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ABSTRACT 

Feed Efficiency, Carcass and Temperament Traits in F2 Nellore-Angus Steers.  

(December 2007) 

Tonya Sue Amen, B.S., Texas Tech University; 

M.S., Texas A&M University 

Co-Chairs of Advisory Committee:  Dr. Andy Herring 

   Dr. Clare Gill 

Feed efficiency in fed F2 Nellore-Angus steers produced through embryo transfer 

was evaluated using two methods: residual feed intake (RFI) and NRC-based model 

predicted residual consumption (MPRC). Sire and family(sire) both contributed to 

differences in model predicted residual consumption (P = 0.036 and P < 0.001, 

respectively), but not in RFI (P = 0.117 and 0.455, respectively).  This indicates that 

variation exists among the sires and families studied, and the opportunity exists to 

improve MPRC through selection; it also indicates these 2 evaluation methods could 

result in different conclusions about feed efficiency. 

Five aspects of temperament were also evaluated (aggressiveness, nervousness, 

flightiness, gregariousness, and overall temperament) on a 9-point scale shortly after 

weaning.  Sire had a significant effect on all 5 aspects of temperament evaluated, but 

family was only responsible for variation in aggressiveness, nervousness, and overall 

temperament.  Contemporary group had no effect on aggressiveness, but did contribute 

significantly to variation in all other temperament traits.  All temperament traits were 

highly correlated with one another (r = 0.81 to 0.98).  Recipient dam temperament was 

lowly correlated with gregariousness and overall temperament (r = 0.16 and 0.15, 

respectively), and the correlations with recipient dam temperament approached 
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significance for aggressiveness, nervousness and flightiness.  This suggests that the 

temperament of the recipient female may have a small effect on the temperament of the 

calf.  This population was structured to identify QTL for economically important traits 

and appears to be useful to identify genetic markers for feed efficiency and animal 

temperament. 
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INTRODUCTION 

Cattle operations are plagued with a relatively low average return on investment 

compared to many other business ventures. Decreasing input costs to increase 

profitability will be very beneficial. Feed costs represent the majority of expense for 

cattle operations, so reducing the amount of feed required by an individual to achieve the 

same production response could increase overall efficiency at both the cow-calf level as 

well as the feedyard level. This is especially relevant as it has been shown that a 

relatively small portion of the nutrients provided to cattle are actually used for the 

production of beef; 70-75% of total energy requirements are used for maintenance alone  

(Ferrell and Jenkins, 1985) .   

Pond et al. (1995) estimated that 60% of beef production costs are associated with 

providing feed for cattle. It becomes clear then, that anything that can be done to reduce 

the amount of feed required in order to achieve necessary performance would be 

economically important. 

According to Taylor and Field (1999), when everything else is held constant, a 

5% improvement in feed efficiency would be equivalent to: 

 Reducing ration cost by $8 per ton 

 Decreasing the purchase cost of feeder calves by $1.75 per cwt 

 Increasing ADG by 0.6 pounds per day 

 Decreasing interest rate on capital from 15% to 9.5% 

_________________ 

This dissertation follows the style of Journal of Animal Science. 
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The potential advantages associated with improvements in efficiency are clear; 

however, Johnson et al.  (2003) reported that observations of maintenance requirements  

and energetic efficiency haven’t changed significantly in the last 100 years even though 

other significant advancements in production have been made.  This is likely due to the 

fact that identifying individuals that excel in efficiency traits and using them for breeding 

purposes is problematic. 

Accurate evaluation of the efficiency of feed utilization and its incorporation as a 

selection criterion in a breeding program is extremely important, but, has been an elusive 

goal due to the difficulty in measuring the trait and its correlation with other important 

production characters.  Using the data gathered here, a bank of phenotypes with adequate 

variation can be established to detect QTL segregating for traits relating to feed 

efficiency.  These QTL can then be used to increase the opportunity and accuracy of 

selecting breeding animals to improve feed efficiency in their offspring. 

The objective of this research was to study the genetic aspects of feed intake and 

feed efficiency in Bos indicus – Bos taurus cross steers.  Furthermore, we evaluated the 

relationship of feed efficiency with temperament, carcass and meat traits.  Using data 

collected from steers involved in the McGregor Genomics project at Texas A&M 

University, the aim was to characterize differences in these traits so future researchers 

can use the phenotypes to locate QTL that may then be used in selection programs. 
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LITERATURE REVIEW 

 

 Traditionally, beef cattle producers have focused on making improvements in 

production based on traits related to output, such as body weight.  This has occurred 

primarily because these are the traits that establish sale value, and are easiest to measure.  

Accurately and efficiently evaluating feed inputs is also very important. Using the 

Cornell Value Discovery System (Tedeschi et al., 2001), Fox et al. (2001) were able to 

simulate the effects of growth rate and feed efficiency on cost of gain and profitability for 

a steer with a final weight of 531.8 kg (Table 1).  Improving gain by 10% resulted in a 

predicted 18% improvement in profitability; however, it was predicted that improving 

efficiency by 10% would result in a 43% increase in profitability.  Furthermore, van der 

Westhuizen et al. (2004) found profitability to be correlated with feed conversion ratio 

(FCR) and residual feed intake (RFI) (-0.92 and -0.59, respectively) in young Bonsmara 

bulls in South Africa. Based on these results, it is clear that it is crucial to not only 

measure production outputs, but also to consider inputs such as feed intake to increase 

profitability and efficiency in beef production systems. 

 

Table 1.  The effect of improvement in feedlot gain and efficiency on profit
1
 

 

Average Steer 

10% higher 

ADG 

10% higher 

efficiency 

Dry Matter intake, kg/day 8.5 9.9 8.5 

Daily Gain, kg 1.46 1.60 1.64 

Feed/Gain Ratio 2.64 2.57 2.35 

Feed Cost, $ 176 172 157 

Non Feed Cost, $ 98 91 89 

Total Cost of Gain, $ 274 263 246 

Profit, $ 65 77 93 
1
Adapted from Fox et al., 2001 
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 Exton et al. (2000) attempted to estimate the value of genetic improvement in net 

feed efficiency (NFE) from an economic standpoint at the commercial cow-calf level, the 

feedlot level, and to the southern Australia beef cattle industry as a whole.  For a 100 cow 

herd, the assumptions were made that initially, 3 genetically superior bulls (based on 

NFE) would be purchased and that they would be replaced every 3 years.  In the first 

year, these bulls would be bred to unimproved cows and the resulting progeny in year 2 

would be 2% superior for NFE.  By year three, after making the decision to invest in 

bulls genetically similar for NFE, female progeny would be available to start replacing 

the original unimproved cowherd.  Over a 25-year period, the size of the cowherd could 

be increased to 110 head with no further feed expense. Over this same period this equated 

to a 42% return on investment, or an annual benefit of $6.95 per cow for selecting bulls 

genetically superior for NFE.  At the feedyard $8.08/hd could be saved on feed costs 

initially, and it was estimated that this would increase to over $35/hd over 25 years.  The 

authors concluded that the net present value (NPV) of genetic improvement in NFE 

(assuming a 0.5% adoption rate) to the commercial sector, feedlot sector, and the 

southern Australian beef cattle industry as a whole to be $52 million, $10 million, and 

$62 million, respectively. 

This review of literature will explore feed intake, methods of measuring 

efficiency, traits correlated with or causing differences in efficiency, selecting for 

improved efficiency of growth and factors relating to temperament. 

Measuring Feed Efficiency 

The two most obvious contributors to feed efficiency are feed intake and weight 

gain.  Weight gain of individual animals is easy and inexpensive to obtain; individual 
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feed intake is not.  It is logical, then that selection schemes in the past have focused on 

the former.  This logic was supported by the work of Koch et al. (1963) who reported that 

the genetic correlations between the efficiency of feed utilization (calculated as the +/- 

deviation from the regression of gain on consumption) and gain, feed consumption and 

gain, and feed efficiency (measured as feed conversion ratio) and feed consumption were 

0.79, 0.64, and 0.04, respectively.  They concluded that,  “…selecting for gain should be 

effective and lead to both increased feed efficiency and increased feed consumption.”   

Since that time, the advantages and disadvantages of different methods of evaluating feed 

efficiency, and their correlation with other traits, have been investigated in numerous 

studies. 

Ratios.   Feed efficiency has traditionally been defined as the ratio of weight gain 

to feed intake or its inverse, feed intake per unit gain in body weight (feed conversion 

ratio). Though this method is widely used and easily interpreted, it fails to partition the 

amount of feed actually needed for animal maintenance and growth.  Using ratios, 3 

factors are needed to evaluate feed efficiency: feed consumed, weight gain, and time.  To 

evaluate feed efficiency, one of the factors is held constant and variation in the others 

evaluated.  For example, all animals are put on feed at the same time and fed for an equal 

number of days, then variation in weight gain and feed intake is assessed. Conversely, 

animals could be fed the same amount or fed for a specific weight gain, but would then 

be on feed for varying amounts of time.  According to Koch et al. (1963) each of these 

situations creates unique challenges from an analysis standpoint.  In the former example 

(time held constant), differences will exist for body weight of the animal, and thus, 

maintenance requirements and composition of gain; plus, intake will vary.  In the latter 
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example (weight or intake held constant), time on feed will vary, and thus the animals 

will be evaluated under different environmental conditions. 

Using ratios to evaluate efficiency is also difficult from a selection standpoint 

because selection for FCR can be accompanied by changes in growth rate and mature 

cow size (Mrode et al., 1990). Specifically, FCR is negatively correlated with growth; so, 

selecting for desirable FCR in calves will most likely lead to larger mature cow size, and 

thus, to an increase in expense of feed at the cow-calf level. Furthermore, FCR has been 

found to be genetically related to rib fat (r = 0.38) and P8 rump fat (r = 0.40, Robinson 

and Oddy, 2004).  So, selecting for improved FCR, would likely lead to leaner animals as 

well, although this would not be obvious by only evaluating the phenotypic correlations. 

Residual Feed Intake. Residual feed intake (RFI), also known as Net Feed Intake 

(NFI) or net feed efficiency (NFE), is defined as the difference between actual and 

predicted feed intake relative to weight and ADG, such that negative RFI indicates those 

animals that consume less than predicted to achieve a given rate of gain, which is more 

desirable. Residual feed intake has been evaluated on a biologically diverse array of 

cattle, including Bos indicus and Bos taurus, and varying reports have been given 

concerning its effectiveness as a tool for use in modern beef cattle production. 

Herd and Bishop (2000) evaluated growth and efficiency traits on Hereford bulls 

placed on test from approximately 200 to 400 d of age.  Body weight at the beginning and 

end of test, and feed intake were measured; metabolic body weight, daily gain, and 

carcass lean (predicted from ultrasound at the end of test) were calculated; then, 

maintenance energy requirements and RFI were estimated.  Next, an attempt was made to 

estimate the correlation between mature cow weight (MCW) and RFI using the live 
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weight of the dams of the tested bulls at 4.5 years of age. No animals had records for both 

RFI and MCW, so estimating the phenotypic correlation was impossible; however, using 

an animal model in ASREML the genetic correlation was estimated to be -0.09, which 

was not statistically different from zero.  The authors indicated that selection could 

potentially be made for improved RFI without adversely affecting mature weight of the 

cow herd. 

Arthur et al. (2001b) showed RFI to be phenotypically (r = 0.53) and genetically 

(r = 0.66) correlated with FCR in Angus bulls and heifers tested post-weaning in southern 

Australia, and genetically correlated with FCR (r > 0.85) when evaluated in Charolais 

bulls in France (Arthur et al., 2001a).  This agrees with Herd and Bishop (2000) who 

found RFI to be positively correlated with both FCR and lean feed conversion ratio 

(LFCR) in Hereford bulls (200 to 400 d old) sired by horned, polled, and British Hereford 

bulls. 

As discussed earlier, selection for traditional measures of feed efficiency such as 

FCR can be accompanied by changes in growth rate and mature cow size (Mrode et al., 

1990).  However, some have suggested that RFI is independent of size and growth rate 

(Herd and Bishop, 2000; Richardson et al., 2001). 

Nkrumah et al. (2004) evaluated the relationship of efficiency, growth, and 

carcass traits in crossbred steers and bulls managed and tested under feedlot conditions in 

Canada.  Crosses were made between Angus, Charolais, or University of Alberta hybrid 

(UAX) bulls and UAX cows.  Hybrid animals were created by crossing composite lines 

consisting of Angus, Charolais, Galloway, Hereford, Simmental, and other beef breeds 

along with Holstein and Brown Swiss.  Residual feed intake was found to be 
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phenotypically correlated with dry matter intake, metabolizable energy intake, FCR and 

the partial efficiency of gain (r = 0.75, 0.83, 0.62, and -0.89, respectively); RFI was not 

related to average daily gain or metabolic weight (and due to the nature of it’s calculation 

we would not expect it to be).  This led the authors to propose that RFI, used for 

selection, is more likely to improve the efficiency of production as well as the partial 

efficiency of gain without altering the growth or body size of the animal.   

Model Predictions.  An inherent difficulty of evaluating efficiency is the 

requirement for individual intake to be measured on the animals in question. Several 

models are available that can predict feed intake.  Using data from steers that came from 

a heterosis experiment involving Hereford, Angus, and Shorthorn, Williams et al. (2006) 

evaluated the feed intake predictions from 2 models:  the Decision Evaluator for the 

Cattle Industry (DECI) and the Cornell Value Discovery System (CVDS).  Predictions 

for daily feed required for maintenance, cold stress, gain, and combinations of these 

factors were made with each model and compared to observed values from the steers 

after the post-weaning feeding period.  For both models, the prediction for daily feed 

intake required for maintenance had the highest phenotypic correlation with intake 

observed in the British crossbred steers (0.78 and 0.86 for CVDS and DECI, 

respectively). 

Factors Affecting Feed Efficiency 

One major issue in improving the efficiency of feed utilization in cattle is 

determining exactly what makes one animal more efficient than another.  The effects of 

many factors on efficiency have been discussed in the literature. Meissner and Roux 

(1984) wrote that, “The efficiency with which feed energy is utilized in growing cattle 
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and sheep is a function of intake, body composition, and maintenance energy 

requirements.”  While this statement likely encompasses the major factors affecting 

efficiency, maintenance energy requirements are affected by many other variables. 

Johnson et al. (2003) suggested several measures of production potential (gain, 

body weight, and prolificacy) as well as metabolism for maintenance and growth as 

potential factors affecting efficiency. Similarly, Herd et al. (2004) suggested 5 processes 

that likely affect ultimate efficiency:  feed intake, digestion of feed, metabolism, activity 

of the animal and thermoregulation. Brown et al. (2004) showed exit velocity as a 

measurement of temperament to be negatively correlated with ADG, body weight, and 

dry matter intake (DMI ; P < 0.10) in growing Bonsmara bulls and Santa Gertrudis steers.  

Further, Robinson and Oddy (2004) reported that more efficient animals made fewer trips 

to the bunk.  So, feeding behavior or temperament may also play an important role in 

efficiency.   

Nkrumah et al. (2006) evaluated 306 Continental x British cross steers for post-

weaning feedlot performance and efficiency. At the conclusion of the feeding period, 

residual feed intake was calculated, and 27 steers were sorted into groups based on high 

(RFI > 0.5 SD above the mean), medium (RFI  0.5 SD from the mean) and low (RFI < 

0.5 SD below the mean) levels of residual feed intake (with high designating the least 

efficient cattle and low representing the most efficient).  These steers were used in a 

digestion and metabolism trial, which allowed for digestion and energy partitioning to be 

evaluated and compared with measures of feedlot performance and efficiency.  

 Dry matter intake did not differ (P > 0.10) among the 3 RFI groups during the 

digestion/metabolism study.  However, differences in DMI between the 3 RFI groups did 



10 

 

exist during the feeding phase (P = 0.01). Phenotypic correlations between selected traits 

measured at the feed yard and those taken during the digestibility/metabolism study are 

presented in Table 2.  Residual feed intake was correlated with metabolizable energy 

(ME), heat production (HP), and retained energy (RE); however, FCR was significantly 

correlated only with HP.  Furthermore, low RFI steers produced less methane than 

medium and high RFI steers (24% and 28% less, respectively) which implies that 

production of methane may greatly affect feed efficiency in cattle. 

 

 

Table 2. Correlations between feedlot growth, intake,  

efficiency, behavior and post-feed yard  

digestibility and metabolism
1
 

Trait
2
 MP ME HP RE 

RFI 0.44* -0.44* 0.68*** -0.67*** 

FCR 0.19 -0.09 0.37* -0.24 

DMI 0.38* -0.48** 0.31
a
 -0.53** 

ADG 0.05 -0.27
a
 -0.09 -0.18 

FA -0.14 0.22 0.42 0.004 

FD 0.51** -0.55** 0.25 -0.60** 

1
Adapted from Nkrumah et al. (2006). 

2
MP = Methane Production, ME = Metabolizable Energy, HP =  

Heat Production, RE = Retained energy, RFI = Residual Feed Intake,  

FCR = Feed Conversion Ratio, DMI = Dry Matter Intake, ADG =  

Average Daily Gain, FA = Feed bunk attendance, FD = Feeding duration. 
a
P < 0.10.; * P < 0.05; **P < 0.01; ***P < 0.001. 

 

 

 

Breed Effects.  Commerford et al. (1991) evaluated unadjusted and maintenance-

adjusted FCR in the feedlot for a four-breed diallel of Simmental, Limousin, Polled 

Hereford, and Brahman. Unadjusted FCR was the highest for Brahman-sired calves and 
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calves with Simmental, Limousin, or Brahman dams. Adjusting FCR to fat or age 

constant values showed no re-ranking. When FCR was adjusted for maintenance, 

Brahman-sired calves were still the least efficient (though not significantly different from 

Simmental-sired calves); however, calves from Hereford and Brahman dams were more 

efficient than calves from Simmental and Limousin dams.  Furthermore, when evaluating 

mating types (sire x dam), no reciprocal differences existed for Bos taurus crosses; 

however, among Bos indicus crosses, reciprocal differences were evident.  For Simmental 

– Brahman calves, those with Simmental sires had a FCR of 7.08 compared to 8.10 for 

calves with Simmental dams.  Similarly, Limousin x Brahman calves had a FCR of 7.22 

compared to 7.74 for Brahman x Limousin calves.  Conversely, among Hereford – 

Brahman crosses, calves with Hereford dams were more efficient (6.60) than those with 

Hereford sires (7.07).  The same reciprocal cross trends existed for fat-constant and age-

constant FCR.   

Frisch and Vercoe (1969) evaluated 1.5 to 2-year old Brahman, Africander, and 

Shorthorn x Hereford bulls and steers for intake and gain on an ad libitum forage diet. 

Feed was offered to them in stalls at 8:00 am and 4:00 pm daily; the remainder of the 

time they were kept in a shaded yard with access to water and a mineral lick. When 

adjusted for weight, Brahman ate less than Africander and the British crosses that ate the 

most.  When adjusted for intake, Brahman gained the most followed by Africander and 

Shorthorn x Hereford.  They concluded that the Brahman cattle were the most efficient 

possibly due to having the lowest maintenance requirements. 

Meissner and Roux (1984) compiled data from Kenya, Denmark, and South 

Africa that included crossbred temperate (> 50% Bos taurus) and tropical (> 50% Bos 
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indicus) cattle.  They concluded that, when primarily Bos indicus breeds were excluded, 

the differences in FCR between breeds were primarily due to differences in size. 

Intake.   As feed intake increases, retained energy also increases, but not linearly; 

in fact, as feed intake increases, retained energy increases at a decreasing rate (Ferrell, 

1988). This could be because as intake increases, rate of turnover of fluid and particulate 

digesta in the rumen increases (Merchen, 1988) and the proportion of energy lost as feces 

increases (Ferrell, 1988); thus, energy required for digestion increases (Herd et al., 2004). 

 Rate of Maturity/Body Composition.  Klosterman and Parker (1976) studied feed 

efficiency in Charolais (C), Hereford (H), and crossbred C x H and Angus (A) x H cows 

bred to C and H bulls.  Efficiency was evaluated as total digestible nutrients (TDN) 

required by the cow and calf,  kg of TDN needed per unit of edible beef produced, and 

total net energy in the empty body per unit of metabolizable energy available from the 

total feed fed to the cow and calf prior to slaughter. 

 For this study, 1/age of slaughter x 100 (which is the reduced form of weight per 

day of age/slaughter weight) was used as a covariate and was responsible for significant 

variation in all 3 measures of efficiency.  For example, the covariate was moderately 

correlated with total TDN required by the cow and calf (r = -0.52) when calves were fed 

to a fat-constant end point. This indicated that animals with a faster rate of maturity used 

feed more efficiently.  Ferrell and Jenkins (1985) cited conflicting evidence as to the 

effect that body composition has on maintenance energy requirements across a wide 

range of species, sexes, and ages. 

 Temperament/Behavior. Temperament (Brown et al., 2004) and eating behavior  

(Frisch and Vercoe, 1969; Robinson and Oddy, 2004; Cammack et al., 2005; Nkrumah et 
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al., 2006) have been shown to be related to feed intake and efficiency traits and will be 

discussed in depth in the section entitled “Temperament”.  

 Production Potential.   Ferrell and Jenkins (1985) reported that Angus-Hereford 

crossbred cows and Charolais cross cows had similar maintenance requirements per unit 

of body size and that the maintenance requirements for Jersey cross and Simmental cross 

cows were higher per unit of body weight.  They suggested that maintenance energy 

requirements per unit of body weight are related more to genetic potential for milk 

production than to body size.  

 Liver/Viscera.  The review by Owens et al. (1993) cited several studies that 

concluded the phenomenon of compensatory growth after periods of nutrient restriction 

can be entirely explained by changes in the mass of the gastro intestinal tract and liver.  

Similarly, Ferrell and Jenkins (1985) concluded that energy spent by the liver and 

gastrointestinal tract is responsible for a large portion of maintenance energy 

requirements. 

 Conclusions.  According to Ferrell and Jenkins (1985), most of the variation 

observed in total energy requirements is due to variation in energy required for 

maintenance. Research has supported differences in maintenance requirements for those 

characters discussed above, though it is doubtful any of them are working singularly to 

influence efficiency. Rather, a complex interaction among many forces is likely leading 

to the observed variation in feed efficiency. 

Selection for Improved Efficiency and Its Correlation with Other Traits 

If genetic variation can be recognized and quantified in a population, it is possible 

to make improvements in phenotype through selection.  This has been accomplished in 
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beef cattle production primarily in growth and other size traits that are easily observed. 

However, up to this point, there has been little success (possibly due to little effort) in 

making advancements in feed efficiency (Johnson et al., 2003).  Australian research has 

indicated significant genetic variation in feed efficiency in the Australian cattle 

population and that efficiency traits, RFI specifically, seem to be moderately heritable 

(Archer et al., 1999; Arthur et al., 2004; Robinson and Oddy, 2004).  With this in mind, 

potential for improvement in feed efficiency through selection seems probable. 

Kennedy et al. (1993) evaluated heritability and response to selection for RFI in 

dairy cattle over a range of heritabilities, and genetic and environmental correlations for 

feed intake (f) and production (p).  They concluded that RFI is simply a linear 

combination of its component traits, and therefore behaves as an index.  As a result, 

single trait selection for phenotypic RFI is the same as multiple trait selection for its 

component traits.  This also implies that the heritability of RFI, its correlation with 

production traits, and its response to selection is based heavily on the heritability and 

correlation of its component traits.  Heritability estimates for RFI were determined by 

simulation.  The lowest estimate was 0.028 and occurred when the genetic correlation 

between feed intake and production was highest (0.90), the corresponding environmental 

correlation was moderate (0.50), and the heritabilities of feed intake and production were 

0.10 and 0.30, respectively.  The highest heritability estimate for RFI (0.841 ) was  

obtained when respective parameters for h
2
f , h

2
p, refp (e = environmental), rgfp (g = 

genetic) were 0.5, 0.1, 0.9, and 0.1.  Ideally then, to achieve optimum response to 

selection for RFI, the genetic correlation between feed intake and production would be 

negative, such that a decrease in feed intake has a resulting increase in 
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production.  Further, it is apparent that an increase in h
2
 for feed intake also increases h

2
 

for RFI. 

Estimates of heritability and genetic correlations of RFI with other measures of 

interest in cattle are presented in Table 3.  Arthur et al. (2001b) found RFI to be 

moderately heritable (0.39 ± 0.03).  Herd and Bishop (2000) estimated heritability of RFI 

to be 0.16 ± 0.08. It seems possible that improvement should be able to be made in feed 

efficiency through selection; however, its effect on correlated traits may be as important a 

consideration as the direct selection response. 

 

 

Table 3.  Heritability of RFI and its genetic correlation with other traits of interest 

 Arthur  Herd Robinson Nkrumah 

Heritability 0.39 0.16 0.18 - 

Weight Gain - - 0.09 - 

Metabolic Weight -0.06 0.22 -0.20 -0.02 

FCR 0.66 0.70 0.41 0.62 

ADG -0.04 0.09 - -0.03 

FI 0.69 - 0.43 0.75 

Rib Fat - - 0.48 - 

Rump Fat - - 0.72 - 

Arthur et al. (2001b); Herd and Bishop (2000); Robinson and Oddy (2004);  

Nkrumah et al. (2004) 

 

 

 

Bishop et al. (1991) reported a corresponding improvement in the feed conversion 

(FC) of progeny from sires that were selected for high and low rates of conversion (less 

feed per unit of gain vs. more feed per unit of gain, respectively).  Improvements for 

unadjusted FC as well as FC adjusted for maintenance requirements were observed in 

progeny from sires selected for high FC. 

Richardson et al. (2001) showed that when parents were selected for low RFI, the 

steer progeny also had lower RFI and consumed less feed, but still weighed the same at 
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the end of the feeding phase as steers from parents with high RFI.  Similarly, after 5 years 

of selection for efficient vs. non-efficient animals (low RFI vs. high RFI, respectively), 

progeny of low RFI lines were found to consume less feed, and had similar growth 

performance prior to one year of age as compared to high RFI lines (Arthur et al. 2001c).  

This is in contrast to Hoque et al. (2005) who evaluated the genetic relationship between 

efficiency traits in Wagyu bulls, and growth and carcass traits in their offspring.  They 

reported negative genetic correlations between RFI in bulls and body weight in their 

progeny (r = -0.27 to -0.61), which would indicate that as RFI improved, body weight 

increased. 

Much of the research for improvement in efficiency has focused on the selection 

of sires with desirable efficiency traits and the ultimate performance of their offspring 

from a feed efficiency standpoint.  To truly improve the efficiency of the production 

system as a whole, we must also be able to improve feed efficiency in the cowherd.  

Archer et al. (2002) showed a high genetic correlation between efficiency traits (FCR and 

RFI) measured in heifers post-weaning and those traits measured in the same animals as 

mature cows after the birth of their second calf.  They concluded that the opportunity 

exists to improve the efficiency of the cowherd through selection of young heifers who 

are desirable from an efficiency standpoint.   

However, the use of RFI for selection purposes is problematic for several reasons.  

First, re-ranking of animals for RFI may occur in different environments or contemporary 

groups, and correlations may exist with some carcass traits.  A significant diet x breed 

interaction was reported for RFI in Hereford and Angus bulls (Fan et al., 1995).  During a 

post-weaning gain test, bulls ranked differently for RFI depending on if they were fed 
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high or medium-energy diets (both ad libitum).  On the high-energy diet, the RFI for 

Hereford  and Angus bulls was 0.45 and 1.18 Mcal of ME/d, respectively.  On the 

medium energy diet, Hereford and Angus bulls had an average RFI of -1.86 and -2.46 

Mcal of ME/d, respectively.   

 More recently, feed intake was measured and net feed efficiency (NFE) calculated 

on 410 Charolais-cross steers in Canada at 2 different phases (Crews et al., 2003).  

During the growing phase, steers were fed a diet that consisted primarily of barley silage 

for 84 d, while during the feeding phase a barley-grain based diet was fed for 112 d.  The 

genetic correlation between NFE during the growing phase and NFE during the finishing 

phase was 0.55, which indicates that animals may rank differently for NFE depending on 

if they are fed roughage or forage based diets. 

It seems logical to believe that if animals that are efficient on one diet are not the 

same animals that are efficient on another diet, then selecting for cattle that are efficient 

in the feedyard may not automatically lead to more efficient replacement females who 

thrive in a predominately forage-based environment.  In fact, Arthur et al. (2004) listed 

finding an accurate method for evaluating individual intake in the pasture as a major 

challenge for the future of efficiency focused research. 

Kause et al. (2006) reported different genetic correlations between daily feed 

intake, daily gain, and body weight in rainbow trout depending on if they consumed a 

normal protein (NP) vs. a high protein (HP) diet. On the NP diet, genetic and phenotypic 

correlations between gain and feed intake were moderately to highly correlated at the 

beginning (0.95 and 0.74, respectively) and end (0.96 and 0.51, respectively) of the test.  

On the high protein diet, the correlations were high at the beginning of the test (0.87 and 
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0.73 for genetic and phenotypic, respectively), but much lower at the end (0.29 and 0.27 

for genetic and phenotypic, respectively).  When daily gain was the only selection 

criteria, the estimated genetic improvement in gain was 17.6 to 18.6%, and the estimated 

genetic improvement in efficiency was 8.4 to 9.3% on NP and HP diets, respectively.  

When selection was made for gain and against feed intake, no genetic improvement in 

efficiency was predicted on the NP diet.  However, on the HP diet selecting for gain and 

against feed intake was predicted to improve the genetic response in feed efficiency from 

9.3% to 11.4%. 

Residual feed intake has also been reported to be correlated with other production 

traits, including carcass traits.   In the Hereford cattle described earlier, Herd and Bishop 

(2000) showed RFI to be negatively phenotypically correlated with predicted carcass lean 

content (LEAN) and lean growth rate (r = -0.22 ± 0.04 and -0.33 ± 0.04, respectively) 

when LEAN was standardized to a mean of 0.60 each year with a coefficient of variation 

of 0.04.  This suggests that selection for lower (more efficient) RFI may increase carcass 

leanness, and this trend seems to exist across several studies.  

Robinson and Oddy (2004) evaluated RFI in temperate (Angus, Hereford, Murray 

Grey, and Shorthorn) and tropically adapted (Brahman, Belmont Red, and Santa 

Gertrudis) feedlot cattle finished for Japanese, Korean, and the Australian domestic 

markets.  They found RFI to be highly genetically correlated with fat thickness measured 

by ultrasound between the 12
th

 and 13
th

 rib (r = 0.48 ± 0.12) and at the P8 rump site (r = 

0.72 ± 0.17).  Much lower phenotypic correlations existed (r = 0.11 and 0.13 for P8 fat 

and rib fat, respectively). Residual feed intake was also found to be lowly genetically (r = 
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0.22 ± 0.17) and phenotypically (r = 0.12) correlated with intramuscular fat as measured 

by ultrasound. 

After a single generation of selection for high and low post-weaning RFI in 

Angus sires, fat differences were reported in their progeny (McDonagh et al., 2001). 

When born to low or high RFI Angus, Hereford, and Shorthorn dams, the steers with low 

RFI (more efficient) parents were reported to have less rib fat (9.2 vs. 10.1 mm; P < 0.05) 

and rump fat (11.5 vs. 12.1 mm; P = 0.10) than steers with high RFI (less efficient) 

parents (McDonagh et al., 2001).  In the same research, no differences were found in 

carcass weight (HCW), dressing percentage, or longissimus muscle area (REA) between 

low and high RFI steers.  From a meat quality standpoint no difference existed in 

marbling score (MARB), lean color, fat color, shear force, or calpain activity 

immediately following slaughter.  However, low RFI steers had 13% higher calpastatin 

activity than high RFI steers (5.2 vs. 4.6 units, respectively; P < 0.05 ). 

In Charolais-cross steers, NFE measured during an 84-d growing phase was 

weakly genetically correlated with HCW, REA, and MARB (r = 0.10, 0.15, and 0.08, 

respectively) and moderately genetically correlated with fat thickness (r = -0.24).  

However, at the feeding phase (high concentrate diet) NFE was lowly genetically 

correlated with fat thickness (r = -0.09) and moderately genetically correlated with HCW, 

REA and MARB (r = 0.26, 0.52, and -0.44, respectively; Crews et al., 2003). 

In Duroc pigs, Hoque et al. (2007) found RFI to be positively correlated (both 

genetically and phenotypically) with intramuscular fat, and negatively correlated with 

loin eye area.  They also reported both RFI and FCR to be positively correlated with 

backfat thickness. 
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It is possible that selection for RFI may impact physiological processes other than 

growth efficiency.  For example, Van Eerden et al. (2004) showed that low RFI chickens 

had a lower antibody response to Salmonella protein than high RFI birds.  This suggests 

that selecting for improved RFI may adversely affect the animal’s ability to mount an 

immune response.  As far as can be determined, this has not been reported or evaluated in 

other species. 

If variation in efficiency traits and selection strategies exist, how can this 

information be implemented into widespread use in an industry? In Australia, estimated 

breeding values for RFI have been developed for Angus and Hereford cattle (Arthur et 

al., 2004).   

Snowder and Van Vleck (2003) evaluated selection strategies for improving 

economic efficiency in Targhee lambs.  They concluded that using a selection index 

consisting of ADG, total feed intake, and body weight provided greater opportunity for 

economic improvement than other selection methods which included direct selection for 

ADG and against total feed intake as well as the use of a two-trait index comprised of 

ADG and total feed intake.  Costs for the economic evaluation were obtained from 

personal communication with 2 commercial lamb feed yards. 

Owing to the importance of crossbreeding in the modern beef cattle industry, 

some studies have evaluated heterosis for feed efficiency.  When evaluated in a diallel of 

Simmental, Limousin, Polled Hereford, and Brahman, estimates for the hybrid vigor 

between pairs of breeds for FC ranged from -0.87 (between Hereford and Brahman) to 

0.19 (between Limousin and Hereford) where negative values represent more desirable 

efficiency (Commerford et al., 1991).  Effects of the purebred, as well as maternal effects 
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and general combining ability (referring to the contribution of the breed to a 

crossbreeding program) were also evaluated for each breed.  Most of the variation 

observed in FC was the result of differences among the pure breeds; however, Hereford 

had a significant negative effect on FCR (-0.25; P < 0.05) from the standpoint of 

combining ability, such that the use of Hereford sires or dams produced more efficient 

steers than would have been predicted from straightbreds.   

Physiological Indicators.   Fenton et al. (2001) estimated the cost of including 

RFI as part of selection criteria in Australian beef cattle to be around $500A per animal.  

Because it is costly to measure feed efficiency traits in cattle, some have suggested 

indirect selection through detection of physiological indicators.  Moore et al. (2003) 

found the concentration of plasma insulin-like growth factor-1 (IGF-1) to have a positive 

genetic correlation with RFI in Angus cattle in Australia. Kahi et al. (2003) modeled the 

Australian Hereford population in an attempt to predict dollar return and profit per cow 

when using 5 different selection scenarios to meet the demands of 4 different marketing 

options.  They determined that testing all bulls for IGF-1 concentration about 9 months of 

age, measuring the top 5% for RFI, and using the results in a selection scheme with other 

commonly measured traits (birth weight, weaning weight, and carcass traits) yielded the 

most profit per cow for all 4 selection schemes.  Similarly, when incorporated into a 

selection scenario, the highest profit in Australian export markets was obtained when all 

bulls and cows were tested for IGF-1 concentration, followed by evaluation of RFI on the 

top 5% of bulls as determined by IGF-1 (Wood et al., 2004).  

 Similarly, IGF-1 and feed efficiency were found to have negative correlations (-

0.45 and -0.65, respectively) with $index in Large White and Duroc pigs (da Gloria Taela 



22 

 

et al., 2006), which led the authors to conclude that low IGF-1 indirectly improves feed 

efficiency and thus, could improve profits.  Transgenic sheep (heterozygous for an 

additional copy of a gene encoding growth hormone) had a higher IGF-1 concentration 

(342.1 ng/mL) and higher RFI (149 g/day) than non-transgenic controls (89.5 ng/mL and 

18 g/day for IGF-1 and RFI, respectively) from the same flock (Briegel and Adams, 

2006).  

  Additionally, IGF-1 concentration has been shown to be genetically and 

phenotypically correlated with ultrasound rib and rump fat, IMF (Johnston et al., 2001; 

Moore et al., 2003), P8 fat, and ADG (Johnston et al., 2001).  Johnston et al. (2001) 

reported a low genetic and moderate phenotypic correlation (r = 0.20 and 0.62, 

respectively) between ultrasound P8 fat and IGF-1 in temperate breeds (Angus, Hereford, 

Shorthorn, and Murray Grey) in Australia. Similar genetic and phenotypic correlations 

were observed between scanned rib fat and IGF-1 (r = 0.20 and 0.72, respectively).  

Furthermore, IGF-1 was moderately genetically correlated with intramuscular fat 

observed in the carcass (r = 0.47).  Insulin-like growth factor-1 was also found to be 

lowly correlated with feedlot ADG (r = -0.25), but was not significantly phenotypically 

correlated with the same trait.  Moore et al. (2003) observed similar results for the 

correlation of IGF-1 with scanned rib and rump fat, and intramuscular fat (all r = 0.31 to 

0.33) in Angus cattle. 

 Heritability estimates for IGF-1 concentration have ranged from 0.32 (Johnston et 

al., 2001) to 0.36 (Moore et al., 2003) to a high of 0.53 (da Gloria Taela et al., 2006). 

 Quantitative Trait Loci.  In mice, 3 QTL for net feed intake (NFI) have been 

detected, along with one for daily feed intake (DFI) which overlapped with one of the 
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NFI QTL.  A 13% difference in DFI and 12% difference in NFI existed in alternate 

homozygotes for the latter QTL (Fenton et al., 2001).  In cattle, Pitchford et al. (2002) 

identified 5 QTL potentially having an effect on feed intake in Limousin – Jersey 

backcross steers and heifers.  One of these QTL resulted in progeny that ate 14% less;  

however, as was the case with the other QTL identified, it was only found in one family 

and thus was not a “fixed” gene in either of the parent populations. 

Temperament   

 Fordyce et al. (1985) defined temperament as “the response of cattle to man”, 

such that animals with a poor temperament attempt to escape or react extremely when 

approached or confined.  This section of the literature review discusses methods for 

evaluating temperament, factors affecting temperament, and the genetic aspects of 

temperament including heritability and selection. 

Measuring Temperament 

Subjective Scores.  Subjective scores are typically evaluated in one of two 

manners: while animals are restrained in a chute or scale (Hearnshaw et al., 1979; 

Fordyce et al., 1982; Fordyce et al., 1985; Grandin, 1993) or while cattle are unrestrained 

in a pen (Fordyce et al., 1982; Fordyce et al., 1985; Gauly et al., 2001). 

Hearnshaw et al. (1979) scored animals for temperament in the squeeze chute on a 

scale of 0 to 5: 0 = “stands very quietly, offers no resistance, only casual tail switching”; 

1 = “generally quiet, offers token resistance, steady movement in bail head”; 2 = 

“involves slightly excited movement, straining and paddling, may kick”; 3 = “excited, 

vigorous abrupt movement, straining, paddling; may jump or kneel”; 4 = “very disturbed, 

frightened, wild movements, etc.; may jump and goes down in the chute”; 5 = 
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“unmanageable and dangerous”.  Similarly, Grandin (1993) suggested assigning 

temperament scores in the squeeze chute on a scale of 1 to 4 in which 1 = “calm, little 

movement”, 2 = “squirming, occasional shaking of restraint device”, 3 = “continuous 

vigorous movement and shaking of restraint device”, 4 = “frenzied rearing, twisting, or 

violently struggling”. This method was subsequently used in several other studies 

(Voisinet et al., 1997a and b). 

Gauly et al. (2001) used an unrestrained test to evaluate temperament in cattle.  

Animals were initially observed in groups of 10, then 1 animal was separated from the 

rest and pushed into a smaller area to be observed, and the time it took to accomplish this 

was recorded. The animal was then observed alone for 30 s after which time a person 

entered the pen and stood still, the time spent running in the presence and absence of a 

person was recorded (TSR1 and TSR2, respectively).  An overall temperament score (1 

to 5 scale, where 1 = calm and 5 = very excited) was assigned for this time period, which 

was referred to as “before handling”. Next, the handler attempted to move the animal into 

a corner and hold it for 30 s, if this was successful, the handler attempted to touch the 

animal.  Time to get the animal to the corner, how long it stayed there, and how long it 

allowed itself to be touched were also recorded and an overall temperament score (1 to 5) 

was given for this “after handling” period. 

Fordyce et al. (1982) evaluated cattle for temperament in both restrained and 

unrestrained situations. Animals were evaluated for movement response (MOV) and 

audible respiration (BLO) on a 7 point scale (1 = stands quietly; 7 = struggles violently) 

when in a single-file alley, when in a squeeze chute, and in a head-catch. Animals were 

also evaluated for temperament in the pen based on their rate of movement (SPEED) and 
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flight distance (FD). Animals were sorted from the group and pushed into the pen alone 

and assigned a score for SPEED (1 = standing and walking, 5 = gallops), then an 

observer entered the pen and attempted to walk toward the animal and the closest 

distance the animal would tolerate between them was recorded as FD. Only moderate 

correlations were obtained between restrained and unrestrained temperament scores, 

suggesting different aspects of temperament were being evaluated. Correlations between 

unrestrained temperament scores (SPEED and FD) were high (r = 0.71).  Fordyce et al. 

(1996) reported high phenotypic and genetic correlations between SPEED and FD at 

different ages, which suggests that unrestrained measures of temperament may be more 

repeatable than restrained methods. 

Flight Speed.  Curley et al. (2006) evaluated 3 methods of temperament scoring 

(exit velocity, and 1 to 5 in a pen and in a chute) on 3 separate occasions (each 60 d 

apart) in yearling Brahman bulls. Chute score was evaluated on a 1 to 5 scale (1 = calm; 5 

= extremely excited) while the animal was unrestrained on a scale. As the animal exited 

the chute, exit velocity (EV) (defined as rate at which the bulls exited the working chute) 

was recorded.  Bulls then moved to a squeeze chute where blood was drawn to be tested 

for serum cortisol concentration.  Immediately after blood had been drawn, pen score was 

evaluated on groups of 5 animals in a 5 x 10 m pen.  Pen score and EV were both found 

to be correlated with cortisol concentration, chute score was not, which led the 

researchers to conclude that EV was a more valuable tool for assigning temperament than 

the subjective measures of chute score and pen score.   

 On the contrary, early research by Tulloh (1961) suggested that the speed with 

which animals moved may not be related to temperament. Hereford, Angus, and 
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Shorthorn steers and heifers were evaluated for behavior entering the scale, the squeeze 

chute, and the head-catch (these 3 scores being primarily related to the speed with which 

the animal entered) and then given a final temperament score while in the squeeze chute.  

The former 3 scores were found to be unrelated to each other as well as to temperament 

score. 

Factors Affecting Temperament 

Breed.  Bos indicus cattle and their crosses tend to have more excitable 

temperaments than Bos taurus breeds (Hearnshaw and Morris, 1984; Fordyce et al., 

1988; Voisinet, 1997a).  When evaluated in the pen and squeeze chute, Shorthorn bulls 

received lower (more docile) scores than Brahman-cross bulls for audible respiration and 

overall temperament in the squeeze chute, as well as degree of movement when held 

alone in a pen (Fordyce et al., 1988).  Similar results were found by Voisenet et al., 

(1997a) in Bos taurus (Simmental x Red Angus, Tarentaise x Angus, and Angus) and Bos 

indicus (Braford, Red Brangus, and Simbrah) steers.  Temperament scores (1 = calm, no 

movement;  5 = rearing, twisting or violently struggling) were assigned to animals while 

they were standing unrestrained on a scale.  Bos indicus-cross steers had significantly 

higher scores (P < 0.001) than Bos taurus steers (3.46 ± 0.09 vs. 1.80 ± 0.10, 

respectively). 

Using the method of Hearnshaw et al. (1979), Hearnshaw and Morris (1984) 

evaluated temperament scores on calves at weaning in 3 different sets of calves.  In the 

first data set, calves were sired by Hereford, Simmental, Friesian, or Brahman bulls and 

out of Hereford cows.  Brahman-cross calves had a significantly higher temperament 

score than calves sired by any other breed (1.96 vs. a mean of 1.05 for the other breeds).  
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Females from the first data set were bred back to Hereford, Simmental, Friesian, or 

Brahman bulls and temperament scores were obtained for the calves at weaning and for 

the cows.  Again, calves with Brahman sires or grandsires had significantly higher 

temperament scores than calves by other breeds.  No significant differences were found 

for temperament among Bos taurus breeds.  In the third data set, Brahman-, Braford-, and 

Africander-sired calves were compared for temperament.  In the first 2 years of the study, 

significant sire breed differences existed for temperament for all 3 breeds (Brahman = 

1.84, Braford = 1.38, Africander = 1.25); while sires ranked the same in the third year, 

differences were not statistically significant. 

Gauly et al. (2001) evaluated temperament using the previously described method 

in Simmental and German Angus cattle.  During the restraint test, Simmental cattle were 

found to run longer than the German Angus before and after the handler entered the 

restraint pen (P < 0.001). Also, it took the handler more time to move the Simmental 

cattle than the German Angus (35 vs. 27 s for the first test and 47 vs. 32 s for the second 

test, respectively).  Once the handler was able to move the animals to the corner, the 

Angus stayed there longer than Simmental (24 vs. 21 s and 23 vs 15 s for the first and 

second test, respectively).  Simmental cattle also appeared to be more aggressive as 4.9% 

showed aggression in the first test and 7.9% showed aggression in the second test 

compared to 3.0% for the German Angus for both test times. 

Sex.  Gelbvieh, Charolais, and Simmental cross bulls and steers with an average 

on-test weight of 260 kg were scored for temperament using the scale described by 

Grandin (1993) on 5 different occasions for bulls and 4 different occasions for steers. She 

concluded that steers tend to be less temperamental than bulls.  Forty percent of steers 
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received a temperament rating of 1 (calm, little movement in the squeeze chute), while 

only 25% of bulls received a ranking of 1.  Furthermore, 9% of bulls were behaviorally 

agitated (received a rating of 4 or 5) at all 4 temperament scoring sessions, while only 3% 

of steers were behaviorally agitated at all 3 times they were run through the chute. 

Gauly et al. (2001) found heifer calves to be more difficult to handle than their 

male counterparts when temperament was evaluated twice, 2 and 3 weeks after weaning. 

Female calves took longer to separate from the group, spent more time running when 

held alone in a pen and when in the presence of a handler, and heifers escaped more 

frequently when a handler attempted to hold them in a corner. In contrast, Hearnshaw et 

al. (1979) found no difference in temperament between steers and heifers scored at 

weaning. 

Weight and Body Composition.  In the Shorthorn and Brahman-cross bulls and 

cows described earlier, Fordyce et al. (1988) found the fattest animals to have lower 

(more docile) temperament scores when evaluated based on degree of movement around 

a pen.  Tulloh (1961) reported a significant relationship between live weight and 

temperament, as did Fordyce et al. (1985).  In the latter study, 232 Bos indicus cross 

steers were evaluated for temperament in the manner described above (Fordyce et al., 

1985).  Negative correlations were found between weight and movement response (r = -

0.35; P < 0.001), audible respiration (r = - 0.22; P < 0.01), and total temperament (r = -

0.34; P < 0.001) such that docile animals were found to be heavier than nervous animals. 

Previous Handling.  Grandin (1993) assigned balking ratings to Continental cross 

bulls (5 observations) and steers (4 observations) both upon entering a single-file scale 

and when entering a squeeze chute to have blood drawn.  Animals balked less frequently 
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at the scale as time progressed, until at the final observation, none of the animals balked 

at the scale, which suggests that animals became accustomed to the process of moving 

through the scale over time.  At the squeeze chute, however, 13% of bulls balked during 

session 1, while 42% balked at session 5.  In steers, balking remained steady from 

observation 1 (21%) to observation 4 (22%).  Blood was drawn while the animals were in 

the chute, and the increase in balking suggests that the animals remembered an 

unpleasant experience from a previous handling session. 

Curley et al. (2006) evaluated temperament on Brahman bulls using EV on three 

separate occasions, each 60 d apart.  As time progressed, EV reduced; suggesting that the 

animals became accustomed to being handled over time.  In this case, animals were only 

weighed, unrestrained prior to being evaluated for EV. 

Selection for Improved Temperament and Its Correlation with Other Traits 

Reported heritability estimates for temperament vary widely and seem to depend 

on the method used for determining temperament and the breeds involved (Table 4).  

Hearnshaw and Morris (1984) found temperament to be moderately heritable (h
2
 = 0.46) 

for Bos indicus-sired calves and lowly heritable (h
2
 = .03) for Bos taurus-sired calves, 

though it should be noted that the project was designed primarily as a sire-breed 

comparison, not a test of genetic variability and the progeny per sire was low (3.77, on 

average).  Low to moderate heritability estimates were obtained for German Angus and 

Simmental cattle for overall temperament before and during handling (Gauly et al., 

2001).  

Morris et al. (1994) found different heritability estimates for temperament scores 

in several different herds and among different breeds and crosses in calves, yearlings, and 
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cows (h
2
 = 0.23, 0.32, and 0.22, respectively).  Likewise, Fordyce et al. (1996) found 

different heritability estimates at different ages for both temperament score and flight 

distance, which was defined as the minimum tolerated distance an animal would allow a 

handler to approach. Brahman and Sahiwal cross bulls were evaluated for temperament 

and flight distance at weaning, at 12 mo of age, and at 24 mo of age. Temperament score 

was lowly heritable at all ages, but flight distance was moderate at the first two ages and 

high at 2 years of age (Table 4). 

 

Table 4.  Heritability estimates for measures of temperament 

Study
1
 

     Type of test Heritability S.E. 

Hearnshaw and Morris   

    Bos indicus 0.46 0.37 

    Bos taurus 0.03 0.28 

    Overall 0.44 0.25 

Gauly   

    Before handling - Angus
2
 0.13/0.11 0.11/0.07 

    During handling - Angus
2
 0.61/0.18 0.17/0.07 

    Before handling - Simmental
2
 0.17/0.35 0.12/0.21 

    During handling - Simmental
2
 0.55/0.52 0.15/0.20 

Morris   

    Calves 0.23 0.12 

    Yearlings 0.32 0.24 

    Cows 0.22 0.15 

Fordyce   

    Temperament – weaning 0.14 0.11 

    Temperament – 12 mo 0.12 0.11 

    Temperament – 24 mo 0.08 0.10 
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Table 4 continued 

Study
1
 

     Type of test Heritability S.E. 

Flight distance – weaning 0.40 0.15 

    Flight distance – 12 mo 0.32 0.14 

    Flight distance – 24 mo 0.70 0.23 

  
1
from Hearnshaw and Morris (1984); Gauly et al. (2001); Morris et al.  

 (1994); Fordyce et al. (1996) 

  
2
Heritability and standard error for Test 1/Test 2 

 

 

Temperament has been shown to affect many traits of importance in beef cattle 

including daily gain ( Burrow and Dillon, 1997; Voisinet et al., 1997a; Brown et al., 

2004), carcass and meat traits (Voisinet et al., 1997b), and feed intake (Brown et al., 

2004).  Voisinet et al. (1997a) evaluated temperament in Bos indicus and Bos taurus 

steers (n = 292) and heifers (n = 144) in 2 different ways; unrestrained on a scale 

(Experiment 1) and restrained in a squeeze chute (Experiment 2).  For both experiments, 

cattle with a more excitable temperament had lower ADG (P < 0.001).  In Bos taurus 

breeds for Experiment 1, cattle with the most docile temperament had 0.19 kg/d higher 

gain than those with the least docile temperament, and scores for Bos indicus-influenced 

cattle followed a similar trend.

Burrow and Dillon (1997) measured flight speed each week on 2 groups of 5/8 

Brahman 3/8 Shorthorn steers and heifers in the feed yard. The first group received a 

minimum amount of handling by men both on foot and on horseback for 10 days only at 

weaning time, but received little handling before or after weaning.  The second group was 

handled similarly through weaning, but after they were grazed on pasture for 4 months 

which required being gathered and moved between paddocks on a regular basis; plus, the 
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calves were gathered and weighed once a month.  Prior to analysis, mean scores for flight 

speed were separated into 5 categories based on 0.10 s time intervals.  In the first group, 

flight speed was related to ADG and final weight such that steers with the fastest flight 

speed gained less (0.79 vs. 1.13 kg/d) and weighed less at the end of the test (297 vs. 346 

kg) than animals with the slowest flight speeds.  The second group had overall slower 

flight speeds than the first group, and no significant differences were detected in gain or 

body weight based on flight speed.  Similarly, in Bonsmara bulls and Santa Gertrudis 

steers, Brown et al. (2004) showed exit velocity (EV) to be negatively correlated with 

ADG, body weight, and DMI (P < 0.10).  

Voisinet et al. (1997b) evaluated the effect of temperament (using a 4-point scale 

in the squeeze chute) on meat quality traits in Bos indicus influenced cattle. They 

reported cattle with high temperament scores to have a higher incidence of dark cutters (P 

= 0.01) and higher Warner-Bratzler shear force (P < 0.001) than more docile cattle.   Of 

the most excitable animals (temperament score of 5), 25% were borderline dark cutters, 

while only 6.7% of the calm animals were borderline dark cutters.  Mean Warner-

Bratzler shear force values for calm and excitable animals were 2.86 and 3.63 kg, 

respectively.  Stated differently, 40% of the excitable animals measured higher than 3.9 

kg, while only 11% of the calm animals had a shear force greater than 3.9 kg, with 3.9 kg 

being the threshold value for acceptability for tenderness in food service.   

Burrow and Dillon (1997) found no relationship between flight speed and fat 

thickness or carcass bruising, which was similar to Brown et al. (2004) who found no 

relation between EV and carcass backfat or intramuscular fat.  However, in the group of 

calves that had extensive handling prior to entering the feedyard, those with slower flight 
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speeds had higher dressing percentages (P < 0.001; Burrow and Dillon, 1997).  

Conversely, Brown et al. (2004) found EV to be positively correlated with longissimus 

muscle area (P < 0.01). These seeming contradictions may be indicative of Tulloh’s 

(1961) assertion that speed of movement is not necessarily related to temperament.  

Feeding Behavior and Feed Efficiency.  Feeding behavior may play a role in 

efficiency as several studies have shown that the eating rate (Frisch and Vercoe, 1969; 

Robinson and Oddy, 2004), feeding duration and bunk attendance (Robison and Oddy, 

2004; Nkrumah et al., 2006) affect different measures of intake and efficiency in Bos 

indicus and Bos taurus, and crosses of those biological types.  

Robinson and Oddy (2004) evaluated RFI and FCR on temperate and tropical 

breeds of cattle fed for the Korean, Japanese, and Australian domestic markets and 

calculated their genetic and phenotypic correlations with feeding time (in minutes per 

day), number of eating sessions per day, and eating rate (in grams per minute).  Feeding 

time had a moderate to high genetic correlation with RFI and FCR (0.35 and 0.78, 

respectively), but had only a low phenotypic correlation (0.16 and -0.05, respectively). 

Similar results were obtained for number of eating sessions per day.  Eating rate (g/min), 

on the other hand was negatively genetically correlated with FCR (-0.83) and RFI (-0.07), 

suggesting that animals that eat faster were more efficient.  Eating rate was also 

genetically (r = 0.29) and phenotypically (r = 0.20) correlated with metabolic body 

weight such that heavier animals ate more feed per minute. 

More recently, Nkrumah et al. (2006) reported differences between low, medium 

and high RFI groups feeding duration (P < 0.01), and bunk attendance (P = 0.01).  This 
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followed the report of Robinson and Oddy (2004) who observed that more efficient cattle 

made fewer trips to the bunk.   

In composite ram lambs (1/2 Columbia, ¼ Hampshire, ¼ Suffolk; 11 to 17 wk 

old), the genetic and phenotypic correlations between RFI and time spent feeding daily 

were 0.22 and 0.10, respectively.  The genetic and phenotypic correlations between RFI 

and daily feeding events were 0.20 and 0.10, respectively.  Residual feed intake and daily 

feed intake had genetic and phenotypic correlations of 0.61 (Cammack et al., 2005). 

 

Summary 

Accurate evaluation of the efficiency of feed utilization and its incorporation as a 

selection criteria in a breeding program is extremely important, but to this point, has been 

an elusive goal.  Some research has suggested that RFI may hold promise for making 

improvements in efficiency; however, as has been discussed here, RFI does have several 

limitations.  On the one hand, RFI based on phenotypic regression is not genetically 

independent of its component traits and, as a result, selection could have an effect on 

body weight (Kennedy et al., 1993), fatness (Robinson and Oddy, 2004) and other 

production traits.  Furthermore, ranking of animals based on RFI can change depending 

on diet (Fan et al., 1995).  However, due to the nature of its derivation, RFI lends itself to 

use as a selection index, which would allow for selection pressure to be placed upon it, 

and thus it could be included in a breeding program using multiple trait selection. 

Developing a metric for assessing differences in efficiency that incorporates both 

input and output variables and is not heavily dependent on contemporary group would 

certainly be beneficial.  Also, temperament may be need to be incorporated when 
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evaluating feed efficiency.  Furthermore, due to the time and expense limitations of 

evaluating feed intake on large numbers of animals, the discovery of QTL or genes 

related to efficiency would be extremely valuable.  The focus of the ensuing research is: 

(1) the development of a new metric for describing feed efficiency and its relationship 

with other production traits, and (2) to provide phenotypic analysis that will be used in 

future QTL analysis and gene discovery. 
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MATERIALS AND METHODS 

Materials 

This study utilized F2 Nellore-Angus steers from 6 contemporary groups produced 

by embryo transfer from 13 F1 Nellore-Angus donor females and 4 Nellore-Angus F1 

sires.  All F1 parents were Nellore-sired.  Steers were born in the Spring and Fall calving 

seasons of 2003 through 2005, and those born in the same year and season were managed 

in the same contemporary group (Table 5). Disposition (temperament) scores were 

assigned approximately 30 d after weaning, individual feed intake and body weight were 

measured at the McGregor research center during the feeding phase, and carcass and 

meat traits were evaluated after harvest at the TAMU Rosenthal Meat Science and 

Technology Center.  All procedures involving animals were approved by the Texas A&M 

Institutional Animal Care and Use Committee; AUP # 2002-116 and 2005-147. 

 

 

Table 5.  Contemporary group designation 

Birth Year/Season Contemporary Group n 

Spring 2003 1 22 

Fall 2003 2 26 

Spring 2004 3 34 

Fall 2004 4 32 

Spring 2005 5 36 

Fall 2005 6 30 

  

 

 

Temperament (Disposition) Scoring.  Shortly after weaning, calves were 

evaluated for 5 aspects of temperament (aggressiveness, nervousness, flightiness, 

gregariousness, and overall temperament) by a panel of 4 university evaluators using a 
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subjective scale of 1 to 9.  Aggressiveness represents the animal’s combativeness towards 

evaluators (1 is non-aggressive, and 9 is extremely aggressive).  Nervousness refers to the 

animal’s agitation and fear with behavior including walking and running, vocalization, 

and physically shaking (1 is totally calm and 9 is extremely nervous).  Flightiness 

signifies the animal’s desire to keep away or get away from evaluators where 1 is totally 

quiet and 9 is extremely flighty. Gregariousness refers to an animal’s desire to get back to 

the group of individuals from which it came and/or to where it is going such as sticking 

head through fence toward group, looking at the group, and how it acted in a pair as 

compared to being separated, where 1 is totally willing to be separated from the group 

and 9 is unwilling to be separated.  Overall disposition is not an average of the others 

traits, but instead, is scored as a separate trait as an overall assessment, where 1 is 

completely docile and 9 is wild.  

 To execute temperament scoring, initially 2 calves were cut from a group (of 

about 15 head) in the holding pen into the adjacent evaluation area and allowed to settle 

(usually 1 to 2 minutes).  Then one calf was pushed back to the holding pen and the 

remaining calf was evaluated individually for temperament.  When all of the evaluators 

had completed temperament scoring, the calf exited the scoring area through a gate 

opposite that which it entered. 

Recipient females are also scored for disposition shortly after calving on a scale 

of 1 to 5, where 1 represents a docile disposition and 5 represents a wild and/or 

aggressive disposition. 

Individual Feed Intake.   After weaning, the calves were placed on grass for an 

approximate 130-day growing period, after which individual feed intake was evaluated 
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using a Calan gate system beginning at an average age of 11 to 13 months (ration in 

Table 6).  During this time, the steers were housed in a partially covered facility in pens 

of 4 and weighed every 28 days.  Feed was offered ad libitum with refused feed being 

collected at 7-d intervals, weighed, and fresh feed offered if refused feed began to build 

up. The diet was periodically checked for dry matter content, which was found to average 

90%.  A small number of animals were not adequately trained to eat from the Calan gate 

bunks and were fed individually in adjacent pens.  All animals were evaluated for 

disposition at the end of the feeding period by a single evaluator. 

 

 

Table 6.  Ration formulation 

Ingredient %
a
 

Ground milo 20.00 
Ground corn 31.25 
Cottonseed meal 9.00 
Cottonseed hulls 25.00 
Molasses 10.00 
Premix

1 3.00 
Ammonium chloride 0.25 
R-1500

2 1.50 
a 

Expressed as a percent on an as-fed basis 
1
 Composition of premix: ground limestone, 

60%; trace mineralized salt, 16.7% (NaCl, 

98%; Zn, 0.35%; Mn, 0.28%; Fe, 0.175%, Cu, 

0.035%, I, 0.007%, Co, 0.007%); mono-dicalcium 

phosphate, 13%; potassium chloride, 6.7%; 

Vitamin premix, 3.3% (vitamin A, 2,200,000 

IU/kg; vitamin D, 1,100,000 IU/kg, vitamin E, 

2,200 IU/kg); Zinc oxide, 0.33%. 
2
 R-1500 contains 1.65 g monensin sodium 

(Rumensin™) per kg. 

 

 

 

Carcass and Meat Traits.  Following a feeding period of approximately 140 d 

(approximately 18 mo of age), the steers were harvested at the Rosenthal Meat Science 

and Technology Center at Texas A&M.  Carcasses were weighed (HCW), and 24 hours 
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postmortem, longissimus muscle area (REA), fat thickness (FT), kidney pelvic and heart 

fat, and marbling scores were recorded by TAMU meat scientists, with USDA yield 

grade (YG) calculated from the component traits.  All animals were evaluated for 

disposition in the holding pens immediately prior to being stunned. 

Statistical Analysis.  Using the NRC (2000) beef cattle model, daily feed intake 

was predicted based on observed weight gain for each animal and standardized input for 

animal type, age, sex, condition, and breed. This model predicted intake (MDMI) was 

then subtracted from observed DMI and the difference defined as model predicted 

residual consumption (MPRC) such that those animals that consumed less than predicted 

(and thus, were more efficient) had negative MPRC.  This method was utilized in 

addition to traditional residual feed intake in order to make simultaneous use of data from 

multiple contemporary groups (Table 7).  Mixed procedures of SAS were then used to 

analyze MPRC with fixed factors of sire and family nested within sire.  Initial analysis 

also included contemporary group (CG); however, substantial imbalance existed with sire 

and family across contemporary groups, so it was subsequently omitted from final 

analyses.  

   In a separate analysis, regression procedures of SAS were used to regress 

observed DMI on ADG and average weight while on feed to obtain predicted values for 

DMI as well as residuals (RFI) within each contemporary group.  Then, the Mixed 

procedure was used to analyze RFI with fixed factors of sire and family nested within 

sire.  Spearman’s rank correlation was then used to evaluate the degree of re-ranking that 

occurred for sires, families, and CG between RFI and MPRC.   
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 Temperament was evaluated through analysis of variance with fixed effects of 

sire, family nested within sire, and contemporary group (CG).  Finally, correlations were 

calculated for temperament traits with measures of efficiency, carcass traits, temperament 

group (group of approximately 15 calves from which sorting was done), and 

temperament sequence (the order in which calves were temperament scored). 

 

 

Table 7.  Distribution of contemporary group and family combinations 

 Contemporary Group  

Family 1 2 3 4 5 6 Total 

70 1 5 4 2 1 4 17 

71 2 2 5 5 2 1 17 

72 5 0 5 0 2 7 19 

73 2 3 0 0 0 0 5 

74 4 0 0 0 0 0 4 

75 5 0 0 2 4 0 11 

76 2 3 0 0 0 0 5 

77 1 5 1 1 11 0 19 

80 0 7 3 16 0 1 27 

81 0 1 13 3 5 5 27 

82 0 0 0 0 0 6 6 

83 0 0 3 2 4 2 11 

84 0 0 0 1 7 4 12 

Total 22 26 34 32 36 30 180 
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RESULTS AND DISCUSSION 

Residual Feed Intake 

Residual feed intake was calculated within each contemporary group (CG) for all 

steers (n = 180) by regressing observed dry matter intake (DMI) on ADG and average 

body weight while on feed (MWT) and subtracting the predicted values from observed 

DMI.  Next, an analysis of variance was conducted with RFI as the dependent variable 

and fixed factors of sire and family nested within sire as independent variables.  Using 

this method, neither sire nor family nested within sire contributed to variation in RFI 

(Table 8). 

 

 

Table 8.  Residual feed intake fixed effects 

 F-value P-value 

Sire 1.99 0.117 

Family (Sire) 0.98 0.455 

 

 

 

In order to assess the relationship of RFI with DMI and ADG, correlations were 

calculated across all animals, by sire, by family, and by CG.  Simple means for DMI and 

ADG were 9.30 kg day
-1

 and 1.03 kg day
-1

, respectively. Overall, RFI was moderately 

correlated with DMI (r = 0.50; P < 0.001) and, as expected, was not correlated with ADG 

(r = 0.00; P = 1.00).   

Within sire groups, the mean RFI ranged from -0.16 to 0.19, and the correlation 

between RFI and DMI ranged from 0.40 to 0.76 kg (P = < 0.001 to 0.015), while no 

correlation (P > 0.05) existed between RFI and ADG (Table 9).  Within each sire group, 

DMI and ADG were moderately to highly correlated (0.55 to 0.77, all P < 0.05; Table 9). 



 

 

4
2
 

Table 9.  Correlations of residual feed intake with observed dry matter intake and average daily gain by sire 

   Daily dry matter intake Average daily gain ADG/DMI
1
 

Sire n 

Mean 

RFI 

Mean 

(kg/d) r P-value 

Mean 

(kg/d) r P-value r P-value 

297J 34 -0.04 9.64 0.41 0.015 1.05 -0.18 0.301 0.73 < 0.001 

432H 24 -0.01 8.79 0.76 < 0.001 0.95 0.05 0.829 0.55 0.006 

437J 59 0.19 9.75 0.53 < 0.001 1.09 0.06 0.673 0.75 < 0.001 

551G 63 -0.16 8.89 0.40 0.01 1.00 -0.03 0.816 0.77 < 0.001 

 
1
ADG/DMI = correlation between average daily gain (kg/d) and dry matter intake (kg/d) 

 

 

 

Table 10.  Correlations of residual feed intake with observed dry matter intake and average daily gain by  

contemporary group 

   Daily dry matter intake Average daily gain ADG/DMI
*1

 

Contemporary 

group n 

Mean 

RFI 

Mean 

(kg/d) r P-value 

Mean 

(kg/d) r P-value r P-value 

1 22 0 9.08 0.68 < 0.001 0.94 0 1.0 0.60 0.003 

2 26 0 9.66 0.35 0.082 0.93 0 1.0 0.87 < 0.001 

3 34 0 8.77 0.53 < 0.001 1.00 0 1.0 0.80 < 0.001 

4 32 0 8.80 0.57 < 0.001 0.91 0 1.0 0.72 < 0.001 

5 36 0 10.30 0.53 < 0.001 1.37 0 1.0 0.80 < 0.001 

6 30 0 9.09 0.58 < 0.001 0.95 0 1.0 0.72 < 0.001 

*1
ADG/DMI = correlation between average daily gain (kg/d) and dry matter intake (kg/d) 
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Table 11.  Correlation of residual feed intake with observed dry matter intake and average daily gain by family 

   Daily dry matter intake Average daily gain ADG/DMI
*1

 

Family n 

Mean 

RFI 

Mean 

(kg/d) r P-value 

Mean 

(kg/d) r P-value r P-value 

70 17 0.26 9.95 0.50 0.043 1.02 -0.29 0.260 0.54 0.025 

71 17 -0.33 9.33 0.25 0.333 1.08 -0.09 0.740 0.91 < 0.001 

72 19 -0.14 8.57 0.74 < 0.001 0.96 0.03 0.894 0.57 0.011 

73 5 0.48 9.62 0.84 0.073 0.89 0.58 0.304 0.92 0.028 

74 4 0.53 9.11 0.998 0.002 0.80 0.40 0.596 0.37 0.628 

75 11 0.21 9.87 0.78 0.004 1.18 0.49 0.129 0.81 0.003 

76 5 -0.24 8.40 0.24 0.699 0.88 -0.10 0.874 0.92 0.029 

77 19 -0.13 10.26 0.52 0.022 1.25 -0.18 0.451 0.46 0.048 

80 27 -0.18 8.22 0.53 0.005 0.83 0.08 0.674 0.78 < 0.001 

81 27 0.08 9.59 0.50 0.009 1.11 -0.01 0.942 0.77 < 0.001 

82 6 0.05 9.63 0.09 0.862 0.99 -0.31 0.544 0.84 0.038 

83 11 0.43 10.30 0.41 0.210 1.11 -0.03 0.927 0.79 0.004 

84 12 -0.11 8.44 0.31 0.324 1.03 -0.15 0.635 0.87 < 0.001 

*1
ADG/DMI = correlation between average daily gain (kg/d) and dry matter intake (kg/d) 
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As expected, the mean RFI for each contemporary group was zero.  Within 

contemporary groups, the correlation between RFI and DMI ranged from 0.35 to 0.68.  

Higher correlations, ranging from 0.60 to 0.87, were observed  between ADG and DMI 

(Table 10).   

Family means for RFI ranged from -0.33 kg/d (most efficient) to 0.53 kg/d (least 

efficient).  As expected, RFI and ADG were not significantly correlated for any of the 

families.  However, significant (P < 0.05) correlations between RFI and DMI by family 

did exist and ranged from 0.09 to 1.00 (Table 11). 

The results reported here for the correlation of RFI with DMI and ADG are 

similar to those of Nkrumah et al. (2004) who reported a phenotypic correlation of 0.75 

between RFI and DMI in Bos taurus crossbred bulls and steers.  More recently, Nkrumah 

et al. (2007) reported moderate phenotypic correlations between RFI and DMI (r = 0.64; 

P < 0.001) and between DMI and ADG (r = 0.60; P < 0.001) in progeny of Angus, 

Charolais, or Alberta Hybrid bulls and Alberta Hybrid cows. 

 

 

Table 12.  Correlation of carcass traits with residual feed intake 

Carcass 

trait n Mean 

Standard 

deviation 

Correlation 

w/ RFI 

P-

value 

Marbling R
1
 172

2
 418.0 86.24 0.10 0.182 

Marbling L
1
 180 421.8 89.52 0.12 0.095 

Carcass weight  (kg) 180 297.1 40.63 0.07 0.369 

Fat thickness (cm) 180 1.4 0.46 0.06 0.388 

Longissimus muscle area (cm
2
) 180 72.6 7.12 -0.04 0.639 

USDA Yield Grade 180 3.2 0.67 0.14 0.065 

1
 The right side of the carcass was electrically stimulated, the left side was not 

2
 The electrical stimulator was non-functioning 1 day 
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Pearson’s correlation coefficients between RFI and carcass traits were calculated 

across all animals.  No significant correlations were found, though there was a trend for 

RFI to have a slight (r = 0.14) positive correlation with USDA Yield Grade (P = 0.065), 

such that more efficient animals tended to have lower numerical yield grades and less 

efficient animals tended to have higher numerical yield grades (Table 12). 

In cattle, past research has generally reported moderate correlations between RFI 

and measures of fatness, where more efficient animals tended to be leaner.   In Hereford 

cattle, Herd and Bishop (2000) showed RFI to be negatively phenotypically correlated 

with predicted carcass lean content based on ultrasound (r = -0.22 ± 0.04) such that 

lower RFI (more efficient animals) should produce a carcass with a great proportion of 

lean content.  Likewise, Robinson and Oddy (2004) found RFI to be genetically 

correlated with fat thickness measured at between the 12
th

 and 13
th

 rib and at the P8 

rump site (r = 0.48 and 0.72, respectively, when adjusted for age and r = 0.58 and 0.79, 

respectively, when adjusted for carcass weight).  Nkrumah et al. (2007) found slightly 

lower phenotypic correlations between RFI and ultrasound fat thickness (r = 0.25; P < 

0.01) and carcass grade fat (r = 0.23; P < 0.01).  Furthermore, they found a negative 

phenotypic correlation between RFI and lean meat yield (r = -0.21; P < 0.01) and a 

positive correlation between RFI and yield grade (r = 0.22; P < 0.01).  In contrast, 

Baker et al. (2006) found no significant correlation between RFI and fat measured by 

ultrasound or fat thickness, KPH and yield grade in the carcass. 

 Previously, researchers have made an attempt to account for differences across 

contemporary groups by using the model: 

 DFI = µ + CG + ADG + MMWT + CG*ADG + CG*MMWT +RFI   
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where DFI is daily feed intake, CG is contemporary group, ADG is average daily gain, 

MMWT is metabolic mid-weight, and RFI is the residual from the model (W.S. 

Pitchford, University of Adelaide, Pers. Comm).  For the current dataset, residuals were 

obtained using the above recommendation and analyzed using the same model that was 

used to analyze RFI (residuals as the dependent variable and fixed factors of sire and 

family nested within sire as independent variables).  Results using this adjustment across 

contemporary groups were identical to those obtained here for calculation of RFI within 

each contemporary group.  

Model Predicted Residual Consumption (MPRC) 

Based on RFI, comparing animals from different contemporary groups may be 

problematic because the regression equation derived to obtain residuals is unique to the 

particular group of animals being evaluated. Developing an efficiency index from a stable 

model may allow for the comparison of data within and among contemporary groups.    

As such, Model Predicted Residual Consumption (MPRC) was evaluated on 180 

steers.  Using the NRC (2000) beef cattle model, daily feed intake was predicted based on 

observed weight gain for each animal and standardized input for animal type, age, sex, 

condition, and breed. This model predicted intake (MDMI) was then subtracted from 

observed DMI, and the difference defined as model predicted residual consumption 

(MPRC) such that those animals that consumed less than predicted (and thus, were more 

efficient) had negative MPRC.  Variation in MPRC was attributable to the fixed effects 

of sire and family nested within sire (Table 13).  
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Table 13.  Model predicted residual consumption 

 fixed effects 

 F-value P-value 

Sire 2.92 0.0356 

Family (Sire) 4.61 <0.001 

 

The mean MPRC for all animals was -0.01 kg day
-1

 (n = 180), indicating that on 

average, steers from this study consumed 0.01 kg less per day than the NRC model 

predicted.  Least squares means for MPRC by sire group ranged from a low of -0.31  

0.21 kg day 
-1

 to a high of 0.71  0.34 kg day
-1 

(Table 14), showing that differences did 

exist in the progeny of various sires and thus, the possibility may exist to map QTL and 

discover genes relating to efficiency in this population.  Differences in average MPRC 

between the sires are presented in Table 15. 

 

 

Table 14.  Means and least squares means for MPRC by sire 

Sire n 

Mean  

(kg d
-1

) 

Standard 

deviation 

Least squares 

means  

(kg d
-1

) SEM P-value
1
 

297J 34 0.31 1.45 0.31 0.23 0.180 

432H 24 0.27 1.25 0.71 0.34 0.039 

437J 59 0.03 1.42 0.33 0.22 0.126 

551G 63 -0.34 1.60 -0.31 0.21 0.140 

1
Indicates probability that least squares means are different from zero 
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Table 15.  Differences among sires for MPRC
1
 

Sire 297J 432H 437J 551G 

297J  0.40 0.02 0.62 

432H 0.336  0.38 1.01 

437J 0.952 0.349  0.64 

551G 0.048 0.012 0.034  

1 
Absolute value of the difference in average MPRC 

between sires is above the diagonal, P–value for the 

difference from the t-test is below the diagonal. 

 

 

 

Simple means and least squares means for MPRC by family (sire) were identical 

and ranged from -1.32  0.39 kg day 
-1

 to 1.45  0.60 kg day
-1

 across all families (Table 

16). Closer scrutiny of the values for MPRC shows that the same sires were responsible 

for families with negative and positive MPRC.  This is not surprising since families with 

the same sire had different dams.  Since the dam contributes ½ of the genes to any 

particular calf and each dam is a Nellore-Angus F1, it’s reasonable to believe the females 

in this population could be segregating for different genes relating to efficiency traits. 

 

 

Table 16.  Means and least squares means for model predicted residual consumption 

(MPRC) by family nested within sire 

Sire 

   Family n 

Mean  

(kg d
-1

) 

Standard 

deviation 

Least squares 

means  

(kg d
-1

) SEM 

P-

value
1
 

297J       

   70 17 0.90 1.43 0.90 0.33 0.007 

   71 17 -0.27 1.25 -0.27 0.33 0.404 

432H       

   72 19 -0.04 1.17 -0.04 0.31 0.909 

   73 5 1.45 0.82 1.45 0.60 0.017 
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Table 16 continued 

Sire 

   Family n 

Mean  

(kg d
-1

) 

Standard 

deviation 

Least squares 

means  

(kg d
-1

) SEM 

P-

value
1
 

437J       

   74 4 1.37 0.96 1.37 0.68 0.044 

   75 11 -0.52 1.38 -0.52 0.41 0.200 

   81 27 -0.12 1.39 -0.12 0.26 0.653 

   82 6 0.94 0.52 0.94 0.55 0.090 

   83 11 -0.01 1.65 -0.01 0.41 0.973 

551G       

   76 5 0.73 0.51 0.73 0.60 0.226 

   77 19 -1.00 2.00 -1.00 0.31 0.001 

   80 27 0.37 0.92 0.37 0.26 0.160 

   84 12 -1.32 1.47 -1.32 0.39 <0.001 

1
 Indicates probability that least squares means are different from zero 

 

 

 

By sire, the range in mean for RFI was -0.16 to 0.19 kg/d and by family the range 

in means for RFI was -0.33 to 0.53 kg/d.  For MPRC, much larger ranges in means were 

observed.  For sire, the range in means for MPRC was -0.34 to 0.31 kg/d, and by family 

the range was -1.32 to 1.45 kg/d.  The larger range observed for MPRC may be because 

the calculation of MPRC does not hold weight gain or feed intake constant. It is possible 

that Bos indicus and Bos taurus cattle differ in efficiency for different reasons and MPRC 

allows these differences to be seen.  Furthermore, the larger range in means for MPRC 

compared to RFI may prove to be beneficial in the future when QTL analysis is done, 

because models that provide more spread in the residuals tend to be more valuable in 

QTL mapping. 
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Correlations were calculated for MPRC, daily DMI, and ADG across all animals 

as well as by sire, by family, and by CG. Overall, MPRC was lowly correlated with DMI 

(r = 0.11; P = 0.142) and moderately correlated with ADG (r = -0.51; P < 0.001).  By 

sire, mean MPRC ranged from -0.34 to 0.31 kg/d and tended to be moderately positively 

correlated with DMI and moderately negatively correlated with ADG (Table 17).  These 

results indicate that more efficient animals (negative MPRC) tend to consume less and 

gain more.  Similarly, by family and CG, correlations tended to be moderate and were 

positive for DMI and negative for ADG, with the exception of family 71, which had large 

negative correlations between RFI, ADG, and DMI (Tables 18 and 19). 

 

 

Table 17.  Correlation of model predicted residual consumption (MPRC) with 

observed dry matter intake and average daily gain by sire  

   Daily DMI Average Daily Gain 

Sire n 

Mean 

MPRC r P-value r P-value 

297J 34 0.31 0.08 0.64 -0.59 < 0.001 

432H 24 0.27 0.67 < 0.001 -0.13 0.553 

437J 59 0.03 0.16 0.222 -0.43 < 0.001 

551G 63 -0.34 -0.09 0.477 -0.66 < 0.001 

 

 

 

Results reported here for RFI and previously in other studies have shown no 

significant correlation of RFI with ADG.  This has been interpreted to mean that selecting 

for reduced RFI can be used to improve efficiency without affecting growth.  This 

interpretation would mean that, theoretically, selection for reduced RFI would produce 

steers that are more efficient in the feedyard, and that their female counterparts could be 

kept as replacements without an increase in the mature size (and thus the maintenance 
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requirements) of the cowherd. This conclusion should be considered carefully as the very 

nature of the calculation of RFI (regressing DMI on ADG and BW) forces the correlation 

between ADG and RFI to be zero because it forces all of the variation in performance 

into DMI.  

Another cause for concern is the use of RFI in genetic evaluations.  We have shown 

here that using the previously published adjustment for RFI calculation across 

contemporary groups yielded the same result as calculating RFI individually within each 

contemporary group.  Thus, the RFI on an individual animal is not static; the merit of the 

contemporary group would influence the RFI of an individual. 

 

 

Table 18.  Correlation of model predicted residual consumption (MPRC) with 

observed dry matter intake and average daily gain by family  

    Daily DMI Average Daily Gain 

Family Sire n 

Mean 

MPRC r P-value r P-value 

70 297J 17 0.90 0.54 0.025 -0.36 0.156 

71 297J 17 -0.27 -0.56 0.020 -0.83 < 0.001 

72 432H 19 -0.04 0.60 0.007 -0.14 0.574 

73 432H 5 1.45 0.77 0.131 0.45 0.446 

74 437J 4 1.37 0.90 0.103 -0.07 0.93 

75 437J 11 -0.52 0.09 0.80 -0.45 0.161 

76 551G 5 0.73 -0.05 0.931 -0.42 0.482 

77 551G 19 -1.00 -0.09 0.701 -0.91 < 0.001 

80 551G 27 0.36 0.63 < 0.001 0.05 0.804 

81 437J 27 -0.12 0.32 0.105 -0.22 0.264 

82 437J 6 0.94 0.47 0.342 -0.05 0.919 

83 437J 11 -0.01 -0.03 0.931 -0.57 0.065 

84 551G 12 -1.32 -0.31 0.330 -0.69 0.013 
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Table 19.  Correlation of model predicted residual consumption (MPRC) with 

observed dry matter intake and average daily gain by contemporary group  

   Daily DMI Average Daily Gain 

Contemporary 

group n 

Mean 

MPRC r P-Value r P-Value 

1 22 0.52 0.41 0.057 -0.44 0.039 

2 26 1.28 0.63 < 0.001 0.21 0.302 

3 34 0.06 0.54 0.001 -0.03 0.845 

4 32 0.40 0.68 < 0.001 -0.00 0.980 

5 36 -2.28 0.21 0.216 -0.33 0.046 

6 30 0.69 0.79 < 0.001 0.19 0.326 

 

 

 

Using a path analysis, Koch et al. (1963) showed that in bulls and heifers from 

British breeds, 38% of the variation in weight gain could be attributed to genetic 

differences in feed efficiency, 25% was attributable to genetic differences in feed 

consumption and the remainder (37%) was due to environment.  With this in mind it also 

seems highly unlikely that weight gain has no effect on feed efficiency.  

In fact, the 2 basic contributors to feed efficiency are feed intake and weight gain; 

so, it is reasonable to believe that some animals may be more efficient because they 

require less feed, while others may be more efficient because they gain more, and, it may 

or may not be the same genes controlling gain and feed intake.  So, it would also be 

logical to assume that, for some families or sires, efficiency would be more highly 

correlated with ADG, while in other families efficiency may be more highly correlated 

with DMI.  From this standpoint, MPRC may provide a more truthful picture of the 

factors contributing to a family’s efficiency (or lack of) as compared to RFI. 

Spearman’s rank correlation was calculated between RFI and MPRC overall, by 

sire, by family, and by CG.  Across all animals, RFI and MPRC were moderately 



53 

 

correlated (r = 0.57; P < 0.001) indicating that there was some degree of re-ranking of 

sires depending on if efficiency was measured by MPRC or RFI.  By sire, this correlation 

ranged from moderate to high (Table 20), supporting the theory that some sires may pass 

on genes related to differences in intake and other sires may pass on genes related to 

differences in growth, both of which may affect the apparent efficiency of their progeny, 

but for different reasons.   

 

 

Table 20.  Spearman’s rank correlation between  

model predicted residual intake and  

residual feed intake by sire 

Sire n 

Spearman’s 

correlation P-value 

297J 34 0.77 < 0.001 

432H 24 0.84 < 0.001 

437J 59 0.47 < 0.001 

551G 63 0.47 < 0.001 

 

 

This is further supported by the analysis of the correlations between MPRC and 

RFI by family, where for some families the two are not correlated (P > 0.05), while for 

other families they are highly correlated (Table 21).  When evaluated by contemporary 

group, the correlation between RFI and MPRC was generally high (Table 22), which is 

not unexpected because intake was predicted by contemporary group in order to obtain 

RFI. 
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Table 21.  Spearman’s rank correlation for model  

predicted residual intake and residual feed 

 intake by family 

Family Sire n 

Spearman’s 

correlation P-Value 

70 297J 17 0.78 < 0.001 

71 297J 17 0.63 0.007 

72 432H 19 0.84 < 0.001 

73 432H 5 0.90 0.037 

74 437J 4 0.40 0.600 

75 437J 11 0.15 0.670 

76 551G 5 0.70 0.188 

77 551G 19 0.50 0.031 

80 551G 27 0.86 < 0.001 

81 437J 27 0.55 0.003 

82 437J 6 0.54 0.266 

83 437J 11 0.31 0.355 

84 551G 12 0.70 0.011 

 

 

 

Table 22.  Spearman’s rank correlation for model  

predicted residual intake and residual feed  

intake by contemporary group 

Contemporary 

group n 

Spearman’s 

correlation P-value 

1 22 0.70 < 0.001 

2 26 0.90 < 0.001 

3 34 0.98 < 0.001 

4 32 0.89 < 0.001 

5 36 0.88 < 0.001 

6 30 0.81 < 0.001 
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Pearson’s correlation coefficients were calculated between MPRC and carcass 

traits (Table 23).  Model predicted residual consumption was found to be moderately 

positively correlated with marbling score on both the electrically stimulated and non-

stimulated sides of the carcass such that steers with lower MPRC (more efficient) had 

less marbling, and vice versa.  A weak trend (P = 0.07) existed between MPRC and 

carcass weight.  No other carcass traits were correlated with MPRC. 

 

 

Table 23. Correlation of carcass traits with model predicted residual consumption 

Carcass trait mean SDM CV r P-value 

Marbling right
1
 418.0 86.2 0.21 0.29 < 0.001 

Marbling left
1
 421.8 89.5 0.21 0.33 < 0.001 

Carcass weight  (kg) 297.1 40.6 0.14 0.14 0.067 

Fat thickness (cm) 1.4 0.46 0.32 -0.01 0.846 

REA (cm
2
)
2
 72.6 7.11 0.10 0.02 0.743 

USDA Yield Grade 3.2 0.67 0.21 0.07 0.341 

1
 The right side of the carcass was electrically stimulated, the left side was not. 

2
 REA = Longissimus muscle area. 

 

 

 

Previously, Herd and Bishop (2000) reported RFI to be negatively phenotypically 

correlated with predicted carcass lean content (LEAN) and lean growth rate in Hereford 

cattle when lean was standardized to a mean of 0.60 for each year.  Later, Robinson and 

Oddy (2004) found RFI to be genetically correlated with fat thickness measured by 

ultrasound between the 12
th

 and 13
th

 rib (r = 0.48) and at the P8 rump site (r = 0.72) both 

when adjusted for age and for carcass weight in temperate and tropical cattle breeds; RFI 

was lowly phenotypically correlated with these same traits (r = 0.11 and 0.13 for rump 
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and rib fat, respectively).  McDonagh et al. (2001) found differences in rib fat and rump 

fat in British-cross calves of sires and dams selected for high and a low RFI. 

In cattle, Robinson and Oddy (2004) found RFI to be weakly genetically and 

phenotypically correlated with intramuscular fat as measured by ultrasound, and Hoque et 

al. (2007) found positive genetic and phenotypic correlations between the same traits.  

However, McDonagh et al. (2001) found no difference in marbling in the progeny of low 

and high RFI sires and dams. 

Temperament 

Temperament was evaluated shortly after weaning by 4 trained evaluators.  

Aggressiveness, nervousness, flightiness, gregariousness, and overall temperament were 

evaluated on a 1 to 9 scale, with 1 denoting the most calm, quiet, etc. behaviors and 9 

denoting extremely aggressive, agitated, etc. behaviors.  

Analysis of variance was used to evaluate each aspect of temperament with fixed 

factors of sire, family nested within sire, and contemporary group.  All of these effects 

contributed to differences in each of the temperament measurements (P < 0.10; Table 

24).  It is important to reiterate that embryo transfer was used to produce all of the calves 

in this analysis.  So, the effect the dam had on temperament (as observed in family(sire)) 

is only due to learned behavior. This is in agreement with Fordyce and Goddard (1984) 

who showed a low correlation (0.09) between overall temperament in cows and their 

daughters (produced through natural service) when temperament was evaluated on a 

subjective scale during pregnancy palpation.  They also reported a heritability of zero for 

overall temperament, which led them to conclude that the influence cows have on their 

progeny is non-genetic, which is supported by the results reported here. 
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Table 24. Analysis of variance results for temperament traits 

 Sire Family(sire) Contemporary group 

Trait F- value P-value F-value P-value F-value P-value 

Aggressiveness 7.37 < 0.001 2.89 0.003 1.41 0.224 

Nervousness 5.16 0.002 2.15 0.028 2.77 0.020 

Flightiness 4.89 0.003 1.81 0.070 3.21 0.009 

Gregariousness 4.76 0.003 1.80 0.072 3.80 0.003 

Overall Temp 5.36 0.002 2.12 0.031 2.82 0.018 

 

 

 

Aggressiveness.  Least squares means for aggressiveness by sire ranged from 1.91 

to 3.49 (Table 25).  Differences between the sires for aggressiveness are presented in 

Table 26.  When analyzed by family nested within sire, least square means ranged from a 

low of 1.60 to a high of 5.72 (Table 27).  By contemporary group, least squares means 

were more consistent, with a low of 2.22 and a high of 3.16 (Table 28).  

 

 

Table 25.  Means and least squares means for aggressiveness by sire 

Sire n Mean  

Standard 

deviation 

Least squares 

mean  SEM 

297J 34 1.90 1.37 1.91 0.26 

432H 24 2.47 1.57 2.46 0.38 

437J 59 3.27 1.83 3.49 0.25 

551G 63 2.31 1.29 2.16 0.23 
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Table 26.  Differences among sires for aggresiveness
1
 

Sire 297J 432H 437J 551G 

297J  0.55 1.58 0.25 

432H 0.235  1.03 0.30 

437J < 0.001 0.023  1.33 

551G 0.476 0.500 < 0.001  

1 
Absolute value of the difference in average 

aggressiveness score between sires is above the 

diagonal, P-value for the difference is below the 

diagonal. 

 

 

 

Table 27.  Means and least squares means for aggressiveness by family nested 

within sire 

Sire 

   Family n Mean  

Standard 

deviation 

Least squares 

mean SEM 

297J      

   70 17 2.29 1.60 2.24 0.36 

   71 17 1.50 0.98 1.60 0.36 

432H      

   72 19 2.41 1.47 2.60 0.35 

   73 5 2.70 2.11 2.34 0.70 

437J      

   74 4 5.63 1.56 5.72 0.81 

   75 11 2.59 1.65 2.61 0.47 

   81 27 3.76 1.76 3.90 0.31 

   82 6 2.58 1.24 2.86 0.66 

   83 11 2.27 1.56 2.36 0.45 

551G      

   76 5 2.00 1.02 1.64 0.68 

   77 19 2.39 1.42 2.14 0.36 

   80 27 2.12 1.21 2.14 0.33 

   84 12 2.71 1.36 2.71 0.45 
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Table 28.  Means and least squares means for aggressiveness by contemporary 

group 

Contemporary  

Group n Mean  

Standard 

deviation 

Least squares 

mean  SEM 

1 22 2.83 1.94 2.41 0.36 

2 26 2.81 1.56 3.16 0.32 

3 34 2.59 1.67 2.27 0.30 

4 32 2.02 1.53 2.24 0.33 

5 36 2.76 1.52 2.70 0.30 

6 30 2.48 1.51 2.22 0.33 

 

 

 

 Nervousness.  Overall, animals scored higher for nervousness than for 

aggressiveness. Least squares means ranged from 3.06 to 4.70 by sire (Table 29; 

differences between sires for nervousness are presented in Table 30), 2.52 to 6.01 by 

family nested within sire (Table 31), and 3.24 to 4.73 by contemporary group (Table 32).   

 

 

Table 29.  Means and least squares means for nervousness by sire 

Sire n Mean  

Standard 

deviation 

Least squares 

mean  SEM 

297J 34 2.96 1.80 3.06 0.30 

432H 24 4.24 1.58 4.29 0.44 

437J 59 4.64 1.95 4.70 0.29 

551G 63 3.86 1.69 3.75 0.27 
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Table 30.  Differences among sires for nervousness
1
 

Sire 297J 432H 437J 551G 

297J  0.55 1.58 0.25 

432H 0.235  1.03 0.30 

437J < 0.001 0.023  1.33 

551G 0.476 0.500 < 0.001  

1 
Absolute value of the difference in average score between 

sires is above the diagonal, P-value for the difference is 

below the diagonal. 

 

 

 

Table 31.  Means and least squares means for nervousness by family nested 

within sire 

Sire 

   Family n Mean  

Standard 

deviation 

Least squares 

mean  SEM 

297J      

   70 17 3.51 1.80 3.60 0.42 

   71 17 2.40 1.66 2.52 0.42 

432H      

   72 19 4.12 1.62 4.21 0.41 

   73 5 4.70 1.47 4.36 0.80 

437J      

   74 4 6.31 0.90 6.01 0.94 

   75 11 4.36 2.06 4.07 0.54 

   74 4 6.31 0.90 6.01 0.94 

   75 11 4.36 2.06 4.07 0.54 

   81 27 5.11 1.79 5.21 0.36 

   82 6 4.04 1.49 4.61 0.77 

   83 11 3.50 2.17 3.49 0.53 

551G      

   76 5 3.65 1.13 3.32 0.80 

   77 19 3.75 1.87 3.23 0.42 

   80 27 3.61 1.63 4.00 0.38 

   84 12 4.67 1.65 4.46 0.53 
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Table 32.  Means and least squares means for nervousness by contemporary group 

Contemporary  

Group n Mean  

Standard 

deviation 

Least squares 

mean  SEM 

1 22 4.51 1.80 4.24 0.41 

2 26 4.02 1.79 4.30 0.37 

3 34 4.00 1.76 3.78 0.35 

4 32 3.10 1.67 3.24 0.38 

5 36 4.68 2.09 4.73 0.35 

6 30 3.73 1.72 3.37 0.38 

 

 

 

Flightiness.  Least squares means for flightiness were similar to those observed 

for nervousness.  By sire, least squares means ranged from 2.75 to 4.43 (Table 33), 

differences between sires are presented in Table 34.  By family nested within sire, the 

range in least squares means was 2.31 to 5.80 (Table 35).  Least squares means for 

contemporary group ranged from 2.85 to 4.53 (Table 36). 

 

 

Table 33.  Means and least squares means for flightiness by sire 

Sire n Mean  

Standard 

deviation 

Least squares 

mean  SEM 

297J 34 2.63 1.85 2.75 0.31 

432H 24 3.93 1.76 3.98 0.47 

437J 59 3.78 2.00 4.43 0.31 

551G 63 3.63 1.86 3.50 0.29 

 

 

 



62 

 

Table 34.  Differences among sires for flightiness
1
 

Sire 297J 432H 437J 551G 

297J  1.24 1.69 0.75 

432H 0.031  0.45 0.49 

437J < 0.001 0.417  0.94 

551G 0.082 0.379 0.032  

1 
Absolute value of the difference in average flightiness 

score between sires is above the diagonal, P-value for 

the difference is below the diagonal. 

 

 

 

Table 35.  Means and least squares means for flightiness by family nested within 

sire 

Sire 

   Family n Mean  

Standard 

deviation 

Least squares 

mean  SEM 

297J      

   70 17 3.10 2.06 3.19 0.45 

   71 17 2.16 1.55 2.31 0.44 

432H      

   72 19 3.78 1.73 3.90 0.44 

   73 5 4.50 1.97 4.07 0.84 

437J      

   74 4 6.13 0.43 5.80 1.0 

   75 11 4.14 2.20 3.83 0.57 

   81 27 4.81 1.89 4.94 0.38 

   82 6 3.58 1.52 4.22 0.82 

   83 11 3.36 2.15 3.38 0.56 

551G      

   76 5 3.40 1.35 2.97 0.84 

   77 19 3.54 2.05 2.95 0.45 

   80 27 3.34 1.77 3.75 0.40 

   84 12 4.54 1.84 4.32 0.56 
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Table 36.  Means and least squares means for flightiness by contemporary group 

Contemporary 

Group n Mean  

Standard 

deviation 

Least squares 

mean SEM 

1 22 4.26 1.85 4.00 0.44 

2 26 3.87 2.11 4.16 0.39 

3 34 3.67 1.80 3.44 0.37 

4 32 2.76 1.74 2.85 0.40 

5 36 4.52 2.17 4.53 0.38 

6 30 3.37 1.72 3.03 0.40 

 

 

 

Gregariousness.  Least squares means for gregariousness ranged from 2.79 to 

4.32 by sire (Table 37; differences in Table 38), 2.28 to 5.84 by family nested within 

sire (Table 39), and 2.69 to 4.43 by contemporary group (Table 40).  

 

 

Table 37.  Means and least squares means for gregariousness by sire 

Sire n Mean  

Standard 

deviation 

Least squares 

mean  SEM 

297J 34 2.65 1.82 2.79 0.29 

432H 24 4.01 1.58 4.00 0.44 

437J 59 4.16 1.86 4.32 0.28 

551G 63 3.54 1.79 3.45 0.27 
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Table 38.  Differences among sires for gregariousness
1
 

Sire 297J 432H 437J 551G 

297J  1.21 1.53 0.67 

432H 0.024  0.32 0.54 

437J < 0.001 0.536  0.86 

551G 0.096 0.290 0.033  

1 
Absolute value of the difference in average 

gregariousness score between sires is above the diagonal, 

P-value for the difference is below the diagonal. 

 

 

 

Table 39.  Means and least squares means for gregariousness by family nested 

within sire 

Sire 

   Family n Mean  

Standard 

deviation 

Least squares 

mean  SEM 

297J      

   70 17 3.12 2.00 3.30 0.41 

   71 17 2.19 1.54 2.28 0.41 

432H      

   72 19 3.91 1.64 4.04 0.41 

   73 5 4.40 1.40 3.96 0.78 

437J      

   74 4 6.56 0.55 5.84 0.93 

   75 11 4.36 1.92 3.86 0.53 

   81 27 4.36 1.68 4.55 0.35 

   82 6 3.25 1.36 4.20 0.76 

   83 11 3.09 1.92 3.14 0.52 

551G      

   76 5 3.55 1.32 3.11 0.78 

   77 19 3.49 1.86 2.97 0.42 

   80 27 3.27 1.79 3.62 0.38 

   84 12 4.21 1.86 4.12 0.52 
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Table 40.  Means and least squares means for gregariousness by contemporary 

group 

Contemporary 

Group n Mean  

Standard 

deviation 

Least squares 

mean  SEM 

1 22 2.72 1.68 4.37 0.41 

2 26 3.60 1.92 3.89 0.36 

3 34 3.54 1.56 3.44 0.35 

4 32 2.85 1.89 3.03 0.37 

5 36 4.35 2.04 4.43 0.35 

6 30 2.98 1.33 2.69 0.37 

 

 

 

Overall Temperament.  Across sire groups, least squares means for overall 

temperament ranged from 2.66 for sire 297J to 4.37 for sire 437J (Table 41; differences 

between sires in Table 42).  Across families, the range was 2.18 for family 71 to 6.17 for 

family 74 (Table 43). Least squares means by contemporary group ranged from a low of 

2.83 for CG 4 to a high of 4.39 for CG 5 (Table 44).  All temperament measurements 

were highly correlated with one another and with overall temperament (Table 45).  

 

 

Table 41.  Means and least squares means for overall temperament by sire 

Sire n Mean  

Standard 

deviation 

Least squares 

mean  SEM 

297J 34 2.54 1.73 2.66 0.30 

432H 24 3.80 1.69 3.84 0.45 

437J 59 4.28 2.01 4.37 0.29 

551G 63 3.44 1.78 3.34 0.28 
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Table 42.  Differences among sires for overall temperament
1
 

Sire 297J 432H 437J 551G 

297J  1.18 1.71 0.68 

432H 0.033  0.52 0.50 

437J < 0.001 0.328  1.02 

551G 0.102 0.349 0.015  

1 
Absolute value of the difference in average flightiness score 

between sires is above the diagonal, P-value for the 

difference is below the diagonal. 

 

 

 

Table 43.  Means and least squares means for overall temperament by family 

nested within sire 

Sire 

   Family n Mean  

Standard 

deviation 

Least squares 

mean  SEM 

297J      

   70 17 3.04 1.81 3.15 0.43 

   71 17 2.04 1.53 2.18 0.43 

432H      

   72 19 3.68 1.72 3.77 0.42 

   73 5 4.25 1.67 3.92 0.81 

437J      

   74 4 6.50 0.98 6.17 0.96 

   75 11 3.93 2.17 3.61 0.55 

   81 27 4.70 1.84 4.83 0.36 

   82 6 3.42 1.51 3.97 0.79 

   83 11 3.27 2.09 3.26 0.54 

551G      

   76 5 3.30 1.33 2.97 0.81 

   77 19 3.39 2.06 2.85 0.43 

   80 27 3.10 1.58 3.49 0.39 

   84 12 4.31 1.79 4.07 0.54 
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Table 44.  Means and least squares means for overall temperament by 

contemporary group 

Contemporary 

Group n Mean  

Standard 

deviation 

Least squares 

mean  SEM 

1 22 4.23 1.89 3.89 0.42 

2 26 3.58 1.83 3.89 0.38 

3 34 3.54 1.71 3.33 0.36 

4 32 2.66 1.73 2.83 0.39 

5 36 4.35 2.19 4.39 0.36 

6 30 3.29 1.73 3.00 0.39 

 

 

 

Table 45.  Correlations between temperament measures
1
 

 Nerv Flight Greg Ovall 

Aggressiveness 0.86 0.85 0.81 0.90 

Nervousness  0.98 0.95 0.98 

Flightiness   0.95 0.98 

Gregariousness    0.96 

1
 All P < 0.001 

 

 

 

To ascertain if the temperament score of the recipient dam affected the 

temperament of the calf, the correlation coefficients between each of the temperament 

traits and overall temperament of the dam were calculated (Table 46).  Recipient dam 

temperament was lowly positively correlated with gregariousness and overall 

temperament and these same correlations approached significance for aggressiveness, 

nervousness and flightiness (Table 46), such that higher temperament scores in the dam 

corresponded with higher temperament scores in the offspring.  This suggests that the 

environment provided by the recipient does affect the temperament of the calf at 

weaning.  Keeping in mind that family(sire) was responsible for variation in all of the 
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temperament traits likely means that both genetics and learned behavior play a role in the 

temperament of the calf. 

Also calculated was the correlation of the temperament traits with temperament 

group, which is the group the animal was temperament scored in, and temperament 

sequence, which is the animals sequence in their temperament group.  Temperament 

sequence was positively correlated with all of the temperament traits such that animals 

that came later in the sequence had higher temperament scores.  It is difficult to 

determine if calves appeared later in the sequence because they had a poor temperament 

and were difficult to handle, or if they became agitated during the scoring process and the 

fact that they were late in the sequence caused them to have a higher temperament score. 

 

 

Table 46. Correlation of calf temperament traits at weaning with recipient 

temperament, weaning temperament group and sequence within group 

 Correlation 

Temperament  

trait 

Recipient 

temperament 

Temperament 

group 

Temperament 

sequence 

Aggressiveness 0.12
†
 -0.11 0.20

*
 

Nervousness 0.14
†
 -0.06 0.20

*
 

Flightiness 0.14
†
 -0.04 0.21

*
 

Gregariousness 0.16
*
 -0.02 0.27

***
 

Overall Temp 0.15
*
 -0.02 0.22

*
 

†  
P ≤ 0.10; 

* 
P ≤ 0.05; 

**
P < 0.01; 

***
P < 0.001 

 

 

 

Correlations of RFI and MPRC with temperament traits were calculated (Table 

47).  Residual feed intake was weakly phenotypically correlated with nervousness and 

flightiness, such that animals with higher temperament scores (less docile) had more 

positive (less efficient) RFI; no significant correlation existed between RFI and any other 
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temperament traits.  Model predicted residual consumption was not correlated with any 

temperament traits.  

 

 

Table 47.  Correlation of temperament traits with residual feed intake and model 

predicted residual consumption 

Temperament  

trait Mean
1
 

Standard 

deviation 

Correlation 

w/ RFI 

P-

value 

Correlation 

w/ MPRC 

P-

value 

Aggressiveness 2.6 1.61 0.08 0.302 0.00 0.965 

Nervousness 4.0 1.87 0.15 0.046 -0.08 0.308 

Flightiness 3.7 1.98 0.16 0.029 -0.07 0.328 

Gregariousness 3.6 1.86 0.14 0.064 -0.09 0.241 

Overall Temp. 3.6 1.93 0.13 0.088 -0.09 0.225 

1
 Scale 1-9 

 

 

 

Fox (2004) found no relationship between RFI or FCR and subjective 

temperament scores (obtained in the chute and in a pen) in growing Bonsmara bulls.  

Burrow and Dillon (1997) found flight speed to be related to ADG and final weight such 

that steers with the fastest flight speed gained less (0.79 vs. 1.13 kg/d) and weighed less 

at the end of the test (297 vs. 346 kg) than animals with the slowest flight speeds in 

animals that had received minimal previous handling.  However, in animals that received 

more extensive handling post-weaning no significant differences were detected in gain or 

body weight based on flight speed.  It should also be noted that the second group had 

overall slower flight speeds than the first group.  Similarly, in Bonsmara bulls and Santa 

Gertrudis steers, Brown et al. (2004) showed exit velocity (EV) to be negatively 

correlated with ADG, body weight, and DMI (P < 0.10).  
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 Correlations between temperament traits and carcass traits are shown in Table 48.  

Aggressiveness, nervousness, flightiness and overall temperament were weakly 

negatively correlated (P < 0.05) with fat thickness.  Nervousness, flightiness, 

gregariousness and overall temperament were weakly correlated with YG (P < 0.01). No 

other significant correlations existed between carcass and temperament traits.  

 

 

Table 48.  Correlations between temperament and carcass traits 

Trait
1
 

Marbling 

right
2
 

Marbling 

left
2
 

Carcass 

weight 

(kg) 

Fat 

thickness 

(cm) 

REA
3 

(cm
2
) 

Yield 

Grade 

Aggr -0.13
†
 -0.11 -0.02 -0.16

*
 0.04 -0.11 

Nerv -0.12 -0.09 -0.11 -0.18
*
 -0.01 -0.16

*
 

Flight -0.12 -0.01 -0.10 -0.18
*
 0.01 -0.16

*
 

Greg -0.08 -0.07 -0.10 -0.14
†
 0.03 -0.15

*
 

Ovall  -0.13
†
 -0.09 -0.10 -0.17

*
 0.01 -0.15

*
 

†
 P < 0.10; 

*
P ≤0.05 

1
Aggr = aggressiveness; Nerv = nervousness; Flight = Flightiness; Greg = 

gregariousness; Ovall = Overall temperament 
2
The right side of the carcass was electrically stimulated, the left side was not. 

3
REA = Longissimus muscle area. 

 

 

Previously, Burrow and Dillon (1997) found no relationship between flight speed 

and fat thickness or carcass bruising, and Brown et al. (2004) found no relationship 

between EV with carcass backfat or intramuscular fat.  It is possible that these objective 

temperament measures are not accounting for the same aspects of behavior as the 

subjective measure used in the research reported here.  It is also possible that different 

breeds, families, or groups of animals are affected differently by differences in 

temperament. 
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 Correlations among carcass traits are presented in Table 49.  Marbling on both 

sides of the carcass (electrically stimulated and not) was moderately correlated with both 

fat thickness and YG (P < 0.001). Carcass weight was moderately correlated with FT, 

REA, and YG (P < 0.001), but not with marbling. A moderate correlation existed 

between FT and REA (P < 0.01) and, as expected, a high correlation existed between FT 

and YG (P < 0.001). 

 

 

Table 49.  Correlations between carcass traits 

Carcass trait 

Marbling 

left
a
 

Carcass 

weight 

(kg) 

Fat  

thickness 

(cm) REA (cm
2
) 

USDA 

Yield 

Grade 

Marbling right
a
 0.92

***
 0.07 0.27

***
 0.00 0.26

***
 

Marbling left
a
  0.10 0.28

***
 0.03 0.26

***
 

Carcass weight  (kg)   0.43
***

 0.50
***

 0.57
***

 

Fat thickness (cm)    0.22
**

 0.83
***

 

REA (cm
2
)
b
     -0.11 

†  
P ≤ 0.10; 

* 
P ≤ 0.05; 

**
P < 0.01; 

***
P < 0.001 

a
 The right side of the carcass was electrically stimulated, the left side was not. 

b
REA = Longissimus muscle area. 
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SUMMARY 

 

 Is it possible to make improvements in feed efficiency in beef cattle?  Arthur et al. 

(2004) believed that in Australia potential existed to improve efficiency measured as 

residual feed intake (RFI) through selection because variation existed in their population, 

and studies have shown feed efficiency to be moderately heritable.  In the research 

discussed here, sire and family both contributed to differences in NRC-based model 

predicted residual consumption (MPRC; P = 0.036 and P < 0.001, respectively), but not 

to differences in RFI (P = 0.117 and 0.455, respectively).  This indicates that variation 

exists among the sires and families studied, and the opportunity exists to improve MPRC 

through selection, and that different conclusions may be reached by these two evaluation 

methods. 

By sire, the range in means for RFI was -0.16 to 0.19 kg/d, and by family the 

range in means for RFI was -0.33 to 0.53 kg/d.  For MPRC, much larger ranges in means 

were observed, which may be due in part to not having contemporary group in the model.  

Across sires, the range in means for MPRC was -0.34 to 0.31 kg/d, and by family the 

range was -1.32 to 1.45 kg/d.  The larger range observed for MPRC may be observed 

because the calculation of MPRC does not hold weight gain or feed intake constant. It is 

possible that Bos indicus and Bos taurus cattle differ in efficiency for different reasons, 

and MPRC may allow these differences to be seen.  Furthermore, the more substantial 

range in mean for MPRC compared to RFI may prove to be beneficial in the future when 

QTL analysis is done, because models that provide more spread in the residuals tend to 

be more valuable in QTL mapping. 
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Results reported here for RFI and previously in other studies have shown no 

correlation of RFI with ADG.  This has been interpreted to mean that selecting for 

reduced RFI can be used to improve efficiency without affecting growth.  This 

interpretation would mean that, theoretically, selection for reduced RFI would produce 

steers that are more efficient in the feedyard, and that their female counterparts could be 

kept as replacements without an increase in the mature size (and thus the maintenance 

requirements) of the cowherd. This elucidation of the results should be met with some 

caution, however, as the very nature of the calculation of RFI (regressing DMI on ADG 

and BW) forces the correlation between ADG and RFI to be zero.  Another cause for 

concern is the use of RFI in genetic evaluations.  We have shown here that using the 

previously published adjustment for RFI calculation across contemporary groups yielded 

the same result as calculating RFI individually within each contemporary group.  Thus, it 

would appear that the merit of the contemporary group would influence the RFI of an 

individual. 

The correlation of MPRC with DMI was highly significant for one sire (r = 0.67; P 

< 0.001), and MPRC and ADG were moderately negatively correlated for the other three 

sires (r = -0.43 to -0.66; P < 0.001).  This suggests that feed intake may be the primary 

force affecting efficiency in some cattle, while gain may affect efficiency more in other 

cattle.  Similar inconsistent results were observed for the correlation of MPRC with ADG 

and DMI by family. 

Spearman’s rank correlation was calculated between RFI and MPRC overall, by 

sire, by family, and by CG.  Across all animals, RFI and MPRC were moderately 

correlated (r = 0.57; P < 0.001) indicating that there was some degree of re-ranking of 
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sires depending on if efficiency was measured by MPRC or RFI.  By sire, this correlation 

ranged from moderate to high, supporting the theory that some sires may pass on genes 

related to differences in intake and other sires may pass on genes related to differences in 

growth, both of which may affect the apparent efficiency of their progeny, but for 

different reasons.  

This is further supported by the analysis of the correlations between MPRC and 

RFI by family, where for some families the two are not correlated, while for other 

families they are highly correlated   When evaluated by contemporary group, the 

correlation between RFI and MPRC was generally to high, which is not unexpected 

because intake was predicted by contemporary group in order to obtain RFI. 

 Five aspects of temperament were also evaluated shortly after weaning 

(aggressiveness, nervousness, flightiness, gregariousness, and overall temperament).  Sire 

had a significant effect on variation for all 5 aspects of temperament evaluated.  Family 

was responsible for variation in aggressiveness, nervousness, and overall temperament.  

Contemporary group had no effect on aggressiveness, but did contribute significantly to 

variation in all other temperament traits.  Also, all temperament traits were highly 

correlated with one another. 

 Recipient dam temperament measured at calf birth was lowly correlated with calf 

gregariousness and overall temperament after weaning and these same correlations 

approached significance for aggressiveness, nervousness and flightiness.  This suggests 

that the temperament of the recipient female may have a small effect on the temperament 

of the calf. 



75 

 

 This population demonstrates genetic variation in feed efficiency and 

temperament and should prove useful for QTL mapping of these traits.  This population 

also demonstrates that feed efficiency is a complex trait to study and that evaluation 

methods may impact conclusions about genetic and environmental influences affecting 

feed intake and efficiency. 
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