phase methods, the challenges for mass 

spectrometry are in establishing the relevance of its results to the solution state 

conformations.  McLafferty and coworkers used gas phase hydrogen/deuterium (H/D) 

exchange to observe the process of the folding and unfolding of cytochrome c ions in the 

gas phase [19], which is analogous to the way pH changes modulate folding in solution 

phase.  The study showed both reversible and irreversible thermal transitions between 

several different conformational states.  However, it is still questionable whether these 

transitions are the same state as the folding in the solution phase since the number of 

protons available for exchange for the gas phase structure might differ from that of the 

native structure in solution.  More recently, Oomens et. al. have reported the infrared 

spectroscopic investigation of cytochrome c in the gas phase.  Infrared spectra are 

obtained by multiple photon dissociation spectroscopy of the protein isolated in a 
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Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometer.  The spectra 

contain clearly resolvable bands in the amide I (C O stretching modes) and amide II (N–

H bending modes) spectral regions, slight shifted from those of cytochrome c in solution 

phase.  The band positions are suggestive of a mostly -helical structure of the protein 

and their widths are comparable to those in solution, suggesting the gas phase structure 

is an intrinsic property of the protein which is maintained in solution.  

As known, the forces which control biomolecular structure in the native state are 

consist of the intramolecular interactions within the biomolecule and intermolecular 

hydration interactions between the biomolecule and its solvent, including hydrogen 

bonding [20], hydrophobic forces [21], and packing [22].  Each of these plays a crucial 

role for the structure and function of biomolecules.  H-bonding is perhaps the most 

important interaction governing biomolecular structure, folding, binding, enzyme 

catalysis, and other properties [23].  The basic secondary structural elements in protein 

structure such as α-helical, β-sheet, γ-turn, π-helix, etc., are stabilized by H-bonding 

interactions [20].  The double helical structure of DNA and RNA are dominated by 

hydrogen bonds and stacking interactions, facilitating molecular recognition via 

replication processes and protein synthesis [24].  From the point of view of H-bonding, 

without the alternative of H-bonding to the solvent, the secondary structures of 

biomolecules should be even more thermodynamically stable in the gas phase.  Indeed, it 

is of fundamental interest to investigate the biomolecular structure in the solvent-free gas 

phase.  The gas-phase study of biomolecular structure provides several unique 

advantages over solution methods: i) it is possible to detect and characterize the 
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molecules too large for study via solution techniques such as NMR or some biological 

important molecules such as membrane proteins which are difficult to crystallize; ii) it 

also provides information on the intrinsic intramolecular interactions in the biomolecule 

without any concern of solvation effect and can thus help elucidate the driving forces 

that influence protein conformation and hence aid in solving the protein-folding problem.  

The techniques have been implemented for studying gas-phase biomolecules include 

chemical methods like H/D exchange and physical methods based on measurements of 

size, i.e., ion mobility.    

In the gas-phase H/D exchange experiment, the ions of interest are trapped for 

long times while exposed to a small amount of D2O.  The number of labile hydrogen can 

be obtained from the mass spectrum and the exchange rate can thus be measured.  As the 

hydrogen atoms are involved in formation of hydrogen bonds in secondary structural 

elements, i.e., α-helices and β-sheets; the exchange rate is a reflection of structure and 

structural stability.   McLafferty and coworkers have reported several H/D exchange 

studies of protonated cytochrome c using Fourier transform ion cyclotron resonance (FT-

ICR) [19, 25, 26]. These studies indicate that gas-phase folding involves not just two 

states but several different populations of protein molecules that display varying degrees 

of proton exchangeability and different degrees of openness.  The gas-phase H/D 

exchange has also been studied in amino acids and small peptides [27-29].  However, the 

results suggest that are even for simple systems the interpretation of gas-phase H/D 

exchange data is not straightforward.   
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In the mobility measurement, ions are separated based on their ion-neutral 

collision cross-section with buffer gas under a weak electric field, and the collision 

cross-section data can be transformed to structural information of ions using molecular 

dynamics methods.  The use of ion mobility spectrometry (IMS) as an important 

analytical technique for detecting and identifying volatile compounds dates back to the 

early 1980’s [30-33].  Indeed, IMS is much more than a separation device.  In the 1990s, 

several groups combined IMS with high-performance mass spectrometers to provide 

accurate mass measurements of ions exiting the IM drift cell [34].  More recently, IM-

MS instruments that operate as tandem mass spectrometry instruments (IM-MS/MS) 

have also been developed [35-42].  Potential advantages of IM-MS and IM-MS/MS for 

proteomics research are post-ionization separation, which facilitates direct analysis of 

complex mixtures, increased sample throughput afforded by rapid data acquisition (µs-

ms), and reduction of chemical noise by separation of molecular classes owing to 

differences in intrinsic gas-phase packing efficiencies of the ions [43, 44].  We refer to 

the separation of molecular classes in the mobility-mass dimension in terms of 

“conformation space,” which is realized by plotting collision cross-section vs. m/z ratio 

of the ion [34].  The structural information derived from 2D conformation space 

afforded by IM-MS is potentially well-suited to both high throughput applications and 

complex biological samples.  

The groups of Bowers and Jarrold are the pioneers to start the area of ion 

mobility research to obtain structural information of biomolecules in the gas phase [45-

50].  Such IM-MS applications typically involve extensive theoretical work including ab 
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initio or density functional theory, and molecular mechanics or molecular dynamics 

methods to generate reasonable model structures for the molecular system studied 

experimentally.  Clemmer and co-workers have compiled a database of peptide ion 

collision cross-sections and suggested that the majority of small (< 1500 m/z), singly-

charged, tryptic peptides do not exhibit anhydrous secondary structure [51].  That is, 

most peptide ions assume a compact, charge-solvated (globular) structure in the gas 

phase [52, 53] and appear on a single trendline in 2-D mobility-m/z plots, i.e., plots of 

arrival-time distribution (ATD) or Ω vs. m/z.  However, a small number of ion signals 

deviate (>3 to ~20%) from the expected trendline, and non-peptidic ion signals appear 

on separate, compound class specific trendlines [34, 54].  Ruotolo et al. showed that gas-

phase [M + H]+ ions of LLGNVLVVVLAR (derived from bovine hemoglobin) prefer 

extended (helical) structure(s) resulting in a larger Ωmeas than random coil structures 

having the same or similar m/z values [55, 56].  Peptides such as (AAKAA)n (n = 3-6) 

and (AEAAKA)n (n = 2-7) also show distinct structures, helical, and random coil 

depending on length and charge site, while some post-translational modified (PTM) 

peptide ions (phosphopeptides) tend to pack more tightly than the unmodified protonated 

peptide ions owing to intra-molecular charge-solvation and/or formation of salt-bridged 

type structures [57, 58].  In addition, our group has used chemical derivatization of the 

N-terminal and internal basic (acetylation) and acidic (methylation) residues (lysine and 

glutamic acid) to show that the helical propensity of a given peptide can be increased by 

reducing the number of ‘salt-bridge’ intramolecular interactions [59]. 
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The challenge for structure IM-MS is to design gas-phase experiments that 

critically evaluate the structural assignments [60-62].  The research presented here is 

aimed to construct a bridge that links the experimental domain of IM-MS and the MD 

simulations and bioinformatic tools that are essential to interpretation of the data.  In this 

study, we establish a database of high confidence level peptide ion collision cross-

sections values which can be used to define the regions of conformation space occupied 

by peptide [M + H]+ ions over a range of values typically encountered in “bottom-up” 

MS based proteomics.  With extensive computational simulations and novel clustering 

methods, detail structural information for peptides of interest is obtained.  The 

comparison of structural difference between gas-phase peptides generated by ESI and 

MALDI and the effect of the amino acid sequence and charge location on helix 

formation of peptide ions in the gas phase will be discussed.  A series of oligonucleotide 

of different length will be tested by MALDI-IM-TOFMS to define the conformational 

space of oligonucleotide.  With a novel non-Boltzman sampling molecular dynamics 

(MD) on model oliogonucleotide ions, a more accurate description of the gas phase 

conformational space of oligonucleotide ions can be achieved, which involving the 

thermodynamically accessible structures that correspond to real experimental condition. 
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CHAPTER II 

A COLLISION CROSS-SECTION DATABASE OF  

SINGLY-CHARGED PEPTIDE IONS* 

Introduction 

Ion mobility (IM) spectrometry separates ions on the basis of ion-neutral 

collision cross-section or apparent surface area, and several groups have combined IM 

spectrometry with high-performance mass spectrometers to provide accurate mass 

measurements of ions exiting the IM drift cell [34]. More recently, IM-MS instruments 

that operate as tandem mass spectrometry instruments (IM-MS/MS) have also been 

developed [35-42]. Potential advantages of IM-MS and IM-MS/MS for proteomics 

research are post-ionization separation, which facilitates direct analysis of complex 

mixtures, increased sample throughput afforded by rapid data acquisition (µs-ms), and 

reduction of chemical noise by separation of molecular classes owing to differences in 

intrinsic gas-phase packing efficiencies of the ions [43, 44].  We refer to the separation 

of molecular classes in the mobility-mass dimension in terms of “conformation space,” 

which is realized by plotting collision cross-section vs. m/z ratio of the ion [34].  

Several research groups have focused on developing IM-MS for biophysical 

studies of peptides and proteins [34, 52, 55, 56, 63, 64]. Our laboratory as well as 

Clemmer’s has focused considerable attention on developing applications of  IM-MS for  

____________ 
*Reprinted with permission from “A collision cross-section database of singly-charged 
peptide ions” by Tao, L.; McLean, J. R.; McLean, J. A.; Russell, D. H., 2007, Journal of 

the American Society for Mass Spectrometry, 18, 1232-1238, Copyright [2007] by 
Elsevier.  
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proteomics, i.e., high throughput analysis of peptides/proteins, and most of this work has 

utilized “bottom-up” proteomics or the identification of proteins by enzymatic digestion 

of the protein followed by MS analysis of the peptide fragments [34, 65].  Clemmer and 

co-workers have compiled a database of peptide ion collision cross-sections and 

suggested that the majority of small (< 1500 m/z), singly-charged, tryptic peptides do 

not exhibit anhydrous secondary structure [51].  That is, most peptide ions assume a 

compact, charge-solvated (globular) structure in the gas phase [52, 53]; however, we 

showed that a small number of gas-phase, tryptic peptides prefer extended (helical) 

structure in the gas phase [55, 56].  In some cases post-translational modification results 

in smaller than predicted structures from the average mobility-mass correlation, which 

likely results from intra-molecular charge-solvation and/or formation of salt-bridged 

type structures. We are interested in evaluating IM-MS as a screening method for 

identifying peptides which exhibit secondary structure or are post-translationally 

modified [34], which could provide an added data dimension for protein identification as 

well as unraveling the molecular parameters that most strongly influence higher order 

structure in the absence of water.   

A primary challenge associated with developing IM-MS for proteomics scale 

protein identification is the extensive molecular simulations required for cross-

correlating collision cross-sections with ion structure. The goal of this study is to 

establish a database of high confidence level peptide ion collision cross-sections values 

which can be used to define the regions of conformation space occupied by peptide [M + 

H]+ ions over a range of values typically encountered in “bottom-up” MS based 
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proteomics. Our working definition of “high confidence level” includes correlation of 

peptide ion collision cross-sections with accurate mass measurements and sequence 

assignments based on tandem MS data.  

 

Experimental 

All proteins (bovine β-casein (Mr 25,091 Da), bovine serum albumin (Mr 69,248 

Da), horse cytochrome c (Mr 11,694Da), horse hemoglobin α-chain (Mr 15,105 Da), 

horse hemoglobin β-chain (Mr 15,998 Da), horse myoglobin (Mr 16,941 Da), chicken 

egg ovalbumin (Mr 42,722 Da), chicken egg lysozyme (Mr 16,228 Da), rabbit aldolase 

(Mr 39,187 Da), yeast enolase (Mr 46,642 Da) were purchased from Sigma (St. Louis, 

MO) and used without further purification. 

 Trypsin and chymotrypsin digestions were performed using standard protocols as 

described elsewhere [66]. Briefly, proteins were thermally-denatured at 90 °C for 20 min, 

and then they were enzymatically-digested with sequencing-grade trypsin (Promega, 

Madison, WI) or chymotrypsin (Sigma) in a 1: 40 (w/w) enzyme to analyte ratio at 37 

°C for ca. 20 h. Proteins were digested with pepsin (Sigma) using standard protocols. 

The pH of the protein solution was lowered to ca. 2 by adding 0.1M HCl, mixed with 

pepsin (1:20 protein to enzyme ratio (w/w)) and incubated at 37 ºC for 2 h. To quench 

the reaction, the pH of the digest was neutralized with 0.1M NH4OH. 

 MALDI was performed by mixing the protein digests with re-crystallized α-

cyano-4-hydroxycinnamic acid (Sigma) in a ca. 2000:1 matrix to analyte molar ratio. 
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The mixture was directly deposited as a dried droplet on a stainless steel MALDI sample 

plate. 

Peptide amino acid sequences were initially assigned based on in silico protein 

digests generated by “PeptideMass” on the ExPASy website [67] and high resolution 

MALDI-TOF mass analysis (PerSeptive Biosystems, Voyager DE STR). Sequence 

assignments for selected peptides were confirmed using MALDI-based tandem mass 

spectrometry (Applied Biosystems 4700 Proteomics analyzer).  

The MALDI-IM-TOFMS instrument used for these studies was constructed in 

collaboration with Ionwerks Inc. (Houston, TX), and the basic instrument design is 

similar to those previously described [68].  Briefly, MALDI was performed using high 

repetition rate-frequency tripled (355 nm) Nd:YAG laser (CrystaLaser, Reno, NV) 

operated at a pulse rate of 200-400 Hz. The resulting ions were introduced into a 15 cm 

drift tube maintained at a pressure of ca. 2.5 Torr He at room temperature and using IM 

field strengths ranging from 30 to 48 V/cm·Torr. Ions were separated based on mobility 

with a resolution of ca. 30 to 50.  The ions eluting the drift cell were extracted into an 

orthogonal reflectron-TOF for mass analysis (resolution, ca. 2000 - 4000).  The mass 

spectrometer was externally calibrated using two-point calibration of the radical cations 

(+1) of C60 (Mr = 720) and C70 (Mr = 840) (Sigma) [35]. The 2D IM-MS data was 

acquired and processed by using custom software (Ionwerks, Inc.). 

All spectra were acquired under “low-field” conditions [69-71] using five 

different IM field strengths to accurately estimate the mass-dependent drift time 

correction, to (tmeasured – to = td), which represents time the ion spends outside of the IM 
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drift cell. Collision cross-sections were calculated using the empirical drift times (td) and 

the hard sphere approximation [69]: 

(18 )
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where z is the charge of the ion, e is elementary charge, N0 is the number density of the 

drift gas at STP, kb is Boltzmann’s constant, mI is the mass of the ion, mB is the mass of 

buffer gas, E is the IM electric field strength, L is the drift tube length, P is the buffer gas 

pressure and T is the system temperature.  To evaluate the accuracy of our collision 

cross-section measurements, we regularly measured the collision cross-section of 

bradykinin [M + H]+
 ions.  The measured values of bradykinin [M+H]+ ions are always 

within 2% of 242 Å2, consistent with previously reported values for bradykinin [M+H]+ 

ions [72]. 

Molecular dynamics calculations were performed as described elsewhere [56, 73].  

Briefly, simulated annealing was performed with Cerius2 (Accelrys, San Diego, CA) 

using the consistent force field (CFF 1.02).  During the simulation, the starting structure 

was gradually heated from 300 K to 1000 K over a 280 ps cycle.  After each annealing 

cycle, a minimized structure was produced. Annealing cycles were repeated 300 times 

for each starting structure. The collision cross-section of each structure was calculated 

using the trajectory method in the MOBCAL software [74]. The representative structures 

are the lowest energy structures within 2 % of the experimental collision cross-section.  
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Results and Discussion 

Ion-neutral collision cross-section database of singly-charged peptide ions 

The objective of this study is to build a database of IM-MS data for singly-

charged peptide ions.  The database is composed of a diverse set peptide sequences 

which were generated by digesting nine standard proteins with three proteolytic enzymes 

(trypsin, chymotrypsin and pepsin).  Trypsin cleaves proteins to yield peptides having 

Lys and Arg at the C-terminus, chymotrypsin cleaves on the C-terminal side of Trp, Tyr, 

Met, Leu or Phe, and pepsin cleaves C-terminal to Ala, Leu, Phe, or Tyr (Table 1).  

Because each of these enzymes has very different cleavage sites, we were able to 

produce a diverse mixture of peptides that can be used to examine peptide “conformation 

space”, i.e., 2D plot of ion mobility collision cross-section vs. m/z values.    

The peptides examined in study were characterized by three methods: (i) accurate 

m/z values of all peptides were obtained by using high resolution MALDI-MS and 

compared to a peptide fragment list generated in silico [67], (ii) peptide assignments 

were confirmed using MALDI-TOF/TOFMS, and (iii) the peptide ion collision cross-

sections were measured using the MALDI-IMMS.  The data from these experiments are 

limited to singly-charged peptide ions.  A total of 607 peptides from digestion are 

identified by MALDI-IM-TOFMS (shown in Table 2): 152 tryptic peptides, 295 

chymotryptic peptides, and 139 peptic peptides, and a small number of redundant 

peptides. That is, 21 of the peptides generated by chymotrypsin were also found in the 

pepsin digests.  
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Table 1. Cleavage sites of different enzymes. 

 

 

 
 
 
 
 
 
Table 2. Protein digestion results using three enzymes identified by MALDI-IM-TOFMS.  
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The ion-neutral collision cross-sections of these peptides are listed in Appendix 

A and the database is also available at the link listed below: 

http://www.chem.tamu.edu/rgroup/russell/cross_section_database.pdf. The peptides 

included in the database do not include post-translationally modified peptides, with the 

exception of three oxidized peptides.   

Figure 1 contains a plot of conformation space for the entire peptide database. 

Most peptide signals are clustered along a nonlinear “trendline,” which we will refer to 

as the “average mobility-mass correlation” [34].  The solid line in Figure 1 is a third-

order polynomial fit, R2 = 0.988) to the individual data points. The majority (63%) of 

peptide signals correlate quite well (within 3%) to the average, globular mobility-mass 

correlation (Table 3). In our previous work we used linear regression of the data to 

describe the correlation between collision cross-section and m/z [58, 75], but linear 

regression analysis is only valid over a small range of m/z values, owing to the effective 

surface area-to-m/z relationships for peptide conformation space.  Thus, as the diameter 

(d) of a spherical (globular) ion increases, its volume (d3, proportional to mass) increases 

more quickly than the surface area (d2), which results in a nonlinear correlation between 

collision cross-section and m/z.  The average mobility-mass correlation derived from the 

data shown in Figure 1 is consistent with the previous database generated by Clemmer 

and colleagues (a dataset of 420 singly-charged peptides generated by electrospray 

ionization and analyzed by IM-TOFMS) [51]. 
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Figure 1. Plot of ion-neutral collision cross-sections vs. m/z for 607 [M + H]+ peptide ions. The solid 
line corresponds to a third-order polynomial fit to the data (R2 = 0.988) and corresponds to the 
average mobility-mass correlation (y = 2.81*10-9x3 - 3.55*10-5x2 + 2.32*10-1x + 41.91, R2 = 0.988). 
The dashed lines represent ± 7% deviation from the fit.  
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Table 3. Compilation of selected data for peptide ions which fall within 3 % of the average mobility-
mass correlation. 

 

 
  
Note: the table list the enzyme used for proteolysis (Enz., T = trypsin, C = chymotrypsin, P = pepsin, 
the UniProtKB protein identifier, position of peptide in the protein, amino acid sequence, 
monoisotopic mass-to-charge ratio (m/z), collision cross-section (Ω), and percent deviation from the 
average mobility-mass correlation (% Dev.). Collision cross-sections and reduced mobilities are 
reported as the average ± 1σ for 5 replicate measurements. (*) Indicates peptide sequences were 
confirmed by tandem MS.  
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There are 37 (out of 607) peptide ions that have collision cross-sections that are 

larger than 7% from that expected for globular ions, and most (71%) of these are tryptic 

peptides (C-terminal Lys or Arg residues).  Table 4 lists twenty of them with the largest 

deviation from the globular correlation. Jarrold showed that positively-charged peptide 

ions with basic residues near the C-terminus have relatively high helical propensities [52, 

53, 76], and we have found similar trends for a series of model peptides specifically 

designed to examine the effects of C-term charge carriers on gas-phase ion structure [59]. 

 Thus, we suggest that peptide ions having larger than predicted collision cross-sections 

correspond to extended conformations and can be good candidates for helical structures.  

There are ten peptides that exhibit collision cross-sections which are ca. 7 % 

smaller (more compact structures) than the average (Table 5).  The majority of these 

peptides are the products of pepsin digestion. We previously showed that gas-phase 

phosphorylated peptide ions exhibit compact structures [34, 58, 77]. Although the 

peptides which fall below the average mobility-mass correlation in our database are not 

modified, many of them have multiple acidic and polar residues which could lead to 

formation of salt-bridged structures and/or H-bonding between acidic and basic side 

chains, which could significantly reduce collision cross-sections [73, 78].  Furthermore, 

the average number of polar residues increases across the classes of peptides listed in 

Tables 1-3; for peptides that fall on or near the globular mobility-mass correlation (Table 

1), approximately 48 % are polar, whereas only 34 % of the residues of the peptides 

which occur above the globular trendline (Table 2) are polar. The compact peptide ions 

which fall below the globular mobility-mass correlation (Table 3) are 59 % polar.  
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Table 4.  Compilation of selected data for peptide ions with collision cross-section that deviate by 
more than +7% from the average mobility-mass correlation.  
 

 
 
Note: the table list the enzyme used for proteolysis (Enz., T = trypsin, C = chymotrypsin, P = pepsin, 
the UniProtKB protein identifier, position of peptide in the protein, amino acid sequence, 
monoisotopic mass-to-charge ratio (m/z), collision cross-section (Ω), and percent deviation from the 
average mobility-mass correlation (% Dev.). Collision cross-sections and reduced mobilities are 
reported as the average ± 1σ for 5 replicate measurements. (*) Indicates peptide sequences were 
confirmed by tandem MS.  
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Table 5. Compilation of selected data for peptide ions that deviate by more than -7% from the 
average mobility-mass correlation. (Notations are as same as table1) 

 

 
 
Note: the table list the enzyme used for proteolysis (Enz., T = trypsin, C = chymotrypsin, P = pepsin, 
the UniProtKB protein identifier, position of peptide in the protein, amino acid sequence, 
monoisotopic mass-to-charge ratio (m/z), collision cross-section (Ω), and percent deviation from the 
average mobility-mass correlation (% Dev.). Collision cross-sections and reduced mobilities are 
reported as the average ± 1σ for 5 replicate measurements. (*) Indicates peptide sequences were 
confirmed by tandem MS.  
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Thus, it appears that the number of polar residues can be related to the 

conformations of peptide ions.  That is, the presence of amino acids that can form a salt-

bridge and/or H-bond interactions increases the packing efficiency of the peptide ions 

and reduces the collision cross-section.  Attributing compact conformations to peptide 

ions that contain hydrophilic side-chains is indirectly supported by data for peptide ions 

that contain non-polar residues. The presence of non-polar amino acids appears to 

contribute more significantly to collision cross-sections than do polar groups, because 

non-polar side chains do not contribute to charge solvation or participate in charge-

dipole or dipole-dipole interactions [78], or cation-π interactions.  

 

The effect on helix formation of peptide ions in the gas phase 

As mentioned previously, the peptide ions with secondary structures can be 

easily identified by their signals that positively deviated from the average drift time-m/z 

trend for peptides [56].  In the database we collected, 37 of 607 peptide ions have 

collision cross-sections that are larger than 7% from that expected for globular ions.  

These peptides corresponding to extended conformation are good candidates for helical 

structures.  Jarrold and coworkers have reported the use of designed peptides to study 

helix formation of linear peptides in the gas-phase by IM-MS, and concluded three 

major factors influencing helix formation in un-solvated peptides [53]:  i) the location of 

the residues with high helix propensity (i.e., Val, Leu, Ala); ii) the number of 

neighboring residues with high helix propensity; iii) the location of the charge site.  A 

positive charge at the C-term stabilizes the helix macro-dipole.  
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Different from Jarrold’s studies which used the designed linear peptides, i.e., poly 

alanine, as model peptides, my study on helical structures of peptides in gas-phase 

focuses on the proteolytic digest fragments of proteins.  Extensive molecular simulations 

have been used to examine helix formation in the twenty peptides with large collision 

cross-sections listed in Table 4.   The results from simulated annealing studies are shown 

in Figures 2 and 3, which indicate that some of the peptides exhibit partial helical 

structures as gas-phase ions.  The peptides with helix show similarity on their peptide 

composition: i) they have charge-carry residue at C-term.  A helix has a macrodipole that 

results from the alignment of the backbone NH and CO groups.  The positive end of the 

macrodipole is at the N terminus, and placing a positive charge at C terminus stabilizes 

the helix; ii) the peptide have at least one residue with high helix propensity in the 

middle part of the sequence.  Val, Leu, Ala are the residues with high helix propensity.  

If they locate in the center of the peptide sequence, it can propagate helix formation to 

both ends.  If they are adjacent to each other, it promotes helix formation as well.  These 

observations are in a good agreement with Jarrold’s conclusions [53].   
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Figure 2. Compilation of peptide ions with helical conformations identified by simulation annealing.  
Color in sequence denotes the secondary structure element.  Green is turn, pink is helix, and black is 
random coil.  Sequence with * indicates peptides were confirmed by tandem MS. 
 



 24 

 

Figure 3. Compilation of peptide ions with non-helical conformations identified by simulation 
annealing.  Color in sequence denotes the secondary structure element.  Green is turn, pink is helix, 
and black is random coil.  Sequence with * indicates peptides were confirmed by tandem MS. 
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Compared to the peptides with helix, some of the non-helical peptides have the 

positive charge at the N terminus, which destabilizes the helix.  For example, addition of 

HK to the TGPNLHGLFGR peptide, residues 28-38 of cytochrome c, results in dramatic 

changes in ion structure. The helical region of TGPNLHGLFGR spans the residues 

GPNLHGL, whereas the residues TGPNL of HKTGPNLHGLFGR, which correspond to 

residues of 26-38 or cytochrome c, adopt a turn structure (shown in Figure 4).  The 

preference for helical vs. turn conformation can be a result from the location of charge, 

i.e., the principle charge site for TGPNLHGLFGR is the C-terminal arginine, whereas 

the preferred charge carrying region of HKTGPNLHGLFGR is potentially the N-

terminal HK residues [79].  This explanation is also supported by marked differences in 

the fragmentation spectra of the two peptides, i.e., TGPNLHGLFGR [M + H]+ ions 

dissociate to yield a much higher abundance of yi type ions, owing to the C-terminal 

charge carrier, and HKTGPNLHGLFGR [M + H]+ ions yield almost exclusively ai and 

bi type fragment ions.  Such observations underscore the effects of peptide composition, 

especially charge-carrying residues, on the structure(s) of gas-phase peptide ions.   

To further investigate the side chain contribution to helix formation in gas phase 

peptide ions, the short peptide with the defined helical conformation as gas-phase ion 

from the previously described database, i.e., MIFAGIK, residues 80-86 of cytochrome c, 

has been used.  The simulated annealing result suggests that MIFAGIK exhibit partial 

helix in the region of the residues IFA.  The original charge site is blocked by different 

functional groups to verify the effects of charge location on the peptide structure in the 

gas phase.  The detail will be presented in next chapter.   
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Figure 4. Proposed structures for TGPNLHGLFGR [M + H]+
 ions (A) and HKTGPNLHGLFGR [M 

+ H]+
 ions (B) consistent with the ion-neutral collision cross-sections measured by  MALDI.  The 

images are produced using VMD (UIUC, Urbana-Champaign, IL). The colors represent different 
types of residues; white denotes non-polar residues, green denotes polar residues, blue denotes basic 
residues, and red denotes acidic residues.  α–helical regions are given as coiled ribbons. 
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ESI vs. MALDI 

Electrospray ionization (ESI) and matrix-assisted laser desorption ionization 

(MALDI) are the most popular ion sources used for peptide and protein mass analysis, 

they are both soft ionization techniques by which the ions can be transferred intact into 

the gas phase.  However, the ions formed by these techniques can be quite different in 

terms of internal energy and structure.  Here we compare the experimental collision 

cross sections of peptide ions formed by different ionization processes and use 

computational simulations to probe the structural difference of peptide ions generated by 

ESI and MALDI.   

Clemmer and coworkers have reported a collision cross-section database of 420 

singly charged peptides generated by ESI-IM-TOFMS [51], which is quite consistent 

with  the average globular mobility-mass correlation derived from the database we 

collected.  The peptide ions identified by both ionization methods are listed in Table 6.  

For those peptides with same sequence, the collision cross-section acquired by MALDI 

is normally 3~7% larger than the one acquired by ESI.  In a few cases, the difference is 

even larger than 10%.  This can be explained by the different gas-phase conformations 

generated by MALDI and ESI.   As a specific example, Clemmer reported a collision 

cross-section for TGPNLHGLFGR [M + H]+
 ions of 258 Å2, but we obtained a value of 

286 Å2, a difference of  ~ 9%.  We performed extensive analysis of the data and are 

convinced that the differences are outside the bounds of experimental error.  Using 

molecular modeling and molecular orbital calculations, we identified two helical 

structures (Figure 5) that agree very well with the experimental collision cross-sections.  
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Table 6. Compilation of peptide ions with the ion-neutral collision cross-section values measured by 
MALDI and ESI.  Highlighted peptides are chosen for further simulation study. Peptide with * 
indicates the sequence was confirmed by tandem MS.  
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Figure 5. Proposed structures for TGPNLHGLFGR [M + H]+
 ions consistent with the ion-neutral 

collision cross-sections measured by (A) MALDI and reported for (B) ESI [18], respectively.  The 
images are produced using VMD (UIUC, Urbana-Champaign, IL). The colors represent different 
types of residues; white denotes non-polar residues, green denotes polar residues, blue denotes basic 
residues, and red denotes acidic residues.  α–helical regions are given as coiled ribbons. 
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Both structures appear to possess significant helical character, but the two 

structures differ in terms of the orientation of the side chains near the C-terminus.  That 

is, the proposed structure of the MALDI formed ion contains a turn at the C-term owing 

to hydrogen bonding interactions between the guanidinium ion on the arginine side chain 

and glycine (G10), which elongates the structure. This type of interaction is absent in the 

proposed ESI structure.   

Extensive molecular modeling studies have been also implemented on other 

seven peptide ions where similar differences have been observed.  These peptides are 

randomly picked from Table 6 with different sequence length.  For each peptide ion, 

3,600 candidate structures are generated from MD simulation, and the one that matches 

the experimental cross section value with the lowest energy is selected as the proposed 

structure for that particular peptide.  The proposed structures for those peptide ions 

generated by MALDI and ESI are presented in Figure 6.  An interesting observation is 

that, for short peptides with up to ~ 7 residues, the proposed structures of peptide ions 

formed by ESI and MALDI have pretty similar backbone structures and their large 

difference in collision cross sections can be a result from the different projection of side 

chains in space.  However, for longer peptides, since they have more degrees of freedom 

for positioning structural elements in backbone; both side chain orientation and 

backbone structure attribute to the difference in collision cross sections between ESI and 

MALDI.  
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Figure 6. Proposed structures for 7 peptide [M + H]+
 ions consistent with the ion-neutral collision 

cross-sections measured by ESI and MALDI.  The images are produced using VMD (UIUC, Urbana-
Champaign, IL). The colors represent different types of residues; white denotes non-polar residues, 
green denotes polar residues, blue denotes basic residues, and red denotes acidic residues.  α–helical 
regions are given as coiled ribbons. 
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Conclusion 

Ion-neutral collision cross-sections for 607 [M + H]+ peptide ions are compiled 

into a dataset containing structure and mass information using MALDI-IM-TOFMS. The 

peptides included in the database were generated by enzymatic digestion of known 

proteins using three different enzymes, resulting in peptides that differ in terms of amino 

acid composition as well as N-terminal and C-terminal residues.  The majority (63%) of 

the peptide ion collision cross-sections correlate well with structures that are best 

described as charge-solvated globules, but a significant number of the peptide ions 

exhibit collision cross-sections that are significantly larger or smaller than the average, 

globular mobility-mass correlation. Of the peptide ions having larger than average 

collision cross-sections, approximately 71% are derived from trypsin digestion (C-

terminal Arg or Lys residues) and most of peptide ions that have smaller (than globular) 

collision cross-sections are derived from pepsin digestion  (90%).  Molecular 

simulations results suggest that peptide ions having larger than predicted collision cross-

sections correspond to extended conformations and can be good candidates for helical 

structures.  Whereas the peptides with smaller cross-sections would prefer more compact 

structure due to the salvation interaction from their polar residues.  Compared to the 

peptide collision cross-sections measured using electrospray, we find reasonably good 

correlation between the measured values, but in some cases the collision cross-sections 

differ by as much as 3-10%.  Simulation results indicate that ESI yields gas-phase ions 

which can differ in terms of structure or conformation from those formed by MALDI.  

Since the ESI and MALDI IM-MS data were acquired under different operation 
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parameters using different instruments, the question concerning whether the different 

results are related to the nature of the sample, the specific details of the sample 

preparation, or the instrumental parameters used in operation remains unanswered.  To 

avoid the errors generated by different operation systems, the mobility measurements for 

peptide ions generated by ESI and MALDI should be performed using same operating 

condition on same mobility instrument.  Now the mobility instrument with both 

ionization sources is under development in our lab.  
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CHAPTER III 

CONTRIBUTIONS OF MOLECULAR FRAMEWORK TO IMS  

COLLISION CROSS-SECTIONS OF GAS-PHASE PEPTIDE IONS*  

Introduction 

The emphasis of mass spectrometry based biological chemistry is shifting from 

compound identification to structural studies of large biomolecules and biomolecule 

complexes [9-15], including membrane proteins [16].   The next phase of ‘omics’ related 

research must be aimed at obtaining and predicting additional dimensions of information, 

such as secondary, tertiary, and quaternary structures and linkage specific information 

for glycans.  Although sophisticated structural characterization tools such as NMR and 

XRD provide the most information, high throughput analysis of complex biological 

mixtures obtained by using these techniques is an underdeveloped technology.  On the 

other hand, IMS is much more than a separation device, the structural information 

derived from 2D conformation space afforded by IM-MS is potentially well-suited to 

both high throughput applications and complex biological samples.  

           A number of laboratories have focused their research on developing IM-MS  

 for biophysical studies of peptides and proteins [34,52,55,56,63,64].  In previous work 

we showed that a large proportion of singly charged peptide ions  (formed by MALDI) 

appear on a single trendline in mobility-m/z plots,  i.e.,  plots  of  arrival-time distribution  

____________ 
*Reprinted with permission from “The Contributions of Molecular Framework to IMS 
Collision Cross-Sections of Gas-phase Peptide Ions” by Tao, L.; Dahl, D. B.; Perez, L. 
M.; Russell, D. H., 2009, Journal of the American Society for Mass Spectrometry, 20, 
1593-1602, Copyright [2009] by Elsevier.  
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 (ATD) or ion-neutral collision cross-section (Ω) vs. m/z [54];however, a small number 

of ion signals deviate (>3 to ~20%) from the expected trendline, and non-peptidic ion 

signals appear on separate, compound class specific trendlines [34, 54].  Ruotolo et al. 

showed that gas-phase [M + H]+ ions of LLGNVLVVVLAR (derived from bovine 

hemoglobin) prefer extended (helical) structure(s) resulting in a larger collision cross-

section than random coil structures having the same or similar m/z values [55, 56], while 

some post-translationally modified (PTM) peptide ions (phosphopeptides) tend to pack 

more tightly than the unmodified protonated peptide ions owing to intra-molecular 

charge-solvation and/or formation of salt-bridged type structures [57, 58].  In addition, 

we have used chemical derivatization via acetylation of the N-terminus and internal 

basic lysine residues and methylation of the acidic glutamic residues to show that the 

helical propensity of a given peptide can be increased by reducing the number of ‘salt-

bridge’ intramolecular interactions [59]. 

Molecular dynamics (MD) is the method of choice for correlating the measured 

collision cross-section (Ωmeas) with candidate structures.  Ion structure is derived by 

comparing Ωmeas with the calculated collision cross-section (Ωcalc) of the lowest energy 

structure obtained using MD simulations.  This approach involves selecting the ‘lowest 

energy structure’ from a large pool of candidate structures generated through multiple 

tiers of  simulated annealing [80].  It is important to note, however, the lowest energy 

structure may not be representative of Ωmeas since under the experimental conditions, i.e., 

long resident times in the drift cell and small amounts of collisional heating can facilitate 

rearrangement reactions that may be subject to low energy barriers.  The ion population 
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is composed of an ensemble of many conformations at a defined ion effective 

temperature range as opposed to a single conformation assumed at the lowest energy 

[81]. 

The challenge for structure IM-MS is to design gas-phase experiments that 

critically evaluate the structural assignments [60-62].  The research described here is 

aimed at bridging the gap between the experimental domain of IM-MS and the MD 

simulations and bioinformatic tools that are essential to interpretation of the data.  In this 

study, we apply a novel clustering algorithm to a model peptide to identify groups of 

structural elements from a large pool of diverse candidate structures.  The clustering 

algorithm is similar to that used by Damsbo et al. [82], i.e., have grouped the candidate 

structures based on the similarity of backbone structure; however, our procedure 

provides estimates of the uncertainty of the cluster membership and the degree of purity 

of the cluster.  

In this study, we use NH2-Met-Ile-Phe-Ala-Gly-Ile-Lys-COOH (MIFAGIK), 

residues 80-86 of cytochrome c, as our model peptide to develop methods to evaluate the 

complete candidate structure population.  We selected this peptide because the Ωmeas for  

[M + H]+ ions formed by MALDI is about 5% larger than that expected for globular 

conformation [54] and smaller than that expected for helical structure.  The observation 

raises the question of whether the ion population is composed of a number of very 

similar conformations and can we use statistical analysis tools to gain information about 

structural diversity.  Although simulated annealing experiments yield a lowest energy 

structure that contains a helical turn conformation in the region of the residues Ile2-Phe3-
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Ala4, candidate structures with Ωcalc that fall within ±2% of the measured value are 

comprised of a number of structure types.   We have also compared MIFAGIK 

derivatives, including acetylated, Boc and Fmoc protected N-terminus, C-terminal 

methyl ester, Fmoc protected Lys7 and [M + Na]+ ions. The experimental data provides 

new insight into the role of protecting groups in the N- and C-terminal positions and the 

role of the charge site in the conformational preference of small peptides.   

 

Experimental 

Materials 

The peptide MIFAGIK (MW 778.5) was purchased from Genscript Corp. 

(Piscataway, NJ) and used without further purification.  Bradykinin (RPPGFSPF, MW 

1060.2), substance P (RPKPQQFFGLM-NH2, MW 1346.6), anhydrous methanol, acetyl 

chloride, acetic anhydride boc anhydride, 9-fluorenylmethyl chloroformate and dioxane 

were obtained from Sigma (St Louis, MO). The peptide derivatives were synthesized 

using conventional solution phase methods [83, 84].  The acetyl, Boc and Fmoc group 

were used for amino group protection and the C-terminus was protected by the methyl 

ester.  Deprotection of Boc group was performed using hydrochloric acid.  All peptide 

sequences were confirmed using tandem mass spectrometry (Applied Biosystems 4700 

Proteomics analyzer). 
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MIFAGIK-OMe  

 The methanolic HCl reagent was prepared by dropwise addition of 800 µL acetyl 

chloride to 5 mL of anhydrous methanol with stirring.  After 5 min, 200 µL methanolic 

HCl was added to 1 mg of dry peptide.  The solution was incubated for a period of 2 h at 

room temperature and was dried by lyophilization.  The resulting O-methyl ester was 

dissolved in 1 mL distilled water and used for mass analysis without further purification. 

 

N-Ac-MIFAGIK  

  The stock solution of peptide MIFAGIK was prepared by dissolving 1 mg 

peptide in 1 mL of 50 mM ammonium bicarbonate.  The acetylation reagent was 

prepared by mixing 10 µL acetyl anhydride with 20 µL anhydrous methanol and then 

added to 50 µL peptide stock solution.  The reaction was allowed to proceed for a period 

of 15 min at room temperature.  The sample was dried by lyophilization.   The peptide 

solution was reconstituted by mixing with 50 µL distilled water and analyzed by mass 

spectrometry without further purification. 

 

N-Fmoc-MIFAGIK  

The Fmoc group was introduced by treatment of 10 µL free peptide MIFAGIK 

stock solution with 10 µg 9-fluorenylmethyl chloroformate in 10 µL aqueous dioxane.   

The reaction was allowed to proceed for a period of 60 min at room temperature.  The 

sample was dried by lyophilization.   The peptide solution was reconstituted by mixing 



 39 

with 20 µL distilled water and analyzed by mass spectrometry without further 

purification. 

 

MIFAGIK-N-Fmoc 

The MIFAGIK-N-Fmoc derivative was synthesized by first protecting the N-

terminus with a Boc protecting group and then reacting with Fmoc followed by 

removable of the Boc group under acidic conditions.  A solution of Boc-anhydride (2 

µmoL) in 10 µL anhydrous methanol was added to 10 µL free peptide MIFAGIK stock 

solution.  After stirring for 30 min at room temperature, the mixture was concentrated in 

vacuo.  The residue was dissolved in 10 µL aqueous dioxane in the presence of sodium 

carbonate to which 10 µg 9-fluorenylmethyl chloroformate in 10 µL aqueous dioxane 

was added.   The reaction was allowed to proceed for 60 min at room temperature.  The 

Boc group was removed by addition of 5 µL of 1.2 M HCl, which was allowed to react 

for 10 minutes.  The product was then analyzed by mass spectrometry without further 

purification. 

 

MALDI-IM-TOFMS 

 Stock solutions of peptide (1mg/mL) were mixed with re-crystallized α-cyano-4-

hydroxycinnamic acid (Sigma) in a molar ratio of ~2000:1, and 1 µl aliquots of the 

peptide/matrix mixture was deposited on a stainless steel MALDI sample plate. 

The MALDI-IM-TOFMS analysis was performed using a home-built instrument 

previously described [68].  Briefly, MALDI was performed using a frequency tripled 
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(355 nm) Nd:YAG laser (CrystaLaser, Reno, NV) operated at a pulse rate of 200-400 Hz. 

The resulting ions were introduced into a 15 cm drift tube maintained at a pressure of ca. 

2.7 Torr of He maintained at room temperature.  Under these conditions the E/p ratios 

range from 18 to 34 Vcm-1torr-1, which provides mobility resolution of 15 to 25.  The 

ions eluting the drift cell were extracted and mass analyzed by an orthogonal reflectron-

TOF, typical m/z resolution ca. 2000 - 4000.  The mass spectrometer was externally 

calibrated using two-point calibration on C60 (Mr = 720) and C70 (Mr = 840) radical 

cations (Sigma) [5].  The measurements of collision cross sections were externally 

calibrated with [M + H]+ ions of bradykinin (Ωmeas = 245 Å2) and substance P (Ωmeas = 

292 Å2) [35].  The 2D IM-MS data was acquired and processed by using custom 

software (Ionwerks, Inc.).  

The experimental ion-neutral collision cross-sections were determined from the 

empirical drift times (td) by the following equation [69]: 

(18 )
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where z is the charge of the ion, e is elementary charge, N0 is the number density of the 

drift gas at STP, kb is Boltzmann’s constant, mI is the mass of the ion, mB is the mass of 

buffer gas, E is the IM electric field strength, L is the drift tube length, P is the buffer gas 

pressure and T is the system temperature.   
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Molecular dynamics 

Molecular dynamics simulations were performed as described previously [56, 

73].  Peptide structures were first constructed using Insight II 2000(Accelerys, San 

Diego, CA).  Starting structures were limited to 4 different structures: an extended form, 

α-helix form, 310-helix form and Pi-helix form.  For the peptide [M + H]+ ions, we 

assumed that the proton was on the most basic residue, Lys and N-terminus, whereas for 

the [M + Na]+ ions,  Na+ was placed in a central position on the peptide backbone.  

Simulated annealing was performed with the OFF program in Cerius 4.9 (Accelrys, San 

Diego, CA) using the Consistent Force Field (CFF 1.02).  During the simulation, the 

starting structures were gradually heated over the course of 280 ps in a step-wise fashion, 

(relaxation time is 0.1 ps and time step is 0.001 ps), starting and ending at 300 K and 

peaking at 1000 K.  After each annealing cycle, a minimized structure was produced.  

Annealing cycles were repeated 300 times generating 300 minimized structures for each 

starting structure. Eight more structures were selected from first stage results as the 

starting structures of the second stage simulations, creating a total of 3,600 minimized 

structures for each peptide.  Ωcalc of each minimized structure was calculated using the 

elastic hard sphere scattering (EHSS) method in the MOBCAL software [74].  

 

Dynamic clustering algorithm 

We develop a novel clustering procedure as an integral part of our methodology 

to correlate IMS collision cross-section data with candidate structures.  Our approach 

uses an ensemble of many conformations rather than simply the lowest energy structure.  
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Damsbo et al. [85] also use clustering methods for this purpose, although our approach 

differs from theirs in several respects.  First, the pairwise distance for our clustering 

procedure is the root-mean-squared-deviation (RMSD) of the backbone coordinates 

calculated between all pairs of simulated structures that correlate to ±2% of Ωmeas, 

whereas Damsbo et al. [85] defined the pairwise distance in terms of backbone torsion 

angles.  Even more fundamental, however, is the fact that the clustering procedures 

themselves are quite different.  Damsbo et al. use the k-means clustering procedure 

which, depending on the initial starting conditions, may converge to sub-optimal 

configurations.  Even if the optimal clustering is found, however, k-means only produces 

a single clustering estimate.  Our novel clustering procedure, while more 

computationally intensive, is robust to the initial starting configuration.  Further, rather 

than merely giving a single clustering estimate, our procedure provides a distribution of 

clustering.  This allows us to investigate important aspects of the clustering distribution, 

including assessing the proximity of clusters and measures of clustering uncertainty. 

Intuitively, our clustering procedure repeatedly reallocates structures among 

existing or new clusters based on the proximity (as measured by RMSD) of the 

structures to each other.  For any given structure, the probability it is allocated to an 

existing cluster is a function of the RMSD values between this structure and those 

already in the existing cluster.  Rather than being forced into the cluster with the highest 

probability, however, a structure is randomly allocated to clusters based on these 

probabilities.  Further, there is also a chance that a structure may form a new cluster.  A 

key aspect of the algorithm is that the clustering is dynamic in that structures are 
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reallocated among the existing and new clusters in each iteration.  Repeated iterations 

provide a clustering distribution, from which a point estimate of clustering can be 

obtained and clustering uncertainly can be assessed.  As we describe below, we use 

least-squares clustering [86] to obtain a point estimate and we assess uncertainty using 

the resulting pairwise probability matrix for whether two structures occupy the same 

cluster. 

Formally, the dynamic clustering procedure can be explained as follows.  A 

clustering of n structures can be represented by a set partition π = {S1, . . .,Sq} of a set S0 

= {1,...,n}, where the subsets are nonempty, mutually exclusive, and exhaustive.  Two 

structures k and k’
 
are clustered in cluster S if and only both k and k’

 
are in S. The 

algorithm uses a Markov chain [86] starting at an initially clustering π and updating 

according to the following transition rule.  For k = 1, . . ., n,  

p( k ∈ S   |· ) ∝ hk (S), for all S ∈ π  

p( k ∈ S* |· ) ∝ α,  

where S*
 
is an new cluster not currently associated with any other structures and hk(S) is 

defined as follows.  Let dkk’ be the pairwise RMSD between structures k and k’.  Let wkk’ 

∝ (d* 
 
− dkk’)

t 
be a measure of proximity of items k and k’, where d*

 
is the overall 

maximum pairwise distance plus a small increment to ensure that all weights are strictly 

positive. Note that t has the effect of dampening or accentuating the proximity 

measurements.  For each k = 1, . . ., n, scale wk1, . . ., wkn such that ∑
k’≠k 

wkk’ = n − 1. 

Finally, define hk(S) = ∑
k’∈S 

wkk’. Note that the probability of assigning a structure k to a 
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new cluster is α/(α + n − 1) and the probably to being assigned to an existing cluster is   

(n − 1)/(α + n − 1). 

A key theoretical consideration is whether this procedure has an equilibrium 

distribution.  This Markov chain has a finite state space since the number of possible 

clustering, given by the Bell number, is finite. Since every clustering is accessible from 

every other clustering through repeated application of the transition rule, the Markov 

chain is irreducible. The Markov chain is aperiodic because, for every clustering, it is 

possible that an application of the transition rule will lead to the same clustering. Finally, 

since the weights are strictly positive, there is positive probability of returning to every 

clustering and the Markov chain is recurrent.  Since this Markov chain is irreducible, 

recurrent, and aperiodic, it indeed satisfies the conditions to have an equilibrium 

distribution. 

Following repeated application of the transition rule, many candidate clusterings 

have been generated. The pairwise probability 
'

ˆ
kk

p that two structures k and k’
 
are 

clustered is estimated by the relative frequency among the candidate clusterings that k 

and k’
 
occupy the same cluster. The least-squared clustering [86] selects the candidate 

clustering closest to the estimated pairwise probabilities in terms of squared distances: 
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where δkk’( π ) = 1 if k and k’
 
occupy the sample cluster in clustering π, and 0 otherwise. 

This method minimizes of a posterior expected loss of Binder [87] with equal costs of 

clustering mistakes.  
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To get an indication of clustering uncertainty, we propose to quantity we call the 

c-value.  The c-value for a structure k in cluster S is the average pairwise probability of 

being clustered with the other structures in cluster S, i.e.,  

''
ˆ

 = ,kkk S

k

p
c value

S

∈− ∑
 

where |S| is the size the cluster S. If an item has a high c-value, there is more confidence 

that structure is clustered appropriately.  

The clustering uncertainty can also be assessed by plotting a pairwise probability 

matrix. Arrange the rows and columns by the clustering as indicated by the least squares 

clustering and make the color of each element indicate the value of the estimated 

pairwise probability. This plot makes it easy to see what clusters are well defined and 

which clusters are closely related or very different from other clusters.  We give an 

example of this plot later in the paper. 

In implementing the procedure in this paper, we set α =1 and t at a value between 

15 and 45 so as to provide a few well-separated clustering.  We applied the transition 

rule about 500,000 times. In repeated application of the algorithm to the same dataset, 

the resulting clustering very similar as measured by the adjusted Rand index [88]. 

 

Results and Discussion 

 [M + H]
+
 ions of MIFAGIK 

All Ωmeas of the [M + H]+ and [M + Na]+ ions of MIFAGIK and the various 

derivatives are listed in Table 7. The [M + H]+ ions of MIFAGIK (Ωmeas = 213 ± 4 Å2) is 
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Table 7. Ion-neutral collision cross sections of peptide ions measured by MALDI-IM-TOFMS are 
determined from empirical drift times (td) using a hard sphere approximation.  * Errors for all 
measured collision cross-section values are around ±2%. 
 

Ωmeas
* 

Name Squence m/z 
(Å2) 

MIFAGIK 779.45 213 

MIFAGIK-O-Met 793.46 216 

Ac-N-MIFAGIK 821.48 223 

Boc-N-MIFAGIK 879.50 239 

Fmoc-N-MIFAGIK 1001.52 251 

[M+H]+ 

MIFAGIK-Fmoc 1001.52 248 

MIFAGIK+Na 801.44 217 

MIFAGIK-O-Met+Na 815.45 223 [M+Na]+ 

Ac-N-MIFAGIK-Ac+Na 885.47 237 
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approximately 5% larger than that expected for ions that fall on the globular mobility-

mass trendlines [54], which suggests that the ion structures are somewhat elongated 

(partial helix).  MD simulations as described above yield a total of 3,600 candidate 

structures for the [M + H]+
 ions and 631 fall within ±2% of Ωmeas.  Figure 7a contains a 

scatter plot of energy versus Ωcalc generated by annealing molecular dynamics.   

The dynamic clustering procedure described above was applied to the 631 

structures that fall within ±2% of Ωmeas.  The structural similarities among the candidate 

structures are revealed by plotting the pairwise probability matrix (Figure 7b), where the 

color of the element (i, j) indicates the estimated probability that structures i and j have 

similar backbone coordinates.  It is possible that structures that fall within a given cluster 

may in fact share structural elements with another cluster.  For example, cluster 1 

contains conformations that are similar to each other as well as cluster 5, whereas the 

structures represented by cluster 2 are very different from those of cluster 5 and cluster 3.  

(shown in Figure 8).  That is, the tan color indicates high probability of being clustered 

(i.e., having similar structures), whereas the off-diagonal blocks of dark colors (i.e., dark 

blue or purple) indicate the clusters do not share structural features.  Eleven potential 

clusters were generated for the 631 candidate structures; however, clusters 1, 5, 2, and 3 

contain over 85% of the total structural elements of the ion populations.  Backbone 

projections of all candidate peptide structures within the most populated clusters are 

overlapped and displayed in Figure 8.  The overlaid backbone structures of each cluster 

show random fluctuations, both in terms of backbone coordinates as well as positioning 

of the side chains.  A representative structure for each cluster is obtained by selecting the  
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a) 

 

b) 

 

 

Figure 7. a) Scatter plot of MD energy versus calculated ion-neutral collision cross-section generated 
by annealing molecular dynamics for [MIFAGIK + H]+ ions.  The shaded area indicates ±2% 
deviation of the measured ion-neutral collision cross-sections, b) the pairwise probability plot of the 
MIFAGIK peptide ion. 
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Figure 8. Backbone structures of four most populated clusters for [MIFAGIK + H]+ ions classified 
by their RMSD values and the structure with highest c-value (representative structure) in each cluster. 
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structure with the highest c-value in the cluster.   The c-value provides an indication of 

the certainty for each structure in the cluster.  That is, the structure with a high c-value 

indicates a high confidence of being clustered appropriately; thus the structure with the 

highest c-value should be the best estimate of a cluster.  

Note that clusters 1, 5, 2, and 3 represent different conformations owing to 

coordination of the charge site and specific backbone carboxyl groups.  For example, 

cluster 1 is comprised of structures having a turn in the Met1-Ile2-Phe3-Ala4-Gly5 

sequence; cluster 5 is best described as a random coil; cluster 2 is characterized by a β-

turn over Ile2-Phe3-Ala4-Gly5 sequence and cluster 3 corresponds to partial helical 

character over Ile2-Phe3-Ala4 sequence.  Note that ‘the lowest energy structure’ within 

the Ωmeas corresponds to a helical turn conformation over the IFA sequence, similar to 

cluster 3; however, this structure comprises a minor portion of the total ion population. 

Our ultimate goal would be to evaluate the ion structural distribution as a 

function of energy; however, structure-energy distributions are a function of both energy 

and reaction dynamics and our current methodologies do not allow for such detailed 

information.  Higher-level calculations to yield meaningful free energy values for 

pursuing this important question [81] will present in next chapter.  Nonetheless, it is 

interesting to compare the range of energies for each conformation for the 4 most 

populated clusters.  For example, ~80% of the structures in cluster 3 (α-helix; 11% of the 

ion population) have energies (Figure 9) that are lower than -20 kcal/mol, which 

suggests that a greater fraction of the low internal energy ions prefer cluster 3, whereas 

cluster 1 (α-turn; 39% of the ion population) is comprised of higher energy conformers.    
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Figure 9. Energy profiles of four most populated clusters for [MIFAGIK + H]+ ions. 
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These data raise an obvious question, is the structural population among the 

various clusters dependent on ion internal energy?  Such questions can be probed by 

producing a greater population of low internal ions or possibly by performing variable-

temperature IMS experiments.  At the present time we do not have experimental 

capabilities for either experiment.  Clemmer et al. have measured collision cross-

sections for MIFAGIK [M + H]+ ions formed by ESI-IMMS, and the Ωmeas of 207 ± 4 Å2 

[51] differs by 4% from that measured by MALDI.  A total of 458 candidate structures 

that fall within ±2% of the ESI Ωmeas are subjected to cluster analysis (Figure 10).  Note 

that the most populated clusters are quite similar in terms of backbone conformations to 

those formed by MALDI, i.e., approximately 34% of the structures have a turn in the 

Met1-Ile2-Phe3-Ala4-Gly5 sequence. The β-turn structure spanning Ile2-Phe3-Ala4-Gly5 

and FAGI sequence are also favored.   The partial helical structure over Ile2-Phe3-Ala4 

sequence is the least abundant.  Thus it appears that that the structures of peptide ions 

formed by ESI and MALDI have similar backbone structures and the difference in 

collision cross-sections are most likely a result of different projections of side chains; 

however, it is equally likely that these differences are simply variations in the 

experimental results.   We are currently developing IM-MS instruments that will allow 

us to perform more extensive comparisons of MALDI and ESI formed ions as well as 

VT(~90-650K)-IM-MS experiments.  
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a) 

 
 
b) 

 
 

Figure 10. a) The pairwise probability plot of candidate structures for [MIFAGIK + H]+ ions formed 
by  ESI-IMMS*, and b) the backbone structures of four most populated clusters for [MIFAGIK + H]+ 
ions formed by  ESI-IMMS* . * Ωmeas of [MIFAGIK + H]+ was taken from data published by 
Clemmer et al. [35]. 
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[M + Na]
+
 ion of MIFAGIK 

    The charge site can also affect the conformations of gas-phase peptide ions. Previous 

studies have shown that the dissociation reactions of [M + H]+ and [M + Na]+ ions  differ 

significantly owing to different charge locations, H+ prefer basic sites and Na+ is  very 

oxyphilic [89].  The MD simulations of MIFAGIK [M + Na]+ ions were performed  by 

placing Na+ ion on the neutral peptide backbone, and the resulting energy vs.  collision 

cross-section plot was similar to that shown in Figure 8.   The candidate structures  that 

fall within ±2% of the Ωmeas (217 ± 4 Å2) (a total of 654 conformations) are subjected  to 

cluster analysis.  Cluster analysis yields a total four clusters, and two of these  clusters 

contain approximately 84% of the total ensemble of representative structures  (see Figure 

11).  These structures are characteristic of random coil amide backbones with the  Na+ 

ion surrounded by the amide groups in what appears to be a ‘charge-solvated’  structure.  

When superimposed the two conformations comprising cluster 1 and 3 appear to  be 

mirror images.   Cluster analysis is performed on [N-Ac-MIFAGIK-Ac + Na]+  and 

[MIFAGIK-O-Me + Na]+ ions as well, the Ωmeas are listed in Table 7 and cluster  analysis 

results are shown in Figures 12 and 13.  These ions prefer random coil conformation  that 

are similar to those for [MIFAGIK + Na]+ ions.   
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a) 

 
 
b) 

 
 
Figure 11. a) The pairwise probability plot of candidate structures for [MIFAGIK + Na]+ ions 
formed by  MALDI-IMMS, and b) the backbone structures of four most populated clusters for 
[MIFAGIK + Na]+ ions.  
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a) 

 
 
b) 

 
 
Figure 12. a) The pairwise probability plot of candidate structures for [N-Ac-MIFAGIK-Ac + Na]+ 
ions formed by  MALDI-IMMS, and b) the backbone structures of four most populated clusters for 
[N-Ac-MIFAGIK-Ac + Na]+ ions.  
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a) 

 
 
b) 

 
 
Figure 13. a) The pairwise probability plot of candidate structures for [MIFAGIK-O-Me + Na]+ ions 
formed by  MALDI-IMMS, and b) the backbone structures of four most populated clusters for 
[MIFAGIK-O-Me + Na]+ ions.  
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N- and C-terminal derivatives of MIFAGIK 

To test the ‘sensitivity’ of the cluster analysis method, we introduce subtle 

variations in peptide ion composition.  Protecting groups which alter the polarity of the 

N- or C-terminus may influence the conformational preference of small peptides [90], 

and such changes are detected by using MD/cluster analysis for MIFAGIK derivatives 

[MIFAGIK-OCH3 + H]+ and [N-Ac-MIFAGIK + H]+
 ions.  The introduction of the 

methyl and acetyl groups should have minimal effects on ion structure because both 

groups are relatively small, steric effects should be small relative to charge-solvation by 

the amide backbone, Lys7 is the preferred site of protonation, and the intramolecular 

interactions between the charged Lys7 and the backbone carboxyl groups resembles 

those of MIFAGIK [M + H]+
 ions.  The Ωmeas for [N-Ac-MIFAGIK + H]+

 and 

[MIFAGIK-OCH3 + H]+ ions are 216 ± 4 Å2 and 223 ± 4 Å2, respectively.  A total of 768 

and 1,145 candidate structures that fall within ±2% of the measured collision cross 

sections were subjected to cluster analysis.  The results are shown in Figures 14 and 15.  

The [MIFAGIK-OCH3 + H]+ ions adopt similar backbone conformations to MIFAGIK 

[M + H]+ ions.  This result is probably not surprising because the charge carrying site for 

the methyl ester derivative is the same as that of the underivatized peptide.  Note, 

however, that differences in population size are detected.  On the other hand, there are 

significant differences observed for the [N-Ac-MIFAGIK + H]+
 ions.  For example, the 

most populated cluster corresponds to random coil structures rather than α-turn 

structures.       
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a) 

 
 
b) 

 
 
Figure 14. a) The pairwise probability plot of candidate structures for [N-Ac-MIFAGIK + H]+ ions 
formed by  MALDI-IMMS, and b) the backbone structures of four most populated clusters for [N-Ac-
MIFAGIK + H]+ ions.  
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a) 

 
 
b) 

 
 

Figure 15. a) The pairwise probability plot of candidate structures for [MIFAGIK-O-Me + H]+ ions 
formed by  MALDI-IMMS, and b) the backbone structures of four most populated clusters for 
[MIFAGIK-O-Me + H]+ ions.  
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MIFAGIK with bulky protecting group 

To further validate the effect of charge site on the conformational preference of 

peptide MIFAGIK, [MIFAGIK-N-Fmoc + H]+ and [N-Fmoc-MIFAGIK + H]+ (Fmoc: 9-

Fluorenylmethyloxycarbonyl) were produced by modified peptide MIFAGIK having the 

Fmoc protecting group on either N-terminus or Lys side residue.  In the case of [N-

Fmoc-MIFAGIK + H]+, the charge site is on the side chain of Lys7, whereas the proton 

is moved to the N-terminus for [MIFAGIK- N-Fmoc + H]+ ions.    Peptide sequences of 

two peptide ions are confirmed using tandem mass spectrometry and spectra are shown 

in Figure 16.  As can be seen from the spectra, all the mass shifts are on y ions for 

[MIFAGIK-N-Fmoc + H]+ ions and all the mass shifts are on b ions in the case of [N-

Fmoc-MIFAGIK + H]+.     

The ATD plots for the [MIFAGIK-N-Fmoc + H]+ and [N-Fmoc-MIFAGIK + H]+ 

ions are shown in Figure 17.  The centroid of ATD of [N-Fmoc-MIFAGIK + H]+ is 

consistently ca. 8 µs longer than that for [MIFAGIK-N-Fmoc + H]+ ions, and the 

calculated collision cross-sections for [N-Fmoc-MIFAGIK + H]+ ions is ca. 3 Å2 larger 

than that of [MIFAGIK-N-Fmoc + H]+ ions.  It is unclear whether these differences arise 

as a result of different structures or differences in the spatial projections of the Fmoc 

group, but more detailed studies on similar effects are currently underway.    

Cluster analysis was performed on approximately 1000 candidate structures 

extracted from MD simulations for both peptide ions and results are illustrated in Figures 

18 and 19.   
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a) [N-Fmoc-MIFAGIK + H]+

 

 

 

 

b) [MIFAGIK-N-Fmoc + H]+
 

 

 

 

Figure 16. Tandem mass spectra of [N-Fmoc-MIFAGIK + H]+ peptide ions and [MIFAGIK-N-Fmoc 

+ H]+ peptide ions. 
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Figure 17. The ATD plot of [N-Fmoc-MIFAGIK + H]+ (solid line) and [MIFAGIK-N-Fmoc + H]+ 
(dotted line) peptide ions, the centroid ATD of [N-Fmoc-MIFAGIK + H]+ is 642.4µs while the 
centroid ATD of [MIFAGIK-N-Fmoc + H]+ is 635.3µs. 
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a) 

 
 
b) 

 

 
Figure 18. a) The pairwise probability plot of candidate structures for [N-Fmoc-MIFAGIK + H]+ 
ions formed by  MALDI-IMMS, and b) the backbone structures of four most populated clusters for 
[N-Fmoc-MIFAGIK + H]+ ions.  
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a) 

 
 
b) 

 
 
Figure 19. a) The pairwise probability plot of candidate structures for [MIFAGIK-N-Fmoc + H]+ 
ions formed by  MALDI-IMMS, and b) the backbone structures of four most populated clusters for 
[MIFAGIK-N-Fmoc + H]+ ions. 
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For [N-Fmoc-MIFAGIK + H]+, three clusters contain over 100 structures.  The 

dominant conformer represents ~60% of the total ensemble, and this conformer appears 

to adopt a random coil structure, which is attributed to hydrogen bonding between the 

protonated Lys7 and backbone amide groups.  The remaining most populated clusters 

exhibits a turn in the Ile2-Phe3-Ala4-Gly5 sequence or a helical turn in Ile2-Phe3-Ala4 

sequence, which are similar to the most populated structures obtained for [MIFAGIK + 

H]+ ions.  In the case of [MIFAGIK-N-Fmoc + H]+ ions, the two most populated clusters 

account for over 70% of the total ensemble.  Interestingly, both conformations contain a 

bridge between Ile2 and Gly5 which is quite different from that for peptides with the 

charge on Lys7.  It is interesting to note that helical conformations are not found for this 

ion since the preferred charge site of [MIFAGIK-N-Fmoc + H] is probably the N-

terminus and the helix is probably destablized by the interaction between the charge and 

the helix macrodipole. 

 

Conclusion 

Cluster analysis of IM-MS data is a powerful approach for classification of 

peptide structures derived from molecular dynamics simulations.  Each cluster represents 

probable conformations observed for gas-phase ions.  Specifically for the peptide 

MIFAGIK, cluster analysis suggests that [M + H]+ ions formed by MALDI or ESI both 

prefer a α-turn structure; this structural preference is probably the result of stabilization 

afforded by charge-solvation by the backbone amide groups.  That is, there appears to be 

a significance preference for helical or partial helical conformers by the low energy ions, 
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but the major fraction of the ion populations exists as α-turn, random coil, and β-turn 

conformers.    Although the derivatives of MIFAGIK which influence charge site and 

intramolecular interactions alter the distribution of various conformers, the most 

dramatic changes are observed for the [M + Na]+ ion, which show a strong preference 

for random coil conformers owing to the strong solvation by the backbone amide groups.  

We tested the ‘sensitivity’ of the cluster analysis method by introducing subtle variations 

in peptide ion composition as well.  For example, the N-acetyl and methylester 

derivatives as well as the Boc and Fmoc derivations all share very similar backbone 

structures.  All the results presented here support the hypothesis that difference in 

collision cross-sections for MIFAGIK peptide ions are related to the different orientation 

of side chains, i.e., MIFAGIK is a small peptide which has limited degrees-of-freedom 

for positioning backbone structural elements.    We are currently expanding these studies 

to studies of the results to larger peptide systems in an effort to increase statistical 

confidence of gas-phase conformation assignment.  
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CHAPTER IV 

ION MOBILITY-MASS SPECTROMETRY OF  

OLIGODEOXYNUCLEOTIDES  

Introduction 

Structure of DNA 

Deoxyribonucleic acids (DNA) are polymers of nucleotides (nt) that contain the 

genetic information used in the functioning of all living organisms.  Nucleotides are 

composed of a heterocyclic base, a sugar and a phosphate group.  In DNA, the sugar unit 

is 2’-deoxyribose, the five-carbon ring, joined together through phosphor-ester bonds 

between the third (C3’) and fifth carbon atoms (C5’) of adjacent sugar rings.  The 

heterocyclic bases found in DNA are structural derivatives of either purine (adenine (A) 

and guanine (G)) or pyrimidine (cytosine (C) and thymine (T)).  They attach to the C1’ 

of deoxyribose through N9 of the purine bases or N1 of the pyrimidine bases with an N-

glycosidic bond.   

DNA is a double helical structure first determined by James Watson and Francis 

Crick in 1953 [91].  The most biologically common form of DNA is a right-handed 

double helix known as B-DNA.  The structure consists of two antiparallel polynucleotide 

strands with the base is hydrogen bonded to the base in the opposite strand to a planar 

base pair.  There are only two types of base pairs (Watson-Crick base pair) with A 

bonding only to T, and C bonding only to G.  The “ideal” B-DNA helix has 10 base 

pairs per turn and a pitch (rise per turn) of 34 Å.  Two major structural variants of DNA 

are A-DNA and Z-DNA.  Compared to B-DNA, A-DNA form is a wider and flatter 
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right-handed helix, with a shallow, wide minor groove and a narrower, deeper major 

groove. A-DNA form occurs under non-physiological conditions in partially dehydrated 

samples of DNA.  Specific segments of B-DNA where the bases have been chemically 

modified by methylation may undergo a larger change in conformation and convert to Z-

DNA form.  The Z conformation is a left-handed double helix which has twelve Watson-

Crick base pairs per turn, a pitch of 45 Å, a deep minor groove, and no discernible major 

groove. The unusual structure features can be recognized by specific Z-DNA binding 

proteins and may be involved in the regulation of transcription [92-94]. 

The conformational flexibility of DNA is greatly restricted by a variety of internal 

constraints.  Six torsion angles of the sugar-phosphate backbone and one torsion angle 

between the base and the glycosidic bond define the conformation of each nucleotide 

unit.  The rotation of a base around its glycosidic bond is sterically hindered.  It is found 

that all bases are in the anti conformation in most double-helical DNA.  The flexibility 

of deoxyribose ring is also limited their cyclic structures.  The two most common ribose 

conformations are known as C2’-endo and C3’-endo.  The sugar ring pucker is important 

in DNA conformation because it governs the relative orientations of the phosphate 

groups to each ribose residue.  The C2’-endo conformation occurs in B-DNA, whereas 

A-DNA is C3’-endo. In Z-DNA, the purines are all C3’-endo and the pyrimidine are 

C2’-endo.  The sugar-phosphate backbone chains of DNA are stiff as well.  The torsion 

angles are quite restricted because of noncovalent interactions between the ribose ring 

and the phosphate groups and steric interference between residues.  These properties 
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make the N-glycosyl bond a key element in understanding the possible conformations of 

nucleotides and and, subsequently, of nucleic acids. 

Complementary base pairing is the most important features of DNA to form double-

stranded DNA conformation, Base stacking (interaction between the π-electron systems 

of the bases), hydrophobic interactions between adjacent base pairs and electrostatic 

interactions of the charged phosphate groups also contribute a lot to the stabilities of 

DNA structures in aqueous solution.  The strength of the double-stranded interacting 

structure increases with an increasing number of the base pairs, and the strand with 

higher number of GC base pairs is more stable owing to the contribution of π-stacking 

interactions.  The strength of such interaction can be measured by the melting 

temperature (Tm) [95].  

 Single-stranded DNA is rarely occurs under physiological conditions.  The base 

pairing between complementary sequences within the single strand makes the 

polynucleotide to fold back on itself, giving rise to stem-and-loop structures or more 

complex structures.   

 

Acid-base chemistry 

 Nucleic acids have several functional groups that act as acids and bases, i.e., 

phosphate group and carbonyl groups, etc.  The structures and reactivities of DNA 

molecules are greatly affected by the ambient pH.  An appreciation of acid-base 

chemistry is therefore essential for understanding the biological roles of DNA molecules.  

Nucleobases are weak bases, the order of basicity is C > A > G as demonstrated by their 
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pKa values of the protonated species.  T exhibits no basic function.  Actually, the 

basicity of a nucleobase residue can vary easily due to the neighboring function groups.  

The pKa values for nucleosides and nucleotides are ionic strength [96] and temperature 

dependent[97], so they differ considerably in the literature.  The effect of ionic is 

pronounced in the nucleotides due to the influence of salts on the phosphate group 

ionization, which in turn affects the acid-base properties of the base moiety.  Negatively 

charged phosphate groups favor protonation of the base and formation of zwitterion, 

raising the basicity of A, C, and G, suppressing the formation of negatively charged base 

residues, and reducing the acidity of T.  For the influence of the temperature on the 

ionization of base, suppression can occur at basic condition for experiments using 

increased temperatures.   

The most likely protonated sites within the nucleobases are N3 for C, N1 for A, and 

N7 for G [98].  Normally, oligonucleotides are present as salts countered by cations such 

as Na+, K+, or ammonium ions.  In basic and neutral solution, oligonucleotides are 

present as oligoanions with deprotonation of the nucleobases.  Under acidic condition, 

mixtures of zwitterions (deprotonated phosphate groups and protonated nucleobases) are 

observed; the charge location is dependent on the base composition of the 

oligonucleotides.  Protonation of the phosphate groups can occur at even lower pH 

solution, resulting positively charged nucleotides.  

The proton affinities (PA) of gas phase oligonucleotides have been examined for 

studying ion formation of oligonucleotides in mass spectrometry [99, 100]. Greco et al. 

proposed the PA of the different neutral deoxyribonucleoside monophosphate (dNMP) 
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increase in the order T (224.9 kcal/mol) << C (233. kcal/mol) < A (233.6 kcal/mol) < G 

(234.4 kcal/mol) [101].  And the PA of the phosphate group is predicted ~ 220 kcal/mol 

by Rodgers et al [100].  These values define the charge location of oligonucleotide ions.  

In the case of protonated olignucleotides, the charge-giving proton will be expected at 

the nucleobase, while for negatively charged oligonucleotide ions, deprotonation of 

phosphate groups may be the preferred structure of the analyte ions.  

 

Mass spectrometry (MS) of DNA 

Mass spectrometry has played an important role in the analysis of nucleic acids for 

years.  With the advent of ESI and MALDI, the oligonucleotides are able to be analyzed 

at tens of femtomoles.  ESI and MALDI typically generate prtonated and/or 

deprotonated oligonucleotide ions of [M + nH]n+ and [M – nH]n-, respectively. 

Cationized species [M + nNa/K]n+ and multimers, e.g., [2M + nH]n+, are observed as 

well.  With ESI, higher charge states are formed preferably, depending on the molecular 

mass of the analyte, the solvent conditions, and ion-source conditions.  In MALDI-MS, 

generally singly charged molecular ions dominate the spectra.  Sometimes doubly or 

triply charged species are also observed with particular matrix.   In ESI-MS of 

oligonucleotides, negatively charged ions yield better results than positively charged 

ions.  For MALDI-MS, both ion detection modes can work well with the right choice of 

matrix. However, there are several difficulties in the mass analysis of oligonucleotides.  

One is the formation of alkali metal adducts in the type of [M – (n+m)H +mNa/K]n-.  

Such distribution of the molecular ions not only leads to a reduction of the signal-to-
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noise (S/N) ratio, but also requires a high instrumental resolution power to separate the 

individual ions.  If they are not separated and merge into one broad peak, it can cause the 

loss of mass accuracy.  Furthermore, mixtures containing with small mass differences 

will not be separated.  This problem can be solved by adding ammonium ions as counter 

ions to generate the free acids form of the oligonucleotide ions [102].  Another issue in 

the analysis of oligonucleotides is the extensive fragmentation of the molecular ions.  

The oligonucleotides tend to lose their nucleic bases by a 1,2-elimination mechanism, 

followed by multiple cleavages of the sugar-phosphate backbone [103-105].  The 

problem is more pronounced in MALDI-MS than in ESI-MS.  The generation of intact 

molecular ions of oligonucleotides above ten base units in length causes more 

difficulties with MALDI than with ESI. 

In MALDI-MS, the success of the analysis of oligonucleotides is strongly dependent 

on the choice of the matrix and the preparation of the sample.  In the first MALDI 

studies of oligonucleotides, only matices that had proven to be useful for the analysis of 

peptides were examined such as nicotinic acid, ferulic acid, sinapic acid, and 2,5-

dihydroxybenzoic acid (2,5-DHB) at a laser wavelength of 337 (nitrogen laser) or 355 

nm (frequency-tripled Nd:YAG laser) [106-110].  It was found that these matrices were 

not good choice for the analysis of oligonucleotides, and, therefore, new matrices were 

introduced specific for the oligonucleotides by several research groups and major 

improvement was achieved for the analysis of oligonucleotides, such as 3-

hydroxypicolinic acid (3-HPA) [111], 3-aminopicolinic acid [112], 2’,4’,6’-trihydroxy 

acetophenone (2’,4’,6’-THAP) [113], and 6-aza-2-thiothymine (ATT) [114].  Among all 
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those matrices, the discovery of 3-HPA gives the major improvement.  With 3-HPA as 

the matrix, a significant reduction of ion fragmentation can be achieved, which allows 

the analysis of larger oligonucleotides and yields a better S/N ratio.  Furthermore, 3-

HPA is suited for most frequently used laser on MALDI-MS, such as nitrogen laser or 

YAG laser.  It thus became the standard matrix for the analysis of oligonucleotides.  

Combined with picolinic acid (PA) and ammonium citrate, 3-HPA is the preferred 

matrix to measure larger nucleic acids. 

Several strategies for sample preparation have been used for the suppression of 

metal-cation adduction.  A simple and efficient say to replace metal ions is the addition 

of NH4
+-loaded cation exchange beads to the final sample droplet.  After the solvent 

evaporates, the beads accumulate in the center of the sample from where they can be 

easily removed before the mass analysis [115, 116]. Alternative approach of the cation 

exchange beads is the use of Naflon [117] or NC-coated support [118] for ontarget 

cation exchange, they proven to be efficient in suppression of metal cation adduction.  

Another approach is the addition of ammonium salt to the sample to eliminate the 

interference from metal ions [113]. 

The response of oligonucleotides to MALDI-MS depends on the nature, size and 

sequence composition of nucleic acids as well.  Oligonucleotides containing only T give 

a much stronger signal than those composed of other bases.  T is much harder to be 

protonated than other bases and get lost during the fragmentation, which results in better 

stability of the polymer chain.  When the size of the nucleotide increases it also becomes 

harder to be ionized and detected.  In addition, the chance of forming metal adducts and 
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fragmentation also increases with increasing analyte size.  These all attribute to the low 

S/N ratio and the low resolution of the spectra for the larger oligonucleotides [119].  The 

error on the measured molecular mass obtained by MALDI varies between 0.01 to 

0.05% for small oligonucleotides.  The error increases above 0.5% for large nucleotides.  

In deed, at higher mass range, the signal of metal adducts or the fragmentation ions of 

oligonucleotides are more abundant.  The peaks are broad and cannot be resolved.   

Most of MALDI-MS has been used for the analysis of covalent complexes. 

However, a few observations of noncovalent interactions have been reported.  The first 

mass spectra of intact double-stranded DNA was reported by Lecchi et al. using 

MALDI-TOF-MS with ATT/ammonium citrate as the matrix at a laser wavelength of  

337 nm [120].  The EcoRI adaptor 12/16, containing 12 Waston-Crick base pairs, was 

used as sample; both single strands and the complementary double strand were detected, 

but no homodimer of either of the single strands was observed.  The authors have 

demonstrated that is not nonspecific dimer formation by digesting with nuclease S1, an 

enzyme that preferentially cleaves single stranded DNA.  No DNA duplex was not 

detected when using other matrices commonly employed for oligonucleotide analysis.  

 

Ion mobility mass spectrometry (IM-MS) of DNA 

 Ion mobility mass spectrometry (IM-MS) has been used to explore a variety of 

bio-molecular systems ranging from high-throughput separation [34, 65] to detailed 

examination of biomolecule conformations in the gas phase [56, 121, 122].  Ion mobility 

separations are performed based on the ion-neutral collision cross-section with buffer 
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gas under a weak electric field, which is proportional to apparent ion surface area.  When 

coupled with mass spectrometry, it provides 2D separations both in the dimension of the 

structural size and the dimension of mass-to-charge (m/z).  IM-MS separation is highly 

selective, it can distinguish structural isomers and different classes of molecules (i.e., 

peptide ions from DNA or carbon cluster ion or chemical noise) based on their different 

signal location in 2D IM-MS plots [43, 44]  The collision cross-section data can be 

transformed to structural information of ions using molecular dynamics methods.  Of the 

various methods used to study gas phase biomolecules, measurements of collision cross 

sections give the most direct insights to folding.   

A lot of research has been done on developing IM-MS for biophysical studies of 

peptides and proteins [34, 52, 55, 56, 63, 64].  However, there is no much work has been 

reported on the IM-MS applications to DNA.  The problem is that the oligonucleotides 

tend to fragment, especially for the larger ones, which limits the size of oligonucleotide 

that can be studied by IM-MS.  Koomen et al.[43] reported several applications of 

MALDI-IM-TOFMS on oligonucleotides, including separation of protonated 

oligonucleotide mixtures generated by MALDI, differentiation between DNA and 

peptide ion signals, oligonucleotide sequencing, and analysis of chemically modified 

DNA.  With a mobility resolution of 20 ~ 30, MALDI-IM-TOFMS was used to separate 

oligonucleotides of different length, but not to differentiate between isomers or even 

different compositions of the same length.  It was also used to separate the mixtures of 

oligonucleotides and peptides and resolve DNA-pltinum adducts from the corresponding 

unmodified oligonucleotides.  Oligonucleotide sequencing was also possible by 
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MALDI-IM-MS.  Gidden et al. reported the studies on gas phase conformations of 

deprotonated dinucleotide (dGT-, and dTG-) [123] and trinucleotides (dGTT-, dTGT-, 

and dTTG-) [124] using MALDI-IM-MS combined with molecular dynamics 

calculations.  The results indicate that both “open” and “folded” conformations were 

determined for each case.  The different conformers can only be resolved at 80 K, while 

at 300 K; they rapidly interconvert and yield a single, time-average conformation with a 

cross section between the values predicted for the folded and open conformers.  The 

isomeriztion barrier between different conformers for each case was calculated as well at 

a range from 0 ~ 5 kcal/mol. 

The goal of this study is to use ion mobility mass spectrometry methods to examine 

the gas phase conformations of oligonucleotides.  A series of oligonucleotide of different 

length will be tested by MALDI-IM-TOFMS to define the conformational space of 

oligonucleotide.  With a novel non-Boltzman sampling molecular dynamics (MD) on 

model oliogonucleotide ions, a more accurate description of the gas phase 

conformational space of oligonucleotide ions can be achieved, which involving the 

thermodynamically accessible structures that correspond to real experimental condition. 

 

Experimental 

Samples and preparation 

The DNA oligonucleotides were purchased from Invitrogen Corp. (Carlsbad, CA) 

(Table 8). They are: dGGATC (mass 1502), dCTAATC (mass 1750), dCTGGTC (mass 

1782), dGATTAG (mass 1830), dGACCAG (mass 1800), dGATTAGCA (mass 2432), d 
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Table 8. A list of all the oligonucleotides sequences examined in this study and the molecular 
weights of their monomer form. 
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CTCTAGAG (mass 2408), dGACCCTGGA (mass 2722), dCACATGGCTG (mass 

3026), dATCGATCGAT (mass 3025), dCAGCCATGTGA (mass 3340), 

dGAGACCTTAGCA (mass 3653), dGCACATGGCTGAC (mass 3958), and 

dCTGCAGCCATGTGA (mass 4262).  All matrixes and matrix additives are purchased 

from Sigma (St. Louis, MO) and Aldrich (Milwaukee, WI).  The matrixes include 2, 4, 

6-trihydroxyacetophenone (THAP), α-cyano-4-hydroxycinnamic acid (αCHCA), 2,5-

dihyroxybenzoic acid (DHB), and 3-hydroxypicolinic acid (3-HPA).  The matrix 

additives are restricted to diammonium hydrogencitrate (DAC), and triammonium citrate 

(AC).  

Samples are prepared by both dried droplet methods and overlayer methods.  Table 

9 lists all of the preparation methods that are examined. The matrix solutions are 

prepared fresh daily and mixed 1:1:1 with matrix additive (10mg/mL diammonium 

hydrogencitrate and 50 mg/mL triammonium citrate) and oligodeoxynucleotide stanards 

(1 mg/mL in distilled deionized water).  The matrix-to-analyte ratios are in the range of 

40:1−2,000:1. 

Dried droplet preparations are made using the following matrix solutions:  35 

mg/mL 3-hydroxypicolinic acid in 50% acetontrile, or 20 mg/mL 2,4,6-

trihydroxyacetophenone in 100% HPLC grade methonal, or 50 mg/mL 2,4,6-

trihydroxyacetophenone in 100% distilled deionized water, or 40 mg/mL 2,5-

dihydroxybenzoic acid in 85% aqueous diammonium hydrogencitrate (10−20 mg/mL) 

and 15% acetonitrile.  
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Table 9. A list of seven sample preparation protocols examined in this study. 
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Overlayer methods are made using the following matrix solutions: 30 mg/mL 2, 4, 

6-trihydroxyacetophenone in 50% HPLC grade methonal, or 30 mg/mL α-cyano-4-

hydroxycinnamic acid in 100% HPLC grade methonal.  The mixture of matrix and 

analyte solution 0.5 µL is then deposited on a bed of matrix deposited previously from 

concentrated co-matrix solution (30 mg/mL α-cyano-4-hydroxycinnamic acid in 100% 

HPLC grade methonal).   

 
MALDI-TOFMS 

All MALDI-TOFMS measurements are preformed by both a Perseptive Biosystems 

Voyager Elite XL (STR) (PE Biosystems, Framingham, MA) and Applied Biosystems 

4700 Proteomics analyzer (Applied Biosystems, Forster City, CA).  Reflected mode 

acquisition is used to monitor both negative and positive ions.  STR is equipped with 

delayed extraction and a nitrogen laser.  Accelerating voltage is set at either 20 kV in 

negative ion mode or 25 kV in positive ion mode, the grid voltage is 69−71% of the 

acceleration voltage, and the guide wire is set to 0.010−0.025% of the acceleration 

voltage. Resolution and mass accuracy are comparable for all preparation methods 

carried out in both instruments; signal-to-noise ratios are higher in positive ion mode, so 

it is used primarily.  

 

MALDI-IM-TOFMS 

Stock solutions of peptide (1mg/mL) were mixed with re-crystallized α-cyano-4-

hydroxycinnamic acid (Sigma) in a molar ratio of ~2000:1, and 1 µl aliquots of the 

peptide/matrix mixture was deposited on a stainless steel MALDI sample plate. 
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The MALDI-IM-TOFMS analysis was performed using a home-built instrument 

previously described [68].  Briefly, MALDI was performed using a frequency tripled 

(355 nm) Nd:YAG laser (CrystaLaser, Reno, NV) operated at a pulse rate of 200-400 Hz. 

The resulting ions were introduced into a 15 cm drift tube maintained at a pressure of ca. 

3.0 Torr of He maintained at room temperature.  Under these conditions the E/p ratios 

range from 18 to 34 Vcm-1torr-1, which provides mobility resolution of 15 to 25.  The 

ions eluting the drift cell were extracted and mass analyzed by an orthogonal reflectron-

TOF, typical m/z resolution ca. 2000 - 4000.  The mass spectrometer was externally 

calibrated using two-point calibration on C60 (Mr = 720) and C70 (Mr = 840) radical 

cations (Sigma) [5].  The measurements of collision cross sections were externally 

calibrated with [M + H]+ ions of bradykinin (Ωmeas = 245 Å2) and substance P (Ωmeas = 

292 Å2) [35].  The 2D IM-MS data was acquired and processed by using custom 

software (Ionwerks, Inc.).  

The experimental ion-neutral collision cross-sections were determined from the 

empirical drift times (td) by the following equation [69]: 
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where z is the charge of the ion, e is elementary charge, N0 is the number density of the 

drift gas at STP, kb is Boltzmann’s constant, mI is the mass of the ion, mB is the mass of 

buffer gas, E is the IM electric field strength, L is the drift tube length, P is the buffer gas 

pressure and T is the system temperature.   
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Charge derivation of DNA for AMBER 

A new force field topology database of RESP atomic charge values was developed 

for modeling DNA.  RESP charge derivation for new nucleotide fragments was 

performed using Dimethylpohosphate (conformation gauche, gauche), neutralized 

Dimethylphate (conformation gauche, gauche), the 4 neutral DNA nucleosides 

[Deoxyadenosine, Deoxycytidine, Deoxyguanosine and Deoxythymidine] 

(conformations C2'endo and C3'endo), and the 3 protonated DNA nucleosides 

[Deoxyadenosine, Deoxycytidine and Deoxyguanosine] (conformations C2'endo and 

C3'endo).  All geometries were optimized using the HF/6-31G* theory level and four 

molecular orientations for each optimized geometry were involved in the charge fitting 

procedure to yield reproducible atom charge values.  Two inter-molecular charge 

constraints between the methyl group of Dimethylpohosphate and the HO3’ and HO5’ 

hydroxyls of the target nucleotides were used during the fitting step allowing the 

definition of the required molecular fragments. Inter-molecular charge equivalencing 

between the nucleosides were used as well to make the charge values of the deoxyribose 

atoms (exluding the C1’ and H1’ atoms) equivalent.  The charge derivation procedure 

was automatically carried out using the R.E.D-IV program [125] and the central, 5’-

terminal and 3’-terminal fragments of a nucleotide were simultaneously generated in a 

single charge derivation.   Both topologies A and B, which present the phosphate group 

resided either at the position 5’ or 3’ of the target nucleotides, were obtained in this 

project.  The new charge values are compatible with the Cornell et al. AMBER force 
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field and proved to be highly reproducible.  All data are available at http://q4md-

forcefieldtools.org/REDDB/projects/F-83/. 

 

Enhanced sampling molecular dynamics (ES-MD) 

The method we used here is based on the exaction of structures that correspond to 

free energy minima out of the total conformational space.  The total conformational 

space is generated using molecular dynamic simulations with enhanced sampling over a 

wide energy range by making use of a generalized (non-Boltzman) distribution functions 

at multiple temperatures [126]. This approach uses a biased potential for the MD 

simulations generated from the generalized distribution function that, when reweighted 

correctly, can lead to the desired thermodynamic information.  This method was shown 

to be efficient in free energy simulation [127] as well as in protein folding studies [128].   

In all simulations, Amber 99 force field [129] was used and all the quantum 

mechanics (QM) calculations were carried out using Gaussian 03 program suite [130]. 

The force field parameter set for all nucleotide fragments were generated using the 

RESP method described previously.  Extended structure was used as initial structure for 

a 500-step minimization and a 20 ps heating step from 0 K to 300K.  Then, the enhanced 

sampling simulation was conducted at 300 K with 300 β-values exponentially distributed 

from 250 to 1000 K to generate a much wider energy distribution.  After 20 ns 

simulations, a set of converged weighing factors for different temperatures (i.e., different 

β) was obtained.  Using this set of weighting factors, ten independent enhanced sampling 

simulations starting from initial structures were conducted for 500 ns, respectively.  The 
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potential energy distribution of all trajectories during the iteration procedure was in a 

wide range as expected.  With the fixed biased potentials, a largely uniform energy 

distribution was obtained in a wide range of ~500 kcal/mol, compared to the ~100 

kcal/mol energy range sampled by the normal MD simulation.  The root mean square 

deviation (RMSD) of DNA backbone was used as the reaction coordinate of the 

conformational change in DNA.  The free energy vs. the RMSD distribution was 

computed based on the probability distribution of all conformations. 

 

Cluster analysis 

Cluster analysis is used to group the candidate structures based on their similarity.  

The clustering method used here was developed by MMTSB [131].  To find clusters of 

structures, the cartesian coordinate RMSD values between all pairs of structures were 

calculated.  For each structure, the number of other structures for which the RMSD 

values less than a fixed cluster radius (2Å was used in all cluster analyses) was 

determined.  The structure with the highest number of neighbors was taken as the center 

of a cluster, and formed together with all its neighbors a cluster.  The structures of this 

cluster were eliminated from the pool of structures.  The process was repeated until the 

pool of structures was empty.  At the end, a series of non-overlapping clusters of 

structures was obtained.  For each cluster with high population, we picked 500 to 1,000 

structures that is nearest the cluster center for further collision cross-section (CCS) 

calculation using the trajectory method (TM) in MOBCAL software [74, 132].  The 

theoretical CCS profiles of each major cluster were determined using a Gaussian curve 
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distribution with the mean values and the standard deviation defined by the CCS 

calculations.   

 

Results and Discussion 

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of DNA 

1. Choice of matrix and sample preparation for MALDI-MS of nucleic acids 

It is known that the key to successfully analyze a new class of analyte compounds in 

MALDI-MS is the choice of matrix, sample preparation and laser wavelength.  To find 

the most optimum experimental condition for DNA mass analysis, seven different 

sample preparation methods involving four matrices (3-HPA, 2, 4, 6-THAP, 2, 5-DHB, 

αCHCA) and twelve different length oligonucleotides (5- to 14-mer) were under 

investigation.  Two different sample deposition methods were used: the traditional dried 

droplet methods and the overlayer methods.  Koomen et al. claimed that the overlayer 

methods gave more homogenous crystallization and yielded more reproducible and 

higher quality results [133].  In addition, diammonium hydrogen citrate was used as 

matrix additives to suppress the adduction of alkali metal cations, i.e., Na+ and K+ ions.  

Table 8 and 9 lists all of the oligonucleotides sequences studied and the molecular 

weights of their monomers and the sample preparation methods that are examined in this 

study.    

All seven sample preparation methods were first tested with dGGATC using STR in 

positive ion mode and the representative spectra are shown in Figure 20.  All methods 

yield results for the dGGATC sample exceptαCHCA using overlayer sample preparation  
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Figure 20. Positive ion mode MALDI mass spectra of dGGATC analyzed on STR with different 
preparation methods using N2 laser.  (a) Dried droplet methods using 35mg/mL HPA matrix, (b) 
dried droplet methods using 20mg/mL THAP matrix, (c) dried droplet methods using 50mg/mL 
THAP matrix, (d) dried droplet methods using 40mg/mL DHB matrix, (e) dried droplet methods 
using 100mg/mL DHB matrix, (f) overlayer methods using 30mg/mL THAP matrix, (g) overlayer 
methods using 30mg/mLαCHCA matrix. 
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method.  In general, all of the dried droplet sample deposits are similar in morphology 

and no one method was found to generate reproducible results from any location on the 

sample spot.  The overlayer method appears to give more uniform depositions and ion 

yields are more reproducible both in terms of laser shot-to-shot and from sample spot-to-

spot as compared to dried droplet preparations.  The spectral quality of each method was 

evaluated in terms of signal-to-noise (S/N) ratio, resolution, mass measurement accuracy, 

relative abundance of alkali metal ion adducts and fragmentation of DNA analytes 

(Table 10).  The mass spectra obtained from each method vary considerably in S/N ratio 

for the protonated monomer 5-mer molecules.  3-HPA deposits yield the highest ion 

signal (in excess of 1,300 for the protonated 5-mer ions) of all dried droplet methods.  

The general trend observed for S/N ratio of the protonated molecules is 3-HPA > 2, 4, 6-

THAP > 2, 5-DHB.  The resolution in the 40mg/mL 2, 5-DHB spectra is the highest of 

all dried droplet sample preparation methods: > 12,000 on the 5-mer.  The resolution 

values observed in the other dried droplet methods are pretty close ranging from 6,000 to 

7,000.  The mass accuracy observed in 3-HPA is slightly better than the other matrices 

as well.  Furthermore, this method yields minimal amounts of alkali adduct ions.  

Fragment ions are observed in greater abundance in spectra obtained using 2, 5-DHB as 

compared to other matrices we have examined using dried droplet preparations.  The 

overlayer sample preparation methods do not appear to give better mass spectral data 

than dried droplet methods as expected.  The overlayer deposits of αCHCA do not 

produce any signal for the 5-mer molecules.   
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Table 10. The spectral quality of each method acquired by STR for dGGATC+ ions was evaluated in 
terms of signal-to-noise (S/N) ratio, resolution, mass measurement accuracy, relative abundance of 
alkali metal ion adducts and fragmentation of DNA analytes. 
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Spectrum acquired from sample made with αCHCA and 2, 4, 6-THAP showed 

significant loss from the signal of the [M + H]+ ions of dGGATC due to fragmentation.  

The use of 3-HPA with traditional dried droplet method seems to be the best sample 

preparation method for the DNA analysis performed with STR. 

We also examined all sample preparation methods with dGGATC using 4700 in 

both positive and negative ion modes.  4700 uses Nd:YAG laser (λ = 355 nm) in stead of 

N2 laser (λ = 337 nm) used by STR.  Mass spectra acquired by 4700 in both ion modes 

are shown in Figures 21 and 22 and the values for evaluating the mass spectra obtained 

from the different sample preparation methods are listed in Table 11.  Significant 

improvement in both resolution and mass accuracy is observed using 4700 when 

compared to STR.  Among all positive ion mass spectra, only three dried droplet 

methods gave good results including 50 mg/mL 2, 4, 6-THAP with ammonium matrix 

additive, 40 mg/mL 2, 5-DHB with ammonium matrix additive and 100 mg/mL 2, 5-

DHB in MeOH.  The ion yields for 2, 5-DHB deposits are generally higher than 2, 4, 6-

THAP, however, more fragmentation ions are observed in spectra.  In negative ion mode, 

all methods were found to yield more reproducible results except sample made with 3-

HPA.  The overlayer sample preparation methods appeared to give very high S/N ratio, 

but fragmentation of DNA analytes is a mjor problem when compared to dried droplet 

preparations.  In general, deposit of 2, 5-DHB at 40 mg/mL with ammonium matrix 

additive so far gave the best mass spectral data in both positive and negative ion modes 

when using 4700 for DNA mass analysis.   
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Figure 21. Positive ion mode MALDI mass spectra of dGGATC analyzed on 4700 with different 
preparation methods using YAG laser.  (a) Dried droplet methods using 35mg/mL HPA matrix, (b) 
dried droplet methods using 20mg/mL THAP matrix, (c) dried droplet methods using 50mg/mL 
THAP matrix, (d) dried droplet methods using 40mg/mL DHB matrix, (e) dried droplet methods 
using 100mg/mL DHB matrix, (f) overlayer methods using 30mg/mL THAP matrix, (g) overlayer 
methods using 30mg/mLαCHCA matrix. 
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Figure 22. Negative ion mode MALDI mass spectra of dGGATC analyzed on 4700 with different 
preparation methods using YAG laser.  (a) Dried droplet methods using 35mg/mL HPA matrix, (b) 
dried droplet methods using 20mg/mL THAP matrix, (c) dried droplet methods using 50mg/mL 
THAP matrix, (d) dried droplet methods using 40mg/mL DHB matrix, (e) dried droplet methods 
using 100mg/mL DHB matrix, (f) overlayer methods using 30mg/mL THAP matrix, (g) overlayer 
methods using 30mg/mLαCHCA matrix. 
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Table 11. The spectral quality of each method acquired by 4700 for dGGATC ions in both ion modes 
was evaluated in terms of signal-to-noise (S/N) ratio, resolution, mass measurement accuracy, 
relative abundance of alkali metal ion adducts and fragmentation of DNA analytes.  
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The next series of experiments was done on different length oligonucleotides using 

both 3-HPA and 2, 5-DHB as matrix acquired by STR and 4700 with both negative and 

positive ion modes, respectively.  Representative mass spectra are shown in Figures 23 – 

30, where studies with 3-HPA using different instrument in different polarities are 

compared in Figures 23 – 24, 27 - 28 and studies with 2, 5-DHB are compared in 

Figures 25 – 26, 29 – 30.  The S/N ratios and mass resolutions of all nucleotides 

observed in above spectra studied by STR and 4700 are represented in Figures 31 and 32, 

respectively.  As can be seen, the abundance of the protonated or deprotonated analyte 

molecules decreased dramatically with the increase of the nucleotide size.  No peaks of 

the protonated or deprotonated analyte ions were detected for the analysis of 

oligonucleotides up to 12-mer under any conditions we have examined with the use of 2, 

5-DHB. 3-HPA seems to work better than 2, 5-DHB for the analysis of large 

oligonucleotides when using STR.  The S/N ratio ranges from around 3,000 for the 

protonated 6-mer to c.a. 30 for the protonated 14-mer using STR and the signal for the 

deprotonated nucleotides are in the range 70 – 4,000 (Figure 31).  To our delight, the 

mass resolution doesn’t decrease much as the mass of the analyte ions increases in all the 

cases we have examined.  Only a little bit peak-tailing was observed for the higher mass 

analytes.  As expected, 3-HPA as matrix yields a better signal-to-noise ratio and less 

fragmentation than 2, 5-DHB when using STR, while 2, 5-DHB works better for those 

studies performed with 4700.  Furthermore, oligonucleotides are more readily being 

observed in positive ion mode when using 4700 and STR yields a stronger signal and 

better mass resolution for the detection of negative nucleotides ions than of positive ions. 
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Figure 23. Positive ion mode MALDI mass spectra of all oligonucleotides analyzed by 4700 using 
35 mg/mL 3-HPA as matrix and YAG laser.   
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Figure 24. Negative ion mode MALDI mass spectra of all oligonucleotides analyzed by 4700 using 
35 mg/mL 3-HPA as matrix and YAG laser.  
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Figure 25. Positive ion mode MALDI mass spectra of all oligonucleotides analyzed by 4700 using 
40 mg/mL 2, 5-DHB as matrix and YAG laser.  
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Figure 26. Negative ion mode MALDI mass spectra of all oligonucleotides analyzed by 4700 using 
40 mg/mL 2, 5-DHB as matrix and YAG laser.  
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Figure 27. Positive ion mode MALDI mass spectra of all oligonucleotides analyzed by STR using 35 
mg/mL 3-HPA as matrix and N2 laser.  
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Figure 28. Negative ion mode MALDI mass spectra of all oligonucleotides analyzed by STR using 
35 mg/mL 3-HPA as matrix and N2 laser.  
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Figure 29. Positive ion mode MALDI mass spectra of all oligonucleotides analyzed by STR using 40 
mg/mL 2, 5-DHB as matrix and N2 laser.  
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Figure 30. Negative ion mode MALDI mass spectra of all oligonucleotides analyzed by STR using 
40 mg/mL 2, 5-DHB as matrix and N2 laser.  
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Figure 31. Average S/N ratios and resolutions of all oligonucleotides observed by STR using 
different matrices in different ion modes.  
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Figure 32. Average S/N ratios and resolutions of all oligonucleotides observed by 4700 using 
different matrices in different ion modes.  
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2. Laser test for MALDI-MS of nucleic acids 

 As different instruments (STR and 4700) were found to give quite different 

spectral profiles for the same sample spot, the influence of different laser wavelength on 

MALDI-MS of nucleotides was investigated next using frequency-tripled Nd:YAG laser 

(wavelength of 355 nm) on STR.  All nucleotides were tested with 3-HPA and 2, 5-DHB 

in both polarities, respectively and representative mass spectra are shown in Figures 33 - 

36.  The comparisons of S/N ratios of the oligonucleotides with 3-HPA and 2, 5-DHB 

using different laser wavelength are illustrated in Figure 37.  With YAG laser, STR 

yields a pretty similar spectral profile for the nucleotides as with Nitrogen laser, albeit at 

a lower abundance.  In general, nucleotides with 3-HPA give stronger signals than with 

2, 5-DHB and negative ions are easier detected than positive ions which is opposite of 

the trend observed on 4700.  It is thus clear that the different results observed between 

STR and 4700 are not a consequence of using different laser.  

 

3. Study of non-covalent complexes for MALDI-MS of nucleic acids 

 When oligonucleotides were tested with 3-HPA on STR, it was found that the 

singly charged monomer of the oligonucleotide is always the dominant ion observed in 

the mass spectrum despite of the polarity.  However, most interesting is the appearance 

of a group of ions at twice the mass of the monomer species, which is confirmed as the 

noncovalent dimer of the oligonucleotides.  Such noncovalent dimers are observed in 

every oligonucleotides we have examined if the length of the oligomer is shorter than 

12-mer and/or the concentration of nucleotide is greater than or equal to 300 µM.   
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Figure 33. Positive ion mode MALDI mass spectra of all oligonucleotides analyzed by STR using 35 
mg/mL 3-HPA as matrix and YAG laser.  
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Figure 34. Negative ion mode MALDI mass spectra of all oligonucleotides analyzed by STR using 
35 mg/mL 3-HPA as matrix and YAG laser.  
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Figure 35. Positive ion mode MALDI mass spectra of all oligonucleotides analyzed by STR using 40 
mg/mL 2, 5-DHB as matrix and YAG laser.  
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Figure 36. Negative ion mode MALDI mass spectra of all oligonucleotides analyzed by STR using 
40 mg/mL 2, 5-DHB as matrix and YAG laser.  
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Figure 37. Average S/N ratios and resolutionse of all oligonucleotides observed by 4700 using 
different matrices and different wavelength lasers in different ion modes.  
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Interestingly, the sequence of the nucleotides in this study is not self 

complementrary, for example, 5-mer dGGATC, only four of the five bases can form 

Watson-Crick base pairs between two strands of dGGATC.  A similar observation of 

such dimers in ESI mass spectra was made by Ding et. al.[134], dimers were observed 

even for dT6 at a concentration of 100 µM where no self-complementary Waston-Crick 

pairing is possible.   

 To evaluate the influence of varying the relative molar ratio between analyte and 

matrix on the detection of noncovalent dimers of the oligonucleotides, eight different 

molar ratios between analyte 5-mer dGGATC and matrix 3-HPA were used. By varying 

the concentration of 3-HPA solution while keeping analyte dGGATC concentration 

constant at 500 µM, the positive ion mass spectra of each case were obtained by using 

STR. All measurements were repeated for five times over a week and the average 

abundance ratios between monomer and dimer ions observed for each case are 

summarized in Figure 38.  No significant differences are observed in the relative 

abundance of the noncovalent dimer from each case.  However, more sodium adducts 

could be seen along with an increase in the molar ratio between analyte and matrix.  It 

seems that the molar ratio of 1:400 gives overall the best results in terms of S/N ratios, 

resolution, and reproducibility of the spectra when compared to other molar ratios.  Thus, 

we use this molar ratio between analyte and matrix in the following noncovalent 

complex experiments. 
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Figure 38. Average abundance ratios between monomer and dimer ions observed by STR using eight 
different molar ratios between matrix 3-HPA and analyte dGGATC.  
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To study the effect of the base sequence on the production of the noncovalent 

complex ions, the mixture of different oligonucleotide strands were used.  Now dimmers 

can form between the same strands (homodimers) or between the different strands 

(heterodimers).  The relative abundances of the homo- and heterodimers can be used to 

determine if there is specific interaction between two strands or not [134].  If the mixture 

is a nonspecific formation (i.e., the interaction is purely statistical), the predicted ratio of 

the homodimer:heterodimer:monomerdimer will be 25:50:25 for the monomers were 

equal in concentrations and had the same ionization efficiencies.  If there is an excess in 

the relative abundance of the heterodimer over the predicted ratio, it indicates some 

degree of specificity in the interaction of heterodimer that does not exist for the 

homdimers.  Hexamer dGACCAG were mixed with three different hexamers at same 

concentrations, respectively.  The latter hexanucleotides include dCTGGTC, the 

complementary strands of dGACCAG, and two noncomplementary sequences, 

dCTAATC and dGACCAG.  Three mixtures contain different numbers of Watson-Crick 

base pairing.  The mass spectra of the mixtures are shown for comparison in Figure 39a-

c.  The monomers, homodimers, and heterodimers were all observed in both the 

mixtures of complementary and noncomplementary oligonucleotides.  When closely 

examined the spectra, the observed ratio of the homodimer:heterodimer:monomerdimer 

is 25:41:34 for the complementary mixtures, 8:26:65 for the noncomplementary 

mixtures of dGACCAG and dCTAATC, and 26:48:26 for the mixtures of dGACCAG 

and dGATTAG.   
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Figure 39. Positive ion mode MALDI mass spectra of oligonucleotides mixtures analyzed by STR 
using 35 mg/mL 3-HPA as matrix and N2 laser.  
 
 
 
 
 
 
 
 
 
 
 
 
 



 115 

Although the abundance distributions of the monodimers and the heterodimer are 

quite different among three cases, the ions from the heterodimer in all mixtures are less 

abundant that might be predicted on the basis of statistics, which suggests there is no 

specificity in the interaction.  It is not surprise that there are no specific duplexes found 

in hexamer mixtures, as the predicted melting temperature (Tm) for the hexamer should 

be below room temperature, thus at the temperature of our experiment no stable duplex 

would be expected in the sample solution. 

 To observe specific duplexes, the mixtures of longer oligonucleotides were used.  

We explored octamers and decamers by using a pair of noncomplementary sequences in 

both cases.  The mass spectrum of octamers (400 µM per strand) is shown in Figure 39d.  

As with the hexamers, the spectrum shows the presence of both the homodimers and the 

heterodimers and gives a ratio of 38:49:13.  However, the relative abundance of the 

heterodimer is still under the predicted value, which indicates no specific duplexes are 

observed for octamer mixtures.  Figure 39d shows the mass spectrum of the mixture of 

decamers (300 µM per strand): dATCGATCGAT and dCACATGGCTC.  Since the two 

strands only have one unit mass difference, we are not able to resolve the peaks for 

monodimers and/or heterodimer and predict a ratio among them.  All the results 

presented above for mixtures suggest that no specific duplexes exist in the mixtures we 

have tested.  In deed, such non specific aggregates are often observed in the spectra of 

MALDI-MS.  The signal intensity of such non specific aggregates usually increases with 

increasing analyte concentration in the solution; it appears to depend strongly on specific 

structure aspects of the biomolecules and also on the ion extraction conditions in the ion 
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source. The above observation suggests that these non specific aggregates are 

predominantly formed post desorption in the expanding plume rather than in solution or 

upon incorporation into the matrix during solvent evaporation. 

 

Matrix-assisted laser desorption/ionization ion mobility mass spectrometry (MALDI-

IM-MS) of DNA 

1. Positive ions 

 All nucleotides listed in Table 8 were tested on a home-built MALDI-IM-

TOFMS instrument using positive ion mode for the collision cross section measurements.  

As we confirmed in previous MALDI-MS experiments that 3-HPA was found to give 

the best results in the positive oligonucleotide ions, 3-HPA was used as the matrix for all 

following positive ion mobility experiments of oligonucleotides.  The ion mobility 

experiments for oligonucleotides were conducted at drift cell temperature of 300K, no 

ion signals corresponding to the protonated oligonucleotides longer than decamer were 

found.  A representative 2D plot of IM-MS conformation space for a mixture of 

oligonucleotides and peptides is shown in Figure 40.  Single, broad peaks are present in 

all of the arrival time distributions (ATDs) for the protonated oligonucleotides we have 

examined, suggesting that multiple conformers are present for the protonated 

oligonucleotides, and the conformers isomerizes as they travel through the drift cell 

resulting in a “time-averaged” conformation with the broad ATDs.   
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Figure 40. A representative 2D IM-MS plot of conformation space for a mixture of protonated 
oligonucleotide, peptide ions, and C60.  
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Table 12. The collision cross sections of the protonated and deprotonated oligonucleotide ions.  The 
error for the measurements is within ±2%. 
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For each oligonucleotide, a series of ATDs were measured at several different 

drift voltages.  From these measurements, the ion-neutral collision cross sections of the 

ions are determined using equtation 1 and are calibrated with [M + H]+ ions of 

bradykinin (Ωmeas = 245 Å2) and substance P (Ωmeas = 292 Å2) [35].  The collision cross 

sections of the protonated oligonucleotides are shown in Table 12.  The cross sections 

listed in Table 12 are the average of nine measurements over several months and the 

errors are the relative standard deviations.  A summary of these data is illustrated in 

Figure 41.  In Figure 41, it can be seen that the positive oligonucleotide ions have 

significantly smaller collision cross sections than positive ions of peptides of the same 

molecular weight.  In principle, the difference between the peptide and oligonulceotide 

cross sections indicates the gas-phase packing efficiency differs for each molecular class.  

It was also found that the nucleotides of the same length have similar measured collision 

cross sections, regardless of sequence.  For example, all four hexamers have close values 

in the measured cross sections, even though dCTAATC positively deviates from the 

average oligonucleotide trendline, but the deviation is less than 3%, suggesting that the 

hexamers may have similar conformation as well.  Generally, the conformational 

information of the ions can be generated by comparing the experimental cross sections to 

the calculated cross sections of theoretical structures obtained from molecular modeling.  

The detail will be presented in Theoretical study of DNA. 

 

 

 



 120 

 

 
 
Figure 41. A plot of collision cross section as a function of m/z for different molecular classes 
including oligonucleotide, peptide ions, and C60.  
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2. Negative ions 

All nucleotides listed in Table 8 were also tested on MALDI-IM-TOFMS instrument 

using negative ion mode for the collision cross section measurements.  As we proved in 

previous MALDI-MS experiments that 2, 5-DHB with ammonium citrate was the most 

effective matrix for the detection of negative oligonucleotide ions, it became the 

standard matrix for all the negative ion mobility experiments of oligonucleotides.  The 

negative ion mobility experiments for oligonucleotides were performed at the same 

instrumental conditions as the positive mode and gave pretty much the same results as 

the positive mode as well.  No ion signals corresponding to the deprotonated 

oligonucleotides longer than decamer were found.  A representative 2D plot of IM-MS 

conformation space for a mixture of oligonucleotides and peptides is shown in Figure 42.  

Single peaks were found for all the deprotonated oligonucleotides, however, the peaks 

are much narrower than those obtained at positive modes for the same species.  It 

suggests that the deprotonated oligonucleotides may have less multiple conformers than 

the protonated oligonucleotides.  We will discuss it in detail later.  The collision cross 

sections of the deprotonated oligonucleotides are shown in Table 12.  The cross sections 

listed in Table 12 are the average of five measurements over three months and a 

summary of these data are illustrated in Figure 41 as well.  It can be seen that negative 

ions of oligonucleotides have similar average cross sections trendline to the positive 

oligonucleotide as the molecular weights increase. However, the negative 

oligonucleotide ions have slightly smaller collision cross sections than positive ions of 

oligonucleotides of the same sequence.   
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Figure 42. A representative 2D IM-MS plot of conformation space for a mixture of deprotonated 
oligonucleotide, peptide ions, and C60.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 123 

In general, negative ions adopt more than positive ions because there is more 

charge solvation involved in the folding of negative ions than that of positive ions. Same, 

the detail conformational information will be presented in the chapter of Theoretical 

study of DNA. 

 

3. Study of non-covalent complexes for MALDI-IM-MS of DNA 

 As mentioned previously, noncovalent dimers were observed in most 

oligonucleotides when they were tested with 3-HPA on STR.  We tried to find such 

noncovalent dimers of oligonucleotides in ion mobility experiments as well.  However, 

only protonated dimers of dGGATC were detected when using 3-HPA as matrix among 

all the oligonucleotides we have tested.  Even though we tried to optimize the 

experimental condition, i.e., increased concentration of the analyte, adjusted the molar 

ratio of analyte and matrix, and tuned the instrumental parameters, we were no luck to 

get better results.  Actually, it is easy to understand this observation.  Such noncovalent 

complexes have very weak intermolecular interactions; they are not strong enough to 

survive under several torr pressure of collision region during the ion mobility experiment.  

A representative 2D plot of IM-MS conformation space for the protonated dimers of 

dGGATC is shown in Figure 43.  It can be seen the signal for the protonated dimers is 

not strong, and the peak is broad.  The ion-neutral collision cross section of the 

protonated dimers of dGGATC is determined from ATDs as 392 Å2, which is around 

3% smaller than the average trendline of the protonated oligonucleotides (shown in 

Figure 41).   Since the cross section value of the dimers falls within the average trandline  



 124 

 

 
 
Figure 43. A representative 2D IM-MS plot of conformation space for a mixture of protonated 
monomer and dimer of dGGATC.  
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of the protonated oligonucleotides, suggesting that the single strand of dGGATC may 

keep similar conformation as they form noncovalent complex.   

 

Theoretical study of DNA 

Ion mobility spectrometry (IMS) combined with molecular dynamics (MD) has 

proven to be the most efficient technique for conformational analysis of gas phase 

structures of biomolecules by measuring the ion-neutral collision cross section of 

molecular ions [51, 54]. Generally, the conformational information of the ions can be 

generated by comparing the experimental cross sections to the calculated cross sections 

of theoretical structures obtained from molecular dynamics.  However, the technical 

challenge in simulation is to generate all the thermodynamically accessible structures 

that correspond to the real experimental condition.  The standard simulations are 

typically limited to tens of nanoseconds, whereas the molecular ions of ion mobility 

experiments experience structural changes over millisecond timescale [126, 127]. Two 

methods are proposed to overcome this limitations: 1) a simulated annealing MD with 

cluster analysis [135], 2) a generalized non-Boltzman sampling MD with free energy 

analysis follow by cluster analysis [81].  Method 1 is based on the generation of a pool 

of initial structures using a simulated annealing process, followed by the minimization of 

each structure.  All the minimized structures are compared using cluster analysis method 

and different structural families are generated.  We used this method to describe the gas 

phase conformation for peptide ions (detailed in previous chapter).  This method 

increases the probability of generating structures closely related to the most stable 
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conformers; however, all the resulting structures are minimized at 0 K, which is not the 

real effective ion temperature.  The method is not able to provide the desired 

thermodynamic information as well.  As compared to method 1, method 2 can sample 

the total conformational space over a wide energy range by using a generalized (non-

Boltzman) distribution functions at multiple temperatures [126]. The approach uses a 

biased potential for the MD simulations generated from the generalized distribution 

function that, when reweighted correctly, can lead to the desired thermodynamic 

information.  The resulting structures are extracted from free energy minima out of the 

total conformational space.  The method has been proven to be efficient in free energy 

simulations of peptide ions, thus it was used to study the gas phase structures of 

oligonucleotide ions. 

Another major issue in simulating nucleotide ions is that there is no good force field 

parameter available for nucleotide fragments.  The default nucleotide fragments 

available in current AMBER9 are the units containing a deprotonated phosphate 

backbone with a neutralized base.  To generate singly charged oligonucleotides, we have 

to protonate the base or neutralize the phosphate group.  A new force field topology 

database of RESP atomic charge values was developed for modeling singly charged 

oligonucleotides.  RESP charge derivation for new nucleotide fragments was performed 

using Dimethylpohosphate (conformation gauche, gauche), neutralized Dimethylphate 

(conformation gauche, gauche), the 4 neutral DNA nucleosides [Deoxyadenosine, 

Deoxycytidine, Deoxyguanosine and Deoxythymidine] (conformations C2'endo and 

C3'endo), and the 3 protonated DNA nucleosides [Deoxyadenosine, Deoxycytidine and 
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Deoxyguanosine] (conformations C2'endo and C3'endo).  All geometries were optimized 

using the HF/6-31G* theory level and four molecular orientations for each optimized 

geometry were involved in the charge fitting procedure to yield reproducible atom 

charge values.  Two inter-molecular charge constraints between the methyl group of 

Dimethylpohosphate and the HO3’ and HO5’ hydroxyls of the target nucleotides were 

used during the fitting step allowing the definition of the required molecular fragments. 

Inter-molecular charge equivalencing between the nucleosides were used as well to 

make the charge values of the deoxyribose atoms (excluding the C1’ and H1’ atoms) 

equivalent.  The charge derivation procedure was automatically carried out using the 

R.E.D-IV program[125] and the central, 5’-terminal and 3’-terminal fragments of a 

nucleotide were simultaneously generated in a single charge derivation.  Both topologies 

A and B, which present the phosphate group resided either at the position 5’ or 3’ of the 

target nucleotides, were obtained in this project.  The new charge values are compatible 

with the Cornell et al. AMBER force field and proved to be highly reproducible.  All 

data are available at http://q4md-forcefieldtools.org/REDDB/projects/F-83/. 

 

1. dGGATC [M – H]
-
 ion 

The singly deprotonated ions of dGGATC was theoretically modeled assuming a 

zwitterionic structure, where the two guagnine (G) are protonated at N7 and adenine (A) 

is protonated at N1 while the four phosphate groups are deprotonated (shown in Figure 

44).   
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Figure 44. Diagram of the zwitterionic form of dGGATC [M – H]- ions. 
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Extended structure was used as initial structure for a 500-step minimization and a 20 

ps heating step from 0 K to 300K.  Then, the enhanced sampling simulation was 

conducted at 300 K with 300 βvalues exponentially distributed from 250 to 1000 K to 

generate a much wider energy distribution.  After 20 ns simulations, a set of converged 

weighing factors for different temperatures (i.e., different β) was obtained.  Using this 

set of weighting factors, ten independent enhanced sampling simulations starting from 

initial structures were conducted for 1 ms, respectively.  MD simulations as described 

above yielded a total of 10,400,000 trajectories for [dGGATC - H]-
 ions.  Figure 45a 

contains the evolution of the potential energy distribution and the backbone RMSD of all 

trajectories during the MD simulation time.  A correlation between the variation of the 

potential energy and the backbone RMSD over time was found, suggesting that the 

conformational inter-conversion barriers are being overcome several times during the 

MD simulation time. The procedure broadened the energy distribution as well.  With the 

fixed biased potentials, a largely uniform energy distribution was obtained in a wide 

range of ~500 kcal/mol, compared to the ~100 kcal/mol energy range sampled by the 

normal MD simulation.  The free energy vs. the backbone RMSD distribution was 

computed based on the probability distribution of all conformations (shown in Figure 

45b), and threr free energy minima were observed at the RMSD range of 0.85 to 1.55 

(A), the RMSD range of 1.68 to 1.91 (B), and the range of 3.96 to 4.44 (C), respectively.  

Since the sample size of 10,400,000 trajectories is too huge to be analyzed, 52,000 

trajectories were randomly picked for further analysis.   
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Figure 45. Enhanced sampling MD results determined for dGGATC- ions.  a) the evolution of the 
potential energy distribution and the backbone RMSD of all trajectories during the enhanced 
sampling MD simulation time; b) the free energy profile as a function of backbone RMSD and 
potential energy (left), the cross section profile calculated for the lowest free energy structures (right). 
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There are 25,877 out of 52,000 trajectories fall within A, 2,511 out of 52,000 

trajectories fall within B, and 14,659 out of 52,000 trajectories fall within C.  Cluster 

analysis [131] was applied to the trajectories of each region, and only one dominant 

cluster (population over 75%) was found for each free energy minima region.  These 

structures are characteristic of random coil like a Z-shape for A, a W-shape for B, and a 

S-shape for C, which are stabilized by the positively charged base units and negatively 

charged phosphate groups (see in Figure 45b).  The collision cross section of the 

structures in A has been calculated as 281 ± 7 Å2, the structures in B has the calculated 

cross section of 323 ± 7 Å2, and C has the calculated cross section of 269 ± 6 Å2, which 

are all larger than the experimental value for [dGGATC – H]-
 ions.  Statistically, less 

than 1% structures that fall within C will have the calculated cross section close to the 

experimental value, but no structures from A and B will match the experimental cross 

section of [dGGATC – H]-
 ions.  In the conformer that corresponds to the experimental 

cross section, no stacked base pairs were observed.  The guanine at 5’ term hydrogen 

bonds to both the other G and the thymine, while the adenine is tilt toward the cytosine 

at 3’ term.   

 

2. dGGATC [M + H]
+
 ion 

The situation for simulating singly protonated ions of dGGATC is more complicated 

than the deprotonated ions of dGGATC.  There are three theoretical models available for 

[dGGATC + H]+, one zwitterionic structure and two non-zwitterionic structures, shown 

in Figure 46.   
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Figure 46. Diagram of the zwitterionic and non-zwitterionic forms of dGGATC+ ions.  
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In the zwitterionic form, the two guagnine (G) are protonated at N7, adenine (A) 

is protonated at N1, cytosine (C) is protonated at N3, and only three of the phosphate 

groups are deprotonated.  In the non-zwitterionic forms, all the phosphate groups are 

neutralized and one of either G is protonated at N7.  To differentiate the models, the 

zwitterionic form is called Gz, the non-zwitterionic form with the protonated G at 5’ 

term is called G11 and the other is called G21.   

For each case, extended structure was used as initial structure, a total of 

~4,800,000 trajectories were generated after the enhanced sampling simulation.  The 

evolution of the potential energy distribution and the backbone RMSD of all trajectories 

during the MD simulation time for each case are presented in Figure 47a – 49a and the 

free energy vs. the backbone RMSD distribution are shown in Figures 47b – 49b.  For 

Gz, only one free energy minima was observed at the backbone RMSD range of 2.5 to 3 

which is dominated by one structure element based on the cluster analysis result.  The 

structure of Gz is characterized by a Z-shape, similar to the structure observed for 

dGGATC- ions and havs a calculated cross-section value of 273 ± 6 Å2.  For G11, one 

free energy minima was observed at the backbone RMSD range of 2.3 to 3.3 and one 

dominated structure was found within that region.  The structure is an elongated form 

with the calculated cross section of 308 ± 5 Å2.  For G21, three free energy minima were 

observed at the backbone RMSD of ~4, RMSD of ~4.5, and RMSD of ~5 and each case 

was dominated by one structure.   
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Figure 47. Enhanced sampling MD results determined for the zwitterionic form of dGGATC+ ions. a) 
the evolution of the potential energy distribution and the backbone RMSD of all trajectories during 
the enhanced sampling MD simulation time; b) a 2D free energy profile as a function of backbone 
RMSD (left), a 3D free energy profile as a function of backbone RMSD and potential energy (right). 
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Figure 48. Enhanced sampling MD results determined for the nonzwitterionic form of dGGATC+ 
ions with the charge-giving proton at G1. a) the evolution of the potential energy distribution and the 
backbone RMSD of all trajectories during the enhanced sampling MD simulation time; b) a 2D free 
energy profile as a function of backbone RMSD (left), a 3D free energy profile as a function of 
backbone RMSD and potential energy (right). 
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Figure 49. Enhanced sampling MD results determined for the nonzwitterionic form of dGGATC+ 
ions with the charge-giving proton at G2. a) the evolution of the potential energy distribution and the 
backbone RMSD of all trajectories during the enhanced sampling MD simulation time; b) a 2D free 
energy profile as a function of backbone RMSD (left), a 3D free energy profile as a function of 
backbone RMSD and potential energy (right). 
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The structure at RMSD 4 is a ρ-shape form with the calculated cross section of 

268 ± 5 Å2; while the structure at RMSD 4.5 is characterized by a hairpin with the 

calculated cross section of 256 ± 5 Å2; while the structure at RMSD 5 is a U-shape form 

with the calculated cross section of 267 ± 5 Å2.  The representative structures classified 

from each free energy minima and the probability of each structure that matches the 

experimental cross section value for [dGGATC + H]+
 ions are shown in Figure 50.  A 

total of 50% of the Ω-shape structure with the protonated G at second position are 

expected to have the cross section values that match the experimental cross section of 

[dGGATC + H]+
 ions.  The rest of structures all contribute slightly to the total 

conformational space of [dGGATC + H]+
 ions except the structures from G11.  The 

ATDs observed for [dGGATC + H]+
 ions can be the “average” of those lower free 

energy conformers interconverting during the IM experimental timescale, which might 

be the reason for the broader ATDs of dGGATC [M + H]+
 ions than those of dGGATC-

 

ions.  

 

3. dGGATC [2M + H]
+
 ion 

To avoid intermolecular charge repulsion between two strands of dGGATC, all the 

phosphate group at backbone are neutralized, thus only non-zwitterionic structures was 

assuming as the theoretical model for protonated dimers of dGGATC , one with the 

protonated G at 5’ term on one strand (G11-G0), and the other with the protonated G at 

2nd position (G21-G0).   
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Figure 50. a) The representative structures classified for each free energy minima and the probability 
of each structure that matches the experimental cross section of dGGATC+

 ions; b) the cross section 
profile for the lowest free energy structures. 
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Since no dimers of dGGATC can be survived when the simulated temperature 

passes over 600K, we are unable to use enhanced sampling method to simulate the gas 

phase structures of the protonated dimmer of dGGATC ions.  For each case, β-helix was 

used as initial structure for a 500-step minimization and a 20 ps heating step from 0 K to 

300K.  Then, the normal MD simulation was conducted at 300 K for a timescale of 10 ns 

generating 20,000 trajectories.  The cross section of each trajectory was calculated and a 

scatter plot of cross section versus energy was generated to help compare theory with 

experiment.  In both cases, the theoretical cross section values are way larger than the 

experimental ones. Unfortunately, no reasonable conformer was found for matching the 

protonated dimers of dGGATC under experimental condition. The normal MD 

simulation only sampled at a narrow energy range of ~100 kcal/mol, it was unable to 

generate all the thermodynamically accessible structures that correspond to a certain 

experimental condition, which can explain for the failure of obtaining the desired results.  

 

Conclusion 

A series of different length oligonucleotids were tested by MALDI-MS on both 

positive and negative ion mode.  3-HPA in combination with ammonium citrate has 

shown to be the best matrix for detection of positive oligonucleotide ions, while 2,5-

DHB with ammonium citrate is the preferred matrix to measure deprotonated 

oliognucleotides.  Noncovalent dimmer ions of oligonucleotides were also observed for 

most oligonucleotide ions when mixtures of complementary or noncomplementary 

strands were analyzed with 3-HPA via positive MALDI-MS.  However, non-specific 
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duplex was observed for the short-length oligonucleotides we have examined.  IMS as 

the most efficient separation method predicted an average cross section trendline for 

both positive and negative oligonucleotide ions under gas phase.  The singly protonated 

oligonucleotide ions have significant smaller collision cross sections than positive ions 

of peptides of the same molecular weight, but have slightly larger cross section values 

than negative ions of oligonucleotides of the same species.  The measured collision cross 

sections of all the oligonucleotide ions we have tested in both positive and negative ion 

mode fall on the average cross section trendline of oiligonucleotides, suggesting that 

they may have similar conformation.  Further understanding of the structures within 

conformation space might be achieved through molecular dynamic simulations.  A novel 

generalized non-Boltzman sampling MD has proven to be efficient in free energy 

analysis was used for theoretical study of gas phase conformation of oligonucleotide 

ions.  In the case of dGGATC-
 ions, a Z-shape zwitterion form might be the possible 

conformer existed in the gas phase.  On the other hand, several lower free energy 

structures were found to contribute to the conformational space of dGGATC+
 ions.  It 

might be the reason for the broader ATDs of dGGATC+
 ions than those of dGGATC-

 

ions.  Overall, the method provides a higher confidence in the gas phase structure 

identification of oligonucleotides when compared to the experimental determined cross 

section values.  The study described here is just the first validation of combining IMS 

data with theoretical tools for understanding the gas phase conformation of 

oligonucleotides under certain experimental conditions.  Based on this work, more 
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complicated and systematic oligonucleotides can be explored to further understanding 

the folding mechanism of biomolecular ions in the gas phase.  
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CHAPTER V 

CONCLUSION 

In this study, we have shown that the combination of ion mobility with mass 

spectrometry affords a powerful approach to explore the gas phase structures of 

biomolecule ions by measuring collision cross sections of mass identified ions.  The 

technique is particularly useful in conjunction with molecular modeling (e.g. molecular 

mechanics or molecular dynamics) and bioinformatics tools (i.e. cluster analysis).  

 

Gas-phase structures of polypeptide ions 

A database of ion-neutral collision cross-sections for hundreds of [M + H]+ 

proteolytic peptide ions has been built using MALDI-IM-TOFMS, containing structure 

and mass information.  The majority (63%) of the peptide ion collision cross-sections 

correlate well with structures that are best described as charge-solvated globules, but a 

significant number of the peptide ions exhibit collision cross-sections that are 

significantly larger or smaller than the average, globular mobility-mass correlation.  

Molecular simulations results suggest that peptide ions having larger than predicted 

collision cross-sections have more open conformations and can be good candidates for 

helical structures.  Whereas the peptides with smaller cross-sections would prefer more 

compact structure due to the salvation interaction from their polar residues.  When 

compared to the collision cross-sections of singly charged peptide ions measured by ESI, 

we find some difference between the measured values.  Even though it is not known in 

detail whether there are systematic differences between the different ionization methods, 
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simulation results indicate that they might yield gas-phase ions which can differ in terms 

of structure or conformation.  For short peptides with up to ~ 7 residues, the proposed 

ion structures for ESI and MALDI have similar backbone structures and the different 

projection of side chains cause the difference in collision cross sections.  With the 

increase sequence, peptide ions have more degrees of freedom for positioning structural 

elements in backbone; both side chain orientation and backbone structure can be the 

reasons for the difference in collision cross sections between ESI and MALDI.   

At the same time, a novel cluster analysis method has been developed for extracting 

structure information from simulated annealing results with higher statistical confidence.  

It evaluates candidate structures from an ensemble of many conformations rather than 

the lowest energy structure, which better represents the peptide ion structure under real 

experimental conditions.  In the case of MIFAGIK peptide ion, cluster analysis suggests 

that [M + H]+ ions formed by MALDI or ESI both prefer a α-turn structure; this 

structural preference is probably the result of stabilization afforded by charge-solvation 

by the backbone amide groups.  That is, there appears to be a significance preference for 

helical or partial helical conformers by the low energy ions, but the major fraction of the 

ion populations exists as α-turn, random coil, and β-turn conformers.    Although the 

derivatives of MIFAGIK which influence charge site and intra-molecular interactions 

alter the distribution of various conformers, the most dramatic changes are observed for 

the [M + Na]+ ion, which show a strong preference for random coil conformers owing to 

the strong solvation by the backbone amide groups.  We tested the ‘sensitivity’ of the 

cluster analysis method by introducing subtle variations in peptide ion composition as 
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well.  For example, the N-acetyl and methylester derivatives as well as the Boc and 

Fmoc derivations all share very similar backbone structures.  All the results presented 

here support the hypothesis that difference in collision cross-sections for MIFAGIK 

peptide ions are related to the different orientation of side chains.   

 

Gas-phase structures of oligodeoxynucleotide ions 

A series of different length oligonucleotids were tested by MALDI-IM-TOFMS in 

both positive and negative ion mode, which predicted an average cross section trendline 

for both positive and negative oligonucleotide ions in the gas phase.  A novel 

generalized non-Boltzman sampling MD has been utilized to generate a conformational 

space for the give molecule ions with the desired thermodynamic information.  The 

representative structures can be extracted out of the total conformational space by the 

free energy values.  In the case of dGGATC ion, inspection of the representative 

structure showed that the singly charged negative ions mostly adopt a Z-shape zwitterion 

form while the singly charged positive ions can exist in several different backbone 

structures in both canonical and zwitterion form in the gas phase.  These results are in 

good agreement with the experimental observations.   

 

Future directions 

Overall, the aim of our research at further development of methodology for 

extracting structural information for gas-phase biomolecule ions, which can contribute to 

better understanding of the conformational space occupied by biomolecules are of 
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considerable interest.  The work presented in the paper is just the first step in this 

direction.   

Future studies will extend to IM-MS structural characterization to larger, more 

complex biomolecules, i.e., melittin, the principal active protein found in bee venom.  

Melittin (GIGAVLK7VLTTGLPALISW-IK21RKR24QQ-NH2) [136] is of interest 

because it exists as unstructured monomer in aqueous phase; however, in basic or high 

ionic strength solutions melittin aggregates to form tetramers with helical characteristics 

present in each component [137, 138].  Our previous MD simulations suggest that as the 

solvent dielectric constant increases (from methanol to ethanol, propanol, butanol, and 

finally to water), helical melittin monomers (all basic sites are protonated, +5 or +6) 

undergo conformational changes to highly disordered structures and that the C-terminus 

is more stable than the N-terminus.  Previous mass spectrometry fragmentation studies 

were interpreted as evidence that gas-phase melittin ions are helical [139]. 

Cluster analysis of the various charge states of a peptide as large as melittin may 

increase our confidence of the tentative assignment of the backbone structure.  A 

possible improvement to the method which could easily be extended to larger proteins 

would involve digestion of the protein into peptide subunits to be interrogated 

individually by applying the cluster algorithm.  The peptide subunits are more tractable 

for both MD simulations and cluster analysis, and may retain structural preferences of 

the whole protein.  As a specific example, trypsin digests of melittin would yield 

GIGAVLK7 and VLTTGLPALISWIK21 as well as fragments containing R22, K23, R24 

and these fragment ions could be examined separately, including Ac- and methyl ester 
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forms, from the intact peptide.  Statistical methods will need to be developed to aid in 

assembling results from the peptide subunits. 

The backbone of a peptide can be represented as the ( )x y z, ,  coordinates of an 

amino acid’s four heavy atoms (N, C α , C, and O) along the backbone. The root-mean-

square-deviation (RMSD) between two optimally-aligned peptides gives a measure of 

dissimilarity among peptides.  These pairwise distances were used for the distance-based 

clustering procedure in our current clustering method.  Conversely, a peptide’s backbone 

can be described by dihedral angle pair ( )ϕ ψ,  along the backbone as well.  The 

similarity of the vectors of dihedral angle pairs among peptides can also be used in a 

model-based clustering procedure.  The clustering method can be extended to use the 

dihedral angles along a backbone as well.  

The study of specific non covalent complex of oligonucleotides will be 

particularly interesting.  The H-bonding interactions in nucleic acids play a crucial role 

in the double helical structure of DNA.  Theoretical calculation on the G-C and A-T 

pairs provides the required information about the strength of H-bonding in these systems 

and the respective binding energies are 20 and 17 kcal/mol.  DNA with high GC-content 

should be more stable than DNA with high AT-content owing to the contribution of π-

stacking interactions.  For example, the mixtures of GATTAG with CTAATC and 

CTGGTC with GACCAG, the bases on one strand are all complementary to the bases on 

the other strand.  As the percentage of GC base pairs determines the strength between 

the two strands of DNA, the duplex formed by CTGGTC and GACCAG are stronger-

interacting strands than the strands between GATTAG and CTAATC. The strands with 
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stronger interaction may more easily form high order structures such as double helix, but 

the weaker interacting strands can be easily pulled apart and form random structures.  

However, the duplex may not survive under MALDI; ESI will be the better choice to 

study ion structure of DNA non-covalent complex.  Now the mobility instrument with 

both ionization sources is under development in our lab.  
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APPENDIX A 

THE ION-NEUTRAL COLLISION CROSS-SECTIONS OF 607 PROTEOLYTIC 

PEPTIDE IONS MEASURED BY MALDI-IM-TOFMS 
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APPENDIX B 

THE ION NEUTRAL COLLISION CROSS-SECTIONS OF STANDARD 
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