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ABSTRACT 

 

Engineering Geologic Assessment of Risk to Visitors: Canyon Lake Gorge, Texas. 

 (May 2010) 

Benjamin David Kolkmeier, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Christopher Mathewson 

 

    Presented here are the results of a study of geological hazards conducted in Canyon 

Lake Gorge of Central Texas. Canyon Lake Gorge formed in 2002 when the emergency 

spillway of Canyon Lake was overtopped.  Since that time, the gorge has been opened to 

public tours, and the organization governing the gorge has expressed concern regarding 

visitor safety.  The surveys in this study gathered data through field observations and 

supplemented those data with non-destructive tests from an impact test hammer.  The 

goal of this study was to gather original field data on potential hazards of the gorge with 

the hope that insight from these data could be used to enhance visitor safety in the gorge. 

    The field observations made in this study identified the presence of undercut rock 

ledges that could present varying degrees of risk to visitors.  Easily eroded clayey 

wackestone facilitated formation of these potential hazards.  Lithologies such as 

packstone and grainstone serve to form ledges atop the wackestone.  Preexisting 

fractures and joints in the ledge forming rock, which compound the danger of the 

unstable masses of undercut ledges, provide failure planes.  This study identified current 

areas of unstable masses by location and differentiates the degree of risk present at each 
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location, using simplified classes of low, medium, and high risk.  Level of risk was 

determined primarily by the potential injuries incurred.  Often, the height was dependent 

upon the thickness of an easily eroded wackestone bed that undercuts ledge forming 

rock.   

    Canyon Lake Gorge is a young and dynamic geomorphological environment seeking 

equilibrium through gravity facilitated erosional events.  In time, natural formation of 

riser beds will mitigate the potential hazards of some undercut ledges.   

    Based on the potential hazards identified in Canyon Lake Gorge, four safety 

recommendations are proposed:  

• Visitors should always be guided by trained personnel.  This practice is in place.  

• Visitors should be educated on the dangers of Canyon Lake Gorge before entering.   

• Unavoidable hazards should be evaluated for ways to mitigate risk.   

• The gorge should be continually monitored to insure safety of the visiting public. 
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INTRODUCTION: CANYON LAKE GORGE 
 

    Canyon Lake Gorge was formed as the result of a major erosional event in 2002 when 

a low pressure system stalled over the Guadalupe River Basin, causing large amounts of 

precipitation, resulting in flood waters overtopping Canyon Lake and scouring out the 

associated emergency spillway (CCEO, 2002a).  The gorge that formed is a attractive 

environment exposing attractive geomorphic formations, fossils and geology.  Since the 

flood, the area of land encompassing the gorge was leased to the Guadalupe Blanco 

River Authority (GBRA) to manage tourist interest and related educational 

opportunities.  Inherent in managing Canyon Lake Gorge and allowing visitors to tour 

the gorge is the responsibility of visitor safety.  This study is an investigation into the 

potential natural hazards of Canyon Lake Gorge, accomplished at the encouragement of 

the GBRA through a personal communication to Dr. Mathewson of Texas A&M 

University.  The intent of this research is to enhance visitor safety in Canyon Lake 

Gorge through identifying the potential geologic hazards of the gorge (Figure 1).      

    This study is concerned only with the geologic hazards of the gorge, and is not 

concerned with other potential hazards such as slipping, insects, and the possibility of 

snake bites. 

 

 

 

______________ 
This thesis follows the style of Environmental & Engineering Geoscience. 



 

 

2

Furthermore, an engineering geologic approach was taken during the field work of this 

study, meaning stratigraphy was classified into general classes with the focus on the 

strength and weathering characteristics of the lithology.  For an in depth discussion of 

the stratigraphy of Canyon Lake Gorge, please refer to Ward and Ward’s 2007 work.  

 

 
Figure 1.  Canyon Lake Gorge. 
 
 

    Canyon Lake Gorge is located by Canyon Lake in Comal County of central Texas on 

the Guadalupe River, approximately 24 km (15 mi) north west of New Braunfels (Figure 

2).   
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Figure 2.  Texas Road Map.  Canyon Lake is located west of San Marcos (Google). 
 
 
 
    The creation of Canyon Lake Gorge would not have been possible without the 

construction of the Canyon Lake dam and reservoir, which is an earth filled dam 

completed in 1964 by the U.S. Army Corps of Engineers (CCEO) (Figure 3).  The 

reservoir serves multiple purposes by protecting the land of the Lower Guadalupe River 

from floods, aiding the management of water resources, and providing economic 

stimulation to the surrounding area through recreational tourism.  Foremost among the 

reasons of constructing Canyon Lake is flood control.  West of Canyon Lake, the upper 

portion of the Guadalupe River flow is bounded by high canyon walls that can safely 

conduct large flows of 1415 m3 per second or 50,000 ft3 per second (cfs).  However, the 

Lower Guadalupe channel can safely channel only one-third the capacity of the Upper 

Guadalupe, resulting in the need for water management to prevent the Lower Guadalupe 

from floods (CCEO, 2002a).  



 

 

4

 

 
Figure 3.  Pre-flood aerial photo of Canyon Lake (CCEO, 2002b).  Spillway featured at 
bottom left, dam featured on the right.  View is towards the northwest.  Photo courtesy 
Comal County Corp of Engineers Office. 
 
 
 
    The design specifications of the Canyon Lake reservoir allows for flow from the 

Upper Guadalupe to accumulate in Canyon Lake while being released into the Lower 

Guadalupe River at a safe rate.  The dam is capable of releasing 141.5 m3/s (5,000 cfs), 

but the lake is designed with an emergency spillway to prevent water from overtopping 

the dam.  The site of the emergency spillway was selected to take advantage of an 

existing shallow valley that drains east into the Lower Guadalupe River (Figure 4). 

Although the emergency spillway was used in 2002, that was the solitary occurrence.  

Canyon Lake successfully managed the flow of the Upper Guadalupe without resorting 

to use of the emergency spillway during rain storms in 1978, 1987, 1991, 1992 and 1997 

(CCEO, 2002a).  . 
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Figure 4.  Pre-flood topographic map showing the dam and spillway.  The spillway takes 
advantage of a preexisting drainage valley.  USGS 1994 map (http://store.usgs.gov). 
 
 

     In July of 2002, the Canyon Lake emergency spillway was used for the first time.  A 

low-pressure weather system stalled over the Upper Guadalupe watershed, causing rain 

in excess of 88.9 cm (35 in).  During the night of July 4, water breached the spillway for 

the first time in the history of Canyon Lake.  On July 6, Canyon Lake reached 289 m 

(950.32 ft) above mean sea level (msl), 2 m (7 ft) above the spillway crest of 287 m (943 

ft) above msl, and 13 m (42 ft) above the designed conservation level of 277 m (909 ft) 

above msl (CCEO, 2002a).  Flow over the spillway at this point is approximated at 1,891 

m3/s (66,800 cfs) (CCEO, 2002b).  For reference, the Guadalupe is considered to be at 

average flow around 8.5 m3/s (300 cfs), whereas any flow greater than 15.5 m3/s (550 

cfs) the river is considered to be hazardous for typical recreational use.  For six weeks 



 

 

6

after overtopping the spillway, water continued to flow until the water level of the lake 

receded below the spillway crest (Figure 5, Figure 6).   

    In the short period of time flood waters flowed over the spillway, Canyon Lake Gorge 

was scoured out of the previously shallow valley.  Immediately the gorge was an 

attraction to both the general public and scientists.  The area of Canyon Lake Gorge was 

leased from the Corp of Engineers to the Guadalupe Blanco River Authority (GBRA).  

Under the management of the GBRA, the gorge has become an excellent geologic 

teaching area, as well as a tourist attraction.  The Guadalupe Blanco River Authority 

(GBRA) opened the gorge in late 2007 to guided educational tours.  Since the opening of 

the gorge to the public, the GBRA has expressed concern about the risks inherent to the 

unstable masses of rock present in the gorge.  This concern has led the GBRA to require 

any visitors to the gorge to sign an injury release form prior to entering the gorge, and to 

authorize this engineering geologic investigation into slope stability and other potential 

hazards that put the visiting public at risk.  
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Figure 5.  Photo showing flood waters overtopping the spillway 
(http://www.cceo.org/FloodPics/index.htm, 2002).  Canyon Lake Dam is seen in 
background.  Comal County Engineers Office.  
 

 
Figure 6.  Photo showing flow directed over the breached spillway 
(http://www.cceo.org/FloodPics/index.htm, 2002).  Flow is through the shallow valley 
towards the Guadalupe River.  View is towards the East.  Comal County Engineers 
Office. 
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OBJECTIVE 
 
 

The objective of this study is to investigate potential geomorphic hazards affecting 

public safety in Canyon Lake Gorge, and to provide information for mitigating risks to 

future visitors.  Preliminary observation of Canyon Lake Gorge completed in this study 

indicated different gravity driven erosional processes to be present and active (Figure 7).   

 

 
Figure 7.  Rock fall process. 
 
 

    Rock falls and toppling of rock blocks were indicated by large blocks of rock strewn 

at the base of ledges and small cliffs.  The aforementioned unstable masses of rock can 
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be a danger to personal safety if presently active.  These processes are the focus of this 

study.  

Specific objectives include: 

• Investigate the factors involved in the flooding event that led to the creation of the 

geomorphology of Canyon Lake Gorge; 

• Identify slope processes present in the gorge that may result in a hazard to visitors; 

• Identify erosional processes that may lead to formation of new unstable masses; 

• Investigate relationships between the geometry of the unstable formations and the 

sequence stratigraphy;  

• Locate and classify by risk the geomorphic hazards in the gorge to assist the 

GBRA to enhance visitor safety; and 

• Provide a visitor safety training program for tour guides to present to visitors. 

 

Investigation 

 

The GBRA allowed Texas A&M University access to the gorge in May and August of 

2008.  Since 2002, the GBRA permits research within the 64 acres of land that 

encompass Canyon Lake Gorge, but, in the interest of preserving the gorge, removing 

rock or fossils is prohibited.  Under these guidelines, all data were obtained through field 

observations and non-destructive field tests.  The area of study encompassed a 1.6 km (1 

mile) long reach of the gorge used for educational tours.  Whereas this study was not 

restricted to a particular reach of the gorge, the benefit of this study was maximized by 
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focusing on the areas adjacent to the pathway used to guide visitors through the gorge.  

By investigating pathway adjacent areas, potential geomorphological hazards that could 

affect visitors would be recognized.  By locating potential hazards, the GBRA can in the 

future mitigate the located potential hazards through professional planned construction 

stabilizing the hazard, or avoid the potential hazards by altering the pathway used to 

guide visitors. 

    Current literature specific to Canyon Lake Gorge is limited because of the short 

duration of the existence of the gorge.  Past studies have accomplished comprehensive 

analysis of the 2002 flood circumstances and the metrics of the gorge (CCEO, 2002a; 

Wilkerson and Schmid, 2007).  Wilkerson and Schmid (2007) have measured the length 

of Canyon Lake Gorge to be 1,310.64 m (4,300 ft), and determined the flood displaced 

approximately 481,385.6 m3 (17,000,000 ft3) of bedrock from the gorge.  As of April 

2007, scientists from the Southwest Research Institute have been conducting an in-depth 

study of the stratigraphy of Canyon Lake Gorge, and the associated Hidden Valley Fault 

which trends the length of the gorge (Southwest Research Institute, 2007).  Currently, 

data they have gathered are not available to the public, but recently Ferrill and Morris 

(2008) authored a study using Canyon Lake Gorge as a study area. 

    Prior to the flood of 2002, the shallow drainage valley  that was the emergency 

spillway of Canyon Lake had an elevation drop of 43.5 m (143 ft)  from the spillway 

crest to the south access road (Figure 8).  This drop in elevation occurred over a distance 

of 1,392 m (4,569 ft), resulting in a gradiant of 0.0312.  Recalling that the water level 

overtopped the spillway by an additional 2.1 m (7 ft), the top of the flood waters had 
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45.7 m (150 ft)  in elevation of which to accelerate in velocity of flow from the crest to 

the base of the spillway.    

Given  mghmvbottom =2

2
1

, 
s
m

m
s
m

ghvbottom 9.297.45*8.922
2

=∗==  

 

 

    This is a large velocity that represents the maximum velocity of an uninhibited 

freefall.  Considering that the flood waters had velocity before entering the spillway and 

the mass of all the water in the lake pushing down the spillway, the 29.9 meters per 

second (98 ft/sec) velocity could be possible.  Taking into account the peak volume of 

1,891 m3/s (66,800 cfs) was estimated to flow at the floods high stand, the floodwater 

flow should have be capable of significant rock mass erosion. 

    The velocity of 29.9 m/s (98 ft/s) can be correlated to the size of rock capable of being 

moved by water flow using a chart by Briaud (2008, Figure 9).  Using the equation 

found in the chart and solving for the mean grain size (D50) using the critical velocity of 

29.9 m/s (98 ft/s). 

45.0
50 )(35.0 DVc = , 45.0

50 )(35.09.29 D= , 7.1950 =D m (64.6 ft) 

According to Briaud’s equation, a flow of 29.9 m/s (98 ft/s) is capable of moving blocks 

of rock up to 19.7 m3 (64.6 ft3) in size.  In effect, the water flow down the emergency 

spillway would have been able to move any rock block that was scoured from the 

bedrock. 

m = mass 
g = gravity 
h = height 
v = velocity 
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Figure 8.  USGS topographic map of the Canyon Lake Spillway, 1994.  Red line is a 
reach following the spillway channel thalweg. 
 

 
Figure 9.  Briaud chart, (2008).  The chart shows correlation of water flow velocity 
versus the mean grain size capable of being moved.  
 
 

1:24 000 



 

 

13

    A comparison of the spillway profile before the flood with the profile of the gorge 

formed after should lend credence to the power of the flood waters.  A rough profile of 

the Canyon Lake spillway can be constructed using the USGS topographical map of 

Figure 8.  The channel thalweg which the profile will be constructed upon follows a 

southeast path before turning northeast towards the Guadalupe River.  The profile shows 

a drop of 43.5 m (143 ft) over a distance of 1,392 m (4,569 ft). 

    After the flood, a field study was conducted by by Wilkerson and Schimd (2007) 

produced a profile of the gorge post-flood.  Their work measured the dimensions of the 

new gorge, as well as quantified the amount of bedrock displaced by flood scour.  They 

measured elevation changes along the spillway channel thalweg, yielding a profile of the 

gorge.  The study transect trended from the spillway crest to a point 60.9 m (200 ft) east 

of the south access road, where the end of bedrock erosion was declared.  The results of 

the study showed that after the 2002 flood, the newly scoured Canyon Lake Gorge 

dropped from 287.4 m (943 ft) above msl to 231.9 m (761 ft) at the point 200 ft east of 

the road (Wilkerson and Schmid, 2007).  Preceding the flood, the USGS topographical 

map indicates an elevation of 243.8 m (800 ft) above msl at the point of intersect 

between the spillway channel and south access road.  The 11.9 m (39 ft) difference in 

post-flood elevation at a location less than 60.9 m (200 ft) apart is the end result of the 

considerable force of the flood water flow of 2002 (Figure 10). 
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Figure 10.  Canyon Lake Gorge profile and spillway profile overlaid.  Post-flood profile 
from Wilkerson and Schmid (2007).  The comparison found in Figure 10 should be 
considered an approximate pre-flood and post-flood profile of the spillway. 
 
 
 

Geology of the Gorge 

 

    Canyon Lake Gorge is cut into the strata of the Glen Rose Formation.  This 

Cretaceous age formation is the product of cycles of rising and falling sea levels, 

resulting in alternating sets of limestone and dolomitic beds (Mancini and Scott, 2006).  

Geologic composition of the Glen Rose Formation varies between relatively 

homogenous limestones and heterogeneous clay dominated strata (Stricklin et al, 1972; 

Barker and Ardis, 1996).  One prominent characteristic of the formation is the high clay 

content found in many layers that increases the erosional susceptibility caused by 

subsequent expansion and contraction of the clay (Woodruff and Wilding, 2007). 
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    The high clay content of the wackestone of the gorge study area is the primary reason 

that erosion in the gorge will proceed at vastly differing rates.  Clay content has been 

associated with rapid structural deterioration of rock caused by the expansion and 

contraction of clay particles (Jimenez-Gonzalez et al, 2008).  The expansion and 

contraction process is based upon the interaction of the clay with water molecules that 

are electrostatically attracted to the alkali ions in the crystal structure of the clay, causing 

the clay to swell (Wangler et al, 2006).  The prevalence of clayey wackestone in the 

gorge guarantees a high rate of weathering not matched by other lithologies in the gorge.  

Aside from the wackestone layers, the rock of the gorge is relatively homogenous and 

very resistant to weathering.  Currently, the wackestone is always seen undercutting 

more competent rock above it, as no other lithologies found in the gorge can claim to be 

more incompetent at forming ledges. 

    Precipitation and Canyon Lake provide the water needed to facilitate erosion in the 

gorge (Figure 11).  Precipitation is the primary source of water, but water from Canyon 

Lake is also delivered through conduits present in the stratigraphy, such as bedding 

planes and fractures.  Water promotes both chemical and physical degradation among 

the clayey layers, while the homogenous limestone has little reaction.  Also, water can 

infiltrate rock, causing increased pore pressure and lowered shear strength, and 

increasing the likelihood of failure along planes of weakness (Braathen et. al., 2004).  

Precipitation would also reduce any frictional resistance inhibiting ledge failure or slope.   
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Figure 11.  Photograph showing water flow conducted through bedrock. 
 

    It should be noted that the strata of the Glen Rose Formation appears well indurated in 

geologic cores or fresh road cuts.  Once exposed to the elements, certain clay bearing 

layers, such as wackestone, can break down quickly (Woodruff and Wilding, 2007).  A 

study by Woodruff and Wilding (2007) notes that a highway cut into the Glen Rose 

Formation located west of Austin initially looked to consist of completely competent 

rock, and did not display any of the characteristic weathering commonly described as 

marly or friable.  After 25 years, erosion of the highway cut had begun to incise into the 

clayey carbonate, causing the steep vertical face to become a hazard to auto traffic.  As a 

result, the highway cut had to be redesigned.  The progression of erosion in the situation 
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of the highway cut could be comparable to the processes affecting the steep cliff faces of 

Canyon Lake Gorge. 

    Differential weathering is the process responsible for the situation of the highway cut, 

and is a defining characteristic of the Glen Rose Formation.  Previous studies of the Glen 

Rose Formation have termed the topography “stair-stepped” because the sequences of 

fast and slow eroding beds is seen resembling a set of stairs in Central Texas (Woodruff 

and Wilding, 2007; Wilcox et al, 2007).  This stair-stepped topography can be observed 

in a stable state throughout the hill country of Central Texas.  Considering the gorge is 

cut into the same geologic formation as the stair-stepped topography, the hillsides 

surrounding the gorge is a likely representation of the geomorphic equilibrium Canyon 

Lake Gorge will reach.  Weather-resistant beds of competent homogenous limestone 

serve as the stair-step platforms, whereas the less competent beds erode quickly, 

providing a slope or riser bed (Wilcox et al, 2007).  Riser beds form as a culmination of 

the weathering and erosion of the less resistant beds, when the buildup of sediment and 

debris form a sloping bed to the base of a weather-resistant bed.  Riser beds serve to 

slow the erosion of weathering susceptible rock by providing a buffer against the 

erosional elements of precipitation and wind, thus preventing the formation of any 

unstable geomorphic structures (Woodruff and Wilding, 2007). 
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Geomorphic Equilibrium – Riser Beds 

 

    Extrapolating on the geomorphic processes such as the failure of an undercut ledge, it 

is the opinion of this study that such geomorphic processes will become less active as the 

gorge settles towards the geomorphic equilibrium of stair-step topography exhibited by 

the hills of the Glen Rose Formation.  A primary geomorphic component of stair-step 

topography is riser beds.  Formed as a result of debris and sediment accumulation, the 

absence of riser beds differentiates the unstable gorge geomorphology from the stable 

stair-step topography of the surrounding hills.  The stable geomorphology of the hill 

country is predicated upon riser beds protecting the clayey limestone layers 

(wackestone) from erosion.   

  Equilibrium in Canyon Lake Gorge will occur once a sufficient amount of erosion has 

taken place, forming riser beds that will slow erosion in the gorge.  As evident by the 

debris seen in Figure 12, the competent ledge forming rock above the wackestone has 

failed and fallen in large and small blocks that accumulate at the base of the vertical cliff 

face.  The resulting accumulation of debris will slow down erosion of the clayey 

wackestone layers, shielding them from precipitation and runoff.  A study by Woodruff 

and Wilding (2007) has stated that contrary to public belief, the steeply sloped riser beds 

of the hill country are very stable geomorphologically, and show very little sediment loss 

caused by precipitation runoff.  The most runoff was measured along the gently sloping 

tread that extends out onto stable platforms of resistant limestone (Woodruff and 

Wilding, 2007).  It stands to reason that once the gorge has built up enough debris to 
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form its own riser beds, formation of new undercut rock ledges would cease, and rock 

falls would be less of a safety concern. 

 

 
Figure 12.  Photograph of rock erosion accumulation. 
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    Based on the observations of this study and that of other literature on the Glen Rose 

formation, the geomorphology of the gorge is predicted to evolve through three 

successive stages (Wilcox et al, 2007; Woodruff and Wilding, 2008).  Figure 13 

diagrams the three proposed stages based on the observations of this study and previous 

studies. 

 Stage 1 – The first stage is a short time period of time immediately following the 

formation of the gorge.  The gorge exhibits bare rock cliff faces, and some undercut rock 

ledges.  All rock appears consolidated and competent.  There is a relative absence of 

gravity driven processes such as rock falls and rock toppling.  Clay sediments are rapidly 

facilitating weathering, hastened by precipitation and the conduction of water through 

joints and fractures. 

 Stage 2 – This is the current stage of the gorge.   Differential weathering has led to 

undercut rock ledges throughout the gorge.  Constant rock fall events occur as rock 

ledges fail.  Vegetation has started to enter the gorge. 

 Stage 3 – Stability of the landform has been reached.  Riser beds have formed through 

accumulation of debris and sediments.  Erosion of wackestone is slowed or prevented by 

the riser beds.  The gorge now resembles the stair-step geomorphology of the 

surrounding hills.  
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Figure 13.  Erosion progression diagram.  Diagram predicts an erosion model that leads 
to rock falls and eventual formation of a riser bed.  (A)  is equivalent to a fresh road cut.  
(B) represents a sequence in the gorge immediately after the 2002 flood. (C) represents 
the current state of many areas in the gorge.  (D) shows progression of erosion and 
blocks of rock accumulating at the base of the ledge.  (E) is the final stage where the 
landscape has reached a relative equilibrium, when erosion proceeds much slower. 
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    Canyon Lake Gorge is also located within the Balcones, a large fault system which is 

noted for its N40-70E trending faults (Collins, 1995).  Smaller faults, fractures and joints 

are also noted to trend parallel to or at an angle acute to the primary strike of faulting 

(Collins, 1987; 1995).  Furthermore, fault propagation is postulated to occur more often 

in the competent limestone and dolomitic layers that are susceptible to brittle failure, and 

less often in the incompetent clayey layers capable of accumulating strain (Ferrill and 

Morris, 2003).  Competent layers of the Glen Rose are noted to be characterized by steep 

fault dips and low fault displacement, where the incompetent layers of rock promote 

high amounts of displacement in relation to fault length (Ferrill and Morris, 2008).  The 

faults, fractures and joints of the Glen Rose are associated with transport of groundwater 

through an otherwise low permeability rock matrix, thus facilitating the dissolution of 

carbonate minerals and formation of karst features (Ferrill et al, 2004). 
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FIELD METHODS 
 

    The methodology of this study was designed to gather information pertaining to 

potentially hazardous unstable masses of the gorge adjacent to a pathway used for 

guided tours.  On the pathway, undercut rock ledges were the unstable masses of 

interest, as failure of these ledges has the possibility of causing injury to the visiting 

public and guides (Figure 14).   

  Three distinct phases of field work were performed:  a) survey of rock surface 

discontinuities, including fractures and joints, b) comprehensive survey of stratigraphy 

of the guided visitor pathway, c) testing of each stratigraphic unit by the impact test 

hammer.  

   

 
Figure 14.  Photo of Canyon Lake Gorge in July 2008.  Person on right side of photo for 
scale. View is from the western end of the gorge towards the east, down the flow of 
water. 
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Rock Surface Discontinuities  

 

    Geological field studies were carried out to map rock surface discontinuity 

orientations and their locations in the gorge.  Strike direction was recorded for each 

discontinuity, though dip direction was not obtained.  GPS coordinates were taken for 

each discontinuity orientation.  Measured discontinuity orientations were then mapped 

approximately on an aerial photograph of the gorge using the GPS coordinates of each 

discontinuity. 

 

Impact Test Hammer  

 

    Use of a concrete impact hammer was employed on each rock unit to obtain rebound 

value measurements.  The concrete impact test hammer tests a surface resistance to the 

impact of a spring loaded plunger, on which the rebound is measured.  Ten tests were 

performed on each rock unit surface with the goal of picking representative test locations 

on each unit, as recommended by the Concrete Test Hammer instruction manual of 

Soiltest Incorporated (Concrete Test Hammer, 1970).  Each test measures a value on the 

impact hammer that represents an amount of force resisted which can be correlated to a 

force via a graph provided in the Soiltest Instruction Manual (Figure 15).   

 



 

 

25

 
Figure 15.  Soiltest graph of rebound value vs. PSI resisted (Soiltest Inc., 1970). 
 

Test values of solid rock measure between 20 and 60.  Post data analysis was done to 

remove values that were deemed the result of operator error.  This meant eliminating 

values that varied from the median value by more than five or fewer than five.  

Eliminated test values were most often caused by the rock fracturing under the impact of 

the test hammer, dampening the rebound value.  

 

Stratigraphy/Lithology 

 

  Three separate stratigraphic data reaches were completed by studying rock units along 

the path used to traverse the gorge.  The three reaches are not contiguous, as areas 

covered by quaternary sediment necessitated two separate breaks in the observed reaches 

by obstructing rock from observation.  The study of the first reach began from the base 
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of the gorge by the South Access Road where visitors begin tours, and the third reach 

ends at a point of the gorge approximately 518 m (1,600 ft) west of the road, up the 

gorge.  All reaches are observable from the tourist pathway used by GBRA trail guide 

docents.  Figure 16 illustrates the three reaches all field studies were performed upon. 

    Each reach was subdivided into lithologic units that were then described using 

Dunham’s (1962) system for categorizing carbonate rock.  Weathering characteristics of 

each rock unit were noted.  Erosional patterns and characteristics were studied to 

establish to what degree each rock unit was a slope or ledge former.  Thickness of a rock 

unit was measured to the nearest tenth of a foot.  Photos were taken of each rock unit and 

of potential hazardous areas of rock fall or toppling.  Other data gathered included 

observations of color, weathered color, composition, fossil presence, and degree of 

consolidation.   
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Figure 16.  Map of Reaches of Stratigraphic Studies.  Reach One is a short reach in the 
north-east corner, Reach Two is the longest reach, the green reach is a pathway over 
quaternary sediments, and reach three is the south-west reach. 
 
 
 



 

 

28

RESULTS AND ANALYSIS 

 

    From the observations made during this study of reaches of the gorge, three general 

carbonate lithologies were noted. 

• Wackestone – Defined as mud supported, with more than 10% grains (Dunham, 

1962).  Seen predominantly in the gorge as weathered gray debris, forming a 

slope. 

• Packstone – Defined as grain supported, but also contains clay and silt sized 

carbonate (Dunham, 1962).  Seen predominantly in the gorge as an either gray or 

tan ledge forming rock.  Two sub-varieties are seen in the gorge, clay-dominated 

and grain-dominated packstone.  Clay-dominated packstone contains clay 

partings, and generally has an uneven weathered surface.  Grain-dominated 

packstone contains very little clay, has very discrete fractures and joints, and 

possesses an average rebound value near that of grainstone.   

• Grainstone – Defined as grain supported with an absence of mud (Dunham, 1962).  

Seen in the gorge as a gray ledge forming rock.  Commonly appears as a vuggy 

rock with many obvious fossils, but also appears as a smooth surfaced gray rock.  

Grainstone possesses the highest average rebound values of all rock tested in the 

gorge. 
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Discontinuities 

 

  The end result of the discontinuity orientation map displays a sampling of surface rock 

discontinuities along an approximately 305 m (1,000 ft) stretch of the gorge (Figure 17).  

A total of 81 discontinuity orientations and their GPS locations show that the fracture or 

joint orientations are dominated by a north-westerly strike that runs approximately 

perpendicular to length of the Gorge.  A complimentary set of fractures strike north-east 

in a parallel manner to the Hidden Valley Fault that runs the length of the Gorge. 

 Attributing slope failures to discontinuity spacing and density has been practiced in  

predicting hazardous areas (Gokceoglu et al, 2000 ; Topal et al, 2007; Wieczorek et al, 

2008). 

 
 

 
Figure 17.  Fracture orientation map. Strike of a sampling of fractures is shown. 
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    Certain principles can be applied when observing undercut rock ledges.  Closely 

spaced discontinuities may indicate that a rock cliff or ledge can fail in small blocks.   

Conversely, an unstable mass with sparse discontinuity density may indicate a greater 

capacity to accumulate strain, which should allow the rock to better withstand the 

stresses of being undercut before failing.  In the field, the size of rock debris at the base 

of a ledge can indicate whether the rock masses located up-slope fail as small blocks, or 

sparsely in large blocks. 

    The mechanical properties of individual rock units greatly affect the density of 

jointing and fractures found within each rock unit.  Competent layers (most packstones 

and all grainstone) behave in a relatively brittle fashion, and exhibit distinct 

discontinuities.  Incompetent layers (wackestone and clay dominated packstone) appear 

to inhibit propagation of fractures and joints from unit to unit, deforming under strain 

without failing.  

    In Canyon Lake Gorge, observed discontinuities were relatively equally spaced in 

individual units of rock, but not across multiple units.  Observations by Collins (1995) in 

other areas of the Balcones fault zone support the previous observation by noting that 

variation in joint density and orientation occurred amid rock units, and even rock units 

adjacent to one another.  In the gorge, a number of units have widely spaced fractures 

and joints ranging from 2.1-4.5 m (7-15 ft) apart, whereas others have very dense 

discontinuity patterns spaced by a 0.3 m (1 ft) or less.  Horizontal discontinuity density 

varies from very dense discontinuity sets only inches apart, to almost a complete lack of 
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discontinuities.  Bedding planes commonly form jointed discontinuities in Canyon Lake 

Gorge. 

    At the western end of the studied area, the majority of the discontinuities are oriented 

roughly 45° -55° west of North.  Other discontinuities are oriented in the region of 50° to 

70° East of North, approximately parallel to the length of the Gorge and the strike of 

Hidden Valley Fault.  These northeast orientations are consistent with Collins’s (1995) 

observations of N40° -70°E striking faults in the Balcones fault zone. 

    Past literature has categorized rock slope areas by the way the mass fails according to 

the gradient of the rock slope and the orientations of the slope discontinuities (Braathen 

et al, 2004; Shroder et al, 2005).  In-situ discontinuities have been attributed to 

detachment zones of rock falls (Varnes, 1978; Gokceoglu et al, 2000; Park et al, 2005).  

Based on the vertical and horizontal discontinuity sets seen, the failure of rock masses of 

Canyon Lake Gorge would be classified as rock falls.  In the gorge, the highest 

concentrations of joints and fractures are found in undercut portions of rock ledges, 

especially in packstones.  Many of these fractures were presumably induced by the 

increased tensile stress brought on by the stress concentration distribution of undercut 

ledges.  Because of this, current joints or fractures could be a future area of failure for an 

undercut rock ledge, but new potential rock fall areas could form as new fractures 

propagate and rock is undercut. 

    The field observations of this study are supported by a recent manuscript by Ferrill 

and Morris (2008) who made use of Canyon Lake Gorge as a study area.  Ferrill and 

Morris (2008) noted the propensity of competent rock layers to facilitate rapid early fault 
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propagation, followed by displacement accumulation.  Incompetent layers were noted 

for arresting fault propagation, while accumulating large amounts strain (Ferrill and 

Morris, 2008).  

 

Role of Knickpoint Erosion Mechanism in the Formation of the Gorge 

 

  A sudden change in gradient in a stream or spillway profile is termed a Knickpoint 

(May, 1988).  Photos taken during the flood appear to support a theory of the erosional 

progression of knickpoints “stepping up” the gorge toward the lake (Figure 5, page 7).  

Knickpoint erosion requires a flow of water over a steep gradient or vertical face, 

creating an unvented pocket of air behind the falling water (May, 1988).  Water flow can 

then be drawn into that unoccupied space, scouring the rock or even causing sufficient 

pressure to uplift large blocks of rock and transport them with the prevailing flow of 

water.  Large boulders measuring greater than five ft (1.52 m) are positioned in areas far 

from the parent bedrock (Figure 18).  Post-flood discontinuity orientations mapped in 

this study indicate that in-situ fractures would have aided a knickpoint erosional 

progression model that could have created the current gorge geomorphology. 

Knickpoints would have been prone to form at the junction of vertical and horizontal 

discontinuities.  The two main surface discontinuity orientation sets observed in this 

study can be considered important remnants of factors that played large in the formation 

of the gorge.  When the flood waters scoured out the emergency spillway while flowing 

toward the river to the north-east, any north-western oriented discontinuities would have 
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effectively divided the bedrock into blocks easily excavated by the immense amount of 

flood water flow.   

 

 
Figure 18.  Canyon Lake Gorge.  Large boulders scoured from the bedrock were moved 
during the 2002 flood 
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 Impact Test Hammer 

 

    Below is a plot of each lithologic unit’s average rebound value in presented semblance 

in a vertical column (Figure 19).   
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Figure 19.  Graphs of average rebound value vs. thickness. 

 
    

    In all three stratigraphic surveys, a high average rebound value (greater than 30) 

correlated well with units resistant to weathering such as grainstone, where a low 

average rebound value correlated with rock units more susceptible to weathering such as 
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wackestone.  Precedent has been set supporting the correlation of  the rebound values of 

an impact hammer with density, porosity, and the compressive strength of the tested rock 

(Erdogan and Yasar, 2004; Aydin and Basu, 2005).  In the case of this study, a lithologic 

unit possessing a high average rebound value always is characteristic of grainstone or 

packstone and is subsequently more resistant to weathering then those possessing a low 

average rebound value.  This phenomenon is most likely caused by the inherent 

characteristics associated by previous studies with high rebound values, for example 

high density, low porosity, and high compressive strength. 

 

Stratigraphic Survey 

 

    The stratigraphic study details the engineering geologic characteristics of each 

lithologic unit along three different reaches of the gorge (i.e., weathering characteristics, 

rock competency, and structural characteristics).  

    There are a total of five wackestone units documented in the three reaches studied.  

All five of these wackestone units are present beneath a ledge forming rock unit.  Eleven 

of the units studied were packstone, and five units were grainstone.  The packstone units 

varied in composition between grain or clay dominated end members.  The grainstone 

units consistently appeared very resistant to weathering, even when vuggy porosity was 

present.  As noted by Woodruff and Wilding (2007), a vuggy appearance is associated 

with ledge forming rock in the Glen Rose Formation.  
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Reach One 

 

    Reach One is a prototypical sequence exemplifying the three main lithological units 

found in the gorge.  The sequence consists of a wackestone base overtopped by a more 

competent and weather resistant packstone, capped by an equally resistant layer of 

grainstone (Figure 20).   

 
 

 
Figure 20.  Reach One Stratigraphy.  Reach One is a short reach involving only three 
different units of rock.  Reach One can be found on the south side of the gorge 
immediately upon entering from the South Access Road. 
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    The base unit of Reach One is an easily eroded wackestone that forms a slope 

underneath a small cliff face.  Because of how friable the rock is, the strike of the impact 

test hammer resulted in unit 1-1 crumbling under impact, yielding only measurements of 

zero (Figure 21). 

 

 
Figure 21.  Rock unit 1-1.  Unit 1-1 is a wackestone that is 1.04 m (3.4 ft) thick.  This 
rock is very friable, and is seen in this reach creating a slope. 
 
 

    Lying overtop unit 1-1 are a layer of packstone and grainstone (Figure 22, Figure 23).  

Unit 1-2 is a very homogenous packstone, and unit 1-3 is distinguished by its pervasive 

vuggy porosity.  Unlike wackestone, units 1-2 and 1-3 are very resistant to weathering.  

Vertical fractures run sparsely through the thickness of unit 2-1 before terminating in 

adjacent units.   
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Figure 22.  Rock unit 1-2.  Unit 1-2 is a homogenous packstone that is 1.34 m (4.4 ft) 
thick.  
 
 
 

 
Figure 23.  Rock unit 1-3.  Unit 1-3 is a grainstone that is 0.94 m (3.1 ft) thick. 

 

 
    The impact test hammer results of Reach One revealed results that correlated high 

values with the ledge forming rock, and low values with the wackestone base unit 

(Figure 24 Table 1).  Ten impact test hammer measurements were taken of each unit, 

resulting in an average rebound value of 32.1 (3,990 psi) for unit 1-2 and rebound value 

of 27.2 (3,020 psi) for Unit 1-3.  The wackestone measured readings of zero, whereas the 
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more competent packstone and grainstone had many measurements exceeding 30 (2900 

psi).  

 

 
Figure 24.  Reach One Graph, average rebound vs. thickness.  The thickness is of the 
lithologic unit.  Wa (wackestone), Pa (packstone), Gr (grainstone). 
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Table 1.  Data table of the impact test hammer test results for Reach One. 

 

 

    Reach One contains the stratigraphic units that combine to form the circumstances 

necessary for formation of an undercut rock ledge.  Previous erosion at this site has 

occurred to a degree enough to provide a sloping pile of debris at the base of the 

sequence.  By the same token, the large boulders of packstone and grainstone found at 

the base indicate the ongoing process of rock ledge failure, possibly presenting a 

potential hazard to visitors. 

    The location of Reach One compounds the risk presented by rock fall.  Reach One is 

seen as a small cliff face occupying the south wall of the Gorge by the entrance from the 

south access road.  During the field work of this study, the area by Reach One was seen 

to be the first stop by a tour of visitors entering from the south access road.  The 

wackestone base layer also contains many fossils that would be of interest to visitors.  

Because of the hazard of rock falls and the location of Reach One, it should be 

considered a high risk area. 
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Reach Two 

 

  Reach Two is thickest reach and consists of 12 lithologic units seen along the longest 

reach (Figure 25).  Most lithologic units are weather-resistant packstone or grainstone. 

 

 

 
Figure 25.  Reach Two Stratigraphy.  Reach Two is a sequence of twelve units of rock.  
This reach displays the variety of carbonate rock that can be found in the Glen Rose 
Formation.  
 
 
 
    Units 2-1 and 2-2 create a noteworthy sequence (Figure 26, Figure 27).  Unit 2-1 is a 

very friable wackestone unit, and Unit 2-2 is a ledge forming packstone.  Located 
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directly in the path used to trasverse the gorge, the undercut ledge of unit 2-2 over unit 

2-1 form a sloped feature that is unavoidable to hikers.  The weathered slope of unit 2-1 

rises up 1.28 m (4.2 ft) to a competent layer of packstone (unit 2-2), undercutting the 

layer of packstone.  The wackestone is very friable, consequently the impact test 

hammer failed to read any measurement above zero, whereas the packstone has an 

average value of 38.  Additionally, unit 2-2 has obvious fractures running through 

undercut portions of the ledge, adding to the danger of ledge failure underfoot of a hiker.  

 

 
Figure 26.  Rock unit 2-1.  Unit 2-1 is a wackestone and is 1.28 m (4.2 ft) 1.28 m thick. 
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Figure 27.  Rock unit 2-2.  Unit 2-2 is a packstone that is 0.91 m (3.0 ft) thick.  The 
impact test hammer averaged a rebound value of 38.43 (367.7 Kg/cm2, 5230 psi) in 
seven successful measurements.  
 
 

    Above the packstone of unit 2-2 is a sequence of competent packstones and 

grainstones (Figures 28-34).  The sequence of unit 2-3 through unit 2-9 do not present 

any potential hazards to the visiting public.  However, these units do display many 

interesting geological characteristics.  Unit 2-3 and unit 2-9 showcase the vuggy porosity 

characteristic of Glen Rose grainstone.  Unit 2-6 is a packstone that exhibits an almost 

perfectly rectangular fracture pattern, perhaps indicative of past geologic pressure 

regimes.  Also of interest are large channels set at right angles that run in the surface of 

the wackestone in unit 2-8.   
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Figure 28.  Rock unit 2-3.  Unit 2-3 is a grainstone that is 0.85 m (2.8 ft) thick.  Fracture 
density is low; at least seven ft (2.13 m) separate the larger surface fractures. 
 
 
 

 
Figure 29.  Rock unit 2-4.  Unit 2-4 is a packstone that is 0.55 m (1.8 ft) thick.  
Weathering of the surface causes the rock to break into laminar sheets.   
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Figure 30.  Rock unit 2-5.  Unit 2-5 is a grainstone or a grain dominated packstone that 
is 0.18 m (0.6 ft) thick.   
 
 
 

 
Figure 31.  Rock unit 2-6.  Unit 2-6 is a packstone that is 0.52 m (1.7 ft) thick.  Fracture 
spacing is approximately 0.5 ft (0.15 m) and a very distinct rectangular pattern is 
displayed.   
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Figure 32.  Rock unit 2-7.  Unit 2-7 is a packstone that is 0.67 m (2.2 ft) thick.  
 
 
 

 
Figure 33.  Rock unit 2-8.  Unit 2-8 is a wackestone that is 0.3 m (1.0 ft) thick.  Large 
channels run through the surface of the rock.  
 
 
 

 
Figure 34.  Rock unit 2-9.  Unit 2-9 is a homogenous grainstone that is 0.61 m (2.0 ft) 
thick.  This is a very competent unit, and displays vuggy porosity.  
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    Overlying unit 2-9 is a wackestone and packstone bed (Figure 35, Figure 36).  This is 

a similar sequence to that of the unit 2-1 and unit 2-2 wackestone packstone sequence.  

In an expected pattern, the wackestone unit 2-9 undercuts the overlying competent 

packstone, forming an undercut rock ledge.  The undercut rock ledge present at the 

junction of 2-10 and 2-11 is an obstacle to visitors of the gorge.  The wackestone layer 

2-10 is 7.2 ft (2.2 m) thick, and at some points presents a vertical face not easily 

climbed.  

 

 
Figure 35.  Rock unit 2-10.  Unit 2-10 is a heavily clay dominated wackestone that is 2.2 
m (7.2 ft) thick.   
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Figure 36.  Rock unit 2-11.  Unit 2-11 is a homogenous packstone that is 0.95 m (3.1 ft) 
thick.  This unit is a ledge former that is very consolidated and indurated, with sparse 
vuggy porosity. 
 
 
 
    The final lithologic unit surveryed in Reach Two was a grainstone with an average 

impact test hammer measurement of 43 (Figure 37).  The surface of the rock presents a 

unique display of large surface ripples  

 

 
Figure 37.  Rock unit 2-12.  Unit 2-12 is a grainstone that is 1.07 m (3.5 ft) thick.  
Ripples are prominent on the surface.   
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  The lithologic units of Reach Two own some of the highest rock strengths measured in 

this survey (Figure 38, Table 2).  In particular, the packstone units 2-3 and 2-11 and the 

grainstone unit 2-5 measured high average values on the impact test hammer. 

 

 
Figure 38.  Two Graph, Average Rebound vs. Thickness.  Graph of average rebound 
value vs. thickness of lithologic unit.  Wa (wackestone), Pa (packstone), Gr (grainstone). 
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Table 2.  Data table of the impact test hammer test results for Reach Two.  Outlying test 
values were removed. 

 
 
 

    Reach Two has two major wackestone beds in units 2-1 and 2-10, and both are seen 

undercutting the overlying packstone.  Both of the wackestone-packstone junctions are 

unavoidable obstacles in a hike through the gorge.  Collapse of a rock ledge under the 

weight of a person is a hazard to any visitors traversing these two geologic structures.  

Injury resulting from a small fall is possible in such a situation, but can be avoided by 

picking a careful path over the wackestone-packstone intersects.  If a tourist or guide 

attempts to travel up the gorge using a route other then the marked path, the risk of 

falling or destabilizing a rock slope is high. 
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Reach Three 

 

    Reach three is a sequence of six units of rock, consisting of four packstone units, one 

wackestone, and one grainstone (Figure 39).  The pathway used to traverse the gorge is 

on the north side of a large fault that runs through the center of the gorge.  There are no 

notable structures that would present a high risk in this reach of stratigraphy. Only small 

risks are present in reach three.  

 

 
Figure 39.  Reach three stratigraphy.  Picture showing rock units of reach three, and the 
fault running through the gorge.   
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    Reach three is the highest in elevation of the three reaches, and is consequently 

composed of strata younger then that seen in Reach Two.  The first two units of reach 

three are packstones (Figure 40, Figure 41).  Unit 2-1 is a more homogenous packstone 

and measured a higher rock strength then unit 2-2.  The lower average impact hammer 

results of unit 2-2 appear to be accounted for by a slightly higher clay content.  

 

 

Figure 40.  Rock unit 3-1.  Unit 3-1 is a packstone that is 0.67 m (2.2 ft) thick.  It is 
consolidated and relatively homogenous in appearance. 
 
 
 

 
Figure 41.  Rock unit 3-2.  Unit 3-2 is a packstone that is 0.55 m (1.8 ft) thick. Clay 
content appears greater than other packstones.   



 

 

53

    Unit 3-3 marks the first occurrence of wackestone in reach three (Figure 42). Unit 3-3 

is a wackestone that undercuts the packstone of unit 3-4, but the thickness of unit 3-3 

(1.5 ft (0.46 m)) makes any rock ledge failure a low risk of injury (Figure 43).   

 

 
Figure 42.  Rock unit 3-3.  Unit 3-3 is a wackestone that is 0.46 m (1.5 ft) thick.  This 
unit exhibits nodular weathering, and is friable. 
 
 
 

 
Figure 43.  Rock unit 3-4.  Unit 3-4 is a packstone that is 0.46 m (1.5 ft) thick.  This unit 
is a consolidated, ledge forming rock. 

 
 

    The final two units surveyed in reach three were two competent packstone units.  

Units 3-5 and unit 3-6 do form steep slopes in some locations, but the rock is very well 
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consolidated and provides solid footing for visitors (Figure 44, Figure 45).  The near 

vertical slopes found traversing units 3-5 5.0 ft (1.52 m) and 3-6 (6.4 ft (1.95 m)) can be 

a minor risk if a visitor is not guided up the proper pathways. 

 

 
Figure 44.  Rock unit 3-5.  Unit 3-5 is a packstone that is 1.52 m (5.0 ft) thick.  This unit 
is highly fractured at its base, but grades up to a more consolidated state near its top. 
 
 
 

 
Figure 45.  Rock unit 3-6.  Unit 3-6 is a grain dominated packstone that is 1.95 m (6.4 ft) 
thick. 
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    The lithologic units of reach three possessed very high rock strength values (Figure 

46, Table 3).  With the exception of unit 3-3, a wackestone, all the units of reach three 

averaged 40 (351 Kg/cm2, 5,000 psi) or higher in the impact test hammer tests.  

 

 
Figure 46.  Reach Three Graph, Average Rebound vs. Thickness .  Thickness is of the 
lithologic unit.  Wa (wackestone), Pa (packstone), Gr (grainstone). 
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Table 3.  Data table of the impact test hammer test results for Reach Three.  Outlying 
test values were removed.  

 
 

 

    The area encompassed by reach three contains low risk situations where a minor fall is 

possible.  The junction of unit 3-3 and 3-4 has a potential fall hazard, although any fall is 

unlikely to cause serious injury because the thickness of unit 3-3 is small.  Units 3-5 and 

3-6 can be difficult to climb to continue on the path up the gorge, and thus represent a 

potential fall hazard.  In summary, tourists and guides are at very low risk of injury when 

traversing this reach of the gorge. 
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CONCLUSIONS AND RECOMMENDATIONS 

 

    The potential hazards of Canyon Lake Gorge can present dangerous situations to 

visitors.  Canyon Lake Gorge is a young, dynamic geomorphic environment, and is thus 

subject to fast acting gravity driven erosional processes as the gorge proceeds toward a 

more stable equilibrium.  New geomorphological hazards are likely to form as the 

landscape settles. 

    This study of Canyon Lake Gorge has revealed that aside from the current 

geomorphology, the lithology and structural characteristics predispose the gorge to the 

formation of areas at risk.  Large differentials in the weathering rates of lithologic units 

are evident in the undercut ledges of the gorge.  The presence of expansive clay in the 

wackestone is likely the culprit behind the fastest eroding units of the gorge, providing 

the upper limit of the disparate rates of weathering found in different rock of the gorge.  

When clay-rich wackestone is situated below a ledge forming unit such as grainstone, 

the result is the conditions needed for development of an undercut ledge.  Ultimately, 

while any undercut ledge can present a hazard to a hiker, the greatest risks will be 

associated with ledges high above a stable platform of rock.  The thickest wackestone 

unit documented by this study was 2.2 m (7.2 ft), a dangerous height to fall from. 
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    The field studies of Canyon Lake Gorge detailed above revealed the presence of 

geomorphological features that are potentially hazardous to visitors of the gorge.  The 

risk level varies by location, and is the product of many considerations.  Foremost 

among those considerations is the height of the undercut ledge.  Often, the height is 

dependent on the thickness of an easily eroded wackestone bed that undercuts the ledge 

forming rock.  Also worth considering is the trail of the gorge.  Currently, the gorge trail 

is a series of marker flags used to guide the visitor through the site.  While the absence 

of a permanent path preserves the natural beauty of the gorge, the fact does bring into 

consideration potential hazards present off the marked path.  

 

Risks to Public 

 

    From this study, a number of geomorphological hazards of varying levels of risk were 

found near the path used in the gorge (Figure 47).  The following sites in the gorge 

should be observed as potentially dangerous situations.  The sites are grouped into three 

simplified classes of risk (Low, Medium, and High).   
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Figure 47.  Aerial view of hazard locations in gorge, 2005.  High risk – red, Medium risk 
– blue, Low risk – green.  Base map courtesy Comal County Corp of Engineers 
(http://www.co.comal.tx.us/giswebsite.htm). 
 

    High Risk Areas – Potential for serious injury or death.  The two primary high 

risk hazards are rock fall onto a visitor, or ledge failure beneath a visitor. 

1.  Area of Reach One.  The area is located at the base of the gorge on the 

south side.  This area has a wackestone layer that contains many fossils that 

are of interest to visitors.  Unfortunately, the wackestone layer is underneath a 

small undercut cliff face comprised of ledge forming packstone and 

grainstone, making rock fall a danger. 
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2.  The area of unit 2-12, north wall of gorge (Figure 48-A).  This area is 

always of great interest to tourists because of the large ripples present on the 

surface of the rock.  Along the north side of this area there is a great risk for 

rock fall from ledges 6.1 m (20 ft) above the gorge floor.  On a hot day this 

area provides the only shade around, but it must be avoided.   

3.  The waterfall areas, center of gorge (Figure 48-B).  There are many areas 

in the gorge that are appealing to tourists because of water flowing from 

conduits within the rock.  Some of these areas are at high risk of rock ledge 

failure.  

 

 
Figure 48.  High Risk Areas. (A)  is area of unit 2-12 where rock fall is a high risk 
hazard.  (B) is an area in the center of the gorge where ledge failure is a high risk hazard. 



 

 

61

    Medium Risk Areas – Injury possible. 

1.  All junctions of rock unit 2-1 and 2-2 (Figure 49-A).  The wackestone of 

unit 2-1 must be climbed to continue up the gorge, and its surface is 

weathered and unconsolidated.  The rock ledge of unit 2-2 could collapse 

under foot travel, causing injury to the hiker. 

2.  All junctions of unit 2-10 and 2-11 (Figure 49-B).  Unit 2-10 is a thick 

wackestone unit, and unit 2-11 often forms a ledge above it.  The rock ledge 

of unit 2-11 could collapse under foot travel, causing a potential fall of near 

2.13 m (7 ft). 

3.  All junctions of unit 3-3 and 3-4.  There is risk here of a small fall if the 

poorly consolidated rock of unit 3-4 collapses underneath a hiker. 

 

 
Figure 49.  Medium Risk Areas.  (A) is the junction of unit 2-1 and 2-2.  (B) is of the 
junction of unit 2-10 and 2-11. 
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    Low Risk Areas – Safe under most circumstances 

1.  Unit 3-5 creates a 1.5 m (5 ft) high slope that is easily climbed.  This unit is 

highly weathered, and could break away underfoot. 

2.  Unit 3-6 creates a 1.95 m (6.4 ft) high slope that is easily climbed.  This 

unit is highly fractured, and could break away underfoot. 

 
 

Safety Practices and Recommendations 

 

    Current precautions already in practice by the GBRA include: 

• Visitors are required to sign a liability form releasing the GBRA from injury 

liability while visitors are in the gorge. 

• Visitors are always guided by trained personal that are familiar with the pathway 

to guide tours.   

• Visitors are guided along a marked pathway which avoids dangerous areas of the 

gorge.  Some areas of particularly high risk are marked with flags to warn 

visitors to keep their distance. 

    The results of this study allow for a number of recommended practices concerning 

safety, liability, and gorge preservation.   

    1.  Visitors should be educated on the dangers of Canyon Lake Gorge before entering.  

Visitors of the gorge should avoid walking along the edges of ledge drop offs, and avoid 

walking underneath overhanging rock (Figure 50).  The two high risk situations present 

in the gorge are potential rock fall hazards and potential fall hazards.  Potential rock fall 
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hazards are most commonly present in the gorge as an undercut ledge of competent 

packstone or grainstone, where a visitor may rest underneath the ledge.  Potential fall 

hazards are present in the gorge as undercut ledges and unstable slopes of rock.  This is 

especially true after any periods of rainfall, when unstable masses are wet and more 

likely to fail.   

 
Figure 50.  Illustrations of the potential hazards present in the gorge. 

 

    2.  Unavoidable dangerous areas should be evaluated for possible ways to mitigate the 

risk of injury to visitors.  It is possible that some areas will become more hazardous as 

erosion and weathering proceeds.  In that case, it is recommended that a qualified 

professional be employed to evaluate risk in the gorge.  The professional should be able 

to offer some options on how to mitigate danger in Canyon Lake Gorge. 
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    Continued monitoring of the gorge is vital to the safety of the visiting public.  The 

friable wackestone layers of the gorge deserve particular attention with respect to safe 

travel.  This study has shown that the wackestone layers tend to be recessed underneath 

another layer of rock, with a steep slope of weathered material accumulating out away 

from the exposed rock.  It is recommended that each point in the tourist pathway that 

crosses over exposed areas of the wackestone be evaluated for risk and slope stability.  It 

should be possible to stabilize those areas of crossing so that tourist travel is not the 

cause of failure.  One relatively cost effective solution would be to use available debris 

and blocks of rock to build a natural, but artificial riser bed for the aid of hikers traveling 

over the wackestone.  This artificial riser bed would prevent erosion at the location 

where it was built.  Geotextiles could be used in construction of the riser bed, reinforcing 

the stability of the riser bed.  The objective would be to stabilize slopes of the gorge in 

an effort to provide a safe transit point over previously unstable rock. 
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