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ABSTRACT

hp-Spectral Methods for Structural Mechanics

and Fluid Dynamics Problems. (May 2010)

Rakesh Ranjan, B.Tech, Indian Institute of Technology, Kharagpur;

M.S., Pennsylvania State University

Chair of Advisory Committee: Dr. Junuthula N. Reddy

We consider the usage of higher order spectral element methods for the solu-

tion of problems in structures and fluid mechanics areas. In structures applications

we study different beam theories, with mixed and displacement based formulations,

consider the analysis of plates subject to external loadings, and large deformation

analysis of beams with continuum based formulations. Higher order methods allevi-

ate the problems of locking that have plagued finite element method applications to

structures, and they also provide for spectral accuracy of the solutions. For applica-

tions in computational fluid dynamics areas, we consider the driven cavity problem

with least squares based finite element methods. In the context of higher order meth-

ods, efficient techniques need to be devised for the solution of the resulting algebraic

systems of equations and we explore the usage of element by element bi-orthogonal

conjugate gradient solvers for solving problems effectively, along with domain decom-

position algorithms for fluid problems. In the context of least squares finite element

methods, we also explore the usage of Multigrid techniques to obtain faster conver-

gence of the the solutions for the problems of interest. Applications of the traditional

Lagrange based finite element methods with the Penalty finite element method are

presented for modelling porous media flow problems. Finally, we explore applications

to some CFD problems namely, the flow past a cylinder and forward facing step.
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CHAPTER I

INTRODUCTION

In the last few decades there is been considerable interest in the h version of finite

element methods. In particular the three different methods that advanced in the areas

of numerical computations namely, the finite difference, finite element methods, and

spectral element methods found fruition in three different decades. Spectral element

methods or higher order hp element methods came into existance in the 1970s. Since

then there has been huge advances in the spectral element methods community and

also both nodal and nodeless methods have been devised for solving problems. In

nodal based methods also there are now distinctions between either Legendre based

polynomials or the usage of Chebyshev polynomials for the variable approximations.

In this work we mainly concern ourselves with the Legendre based polynomials, which

are node based.

We have well defined estimates of the errors of the approximations in the lower

order finite element or h version finite element setting. These h version finite elements

have been applied to solving problems in both structures and computational fluid

dynamics, and have met with success in both areas. However, these methods fail to

capture the intricacies in the solutions when higher orders of accuracy is desired [1]. In

particular in computational fluid dynamics areas where we have many small vortices

in the flow field, the accurate resolution requirements that these methods can provide

over the lower order elements become indispensable and needs to be properly exploited

to obtained highly accurate solutions. In this framework, either the p or hp versions

of spectral element methods have been developed. The p and hp versions of finite

The journal model is Applied Mathematics and Computation.
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elements offer greater accuracy for the solutions of problems.

A. Error estimates

The measure of the accuracy of the formulation lies in the determination of the

errors that are obtained when the formulation is used for solving a partial differential

equation. As a sample differential equation for determining the errors estimates we

consider the Helmholz equation in one dimension. The Helmholz equation is defined

as the following;

L(u) =
∂2u

∂x2
− λu+ f = 0 (1.1)

supplemented with the boundary conditions;

u(0) = gD,
∂u

∂x
(l) = gN (1.2)

where we wish to determine the solution of the problem in the interval, 0 < x < l

which we shall denote by Ω.

1. h-version FEM

Let us define the energy norm of the Helmholz problem as the following;

‖ u ‖E=
√
a(u, u) (1.3)

Here, a(u, u) is the operator obtained after the integration by parts step in the weak

Galerkin finite element approximation of the problem. Carrying out a Taylor series

approximation of the error of the finite element approximation which is defined as;

¯ee(x) = u(x)− Iu(x) (1.4)
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an expression for the h version finite element error can be obtained as follows;

‖ ε ‖E ≤ K1Ch (1.5)

where, C depends on f and λ but is independent of h.

2. p-version FEM

For the p type expansion, with the help of Parsevals identity and the orthogonality

of the Legendre polynomials, we obtain the L2 is bounded by the following;

‖ ε ‖2 = P−k‖ u ‖k (1.6)

In the above relationship, ‖ uk ‖ denotes the Hk norm of the function. If u(k) is

sufficiently smooth then the above equation tells us that the error decays at the rate,

that is faster than any power of P , as P → inf. Similarly for the p type expansions

the errors in the H1 norm have been found to decay based on the relationship;

‖ ε ‖1 = P 1−k‖ u ‖k (1.7)

The proofs for the following prepositions have been carried out in [2].

3. hp-version SEM

Again we consider the Helmholz equation on a one dimensional domain Ω. It is

assumed that we discretize the domain into equal size elements of size h. In such a

case the general error estimate in the energy norm for the h and p type extension is

provided by [3];

‖ ε ‖E = Chµ−1P 1−k‖ u ‖k (1.8)
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where, ε = u−uδ,µ = min(k, P +1) and C is independent of h,P , and u but depends

on k. This shows us that if the polynomial is smooth enough to have bounded

(deterministic) derivatives, for k ≥ (P + 1), then this error estimate shows us that

we can achieve exponential convergence as we increase the polynomial order P (p

type extension). This is the chief advantage of the usage of higher order hp type

expansions for the solutions of partial differential equations and the reason that highly

accurate solutions are obtainable with appropriate hp refinements. We show the

superior convergence of the errors in the L2 norms for the linear subcomponents of

the problems solved in this work both for the beam theories and the plate theories

for which such analytical series solutions exist.

In addition to providing for highly accurate results, in the course of this re-

search it was realized that there is no need to resort to some of the ad-hoc techniques

like reduced integration to obtain acceptable results in both structures and compu-

tational fluid dynamics (CFD) areas. It should be mentioned here that for CFD

applications we are able to equally integrate all the terms because of the usage of

least squares finite element methods which circumvent the celebrated Ladyzhenskaya-

Babuska-Brezzi (LBB) condition, and not because of usage of higher order spectral

element methods. Infact, in CFD applications one of the spectral element methods

that is being used is the so called PN − PN−2 element in a Penalty finite element

framework.

Apart from the advantages that these methods provide, one of the major draw-

backs of the higher order methods lies in the higher order quadrature requirements

that are necessary for the evaluation of the stiffness matrices that are obtained with

higher order methods. This issue can become specially important when one is con-

cerned with solution of computational fluid dynamics problems, where solutions of

the order of millions of equations is routine. To ameliorate some of the disadvan-
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tages of the higher order methods for applications to CFD we explore the usage of

faster and more efficient solution techniques for the routine solutions of anywhere

between 0.2 to 0.50 million equations. In this context we explore the parallel imple-

mentations of Domain Decomposition, Element by Element Bi-orthogonal Conjugate

Gradient (EBE-BJCG), and Multigrid techniques for solutions of huge linear systems

of equations.
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CHAPTER II

HP -SPECTRAL METHODS APPLIED TO BEAM THEORIES

A. Introduction

Beams as structural members are of interest in many engineering applications. Some

of the applications include pile foundations, spread footings supported on groups of

piles, and in structural frames common in a variety of structures. Three different kine-

matic theories have been used to study beams, namely, the Euler-Bernoulli theory

(EBT), the Timoshenko beam theory (TBT), and Reddy third-order shear deforma-

tion theory (RBT). A number of different finite element models of these theories have

been developed using traditional finite element interpolations. Various finite element

models of beams differ from each other in the choice of the interpolation functions

used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in

the integral (or weak) form used to develop the finite element model [4]. The TBT

and RBT are known to exhibit shear locking when using equal-order lower-order in-

terpolation of the generalized displacements w and φ. The locking is due to the

inconsistency of the interpolation used for w and φ. Often reduced-order integration

to evaluate the stiffness coefficients associated with the transverse shear strain is used

as a means to remove locking. The reduced integration beam elements are known to

exhibit spurious energy modes. Others have used so- called consistent interpolation

based on the recovery of correct constraints in the thick beam limit [5]. Although

such elements do not experience locking, they did not lead to the two-node super-

convergent element developed by Reddy [6], who used the Hermite cubic interpolation

of w and interdependent quadratic interpolation of φ in developing the element. The

conventional reduced integration Timoshenko elements as well as consistent interpo-
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lated quadratic elements fail to capture the true behaviour of such members unless

two or more elements per a structural member are used.

While the displacement-based models for the Timoshenko beam theory (TBT)

admit the use of C0 expansions, the use of Euler Bernoulli beam theory (EBT) re-

quires the use of C1-continuous expansions. The mixed formulation in which the

stress resultants are incorporated into the fundamental governing equations for the

Euler-Bernoulli beam theory does admit the use of C0 expansions, which naturally

lends itself to spectral accuracy with the help of hp-spectral element methods due

to reduced continuity requirements. The TBT, on the other hand, allows the use of

C0 approximations for the displacement based formulations. In the thin beam limit,

the TBT model should give the same results as the EBT. However, due to the use

of equal lower-order approximations for the displacements and rotations, the element

fails to realize the thin beam limit and thus experiences shear locking.

Most studies in literature make use of the equispaced Lagrange higher-order

expansions for studying the bending response of plates and the same can be extended

in one-dimension to study the bending behaviour of TBT. The equispaced Lagrange

interpolation suffers from severe ill-conditioning and for high values of the polynomial

degree p [1]. At high p-levels the discrete problem suffers from a very high condition

number of the stiffness matrix and the problem exhibits poor convergence behaviour.

Very strong preconditioners are recommended in some cases to parse the discrete

problem at such high p-levels but the convergence is problem dependent and also

dependent on the regularity of the mesh. There has been increased interest in the

past decade on using orthogonality of Legendre polynomials to better predict the

response of beams when subject to dynamic loadings. Some of the work by P.Z.B-

Yoseph [7] is in that area. In their analysis a space-time spectral element method is

employed to solve a simply supported Euler-Bernoulli beam undergoing forced lateral
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vibrations. The realization by P.Z.B-Yoseph [7] is in the temporal approximation

of the dynamics of the beam which is approximated with a spectral space-time mesh

rather than a modification of the Taylor series approximations which forms the basis

for the other conditionally stable schemes.

It was discovered in the 1980s that the choice of higher-order shape functions has

a dramatic effect on the conditioning of the discrete problem. Since then, significant

amount of work has been devoted to the improvement of higher-order finite elements

or p-version FEM. The search for optimality continues till today [8]. Thus, when

higher-order shape functions are used in the finite element method, it is common to

examine the condition numbers of the coefficient matrix generated [9]. Condition

numbers close to one represent a well-conditioned system where as large condition

numbers indicate a poorly conditioned system of equations which is likely to lead to

numerical errors in the solution process. The usual definition of the condition number

is being used in the present context, that is the κ(.) = λmax(.)
λmin(.)

.

The spectral/hp based nodal expansions which is based on the Legendre polyno-

mials provide discrete orthogonality and the condition number for the mass matrix of

the equispaced expansions grows as 10p for higher values of p where as the condition

number for the Legendre based expansions grows as O(p) [1]. The superior condi-

tioning of both the mass and stiffness matrices produced with the Gauss-Lobatto-

Legendre shape functions has been demonstrated in Maitre et al. [9]. The paper by

Maitre et al. [9] provides the condition numbers of the Legendre based expansions

to a polynomial order of 30 in 2-dimensions and 9 in three dimensions. The above

arguments exhibit the fact that equi-spaced Lagrange p-version finite element suffer

from strong linear dependence of the solution and special solution techniques have

to be used to address the problem unless one contends with spurious results from

the discrete model, reasonable solutions to certain problems only under very special
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circumstances, or ad-hoc approaches that ameliorate solver breakdowns.

Another issue with finite element formulations for beams, is that it presents

computational difficulties when the length-to-thickness ratio of the beam (a/h) is

large (i.e. when modelling long beams). A strong stiffening of the element matrices

occurs, resulting in spurious shear stress predictions and erroneous results for the

generalized displacements [10]. This phenomenon is known as shear-locking. Shear

locking develops in formulations which cannot represent a state of zero-shear in the

thin beam limit independent of the mesh. This is exhibited as a violation of the

Kirchhoff assumption in the thin beam theory, stated as wx − θ=0. When the beam

is thin most of the energy of deformation is due to bending. If a formulation does

not admit non-trivial zero shear solutions, then most of the energy of deformation

goes into shear deformation, resulting in very little bending–hence locking. This can

be seen from the variational form; since the coefficient of the bending term is of the

order O(t3) and the coefficient of the shear term is of the order of O(t), the latter

becomes much larger as t approaches zero [10].

This problem is commonly treated by reduced integration techniques, although

other remedies may be found [11]-[12]. Shear locking is evident in the Ritz-Galerkin

displacement based finite element models with equal-order interpolation of all gen-

eralized displacements. The phenomenon is more predominant when the length-to-

thickness ratio of the beam is high. Higher-order elements have been explored in

literature to be alleviating shear locking phenomenon but they have been mostly

been equi-spaced Lagrange based so far. The use of spectral/hp nodal expansions

was explored by Pontaza [13] while analyzing plates for both the classical plate the-

ory and FSDT with the least squares finite element formulation however, only a linear

analysis was performed and the referenced work is an application to the bending of

different beam theories.
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The aforementioned reasons compel the use of spectral/hp element refinements

as a viable and a robust alternative to studying the bending behaviour of beams

which provide spectrally accurate results and at the same time alleviate the perennial

problems of locking associated with lower order finite element methods. In this pa-

per the issue of locking has been addressed two different ways, the first is the use of

hp-spectral methods within the framework of displacement based formulations, and

the second method is the use of mixed formulations. Mixed formulations also do not

require the use of reduced integration techniques to solve for the problems studied.

The motivation for this study comes from the many advantages that are associated

with hp-higher order elements; spectral convergence (accuracy) of the solutions, the

removal of locking issues, and the orthogonality property of the nodal expansions

which provide excellent results with standard solvers like scaled Gaussian elimination

with partial pivoting, alleviating the problem of ill-conditioning of the discrete prob-

lem ascribed to the usage of higher-order equi-spaced Langrange based interpolants.

For the mixed formulation the Gaussian Elimination with scaled partial pivoting was

implemented and was found to work better than the conjugate gradient solver. Dif-

ferent a/h ratios are explored and with appropriate hp-refinements full integration is

found to provide consistently good agreement with published results for both linear

and non-linear analysis.

B. Literature Review

Urthaler et al. [14] explored the use of mixed formulations for the laminate composite

plate analysis based on the first order shear deformation theory (FSDT). They also

checked their solutions obtained with the reduced integration techniques with the

Navier solutions for the plate problem for the FSDT. It was reported that the mixed
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formulations were superior to the displacement based formulations for the prediction

of accurate stress resultants and, thus moments and shear forces were incorporated

as primary variables in the formulation. In this paper we explore both mixed and the

displacement based finite element formulations in the context of hp-spectral methods

as applied to the bending analysis of beams. A comprehensive review of the different

beam theories can be found in Reddy’s work [6], where both local and non-local

theories for bending of beams are explored. Also, in the document explicit analytical

expressions were derived for the linear analysis of both local and non-local theories

for the Euler-Bernoulli beam theory, Timoshenko beam theory, Reddy beam theory,

and the Levinson beam theories. The evaluation of the deflections and the slopes

of the different beam theories are derived based on the Fourier series expansions of

each of the terms of the governing differential equation. The analysis by Fourier

expansions is based on the fact the Fourier series captures the inherent waves in

any system and provided the boundary conditions are being met with the Fourier

expansions, the series solutions provide a uniform framework for solving linear partial

differential equations across disciplines, subject to simplified boundary conditions.

Such an expansion has been used in this document from the above reference to verify

the spectral convergence of the EBT and TBT results obtained with that obtained

from the series solution. The basic idea is the Fourier expansions converge point

wise to any solution of a differential equation to a prescribed tolerance provided

the boundary conditions are satisfied. Further details on the series solution will be

provided later.

Asta et al [15] have carried out the bending analysis of composite beams, with

displacement and mixed elements. A non-linear analysis was performed. The com-

posite beam was considered as made of steel and concrete, where the steel behaviour

is typically modelled as elastic-perfectly plastic, where as the concrete material be-
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haviour was characterized as non-linear with compressive loads. Reinforcement in

the concrete is also characterized to have steel behaviour, even though some inter-

action effects due to the presence of concrete bonding at the edges can change some

of the properties of the composite. In the paper they condensed out the stress and

the strain fields because these can be inter-element discontinuous. Numerical tests

were carried out on two-span continuous beams which is often the model for design

of bridge structures, with simply supported (hinged-pinned) boundary conditions on

either sides.

Finite element analysis for a Timoshenko beam subjected to a moving mass was

carried out by Lou et al [16]. Dynamic analysis of a Timoshenko beam subjected to a

moving mass is of interest because it can study the bending characteristics of a train

moving over the rails, design of bridges, and study of milling processes. The second

order hyperbolic equation obtained during the formulation part was solved with the

Wilson theta method. The main assumption in the analysis was that the beam

remains in constant contact with the moving mass which is a reasonable assumption

to make for the problems of interest in this area. The external force on the Timoshenko

beam was considered due to the moving mass. The effect of damping on the behaviour

of the response was neglected. The force components that are obtained from the model

due to the moving loads change with the location of the mass that is moving over the

beam. Good agreement with the results published in literature were reported.

Edem [17] explored Timoshenko beam finite element models with analytical

bending and shear rotation interdependent shape functions. In the paper the exact

locking free two-noded Timoshenko beam finite element was formulated. An analyti-

cal expression between the bending and a proposed shear rotation was established. In

contrast to the Timoshenko beam equations where these two effects are coupled the

decoupling causes the locking phenomenon to disappear. Reddy explored the super-
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convergent element in [18]. The element provided yields the exact nodal deflections

in static analysis for any distribution of the transverse load q(x) and element-wise

constant bending stiffness EI and shear stiffness GAKs. They explored the assumed

strain-displacement models (ASD) in which the variational form contains the dis-

placements and strains as independent variables. Explicit expressions for the element

stiffness matrices for the Timoshenko beam element were provided for different el-

ements i.e. reduced integration element, interdependent interpolation element, and

the consistent interpolation element etc. An implicit expression was also obtained for

determining the natural frequency of the Timoshenko beams, the solutions of which

were checked with the results from the finite element model, and close agreement

between both were reported for all cases analysed.

Mixed finite element formulation for Reissner-Mindlin plates when subjected to

different types of loads, were explored by Eratll et al. [19]. Different types of boundary

conditions were explored, namely the clamped clamped, and simply supported bound-

ary conditions. Also different types of loading were explored, namely, uniform load,

concentrated load at the center etc. The elasticity solutions obtained were checked

with the finite element results and good agreement was reported. The enforcement

of the boundary condition was done both in a strong sense and also for some cases

the boundary conditions were enforced with the Lagrange multiplier method into the

functional itself, which is also a weak imposition of the boundary condition. The sec-

ond technique for enforcing boundary condition was found to be more accurate as the

information from the contributions from the adjoining elements is not destroyed, and

the results are more accurate, it is proposed. A closed form solution to the Reissner

plate was obtained using the field equation of three-dimensional elasticity.

A unified finite element model based on the classical and shear deformation

theory has been presented in Reddy et al [5]. The three main theories, the EBT,
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TBT and RBT are incorporated into one finite element model. Depending upon the

choice of the element type the general stiffness matrix can be specialized into any of

the three different theories by merely assigning the proper values to the parameters

that were used in the development. The element did not experience shear locking and

gave exact generalized nodal displacements for Euler-Bernoulli and Timoshenko beam

theories when the beam is homogeneous and has constant material property values.

A locking-free shear deformation beam finite element is also presented in Reddy [6].

A review of the different finite element models for the three theories have also been

presented separately. Exact polynomial solutions to the different theories have also

been presented, for the simply supported and the cantilever beams.

Hierarchical finite element analysis of vibration of membranes was carried out by

Houmat [20]. Legendre based orthogonal polynomials were used for modelling the

membrane. A single finite element with appropriate p-refinement inside the single

element was used for the analysis and thus the satisfaction of the C0 continuity at

the internal nodes was avoided completely. The values of the integrals were evaluated

and saved in a table lookup which was used repeatedly for which ever terms that were

needed to be obtained. Highly accurate results were obtained with the hierarchical

Legendre based polynomials that were used, and fifth decimal accuracy with analytical

solutions was achieved. Based on their analysis and the cited advantages of the

hierarchical finite elements that were used by the authors they reported that the

p-version of FEM always converges from above to the exact values as the number

of hierarchical terms in the expansion are increased and highly accurate results are

obtained with very few hierarchical terms.

Houmat [21] have also explored the use of hierarchical trigonometric based shape

functions for studying plate vibrations. They developed a new finite element which

was formulated based on a number of fixed quintic polynomial shape functions plus
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a variable number of trigonometric hierarchical shape functions. The procedure for

deriving the shape functions for the problem were also outlined and trigonometric

hierarchical functions were derived based on the steps outlined herein. The table

look up procedure for the generation of the stiffness matrices was also done in this

paper. The specification of the different sets of boundary conditions that were tested

for the analysis of the plates followed the traditional Leissa’s convention.

A new hierarchical finite element basis for the triangular and tetrahedral ele-

ments has been proposed by Adjerid [22]. The stiffness matrices that are generated

in the document were found to have better conditioning than existing literature. It

is mentioned that better conditioning of the stiffness matrices that are obtained for

the case of the rectangular and linear domains benefit from the tensorial nature of

the same in two dimensions and the orthogonality within the one-dimensional frame-

work. If the hierarchical shape functions are non-tensorial then the conditioning of

the stiffness matrices that are produced from the formulation can grow exponentially

with the polynomial order making it no better than traditional equi-spaced Lagrange

based higher order expansions. To alleviate this problem they have proposed a new

set of hierarchical shape functions for triangles and tetrahedron which lead to better

conditioned matrices. It is of some value to note that they identified the problem

with worse conditioning to be due to the interaction of the face and region shape

functions with themselves and each other. In the same context Beslin [23] advocate

the use of trigonometric shape functions as opposed to the Legendre based inter-

polants. Amongst the reasons that they cite the complex high numeric dynamics of

the Legendre based polynomials which become unfeasible to be used beyond a pvalue

of 46, where as the trigonometric hierarchical functions that have been used were

demonstrated to be predicting correctly the high order plate vibration modes upto to

pvalues of 2048 with possible extensions to this limitation. Amongst the cited advan-
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tages of the trigonometric shape functions are computations of the stiffness matrices

can be computed exactly, and are easy to compute, and the better numeric dynamics

of the trigonometric shape functions which allow one to use extremely high value of

plevels where as the Legendre based polynomials are limited to a maximum value of

46 as pointed out by the authors. The trigonometric shape functions of order P s
m

ensure a derivative continuity of Cs−1. Another point to note, was the fact that the

Legendre polynomials offer a homogeneous resolution over the entire domain, where

as the Legendre polynomials present a higher resolution near the boundaries of the

domain, and a poor resolution in the center of the domain. This point however can

be addressed with an appropriate h-refinement where a better resolution is desired.

Numerical implementation of hybrid-mixed formulation for Reissner-Mindlin plate

is presented in Pereira [24]. They independently approximated the stress resultants

and the mid-surface displacements in the domain, and the displacements on the

boundary of the plate using Legendre polynomials. Because of the orthogonality

of the functions in an integral sense the resulting finite element matrices are men-

tioned to be sparse which was effectively parsed with a sparse matrix solver. Based on

the above cited literature different avenues for alleviating problems that beset beam

theories have been proposed and implemented, by introducing new variables in the

formulation, to eliminate shear locking problems.

The use of higher order equi-spaced, Lagrange based polynomials for alleviat-

ing the locking problem has been demonstrated for plates, in two dimensions with

Lagrange based finite element methods. Even if higher order equi-spaced Lagrange in-

terpolation functions are used for predicting the behaviour of the beam elements, the

higher order Lagrange polynomials yield matrices that are severely ill-conditioned

and special techniques have to be resorted to, to solve the discrete problem. It is

the objective of this chapter to advocate the use of appropriate hp-spectral element
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method in studying the Euler-Bernoulli and Timoshenko beam theories, both with

the mixed and displacement based finite element formulations.

C. Governing Equations

The governing equations for the two beam theories have been outlined in this section,

the first the equation for the Euler-Bernoulli beam theory are outlined, followed by

the equations for the Timoshenko beam theory. The EBT theory is based on the

assumption that a straight line transverse to the axis of the beam remains straight,

inextensible, and normal to the mid-plane after deformation. These assumptions

amount to neglecting the Poisson effect and the transverse strains. The displacement

field for beams with moderately large rotations but with small strains can be derived

using the displacement field;

u(x) = u(x)0 − z
∂ω0

∂x

u2 = 0

u3 = w0(x) (2.1)

where, u1,u2,u3 , denote the total displacements along the coordinate directions

(x,y,z) and u0 and w0 denote the axial and transverse displacements of a point on the

neutral axis.

The non-linearity for beam bending figures into the equation in the form of non-

linear strain displacement relationships. The sum on the repeated indices is implied.

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
+

1

2

(
∂um
∂xi

∂um
∂xj

)
(2.2)

Omitting the large strain terms but retaining only the square of ∂u3

∂x
(which represents

the rotation of the transverse normal line in the beam), one obtains the Von-Karman
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non-linear strain relations.

The Euler-Lagrange equations for the EBT can be derived based on the principle

of virtual work or the equilibrium of the forces and moments on a beam section. The

virtual work statement for the EBT problem is equivalent to the weak form for the

governing differential equations. For details on the virtual work principle the reader

is referred to Reddy [11]- [25]. Based on the virtual work principle and separating the

virtual displacements we obtain the Euler-Lagrange equations for the EBT as follows:

∂Nxx

∂x
+ fx = 0 (2.3)

∂Vxx
∂x

+ qx = 0 (2.4)

∂Mxx

∂x
− V +Nxx

∂ω0

∂x
= 0 (2.5)

where, Nxx is the axial force measured per unit length, and Mxx is the moment

measured per unit length. The variables in the equations are defined as follows:

Nxx =
∫
A
σxxdA (2.6)

Mxx =
∫
A
σxxzdA (2.7)

And, it should be noted that V is the shear force acting perpendicular to the x-axis

and is not the shear force Q(x) acting on a section perpendicular to the deformed

beam. In fact, one can show V = Q−Nxx
∂ω
∂x

.

Assuming a linearly elastic material the relationship between the shear stress

and the strains can be qualified as:

Nxx = Axx

[
∂u0

∂x
+

1

2

(
∂ω0

∂x

)2]
−Bxx

∂2ω0

∂x2
(2.8)
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Mxx = Bxx

[
∂u0

∂x
+

1

2

(
∂ω0

∂x

)2]
−Dxx

∂2ω0

∂x2
(2.9)

In the above, equations;

(Axx, Bxx, Dxx) =
∫
A
Ee(1, z, z2)dA (2.10)

For a constant crossectional area beam the Bxx is typically zero and since we are

dealing with regular shaped beams, this value will be considered null.

The Timoshenko beam theory relaxes the normality restriction on the beam as

imposed by the Euler-Bernoulli beam theory and allows for arbitrary but constant

rotations of the transverse normals [11]. The displacement field of the Timoshenko

beam theory can be expressed in the form:

u(x, y, z) = u(x) + zφx(x), w(x, y, z) = w0(x) (2.11)

where u0 is the axial displacement, w0 the transverse deflection, and φx is the rotation

of a transverse normal about the y axis. The governing equations of the Timoshenko

beam theories are outlined below;

∂Nxx

∂x
+ fx = 0 (2.12)

∂Mxx

∂x
−Qx = 0 (2.13)

∂Qx

∂x
+

∂

∂x
(Nxx

∂w0

∂x
)+q = 0 (2.14)

In the above equations Nxx is the force per unit length and Mxx is the moment

per unit length. The variables have been defined earlier, for the EBT, and only new



20

term that needs to be defined is the Qx which is being mentioned below;

Qx = Ks

∫
A
σxxdA (2.15)

Here, Ks is the shear correction coefficient that is introduced to account for the

parabolic distribution of the transverse shear stress which is not accounted for in the

TBT which assumes a constant state of shear. The value of Ks was taken as 5/6 as

is the norm. Assuming a linearly elastic material the relationship between the shear

stress and the strains have been written out earlier and the new variable that needs

to be defined is outlined below as follows;

Qx = Sxx
(∂w0

∂x
+ φx

)
(2.16)

Sxx is defined as the following;

Sxx =
∫
A
GKsdA = KxGA (2.17)

When the x-axis is taken along the centroidal axis, Bxx is zero.

The non-linearity in both theories comes from the Von-Karman non-linear strains

as a form of geometric non-linearity in the equations as shown above. The above

equations describe the bending response of TBT. Shear modulus for the isotropic

beam is given by the following formula:

G =
E

2(1 + ν)
(2.18)

where, ν is Poisson ratio for the isotropic beam under consideration.

1. Mixed Model I (EBT)

The governing equations of the Euler-Bernoulli beam theory equations that have

been presented above can be manipulated appropriately to obtain different mixed
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formulations models that consequently lead to different finite element formulations.

The first mixed model we consider is the one in which the shear force is eliminated

as a primary variable by substitution of the definition of shear force V into the first

order differential equation describing the equilibrium of the shear forces with the

externally applied loads. The governing differential equations presented above are

modified thus;

∂Nxx

∂x
+ fx = 0 (2.19)

∂

∂x

[
∂Mxx

∂x
+Nxx

∂ω0

∂x

]
+qx = 0 (2.20)

Nxx = EA
[
∂u0

∂x
+

1

2

(
∂ω0

∂x

)2]
(2.21)

Mxx = −EI ∂
2ω0

∂x2
(2.22)

The primary (PV) and the secondary variables (SV) for the EBT include the speci-

fication of either the displacements or the forces on the model as follows: PV:

u0, w0,
∂ω0

∂x
(2.23)

SV:

Nxx, Vx, Mxx (2.24)

The above classification of the primary and secondary variables is instructive in de-

termining the appropriate boundary conditions that should be applicable. Although,

the deflection and the derivative of the deflection have been mentioned as the primary

variables it should be noted that since we are not dealing with a displacement based

formulation the formulation admits C0 continuity as minimially confirming. The

non-linearity in the first-order shear deformation theory comes from the Von-Karman

non-linear strains as a form of geometric non-linearity in the equations as mentioned

above.
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Based on the equations that were presented above the shear force is absorbed into

the formulation and there are four variables per node, for this mixed model, namely

axial displacement ux, the deflection wx, the shear force Nxx, and the moment Mxx.

2. Mixed Model II (EBT)

The governing equations of the Euler-Bernoulli beam theory equations that have

been presented above can be manipulated appropriately to obtain different mixed

formulations that consequently lead to different finite element formulations. For the

second mixed model that was considered for analysis, the equations are left in their

primitive forms with no substitutions and the resulting formulation has six degrees of

freedom per node. The governing differential equations presented above are modified

thus (repeated for clarity);

∂Nxx

∂x
+ fx = 0 (2.25)

∂Vx
∂x

+ q(x) = 0 (2.26)

Vx −
∂Mxx

∂x
−Nxx

(
∂ω0

∂x

)
= 0 (2.27)

Nxx = EA
[
∂u0

∂x
+

1

2

(
∂ω0

∂x

)2]
(2.28)

Mxx = −EI ∂
2ω0

∂x2
(2.29)

The primary and secondary variables have already been defined earlier. The finite

element formulation starts from these governing equations and the standard weak

form Galerkin finite element formulation is obtained with the multiplication of the

above with a weight function so that the equations are left with six degrees of freedom

per node in the stiffness matrix for this system of equations.
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3. Displacement Based Formulation (TBT)

Displacement based formula seeks to find the solution of the following equations, with

all equations expressed in terms of the displacements, which after some substitutions

on the above equations yields, the following set of coupled non-linear equations that

define the displacement based TBT theory:

− ∂

∂x

{
Axx

[∂u0

∂x
+

1

2

(∂w0

∂x

)2]}
= f (2.30)

− ∂

∂x

[
Sxx

(∂w0

∂x
+ φx

)]
− ∂

∂x

{
Axx

∂w0

∂x

[∂u0

∂x
+

1

2

(∂w0

∂x

)2]}
= q (2.31)

− ∂

∂x

(
Dxx

∂φx
∂x

)
+ Sxx

(∂w0

∂x
+ φx

)
= 0 (2.32)

The primary (PV) and the secondary variables (SV) include the specification of either

the displacements or the forces on the model as follows:

PV:

u0, w0, φx (2.33)

SV:

Nxx, Qx, Mxx (2.34)

The non-linearity in the TBT comes from the Von-Kármán non-linear strains as a

form of geometric non-linearity in the equations as shown above. The above equations

describe the bending response of TBT, where, ν is Poisson ratio for the isotropic beam

under consideration.

4. Mixed Formulation (TBT)

The mixed formulation for the Timoshenko beam theory starts with the same equa-

tions as the displacement based formulations but the equations are kept in primitive

variables as they appear in the equations with no substitutions to bring every equa-
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tion in terms of the displacements. The main equations for the variables that enter

the finite element formulation are being (repeated here) for clarity.

∂Nxx

∂x
+ fx = 0 (2.35)

∂Mxx

∂x
−Qx = 0 (2.36)

∂Qx

∂x
+

∂

∂x
(Nxx

∂w0

∂x
)+q = 0 (2.37)

Nxx = EA [
∂u0

∂x
+

1

2
(
∂w0

∂x
)2] (2.38)

Mxx = EI
∂φx
∂x

(2.39)

Qx = KsGA
(
∂w0

∂x
+ φx

)
(2.40)

The derivation of the weak form for the above set of equations follows the standard

step of integration by parts after multiplying these equations with a weight function.

The above procedure provides the stiffness matrices for the non linear problem with

the appropriate substitutions of the weight functions.

D. Spectral/hp Finite Element Formulation

The Ritz-Galerkin finite element model development follows reduction of the residuals

for the governing differential equations in the weighted residual sense. The mixed

model involves the solution of six degrees of freedom per node, namely, the axial

displacement (u), the deflection of the beam w, the slope φx, along with Nxx, Qx,

and Mxx. At the end of the weak form development the finite element model for

each variable is determined and is obtained from the weak finite element formulation.

The weak formulation development of the governing equations presented earlier for

the Timoshenko beam and Euler-Bernoulli beam theories are standard along with

derivation of the tangent stiffness matrix coefficients.
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The spectral finite element approximation is stated as follows, the primary vari-

ables are each approximated as;

∆e =
n∑
j=1

∆jψj (2.41)

where,ψj are the nodal expansions, which are provided by the following one-dimensional

C0 spectral nodal basis [1];

ψi(ξ) = hei (ξ) =
(ξ − 1)(ξ + 1)L′n(ξ)

n(n+ 1)Ln(ξi)(ξ − ξi)
(2.42)

where, ∆j are the nodal values due to the Kronecker delta property of the spectral

basis. Ln = Pn
(0,0) is the Legendre polynomial of order p, and ξi denotes the location

of the roots of (ξ−1)(ξ+1)L′n(ξ) = 0 in the interval [−1,+1]. All Jacobi polynomials,

Pα,β
n , satisfy a three-term recurrence relation of the form:

xP α,β
n (x) = aα,βn−1,nP

α,β
n−1(x) + aα,βn,nP

α,β
n (x) + aα,βn+1,nP

α,β
n+1(x) (2.43)

where, aα,β only depends on α, β, and n. And the derivatives of Jacobi polynomials

satisfy a three-term recurrence relation of the form [26];

(1− x2)
dPα,β

n

dx
= cα,βn−1,nP

α,β
n−1(x) + +cα,βn+1,nP

α,β
n+1(x) (2.44)

For the special case of α = β=1;

xPn(x) = a1(n)Pn−1(x) + a2Pn+1(x) (2.45)

where,

a1(n) =
n+ 1

2n+ 3
(2.46)

and,

a2(n) =
(n+ 1)(n+ 3)

(n+ 2)(2n+ 3)
(2.47)



26

For α=β=1, cα,βn,n=0 and the above equation can be written as;

(1− x2)
dPα,β

n

dx
= cα,βn−1,nP

α,β
n−1(x) + cα,βn+1,nP

α,β
n+1(x) (2.48)

Seeking the recurrance relation for the derivative, we rewrite the above equation by

dropping α and β, for the special case of α = β=1;

(1− x2)
dPn
dx

= c1(n)Pn−1(x) + c2Pn+1(x) (2.49)

where,

c1(n) =
(n+ 1)(n+ 3)

2n+ 3
(2.50)

and,

c2(n) =
(2n)(n+ 1)(n+ 3)

(2n+ 3)(2n+ 4)
(2.51)

For an illustration of the proofs of these above mentioned equalities see Osilenker [26].

E. Linearisation

Linearisation can be accomplished with either of two techniques, namely the Picard

(direct iteration procedure) and the Newton-Raphson’s method. For checking the

convergence behaviour of both the methods of linearisation with hp-spectral methods

both of these were implemented. There was however, no difference found between

the results of either of the two methods for most cases and thus only results based

on the Newton-Raphson’s method will be presented. For all structural problems

Newton’s method yields a symmetric positive definite matrix system. The mixed

model was solved with Gaussian elimination with scaled partial pivoting. Some of

the celebrated advantages of the Newton-Raphson’s method are a faster convergence

rate, since we are using incremental loadsteps for the runs, Newton’s method does

not noticeably outperform the Picard method of linearisation in most cases. The
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Picard method faced some convergence issues for the pinned-pinned case for the

mixed formulations and failed to converge. The linearised problem with the Newton’s

method is represented as follows:

[K̂e({∆e}r)]tan{δ∆}e = −{Re}r (2.52)

The non-linear convergence was declared when L2 norm of the incremental vector

normalized with the norm of the solution vector was less than 10−03 for the spectral

element method model. In the next section we present the results that we obtained for

the linear and non-linear problems that were studied with different types of boundary

conditions and also verify the spectral convergence of the solutions in the energy norm

(L2 norm).

F. Boundary Conditions

The specification of the boundary condition for the beam problem can be done based

on a number of different ways in which the beam is supported. The different bound-

ary conditions that were examined were the clamped-clamped, pinned-pinned, and

the hinged-hinged case. The clamped-clamped case means that at the ends, the

specification of the following variables are zero;

u = ω0 =
∂ω0

∂x
= 0 (2.53)

The pinned-pinned case requires the specification of the following variables to be zero;

u = ω0 = 0 (2.54)

Also, the specification of the third variable comes from the specification of the end

moment, which is zero for the case that the ends are not subject to any external
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moments. Finally, the hinged-hinged case involves the specification of the following

variables,

ω0 = 0 (2.55)

Also, the different a/h ratios were explored for both the models, subject to different

boundary conditions and the results are discussed in the following section.

G. Numerical Results

The TBT beam was solved with the displacement based formulation and the mixed

formulations whereas the EBT beam was solved with both mixed finite element for-

mulations. The results that were obtained for both the formulations are presented

here. The main differences in the displacement based and the mixed formulation that

was found was in the convergence characteristics of the problem. While the displace-

ment based formulation was found to be a better alternative for the solution of the

system with iterative solvers, the mixed formulation was found to cause convergence

issues with the conjugate gradient solver. The mixed formulation also has zeros along

the diagonal, and thus the convergence of the mixed formulation with any variant of

Gauss-Seidel iterative solver is pre-empted. However, Gauss- Elimination was found

to work well with the mixed formulation with scaled partial pivoting. Amongst the

advantages of the mixed formulation are better representation of the secondary vari-

ables which are more accurate as they are directly solved for in the formulation, rather

than derived quantities with the displacement based formulations. Both linear and

non-linear analyses were performed.
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1. Linear Series Solutions

Analytical solutions for the Timoshenko beam theory as also the first order shear

deformation theory of plates exist in terms of the Navier solutions in two dimen-

sions. For a complete description of the Navier equations the reader is referred to

Reddy [18]. The linear solution that corresponds to the solution of the Euler-Bernoulli

Beam Theory and Timoshenko beam theory are presented below. The solution to the

problem can be expressed in terms of an infinite series which can be extended to any

desired level of accuracy with the help of inclusion of an appropriate number of terms

in the infinite expansion. The boundary conditions of simply supported beams are

expressed as [11]: w=0 and, M=0, at x = [0, L].

The following expressions of the generalized displacements ω, and φx satisfy the

boundary conditions for the EBT;

w(x, t) =
∞∑
n=1

Wnsin(
nπx

L
)eiωnt (2.56)

and,

φ(x, t) =
∞∑
n=1

φncos(
nπx

L
)eiωnt (2.57)

The term φx has the meaning of derivative of the deflection at that location for

the Euler-Bernoulli beam theory whereas the Timoshenko beam theory admits an

independent slope which gets added to the transverse shear term to generate the

total slope of the beam. For static bending, we set all the time derivatives to zero

and take the distributed load to be of the form;

q(x) =
∞∑
n=1

Qnsin(
nπx

L
)

Qn =
2

L

∫ L

0
q(x)sin(

nπx

L
) (2.58)
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The coefficients Qn associated with uniform load is obtained as follows q(x) = q0;

Qn =
4q0
nπ

(2.59)

Substituting the expansions for ω, φ, and q into the governing differential equations for

the Euler-Bernoulli beam theory we obtain the following expressions for the deflection

and slope for the Euler-Bernoulli beam undergoing linear bending deformations;

w(x)T =
∞∑
n=1

λn
QnL

4

n4π4EI
sin(

nπx

L
) (2.60)

and,

φ(x)T = −
∞∑
n=1

λn
QnL

3

n3π3EI
cos(

nπx

L
) (2.61)

where, the non-local parameter λn has the effect of increasing the deflection. The

definition of λ follows;

λn = (1 + µ
n2π2

L2
) (2.62)

Note, that in the derivation of above equations the linear form of the Euler-Bernoulli

beam model has been solved. Incorporation of non-linear effects complicates the so-

lution and such closed form solutions to the problem do not exist. The linear solution

that corresponds to the solution of the Timoshenko Beam Theory are provided next.

Consider a Timoshenko beam subject to the same boundary conditions as mentioned

earlier for the EBT beam for linear analysis. For the case that the beam is subject to

a uniform load, the expressions for the quantities of interest are also provided below,

and the final expressions for the deflections and the slopes for the Timoshenko beam

elements are provided here;

w(x, t) =
∞∑
n=1

Wn sin(
nπx

L
)eiωnt (2.63)
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and,

φ(x, t) =
∞∑
n=1

φn cos(
nπx

L
)eiωnt (2.64)

where, the constants introduced are defined as follows;

λn = (1 + n2π2Ω), Ω =
EI

GAKsL2
(2.65)

The linear series solutions provided above serve as a very good estimate to the actual

results obtained from the solutions of the different beam theories mentioned both to

serve as validation benchmarks for the problems solved and also to provide checks

on the exponential convergence of the errors in the L2 norms. The following fig-

ure 1 presents the agreement between the linear series solutions obtained and the

spectral/hp results. The spectral convergence of the series solutions to the analytical

Fig. 1. TBT series solutions comparisons with hp spectral results
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results has been presented in Fig 2. The hp spectral results were checked with a

concurrent linear analysis and the agreement between the results can be found to be

very good as the error decays exponentially with the increase in the plevel.

Fig. 2. Convergence of the series solutions and hp spectral results

H. Nonlinear Solutions

The non-linear problem was formulated two different ways as mentioned above for

the different beam models that were solved. The first formulation is the displacement

based formulation, and the second formulation is the mixed formulation. Both of

these will be described in the following sections for both beam theories studied.
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1. Euler-Bernoulli Beam Theory

The non-linear problem was formulated two different ways as mentioned above. Re-

sults from finite element mixed model I and FE mixed II are both discussed in the

following sections.

a. Hinged-hinged B.C. (EBT)

Consider a EBT beam which is subject to hinged-hinged boundary conditions at both

ends. The beam length L = 100in., 1in×1in crossection, made of steel (E = 30msi),

and subjected to a uniform loading of intensity q0 lb/in. The Poisson ratio for the

beam was taken as 0.25. For mixed model I the whole domain of the beam was

modelled. The geometric boundary conditions for the beam hinged-hinged boundary

condition has been specified earlier. The non-dimensionalization of the deflection was

carried out based on equation [2.66]: The non-dimensional deflections at the center

of the beam are also being reported for this beam in Table I. As can be seen from

Table I the agreement with the hp-spectral results and the results of Reddy [11] is

excellent. A total of 10 elements were used for this analysis, with uniformly spaced

levels and uniform plevel]. The discrete problem resulted in a total of 124 degrees of

freedom of the system. A constant pvalue] of 3 was used in each element. The uniform

load parameter of 1.0 was used for stepping through the loads till a maximum value

of 10 (as reported in Table I) was reached. For the mixed model II ten elements

were used in the analysis with a pvalue of 7. A relatively high plevel was used for

this analysis. For the mixed formulation II each node has a total of six degrees of

freedom. The discrete problem consisted of a total of 426 degrees of freedom. The

non-linear convergence criterion was set at a value of 10−03. The linearisation was

carried out with Newton-Raphson’s method of non-linear iteration. Hinged-hinged
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Table I. Hinged-Hinged EBT results

q(xx) Mixed Model I (MX1) Mixed Model II (MXII) Reddy [11]

w0 in. w (dmlss) w0 in. w (dmlss) w0 in.

1 0.5208 1.302 0.5208 1.302 0.5208

2 1.0416 2.6041 1.0416 2.6041 1.0417

3 1.5625 3.9062 1.5625 3.9062 1.5625

4 2.0833 5.2083 2.0833 5.2083 2.0833

5 2.6041 6.5104 2.6041 6.5104 2.6042

6 3.125 7.8125 3.125 7.8125 3.125

7 3.6458 9.1145 3.6458 9.1145 3.645

8 4.1666 10.4166 4.1666 10.4166 4.1667

9 4.6875 11.7187 4.6875 11.7187 4.6875

10 5.2083 13.0208 5.2083 13.0208 5.2083

case is the most sensitive case for checking locking issues and it was realized that with

appropriate plevel refinement there was no need to use reduced integration to obtain

excellent results.

b. Pinned-Pinned B.C. (EBT)

Consider a beam with the material properties defined earlier subject to pinned-pinned

boundary condition. For the pinned-pinned (PP) boundary condition the Newton’s

method of linearisation was used to obtain the results. The non-dimensional deflec-

tions at the center of the beam are also being reported for this beam in Table II. As

can be seen from Table II the agreement with the hp-spectral results and the results

of Reddy [11] is excellent. Reddy [11] results were obtained with 4 quadratic elements
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Table II. Pinned-Pinned EBT results

q(xx) Mixed Model I (MX1) Mixed Model II (MXII) Reddy [11]

w0 in. w (dmlss) w0 in. w (dmlss) w0 in.

1 0.3697 0.9244 0.3685 0.9212 0.3685

2 0.5478 1.3696 0.5454 1.3636 0.5454

3 0.6675 1.6687 0.6643 1.6607 0.664

4 0.7593 1.8983 0.7556 1.8891 0.7555

5 0.8353 2.0884 0.8313 2.0783 0.8312

6 0.9008 2.2521 0.8964 2.2412 0.8964

7 0.9586 2.3966 0.954 2.3851 0.954

8 1.0107 2.5267 1.0059 2.5147 1.0058

9 1.0582 2.6455 1.0532 2.633 1.0531

10 1.102 2.755 1.0968 2.7421 1.0967

with reduced integration techniques for this case. A total of 10 elements were used for

this analysis, with gradation at the edges of the beam as explained earlier. The dis-

crete problem resulted in a total of 124 degrees of freedom of the system. A constant

pvalue of 3 was used in each element. The uniform load parameter of 1.0 was used

for stepping through the loads till a maximum value of 10 (as reported in Table II)

was reached. For the mixed finite element formulations for the Euler-Bernoulli beam

models a higher value of p was used in some cases (as illustrated later) to generate

more confidence in the results and also to resolve the stresses and moments to a high

level of accuracy. For mixed model II twenty elements were used in the analysis with

a plevel of 9. For the mixed formulation each node has a total of six degrees of freedom.

The discrete problem consisted of a total of 1086 degrees of freedom. The non-linear
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convergence criterion was set at a value of 10−03. The non- dimensional deflections

for the different a/h ratios for the pinned-pinned cases were also explored and are

presented in Table III. The following figure 3 highlights the bending characteristics

Table III. Pinned-Pinned EBT results different a/h ratios

Results Pinned Pinned different a/h ratios

qxx w10 w20 w25 w100

1 1.3020 1.3020 1.3020 0.9213

2 2.6041 2.6041 2.6040 1.3637

3 3.9062 3.9061 3.9058 1.6609

4 5.2083 5.2081 5.2072 1.8893

5 6.5104 6.5100 6.5083 2.0785

6 7.8124 7.8119 7.8089 2.2414

7 9.1145 9.1136 9.1090 2.3854

8 10.4166 10.4152 10.4083 2.5150

9 11.7187 11.7167 11.7068 2.6332

10 13.0208 13.0180 13.0045 2.7423

for several load-steps when subjected to uniformly distributed loads for increasing

length of the beam.

c. Clamped-clamped B.C. (EBT)

Consider a beam which is subjected to clamped-clamped boundary conditions at both

ends. The beam length L=100 in., 1in× 1in crossection, made of steel (E = 30msi),

and subject to a uniform loading of intensity q0 lb/in. The Poisson ratio for the

beam was taken as 0.25. Table IV reports the deflections of the center of the beam
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Fig. 3. EBT results for pinned-pinned B.C. for different a/h ratios

subjected to the clamped-clamped boundary condition and also the non-dimensional

deflections at the center of the beam. A total of 10 elements were used for this analysis

for mixed model I, with uniform elements with a uniform plevel in each element. The

discrete problem resulted in a total of 204 degrees of freedom of the system. A

constant pvalue of 5 was used in each element. The uniform load parameter of 1.0

was used for stepping through the loads till a maximum value of 10 (as reported in

Table IV) was reached. A high value of plevel was used in certain cases to generate

more confidence in the results. The discrete problem was solved with Gaussian-

Elimination with scaled partial pivoting. The run presented above is for the case

where a/h = 100. Different a/h ratios were analysed and Table V reports the non-

dimensionalised center deflection as a function of the changing length of the beam. For
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Table IV. Clamped-Clamped EBT results

q(xx) Mixed Model I (MX1) Mixed Model II (MXII) Reddy [11]

w0 in. w (dmlss) w0 in. w (dmlss) w0 in.

1 0.1033 0.2584 0.1033 0.2584 0.1035

2 0.2024 0.5061 0.2023 0.5057 0.2025

3 0.2944 0.7361 0.294 0.735 0.2943

4 0.3784 0.946 0.3775 0.9438 0.3777

5 0.4545 1.1364 0.4531 1.1329 0.4534

6 0.5237 1.3092 0.5218 1.3045 0.522

7 0.5867 1.4669 0.5843 1.4608 0.5845

8 0.6445 1.6114 0.6416 1.604 0.6418

9 0.6979 1.7449 0.6945 1.7362 0.6946

10 0.7474 1.8687 0.7435 1.8588 0.7436

the analysis of the beam deflection with changing lengths of the beam, 10 elements

were used, and the full beam was modelled. The plevel used was set at a uniform

value of 9 to generate these results. A high value of plevel was also used to bring out

the differences in numerics between the tip deflections of the beams at different a/h

ratios. The model consisted of a total of 546 degrees of freedom which was stepped

with Newtons method. Based on the above observations the non-dimensional load

vs. deflection curves for clamped-clamped Euler-Bernoulli beams is constant with

varying lengths from a range of a/h = 10 through a value of a/h = 75 and varies

significantly only for the case of a slender beam of slenderness ratio a/h = 100.

Figure 4 shows the non-dimensional deflection vs. loads for studying the bending

deformation analysis of EBT. Figure 5 provides the load vs. the deflection curves for
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Table V. Clamped-Clamped EBT results different a/h ratios

Results Clamped Clamped different a/h ratios

qxx w10 w20 w25 w100

1 0.2604 0.2604 0.2604 0.2584

2 0.5208 0.5208 0.5208 0.5057

3 0.7812 0.7812 0.7812 0.7350

4 1.0416 1.0416 1.0416 0.9438

5 1.3020 1.3020 1.3020 1.1329

6 1.5624 1.5624 1.5624 1.3045

7 1.8229 1.8229 1.8229 1.4608

8 2.0833 2.0833 2.0833 1.6040

9 2.3437 2.3437 2.3437 1.7362

10 2.6041 2.6041 2.6041 1.8588

the EBT theory, for increasing loadsteps. As can be seen from the load vs. deflection

curves there is considerable non-linear response in the bending of the EBT beam with

the increasing loadsteps.

2. Timoshenko Beam Theory

The non-linear results obtained with the solutions of the Timoshenko beam theory

with the displacement (DX) and the mixed formulation (MX) have been outlined

below along with published results in literature on the above. The classifications of

the results have been done based on the different types of the boundary conditions that

were applied for solving the beam problem. The deformed shapes of the Timoshenko

beam theories with the clamped-clamped and the pinned-pinned boundary conditions
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Fig. 4. EBT results for clamped-clamped B.C. for different a/h ratios

is being provided in Fig 6.

a. Hinged-Hinged B.C. (TBT)

Consider a beam which is subjected to hinged-hinged boundary conditions at both

ends. The beam length L = 100in., 1×1 in2 cross section, made of steel E = 30 msi,

subject to a uniform loading of intensity q0 lb/in. The Poisson ratio for the beam

was taken as 0.25. The non-dimensionalization of the deflection was based on the

following formula;

w =
1000 ∗ wmax ∗Dxx

L4
(2.66)

Also, the results obtained in the above cited reference were obtained using reduced
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Fig. 5. Load vs. deflection for EBT beam with CC and PP B.C.

integration techniques and in this case usage of full integration has been advocated

with appropriate hp-refinements. No acceleration parameter was used for obtaining

the above results. The non-dimensional deflections at the center of the beam are also

being reported for this beam in Table VI. As can be seen from Table VI the agreement

with the hp-spectral results and the results of Reddy [11] is excellent. It is expected

that the present results are more accurate because of the spectral convergence of the

solutions. A total of 10 elements were used for this analysis, with gradation at the

edges of the beam to capture the development of strain and stress concentrations at

the end of the beam (boundary layers). The gradation of half beam is being presented

below;

∆(x) = 0.25, 0.25, 0.25, 0.25, 4.0, 9.0, 9.0, 9.0, 9.0, 9.0 (2.67)
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Fig. 6. TBT deformed shapes for clamped-clamped and pinned-pinned B.C.

The discrete problem resulted in a total of 153 degrees of freedom of the system

for the displacement based formulation. A constant pvalue of 5 was used in each

element. The uniform load parameter of 0.50 was used for stepping through the loads

till a maximum value of 10 (as reported in Table VI) was reached. Bi-orthogonal

conjugate gradient was used as a solver for this system of equations with Jacobi

preconditioning and was found to work well for the discrete problem obtained from

the displacement based formulation. For the mixed formulation since, the shear forces

and the moments at the center of the beam are not known the full beam was modelled.

Ten elements were used in the analysis with a pvalue of 14. Such high plevels were used

to generate confidence in the results. For the mixed formulation each node has a total

of six degrees of freedom. The discrete problem consisted of a total of 846 degrees
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Table VI. Hinged-Hinged TBT results

q(xx) Displacement Model (DX) Mixed Model (MX) Reddy [11]

w0 in. w (dmlss) w0 in. w (dmlss) w0 in.

1 0.5209 1.3024 0.5209 1.3023 0.5208

2 1.0386 2.5966 1.0419 2.6047 1.0417

3 1.5629 3.9072 1.5628 3.9071 1.5625

4 2.0838 5.2096 2.0838 5.2095 2.0833

5 2.6048 6.5119 2.6047 6.5119 2.6042

6 3.1258 7.8144 3.1257 7.8143 3.125

7 3.6467 9.1167 3.6467 9.1167 3.6458

8 4.1677 10.419 4.1676 10.4191 4.1667

9 4.6887 11.722 4.6886 11.7215 4.6875

10 5.2096 13.024 5.2095 13.0239 5.2083

of freedom. The non- linear convergence criterion was set at a value of 10−03. The

linearization was carried out with Newton-Raphsons method of linearisation.

b. Pinned-Pinned B.C. (TBT)

Consider a TBT beam with material properties defined earlier subject to the pinned-

pinned boundary condition. For the pinned-pinned (PP) boundary condition the

Picard method of linearisation reported some convergence problems beyond certain

load steps, and thus the Newton-Raphson method was used for obtaining the results.

The inclusion of acceleration parameter into the program caused the convergence to

be reached which was difficult otherwise for the Picard method. The non-dimensional

deflections at the center of the beam are also being reported for this beam in Table VII.
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Table VII. Pinned-Pinned TBT results

q(xx) Displacement Model (DX) Mixed Model (MX) Reddy [11]

w0 in. w (dmlss) w0 in. w (dmlss) w0 in.

1 0.3685 0.9212 0.3693 0.9234 0.3685

2 0.5454 1.3636 0.5467 1.3669 0.5454

3 0.6645 1.6614 0.6655 1.6638 0.664

4 0.7556 1.8891 0.7536 1.8841 0.7555

5 0.8312 2.0781 0.8316 2.079 0.8312

6 0.8963 2.2409 0.8993 2.2483 0.8964

7 0.9539 2.3848 0.9588 2.397 0.954

8 1.0058 2.5144 1.0205 2.5514 1.0058

9 1.0531 2.6327 1.0525 2.6312 1.0531

10 1.0967 2.7417 1.1139 2.7849 1.0967

As can be seen from Table VII the agreement with the hp-spectral results and the

results of Reddy [11] is excellent. Reddy results were obtained with 4 quadratic

elements with reduced integration techniques for this case. A total of 10 elements

were used for this analysis, with gradation at the edges of the beam as explained

earlier. The discrete problem resulted in a total of 183 degrees of freedom of the

system for the displacement based formulation. A constant pvalue of 6 was used in

each element. The uniform load parameter of 0.50 was used for stepping through the

loads till a maximum value of 10 (as reported in Table VII) was reached. For the

mixed finite element formulations for the Timoshenko beam models a higher value of

p was used in some cases to generate more confidence in the results and also to resolve

the stresses and moments to a high level of accuracy. The non-dimensional deflections
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for the different a/h ratios for the pinned-pinned cases were also explored and have

been presented in Table VIII. The following figure 7 presents the non-dimensional

Table VIII. Pinned-Pinned TBT results different a/h ratios

Results Clamped Clamped different a/h ratios

qxx w10 w20 w25 w100

1 1.3333 1.3099 1.3071 0.9212

2 2.6667 2.6198 2.614 1.3636

3 4 3.9296 3.9208 1.6614

4 5.3333 5.2394 5.2273 1.8891

5 6.6667 6.5491 6.5333 2.0781

6 8 7.8588 7.8389 2.2409

7 9.3333 9.1683 9.1439 2.3848

8 10.667 10.478 10.448 2.5144

9 12 11.787 11.752 2.6327

10 13.333 13.096 13.054 2.7417

deflections vs. the loadings for a pinned-pinned TBT beam. As can be seen from the

figure there is not appreciable differences in the non-dimensional deflections for a few

different a/h ratios and only when the a/h ratio increases to more than 100 does the

deviations become appreciable.

c. Clamped-Clamped B.C. (TBT)

Consider a beam which is subjected to clamped-clamped boundary conditions at both

ends. The beam length L = 100in., 1 × 1 in2 cross section, made of steel (E = 30

msi), and subjected to a uniform loading of intensity q0 lb/in. The Poisson ratio
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Fig. 7. Different a/h vs. deflections for TBT beam subject to PP B.C.

considered was taken as 0.25. Using the symmetry of the beam around the center

of the beam, one half of the beam needed to have been modelled. Table IX reports

the deflections of the center of the beam subject to the clamped-clamped boundary

condition and also the non-dimensional deflections at the center of the beam for both

the mixed and displacement based formulations. Reddy [11] results were obtained

with 4 quadratic elements with reduced integration techniques for this case. A total

of 10 elements were used for this analysis, with gradation at the edges of the beam as

explained earlier. The discrete problem resulted in a total of 153 degrees of freedom

of the system. A constant pvalue of 5 was used in each element. The uniform load

parameter of 0.50 was used for stepping through the loads till a maximum value of 10

was reached. The run presented above is for the case where a/h = 100. Different a/h

ratios analysis were carried out and Table X reports the non-dimensionalized center
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Table IX. Clamped-Clamped TBT results

q(xx) Displacement Model (DX) Mixed Model (MX) Reddy [11]

w0 in. w (dmlss) w0 in. w (dmlss) w0 in.

1 0.1034 0.2587 0.1034 0.2587 0.1035

2 0.2025 0.5063 0.2025 0.5063 0.2025

3 0.2942 0.7356 0.2943 0.7358 0.2943

4 0.3777 0.9444 0.3779 0.9449 0.3777

5 0.4533 1.1335 0.4537 1.1343 0.4534

6 0.5219 1.3049 0.5224 1.3061 0.5220

7 0.5843 1.4610 0.5850 1.4626 0.5845

8 0.6416 1.6041 0.6424 1.6061 0.6418

9 0.6944 1.7361 0.6954 1.7385 0.6946

10 0.7434 1.8586 0.7445 1.8613 0.7436

deflection as a function of the changing length of the beam. For the analysis of the

beam deflection with changing lengths of the beam, 10 elements were used, and the

full beam was modelled. The plevel used was set at a uniform value of 9 to generate

the results. This resulted in a total of 546 degrees of freedom, the non-linear problem

was stepped with Newton’s method. As can be seen from the results presented here,

an increase in the length of the beam did not cause any deterioration of the results

and all the results were obtained with full integration techniques.

The following figure 8 demonstrates the non- dimensional deflections vs. the dif-

ferent a/h ratios for the TBT beam subject to clamped-clamped boundary condition.

To demonstrate the convergence behaviour of the TBT beam with the bi-orthogonal

conjugate gradient solver Fig 9 has been included. The higher residuals are for the
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Table X. Clamped-Clamped TBT results different a/h ratios

Results Clamped Clamped different a/h ratios

qxx w10 w20 w25 w100

1 0.2916 0.2682 0.2654 0.2587

2 0.5833 0.5364 0.5308 0.5064

3 0.8749 0.8046 0.7962 0.7361

4 1.1666 1.0729 1.0616 0.9454

5 1.4583 1.3411 1.3270 1.1351

6 1.7499 1.6093 1.5924 1.3073

7 2.0416 1.8776 1.8579 1.4642

8 2.3333 2.1458 2.1233 1.6080

9 2.6249 2.4140 2.3887 1.7407

10 2.9166 2.6822 2.6541 1.8638

lower value of plevel of 4 whereas the the higher values of 7 exhibits a lower value of

residuals and faster convergence as expected.
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Fig. 8. a/h vs. deflections for TBT beam subject to CC B.C.

Fig. 9. Convergence history of the CG solver for TBT solutions
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CHAPTER III

HP -SPECTRAL METHODS APPLIED TO PLATE THEORY

A. Introduction

In this chapter we further explore the usage of higher order hp-spectral element meth-

ods applied to solving both linear and non-linear analysis associated with the solu-

tions of the Reissner-Mindlin plates in two dimensions. We start out with a literature

review in this field of the usage of such methods in different related areas, and de-

scribe the governing equations along with the linearisation procedures for problems

in bending of plates followed by results and comparisons with published results in

literature.

There are different formulations that are in place for predicting the bending

behaviour of Reissner-Mindlin plates with different types of resulting finite element

approximations. Mostly the literature abounds with traditional equi-spaced Lagrange

based low order finite element approximations of the first-order shear deformation the-

ory of plates which are either displacement based or mixed based methods. However,

the traditional methods of using either bilinear (Q4) or bi-quadratic (Q9) elements

has suffered from locking problems which has been alleviated with the help of primar-

ily reduced/selective integration techniques to obtain acceptable solutions amongst

some other techniques [11]. These kinds of ’fixes’ have come into existence because

the element stiffness matrix becomes excessively stiff with low-order interpolation

functions. Here we propose an alternative spectrally accurate hp/spectral method to

model the first order shear deformation theory of plates (FSDT) to solve shear locking

problems. Both linear and non-linear isotropic and orthotropic plates are studied in

this document subject to clamped, and simply supported boundary conditions. Re-
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sults obtained herewith are compared to both analytical solutions (where available)

and non-linear solutions from literature and excellent agreement is found for all cases.

Full integration scheme is employed for all cases.

B. Background

Studying the bending deformation of plates is of interest in many applications in en-

gineering. Some of the applications of this are in geotechnical engineering, structural

design of foundations, design of spread footings, soil-structure interaction studies etc.

There are primarily three models in place for studying this subject and can be clas-

sified into the classical plate theory, Reissner-Mindlin plate theory, and Reddy third

order shear deformation theory. The plate bending problem has been studied in liter-

ature and different methods have been used for solving problems. The Ritz-Galerkin

method for laminated composite plates [27], weak formulations for first order shear

shear deformation theory (FSDT) [11], and least-squares finite element method for

studying FSDT and classical plate theories [13].

While the displacement based models for the first-order shear deformation theory

(FSDT) admit the use of C0 expansions the use of classical plate theory and the Reddy

theory require the use of C1 continuous expansions. The classical plate theory has a

relatively simpler formulation, however the theory does not account for the transverse

shear strains, and therefore the results are inadequate for the prediction of the global

response of thick plates. When using the first order shear deformation (FSDT) to

model plates, shear correction factors are introduced to correct for the discrepancy

between the actual parabolic transverse shear stress distribution and those compared

using the kinematic assumptions of the FSDT. Higher order plate theories provide

a slight increase in the accuracy relative to the FSDT solution, at the expense of a
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significant increase in the computational effort. Based on the above arguments the

FSDT provides the best compromise between economy, simplicity, and accuracy in

prediction of the global response of thin to moderately thick plates [14].

While some studies have been carried out in literature on the use of equi-spaced

Lagrange based higher order expansions for studying the bending response of plates,

the traditional equi-spaced Lagrange based expansions suffer from ill-conditioning

and for high plevels equi-spaced Lagrange based expansion is not recommended [1]. It

has been mentioned in literature that higher than a plevel of 4 is not recommended. At

high plevel the discrete problem suffers from a very high conditioning of the stiffness

matrix. Very strong pre-conditioners, can be recommended in some cases to parse

the discrete problem at such high plevels but the convergence is problem dependent

and also dependent on the regularity of the mesh.

Another issue with displacement-based FSDT finite element models is that it

presents computational difficulties when the side-to-thickness ratio of the plate (a/h)

is large (i.e. when modelling thin plates). A strong stiffening of the element matrices

occurs, resulting in spurious shear stress predictions and erroneous results for the

generalized displacements [10]. This phenomenon is known as shear-locking. Shear

locking develops in formulations which cannot represent a state of zero-shear in the

thin beam limit independent of the mesh. This is exhibited as a violation of the

Kirchoff assumption in the thin beam theory, stated as w, x− θ = 0. When the beam

is thin most of the energy of deformation is due to bending. If a formulation does not

admit non-trivial zero shear solutions, then most of the energy of deformation goes

into shear deformation, resulting in very little bending–hence locking. This can be

seen from the variational form; since the coefficient of the bending term is of the order

t3 and the coefficient of the shear term is of the order of O(t), the latter becomes

much larger as t approaches zero [10].
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This problem is commonly treated by reduced integration techniques, although

other remedies may be found [11]. Shear locking is evident in the Ritz- Galerkin dis-

placement based finite element models with equal-order interpolation of all generalized

displacements. The phenomenon is more pre-dominant when the side-to-thickness ra-

tio of the plate is high. Higher-order elements have been explored in literature to be

alleviating the shear locking phenomenon but they have been mostly equi-spaced La-

grange based so far. The use of hp-spectral nodal expansion was explored by Pontaza

while analysing plates for both the classical plate theory and the FSDT with the least

squares finite element formulation however, only a linear analysis was performed [13].

The aforementioned reasons compel the use of hp-element refinements as a viable

and a robust alternative to studying the bending behaviour of plates which provide

both spectrally accurate results and at the same time alleviate perennial problems

of locking associated with lower order finite element methods. This study proposes

to advance the use of appropriate hp-refinements for studying the plate bending be-

haviour and cures the problem of locking for all cases that are studied. The motivation

for this study comes from the many advantages that are associated with hp-higher or-

der elements; spectral convergence (accuracy) of the solutions, the removal of locking

issues, and the orthogonality property of nodal expansions which provide excellent

results with standard solvers like the preconditioned bi-orthogonal conjugate gradient

(BPCG) alleviating the problem of ill-conditioning of the discrete problem ascribed to

the usage of higher-order equi-spaced Lagrange based interpolants. The convergence

history of the bi-orthogonal conjugate gradient solver with preconditioning is also re-

ported to get further insight into the problem formulation and convergence behaviour

with hp-spectral methods. Different a/h ratios are explored and with appropriate

hp-refinements full integration is found to provide consistently good agreement with

published results. Both straight and skewed hp-spectral meshes are explored in this
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study and it is found that there is no drastic deterioration in the results when using

skewed meshes. Skewed meshes (after respecting the development of boundary lay-

ers), provide very good results as well as the straight non-uniform meshes and one

such comparison is demonstrated.

C. Governing Equations

The first order shear deformation theory extends the classical plate theory by re-

laxing the normality restriction on the plate and allows for arbitrary but constant

rotations on the transverse normals [25]. The displacement field of the first order

shear deformation theory can be expressed in the form:

u(x, y, z) = u(x, y, z) + zφx(x, y)

v(x, y, z) = v(x, y, z) + zφy(x, y)

w(x, y, z) = w0(x, y, z) (3.1)

The displacements u0, v0, and w0 denote the mid-plate displacements and φx and, φy

are the rotations of the transverse normals about the y and x-axis respectively.

The Euler-Lagrange equations for the first-order shear deformation theory can

be derived based on the principle of virtual work. The virtual work statement for

the FSDT problem is equivalent to the weak form (integral form) for the governing

differential equations. For details on the virtual work principle the reader is referred

to the following references [11]. Based on the virtual work principle and separating

the virtual displacements we obtain the Euler-Lagrange equations for the FSDT as

follows:

∂Nxx

∂x
+
∂Nxy

∂y
= 0 (3.2)

∂Nxy

∂x
+
∂Nyy

∂y
= 0 (3.3)
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∂Qx

∂x
+
∂Qy

∂y
− kw0 +N + q = 0 (3.4)

∂Mxx

∂x
+
∂Mxy

∂y
−Qx = 0 (3.5)

∂Mxy

∂x
+
∂Myy

∂y
−Qy = 0 (3.6)

In the above equations Nxx, Nxy, and Nyy are the forces per unit length and Mxx,

Mxy, and Myy are the moments per unit length, k is the foundation modulus (which

has meaning in soil-structure interaction studies, spread footing designs etc.),and N

is defined as follows:

N =
∂

∂x

(
Nxx

∂ωo
∂x

+Nxy
∂ωo
∂y

)
+

∂

∂y

(
Nxy

∂ωo
∂x

+Nyy
∂ωo
∂y

)
(3.7)

The primary (PV) and the secondary variables (SV) include the specification of

either the displacements or the forces on the model as follows: PV:

u0n, u0s, w0, φn, φs (3.8)

SV:

Nnn, Nns, Qn,Mnn,Mns (3.9)

The plate constitutive equations relate the forces and the moments to the displace-

ment fields for the plate. For the plate under consideration the constitutive equations

can be expressed as:

εxx

εyy

γyz

γ0
xz

γxy



=



ε0xx

ε0yy

γ0
yz

γxz

γ0
xy



+ z



ε1xx

ε1yy

0

0

γ1
xy



=



∂u0

∂x
+ 1

2

(
∂ω
∂x

)2

∂v0
∂y

+ 1
2

(
∂ω
∂y

)2

∂ω0

∂y
+ φy

∂ω0

∂x
+ φx

∂u0

∂y
+ ∂v0

∂x
+ ∂ω0

∂x
∂ω0

∂y



+ z



∂φx

∂x

∂φy

∂y

0

0

∂φx

∂y
+ ∂φy

∂x



(3.10)
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The non-linearity in the first-order shear deformation theory comes from the Von-

Karman non-linear strains as a form of geometric non-linearity in the equations as

shown above. The above equations describe the bending response of both orthotropic

and isotropic plates. Shear modulus for the isotropic plate is given by the following

formula:

G =
E

2(1 + ν)
(3.11)

where, ν is Possion ratio for the isotropic plate under consideration. For the or-

thotropic plate formulae for a definition of the different coefficients that are part of

the weak formulation, and stiffness matrices, the reader is referred to Reddy [11].

Post computation of the stresses is also done with full integration techniques. The

calculation follows up based on the above formula for both isotropic and orthotropic

plates: 
Nxx

Nyy

Nxy


=


A11 A12 0

A12 A22 0

0 0 A66




e0xx

e0yy

γ0
xy


(3.12)

In the above equation we have neglected the thermal effects on the stresses which can

also be accounted for if required.

D. Finite Element Formulation

The FSDT model involves the solution of five degrees of freedom per node, namely,

the components of the displacement vector (u, v), the deflection of the plate w, and

the slopes φx and φy. At the end of the weak form development the finite element

model for each variable is determined based on the following equations at the element
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level: 

K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K54 K55





∆1

∆2

∆3

∆4

∆5



=



R1

R2

R3

R4

R5



(3.13)

Each of the coefficients have been defined elsewhere [11] and will not be repeated in

the interest of brevity. Thus the discretized problem is represented as an assemblage

of 5×5 sub matrices at the element level. This stiffness matrix presented above is the

discrete equivalent to the non-linear differential equation and the components of the

stiffness matrix depends upon the type of iterative linearisation used in the solution

of the problem.

The linearisation process can be accomplished with either of two techniques,

namely the Picard (direct iteration procedure) and the Newton-Raphson’s method.

For checking the convergence behavior of both the methods of linearisation with hp-

spectral methods both of these were implemented. There was however, no difference

found between the results of either of the methods and thus only results based on

the Newton-Raphson’s method will be presented. For all structural problems the

Newton’s method yields a symmetric positive definite matrix system which can be

solved by conjugate gradient (Krylov subspace methods) solvers, although the solver

implemented for the solution of the above discrete problem is BPCG which can handle

non-symmetric matrix systems with relative ease. Some of the celebrated advantages

of the Newton-Raphsons method are a faster convergence rate, but here again since

we are using incremental loadsteps for the runs, Newton’s method does not notice-

ably outperform the Picard method of linearisation. Picard method, on the other
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hand is comparatively straightforward to implement and is more intuitive in a sense

with a larger radius of convergence. However we are reporting the results based on

the Newton Raphson’s method as is the norm for solving structural problems. The

linearised problem with the Newton’s method is represented as follows:

[K̂e({∆e}r)]tan{δ∆}e = −{Re}r (3.14)

The linear convergence criterion was set at a reduction in the L2 norm of the

residuals to a tolerance value of 10−06, where as the non-linear convergence was de-

clared when L2 norm of the incremental vector normalized with the norm of the

solution vector was less than 10−04. No acceleration parameter was necessary to

achieve convergence for all problems studied. In the next section we present the re-

sults that we obtained for the linear and non-linear problems that were studied with

different types of boundary conditions.

E. Boundary Conditions

The specification of the boundary conditions is very important for the FSDT model,

and certain boundary conditions like the simply supported are more susceptible to

shear-locking issues. For the Reissner-Mindlin plates there exists a boundary layer

which is usually the thickness of the plate at the edges of the plate where there are

acute gradients in the stresses and the moments [27]-[28]. Such boundary layers need

to be resolved with appropriate hp-refinements such that the elements are smaller at

the edges of the plate and the same was done in the hp-finite element discretization

of the domains.

Different problems were studied and analysed and various combinations of bound-

ary conditions were used. The boundary conditions for the FSDT plates require the
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specification of the primary or the secondary variables. For most cases, that were

explored the strong form of the boundary conditions were applied, with the tractions

where ever not specified was satisfied in an integral sense to be zero. This is an

advantage of Ritz-Galerkin models where the traction boundary condition resolves

to a ’do nothing’ boundary condition in an integral sense. While alternative Least

squares finite element models usually need special treatment of the boundary condi-

tions which can also be problem specific and quite involved for inclined boundaries.

Different boundary conditions were explored and they are being outlined below. Sim-

ply Supported boundary (SS1) (parallel to x-axis):

u0 = w0 = φx = 0 (3.15)

Simply Supported boundary (SS1) (parallel to y-axis):

u0 = w0 = φy = 0 (3.16)

Simply supported boundary condition (SS3):

u0 = v0 = w0 = 0 (3.17)

Clamped-clamped boundary:

u0 = v0 = w0 = φx = φy = 0 (3.18)

Symmetry Line x-axis:

v0 = φy = 0 (3.19)

Symmetry Line y-axis:

u0 = φx = 0 (3.20)

A combination of these boundary conditions has been used for all the problems anal-
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ysed. They are being mentioned here to avoid repetition elsewhere. The non-linearity

as it appears in structural problems stepping of the laod-steps is necessary for con-

vergence of the solution. For the more concise description of the problem often a

non-dimensionless parameter of the problem namely the laod-parameter is introduced

which is defined below.

P̄ =
q0a

4

E2h4
(3.21)

While defining the loads that were applied to the problems studied, specifying the

load parameter greatly simplifies the presentation. Stepping through the loadsteps

with the above definition of the load parameter generates the load vector. In some

cases, the load vector itself has been provided.

F. Numerical Results

In this section we present the results for the FSDT bending of plates for a diverse set

of boundary conditions and for both isotropic and orthotropic plates. Both straight

non-uniform meshes and skewed meshes are explored and both linear and non-linear

results for both types of meshes show excellent agreement with available results in

literature.

1. Linear Solution

First the linear solution to the FSDT was validated with analytical solutions to the

equations. Consider a clamped-clamped isotropic plate with ν= 0.25, and Ks=

5/6, subject to uniformly distributed loading of intensity q0. The following non-

dimensionalization of the variables have been used in reporting the results:

w̄ = w0(0, 0)
E2h

3

a4q0
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σ̄xx = σxx(0, 0, h/2)
h2

b2q0

σ̄yy = σyy(0, 0, h/4)
h2

b2q0

σ̄xy = σxy(a/2, b/2,−h/2)
h2

b2q0

(3.22)

In the above equations a and b are the dimensions of the plate. Due to the symmetry

of the plate and the boundary conditions only a quarter of the plate needed to have

been modelled. The simply supported boundary condition of the SS1 type was used

to obtain solutions to the problem and compare with analytical solutions to the same

published elsewhere. A uniform 2×2 hp-spectral discretization with a p = 8, was used

for determining the bending response for the low a/h ratio of 10 and a non-uniform

8×8 hp-spectral refinement of the domain with a p refinement of 4 was done to obtain

the linear solution to the problem for an a/h of 100. The acceleration parameter was

set to zero for all cases examined. Different a/h ratios were tried, a/h of 10 and 100 to

check the effect of shear locking on the latter case. Figure10 presents the two different

Table XI. Series solutions vs. hp-SEM results

a/h Results wxx σ̄xx σ̄xy

10 Present 0.047914 0.276267 0.208793

10 Analytic 0.047914 0.2762 0.2085

10 Skewed 0.047914 0.2763 0.2093

100 Present 0.0457234 0.276269 0.208822

100 Analytic 0.045698 0.2762 0.2085

types of hp- discretized meshes that were used for solving the linear problem for an
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Fig. 10. hp spectral meshes used for linear problem

a/h = 10. The straight mesh consisted of a 2×2 mesh with an polynomial expansion

of eight (8). The 2 × 2 skewed mesh is also presented in the figure. Considerable

skew was introduced in the mesh however, as can be seen from Table XI there was

no drastic deterioration in the results because of the skewness of the spectral mesh.

The pvalue tested for the skewed mesh was also relatively low at a value of four (4).

The slight difference in the non-dimensional stress σxy can be attributed to the low

value of p and for the following reason.

Some loss of accuracy during the calculation of the stresses during post-computation

can attribute to the slight deviation of the results (fifth decimal place discrepancy)
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from the analytical solution. Also, displacements for the a/h = 100 were found to be

off also in the fifth decimal place which in high likelyhood was because in the eval-

uation of the series solution to the plate problem only the first nineteen terms were

used. The problem posses bi-axial symmetry and therefore, only a quarter domain

of the mesh needs to be modelled. However, it is also interesting to note that with

one of the guass-points being at the end of the plate helps us to determine the center

deflection at the exact center of the plate and no approximation with increasing order

polynomials reaching the center of the plate asymptotically needs to be done for the

hp-spectral mesh. This is invariably the case if Lagrange based higher-order elements

are used and some form of interpolation has to be done to calculate the variables

at the exact center of the plate. This note will also be found to affect the stress

calculations slightly in the non-linear analysis.

hp-spectral element method naturally allows for such calculation of the primary

and secondary variables at the edges of the plates and the center of the plate as

demonstrated for the present example. It took three iterations to converge to the

solution above. The problem was discretized with 1089 nodes and with five degrees

of freedom per node resulted in a global system with 5445 degrees of freedom that were

solved for the linear problem for the a/h = 100 case, whereas for the skewed mesh the

number of equations solved to get reasonably accurate results, was 405. The above

example demonstrates the relative ease with which the linear analysis of plates can

be accomplished with fairly low degrees of freedom that need to be solved without

the use of any reduced integration techniques and also demonstrates the possible

extensions to non-rectangular and non-square shaped plates that can be studied even

with fairly low computational resources available to the analyst. The hp convergence

of the deflections, slopes, and stresses is being presented in Figure11. Some deviations

from the linear curve at higher plevels can be attributed to the numerical truncation
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Fig. 11. hp convergence of variables for the linear problem

errors at such high resolutions of the errors.

2. Non-Linear Analysis of Isotropic Plates

Plates can be characterized as isotropic or orthotropic based on the inherent symme-

tries in the material property variations inside the plate. When there are no preferred

directions in a material, the number of elastic constants used to characterize the ma-

terial reduce to two namely the modulus of elasticity and the Poisson’s ratio of the

material. Plates made of such materials are characterized as isotropic plates. Here we

consider the isotropic plates for non-linear analysis with the hp- spectral method sub-
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ject to SS1, SS3, and Clamped-Clamped boundary conditions. In the FSDT model

for the Reissner-Mindlin there exists a ”‘boundary layer”’ extending into the plate

a distance roughly equal to the thickness of the plate where there are large gradi-

ents in the stresses and the reactions [28],[29],[30]. Because of the presence of the

boundary layer one has to discretize the hp-mesh to capture this effect and a graded

mesh (graded towards the end of the plate) was utilized for the straight meshes. For

the skewed mesh, also capturing the boundary layer is important in order not to lose

the physics of the problem and the skewness of the mesh was enforced at the inside

elements, the boundary layer was left, intact. The two different meshes that were

used for the plate problem are shown in Figure12 below. The first mesh consisted of

6× 6 hp refinements, and a 8× 8 mesh with p = 4.

a. Isotropic Plates with SS1/SS3 Boundary Conditions

Consider a square plate uniformly loaded with a load intensity of q0. The material

parameters for the isotropic plate are:

a = b = 10 in., h = 1 in., E = 7.8× 106psi, ν = 0.30

The load steps that were used for the analysis are mentioned below:

{∆P} = {6.25 6.25 12.5 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0} (3.23)

Table XII presents the development of the stresses, and deflections inside the isotropic

plate subject to SS1 and SS3 boundary conditions with the different loads. The

agreement between the present results and the published results is very good. Some

differences in the stress calculations are evident and this is because of the slightly

different locations of the Gauss-Points where the stress calculation was done. For the

low-order bi-linear elements and the bi-quadratic elements there can be a substantial
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Fig. 12. hp spectral meshes for isotropic plate non-linear analysis

approximation in the location of the first Gauss point for the evaluation of the de-

flections. Also for the low order elements the stresses are evaluated at the reduced

integration points which are even lower order (and further) from the edge of the plate.

As can be expected from the nature of the boundary conditions the SS1 boundary

condition is less restrictive and allows for more deflection at the center of the plate

as compared to the SS3 boundary condition. Figure 13 demonstrates this fact and it

is clear that the clamped-clamped boundary condition is more restrictive in allowing

deflections at the center of the plate as compared to the SS3 boundary condition.
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Table XII. SS1/SS3 boundary conditions- isotropic plate

Results SS3 SS1 Lagrange SS3 Lagrange SS1

P̄ w0 σ̄xx w0 σ̄xx w0 σ̄xx w0 σ̄xx

6.25 0.2790 1.9140 0.2822 1.8387 0.2790 1.861 0.2813 1.779

12.5 0.4654 3.4128 0.5205 3.4980 0.4630 3.305 0.5186 3.396

25 0.6964 5.4793 0.8783 6.1552 0.6911 5.319 0.8673 5.882

50 0.9638 8.1746 1.3369 9.6490 0.9575 8.001 1.3149 9.159

75 1.1339 10.1160 1.6255 11.4085 1.1333 9.983 1.6241 11.458

100 1.2689 11.7917 1.8690 13.3794 1.2688 11.663 1.8687 13.299

125 1.3907 13.3285 2.0763 14.8577 1.3809 13.084 2.0758 14.878

150 1.4828 14.5801 2.2684 16.5013 1.4774 14.396 2.2567 16.278

175 1.5671 15.7737 2.4228 17.7798 1.5628 15.608 2.4194 17.553

200 1.6432 16.9205 2.5725 18.9404 1.6398 16.741 2.5681 18.733

225 1.7128 18.0861 2.7099 20.1026 1.7102 17.811 2.7056 19.837

250 1.7774 19.1010 2.8389 21.1629 1.7752 18.828 2.8338 20.880

For both the analysis presented above a hp-discretization of 6 × 6 graded mesh

was found to be adequate. There were 625 nodes in the mesh with a total of 3125

degrees of freedom in the problem (ref. Figure 12). No relaxation parameter was

utilized for convergence. Non-linear convergence was declared when the L2 norm

was less than 10−03 and the matrix solution convergence was declared when the L2

norm was less than 10−06. The problem typically required 3 iterations for the first

few loadsteps, after which once the linear portion of the load-deflection behaviour

was achieved; required 2 non-linear iterations for convergence. Figure 14 presents

the development of the mid-fiber stress with the increasing loadsteps. The non-linear
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Fig. 13. hp convergence of variables for the linear problem

behaviour of the stresses as a function of the loading is evident. Figure 15 presents

the development of displacement, slope, and stress fields inside the quarter isotropic

plate of dimensions and material properties defined earlier. The whole development

of fields can give an index of the stress concentrations and the contour plots of the

deflections inside the plate.

3. Non-Linear Analysis of Orthotropic Plates

Orthotropic materials have two different principal axis for the material property vari-

ations. The number of independent elastic coefficients for an orthotropic plate are

reduced to nine in three dimensions from a total of 81 constants of the fourth order

tensor Cijkl.



69

Fig. 14. σxx vs. the loading for isotropic plate

a. Orthotropic Plates with SS1/SS3 Boundary Conditions

Consider a square plate uniformly loaded with a load intensity of q0. The material

parameters for the orthotropic plate are:

a = b = 12 in., h = 0.138 in., E1 = 3.0× 106 psi, E2 = 1.28× 106 psi

G12 = G13 = G23 = 0.37× 106 psi, ν12 = 0.32

The incremental load vector that was used for the analysis:

{∆P} = {0.05 0.05 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10} (3.24)

Figure 16 shows the deflections and stresses inside the orthotropic plate subject to the

SS1 and SS3 boundary conditions with increasing load parameters. Figure 17 shows

the development of deflections, angles, and stresses, inside the orthotropic plate when

subject to the SS1 boundary condition. The difference in the development of these
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Fig. 15. Displacement, slopes, and stresses inside an isotropic plate

fields with the isotropic case is evident. An 8×8 hp-spectral mesh was used with 1089

nodes and 5445 degrees of freedom. No relaxation parameter was utilized for conver-

gence. Non-linear convergence was declared when the L2 norm was less than 10−03

and the matrix solution convergence was declared when the L2 norm was less than

10−06. For this analysis the Direct method or the Picard method was used to iterate

for non-linear convergence. The problem typically required between 3 to 6 iterations

for convergence. The corresponding results that were obtained with Lagrange based
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Table XIII. SS1/SS3 boundary conditions- orthotropic plate

Results SS1 SS3 Lagrange SS1 Lagrange SS3

P̄ w0 σ̄xx w0 σ̄xx w0 σ̄xx w0 σ̄xx

0.05 0.0112 1.0724 0.0112 1.0989 0.0112 1.0663 0.01126 1.0938

0.10 0.0224 2.1495 0.0218 2.2023 0.0224 2.1365 0.02182 2.1923

0.20 0.0438 4.2604 0.03973 4.2264 0.0437 4.2174 0.03970 4.2045

0.40 0.0815 8.0472 0.0649 7.3772 0.0819 8.0669 0.06497 7.3441

0.60 0.1122 11.1570 0.0824 9.7487 0.1125 11.139 0.08244 9.7088

0.80 0.1382 13.6495 0.0961 11.7074 0.1379 13.669 0.09589 11.6310

1.00 0.1596 15.8089 0.1070 13.3426 0.1781 17.478 0.106861 13.2487

1.20 0.1785 17.6151 0.1163 14.7870 0.1864 18.305 0.11622 14.6995

1.40 0.1952 19.0488 0.1245 16.0939 0.1960 19.303 0.12442 16.0021

1.60 0.2104 20.7772 0.1318 17.2903 0.2106 20.7526 0.13174 17.2083

1.80 0.2242 21.8133 0.1384 18.4052 0.2245 22.0648 0.1383 18.3138

2.00 0.2371 23.0114 0.1445 19.4510 0.2373 23.2709 0.14446 19.3539

interpolation functions with reduced integration has also been included in Table XIII

to provide a context for comparison with present results.

b. Clamped Clamped Isotropic/Orthotropic Plates

Consider a square plate uniformly loaded with a load intensity of q0. The material

parameters and load steps/load vectors that were used for the analysis of the isotropic

and orthotropic plates have been listed above separately. The orthotropic plate with

the material properties defined above when subjected to an load intensity of q0 is of

interest in this section, and the boundary condition explored for this analysis was a
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Fig. 16. Deflections and stress inside an orthotropic plate

clamped- clamped case. An 8 × 8 hp-spectral mesh was used with 1089 nodes and

5445 degrees of freedom for the above analysis. No relaxation parameter was found

necessary for convergence. Non-linear convergence was declared when the L2 norm

was less than 10−03 and the matrix solution convergence was declared when the L2

norm was less than 10−06. For this analysis the the Newton-Raphson’s method was

used to iterate for non-linear convergence. The problem typically required 3 iterations

for convergence. The corresponding results that were obtained with Lagrange based

low-order expansions with reduced integration techniques has also been included in
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Fig. 17. Displacement, slopes, and stresses inside an orthotropic plate

Table XIV to demonstrate the efficacy of the hp-element methods over the traditional

reduced integration techniques.

c. Clamped-Clamped Orthotropic Plate on Opposite Edges

Let us consider a orthotropic plate subjected to a uniformly distributed load of in-

tensity q0. The plate is clamped at the two opposite ends of the domain. Material

parameter values that characterize the plate are described below:

a = b = 10 in., h = 0.138 in., E1 = 3.0× 106 psi, E2 = 1.28× 106 psi
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Table XIV. CC boundaries isotropic/orthotropic plate results

Isotropic Present Lagrange

P̄ ref. w0 σ̄xx w0 σ̄xx

0.05 Results 0.1020 0.8961 0.1021 0.8877

0.10 Results 0.2006 1.8156 0.2007 1.7987

0.20 Results 0.3787 3.5860 0.3787 3.5536

0.40 Results 0.6564 6.5420 0.6546 6.4794

0.60 Results 0.8564 8.8040 0.8561 8.7397

0.80 Results 1.0138 10.6509 1.0142 10.5819

1.00 Results 1.1441 12.2197 1.1445 12.1558

1.20 Results 1.2557 13.5905 1.2561 13.5478

1.40 Results 1.3599 14.9101 1.3542 14.8086

1.60 Results 1.4456 16.0543 1.4421 15.9683

1.80 Results 1.5247 17.1388 1.5218 17.0565

2.00 Results 1.5973 18.1523 1.5950 18.0803

G12 = G13 = G23 = 0.37× 106 psi, ν12 = 0.32

An 8× 8 hp-spectral mesh was used with 1089 nodes and 5445 degrees of freedom for

Table XV. No relaxation parameter was utilized for convergence. Non-linear conver-

gence was declared when the L2 norm was less than 10−03 and the matrix solution

convergence was declared when the L2 norm was less than 10−06. For this analysis

the Newton-Raphson’s method was used to iterate for non-linear convergence. The

problem typically required 3 iterations for convergence. The corresponding results

that were obtained with Lagrange based low-order expansions with reduced integra-

tion techniques has also been included in Table XV to demonstrate the efficacy of the
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Table XV. CC boundaries orthotropic plate results

Orthotropic Present Lagrange

P̄ w0 σ̄xx w0 σ̄xx

0.10 0.0060 0.9141 0.0060 0.9041

0.40 0.0236 3.7307 0.0237 3.6904

0.80 0.0453 7.4096 0.0454 7.3341

1.00 0.0552 9.1383 0.0552 9.0470

1.20 0.0643 10.7718 0.0643 10.6682

1.60 0.0805 13.7586 0.0806 13.6295

2.00 0.0949 16.4386 0.0947 16.2583

4.00 0.1466 26.3920 0.1455 26.0928

8.00 0.2054 38.6526 0.2054 38.3693

12.00 0.2462 47.7959 0.2448 47.1947

16.00 0.2760 55.1212 0.2752 54.7676

20.00 0.3011 61.8126 0.3005 61.4079

22.00 0.3123 64.9234 0.3117 64.4918

24.00 0.3227 67.8604 0.3223 67.4446

hp-element methods over the traditional reduced integration techniques. Figure 18

shows the development of the deflections and stresses inside the orthotropic plate sub-

ject to the CFFC boundary conditions with increasing load parameters. Figure 19

exhibits the linear convergence history for a thin plate a/h=100 subject to differ-

ent boundary conditions. From the convergence history also one can infer that the

clamped-clamped boundary condition leads to the best conditioning of the global

system which can be solved more easily with the preconditioned conjugate gradient
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Fig. 18. Deflections/stress development subject to CC B.C.

solver.

d. Skewed Mesh Comparison with Straight Mesh

Let us consider an orthotropic plate subject to uniformly distributed load of intensity

q0 for non-linear analysis with skewed hp-spectral mesh discretization. The material

property values used for the problem have been described earlier and a quarter plate

was modelled subject to SS1 boundary conditions. The mesh that was used for the

analysis has been presented in Figure12. Table XVI presents the agreement between

the results from the hp-spectral mesh with the results found by using straight mesh
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Fig. 19. Convergence history for different boundary conditions

both with inclusion of the boundary layer refinements. As can be seen from the

Table XVI there is excellent agreement found between the straight mesh results and

the skewed mesh results. The R2 between the deflections predictions for both cases

was found to be 0.99999, demonstrating the predictive capabilities of hp-spectral

element skewed meshes. The stress predictions had an R2 value of 0.99978, which

was slightly lower than the agreement with the deflections. However, for both cases

the predictions can be considered excellent. The aforementioned Table XVI also

conclusively shows that there is no perceptible deterioration in accuracy of results
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from the hp-spectral skewed meshes as compared to the straight meshes for both the

linear and non-linear problems. Figure 20 presents the skewed mesh used for the

Fig. 20. Skewed mesh used for non-linear analysis

non-linear analysis for the orthotropic plate. The refinements at the boundary layers

is necessary for capturing the correct stress concentrations at the ends of the plate

and in predicting the correct bending response.
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Table XVI. Skewed mesh results vs. straight mesh

Orthotropic Skew Straight

P̄ Ref. w0 σ̄xx w0 σ̄xx

0.05 present 0.0112 1.0715 0.0112 1.0724

0.1 present 0.0224 2.1467 0.0224 2.1495

0.2 present 0.0438 4.2545 0.0438 4.2604

0.3 present 0.0636 6.2393 0.0636 6.2330

0.4 present 0.0815 8.0440 0.0815 8.0472

0.5 present 0.0976 9.6782 0.0976 9.6739

0.6 present 0.1122 11.1739 0.1122 11.1570

0.7 present 0.1255 12.4775 0.1255 12.4430

0.8 present 0.1382 13.7507 0.1382 13.6495

0.9 present 0.1492 14.7966 0.1492 14.8382

1.0 present 0.1596 15.8112 0.1596 15.8089

1.1 present 0.1693 16.7230 0.1693 16.7185

1.2 present 0.1785 17.6126 0.1785 17.6151

1.3 present 0.1871 18.4448 0.1871 18.3689

1.4 present 0.1952 19.1858 0.1952 19.0488

1.5 present 0.2030 19.9645 0.2030 19.9596

1.6 present 0.2104 20.7010 0.2104 20.7772

1.7 present 0.2175 21.3376 0.2175 21.2264

1.8 present 0.2243 22.0986 0.2242 21.8133

1.9 present 0.2308 22.7217 0.2308 22.7114

2 present 0.2371 23.4157 0.2371 23.0114
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CHAPTER IV

SPECTRAL/HP METHODS FOR LARGE DEFORMATION ANALYSIS

A. Introduction

In this chapter we explore the usage of higher order hp-spectral element methods ap-

plied to solving Continuum mechanics based large deformation analysis of structures

in particular with the Updated Lagrangian description of motion. We start with a

literature review in this field regarding large deformation analysis of structures, and

then describe the governing equations and the formulation followed by results.

The motion of a body can be described with the help of a material or a spatial

formulation. The spatial formulation studies the conservation equations that are ap-

plied to a fixed region in space whereas the material formulation studies the changes

in these equations as the body undergoes deformation. The material/Lagrangian

description of motion is the norm for application to structures problems. The La-

grangian description is natural for a solid body since one is more interested in the

deformation of the body as opposed to the changes that are taking place in the control

volume that was initially occupied by the body. Applications of hp-spectral methods

in the current context has been explored, as these provide exponentially accurate

spatial resolutions of the motion of the body undergoing deformation. Two cases, of

the deformation of a cantilever beam, and a fixed beam at both ends are explored

and results are checked with the benchmark solutions and good agreement with the

published results are reported. The use of hp-spectral methods applied to solving

these continuum mechanics formulations is advocated to generate more confidence in

the results, as during the equilibrium iterations for reducing the residuals of the un-

balanced virtual work, these higher order methods provide better spatial resolutions
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of the results as compared to lower order finite element formulations and provide for

a better minimization statement.

There are two different methods by which the description of motion of a body can

be formulated. The first is the Total Lagrangian formulation where the final configu-

ration of the body is described with reference to the initial undeformed configuration

of the body. The second is the Updated Lagrangian formulation where the latest

known configuration of the body is the reference configuration. The applications of

the Total and Updated Lagrangian formulations have been performed by different

researchers [31],[32], [33]. It has been mentioned that the Total and Updated La-

grangian formulations are both equivalent in the description of the motion of bodies,

and for most cases the Updated Lagrangian formulation is recommended because of

the relative simplicity of the formulation [34].

During the process of non-linear equilibrium iterations for the Updated La-

grangian formulations the displacements of the body undergoing deformation is up-

dated with the corresponding increments. It is therefore, an issue with hp-spectral

methods, that the deformed configuration of the body be incremented with accurate

predictions of these displacement increments. It is in this context, that hp-spectral

methods provide spectrally accurate spatial resolutions of these increments as com-

pared to Lagrange based finite element methods which can at best provide error

estimates in the order of Ohp+1 in spatial resolutions; when bi-quadratic elements are

used p=2. In comparison hp-spectral methods can provide exponential decay of the

errors in the increments for the problem of interest [1]. It is anticipated that the con-

vergence characteristics, and the spatial resolutions provided by the spectral methods

for the linear problem are also spectrally convergent to the non-linear solutions of the

more general problems solved, thus guaranteeing better results as compared to the

usage of Lagrange based finite element methods.
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Continuum mechanics formulations based on both the Updated and Total La-

grangian formulations have been used by different researchers for example for mod-

elling plane elastic problems [31], for the analysis of stiffened composite laminates [35],

for studying the large deformation analysis for beam structures amongst others [36]-

[37]. Bathe et al. [34] noted that for the small strain cases of a beam bending the

stiffness matrices for the Total and Updated Lagrangian formulations for the three

dimensional beam element studied are equal. A comparison of the Eulerian and the

Updated Lagrangian finite element formulations for simulating the film casting pro-

cess has been studied by [32]. They also checked the closed form solutions to the

velocity, thickness, and stress for 1D film casting of a viscous fluid. The errors that

they found between the analytical results and the series solutions were found to decay

in the appropriate norms with algebraic rates of convergence. They also concluded

that the Updated Lagrangian formulation is more robust as compared to the Eulerian

formulation that they had employed because it more naturally picks up the steady

state solution whereas the Eulerian formulation has a smaller convergence radius,

meaning that the initial solution has to be fairly close to the actual solution to obtain

correct results and avoid divergence. The use of Updated Lagrangian formulations

for studying contact problems was explored in [37]. Geometric and material non-

linearities were incorporated with the Updated Lagrangian formulations. They used

regularization technique for handling the friction terms in their formulation.

This study proposes to advance the use of appropriate hp-refinements for study-

ing the Updated Lagrangian formulation for studying the bending response of beams.

The motivation for this study comes from the many advantages that are associated

with hp-higher order elements; spectral convergence (accuracy) of the solutions, and

the orthogonality property of nodal expansions which provide excellent results with

standard solvers like the preconditioned bi-orthogonal conjugate gradient (BPCG)
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alleviating the problem of ill-conditioning of the discrete problem ascribed to the us-

age of higher-order equispaced Lagrange based interpolants. The convergence history

of the bi-orthogonal conjugate gradient solver with preconditioning is also reported

to get further insight into the problem formulation and convergence behaviour with

hp-spectral methods.

B. Governing Equations

Consider the motion of a body in a fixed Cartesian coordinate system. Suppose that

the body can experience large displacements, large strains, and non-linear mechanical

behaviour. We wish to determine the configuration of the body for different times

and loads. The configuration to be described assumes that the configuration of the

body C1, due to P1 at time t, is known and seeks the configuration C2 at time t+∆t.

This type of description where we follow the material from the configuration C1 to C2

is known as the material description or the Lagrangian description of motion, which

differs from the Eulerian description of motion that is common for fluid mechanics

applications. In the Lagrangian description of motion the configuration of the body

has to be known with respect to one of the earlier configurations which we have the

flexibility of deciding, which we want to choose as the reference configuration [38]. A

description in which the last known configuration is taken as the reference configura-

tion is called the Updated Lagrangian description (UL) of motion. The configuration

in which all variables are referred to the initial configuration is called the Total La-

grangian (TL) description of motion [11]. It has been mentioned that the Updated

and Total Lagrangian descriptions of motion are equivalent and the decision of which

of these formulations to use is really a matter of personal choice or ease of program-

ming in most cases. The results obtained from either formulations are identical in
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the limit of the incremental decompositions reaching zero, between two successive

configurations. In the present work, thus only UL formulation has been addressed,

based on the above arguments, as no significant advantage is expected from using a

TL formulation. The basic principle that is used in the formulation for either of the

formulations is the principle of virtual work (that is virtual displacements, virtual

forces, or mixed virtual displacements and virtual forces). The principle of virtual

work requires that the sum of the internal work done by the virtual work stored in

the body, and the external applied body forces and tractions is equal to zero.

∫ 2

V2

σijδ2(eij)dV − δ(2F ) = 0 (4.1)

where,

δ(2F ) =
∫ 2

V2

fiδuidV +
∫ 2

S2

tiδuidS (4.2)

and, 2σij are the Cartesian components of the Cauchy stress tensor, in configuration

C2 at time, t + ∆t, occupying the volume V2, eij are the Cartesian components of

the infinitesimal strain tensor associated with the displacements, ui in going from

configuration C1 at time t to C2 at time t+ ∆t.

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(4.3)

xi are the Cartesian components of a point in C2.
2fi are the Cartesian components

of the body force vector, measured in C2.
2ti are the Cartesian components of the

surface stress vector, measured in C2. In the above notation, δ denotes the variational

symbol, (that is δui denotes virtual displacement) and dV and dS denote the volume

and surface elements in the configuration over which the integrals are defined. The

main problem with the statement of the virtual work as presented in equation [11] is

that the final deformed volume V2 and the surface area, S2 of the body is yet unknown.
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In a linear analysis of the body it is assumed that the initial configuration of the body

is unchanged and thus equation 4.1 is applied to the undeformed configuration of the

body. The fact that the configuration of the body is changing continuously requires us

to be careful of the stress and strain measures and Bathe’s notation [34] is employed

for clarity. In order to completely specify the configuration C2 that is obtain, the

measures of stress, strain, and displacements in C2 it is necessary to make some

assumptions. A description of the procedure based on the UL formulation is given

below. The coordinates of the body in the configuration C0, C1, and C2 is denoted

by (X0
1 , X0

2 , X0
3 ), (X1, X2, X3), and (x1, x2, x3) respectively. The displacements of

a point in C1 are given by (1u1,
1u2,

1u3). In C2 they are given by the following;

2ui = 1ui + ui (4.4)

for, i= 1,2, and 3. where, ui are the components of the displacement vector from

configuration C1 to C2. When the body that is deforming it is undergoing change in

its configuration and the stresses, configurations, densities, volumes and surface area,

all change with this deformation. Thus different measures of the stresses are needed

to appropriately describe this motion of the body. The Cauchy stress σ is defined to

be the current force per unit deformed area of the body. The second Piola-Kirchhoff

stress tensor is introduced as a symmetric tensor which measures the transformed

current force per unit undeformed area. The Cauchy stress tensor is defined by the

following relationship:

(n̂t) dS = dF (4.5)

where, the force dF acts on the surface area dS in configuration C2. Here t is the

Cauchy stress tensor. Note that the Cauchy stress tensor is the force per unit deformed

area that is measured in C2 and referred to C2. The second Piola Kirchhoff stress
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tensor, at time t+ ∆t measured in C1, is defined by the following;

(n̂0
2
1S) dS0 = dF (4.6)

where, n0 is the normal to the surface element dS0 in C1. The force dF0 is related to

the force dF by, the following;

dF0 = J−1dF (4.7)

where,

J−1 =

(
∂X

∂x

)T
(4.8)

The second Piola-Kirchhoff tensor is thus measured in the configuration C2 but re-

ferred to C1. It can be shown that [11] the components of the stress tensor, 2
1Sij and

2
2Cij, are related according to;

2
1Sij =

1ρ ∂1xi ∂
1xj

2ρ ∂2xp ∂2xq
2σpq (4.9)

In the above derivations, the densities at the appropriate locations in the C1 and

C2 configurations have been included. Note, that the second Piola-Kirchhoff stress

tensor is symmetric whenever the Cauchy stress tensor is symmetric by construction.

Similarly, the Green-Lagrange strain tensor Eij is related to the Almansi stress tensor

with the following relationships:

2
1Eij =

∂1xi ∂
1xj

∂2xp ∂2xq
2σpq (4.10)

In continuum mechanics various measures of stress and strains enter the formulations

for describing the different deformed shapes of a body undergoing large deformations.

However, some anchoring of these ideas also has to be done and in this context, the

work conjugacy of different measures of stresses and strains is of interest. The second

Piola-Kirchhoff stress tensor is energetically conjugate to the Green-Lagrange strain
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tensor, and the Cauchy stress tensor is energetically conjugate to the Almansi stain

tensor. In other words, the work done with the inner products of the respective pairs

amount to the same amount of virtual work done. In integral form this relationship

can be expressed as;

∫ 2

V1

2
1Sij δ

(
2
1Eij

)
dV =

∫ 2

V2

2
1σij δ

(
2
2eij

)
dV (4.11)

substituting the above relationship into the virtual work principle equation 4.1 one

obtains; ∫ 2

V1

2
1Sij δ

(
2
1Eij

)
dV − δ(2F ) = 0 (4.12)

The main advantage with the present formulation is that the same amount of virtual

work is done with the evaluations of the above integrals in equation 4.1 as compared

to the equation 4.12 in terms of the known volume of the configuration C1. The

next, step is the incremental decompositions of the stress and the strain measures.

The stresses are decomposed based on the assumption that the second Piola-Kirchoff

stress components in measured in C1 but occurring in C2, can be decomposed into

Cauchy component in the known configuration and an unknown stress component.

The equations for the incremental stress and strain components are described below;

2
1Sij = 1σij + 1Sij

1
1Sij = 1

1σij (4.13)

and,

2
1εij = 1eij + 1ηij (4.14)
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where, 1Sij is the incremental components of the second Piola-Kirchhoff stress tensor,

eij is the (linear) components of the Green-Lagrange strain tensor, given as;

1eij =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

)
(4.15)

and,

1ηij =
1

2

(
∂um∂um
∂Xi∂Xj

)
(4.16)

Recall that ui is the ith displacement component of a generic point in C1 (in going

from C1 to C2). Also, the Cauchy stress tensors and the strain tensors are related by

the stiffness tensor as the following;

1σij = Cijkl
1
1εkl

1Sij = Cijkl
2
1εkl (4.17)

Substituting the above equations into the virtual work statement, we obtain the

virtual work statement expressed in the following form;

∫
V1

1Sij δ
(

2
1eij

)
d1V −

∫
V1

1σij δ (1ηij) d
1V = δ

(
2
1R
)
−
∫
V1

1σij δ (1eij) d
1V (4.18)

The linearization of the above equation is achieved with the help of the following

approximations [11]:

1Sij = 1Cijkl
2
1εkl ≈ 1Cijkl 1ekl

δ1ekl ≈ δeij (4.19)

Along with the above linearizations (approximations) we obtain the final form of the

principle of virtual work as follows;

∫
V1

1Cijkl ekl δ (1eij) d
1V −

∫
V1

1σij δ (1ηij) d
1V = δ

(
2
1R
)
−
∫
V1

1σij δ (1eij) d
1V (4.20)



89

The right hand side in equation 4.20 represents the out of balance virtual work,

prior to the calculation of the increments in the displacements whereas the left hand

side represents the out of balance virtual work after the solution, as a result of the

linearizations performed [34]. We set out to perform the equilibrium iterations to

solve for the out of balance virtual work in the incremental procedure of iterating

for the solution of the non-linear problem. In some sense, this is similar to the New-

ton Raphsons method for iterating for the increments which is extensively used in

standard finite element procedures. In the present formulation we have confined our-

selves to studying the displacement based incremental formulations with the Updated

Lagrangian description of motion. As demonstrated elsewhere, mixed formulations

based on the above principles is also an option and has been studied in the context

of UL formulations [38].

C. Finite Element Formulation

The complete derivation of the principle of virtual work with the incremental formu-

lation was mentioned in the last section. Here we highlight some of the main issues

while deriving the stiffness matrices for UL formulations. The main issue with the

derivations is the expressions of the strain tensor in the Cartesian coordinate systems

where they are defined as follows;

{
1e

}
=



∂ū
∂x

∂v̄
∂y

∂ū
∂y

+ ∂v̄
∂x


(4.21)
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Therefore, taking the variation the strain tensor; we obtain the following;

{
1δe

}
=



∂δū
∂x

∂δv̄
∂y

∂δū
∂y

+ ∂δv̄
∂x


(4.22)

And non-linear components of the strain tensor are defined as follows;

{
1η

}
=

1

2



∂ū
∂x

∂ū
∂x

+ ∂v̄
∂x

∂v̄
∂x

∂ū
∂y

∂ū
∂y

+ ∂v̄
∂y

∂v̄
∂y

∂ū
∂x

∂ū
∂y

+ ∂v̄
∂x

∂v̄
∂y


(4.23)

Taking the variation of the above quantity we obtain the following;

{
1δη

}
=



∂δū
∂x

∂ū
∂x

+ ∂δv̄
∂x

∂v̄
∂x

∂δū
∂y

∂ū
∂y

+ ∂δv̄
∂y

∂v̄
∂y

∂δū
∂x

∂ū
∂y

+ ∂δv̄
∂x

∂v̄
∂y

+ ∂ū
∂x

∂δū
∂y

+ ∂v̄
∂x

∂δv̄
∂y


(4.24)

For an orthotropic material in plane stress elastic constitutive equations provides the

relationship between the stresses and the strains and involves four constants namely,

C11, C12, C22, and C66. The above relations when substituted into the virtual work

statement provides the stiffness matrices at the element level for the incremental

displacements in two dimensions.

([KL] + [KNL]) ∆̄ = 2
1F (4.25)

where;

[KL] =
∫
0V [B0

L]
T

[1C] [B0
L] d1V

[KNL] =
∫
0V [BNL]T [1σ] [B0

NL] d1V

[11F ] =
∫
0V [B0

L]
T

[1σ] d1V

[21F ] =
∫
1V [ψ]T [21f ] d1V +

∫
1S [ψ]T [21t] d

1S
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where, the matrices [1σ] and are [1ε] are defined as follows;

[1σ] =



1σxx

1σyy

1σxy


=


1C11 1C12 0

1C12 1C22 0

0 0 1C66





1
1e

0
xx

1
1e

0
yy

1
1γ

0
xy


(4.26)

[1ε] =



1
1εxx

1
1εyy

21
1εxy


=


∂u
∂x
− 1

2

[(
∂u
∂x

)2
+
(
∂v
∂x

)2
]

∂v
∂y
− 1

2

[(
∂u
∂y

)2
+
(
∂v
∂y

)2
]

∂u
∂y

+ ∂v
∂x
−
(
∂u
∂x

∂u
∂y

+ ∂u
∂x

∂u
∂y

)

 (4.27)

Finally, the stiffness matrices at the element level are expressed as follows [11]; K11L +K11N K12L

K21L K22L +K22N



ū

v̄

 =


2
1F

1
i − 1

1F
1
i

2
1F

2
i − 1

1F
2
i

 (4.28)

where, the explicit forms of the stiffness matrices are obtained as follows;

K11L
ij = he

∫
Ωe

(
1C11

∂ψi

∂x

∂ψj

∂x
+ 1C66

∂ψi

∂y

∂ψj

∂y

)
dxdy

K12L
ij = K21L

ij = he
∫
Ωe

(
1C12

∂ψi

∂x

∂ψj

∂y
+ 1C66

∂ψi

∂y

∂ψj

∂x

)
dxdy

K22L
ij = he

∫
Ωe

(
1C22

∂ψi

∂x

∂ψj

∂x
+ 1C66

∂ψi

∂y

∂ψj

∂y

)
dxdy

K11N
ij = K22N

ij = he
∫
Ωe

(
1σxx

∂ψi

∂x

∂ψj

∂x
+ 1σyy

∂ψi

∂y

∂ψj

∂y
+ σxy

[
∂ψi

∂y

∂ψj

∂x
+ ∂ψi

∂x

∂ψj

∂y

])
dxdy

(4.29)

The forcing function terms are defined as follows;

2
1F

1
i = he

∫
Ωe

(2
1fxψi) dxdy + he

∫
Γe

(2
1txψi) ds

2
1F

2
i = he

∫
Ωe

(2
1fyψi) dxdy + he

∫
Γe

(2
1tyψi) ds

1
1F

1
i = he

∫
Ωe

(
∂ψi

∂x
1σxx + ∂ψi

∂y
1σxy

)
dxdy

1
1F

2
i = he

∫
Ωe

(
∂ψi

∂x
1σxy + ∂ψi

∂y
1σyy

)
dxdy

(4.30)

For a description of the steps in the derivation of the stiffness matrices the reader

is referred to the following reference [11]. Most of the steps for the derivation of
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these element matrices have been described above, and the iterations which have

been mentioned as equilibrium iterations are utilized to balance the out of balance

virtual work to attain the converged displacements and the stresses at each change

of configuration.

D. Boundary Conditions

The cantilever beam was subject to traction loading on the sides of the beam. The

traction loading was equally distributed on the top and bottom face of the beam. The

change in the length and deformed configurations of the beam were automatically

incorporated into the formulation since line integrals were performed at every load-

step for calculating the traction surface integrals which enter the forcing function

terms. Two different types of boundary conditions were considered. The first one

was the case of a cantilever beam subject to traction loading. In this case because of

the rigidity of the support at one end the u and v components of the displacement are

equal to zero. In the second case the beam is subject to an equi-distributed traction

loading and fixed at both ends. In this case both the components of the displacements

are specified to be zero on both ends. The linear solution for the cantilever beam was

also analysed and results compared with the analytical solution available.

E. Numerical Results

In this section we present results for the large deformation analysis of bending of

beams subject to two different types of boundary conditions for both linear and non-

linear analysis and validate the linear case, with published results in literature.



93

1. Linear Solution

Consider a cantilever beam of length a = 10 in, height b = 1 in, and thickness of

h = 1 in. For the linear analysis two different meshes of 5 × 1 spectral elements

are used, with a plevel of five, and 10× 1 elements with a plevel of 10 were used. The

higher pvalue of 10 was used to generate confidence in the results against the lower

plevel values. The modulus of elasticity of the beam was taken as; E= 1.2×104 psi, and

the Poisson ratio was taken as 0.20. The beam was assumed to be in the plane state

of stress and thus no distinction was made between the material properties 1Cij and,

0Cij which were also assumed to remain constant during the deformation process.

The v-component of the center deflection for the mesh of 5× 1 spectral element was

reported at a value of −0.627542 which is in good agreement with the values reported

in literature [11] which reports a value of −0.6227. A better agreement was obtained

with the spectral mesh with a higher resolution of plevel of 10, for which the center

deflection v(10, 0, 50) was found to be −0.627367. The linear analysis performed was

also used as a validation for the results that have been reported in literature along

with the convergence of the deflections to the same values between different values

of plevels tried. Further validation of the problem is also performed as the center

deflections for the non-linear analysis was checked with published results. Some of

the results that follow will serve as validation of the present results with results of

Reddy [11].

2. Non-Linear Analysis

a. Cantilever Beam under Traction Loading

A cantilever beam with the material property values mentioned earlier was analysed

for a non-linear analysis for the case of equi-distributed traction loading. The v-
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component of the deflections that was obtained with the above analysis was compared

to the results obtained in literature, as mentioned in Table XVII and good agreement

was found for all load-steps. Some differences in the deflections at higher load-steps

Table XVII. Cantilever beam non-linear analysis UL formulation

Results Position Deformed

q0 u(10, 0.5) [11] x y u(10, 0.5) v(10, 0.5)

1.0 -0.086 9.91323 -0.7421 -0.08677 -1.24209

2.0 -0.326 9.66724 -1.9151 -0.33276 -2.41508

3.0 -0.673 9.30659 -2.9512 -0.69341 -3.45117

4.0 -1.080 8.88282 -3.8297 -1.11718 -4.32971

5.0 -1.507 8.56083 -4.3836 -1.43917 -4.88364

6.0 -1.930 8.16144 -4.9603 -1.83856 -5.4603

7.0 7.72631 -5.4941 -2.27369 -5.99413

8.0 -2.714 7.29368 -5.9537 -2.70632 -6.4537

9.0 6.88781 -6.3347 -3.11219 -6.83472

10.0 -3.391 6.51702 -6.648 -3.48298 -7.14801

11.0 6.18297 -6.9061 -3.81703 -7.40614

12.0 -3.965 5.88343 -7.1208 -4.11657 -7.6208

13.0 5.61339 -7.3022 -4.38661 -7.80224

14.0 -4.450 5.36786 -7.4582 -4.63214 -7.95818

15.0 5.14321 -7.5939 -4.85679 -8.09394

16.0 -4.863 4.93682 -7.7133 -5.06318 -8.21329

can be attributed to the higher spatial accuracy of the spectral method, and it is

anticipated that the present results are more accurate. The non linear analysis was
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performed on a set of different meshes to generate grid independent results and the

results for a mesh of 10× 5 spectral elements with a plevel of 4 is being reported. The

development of the Cauchy and second Piola-Kirchoff stresses for the same beam are

being reported in Table XVIII. The calculation of the stresses was done on the top

Table XVIII. Cantilever beam stresses non-linear analysis

Results Cauchy Stresses Piola Kirchhoff

q0 σxx σyy σxy
1
0Sxx

1
0Syy

1.0 -345.751 -69.1501 -40.5306 -335.643 -67.1287

2.0 -699.166 -139.833 -77.7164 -659.24 -131.848

3.0 -1044.91 -208.982 -110.377 -958.544 -191.709

4.0 -1380.49 -276.099 -139.054 -1234.1 -246.821

5.0 -1678.09 -335.617 -163.076 -1466.96 -293.393

6.0 -1980.68 -396.137 -184.944 -1693.58 -338.715

7.0 -2283.29 -456.658 -204.545 -1910.6 -382.12

8.0 -2578.35 -515.67 -221.921 -2113.46 -422.692

9.0 -2862.52 -572.505 -237.238 -2301.12 -460.224

10.0 -3135.2 -627.04 -250.761 -2474.4 -494.881

11.0 -3397.12 -679.424 -262.808 -2634.88 -526.977

12.0 -3649.66 -729.931 -273.588 -2784.31 -556.863

13.0 -3894.66 -778.933 -283.296 -2924.51 -584.902

14.0 -4133.79 -826.759 -292.078 -3056.99 -611.398

15.0 -4368.25 -873.65 -300.046 -3182.85 -636.57

16.0 -4598.87 -919.774 -307.297 -3302.9 -660.579

left uppermost fiber of the beam. The usage of hp-spectral expansions allows us to
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determine the exact location of the top left corner as one of the Gauss-integration

points lies on the end of each element and no further approximations with the Gauss

point reaching the top left asymptotically with mesh refinements needs to be done.

b. Beam Fixed at Both Ends Undergoing Deformation

Here we consider a beam with the same material property values as in the last sec-

tion undergoing deformations however both the ends of the beam are fixed to rigid

supports, allowing zero, deflections in both the x and z directions. In Table XIX we

present the deflections of the center of the beam as a function of the increasing traction

loading on either side of the beam along with the development of the Cauchy stresses

at the top-center of the beam. The development of the Piola-Kirchhoff stresses as a

function of the loading on the corner of the beam at the top left corner of the beam

is being presented in Table XX. The development of the stresses in Table XX were

obtained at the top left corner of the beam whereas the deflections in Table XIX

have been reported to be the deflection of the center of the beam. The appropriate

locations have been marked in the respective tables.

Figure 21 presents the transverse deflections of the end of the cantilever beam

with the load steps that were applied on the top and the bottom faces of the beam.

Figure 22 presents the development of Cauchy and the second Piola-Kirchhoff stresses

at the top left corner of the Cantilever beam as discussed in Figure 21. A partial

deformation history and the development of the Cauchy stresses inside the cantilever

beam have been presented in Figure 23. The stress concentrations is evident with the

contour plots, at the corner near the fixed edge. Figure 24 presents the deflections of

the center of the cantilever beam as subject to increasing traction loadings applied

equally to the top and the bottom of the beam for the case where both ends of

the beam are fixed. The development of the Cauchy stresses and the Second Piola-
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Table XIX. Beam non-linear analysis UL formulation

Results Deflections Cauchy Stresses

q0 u(5, 0) v(5, 0) cxx(5, 0) cyy(5, 0) cxy(5, 0)

1.0 9.29E-12 -0.02883 25.40503 0.49987 2.17E-05

2.0 -4.44E-09 -0.05758 51.0077933 0.99993687 3.98E-05

3.0 9.27E-09 -0.08617 76.7160033 1.49989787 0.00021067

4.0 -2.98E-08 -0.11455 102.449066 1.99977348 0.000255882

5.0 2.30E-07 -0.14259 128.001747 2.43525019 0.000594432

6.0 4.82E-08 -0.1703 153.48433 2.92206514 0.000727948

7.0 8.27E-08 -0.19762 178.759235 3.40974019 0.000811384

8.0 4.33E-08 -0.22451 203.75745 3.8973405 0.000956216

9.0 4.09E-07 -0.25093 228.428024 4.38591696 0.001394485

10.0 2.97E-08 -0.27685 252.727833 4.87534593 0.001714965

11.0 6.53E-08 -0.30228 276.622908 5.36517074 0.001886332

12.0 2.00E-08 -0.32718 300.086859 5.85564377 0.002099622

13.0 2.07E-07 -0.35157 323.100536 6.3473639 0.002681038

14.0 3.86E-07 -0.37543 345.651077 6.83957252 0.002950302

15.0 3.41E-08 -0.39877 367.73063 7.33203955 0.003129701

16.0 2.37E-07 -0.42161 389.33572 7.82551688 0.003436536

Kirchhoff stresses at one of the fixed ends, and the center of the beam; respectively are

presented in Figure 25. Finally, the convergence history for the Preconditioned Bi-

orthogonal conjugate gradient solver with for the cantilever beam is being presented

in Figure 26. As can be seen from the convergence history the problem also appears

to be ill-conditioned as there is rapid convergence only at the end of the convergence

history. From the above figures it is clear that the hp-spectral method performs

well in all cases studied while considering the non-linear deformations of the beam

undergoing large deformations with the UL formulations. For all cases analysed and



98

Table XX. Beam non-linear analysis Piola-Kirchhoff stresses

Loads Cauchy Stresses

q0 cxx(0, 0.0) cyy(0, 0.0) cxy(0, 0.0)

1.0 -61.1519 -12.2304 -9.8230475

2.0 -121.685 -24.3371 -19.511989

3.0 -181.501 -36.3002 -29.055779

4.0 -240.53 -48.106 -38.448437

5.0 -299.224 -59.8449 -47.73406

6.0 -356.479 -71.2958 -56.802084

7.0 -412.785 -82.5569 -65.706928

8.0 -468.081 -93.6163 -74.446716

9.0 -522.351 -104.47 -83.021004

10.0 -575.588 -115.118 -91.433921

11.0 -627.798 -125.56 -99.6897

12.0 -678.999 -135.8 -107.79423

13.0 -729.204 -145.841 -115.75242

14.0 -778.437 -155.687 -123.56895

15.0 -826.721 -160.538 -127.42665

16.0 -874.1 -174.82 -138.80836

linear and non linear problems solved the results were obtained using full-integration

of the stiffness matrices and no under integration procedures were employed for the

problems solved.



99

Fig. 21. Center deflection vs. loading for cantilever beam vs. loadsteps

Fig. 22. Stresses at the top left corner of cantilever beam



100

Fig. 23. Deformed shapes and Cauchy stresses inside the cantilever beam
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Fig. 24. Development of center deflection for both sides clamped beam

Fig. 25. Cauchy and second Piola-Kirchhoff stresses at the corner of beam
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Fig. 26. Convergence of preconditioned bi-orthogonal conjugate gradient solver



103

CHAPTER V

DOMAIN DECOMPOSITION METHODS FOR LEAST SQUARES PROBLEMS

A. Introduction

There is a vast literature on least squares finite element methods that have been ap-

plied to solving problems in computational fluid mechanics areas. The hp version of

the least squares problems has computationally expensive quadrature requirements

which necessitate the usage of elegant methods for solving the resulting systems of

equations. Amongst some of the schemes for solving large systems of equations is the

Domain Decomposition technique. In this paper we explore one such highly parallel

Domain decomposition technique namely the Additive Schwarz method for the solu-

tion of linear systems of equations in parallel and demonstrate the effectiveness and

speedup that is obtained for solving the Navier-Stokes equations in parallel. Another

new technique for solving huge unsymmetric systems, namely the element by element

Jacobi preconditioned Bi-orthogonal Conjugate gradient (EBE-BJCG) technique is

developed for applications in fluids problems and an unsymmetric solution is demon-

strated. In doing so, we provide for effective means for solving fluid flow problems for

both unsymmetric and symmetric operators and demonstrate their efficacy for solu-

tions of fluid flow problems. We also demonstrate the usage of domain decomposition

techniques in the solutions of both the linear stokes operator with the least squares

finite element methods as also the full non-linear Navier-Stokes equations with least

squares finite element methods. In all cases we report super linear to linear speedup

and thus the optimality of the methods for parallelism is exemplified. Some of the

issues related with such applications to least squares problems are also addressed and

remedies suggested.
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B. Background

Amongst the different methods used for solving fluid flow problems, a relatively new

addition is the least squares finite element method (LSFEM). Amongst the celebrated

advantages of the least squares finite element methods are the symmetric systems pro-

duced from these formulations; and also the velocity and the pressure spaces do not

have to adhere to the Ladyzhenskaya-Babuska-Brezzi (LBB) compatibility restric-

tions for obtaining the correct velocity and pressure metrics. It has been mentioned

in literature that the least squares finite element methods (LSFEM) lead to symmet-

ric systems by construction, for the solutions of problems, and the problems thus are

more amenable to conjugate gradient techniques for the solution of the linear sys-

tems thus generated. In this regard, it should be pointed out that the least squares

formulations also suffer from some drawbacks when solutions of linear systems of

equations are sought. One of the drawbacks is that in the context of least squares

applications to solving real world fluid flow problems, the there are issues with regard

to obtaining the coarse grid correction step. The projection of the hp-spectral mesh

onto a bi-linear discretization does not work because the problem locks as is well

known with least squares methods. Thus least squares problems at the same time, al-

though generators for symmetric systems, do not have a very sound foundation which

permit the applications of multigrid techniques, and or coarse grid corrections, in a

more general setting. It is this issue that this chapter wishes to address to develop

a consistent technique for being able to solve large systems of algebraic equations

efficiently with the LSFEM and Penalty finite element formulations. We provide two

different techniques to be employed for the solutions of problems. For the symmetric

problems, we would recommend the usage of domain decomposition methods, in spe-

cific the Additive Schwarz methods for cases, were high level of parallelism is desired,
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and element by element bi-orthogonal conjugate gradient solver for cases, where it is

known that the system of equations is unsymmetric/ non self adjoint. For both these

cases, we demonstrate the effectiveness of the algorithms for the solutions of problems

and compare the results with the benchmark/analytical results. The usage of spec-

tral element methods for solving elliptic problems obtained from the Galerkin finite

element methods has been demonstrated in Paverino thesis and some papers [39]. In

the above work spectral element methods were used for decomposing the problems on

given domains, and consequently solving the equations with the help of the Domain

Decomposition techniques. Additive Schwarz was used along with the multiplicative

versions to solve problems efficiently. The formation of an overlay of the spectral ele-

ment grid with a bilinear finite element grid was explored by Heys et al. [40] and they

have explored the usage of such overlays along with an accompanying ”black box”

algebraic multigrid method to act as preconditioners to the conjugate gradient solver.

They also demonstrated the use of the direct application of the algebraic multigrid

method for solving problems obtained from higher order discretizations. Convergence

histories independent of the polynomial orders were obtained for the solution of the

Poisson problem on a two dimensional domain with specified boundary conditions.

An accompanying work in the use of higher order discretizations for solving prob-

lems was reported in Darao et al [41]. They explored the usage of a substructuring

method in order to solve the Stokes problem with the construction of the Schur com-

plement. Good parallelism achieved with the construction of the Schur complement

was demonstrated. However, the construction of the Schur complement is beset by a

very specific numbering system that needs to be adopted for the problem that is being

solved. Extensions of the Schur complement to problems is not straight forward, and

special care needs to be exercised in deciding the numbering system to condense out

the interior degrees of freedom. Domain decomposition methods on the other hand as
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expressed in the form of either multiplicative or additive Schwarz methods allows the

user very good flexibility in the sense that one can choose whichever gridpoints num-

bering scheme one wishes to adopt. In this sense, domain decomposition techniques

are superior to the Schur complement methods. Also in the above cited reference,

only the stokes equations were solved, whereas the inclusion of the non-linearity can

cause significant difficulties with convergence for the LSFEM formulations. In light of

the above cited problems there is a need to explore the use of Domain Decomposition

techniques in the context of LSFEM formulations, as only heuristics exist at present,

and the aforementioned has not been demonstrated yet. We only address the steady

Navier-Stokes equations as is well known in most cases the solutions of the steady

state problems can be far complicated as compared to the unsteady variants, as the

convergence is more relaxed in the latter case and the previous time estimates provide

excellent estimates to the new time step during marching in time.

C. Navier-Stokes Equations

The behaviour of the steady incompressible flows can be modelled with the Navier-

Stokes equations. The Navier-Stokes equations in the pressure-velocity formulation

can be written as follows;

(u · ∇)u +∇p+
1

Re
∆u = f in Ω (5.1)

and,

∇ · u = 0 in Ω (5.2)

with, u the velocity vector, f is the forcing term per unit mass, Re is the Reynolds

number and Ω ⊂ <d, where d, is the space dimension in which the problem is defined.

To allow the use of practical C0 expansions, in the least squares finite element formu-
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lation, the governing equations must be recast, as an equivalent first-order system.

So, the least squares functional is defined in terms of the L2 norms only. Introducing

the vorticity, and using the identity, ω = ∇× u, and using the vector identity,

∇×∇× u = −∆u+∇ (∇ · u) (5.3)

The Navier-Stokes equations in the first order form are thus expressed as follows;

(u · ∇)u +∇p− 1

Re
∇× ω = f in Ω

ω −∇× u = 0 in Ω

∇ · u = 0 in Ω

∇ · ω = 0 in Ω (5.4)

It is important to note the requirement that the vorticity be solenoidal, is needed

for the three dimensional case where as not for the two dimensional case. For the

three dimensional case, this additional constraint makes the system uniformly elliptic,

meaning the determinant of the first order system formed with these matrices is

positive. The stokes component of the Navier- Stokes is obtained from the above

equations by dropping the non-linear terms from the above equations set as follows;

∇p− 1

Re
∇× ω = f in Ω (5.5)

The above equations need to be supplemented with the appropriate boundary condi-

tions to complete the definition of the boundary value problem. The non linear term,

u · ∇u has no effect on the classification of the system, and thus, the same boundary

conditions as the Stokes equations are admissible boundary conditions for the above

equations.
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D. Linearization Procedure

Before, the application of the LSFEM, the convective term, needs to be linearized by

using successive substitution or Newtons method. We adopted the Newtons method

for linearization of the LSFEM, and for this case the method is linearized as follows;

(u0 · ∇)u + (u · ∇)u0 +∇p+
1

Re
∇× ω = f + (u0 · ∇)u0 in Ω (5.6)

Newtonś method is known to have a smaller radius of convergence, however the

convergence to the solutions is expected to be faster as compared to the Picard

method or the method of successive substitutions. Newton’s method of linearization

is the preferred choice of linearization procedure when a guess close to the solution is

available [42]. The LSFEM functional is setup with the help of the reduction of the

individual residuals for each of the equations expressed above and is provided by;

J (u, p, ω; f) =
1

2

(
‖ (u · ∇)u +∇p+

1

Re
∇× ω − f‖2

0 + ‖ ω −∇× u‖2
0 +

‖ ∇ · u‖2
0 + ‖ ∇ · ω‖2

0

)
(5.7)

The following functional minimization statement provides the stiffness matrix for the

formulation. The minimization statement is mentioned as follows;

Find (u, p, ω) ∈ X(Ω), such that;

limε→0
d

dε
J (u + εv; f) = 0 ∀v ∈ X(Ω) (5.8)

where, X(Ω) is the space of admissible functions,

X = {(u, p, ω) ∈ H1
0(Ω)×H1(Ω) ∩ L̄2(Ω)×H1(Ω)} (5.9)
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In an abstract notation, the linear system is expressed as the following;

Find (u, p, ω) ∈ X(Ω), such that;

A(U,V) = F(V) ∀V ∈ X(Ω) (5.10)

with;

A(U,V) = 〈L(U),L(V)〉Y (Ω) (5.11)

and;

F(V) = 〈G,L(V)〉Y (Ω) (5.12)

where, L, represents the Navier-Stokes operator, F is the corresponding source term,

A : X × X → R, is a symmetric, continuous bilinear form, and F : X → R, is a

continuous linear form. A description of the operator L follows as expressed in the

first order form. We have described a method for the derivation of these matrices in

a following chapter VIII. Following the convention used in [42], the first order system

can be expressed in the following form;

Au = f (5.13)

and therefore;

A1
∂u

∂x
+ A2

∂u

∂y
+ A0u = f (5.14)

and, the above matrices are defined as follows;

A1 =



u0 0 1 0

0 u0 0 − 1
Re

ω 0 0 0

0 −1 0 0


, A2 =



v0 0 0 1
Re

0 v0 1 0

0 ω 0 0

1 0 0 0


(5.15)
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,

A0 =



∂u0

∂x
∂u0

∂y
0 0

∂v0
∂x

∂v0
∂y

0 0

0 0 0 0

0 0 0 1


, f =



fx + u0
∂u0

∂x
+ v0

∂u0

∂y

fy + u0
∂v0
∂x

+ v0
∂v0
∂y

0

0


(5.16)

Finally, instead of using the infinite dimensional function space X(Ω) to seek for the

minimizer, the searching process is performed in a finite dimensional space Xh, i.e.

Uh ∈ Xh(Ω). Then the least squares formulation can be stated as;

Find Uh ∈ X(Ω), such that;

A(Uh,Vh) = F(Vh) ∀Vh ∈ Xh(Ω) (5.17)

For modelling of the transients, the development follows the above very closely and

has a few more terms in the first order system of equations.

E. Additive Schwarz Domain Decomposition

Domain decomposition methods are parallel, potentially fast, robust algorithms for

the solution of the linear or nonlinear equations that arise from discretization of par-

tial differential equations. Some of the motivations for the use of these methods

include: (1) potential for efficient parallelization through the use of data locality (2)

ability to deal with PDEs on complicated physical geometries (3) ability to deal with

PDEs that demonstrate different behaviour on different parts of the domain (stiff sys-

tems) (4) superior convergence properties of the iterative method even on sequential

machines [43]-[44]. Domain Decomposition methods fall into two categories- those us-

ing the overlapping subdomains, and those using non overlapping subdomains, which

are sometimes called substructuring methods. Even with the overlapping domain
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decomposition methods there are two distinct variants the first is the Multiplicative

variant of the domain decomposition method, and the second is the Additive Schwarz

method. The Additive Schwarz method which utilizes data locality and has a much

lower sequential component and is more suited to parallelization even though it takes

more iterations as compared to the multiplicative Schwarz method. Based on these

arguments, Additive Schwarz is a much better suited for parallelization and this is

the method that was adopted in this study. In the following sections we describe the

Additive Schwarz algorithm along with the parallelization issues and follow through

with results which were compared with the benchmark results for the driven cavity

problem, in two dimensions. Extensions to three dimensions is straight forward even

though it is considerable more involved. Let us denote the symmetric linear system

of equation that we wish to solve with;

Au = f (5.18)

where, A is a n× n positive definite matrix, and, f ⊂ Rn. The matrix version of the

Additive Schwarz algorithm for the above equation Pu = f∗, has the form;

( p∑
i=0

RT
i A

−1
i RiA

)
u = w∗ (5.19)

where,

w∗ =
( p∑
i=0

RT
i A

−1
i Ri

)
f (5.20)

The system for equation [45] corresponds to a preconditioned system of the form

M−1Au = M−1f . This yields the additive Schwarz preconditioner as:

M−1 =
( p∑
i=0

RT
i A

−1
i Ri

)
(5.21)
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Assimilating the ideas in the algorithm for the Additive Schwarz preconditioner we

obtain the following;

Input r:

1. For i=0,1,2.......,p in parallel do:

wi =
( p∑
i=0

RT
i A

−1
i Ri

)

2. End for.

3. Sum:

w ≡ w0 + w1 + w2 + w3 + ...........+ wn

It has been mentioned in literature [46] that the Additive Schwarz algorithm performs

well for a small number of subdomains, and also the performance of the algorithm is

dependent on the number of subdomains and some deterioration of the performance

of the Additive Schwarz algorithm is to be expected with an increase in the number

of subdomains. For this reason it has been recommended for Galerkin methods to

account for the coarse grid correction step for obtaining better performance of the

algorithms. The algorithm for the Additive Schwarz preconditioner with the coarse

grid correction for a matrix A is given by the following;

B−1
add = RT

0A
−1
0 R0 +

K∑
k=1

RT
kA

−1
k Rk (5.22)

in the above notation, k is the number of subdomains over over which the Additive

Schwarz preconditioner is defined. Coarse grid correction step is a good idea for

solving Galerkin based finite element formulations. However, for least squares finite

element methods, there are a few issues with the inclusion of the coarse grid. It is

well known that the solution of extremely large problems with multigrid methods
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always leads to load balancing issues on parallel processors. The same is anticipated

for the spectral element discretization and the coarse grid problem. Another issue

is that it is well known that the bilinear finite element basis for the least squares

problems locks and the velocity metrics obtained are very high. In such a case, thus

the coarse grid correction cannot be implemented based on the above formula, and

one has to resort to reduced integration techniques to provide a collocation solution

which can perhaps serve as a representation of the least squares errors on the coarser

grid. Another reason, is that LSFEM problems, suffer from extremely high loss of

mass for most problems with open boundaries and for large contraction regions. To

ameliorate this problem one has to include a weight into the continuity equation for

these problems, and minimize the weighted functional thus, to better conserve mass,

and such projections into the coarse grid also has to be achieved before, the coarse

grid faithfully represents the coarse components of the errors. In addition one does

not know apriori which mesh refinements will avoid loss of mass or how much the

continuity equation has to be weighted to solve the problem. The weights can range

anywhere from the range of 25, to 100. These are some of the issues which have beset

researchers in the LSFEM community however, it is not been highlighted clearly

enough for new practitioners to get better acquainted with the method. In light of

the above issues raised, we did not implement the coarse grid correction step as it does

not seem to provide a generic solution to large scale LSFEM solution methodologies

which are beset with different numerical issues which need to be studied first.

F. Partition of the Domain

In addition to identifying which subdomains to use, it is also necessary to identify

them. We identified each element to comprise of a subdomain. This choice was made
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based on the fact, that each spectral element infact can be a large problem itself, in

particular for the cases of high order approximations. The overlap regions is also of

some importance in the determination of the convergence rates. We used the case of

δ = 0 overlap, as this allows for effective implementations and a minimal communi-

cation overhead between multiprocessors that are solving the problem. However, it

is recognized, that even better convergence rates can be reported based on further

exploration into these areas, the main interests of which will in high likely hood cen-

ter around some of these performance enhancements. In this context infact, some

of Pavirino’s papers [47] can be very useful, because they have explored the increase

in the overlap regions increasing the efficiency of Galerkin based spectral element

methods. Also, a related issue is the choice of the subdomain solver. It has been

recommended by different researchers to possibly use a GMRES type inner iteration

solver for the subdomain problems, as it can be sometimes effective in approximating

the solutions and relaxing the convergence criterion on these solvers can also aid in

faster implementations. We implemented unsymmetric Gauss-Elimination elimina-

tion for the above. Amongst the advantages of the Gauss-Elimination is that it avoids

the use of these inner iterations for obtaining fast solutions to the linear systems of

equations and for relatively smaller size problems can be an effective implementa-

tion because its operation count scales as O(N3). It should be noted that we can

also use a solver based on an incomplete Cholesky factorization for the same, and

store only the non-zero entries in a sparse format. However, for the LSFEM formu-

lations the element matrices are usually dense, and sparse storage formats for faster

implementations do not offer any considerable advantage to the solution algorithm.
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G. Spectral/hp Finite Element Formulation

The spectral finite element approximation is stated as follows, the primary variables

are each approximated as;

∆e =
n∑
j=1

∆jψj (5.23)

where,ψj are the nodal expansions, which are provided by the following one-dimensional

C0 spectral nodal basis [1];

ψi(ξ) = hei (ξ) =
(ξ − 1)(ξ + 1)L′n(ξ)

n(n+ 1)Ln(ξi)(ξ − ξi)
(5.24)

where, ∆j are the nodal values due to the Kronecker delta property of the spectral

basis. Ln = Pn
(0,0) is the Legendre polynomial of order p, and ξi denotes the location

of the roots of (ξ−1)(ξ+1)L′n(ξ) = 0 in the interval [−1,+1]. All Jacobi polynomials,

Pα,β
n , satisfy a three-term recurrence relation of the form:

xP α,β
n (x) = aα,βn−1,nP

α,β
n−1(x) + aα,βn,nP

α,β
n (x) + aα,βn+1,nP

α,β
n+1(x) (5.25)

where, aα,β only depends on α, β, and n. And the derivatives of Jacobi polynomials

satisfy a three-term recurrence relation of the form [48];

(1− x2)
dPα,β

n

dx
= cα,βn−1,nP

α,β
n−1(x) + +cα,βn+1,nP

α,β
n+1(x) (5.26)

For the special case of α = β=1;

xPn(x) = a1(n)Pn−1(x) + a2Pn+1(x) (5.27)

where,

a1(n) =
n+ 1

2n+ 3
(5.28)
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and,

a2(n) =
(n+ 1)(n+ 3)

(n+ 2)(2n+ 3)
(5.29)

For α=β=1, cα,βn,n=0 and the above equation can be written as;

(1− x2)
dPα,β

n

dx
= cα,βn−1,nP

α,β
n−1(x) + cα,βn+1,nP

α,β
n+1(x) (5.30)

Seeking the recurrence relation for the derivative, we rewrite the above equation by

dropping α and β, for the special case of α = β=1;

(1− x2)
dPn
dx

= c1(n)Pn−1(x) + c2Pn+1(x) (5.31)

where,

c1(n) =
(n+ 1)(n+ 3)

2n+ 3
(5.32)

and,

c2(n) =
(2n)(n+ 1)(n+ 3)

(2n+ 3)(2n+ 4)
(5.33)

H. Penalty Formulation Navier-Stokes (Unsymmetric System)

In this section we consider the Penalty finite element method, applied to solving

Navier-Stokes equations in two dimensions which has been the primary generator for

un-symmetric systems in the computational mechanics areas. The problem under

consideration is that of a parallel channel flow, in which the top channel has an inlet

fully developed profile, called the membrane channel, and the flow in the bottom

channel (also called the permeate channel), develops because of the fluid trickling

along the channel length, through a semi-permeable membrane. Some applications of

such a configuration are in salt purification systems etc. For this exposition however,

the main interest is in the un-symmetric nature of the algebraic system generated

from the Lagrange finite element discretization of the resulting partial differential
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equations. If the flow of the fluid in such a process is assumed to be governed by

the incompressible Navier-Stokes equations then the equations for the two channel

membrane flow comprise of the continuity equation and the momentum transport

equations as follows.

∇ · u = 0 (5.34)

The global mass conservation equation for the system of equations is expressed as

equation 5.2. The momentum transport equations are mentioned below [49]:

(u · ∇)u = −∇p+ µ∇2u + ρg in Ω (5.35)

The above equations thus, for the momentum transfer are solved along with the

mass conservation interpreted as a constraint into the momentum equations with

the Penalty finite element method, to obtain the velocities for the equations in two

dimensions. The specification of the problem is complete with the specification of the

boundary conditions. The vertical component of the velocity thus at the bottom of

the membrane channel, and the top of the permeate channel are specified, both set

equal to the permeate velocity which was taken equal to be a constant.

vy = vw (5.36)

At the left side of the permeate channel, the u-velocity component is assumed to

be fully developed, with the v-component of the velocity set to zero. Inside the

permeate channel on the left wall, both components of the velocities are set to zero,

as there is a no-slip/no-penetration boundary condition at that face. At the top

face, insulated boundary conditions are specified for the membrane channel. For the

bottom wall of the feed channel, both components of the velocity are set to zero.

The specification of these boundary conditions along with the differential equation
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makes the problem well posed and solvable. The primary variables that are being

solved for are thus, the the velocities, subject to the appropriate boundary conditions

as specified above. Penalty finite element formulation was utilized to solve for the

velocities with the penalization of the momentum equations with the velocity terms

[49]. The formulation for this problem along with the discretized system of equations

is being described in the following section.

1. Weak Finite Element Formulation

The Penalty finite element model includes the incompressibility as a constraint into

the governing equations for fluid flow. The modified functional for the Naiver-Stokes

equations are as follows [11];

Ip(v) = I0(v) +
γe
2

[G(v)]2 (5.37)

In the above equation, G(v) is the global mass conservation for the flow equations. For

a description of the functional for the steady incompressible Navier-Stokes equations

the reader is referred to [49]. Note, that the incompressibility constraint is included

in a least squared sense into the functional. The Penalty finite element method for

Navier-Stokes equations is derived based on seeking the minimum of this modified

functional as;

δIp(v) = 0 (5.38)

The weak-form development involves reducing the differentiability of the equations

after multiplication of the same with a weighing function and trading of the differen-

tiability between the primary variables (velocities) and the corresponding weighting

functions. For the Navier-Stokes equations it is sufficient to use a Lagrange family

of interpolation functions as the basis functions. The x-component of the weak form
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finite element model for the Navier-Stokes equations is given by;

∫
Ωe

[
2µ
∂ψi
∂x

∂ψj
∂x

uj + µ
∂ψi
∂y

(
∂ψj
∂y

uj +
∂ψj
∂x

vj

)]
dx−

∫
Ωe

ρsfxψidx +

∫
Ωe

γe
∂ψi
∂x

(
∂ψj
∂x

uj +
∂ψj
∂y

vj

)
dx = 0 (5.39)

The y-component of the weak form finite element model for the Navier-Stokes equa-

tions is given by;

∫
Ωe

[
2µ
∂ψi
∂y

∂ψj
∂y

vj + µ
∂ψi
∂x

(
∂ψj
∂y

uj +
∂ψj
∂x

vj

)]
dx−

∫
Ωe

ρsfyψidx +

∫
Ωe

γe
∂ψi
∂y

(
∂ψj
∂x

uj +
∂ψj
∂y

vj

)
dx = 0 (5.40)

In the above equations, γe denotes the penalty parameter, fx is the x-component of

the body force, and µ is the viscosity of the fluid. For the fluid flowing along the

length of the two channel configuration described earlier, inclined at an angle θ with

the horizontal the x-and y-component of the body forces are obtained as follows;

fx = ρgsin(θ), fy = − ρgcos(θ) (5.41)

For the above equations the x-coordinate was taken aligned with the length of the

separator and the y-coordinate was taken perpendicular to the x-axis. Thus, the

gravity acts on the negative direction with respect to the positive y-axis for the prob-

lem under consideration. It should be noted that the penalty parameter terms are

evaluated with a reduced integration rule than that used for the remaining coeffi-

cients. Specifically, the order of the Gauss integration rule used for the numerical

evaluation of the penalty terms should be at least one order less than that is needed

for the exact integration of the terms. For example, when bilinear approximation

(Q4) of the primary variables is used, 3× 3 Gauss rule is used to evaluate all coeffi-

cients in Equations [49], except for the penalty term, which is evaluated using 1× 1
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Gauss rule. Bilinear interpolation functions for the velocity components are an ad-

missible combination of interpolation functions for generating stable and convergent

solutions for flow problems. The element with Q4 interpolation is known to satisfy

the Ladyzhenskaya-Babuska-Brezzi (LBB) condition [49]. The penalty parameter was

taken as 10+06 in the simulations. It is recommended to use a sufficiently large value

of the penalty parameter to satisfy the continuity equation and reach the convergence

in the velocity vector solutions.

The above equations are assembled to obtain the element stiffness matrices. For

an elaborate description of the assembly procedure and incorporation of the boundary

conditions refer to [49] and for the Penalty finite element implementation [11]. The

above set of equations have been linearized with the Picard method of linearization

as this permits a direct implementation and at the same time the results converged

to the solutions for this problem. Navier-Stokes equations with the weak finite ele-

ment method have been mentioned to be the primary generators for non self adjoint

operators, and the same was realized in the generation of the stiffness matrices. Con-

siderations of the previous issue required thus the linear solver to be to be able to

handle non-symmetric systems. The solver that was implemented thus to solve the

problem was element by element Bi-orthogonal conjugate gradient solver with Jacobi

preconditioning which can handle non-symmetric systems. The linear convergence

criterion for the global residual was set at 10−06. Non-linear convergence was de-

clared when the non-linear convergence residual was reduced to a value lesser than

10−03 for the velocity metrics. A relaxation factor of 0.50 was found to work well

for the solution of the non-linear problem. In the following section we describe the

parallel implementation issues with the unsymmetric solver, namely the element by

element bi-orthogonal conjugate gradient (EBE-BiJCG).
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I. Element by Element Bi-orthogonal Conjugate Gradient

The solver that was implemented for the solution of the unsymmetric system of

equations generated with the Penalty Finite element method, was the element by

element bi-orthogonal conjugate gradient (Bi-CG) solver with Jacobi precondition-

ing. Conjugate gradient like methods for nonsymmetric linear systems can generally

be divided into three classes-orthogonalization methods (e.g. GMRES), biorthogo-

nalization methods (e.g. Bi-CG), and, methods based on the normal equations (e.g.

CGNR). Bi-orthogonalization methods have received much attention recently because

of its demonstrated computational efficiency and small storage requirements which

is a result of short recurrences. Bi-orthogonal conjugate gradient solver has been

mentioned to be a very robust solver, that takes lesser iterations to converge as com-

pared to the conjugate gradient solver. In addition the capability of being able to

solve, unsymmetric systems makes this solver a very attractive choice for solutions

of linear systems in particular because a whole array of Krylov subspaces do not

have to be saved for this type of solver, as opposed to the GMRES type implementa-

tions. In addition the Bi-CG constructs a three term recurrence sequence; the extra

storage needed for the solver is at a minimum as compared to the GMRES type im-

plementations. Amongst the weaknesses of the Bi-CG algorithm is the possibility of a

breakdown, however, for such problems, and conditioning issues, even GMRES type

algorithms suffer from the same problem. Infact, restarted versions of the GRMRES,

and some look ahead strategies with the GRMRES algorithm have been researched

to alleviate some of the problems that plague both methods. Thus, GMRES does

not sufficiently outperform the Bi-CG algorithm for most linear systems, however re-

quires considerably more storage. Based on the above arguments, Bi-CG solver is the

method of choice, for solving unsymmetric systems at a minimal cost. Nevertheless,
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the extensions of the same ideas to GMRES type solvers can be accomplished with

relative ease. Let us denote the global stiffness matrix obtained from the summation

of the element stiffness matrices with the following notation;

A =
Nel∑
e=1

A[e] (5.42)

and, the element stiffness matrices are obtained as follows;

A[e] = PeAKeP
T
e (5.43)

where, Pe is the Boolean connectivity matrix which maps the coordinates of the ele-

ment stiffness matrix into the global stiffness matrix. In this context, to ensure mini-

mal overlap of data between processors, elements with independent degrees of freedom

were sent to different elements with the help of some sort of colouring scheme, the

most straight forward being the red-black colouring. The evaluation of the transpose

which is required for the bi-orthogonal conjugate gradient algorithm, was achieved

with the help of the transpose evaluations for each of the elements in the matrix based

on the following;

AT[e] =
(
PeAKeP

T
e

)T
(5.44)

With the Bi-CG algorithm, there can be a few different preconditioners that are fea-

sible options. However, the main interest here being the computational efficiency in

parallel, leaves us with relatively fewer choices, amongst them the best, and compu-

tationally cheapest is the Jacobi preconditioner. Jacobi preconditioning is relatively

cheap to construct, and provides an effective means of solving preconditioned prob-

lems in parallel on multiprocessors. Gauss-Seidel is another preconditioner that has

been explored, but its an inherently sequential algorithm, with some sort of colouring

required to remove the inherent sequential dependencies. To avoid complications, in
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implementations and in order to stay sufficiently generic and widely accessible as an

algorithm, we only implement the Jacobi preconditioning for solving the system of

equations. Also, because of the inclusion of the penalty terms, the diagonal domi-

nance of the system of equations is preserved and thus, this preconditioning works

very well for the penalized momentum equations.

1. Bi-JCG EBE Algorithm

Here we describe the element by element bi-orthogonal conjugate gradient algorithm,

for solving unsymmetric systems of equations. This methodology was implemented

to solve the membrane separation process problem.

Compute r(0) = b− Ax(0)

Choose r1(0) = r(0);

for i = 1, 2, 3, 4, .......

M z(i−1) = r(i−1)

MT z1(i−1) = r1(i−1)

ρi−1 = zi−1
T r1i−1

ρi−1 = 0, report Lancoz breakdown

if i=1;

p(i) = z(i−1)

p1(i) = z1(i−1)

else βi−1 = ρi−1

ρi−2

p(i) = z(i−1) + βi−1p
(i−1)

p1(i) = z(i−1) + βi−1p1
(i−1)

end if

q(i) = ΣNel
e=1Aep

(i)

q1(i) = ΣNel
e=1A

T
e p1

(i)
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α(i) = ρi−1/p1
iT qi

x(i) = x(i−1) + αip
(i)

r(i) = r(i−1) − αiq
(i)

r1(i) = r1(i−1) − αiq1
(i)

check for convergence

end

This above method can in theory breakdown however, in reality the case is rare

even if there are some cases where there might be a temporary singular recurrence

term, there may be a spike in the convergence curve, however the robustness of Bi-

CG to such spikes have been demonstrated by authors [50] and [51] even in finite

precision arithmetic of a computer. In the following section we demonstrate the

results that were obtained with both the algorithms that have been reported above,

for the solution of both symmetric and unsymmetric operators and demonstrate the

scalability of the algorithms.

J. EBE-BJCG Results

The problem characteristics and some scalability issues are being presented herewith.

We implemented the EBE-BJCG algorithm in parallel, and the distribution of the

work to different processors, provided super linear to linear speedup for flow past a

cylinder solved with the Fictitious Domain method (only speedup presented here).

The linear convergence history for the first non-linear step of the problem solved with

a scalar version of the code and the parallel version of the same on 8 processors is

provided below. A comparison of the convergence history for nprocs (number of pro-

cessors) set to 8 is also provided. It can be seen from Figure 27 that the parallel

version of the convergence history is slightly different from the scalar version and a
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Fig. 27. Parallel convergence history for EBE-BJCG solver

more careful look at the graph shows that the parallel version of the code is more

robust, in avoiding nearly singular search directions that are sometimes obtained with

the conjugate gradient solver type solvers, and relatively high jumps in the conver-

gence histories are evidence of the same with the scalar version of the solver. However,

the parallel version avoids the same and has a relatively smoother convergence his-

tory. These deviations are mostly confined by small peaks where the scalar version of

the problem deviated slightly from the parallel version. Small perturbations caused

by round off errors, of the scalar version of the problem vs. the parallel version of the

problem can alternatively account for the slight discrepencies reported. Whichever

maybe the reason nevertheless, the parallel version of the solver is found to be more

effective in reducing these round off errors, or singular search directions, with high



126

residuals. Figure 28 presents the time taken by the scalar version of the program for

Fig. 28. Solution times for the EBE-BJCG solver

solving the problem mentioned above, and the time taken by the parallel versions of

the program with four (4), eight (8), and sixteen (16) processors in parallel. As can

be seen from the figure the scalar version of the program takes 347 seconds for one

iteration, whereas the parallel version of the program takes 69 seconds for the same

operation with four processors. This provides a speedup of approximately 5, which

is higher than a linear speedup. The 8-processor run for the same input generates

results in 36 seconds, which gives a speedup of 9.6. Some of the advantages in the

program can also be attributed to the effective cache memory utilization which can

effect super-linear speedup. The sixteen processor run on the same problem provided

the results in 25 seconds which evaluates to a speedup of 13.88 (∼ 14.0). The above
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speedups greatly support our claim that element by element bi-orthogonal conjugate

gradient solver is effectively parallelizable, with the solver achieving superlinear and

slightly lesser than linear speedup in all cases. The total number of degrees of freedom

that were solved for for this problem were 14884 for a cylinder encased in a small chan-

nel width with a consequently large blockage ratio. Figure 29 compares the u-velocity

Fig. 29. Velocity comparison with analytical solution

component with the analytical solution for the feed and permeate channels, for both

horizontal and vertical configurations for the two channel system with permeation ve-
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locity set to a constant. The analytical solutions show very good agreement with the

present results, showing the effectiveness of the EBE-BJCG algorithm in solving the

unsymmetric system along with the reduced integrated penalty terms. The horizontal

channel had the forcing function set to zero, where as for the vertical case the forcing

function per unit volume was set to the acceleration due to gravity. The EBE-BJCG

implementation was also used to obtain the benchmark results on the driven cavity

problem in two dimensions with the LSFEM formulation. The LSFEM formulation

can have some unsymmetry in the stiffness matrices because of the non-linear terms

in the problem and thus Biconjugate gradient algorithm was tested for the solution of

the equations. These results are not repeated here in the interest of brevity. For the

flow past a cylinder problem for which the EBE-solution times have been reported,

in two dimensions, we are reporting the speedups in the Table XXI with Jacobi pre-

conditioning during the course of solution of the system of equations. Also, with

Table XXI. Speedups for EBE-BJCG solver

Index Ideal Time Speedup

No. Processors ideal (sec) Ratio

1 1 1 347 1.00

2 4 4 69 5.02

3 8 8 36 9.64

4 16 16 25 13.88

the element by element Bi-conjugate gradient solver we can see from Table XXI that

there is some deterioration from linear speedup with an increase in the number of

processors, however for all cases, the scalability of the problem can be considered to

be very good. Super linear speedup is the ideal situation in parallel and for the cases
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we test with the EBE-BJCG implementations also we achieved super linear speedup

and slightly lesser than linear speedup for the worst case.

K. Additive Schwarz Results

Figure 30 presents the streamline and contour plots of the velocities, pressure, and

vorticity for Stokes flow obtained with the Additive Schwarz domain decomposition

technique. This run was performed using a mesh of 6× 6, hp-SEM, mesh with each

element containing a spectral mesh of order 4. Qualitative agreement of these plots

with the results presented in [42] is excellent. Figure 31 presents the streamline

and contour plots of the velocities, pressure, and vorticity for a Reynolds number of

100 obtained with the Additive Schwarz domain decomposition technique. Figure 32

presents the streamline and contour plots of the velocities, pressure, and vorticity

for a Reynolds number of 400, for the driven cavity problem obtained with Additive

Schwarz domain decomposition. As can be seen from the figure, the presence of the

vortex near the right end of the cavity is clearly visible and was smaller in size for the

Re = 100 case presented earlier. Figure 33 presents the agreement of the present

results with published results of Ghia et al. [52] for the u-velocity at the midplane of

the driven cavity problem, where as Figure 34 presents the v-velocity at the midplane,

of the cavity. The agreement for both cases is good, and the results thus are validated

for effective implementations of the Domain Decomposition technique. Agreements

for the other Reynolds numbers were similarly found to be very good however, they

have not been presented in the interest of brevity. The Figure 35 presents the number

of iterations taken by the Jacobi preconditioned conjugate gradient and the Additive

Schwarz algorithm for the driven cavity problem for Reynolds numbers of 100 and 400.

As can be seen from the figure, Additive Schwarz algorithm converges with around
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Fig. 30. Contour plots for stokes flow

1/3 the number of iterations for most cases. There is deterioration of the performance

of the Additive Schwarz methods for the solutions of problems with increase in the

number of subdomains, and this has been well documented with the Galerkin finite

element formulations. The same behaviour is observed with the LSFEM problems as

shown here, however as is well known the solution of this issue lies in a judicious choice

of the number of subdomains along with a concurrent increase in the overlap region.

Some of these refinements dependent on the specific problem under consideration is

left for further research work. We anticipate however that there can be considerable

advantages and even higher speedups with implementations of some of the these ideas.
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Fig. 31. Contour plots for Re=100

L. Parallel Performance Measures

The computations were performed using the supercomputing resources provided by

the Texas A& M University supercomputing center. The specific compiler used was

the IBM compiler for AIX, V10.1. The simulations were performed using the IBM

Cluster 1600 (hydra.tamu.edu), which has 832 cores. The Additive Schwartz algo-

rithm shows superlinear speedup for smaller number of domains, and there is deterio-
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Fig. 32. Contour plots for Re=400

ration in the speedup ratio with an increase in the number of subdomains. This is an

expected trend, and even for large number of subdomains, we notice the performance

is ideal to slightly lesser than ideal for all cases. The linear convergence tolerance for

all cases was set at a reduction of the final residual with respect to the initial resid-

ual at a a value of 10−06. Non-linear convergence was declared when the non-linear

residual defined by the following formula reduced to a value of 10−03.

ε =
‖ Ui+1 −Ui ‖2

0

‖ Ui ‖2
0

< 10−03 (5.45)
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Fig. 33. u-velocity mid-plane for Re=400

An important measure of the parallel performance is speedup. For a fixed size of the

problem, the speedup is defined as;

Sp =
T1

Tp
(5.46)

where, T1 is the elapsed time on one processor, and Tp is the elapsed time for the

same problem on P processors. The efficiency is defined as the speedup ratio over

the number of processors used (nprocs).

εp =
Sp
n

(5.47)

We report the speedup ratios for both the Additive Schwarz algorithm, and the EBE-

BJCG algorithm, in Figure 36. Efficiency of both the EBE Bi-JCG algorithm im-

plemented in parallel, and the Additive Schwarz algorithm was found to be greater

than 1, which is the ideal case efficiency, as mentioned earlier, because of effective
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Fig. 34. v-velocity mid-plane for Re=400

cache memory utilization. Thus, only the speedups are being reported in Figure 36

against the ideal speedups expected with an increase in the number of processors.

A tabulation of the values of the speedups with the Additive Schwarz algorithm has

been presented in Table XXII which also presents the super-linear to linear speedup

reported for all cases.

M. Conclusion

In this chapter we presented the parallel implementations of two new algorithms for

solving huge systems of linear equations. Scalability of the implementations were

described and their effective implementations demonstrated for solving both adjoint,

and non-self adjoint operators. For both algorithms, we demonstrated superlinear to

linear speedups which pave the way for effective usage of the above methods for solving

problems in the CFD areas. A few sample problems were solved, and results validated
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Table XXII. Speedups for different Reynolds numbers

Iteration Re No. of Speedup Iterations

No. Domains ideal present ASchwarz BJCG

1 100 64 6 13.58 55 124

2 100 64 6 14.13 221 554

3 100 64 6 13.67 229 592

4 100 64 6 15.97 150 502

1 400 400 8 8.46 59 138

2 400 400 8 10.20 1264 3443

3 400 400 8 9.54 1571 4133

4 400 400 8 7.91 759 1639

5 400 400 8 10.05 963 2516

6 400 400 8 9.67 1059 2889

7 400 400 8 9.98 1453 3907

with benchmark/analytical results. New research areas for further exploiting the

usage of the above mentioned schemes by further refinements were highlighted.
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Fig. 35. BJCG vs. Additive Schwarz iterations
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Fig. 36. BJCG vs. Additive Schwarz speedups
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CHAPTER VI

MULTIGRID METHODS FOR LEAST SQUARES PROBLEMS

A. Introduction

There is a vast literature on least squares finite element methods that have been

applied to solving problems in computational fluid dynamics areas. The hp version of

the least squares problems has computationally expensive quadrature requirements

which necessitate the usage of elegant methods for solving the resulting systems of

equations. Amongst some of the schemes for solving large systems of equations is

the element by element solution (EBE) technique which has found widespread use

in the papers [53] -[54] of in the context of the hp version of the least squares finite

element methods. Although such techniques are very efficient memory wise, as one can

solve 0.5 million degrees of freedom problem with not more than 176 MB of memory

in parallel, the use of element by element techniques for solving CFD problems is

generally not recommended because of extremely high computational times. The

basic quadrature requirement with the p-version spectral element methods requires

a O(p6) operation on each element and this becomes the performance bottleneck. It

is thus not uncommon to have solution times in days with EBE algorithms running

even on multiprocessors. When seeking a collocation solution, based on bilinear finite

element meshes in two dimensions, where a reduced integration technique has been

used in the context of collocation least square finite element methods, the use of

EBE may be a good idea, and has been extensively explored by Jiang [42] as it is

computationally cheap. For the hp least squares formulation one is left to evaluate

higher order quadratures and necessarily is compelled to explore other options to

generate the solutions of the systems faster than possible with EBE techniques. Thus
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exploring of other highly parallel schemes in the context of hp least squares problems

is of interest. In the previous chapter we explored the usage of one such highly parallel

scheme namely the Schwarz method for solutions of least squares problems. In this

chapter we bring together the ideas of collocation and hp version of least squares in

the context of a Multigrid method to attain even better convergence performance, in

the context of LSFEM.

B. Background

Amongst the different methods used for solving fluid flow problems, a relatively new

addition is the least squares finite element method (LSFEM). Amongst the celebrated

advantages of the least squares finite element methods are the symmetric systems

produced from these formulations; and also the velocity and the pressure spaces do

not have to adhere to the Ladyzhenskaya-Babuska-Brezzi (LBB) compatibility re-

strictions for obtaining the velocity and pressure metrics. It has been mentioned in

literature that the least squares finite element methods (LSFEM) leads to symmetric

systems by construction, for the solutions of problems, and the problems thus are

more amenable to conjugate gradient techniques for the solution of the linear sys-

tems generated. The element by element technique however, as has been mentioned

above leads to extremely large solution times for the solutions of problems even in

parallel. In the previous chapter we explored the usage of Additive Schwarz methods

as preconditioners for the solutions of LSFEM problems. We also demonstrated the

deterioration of the performance of the Additive Schwarz techniques for the solutions

of LSFEM problems as the number of subdomains increases. It has been mentioned

that single level methods are most effective for the solutions of a small number of

subdomains.
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For smooth errors over a small subdomain, the error may be written as ε =

ε̄+εsmall. Since no reduction in the ε̄ term may be obtained through a local solve, one

can expect little reduction in the entire error ε over the entire subdomain. This also

reflects the deterioration of the performance of the Schwarz decomposition techniques

when the number of subdomains is increased. One thus is compelled to explore options

to be able to reduce the smooth errors. One such technique that attains this is the

multigrid method [55],[56],[57], [58] and we explore this technique for the solutions of

least squares problems. The Galerkin finite element method does not produce the an

H1 elliptic form and multigrid schemes typically perform very poorly. An alternative

formulation based on reformulating the Navier-Stokes equations based on the first-

order system and minimizing the least- squares norm of residuals in the resulting

system-the FOSLS (first order system least squares) formulation produces the H1

elliptic form and is the formulation adopted in this study.

C. Navier-Stokes Equations

The behaviour of slow and creeping flows can be modelled well with the Stokes equa-

tions. The Stokes equations are written as;

−∇p+∇2u = 0 in Ω, (6.1)

−∇ · u = 0 in Ω, (6.2)

u = g in Γ, (6.3)

where, p is the pressure scaled by the viscosity, and u is the velocity vector. Expressing

the Stokes equations for the easy application of the FOSLS formulation and introduc-

ing the vorticity as a new variable into the formulation ω = (ωx, ωy, ωz) = ∇× u;
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we obtain;

∇p+∇× ω = f in Ω, (6.4)

∇ · ω = 0 in Ω, (6.5)

ω −∇× u = 0 in Ω, (6.6)

−∇ · u = 0 in Ω, (6.7)

For simplicity the domain is considered two-dimensional, open, bounded, and sim-

ply connected with a smooth boundary Γ. For a two dimensional consideration we

immediately drop the condition on the solenoidality of ω as it is identically equal to

zero.

The non-linear Navier-Stokes equations in the pressure-velocity formulation can

be written as follows;

(u · ∇)u +∇p+
1

Re
∆u = f in Ω (6.8)

∇ · u = 0 in Ω (6.9)

with, u the velocity vector, f is the forcing term per unit mass, Re is the Reynolds

number and Ω ⊂ <d, where d, is the space dimension in which the problem is defined.

To allow the use of practical C0 expansions, in the least squares finite FOSLS formu-

lation, the governing equations must be recast, as an equivalent first-order system.

So, the least squares functional is defined in terms of the L2 norms only. Introducing

the vorticity, and using the identity, ω = ∇× u, and using the vector identity,

∇×∇× u = −∆u+∇ (∇ · u) (6.10)

The Navier-Stokes equations in the first order form are thus expressed as follows;

(u · ∇)u +∇p− 1

Re
∇× ω = f in Ω
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ω −∇× u = 0 in Ω

∇ · u = 0 in Ω

∇ · ω = 0 in Ω (6.11)

The above equations need to be supplemented with the appropriate boundary con-

ditions to complete the definition of the boundary value problem. The non linear

term, u · ∇u has no effect on the classification of the system, and thus, the same

boundary conditions as the Stokes equations are admissible boundary conditions for

the non-linear Navier-Stokes equations also.

D. Linearization Procedure

Before, the application of the LSFEM, the convective term, needs to be linearized

by using successive substitution or Newtons method. We adopted both methods

in our analysis. For illustration purposes we demonstrate the Newtons method of

linearization of the LSFEM;

(u0 · ∇)u + (u · ∇)u0 +∇p+
1

Re
∇× ω = f + (u0 · ∇)u0 in Ω (6.12)

Newtonś method is known to have a smaller radius of convergence, however the

convergence to the solutions is expected to be faster as compared to the Picard

method or the method of successive substitutions (if it converges). Newton’s method

of linearization is the preferred choice of linearization procedure when a guess close

to the solution is available [42]. The LSFEM functional is setup with the help of the

reduction of the individual residuals for each of the equations expressed above and is

provided by;

J (u, p, ω; f) =
1

2

(
‖ (u · ∇)u +∇p+

1

Re
∇× ω − f‖2

0 + ‖ ω −∇× u‖2
0 +
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‖ ∇ · u‖2
0 + ‖ ∇ · ω‖2

0

)
(6.13)

The following functional minimization statement provides the stiffness matrix for the

formulation. The minimization statement is mentioned as follows;

Find (u, p, ω) ∈ X(Ω), such that;

limε→0
d

dε
J (u + εv; f) = 0 ∀v ∈ X(Ω) (6.14)

where, X(Ω) is the space of admissible functions,

X = {(u, p, ω) ∈ H1
0(Ω)×H1(Ω) ∩ L̄2(Ω)×H1(Ω)} (6.15)

In an abstract notation, the linear system is expressed as the following;

Find (u, p, ω) ∈ X(Ω), such that;

A(U,V) = F(V) ∀V ∈ X(Ω) (6.16)

with;

A(U,V) = 〈L(U),L(V)〉Y (Ω) (6.17)

and;

F(V) = 〈G,L(V)〉Y (Ω) (6.18)

where, L, represents the Navier-Stokes operator, F is the corresponding source term,

A : X × X → R, is a symmetric, continuous bilinear form, and F : X → R, is a

continuous linear form. A description of the operator L follows as expressed in the

first order form. We have described a method for the derivation of these matrices in

a following chapter VII. Following the convention used earlier, the first order system

can be expressed in the following form;

Au = f (6.19)
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and therefore;

A1
∂u

∂x
+ A2

∂u

∂y
+ A0u = f (6.20)

and, the above matrices are defined as follows;

A1 =



u0 0 1 0

0 u0 0 − 1
Re

ω 0 0 0

0 −1 0 0


, A2 =



v0 0 0 1
Re

0 v0 1 0

0 ω 0 0

1 0 0 0


(6.21)

,

A0 =



∂u0

∂x
∂u0

∂y
0 0

∂v0
∂x

∂v0
∂y

0 0

0 0 0 0

0 0 0 1


, f =



fx + u0
∂u0

∂x
+ v0

∂u0

∂y

fy + u0
∂v0
∂x

+ v0
∂v0
∂y

0

0


(6.22)

Finally, instead of using the infinite dimensional function space X(Ω) to seek for the

minimizer, the searching process is performed in a finite dimensional space Xh, i.e.

Uh ∈ Xh(Ω). Then the least squares formulation can be stated as;

Find Uh ∈ X(Ω), such that;

A(Uh,Vh) = F(Vh) ∀Vh ∈ Xh(Ω) (6.23)

The Picard method for the LSFEM formulation follows the development very closely

with the following linearization;

(u0 · ∇)u +∇p+
1

Re
∇× ω = f in Ω (6.24)

With the above procedure we obtain the discrete form of the least squares finite

element model.
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E. Conjugate Gradient Method

The matrix that result from the least squares finite element formulation is sparse,

symmetric, and positive definite. Preconditioned conjugate gradient methods are a

popular Krylov method, commonly used to solve such systems. Let us denote the

symmetric linear system of equation that we wish to solve with;

Ax = b (6.25)

where, A is a N×N positive definite matrix, and, f ⊂ Rn. Krylov subspace methods

for solving the above linear system are iterative methods, that pick the jth iterate

from the following affine subspace:

xj ∈ x0 +Kj(Aj, r0) (6.26)

where, x0 is the initial guess, r0 is the corresponding residual vector= b − Ax0, and

the Krylov subspace Kj(A, r0) is defined as;

Kj(Aj, r0) = span{r0, Ar0, ........., Aj−1r0} (6.27)

The different versions of the Krlov methods differ in the different choices of the

subspaces. Amongst the popular methods for the solutions of linear systems with

Krylov subspace are the Preconditioned Conjugate Gradient (PCG), Bi-orthogonal

Stablized (Bi-CGSTAB), Bi-Orthogonal Conjugate gradient (BCG), Generalized Min-

imum Residual (GMRES). Amongst these methods, also the most competitive are

PCG, and GMRES. GMRES suffers from one major drawback in that the storage

requirements of all the subspaces are needed during their formation in course of the

iteration process. To get around this limitation, restarted versions of this algorithm

are popular, in particular one variant with k restarts provides us with GMRES(k).
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To work with shorter recurrence relations, and also to economize on storage require-

ments, one is often lead to CG as the most competitive for the solution of huge

linear systems. In this chapter, we will only explore the usage of multigrid methods

in conjugation with CG algorithms. However, it should be noted that a non-trivial

extension of these ideas are possible to any Krylov subspace method.

If a real N ×N matrix A is symmetric and positive definite, the solution of the

linear system with the conjugate gradient is equivalent to seeking the solution of the

following quadratic form;

Q(x) =
1

2
xTAx− bTx (6.28)

In this interpretation the CG algorithm can be interpreted to be the solution of the

generalized least squares problem where the minimization takes place over a particular

vector space in particular the Krylov space defined above.

The conjugate gradient is one of the minimization methods that uses A-conjugate

vectors as direction vectors which are generated sequentially. Theoretically, this

method has the property that the number of steps until convergence is at most N

steps. The theory behind this being that at the end of N steps one runs out of mutu-

ally orthogonal directions for searching the solutions. However, this property is only

valid in infinite precision, in practice during programming of some of these methods,

the convergence is slightly higher than N for some problems due to round off errors.

It has been shown that Conjugate gradient method reduces the initial error |U0 − Ū|

to ε times the final error |Un − Ū| in the following number of iterations;

n ≥ 1

2

√
κ(K) log

1

ε
(6.29)

where, κ is defined as the ratio of the maximum eigenvalue of the matrix K to the
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smallest,

κ =
λmax
λmin

(6.30)

where,

λmax = maxU 6=0
UTKU

UTU
λmin = minU 6=0

UTKU

UTU
(6.31)

In the above, U denotes the global vector of nodal values.

F. Multigrid Method

For the conjugate gradient algorithms, the number of iterations required for conver-

gence increases with the increase in the problem size, as the conditioning continues

to worsen, with increasing sizes of the problem. Jacobi preconditioning which has

found widespread use in the least squares community is very similar to using identity

as a preconditioner and offers very low performance gain as compared to the unpre-

conditioned system. One can ameliorate some of the problems mentioned above, if

we implement multigrid as a stand alone solver, or as a preconditioner to the Krylov

Subspace method of choice. It has been mentioned in literature that multigrid pre-

conditioned conjugate gradient is superior to the standalone solver, and is upto 40%

faster in some cases [59],[60], [61]. With due consideration to the above issue we chose

to implement multigrid as a preconditioner to the FOSLS linear system both for the

Stokes and the full non-linear Navier-Stokes equations. For some of the difficult

problems that are encountered with the FOSLS formulations, even if the multigrid

algorithm does not converge fast, and exhibits oscillatory convergence, then conju-

gate gradient acceleration is an easy and often very efficient way to adopt for solving

the problem quickly. The reason for this often spectacular convergence of a weakly

convergent, multigrid or a Jacobi preconditioned conjugate gradient is as follows. In
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the case of deterioration of the multigrid convergence, or inevitably the Jacobi pre-

conditioned CG convergence, for ill-conditioned problems, only a few eigenmodes are

slow to converge. It is these very eigenmodes, that the conjugate gradient algorithm

reduces and thus a conjugation of the multigrid and conjugate gradient is a very

robust alternative for the solutions of difficult problems.

By using the multigrid method we can make the iterations to convergence almost

independent to the problem size, and the conditioning of the system. However, there

are also some issues that beset the extensive usage of multigrid, mostly related to the

load balancing issues when implemented in parallel with properly parsing the coarse

grid problem, on a single processor. Another issue being for very large problems the

coarse grid problem solution can become computationally extensive, usage of direct

solvers which provide a O(N3) performance, become prohibitive. In order to gain two

order of magnitude speedup as compared to the usage of Gauss Elimination solver we

implement the Jacobi preconditioned Conjugate Gradient solver as it is O(N) process.

Further to relieve the algorithm of coarse grid problem size limitations we implement

the solution of the coarse grid problem in parallel, with a Jacobi preconditioned

element by element algorithm. This idea is not new and has been used based on the

implementations of Mahinthakumar [62]. This step renders the algorithm completely

independent of the size of the problem, and brings all the merits of multigrid into

our implementation. Thus we implement a two grid algorithm, as a preconditioner to

the FOSLS formulation [40]-[63]. The usage of Gauss-Elimination as the standalone

solver for the coarse grid was also explored for the Stokes operator and some of the

smaller problems that were solved, and JCG/EBE-JCG was used for larger problems.

The classic Multigrid is geometric in nature (GMG) where the operator is de-

fined on the coarser grid, and also the error components are defined in a geometric

sense as well. The goal in GMG is to properly define a relaxation strategy (e.g. Ja-
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cobi or Gauss-Seidel) to reduce the oscillatory errors on a given grid, and rely on

the predetermined interpolation to effectively represent the remaining smooth error

components on coarser levels. Another approach to multigrid methods, is algebraic

multigrid, where the coarse grid operators are defined on the fly, to handle various

components of the error. In our implementation to be able to use a non-locking dis-

cretization on the coarse grid, we chose to use the geometric multigrid. The two grid

implementation of the multigrid algorithm (MG) is described below;

for i= 1,2,3,...... until convergence

h− = S(hi, A, f,m)

rc = R(f − Ah−)

ec = (Ac)−1rc

h+ = h− + Pec

hi+1 = S(h+, A, f,m) (6.32)

In the above, algorithm we perform m steps of smoothing operation, restrict the

residual to the coarse grid. Following this, we solve the coarse grid problem with

the Jacobi preconditioned element by element conjugate gradient solver. Further

the coarse grid error is then prolonged to the fine grid to obtain the current final

grid solution approximation. There are a few choices for the determination of the

smoothing operator, amongst them being Point Jacobi, and Gauss-Seidel. Since, the

intent is to implement the whole algorithm in parallel, we are left with relatively fewer

options. Gauss-Seidel has some inherent dependencies which can create issues with

parallel implementations even though this smoothing is relatively superior to Jacobi

smoothing. However Jacobi smoothing provides a simpler implementation and is

also relatively easily parallelized. Based on these considerations we implement the
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damped Point Jacobi smoothing in our algorithm. Thus for the problem, Ax = b,

and, A = D − L− U , we obtain;

xn+1 =
[
(1− ω)I + ωD−1(L+ U)xn + ωD−1b

]
(6.33)

In the above equation, ω refers to the damping of the Jacobi smoothing operation.

We perform only 1 presmoothing step and the conjugate gradient algorithm is taken

as the postsmoother. For a rigorous proof of the theory behind both pre and post

smoothing and also only pre-smoothing during the multigrid algorithm the reader is

referred to Osamu [64].

G. Spectral/hp Finite Element Formulation

The spectral finite element approximation is stated as follows, the primary variables

are each approximated as;

∆e =
n∑
j=1

∆jψj (6.34)

where,ψj are the nodal expansions, which are provided by the following one-dimensional

C0 spectral nodal basis [1];

ψi(ξ) = hei (ξ) =
(ξ − 1)(ξ + 1)L′n(ξ)

n(n+ 1)Ln(ξi)(ξ − ξi)
(6.35)

where, ∆j are the nodal values due to the Kronecker delta property of the spectral

basis. Ln = Pn
(0,0) is the Legendre polynomial of order p, and ξi denotes the location

of the roots of (ξ−1)(ξ+1)L′n(ξ) = 0 in the interval [−1,+1]. All Jacobi polynomials,

Pα,β
n , satisfy a three-term recurrence relation of the form:

xP α,β
n (x) = aα,βn−1,nP

α,β
n−1(x) + aα,βn,nP

α,β
n (x) + aα,βn+1,nP

α,β
n+1(x) (6.36)
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where, aα,β only depends on α, β, and n. And the derivatives of Jacobi polynomials

satisfy a three-term recurrence relation of the form [26];

(1− x2)
dPα,β

n

dx
= cα,βn−1,nP

α,β
n−1(x) + +cα,βn+1,nP

α,β
n+1(x) (6.37)

For the special case of α = β=1;

xPn(x) = a1(n)Pn−1(x) + a2Pn+1(x) (6.38)

where,

a1(n) =
n+ 1

2n+ 3
(6.39)

and,

a2(n) =
(n+ 1)(n+ 3)

(n+ 2)(2n+ 3)
(6.40)

For α=β=1, cα,βn,n=0 and the above equation can be written as;

(1− x2)
dPα,β

n

dx
= cα,βn−1,nP

α,β
n−1(x) + cα,βn+1,nP

α,β
n+1(x) (6.41)

Seeking the recurrence relation for the derivative, we rewrite the above equation by

dropping α and β, for the special case of α = β=1;

(1− x2)
dPn
dx

= c1(n)Pn−1(x) + c2Pn+1(x) (6.42)

where,

c1(n) =
(n+ 1)(n+ 3)

2n+ 3
(6.43)

and,

c2(n) =
(2n)(n+ 1)(n+ 3)

(2n+ 3)(2n+ 4)
(6.44)
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H. Restriction and Interpolation Maps

Let us denote the discrete elliptic boundary value problem, by

Lhuh = fh in Ωh (6.45)

Let ΩH be the coarse grid (H > h) ⇒ LH ˆemH = rmH . Then, the transfer operators,

between Ωh and ΩH , are considered. The restriction operator maps the residuals from

the fine grid to the coarse grid, as:

IHh : G(Ωh) → G(ΩH) (6.46)

and, the interpolation operator is defined as;

IhH : G(ΩH) → G(Ωh) (6.47)

Consider the space of piecewise Legendre polynomials, of degree p on the fine elements

V h. On the coarse elements construct the space of continuous polynomials of degree

q ≤ p, V H . Then V H is the coarse subspace of the fine space V h, i.e. V H ⊂ V h.

Let ψi denote the nodal expansions for V h, and φk denote the bilinear nodal basis for

V H . Then, any function in V h can be expressed as;

u =
∑
i

uiψi (6.48)

and similarly any function in V H can be expressed as;

uC =
∑
k

uCk
φk (6.49)

Since, V H ⊂ V h, we can express the coarse grid functions φk, as linear combinations

of the fine grid functions, ψi;

φk =
∑
j

Rkjψj (6.50)
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Based on the above arguments, we obtain the following relationship;

uC =
∑
k

uCk
φk

=
∑
k

uCk

∑
j

Rkjφj

=
∑
j

∑
k

uCk
Rkjφj

=
∑
j

[RTuC ]jφj (6.51)

Thus, for our purposes we deal with nested subspaces and the interpolation operator

was determined as the transpose of the restriction operator. The theory behind the use

of restriction operator being the transpose of the interpolation lies in the appropriate

minimization of the errors in the appropriate matrix ‖.‖A norm. Infact the usage of

transpose of the restriction as the interpolation guarantees the proper reduction of

the errors.

I. Coarse Grid Problem

Construction of the operator for the coarse grid problem is elucidated here. In the

least squares finite element collocation solution, an approximate solution is con-

structed so that it satisfies the boundary conditions in advance, and nodal values

of the finite element expansion are then determined so that the approximation satis-

fies the differential equation at a number of distinct points in the domain. In order to

have a determined system we should choose a proper number of interior collocation

points in each element such that the total number of equations is equal to the total

number of known nodal values. This requirement can be expressed as;

Nelem +NGauss ×Neq = Nnode ×m−Nbc (6.52)
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In the above equation, Neq is the number of equations, Nnode is the total number of

nodes, m is the number of components of u or the number of degrees of freedom at

each node, Nbc is the total number of nodal values at boundary nodes. An alternative

to the use of collocation least squares finite element operator description on the coarse

mesh is to use the Galerkin approximation or the variational coarse grid correction. In

this procedure we construct the operator, on the fly with the help of the appropriate

description of the fine to coarse grid maps and also generate successively coarser grids

from this information. Such a procedure is mentioned as the Algebraic Multigrid

(AMG). In this formulation the coarse grid is constructed as;

AC = R0AR
T
0 (6.53)

This method of construction of the coarse grid operator has been gaining acceptance

and popularity in recent years since it allows the use of the multigrid algorithm as a

stand alone solver, with a ”black box” implementation independent of the physics of

the problem. A requisite attention of the degree of dependence of the neighbouring

connections in the form of independent sets have to be addressed for such an imple-

mentation. However, we choose to construct the operator based on the geometric

Multigrid framework.

Mesh independent convergence rates of the two grid method has been proved

for the case of post smoothing only in Weissling [55]-[65] for a 1-dimensional prob-

lem. For an elaborate exposition of the proofs for the solution of Laplace equation

in two dimensions, we refer the reader to Greenbaum [66]. In both cases, the main

premise is the fact that we have representations of the eigenvalues for the finite differ-

ence discretizations of the Laplace operator on a two dimensional mesh, and also we

have analytical expressions for the maximum and minimum eigenvalues. Thus, if the

smallest eigenmodes are being annihilated on the coarser mesh then, we are left with
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a ratio of the largest to the smallest eigenvalues which is of the order O(1), which can

be quickly parsed with the Conjugate gradient solver with a a very few number of

iterations as compared to the Jacobi preconditioned element by element implementa-

tion of the same. Based on these proofs, we carried out a two grid implementation of

acceleration of conjugate gradient. As mentioned before, the coarse grid problem was

implemented in a completely matrix free fashion, to alleviate the main performance

bottleneck for the multigrid method.

With the solutions of the coarse grid problems two different methods were tried.

We implemented Gauss-Elimination method for the solutions of the coarse grid prob-

lem. Direct methods are competitive for the solutions of small systems of linear

equations and the cost of computation for the inversion of the matrix with these is of

order O(N3) and the storage cost is of the order of O(N2). For the solutions of the

Stokes equations for example, this method of solution was found to be appropriate

and did not require the usage of an inner iteration which can substantially increase

the complexity of implementation. For the solutions of larger problems the usage

of Gauss-Elimination itself can become an issue and realizing the above limitation

we implemented a matrix free technique for solving the problem. In this context,

either Gauss-Seidel or Point Jacobi could have been chosen and we chose the Jacobi

preconditioning to simplify the implementation of the algorithm, as different levels of

complexities have already been introduced into the implementation with the issues

mentioned.

J. Stokes Solution

We examine the problem of a driven cavity and seek the least squares solution to

the problem at a very low Reynolds number. We used 6× 6 spectral elements, with
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a plevel of 4 in each element. The Newton’s method of linearization was used for

solving this problem. We explored the solutions of this problem both in serial and

in parallel on sixteen (16) processors. The linear convergence criterion was set at a

reduction in the error with respect to the initial residual to a value of 10−06. Non-

linear convergence was declared when the change in the solution based on the norm

to be defined later reached a value of 10−03. Qualitative agreement of these plots

Fig. 37. Contour plots for Stokes flow

with the results presented in [42] is excellent. Also the quality of the solution can be

judged from the least squares functional which remained below 10−06 for all elements

other than very near the driven surface. Figure 37 presents the streamlines, vorticity,



157

and the pressure contours for the flow field generated. For the case of Stokes flow the

iterations taken for convergence was found to be approximately 1/2 of that required

with Jacobi preconditioning. This has also been proved by different researchers,

that for the Stokes operator, Multigrid method does not perform well in the context

of least squares problems. However, in the course of our analysis we show in the

later sections that Multigrid performance greatly improves with increasing Reynolds

numbers which is a welcome change and of some consequence because for most real

flows we usually intend to exercise the full non-linear Navier-Stokes equations. For

the Stokes operator a comparison between the number of iterations taken by Jacobi

preconditioned conjugate gradient (JCG) vs. the multigrid accelerated Conjugate

gradient algorithm is shown in Figure 38. Gauss-Elimination was used for the solution

Fig. 38. MG vs. JCG iterations for Stokes flow

of the coarse grid problem in this case as there was no need felt to complement the
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solution with a EBE implementation of the coarse grid solve for this problem.

K. Non-Linear Navier-Stokes Solutions

The agreement for the results for Re = 100, and 400 have not been presented in

the interest of brevity. However, Figure 39 presents a comparison between the itera-

tions taken by Jacobi preconditioned conjugate gradient and the Multigrid algorithm

for these Reynolds numbers. As can be seen from the figure, Multigrid algorithm

converges with around 1/5 to even 1/20 the number of iterations. This offers remark-

able savings on time when one wishes to solve the Navier-Stokes equations for higher

Reynolds numbers. In light of the fact that the coarse grid problem was increasing

in size, we examined the use of Gauss Elimination for Re = 100, and the Jacobi

Preconditioned Conjugate gradient for Re = 400. This allows for considerable sav-

ings since Re = 400 case 20 × 20, grid was used, and the reduction in the operation

count from an O(N3), to O(N), reduces the computational time substantially. In this

section we exercise the Multigrid method for the solutions of high Reynolds numbers

flows for the driven cavity problem. In specific we intend to bring out the advantages

that accrue with the multigrid algorithm as compared to JCG algorithms for high Re

flows. Figure 40 presents the streamline and contour plots of the velocities, pressure,

and vorticity for a Reynolds number of 1000 obtained with the Multigrid method. As

can be seen from the figure, the presence of two vortices are clearly visible at either

ends of the cavity for this Reynolds number. Figure 41 presents the agreement of

the present results with published results of Ghia et al. [52] for the u-velocity at the

mid-plane of the driven cavity problem, where as Figure 42 presents the v-velocity at

the midplane of the cavity. The agreement for both cases is good, and the results thus

are validated for effective implementations of the Multigrid method. Picard method
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Fig. 39. JCG and Multigrid algorithm iterations

was used for linearizing the non-linear problem. The problem was also solved on a

single processor, with JCG and the reduction in the number of iterations varied from

multigrid being, 17 to 36 times faster. Also, a real comparison cannot even be done

for this case, because the multigrid algorithm only took 7 non-linear iterations to

converge, where as the JCG took 11 iterations to convergence, only further showing

the spectacular convergence of the present formulation. The value of the least squares

functional was found to be lesser than 10−08, and in fact was lower than 10−10 for

the majority of the elements away from the driven surface. A convergence history

comparison for the Multigrid method is presented in Figure 43 as compared to the
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Fig. 40. Contour plots for Re=1000

Jacobi preconditioned EBE algorithm. The effectiveness of the multigrid over the

EBE-JCG is evident in the steep march towards the solution as compared to Jacobi

preconditioning. Figure 43 also presents the convergence history for the EBE-JCG

method for the coarse grid problem. The average number of iterations for the coarse

grid solution were found to be of the order of 53 to 230 iterations. To verify the

effect of inaccurate coarse grid solve, and maximize the performance of the Least

squares multigrid algorithm–in terms of the decrease in the outer iterations vs. the

increase in the inner iterations needed for a stricter convergence criterion we relaxed

the convergence of the inner iterations to a value of 10−03. It was realized however
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Fig. 41. u-velocity comparison with Ghia results for Re=1000

that the number of outer iterations increased for this ”very” inaccurate solve. Based,

on this result we use a uniform value of the tolerance to 10−04. This value is also

in agreement with multigrid applications to Galerkin finite element formulations also

with consequent EBE-JCG implementations as proposed by Mathinthakumar [62].

The relationship between the different tolerances for the coarse grid solve has been

presented in Figure 44. Figure 45 presents the contour plots for a Reynolds number

of 3200. The non-linear convergence criterion was identified as a reduction in the

norm of the initial residual to 10−03. The problem was solved in parallel utilizing 16

processors. It took eight iterations for reaching the non-linear convergence with the

Picard method of linearization.
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Fig. 42. v-velocity comparison with Ghia results for Re=1000

L. Parallel Performance Measures

The computations were performed using the supercomputing resources provided by

the Texas A& M University supercomputing center. The specific compiler used was

the IBM compiler for AIX, V10.1. The simulations were performed using the IBM

Cluster 1600 (hydra.tamu.edu), which has 832 cores.

An important measure of the parallel performance is speedup. For a fixed size

of the problem, the speedup is defined as;

Sp =
T1

Tp
(6.54)

where, T1 is the elapsed time on one processor, and Tp is the elapsed time for the

same problem on P processors. The efficiency is defined as the speedup ratio over



163

Fig. 43. Convergence of Mutigrid and coarse grid solves

the number of processors used (nprocs).

εp =
Sp
n

(6.55)

For effecting the solutions of the problem in parallel, elements with independent

degrees of freedom were sent to different processors. The processors operate on their

independent sets of elements, and thus performance enhancements for the algorithm

implementations are achieved at the rate which is at least equal of the number of

processors nprocs that are operating on the problem concurrently. The distribution of

the elements to different processors can be effected with the help of a multi-colouring
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Fig. 44. Inaccurate solve increase in iterations

scheme, which assigns a color to elements which are associated with each part of the

domain [67].

There is some time lag associated with communication overheads while trans-

ferring information between processors, however it did not seem to deteriorate the

overall performance of the multigrid algorithm appreciably as evidenced with the

performance of the algorithm in parallel for the different sets of processors that were

tested. Table XXIII presents the speedup obtained with the Multigrid algorithm for

the driven cavity for different sets of Reynolds numbers tested.

The linear convergence tolerance for all cases was set at a reduction of the final

residual with respect to the initial residual at a value of 10−06. Non-linear convergence

was declared when the non-linear residual defined by the following formula reduced



165

Fig. 45. Contour plots for Re=3200

to a value of 10−03.

ε =
‖ Ui+1 −Ui ‖2

0

‖ Ui ‖2
0

< 10−03 (6.56)

We report the speedup ratio for the Multigrid algorithm, in Figure 46. Efficiency

of the Multigrid algorithm implemented in parallel, was found to be greater than

1, which is the ideal case efficiency, as mentioned earlier, because of effective cache

memory utilization. The speedups are being reported in Figure 46 against the ideal

speedups expected with an increase in the number of processors. The lowest speedup

between the different non-linear iterations are being reported as a conservative esti-

mate. For a lower number of proceessors, there is an initial phase where the multigrid
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algorithm does not perform as well for some non-linear steps, however it improves

drastically for larger problems. The increase in the number of iterations as a function

of the increasing degrees of freedom have also been presented. The performance of

the multigrid for higher degrees of freedom, is also acceptable in particular because

it is able to solve the linear system at O(N/75) for the worst case tested where N

is the total degrees of freedom in the problem. The reason for superlinear speedup

Fig. 46. BJCG vs. Multigrid speedups
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for the problems under consideration is the fact that the problems were solved with

a very effective implementation, in view. The main performance bottleneck with the

parallelization of the multigrid algorithm, and the reason for load balancing issues in

a parallel implementation as encountered often with the method, was removed with

the solution of the coarse grid problem with a Jacobi preconditioned element by el-

ement solution in parallel. Smaller problems where Gauss Elimination was found to

be appropriate, were solved with the direct solver. For different number of processors

the speedup was found to be greater than ideal to suboptimal in the worst case, which

is very encouraging for the effective implementations of the above algorithm for the

solution of huge linear systems that arise in computational fluid dynamics areas, and

in specific that are associated with the p-version of the least squares formulations

which have been plagued with high quadrature costs so far. Here we demonstrated,

not only the vastly superior performance of the multigrid algorithm but also detail

the implementation aspects of the same in parallel.

M. Backward Facing Step LSFEM Solutions

Next, we consider two-dimensional steady flow over a backward-facing step at Re =

800 for solution with Multigrid Least Squares finite element method. The geometry

and boundary conditions, taken from the benchmark solution of Gartling [68], are

shown in Fig 47. The two dimensional domain in <2 of dimensions [0, 30] × [0, 1]

units was discretized into 280 hp/spectral mesh with a seventh order expansion in

each element. The mesh was fine in the vicinity of the inlet of the backward facing step

and was coarse near the exit of the step. No-slip boundary condition is imposed on all

walls. Boundary condition of u(y) = 0 is imposed for y ∈ [0, 1] along the left face of the

backward facing step. A parabolic velocity profile given by ux(y) = 12(y− 1)(1− 2y)
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Fig. 47. Backward facing step

is specified at the inlet for y ∈ [0.5, 1]. This produces a maximum inflow velocity of

umax = 1.5 and a mean inflow velocity of uavg = 1.0. The Reynolds number is based

on the mean inflow velocity and the characteristic height of the entrance region.

At the outflow, the desired boundary condition (as with some Galerkin finite

element implementations) are as follows; −p+ 1
Re

∂u
∂x

= 0 and, 1
Re

∂v
∂x

= 0. Both of the

above requirements have been specified as the boundary conditions for open ended

domains, for solving CFD problems in a Galerkin finite element setting. The above

boundary conditions were enforced in a least squared sense into the functional for

the LSFEM minimization statement. The finer mesh and coarse mesh operators both
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have this specification in a LSFEM sense along the outflow boundaries. Thus the

modified functional for the new minimization statement for the boundary elements

are specified as follows;

J (u, p, ω; f) =
1

2

(
‖ (u · ∇)u +∇p+

1

Re
∇× ω − f‖2

0 + ‖ ω −∇× u‖2
0 +

‖ ∇ · u‖2
0 + ‖ −p+

1

Re

∂u

∂x
‖2

0,Γoutflow
+ ‖ 1

Re

∂v

∂x
‖2

0,Γoutflow

)
(6.57)

There were a total of 56956 degrees of freedom in the problem. The results obtained

from the development of the pressure fields and the recirculation zones match quali-

tatively very well with the published results of Reddy [11] who used the Penalty finite

element method to obtain the results. The location of primary reattachment length

was found at x = 5.3, secondary separation started at x = 4.2, and secondary reat-

tachment point was found at approximately, x = 9.9. After reattachment of the upper

wall eddy, the flow slowly recovers towards a fully developed Poiseuille flow. Flow is

almost fully developed at the exit (x = 30) with no pressure gradient in the direction

of flow. The value of the L2 least-squares functional remained below 10−07 for the

elements near the entrance region of the backward facing step and below, 10−11 for

the majority of the elements. The L2-norm of the residual of the continuity equation

was found to be below 10−07 for most elements. The quality of the solution can also

be judged based on the low values of the residuals as reported above and in specific

the residuals of the continuity equation reflect on the excellent mass conservation

properties of the spectral element method for this Least Squares problem.

The u-velocity profiles along the channel height at x = 7 and x = 15 are compared

with the benchmark results of Gartling [68] in Fig 48. We find excellent agreement for

both sections along the length of the Backward Facing step. Pressure profiles along

the length of the channel are plotted in Fig. 49 for both the top and bottom walls
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Fig. 48. u-velocity along length of step

of the Backward Facing Step and compared with the published results of Pontaza

and Reddy [69]. The number of elements inside the backward facing step was kept

at 280 elements as shown in Fig 47. The coarse grid convergence history for the

corresponding coarse mesh is presented in Figure 50. A representative convergence

history has been presented. As can be seen from the figure approximate number of

iterations for the solution of the coarse grid problem varied from anywhere between

150 to 200 iterations for reaching the linear convergence tolerance of the coarse grid

problem set at 10−04.



171

Fig. 49. Pressure along top/bottom of backward facing step

N. Conclusion

In this chapter we presented the parallel implementations of the multigrid algorithm

for solving the Least squares finite element formulations applied to fluid flow. We

explored problems subject to both Dirichlet and open type boundary conditions.

Scalability of the implementations were described and their effective implementations

demonstrated for solving self-adjoint operators. We demonstrated superlinear to lin-

ear speedup for the Multigrid algorithm which paves the way for effective usage of

the above methods for solving hp-version of Least Squares problems.
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Fig. 50. Backward facing step coarse grid iterations
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Table XXIII. Multigrid speedups for different Reynolds numbers

Iteration Re No. of Ndof Speedup Iterations

No. Elements ideal present Multigrid JCG

1 0.01 36 2500 8 4.8 392 656

2 0.01 36 2500 8 6.8 609 876

3 0.01 36 2500 8 7.33 656 911

4 400 400 26244 10 14.04 56 138

5 400 400 26244 10 10.17 141 3443

6 400 400 26244 10 10.79 244 4133

7 400 400 26244 10 15.38 218 1639

8 400 400 26244 10 12.96 157 2516

9 400 400 26244 10 - - 2889

10 400 400 26244 10 - - 3907

11 1600 1000 58564 16 28.76 82 172

12 1600 1000 58564 16 29.15 245 3737

13 1600 1000 58564 16 29.11 211 6076

14 1600 1000 58564 16 25.58 207 8094

15 1600 1000 58564 16 29.09 222 5133

16 1600 1000 58564 16 26.04 234 8166

17 1600 1000 58564 16 26.04 195 5142

18 1600 1000 58564 16 - - 7929

19 1600 1000 58564 16 - - 5347

20 1600 1000 58564 16 - - 7602

21 1600 1000 58564 16 - - 5163
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CHAPTER VII

MODELLING THE POROUS MEDIA FLOW PROBLEM

A. Introduction

In this chapter we digress a little bit from the main topic of the usage of hp-spectral

element methods applied to solving different problems and concentrate on the usage

of Lagrange based FEM methods to solving the porous media problem. The bi-

quadratic basis is used with the help of Penalty finite element method to solve the

porous flow problem in two dimensions. We solve the porous media flow problem for

the case of different permeabilities and in the context of the Generalized Navier-Stokes

equations.

The fluid flow inside a porous matrix has been modelled with the help of gener-

alized Navier-Stokes equations inside a porous domain. A finite element formulation

of the transient porous flow problem is presented and resulting finite element equa-

tions are solved on a simple geometry to understand the behaviour of such a flow in

porous materials. Estimates to the variation of the average Nusslet number, which

is an index for the evolving heat transfer, is presented for a specific porosity and

permeabilities of the matrix and it is compared with the pure fluid case to see the

difference in the heat transfer due to the presence of the porous matrix.

B. Background

The flow of moisture inside a porous material during the course of a drying operation

or addition of moisture during adsorption is a very important and interesting problem

with applications in food drying operations etc. Flows of fluids (different components

of the moisture transfer in liquid and vapor forms) inside the a porous medium are
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governed by the conservation laws of mass, momentum, and energy[1]. Different

physical phenomenon occur simultaneously when a porous sample such as a food

material exposed to convective heating is being dried. There is a transfer of fluid

inside the porous material along with a concurrent transfer of vapour inside the

porous material making the actual problem a multi-phase transport problem.

Depending on the different phases of transfer inside the porous medium, the

problem becomes highly complicated because of the multi-physics involved. In this

study the transfer of vapour inside the porous material has been neglected and only

a single component of transfer of the fluid is considered to simplify the problem and

to serve as a first approximation to a more elaborate analysis. Also, the transfer of

the fluid has been assumed to be occurring at 100% saturation.

A number of researchers have solved the heat and mass transfer coupled equations

for modelling the coupled heat and moisture transfer inside a porous flow medium

with different approximations [70]. The approach primarily has been to obtain the

moisture distribution with diffusive transfer with slight variations in the governing

equations amongst different efforts. Different moisture diffusivity values have been

considered when solving for the moisture loss equations from the porous material,

and also different drying scenarios have been explored [71]. A concomitant problem

to the determination of the moisture loss by diffusive effects is the consideration of

the complete flow field inside the porous medium, which incorporates the effect of

the convective components simultaneously with diffusive transport. To the best of

the author’s knowledge there has not been any work in the determination of the

actual flow regime with the solution of the fundamental conservation laws of mass,

and momentum equations in a porous medium with applications in food engineering

areas with the generalized Navier stokes equations.

The model when considering the conservation of mass, and momentum in two di-
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mensions for a porous medium manifests in the form of either Brinkman-Forchheimer

equations or in the form of Generalized Navier-Stokes equations for porous media

[72]. In this study, coupled equations relating the conservation of mass, and the con-

servation of linear momentum and coupled heat transfer as applicable to a porous

medium are presented and solved in the context of Generalized Navier-Stokes equa-

tions in two dimensions as a transient. The solution procedure employed is the finite

element reduced integration penalty (RIP) formulation to solve the coupled equation

set for the convective heat transfer problem. This study also compares the change in

the heat transfer coefficient along the vertical wall due to the presence of the porous

medium as opposed to the absence of the porous matrix (for the clear fluid case).

C. Porous Flow Equations

The porous medium is assumed to be isotropic and homogeneous and the fluid and

the solid are assumed to be in isothermal equilibrium. It is also assumed that the

flow equations are valid over the domain of interest, and the domain is treated as

two-dimensional, isothermal and isotropic, porous medium. Conservation of mass

inside the domain takes the form (in the absence of mass generation terms);

∇ · u = 0 (7.1)

Conservation of linear momentum equations in two dimensions is expressed as;

ρ
∂u

∂t
+
ρ

ε
(u · ∇)u = −∇ (εp) + µe∇2u + F (7.2)

Here, u is the velocity vector for the fluid inside the porous matrix, ε is the porosity

of the medium, ||u||is the magnitude of the velocity vector, is the dynamic viscosity

of the fluid, ρ is the density of the fluid saturating the porous matrix, and F is the
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body force vector for the flow problem, which can be expressed as

F = −εµ
K

u− ρεFε|u|√
K

u + ρεG (7.3)

where,

Fε =
1.75√
150ε3

(7.4)

K is the permeability of the porous medium (m2), and G is the gravitational accel-

eration vector. Equations 7.1-7.4 are referred to as the Generalized Navier-Stokes

equation for porous flow. The behaviour of the above set of equations closely follows

the Navier Stokes equations for the fluid flow problem. Specification of the porosity

of the medium to 0.999 and a high permeability of the porous medium reduces the

Generalized Navier-Stokes to the pure fluid case which can be used for validation

purposes for the code. Recent advances have been made where the solution proce-

dure employed in certain cases for solving the porous flow problem has been with

Lattice-Boltzmann’s method among other solution methodologies [73]-[74].

The forcing function F has contributions from the velocity vector (making the

forcing vector non-linear in nature), and also from the acceleration due to gravity for

the specific direction in which the forcing function works [75]. There is a correlation

for the permeability of the medium which is related to the solid particle diameter [76],

which is not used because the permeability of the porous matrix was entered directly

as an input to the model.

The mathematical description of the flow problem formulation is complete after

the specification of the boundary conditions and initial conditions for the above set

of equations (because of the transients in the partial differential equations). The

porous flow problem admits the same boundary conditions as that specified for the

Navier-Stokes equations [77]. Therefore, there are primarily two different types of
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admissible boundary conditions for the Generalized-Navier Stokes equations, the first

is the specification of Dirichlet boundary condition and the second is the specification

of Neumann boundary condition. Dirichlet or essential boundary conditions, require

the specification of the velocity components ui, on the boundaries of the domain.

Neumann or natural boundary conditions, involve the specification of traction on the

boundaries. In the actual problem that has been solved only the first type or the

Dirichlet boundary condition had to be specified on the boundaries.

The problem domain was taken as a square enclosure which was meshed subse-

quently with bi-quadratic finite elements in two dimensions. The domain dimensions

were taken to be a square with dimensions of 1m×1m. Buoyancy driven flow with

differentially heated walls were used with the left side wall at a higher temperature

as compared to the right side wall. The finite element reduced integration penalty

formulation with the Galerkin approximation was used in the analysis for the dis-

cretization of the equations in two dimensions. Initial conditions were assumed to be

a state of quiescence in the fluid and at time t = 0 it was assumed that the top of

the domain containing the porous material obtains a specified velocity in the positive

x-direction.

D. Penalty Finite Element Formulation

Penalty finite element method is a method of discretizing the finite element equations

for the generalized Navier-Stokes equations set where the continuity equation is in-

terpreted as a constraint on the momentum equations and the coupled set is solved

together with the help of a Lagrange multiplier that serves as the penalty parame-

ter [49]-[78]. Galerkin finite element method entails reducing the differentiability of

the equations after multiplication of the same with a weighting function and trad-
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ing of the differentiability between the partial differential equation and the weighting

function [49]. For the porous flow equations it is sufficient to use a Lagrange family of

interpolation functions as the basis functions in the framework of Galerkin finite ele-

ment method [49]. Only the first derivative of the weighting function (basis function)

needs to be continuous between elements, and cubic Hermite interpolation functions

are not needed for flow problems. The incompressibility requirement in the penalty

method formulation is interpreted as a constraint to the momentum equations and

the solution of the constrained problem is sought with the Lagrange multiplier being

the penalty parameter. With the above considerations in mind, the finite element

equation weight functions are required to apply Green’s theorem on the momentum

equations only and have been presented for the RIP method [49];

Momentum Equation(s):

[∫
Ωe

ρψψTdx1dx2

]
∗
u i +

[∫
Ωe

ρ

φ
ψ

(
ψTuj

∂ψT

∂xj
dxidx2

)]
ui

+

[∫
Ωe

µe
∂ψ

∂xj

∂ψT

∂xj
dx1dx2

]
ui +

[∫
Ωe

µe
∂ψ

∂xj

∂ψT

∂xi
dx1dx2

]
uj

+

[∫
Ωe

γe
∂ψ

∂xj

∂ψT

∂xj
dx1dx2

]
ui =

[∫
Ωe

Fψdx1dx2

]
(7.5)

Here, the forcing function contains contributions from the unknown velocity compo-

nents as given by Equation 7.3 and the integrations evaluated over the area of the

domain (for a two-dimensional problem) have been presented below;

∮
Ωe

Fψdx1dx2 = −
∫

Ωe

[
εµ

K
u + ρ

εFε√
K
‖u‖ u− ρεG

]
ψdx1dx2 (7.6)

In the above equation the penalty terms have been denoted with the γ term, where

γ is the penalty parameter. It should be noted that the penalty parameter terms

are evaluated with a reduced integration rule than that used for the velocity com-
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ponents. Specifically, the order of the Gauss integrations that are involved with the

penalty terms should be at least one order less than that is needed for the exact

integration of the terms [49]. The velocity approximations are bi-quadratic, and for a

quadratic domain there are nine interpolation functions for each velocity component.

Bi-quadratic interpolation functions for the velocity components are an admissible

combination of interpolation functions for generating stable and convergent solutions

for the flow problem and these are often mentioned as Q9 interpolation functions.

This combination of the Q9 interpolation function has been known to satisfy the inf-

sup criterion for the solution of the flow problems, and yield stable and convergent

solutions. Other elements that are not LBB stable may yield acceptable solutions for

some problems but are not reliable for general applications.

Penalty finite element model for the porous flow equations involve the solution

of two penalized momentum equations in two dimensions. The momentum equations

provide for the two components of the velocity vectors of flow in the porous medium.

The porous flow problem involves the determination of different matrices, with the

help of an appropriate Gauss-Quadrature scheme for the numerical evaluation of the

integral. The element matrices for the porous flow problems were evaluated with a 4

Gauss Quadrature for the velocity matrices that were found to integrate the matrices

exactly, and the 2×2 Gauss Quadrature was used for the penalty matrices. It has been

noted that determination of the penalty terms has to be done with the help of an order

of Gauss Quadrature of one order less than the quadrature points needed to integrate

the matrices exactly. This is necessary because Gauss-Quadrature when employed

to integrate the penalty terms exactly system of equations becomes unsolvable due

to locking. The penalty parameter was taken as 10+8 for the simulations. It is

recommended to use a sufficiently large value of the penalty parameter to reach

convergence in the velocity vector solutions, often the value is chosen as a trade
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off between the prediction accuracy of the velocity components against obtaining the

trivial solution of the equations (u = v = 0).

The boundary integrals were evaluated with a 4-point Gauss Quadrature with a

quadratic interpolation along the sides of the domain. The boundary condition for

the flow problem required the specification of the velocity components on the right,

left, bottom, and, top faces of the domain. The left, right, and the bottom faces of the

domain were required to have both the velocity components specified to zero. This

was accomplished with zeroing out all the terms in the final assembled global finite

element matrix of the problem, except the diagonal terms which were set to unity for

these specific nodes, and the global b vector for the same nodes were all set to zero

(notation referring to solving for the linear system Ax = b). The top nodes required

the specification of the diagonal terms to unity, zeroing out all the other coefficients

of the respective equations and the specification of the b vector elements to the lid

velocity for the specific nodes. The singular points on the top corners of the domain

were specified to have zero velocity of the fluid. Initial conditions were specified at

the time plane t = 0, to have zero velocity vectors, a state of quiescence in the fluid.

E. Coupled Convective Heat Transfer

Convective heat transfer involves solving both the momentum and the heat transfer

equation with convective transport in a coupled fashion to determine the velocity

and the temperature profiles inside the domain of solution. The coupling between

the temperature and the velocity profiles make it a difficult problem to solve and

the two penalized momentum equations and the heat transfer equation have to be

solved in a segregated form. Thus two separate non-linear convergence criterion have

to be specified for the non-linear convergence of the temperature and the velocity
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predictions. Also separate linear matrix convergence criterion were also set for the

solution of the equations which were being solved in a segregated form.

The temperature partial differential equation for the generalized Navier-stokes

equations come into the formulation as follows;

ρece
∂T

∂t
+ ρfcf (u · ∇)T = [∇ (ke∇T )] (7.7)

The forcing function for the buoyancy driven convection is expressed as (repeated for

clarity):

F = −εµ
K

u− ρ
εFε√
K
‖u‖ u + ρεG (7.8)

where, the component of the forcing function G is defined as:

G = −gβ(T − T0) (7.9)

Here, g = ge2is the acceleration due to gravity, β is the thermal expansion coefficient,

and T0 is the average reference temperature of the system. It should be noted that

for the buoyancy driven convection example studied the term has been assimilated

with the pressure term and does not appear explicitly in the formulation thus. The

above equations along with the appropriate boundary and initial conditions define

the problem at hand. Conditions of insulated boundary at the sides of the enclosure

were simulated with the specification of a large value for the convective heat transfer

coefficient of 106.

Certain non-dimensional numbers had to be defined to characterize the flow in

two dimensions for the problem, namely the Darcy number (Da), Prandl number

(Pr), and the Rayleigh number (Ra) which are defined below;

Da =
(
K

L2

)
(7.10)
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Pr =

(
µρece
keρf

)
(7.11)

Ra =

(
gβ∆T 3ρece

keυ

)
(7.12)

Here, ke is the effective conductivity of the porous medium, ρece is the effective specific

heat of the porous medium, ∆T is the temperature difference between the two walls

of the cavity, and ν is the kinematic viscosity of the fluid. The above equations

define certain non-dimensional characteristics of the flow field for the buoyancy driven

convection problem and would be used in the following discussion.

The temperature equation was also discretized with bi-quadratic elements at the

element level. For low Ra numbers in the generalized Navier-Stokes equation there is

almost no derivation from the conduction solution and the temperature profiles along

the domain show a linear drop from the higher end wall temperature to the lower end

wall temperature. However, for increasing Rayleigh number there is a considerable

deviation from the conduction solution for the temperature solutions as the convective

effects dominate the solution. However, since the study deals with porous materials

there is a further consideration that needs to be taken into account. The effect of

porosity also reduces the convective currents inside the domain of the problem which

further reduces the temperature gradients in the cavity as opposed to the clear fluid

case.

Nusselt number was plotted along the wall of the cavity. The determination

of nusselt number needs some explanation as the evaluation of the above requires

some complex post-processing evaluations. Nusselt number is evaluated as a post-

processing operation on the primitive variables. The local Nusselt number is defined

by the following integral of the normal component of the temperature variation at
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the hotter (or colder) vertical wall [76];

Nu = −1

l

∫ l

0

∂T

∂x
(leftwall, y)dy (7.13)

Introducing the finite element approximation for the temperature which has already

been calculated (at the post processing stage);

Nu = −1

l

∫ l

0
Tk
∂Nk

∂x
(leftwall, y)dy (7.14)

Here, N denotes the shape function for the bi-quadratic element. This integration

when performed in the finite element context resolves to;

∂Nk

∂x
=

[
J∗11

∂ψk
∂ε

+ J∗12
∂ψk
∂η

]
(7.15)

where, [J∗11J
∗
22] denote the inverse of the Jacobian matrix for the element. The Jaco-

bian matrix is the transformation from the specific coordinate system for each finite

element to the master square finite element in the localized coordinates.

Thus, the Nu at the element level for each element resolves to the following

summation over the gauss points;

Nu =
1

l

10∑
kk=1

9∑
k=1

Tk

[
J∗11

∂ψk
∂ε

+ J∗12
∂ψk
∂η

]
wkk ‖Js‖ (7.16)

Js is the surface Jacobian for the finite element edge of the element, and wkk are the

Gauss weights, and l is the length of the side of the domain over which the integration

is carried out. A ten-point (10) Gauss-quadrature was used for the evaluation of the

above integral.

Local Nusslet number along the vertical wall of the cavity was evaluated along

with the average Nusselt number for the whole wall. The average Nusselt number is

the arithmetic average of the Nusselt numbers evaluated for all the edge elements.

Validation of the code developed for the solution of the partial differential equations
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was done before the results were generated. The code was first validated with the clear

fluid case (a high permeability and a porosity of 0.99) and, a very good agreement

with published literature [78] was found. The average Nusselt number evaluated for

the vertical wall for the clear fluid case for an Ra of 104 was found as 2.25 which shows

an excellent agreement with reported results for the same Ra number[75]. Also the

present value of the average Nusselt number for the clear fluid case for an Ra of

105 was found to be 4.89 which is slightly higher than the reported value of 4.77 by

Marshall et al. [77].

The porous cavity results were also checked for the validation of the code with

published literature. A very good agreement was found with the published results

with an average R-squared between the predictions at 0.98. Nithiarasu et al. [70]

have determined the average Nusselt number for the problem with a Da of 0.01, Ra

of 105, and a porosity of 0.40, and reported a value of 2.98 which was found to be

agreement with the present value of 3.19 for steady state for the same parameters.

Evaluations of the Nusselt number for a different boundary condition can be found

in Basak et al. [76].

F. Applications

A lot of research has been conducted in the areas of food drying in the context

of microwave heating, convective drying, infrared drying etc. The problem usually

involves coupled heat and moisture transport equations which can be solved with any

of the available discretization strategies. When porous materials are subjected to

intense drying there are considerable convective effects. In particular, in light of the

complex nature of the porous matrices, it is anticipated that there will be dominant

effects from convective effects in highly porous materials in particular when subjected
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to intense drying operations.

In-spite of the above mentioned literature that exists in the field, most of the

problems solved to date have been diffusive, heat and moisture transport equations

in two or three dimensions with some variants. There has not been much work

on considering convective effects inside a porous material when subjected to intense

drying. This work seeks to be a first step towards modelling convective effects in

these areas.

Drying problem also involves multi-phase flow transport with different phases of

the vapour and water convecting together inside the porous material matrix. The

vapour transport however small can contribute to an enhancement of the heat flux

transport inside the porous matrix as can the liquid water transfer. Consideration

of these effects have to be incorporated in a coupled fashion with the fluid flow and

the heat transfer equations. Some of the above mentioned considerations have been

addressed with some implicit averaging with the effective porosity and the perme-

ability of the porous media herein. Also an insight is to be gained on the behaviour

of the temperature fields inside the food matrix in the presence of convective effects

and as mentioned earlier the deviations from a pure conduction solution (with diffu-

sive transport) can be substantial. The deviations of the temperature field from the

purely convective fluid flow transport and in the presence of porous matrix also has

been brought out clearly.

G. Numerical Results

The dimensions of the cavity in were taken as a square of 1m × 1m. The hotter

vertical wall of the cavity was subjected to a temperature of 60 degree centigrade and

the colder side was maintained a temperature of 40 degree centigrade. The average
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temperature for the effects of the change in density of the fluid in a Boussinesq sense

was taken as the average of the above two temperatures at 40 degrees. Figure 51

Fig. 51. Transient evolution of average Nusselt number

presents the transient evolution of the average Nusselt number with time for the

convective heat transfer problem as presented earlier. As can be seen from the figure,

the Nusselt number reaches reaches a constant asymptotically. Figure 52 compares

the present results for the local variation of the Nusselt number along the vertical

wall of the cavity for the clear fluid case to the values obtained from Marshall et

al.[12] for an Ra of 104. There is a very good agreement between the two results

with an R-square of 0.998. The average Nusselt number for an Ra of 104 was found

to be 2.27 which is the same as reported by the above authors. The lower graph

presents the local variation of the Nusselt number along the wall for a Darcy number

of 0.01, and a porosity of 0.10, and Ra of 105. From this figure it is clear that there

is a considerable reduction in heat transfer due to the presence of the porous matrix
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Fig. 52. Nusselt number for different permeabilities

inside the domain of study as compared to if the domain was filled with a fluid only.

In spite of an increase in Ra by a factor of 10 the Nusselt number is still smaller

as compared to the fluid only case. The average Nusselt number for Ra 105, Darcy

number 0.01, and Prandtl number 1 was found to be 1.81. Figure 53 presents the

u-velocity at the midsection of the buoyancy driven cavity for the clear fluid case

along a horizontal line for an Ra of 105 and a Prandtl number of 1.0. Figure 54

compares the concomitant v-component of the velocity at the horizontal midsection

of the cavity for an Ra number of 105 and Pr of 1 along with published results of

Reddy[9]. There is a very good agreement between the two results with an R-square

of 0.999. Figure 55 compares the non-dimensional temperature predictions along

the horizontal midsection of the cavity with published results of Reddy [75] for Ra

of 105. In this case also, there is a very good agreement of the present results with

published results. Generalized Navier-Stokes equations resolves to the clear fluid case
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Fig. 53. u-velocity at mid-section of clear fluid

for a porosity of 0.999 and a very high Darcy number as mentioned earlier. Figure 56

presents the transient evolution of the velocity vectors inside the porous domain for

an Ra of 105, Da of 0.01 and a porosity of 0.10. It can be seen that most of the

development of the velocity inside the porous matrix occurs during the early stages

of the convective heat transfer problem after which some minor adjustment of the

velocity vectors continues till steady state is reached. The transient evolution of the

temperature profile inside the porous matrix for an Ra of 105, Da = 0.01, and a

porosity of 0.10 is presented in Figure 57. The temperatures distribution inside the

porous matrix takes considerable more time and the transient evolves all along the

time plane till it reaches a steady state as evident from the figure.
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Fig. 54. v-velocity at mid-section of clear fluid

Fig. 55. Non-dimensional temperature comparison with published results
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Fig. 56. Velocity vectors for the transient flowfield
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Fig. 57. Transient temperature contours
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CHAPTER VIII

HP LEAST SQUARES FORMULATIONS/APPLICATIONS

A. Introduction

We highlighted the usage of least squares formulations for solutions of Navier-Stokes

equations with different techniques, namely the Domain decomposition and Multi-

grid methods in earlier chapters. In this chapter we present the formulation for the

development of the stiffness matrices with the Picard method of linearisation for least

squares finite element methods (LSFEM) and also explore the usage of LSFEM for

the solutions of computational fluid dynamics problems like the flow past a cylinder,

and forward facing step. While doing so, we also highlight some of the weaknesses of

the formulation itself, and try to establish through applications, the lack of robust-

ness in correctly capturing pressure fields in particular in conjugation with fictitious

domain methods (FDM). A lot of research has been devoted to the usage of LSFEM

formulations for different applications. While in some cases LSFEM performs well,

LSFEM formulations have issues with capturing the correct metrics in a more gen-

eral setting. The formulation itself is very different in its basic premise of carrying

out a minimization statement for the solutions of the partial differential equations in

consideration. The main area of interest here is that while the method seeks to find

a global minimizer to the PDEs that are solved, there can be some local errors near

the boundary layers which can corrupt the pressure solutions for the whole domain

of interest. In addition, with the extensive meshing requirements that the method

needs as compared to the established Penalty finite element methods (which has

been misleadingly disputed by different researchers), makes this method a relatively

unattractive choice for the solutions of Navier-Stokes equations. The advantage that
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this method provides is the solution of a symmetric operator, which can easily be

alleviated if one uses any of the GMRES(k) or BiCGSTAB type solvers for solving

the un-symmetric systems that arise from the Penalty finite element formulations. In

the following section we detail the derivation of the stiffness matrices for the LSFEM,

and follow through with the CFD applications.

B. Method of Direct Substitution (Picard Method)

The Navier-Stokes equations in the first-order form are summarized below for the 2-D

case. The continuity equation (conservation of mass) is expressed as:

∂u

∂x
+
∂v

∂y
= 0 (8.1)

where (u, v) are the velocity components. The x-component of the momentum equa-

tion is expressed as;

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+
∂P

∂x
+

1

Re

∂ωz
∂y

= fx (8.2)

The y-component of the momentum equation is expressed as

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+
∂P

∂y
− 1

Re

∂ωz
∂x

= fy (8.3)

where the vorticity ωz is expressed in terms of the velocity components (u,v) as

ωz +
∂u

∂y
− ∂v

∂x
= 0 (8.4)

Here (fx, fy) denote the components of the body force vector and Re denotes the

Reynolds number.
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C. Least-Squares Functional

In the least-squares formulation, we construct the residuals of each equation and write

the sum of the squares of the residuals as the least-squares functional to be minimized.

We begin with the Navier-Stokes equation in the first-order form. The residuals of

equations [42] are given by

R1 =
∂uh
∂x

+
∂vh
∂y

(8.5)

R2 =
∂uh
∂t

+ uh
∂uh
∂x

+ vh
∂uh
∂y

+
∂Ph
∂x

+
1

Re

∂ωzh
∂y

− fx (8.6)

R3 =
∂vh
∂t

+ uh
∂vh
∂x

+ vh
∂vh
∂y

+
∂Ph
∂y

− 1

Re

∂ωzh
∂x

− fy (8.7)

R4 = ωzh +
∂uh
∂y

− ∂vh
∂x

(8.8)

where (uh, vh, Ph, ωzh) denote the finite element approximations of (u, v, P, ωz), re-

spectively. Before we proceed with the least-squares formulation, we must make some

approximations of the time-derivative terms and the non-linear terms. For a decou-

pled time-space formulation, i.e., the formulation in which the space and time are

approximated separately, the residuals Ri are replaced with their time-approximated

counterparts. Using single-step backward difference scheme, we can write the time

derivative of a variable w(x, y, t) as

ẇsh ≈
wsh − ws−1

h

∆t
, ∆t = ts − ts−1 (8.9)

where ws denotes the value w(x, y, ts). Then the residuals are linearized by assuming

that u(∂u/∂x), for example, is equal to ū(∂u/∂x), where ū is the value computed

using the previous iteration. Then the residuals R2 and R3 take the form;

R2 =
ush − us−1

h

∆t
+ ūsh

∂ush
∂x

+ v̄sh
∂ush
∂y

+
∂P s

h

∂x
+

1

Re

∂ωszh
∂y

− f sx (8.10)
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R3 =
vsh − vs−1

h

∆t
+ ūsh

∂vsh
∂x

+ v̄sh
∂vsh
∂y

+
∂P s

h

∂y
− 1

Re

∂ωszh
∂x

− f sy (8.11)

The least-squares functional for a typical finite element Ωe is;

Ie(ush, v
s
h, ω

s
zh, P

s
h) =

∫
Ωe

(R1
2 +R2

2 +R3
2 +R4

2)dxdy (8.12)

The necessary condition for the minimum of Ie is

δIe(ush, v
s
h, ω

s
zh, P

s
h) = 2

∫
Ωe

(
R1 δR1 +R2 δR2 +R3 δR3 +R4 δR4

)
dxdy

= 2
∫
Ωe

[(
∂ush
∂x

+
∂vsh
∂y

)(
∂δush
∂x

+
∂δvsh
∂y

)

+
(
ush − us−1

h

∆t
+ ūsh

∂ush
∂x

+ v̄sh
∂ush
∂y

+
∂P s

h

∂x
+

1

Re

∂ωszh
∂y

− f sx

)
×
(
δush
∆t

+ ūsh
∂δush
∂x

+ v̄sh
∂δush
∂y

+
∂δP s

h

∂x
+

1

Re

∂δωszh
∂y

)

+
(
vsh − vs−1

h

∆t
+ ūsh

∂vsh
∂x

+ v̄sh
∂vsh
∂y

+
∂P s

h

∂y
− 1

Re

∂ωszh
∂x

− f sy

)
×
(
δvsh
∆t

+ ūsh
∂δvsh
∂x

+ v̄sh
∂δvsh
∂y

+
∂δP s

h

∂y
− 1

Re

∂δωszh
∂x

)
+
(
ωszh +

∂ush
∂y

− ∂vsh
∂x

)(
δωszh +

∂δush
∂y

− ∂δvsh
∂x

)]
dxdy (8.13)

Collecting the coefficients of δuh, δvh, δPh, and δωz separately, and setting the ex-

pressions to zero (because of the linear independence of the variations), we obtain;

0 =
∫
Ωe

[
∂δush
∂x

(
∂ush
∂x

+
∂vsh
∂y

)
+
(
δush
∆t

+ ūsh
∂δush
∂x

+ v̄sh
∂δush
∂y

)

×
(
ush − us−1

h

∆t
+ ūsh

∂ush
∂x

+ v̄sh
∂ush
∂y

+
∂P s

h

∂x
+

1

Re

∂ωszh
∂y

− f sx

)
+
∂δush
∂y

(
ωszh +

∂ush
∂y

− ∂vsh
∂x

)]
dxdy (8.14)

0 =
∫
Ωe

[
∂δvsh
∂y

(
∂ush
∂x

+
∂vsh
∂y

)
+
(
δvsh
∆t

+ ūsh
∂δvsh
∂x

+ v̄sh
∂δvsh
∂y

)

×
(
vsh − vs−1

h

∆t
+ ūsh

∂vsh
∂x

+ v̄sh
∂vsh
∂y

+
∂P s

h

∂y
− 1

Re

∂ωszh
∂x

− f sy

)
−∂δv

s
h

∂x

(
ωszh +

∂ush
∂y

− ∂vsh
∂x

)]
dxdy (8.15)
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0 =
∫
Ωe

[
∂δP s

h

∂x

(
ush − us−1

h

∆t
+ ūsh

∂ush
∂x

+ v̄sh
∂ush
∂y

+
∂P s

h

∂x
+

1

Re

∂ωszh
∂y

− f sx

)

+
∂δP s

h

∂y

(
vsh − vs−1

h

∆t
+ ūsh

∂vsh
∂x

+ v̄sh
∂vsh
∂y

+
∂P s

h

∂y
− 1

Re

∂ωszh
∂x

− f sy

)]
dxdy(8.16)

0 =
∫
Ωe

[
1

Re

∂δωszh
∂y

(
ush − us−1

h

∆t
+ ūsh

∂ush
∂x

+ v̄sh
∂ush
∂y

+
∂P s

h

∂x
+

1

Re

∂ωszh
∂y

− f sx

)

− 1

Re

∂δωszh
∂x

(
vsh − vs−1

h

∆t
+ ūsh

∂vsh
∂x

+ v̄sh
∂vsh
∂y

+
∂P s

h

∂y
− 1

Re

∂ωszh
∂x

− f sy

)
+δωszh

(
ωszh +

∂ush
∂y

− ∂vsh
∂x

)]
dxdy (8.17)

D. Picard Method LSFEM Stiffness Matrices

The following decoupled time-space finite element approximation of the field variables

(uh, vh, Ph, ωzh) is assumed:

ush =
n∑
j=1

uj(ts)ψj(x, y), vsh =
n∑
j=1

vj(ts)ψj(x, y), (8.18)

P s
h =

m∑
j=1

Pj(ts)φj(x, y), ωszh =
p∑
j=1

ωzj(ts)ϕj(x, y) (8.19)

Here, m, n, and p denotes the number of nodes in the element used for the velocity

field, pressure, and vorticity, respectively. Substitution of the finite element approxi-

mations from the above equation into the least-squares statements gives the following

least-squares finite element model:

[M11] [0] [M13] [M14]

[0] [M22] [M23] [M24]

[M31] [M32] [0] [0]

[M41] [M42] [0] [0]





{u}

{v}

{P}

{ω}



s

+



[K11] [K12] [K13] [K14]

[K21] [K22] [K23] [K24]

[K31] [K32] [K33] [K34]

[K41] [K42] [K43] [K44]





{u}

{v}

{P}

{ω}



s
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=



{G1}+ {F 1}

{G2}+ {F 2}

{F 3}

{F 4}


+



[M̃11] [0] [0] [0]

[0] [M̃22] [0] [0]

[M̃31] [M̃32] [0] [0]

[M̃41] [M̃42] [0] [0]





{u}

{v}

{P}

{ω}



s−1

(8.20)

where;

M11
ij =

1

∆t

∫
Ωe

[
1

∆t
ψiψj + ψi

(
ūh
∂ψj
∂x

+ v̄h
∂ψj
∂y

)]
dxdy,

M13
ij =

1

∆t

∫
Ωe

ψi
∂φj
∂x

dxdy, M14
ij =

1

Re∆t

∫
Ωe

ψi
∂ϕj
∂y

dxdy,

M22
ij =

1

∆t

∫
Ωe

[
1

∆t
ψiψj + ψi

(
ūh
∂ψj
∂x

+ v̄h
∂ψj
∂y

)]
dxdy,

M23
ij =

1

∆t

∫
Ωe

ψi
∂φj
∂y

dxdy, M24
ij = − 1

Re∆t

∫
Ωe

ψi
∂ϕj
∂x

dxdy,

M31
ij =

1

∆t

∫
Ωe

∂φi
∂x

ψj dxdy, M32
ij =

1

∆t

∫
Ωe

∂φi
∂y

ψj dxdy,

M41
ij =

1

Re∆t

∫
Ωe

∂ϕi
∂x

ψj dxdy, M42
ij =

1

Re∆t

∫
Ωe

∂ϕi
∂y

ψj dxdy,

M12
ij = M21

ij = M33
ij = M34

ij = M43
ij = M44

ij = 0,

M̃11
ij = M̃22

ij =
(

1

∆t

)2 ∫
Ωe

ψiψj dxdy,

M̃31
ij =

1

∆t

∫
Ωe

∂φi
∂x

ψj dxdy, M̃32
ij =

1

∆t

∫
Ωe

∂φi
∂y

ψj dxdy,

M̃41
ij =

1

Re∆t

∫
Ωe

∂ϕi
∂y

ψj dxdy, M̃42
ij = − 1

Re∆t

∫
Ωe

∂ϕi
∂x

ψj dxdy,

K11
ij =

∫
Ωe

[
∂ψi
∂x

∂ψj
∂x

+
∂ψi
∂y

∂ψj
∂y

+
(
ūh
∂ψi
∂x

+ v̄h
∂ψi
∂y

)(
ūh
∂ψj
∂x

+ v̄h
∂ψj
∂y

)]
dxdy,

K12
ij =

∫
Ωe

(
∂ψi
∂x

∂ψj
∂y

− ∂ψi
∂y

∂ψj
∂x

)
dxdy, K13

ij =
∫
Ωe

(
ūh
∂ψi
∂x

+ v̄h
∂ψi
∂y

)
∂φj
∂x

dxdy,

K14
ij =

∫
Ωe

[
∂ψi
∂y

ϕj +
1

Re

(
ūh
∂ψi
∂x

+ v̄h
∂ψi
∂y

)
∂ϕj
∂y

]
dxdy,

K21
ij =

∫
Ωe

(
∂ψi
∂y

∂ψj
∂x

− ∂ψi
∂x

∂ψj
∂y

)
dxdy = K12

ji ,

K22
ij =

∫
Ωe

[
∂ψi
∂x

∂ψj
∂x

+
∂ψi
∂y

∂ψj
∂y

+
(
ūh
∂ψi
∂x

+ v̄h
∂ψi
∂y

)(
ūh
∂ψj
∂x

+ v̄h
∂ψj
∂y

)]
dxdy

K23
ij =

∫
Ωe

(
ūh
∂ψi
∂x

+ v̄h
∂ψi
∂y

)
∂φj
∂x

dxdy,
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K24
ij = −

∫
Ωe

[
∂ψi
∂x

ϕj +
1

Re

(
ūh
∂ψi
∂x

+ v̄h
∂ψi
∂y

)
∂ϕj
∂x

]
dxdy,

K31
ij =

∫
Ωe

∂φi
∂x

(
ūh
∂ψj
∂x

+ v̄h
∂ψj
∂y

)
dxdy = K13

ji ,

K32
ij =

∫
Ωe

∂φi
∂y

(
ūh
∂ψj
∂x

+ v̄h
∂ψj
∂y

)
dxdy = K23

ji ,

K33
ij =

∫
Ωe

(
∂φi
∂x

∂φj
∂x

+
∂φi
∂y

∂φj
∂y

)
dxdy

K34
ij =

1

Re

∫
Ωe

(
∂φi
∂x

∂ϕj
∂y

− ∂φi
∂y

∂ϕj
∂x

)
dxdy = K43

ji

K41
ij =

∫
Ωe

[
ϕi
∂ψj
∂y

+
1

Re

∂ϕi
∂y

(
ūh
∂ψj
∂x

+ v̄h
∂ψj
∂y

)]
dxdy,

K42
ij = −

∫
Ωe

[
ϕi
∂ψj
∂x

+
1

Re

∂ϕi
∂x

(
ūh
∂ψj
∂x

+ v̄h
∂ψj
∂y

)]
dxdy,

K43
ij =

1

Re

∫
Ωe

[
∂ϕi
∂y

∂φj
∂x

− ∂ϕi
∂x

∂φj
∂y

]
dxdy,

K44
ij =

∫
Ωe

1

Re2

(
∂ϕi
∂x

∂ϕj
∂x

+
∂ϕi
∂y

∂ϕj
∂y

)
+
[
ϕiϕj

]
dxdy

G1
i =

∫
Ωe

1

∆t
ψif

s
x dxdy, F 1

i =
∫
Ωe

(
ūh
∂ψi
∂x

+ v̄h
∂ψi
∂y

)
f sx dxdy

G2
i =

∫
Ωe

1

∆t
ψif

s
y dxdy, F 2

i =
∫
Ωe

(
ūh
∂ψi
∂x

+ v̄h
∂ψi
∂y

)
f sy dxdy

F 3
i =

∫
Ωe

(
∂φi
∂x

f sx +
∂φi
∂y

f sy

)
dxdy, F 4

i =
1

Re

∫
Ωe

(
∂ϕi
∂y

f sx −
∂ϕi
∂x

f sy

)
dxdy (8.21)

The above completes the least-squares finite element formulation for the problem with

the Picard method of linearization.

E. Fictitious Domain Method

Fictitious domain method (FDM) is a technique of resolving the motion of particles

inside a fluid, where the motion of the fluid is extended inside the particle with

the help of rigid body motion. The fluid motion is governed by the Navier-Stokes

equations and the particle motion is obtained with the hydrodynamic integration of

the forces and torques on the particle. The governing equations for the fluid motion
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are the incompressible Navier-Stokes equations for laminar flows; expressed in the

first order form as has been presented before. The total stress tensor in the fluid

phase is expressed as;

σ = −pI +
1

Re

[
5u +5uT

]
(8.22)

In the above, I is the identity tensor, Re is the Reynolds number for the flow, p is

the pressure, and u is the velocity of the fluid. The evaluation of the drag and the

lift on the immersed object can be obtained with the help of these forces integrated

over the surface area, or alternatively the volume of the object immersed in the fluid.

Fp = −
∫
Γp

σ · n dΓ (8.23)

and, the torque integrated over the domain of interest is evaluated as;

Tp =
∫
Γp

(x− xp)× σ · n dΓ (8.24)

where, Tp = Ωp(i) is the boundary of the particle p. For a generic particle in the

flow fluid, the particle can be in motion both in linear translational motion as well as

rotation. The motion of the particle is obtained from the Newton’s law and since we

are only dealing with stationary particles we will not present the governing equations

for the above. However, the motion of the particle once obtained (for stationary

particles the translational velocities and angular velocity are both zero), are extended

inside the rigid particles with the help of kinematic equations of fluid motion as

follows;

u(U) = Ui + ωi × (X−Xi) (8.25)

As a first approximation of stationary circular particle in the flow field can be inter-

preted as flow past a cylinder. We constructed the surface of the cylinder, with the

impositions of the velocity boundary conditions. Both the u, and v components of
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the velocity vector U were specified to be identically equal to zero. It was assumed

that LSFEM should pick up the correct values of the non-zero pressures inside the

particle, and the flow around the cylinder would be replicated faithfully. To avoid

the evaluation of the surface integrals to obtain the hydrodynamic integration of the

forces and the torque in the particle, the phase indicator function is introduced. The

introduction of this function converts the time-consumptive surface tracking and eval-

uation problem into an area integral in two dimensions. The phase indicator function

is obtained as follows;

αi(X) =


1 X ∈ Ωi

0 X ∈ ΩΓ Ωi

(8.26)

Based on the above assumptions and FDM procedure, we applied LSFEM based

Fictitious Domain Method implementation for studying the flow past a cylinder.

F. Flow Past a Cylinder at Low Reynolds Number

The problem considered here is the steady incompressible flow past a cylinder de-

scribed with the Fictitious Domain method, with the specification of the velocity

boundary conditions. The Reynolds numbers studied for this problem are both 20 and

40. For the Reynolds number of 20 we consider the domain of interest as [0, 0]×[25, 20].

A cylinder of unit diameter (1) is present at the location [10.0, 10.0]. The x-component

of the inlet velocity is specified to be equal to 1.0 and the y-component (v) is set equal

to zero. Symmetry boundary conditions, of ω = 0, and v = 0, are imposed on the top

and the bottom walls. The outflow boundary conditions are imposed in a weak sense

through the least-squares functional. With the imposition of the symmetry boundary

condition we increase the y-dimension of the domain to twice the stated value. Dur-

ing the minimization statement of the least squares functional we added a weight of

100 into the continuity equation, to enforce better mass conservation as least squares
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formulations suffer from extensive loss of mass. It has been misleadingly reported by

some researchers that loss of mass can be mitigated easily with the usage of higher

order element methods, however one has to be wary with such concepts. Since, the

loss of mass is highly problem dependent. For a new problem, just using a very high

order expansion will perhaps work to mitigate the loss of mass for some problems,

but not all of them.

The non-linear convergence criterion was set at a reduction in the norm of the

residual with respect to the initial at a value of 10−03. The linear convergence crite-

rion was set at a reduction in the conjugate gradient residual to 10−06. Picard method

of linearization was used for the solution of the problem. It took four non-linear it-

erations to converge. Both the pressure and velocity non-linear residuals converged

to the tolerance set. The total degrees of freedom that were solved for this problem

were 52164 and there were a total of 800 elements on the Cartesian product grid that

was set up. The usage of a uniform Cartesian grid for the solution of problems with

fictitious domain method has been explored as the main advantage of this method

over body fitted meshes. Figure 58 presents the closeup of the mesh with finer ele-

ments near the location of the cylinder, with a fixed rectangular mesh without body

fitted mesh. Also, the figure presents the development of the wake near the cylinder,

which is shown with streamline plots. The length of the wake obtained with the

fictitious domain method was found 1.2 units in length or alternatively, equivalent to

2.4 cylinder radii. The wake length is slightly higher than the value of 1.88 cylinder

radii, as reported by Dennis and Chang. The reason for this difference can also be

felt in 15% loss of mass that was reported at the exit of the domain ahead of the

presence of the cylinder in the flow field. As can be expected for this huge domain,

the exit velocity at the exit of the channel should recover to the undisturbed value

at the inlet, however a loss of mass with the minimum value of 0.85 velocity was



203

Fig. 58. Re=20, development of wake with FDM

reported for this case for a small strip of elements ahead of the cylinder location in

the domain.

For the Reynolds number of 40 we consider the domain of interest as [0, 0] ×

[46, 41]. A cylinder of unit diameter (1) is present at the location [15.5, 20.5]. There

were a total of 309444 degrees of freedom in the mesh with a total of 4800 elements.

The plevel used for this problem was set at a value of 4. Non-linear convergence was

declared when the residuals reduced to a value of 10−03. No weight was added to the

continuity equation and the least squares finite element formulation was minimized

without the consideration of the weight into the functional. The pressure contour
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Fig. 59. Re=40, development of wake with FDM

plots and the development of the wake at a higher Reynolds number of Re = 40

are reported in Figure 59. The wake length in this case was found to be around 3.0

units, which is also an overestimation of the wake length that has been reported to

be around 4.69 cylinder diameter or 2.3, in length. This overestimation of the wake

length in both the cases tested, points to the fact that least squares finite element

method performs relatively poorly to the imposition of the velocity boundary con-

ditions. The fictitious domain method approach coupled with LSFEM formulations

does not provide excellent results, although they may be considered acceptable for

engineering analysis, and there is some smearing of the wake over the domain because
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of inadequate resolution of the pressure fields near the boundary layers.

G. Forward Facing Step

In this section we consider another geometry namely that of the forward facing

step [79]- [80]. The Navier-Stokes equations are set to be valid inside the domain

of interest, which has a large contraction region. Of main interest is to be able to

check the performance of the least squares finite element methods, for solving this

’difficult’ contraction problem. The problem under consideration is that of a channel

of height H through which the flow occurs, and in the presence of a constriction of

height h [81]-[82]. Due to the presence of the constriction the flow is perturbed which

is initially coming from the left, and after the constriction comes out from the right,

where the channel height is H − h. Let, r = h/H be restriction ratio, namely the

ratio of the height of the step height, and the inlet channel height. Only one value

of the restriction ratio, r = 0.50 was studied for this presentation. The Reynolds

number is defined here as the ratio;

Re =
ρUrefLref

ν
(8.27)

In the above case, ν is the viscosity of the fluid, and ρ is the constant density of

the fluid. All quantities are normalized with respect to the bulk velocity of the fluid

entering the forward facing step which is taken as; Uref = (2/3)UC , where UC is

the centerline velocity of the plane incoming Poiseuille flow. At the solid walls, no

penetration and no slip conditions were employed. At the outlet to the flow the

outflow boundary conditions were employed in a weak sense into the least squares

functional. It is seen that the incoming Poiseuille parabola is deformed in the step

region, but is re-established at the outflow region [83].
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The length of the entrance region was taken at 2 units. The length after the step

was set at 20 [84]. The total entrance region height H on the left side was set at 2.

The height of the step h was taken as 1. The Reynolds number of the incoming flow

was set at 100. The problem was discretized with a set of 2590 spectral elements,with

Fig. 60. u-velocity and pressure contours, Re=100

a discretization of 35 × 30 elements, in the cavity before the front end of the step,

and 35 × 22 elements after the step. The plevel of 5 was used inside each element.

The total number of degrees of freedom in the problem were 261444. The problem

was solved with the Picard method of linearization. The problem took 8 iterations

to converge to a tolerance set at 10−03. Figure 60 presents the u-velocity and the
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pressure contours inside the step at a Reynolds number of 100. Figure 61 presents

Fig. 61. v-velocity and vorticity contours, Re=100

the v-velocity and the vorticity inside the step geometry. As can be seen from the

figure, the unboundedness of the vorticity at the front corner of the step is captured

correctly, and demonstrates a high value of −150.57. This corner singularity was

handled with an appropriate mesh refinement near the front edge of the step. For

studying the problem for a higher reynolds number flow we increased the Reynolds

number to 450. For this case, the mesh and the u-velocity contours are presented

in Figure 62. This figure also presents the streamline plots inside the forward facing

step for Re = 450. The reattachment zone on the top of the step is also visible for
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Fig. 62. Mesh and u-velocity contours, Re=450

this case for the higher Reynolds number [85]. Some of these results are being refined

at the moment and this is an active area of research at present.
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CHAPTER IX

CONCLUSION

A. Summary and Conclusion

In this presentation we covered the applications of higher order spectral hp element

methods to solving different problems in both structures and computational fluid

dynamics areas. We covered the usage of higher order methods for solving problems as

encountered with both the mixed and displacement based models for the Timoshenko

and Euler-Bernoulli beam theories in chapter II, followed by the usage of such methods

for studying plate bending in two dimensions in chapter III. We also considered both

isotropic and orthotropic plates, subject to different types of boundary conditions.

We considered both linear and non-linear analysis for isotropic plates and orthotropic

plates. In chapter IV we considered the usage of such methods for the solutions

of large deformation analysis problems with the Updated Lagrangian analysis, for

continuum based deformation analysis. We considered both linear and non-linear

analysis for large deformation analysis.

Following such studies, we explored the usage of fast linear solvers for the solu-

tions of huge linear systems that arise in course of solutions of Computational fluid

dynamics applications. In this context, we explored the usage of element by element

bi-orthogonal conjugate gradient solvers and domain decomposition techniques for

solutions of both symmetric and non-symmetric operators in chapter V that occur

with the p version of finite element analysis. The parallel implementation aspects for

the above methods were also illustrated with ideal to super ideal speedups reported

for both the methods studied. In chapter VI we studied the usage of multigrid meth-

ods for fast solutions of linear systems as obtained from p-version least squares finite
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element methods. In this case also we obtained ideal to very good speedups with high

performance gains over serial computations of the same. A matrix free technique was

used to solve the coarse grid problem making the formulation completely independent

of the size of the problem.

In chapter VII we explored the usage of Penalty finite element methods for solving

the porous media problem in two dimensions. The usage of Generalized Navier-Stokes

equations was explored for solving the coupled convective heat transfer problem along

with studying such flows in porous bodies. Both transients, and steady state analysis

were studied in the context of Penalty finite element methods. Finally, in chapter

VIII we study the usage of least squares finite element methods for the solutions of

CFD problems in two dimensions in conjugation with the Fictitious Domain methods

and otherwise. In this section we also highlight some of the weaknesses of LSFEM in

not capturing the correct pressure metrics for this problem. Further we explore the

usage of LSFEM for solving the forward facing step problem.

In summary we demonstrated the usage of higher order methods for studying

various different problems as encountered in different areas in engineering. In addition

we also explore three different parallel implementations of fast linear solvers which are

used extensively in CFD applications with p version SEM methods. In addition the

usage of LSFEM, in particular the caution that needs to be exercised while applying

LSFEM to new problems are also highlighted in the last chapter. Some of the latest

sections of this dissertation are the object of current research efforts and is in a

developing stage.
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