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ABSTRACT

An Atomistic Study of the Mechanical Behavior of

Carbon Nanotubes and Nanocomposite Interfaces. (December 2009)

Amnaya P. Awasthi, B.Tech. , Indian Institute of Technology, Guwahati, India

Chair of Advisory Committee: Dr. Dimitris C. Lagoudas

The research presented in this dissertation pertains to the evaluation of stiffness

of carbon nanotubes (CNTs) in a multiscale framework and modeling of the interfa-

cial mechanical behavior in CNT-polymer nanocomposites. The goal is to study the

mechanical behavior of CNTs and CNT-polymer interfaces at the atomic level and

to utilize this information to develop predictive capabilities of material behavior at

the macroscale. Stiffness of CNTs is analyzed through quantum mechanical (QM)

calculations while the CNT-polymer interface is examined using molecular dynamics

(MD) simulations. CNT-polymer-matrix composites exhibit promising properties as

structural materials and constitutive models are sought to predict their macroscale

behavior. The reliability of determining the homogenized response of such materials

depends upon the ability to capture accurately the interfacial behavior between the

nanotubes and the polymer matrix. In the proposed work, atomistic methods are used

to investigate the behavior of the interface by utilizing appropriately chosen atomistic

representative volume elements (RVEs). Atomistic simulations are conducted on the

RVEs to study mechanical separation with and without covalent functionalization

between the polymeric matrix and two filler materials, namely graphite and a (12,0)

Single Wall zig zag CNT. The information obtained from atomistic studies of sepa-

ration is applicable for higher level length scale models as cohesive zone properties.

The results of the present research have been correlated with available experimental

data from characterization efforts.
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To The Invisible, that manifests as Parents who nourish,
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CHAPTER I

INTRODUCTION

A. Carbon nanotubes

Carbon nanotubes (CNTs) are energetically stable structures idealized as rolled-up

cylindrical sheets of graphene and exist as single walled (SWCNTs), multiwalled

(MWCNTs) and ropes [1]. Information about the nature of chemical bonding in the

carbon nanotubes reflects that these structures should have high stiffness, as evident

from a few experimental observations [2–5] and theoretical modeling efforts [6].

Several efforts have focused on the theoretical modeling of SWCNTs as an equiv-

alent continuum, in order to reduce computational cost incurred in atomistic simula-

tions. Arroyo and Belytschko [7] modeled the SWCNT as a continuum hyper-elastic

membrane using crystal lattice dynamics and transitioning stiffness of atomistic bonds

from atomistic potentials to the continuum level. The elastic properties of SWCNTs

have been evaluated using thermodynamics and continuum stress deformation be-

havior, [8] using the Tersoff-Brenner (TB) potential. Meo and Rossi [9] investigated

the influence of tube diameter and chirality of SWCNTs on the Young’s modulus of

SWCNTs by modeling the carbon-carbon bond using finite elements with stiffnesses

derived from the TB potential.

The structural stiffness of SWCNTs has been obtained using the second deriva-

tive of strain energy. The energy based method (as it will be referred in the present

work) has been used together with quantum mechanical calculations in obtaining the

Young’s modulus for a SWCNT[10–12], where the SWCNT was subjected to axial

tension and compression. The energy, interpreted as strain energy was evaluated for

The journal model is IEEE Transactions on Automatic Control.
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each deformation by a quantum mechanical theory.

Central to the procedure in obtaining stiffness of CNTs through the energy

method is the evaluation of the second derivative of the strain energy of the structure

with respect to strain. To evaluate the second derivative for atomistic systems, the

technique employs evaluation of the minimum energy structure (optimized structure)

as the starting point. The structure is then axially stretched under small deforma-

tions, both in tension as well as in compression, and the energy for each stretched

state is recorded. From the plot of energy versus strain in the vicinity of zero strain,

the second derivative is obtained by performing a curve fit of the energy-strain profile.

The Young’s modulus has been evaluated by assuming a cross sectional thickness of

the SWCNT over which the axial forces were assumed to be applied. In this pro-

cedure the energy is computed at each stretched state after structural optimization

and the optimization step is repeated for the several number of points needed on the

energy-strain plot.

The energy based method has also been utilized with molecular mechanics meth-

ods that employ force-fields to model interatomic interactions. In the research by

Odegard et al. [13] and Li and Chou, [14] the bonds between carbon atoms in a

SWCNT were replaced by equivalent trusses and the resulting truss structure was

utilized to evaluate the Young’s modulus through the energy approach. This method

of using the equivalent truss structure has been used to further evaluate torsional and

bending rigidities of CNTs [15] and observe sensitivity to temperature effects [16].

B. Carbon nanotube polymer composites

Polymer nanocomposites have been known to exhibit enhancements in mechanical,

thermal, electrical and magnetic properties with respect to neat polymer [17]. They
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have found potential applications as structural materials in the aerospace [18] and

automotive [19] industries, and as sensors, actuators and optical components in the

electronics [20] industry. The enhancement in properties exhibited by the polymer

nanocomposites is mainly governed by two factors: the properties of the constituent

phases and the interfacial interactions between the filler and the matrix. Usually the

properties of the matrix phase are known, but those of the nanoscale filler and that of

the interface between the filler and matrix are difficult to assess, due to experimental

limitations in probing material behavior at the nanoscale. The interfacial behavior is

mainly governed by atomistic level interactions and therefore atomistic simulations

can potentially provide information about the interfacial interactions. However, the

theoretical prediction of bulk behavior in nanocomposites relies not only on the avail-

ability of the nanoscale interfacial information but also on adequate incorporation of

this information into continuum level modeling.

CNT polymer nanocomposites have gained immense popularity in the past decade

for structural applications due to the stable structure and high stiffness of CNTs

[21, 22]. Several methods for fabricating CNT-polymer nanocomposites have been de-

veloped [23] and the effect of modifying the interface between the CNTs and polymer

has been studied using different chemical functional groups [24–28]. The mechanical

response of these materials has been investigated using several techniques including

Dynamical Mechanical Analysis (DMA) [27], Raman micromechanical test [29] and

nanoindentation [30]. Lately, CNTs have been used in carbon fiber fabric composites

[31] and efforts have been made to assess the shear strength of CNT fabric composites

experimentally [32].

To evaluate the bulk mechanical response of the CNT-polymer system, atomistic

simulations have been performed by many investigators. Odegard et al [13] evaluated

effective mechanical properties of CNT-polymer composites by performing energy
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equivalence between atomistic and continuum models. In [33], [34], [35] and [36]

the stress-strain behavior of CNT-polymer composite was studied, by deforming the

computational domain and evaluating the average mechanical response. In the work

by Jeff Hinkley and coworkers[37] the stress-strain behavior of CNTs embedded in

a polymer matrix was studied over different loading rates and temperatures. These

simulations, which mainly modeled the bulk response have shown that the addition

of CNTs results in increasing the stiffness of the system compared to neat polymer.

However, atomistic models predicting overall response of the composite system do

not provide information about the interfacial behavior with respect to separation.

C. Interfacial properties of CNT polymer nanocomposites

Atomistic simulations for the interfacial behavior between the CNT and polymer have

shown that the surface of CNTs is highly attractive and causes the polymer to attain

higher density near the interface [38]. The strength of the interface between the

CNT and polymeric matrix has been determined by evaluating the work of adhesion

[39, 40] as the energy required to completely separate the CNT from the influence of

the polymer [41]. To evaluate the shear strength of the interface, pullout tests have

been performed using atomistic simulations [42–46]. These pullout tests have provided

the force versus displacement response [47, 48] during separation and parameters like

the threshold shear stress to cause separation, and critical length of nanotube for

significant load transfer [49, 50] have been evaluated. Information from the pullout

tests have further been incorporated into higher scale modeling as shear characteristics

of the interface [48, 51]. These atomistic studies for separation have mainly dealt with

separation in the shear (sliding) mode within the framework of pull out tests, and have

not investigated normal (opening) separation. Moreover, separation under combined
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loading has not been investigated using atomistic methods for CNT polymer systems.

Cohesive laws of separation have been evaluated for graphene planes using the

Van der Waals potential, and extended to multi-walled CNTs by incorporating cur-

vature effects [52]. These laws were evaluated for both opening as well as sliding

modes of separation for both finite-sized as well as infinite planes of graphene and

infinitely long CNTs. Van der Waals based cohesive laws have also been evaluated

for CNT-polymer systems [53, 54], wherein both the CNT as well as the polymer

were assumed to be rigid. These studies were based on static atomistic structures

of CNT and polymer, and the effects of atomic motion near the interface were not

incorporated.

Research for the graphite-polymer system has shown that atomisitic simulations

can provide information about structural [55, 56], conformational [57] and mobility

[58, 59] characteristics of the polymer interacting with stationary layer(s) of graphite,

which has surface morphology similar to CNTs. However, information about separa-

tion, where the graphite layers displace relative to the matrix, has been limited only

to the evaluation of work of adhesion [60]. Studies of separation providing force versus

displacement behavior for the graphite-polymer system have not been reported using

atomistic methods.

Evaluation of interfacial characteristics for the CNT-polymer or graphite-polymer

systems using experimental methods is also available, but limited in number due to

difficulties in accessing individual interfaces. Efforts have been made to conduct pull

out tests of multi walled CNTs (MWCNT) through polymer using scanning probe

microscopy (SPM) [61] and conducting tensile tests of MWCNT-polymer thin films

and characterizing using in-situ transmission electron microscopy (TEM) [62, 63].

Real time observations of the nanoscale phenomena of the separation process provided

information about the maximum force needed to pull out CNTs from the matrix, shear
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strength of the interface and energy needed to pull out the CNTs through the matrix.

Atomistic simulations have been performed to evaluate the interfacial behavior

in crystalline, mostly metallic solids, e.g., for copper [64] and aluminum [65]. The

information from atomistic simulations is utilized as separation laws for continuum

scale cohesive zone models. Cohesive zone models developed by Dugdale [66] and

Barenblatt [67] assume a generic relationship between forces and displacements oc-

curring at the interface during separation. The models have been further elaborated

and used by Needleman [68], Ortiz [69] and Tvergaard [70] to study interface debond-

ing, microcracking and fiber pull out tests. Incorporation of atomistically-evaluated

cohesive law into these models provides specific interfacial behavior for the chosen

material system. Atomistic simulations for metals are lesser complex compared to

polymeric systems, because they are based on the crystal lattice and the nature of

metallic bonding allows the interactions to be represented by a pair potential which is

computationally less demanding. In contrast, for polymeric systems, the amorphous

structure brings in additional complication in modeling the polymer structure, and

the interatomic potential that accounts for covalent bonding is more complex than

metallic systems.

The current state of the art in modeling mechanical behavior of CNT polymer

nanocomposites with interface effects is limited, in that, interfacial behavior through

atomistic simulations is not available for general loading i.e., beyond pull-out tests,

which corresponds to shearing loads. Moreover, simulations that consider combined

loading behavior [13, 33, 34] mainly model the effective response of the composite,

and therefore do not explicitly provide interfacial behavior for separation. Finally,

micromechanical models, which predict effective response of nanocomposites, assume

the interface to be fully or partially bonded [71–73], or use results from the available

pullout tests [47].
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D. Objectives of present research and significance

The research presented in this dissertation pertains to the evaluation of mechani-

cal properties of CNTs and investigation of interfacial behavior for load transfer for

CNT polymer nanocomposites. The mechanical properties of CNTs have been studied

using quantum level computations, and central to the present investigation is the de-

velopment of a multiscale approach, called the atomistic Hessian matrix method. The

objective is to obtain elastic stiffness of nanoscale material systems using quantum

mechanical tools better computational efficiency and higher accuracy, compared to

existing multiscale methods. The interfacial behavior in CNT polymer nanocompos-

ites was evaluated using molecular dynamics (MD) methods, employing the classical

force field Consistent Valence Force Field (CVFF) as well as the reactive force field

ReaxFF. MD simulations were performed for different loading conditions to examine

the interfacial behavior for both non-bonded as well as interfacially bonded systems.

Additionally, the mechanical response of the interface was evaluated for both straight

chain amorphous polymer as well as network polymer.

Interfacial studies of SWCNT pull out from polymer were performed to examine

the traction separation response of the interface and observe parameters like the peak

shear traction and energy of separation. These studies were extended to a more gen-

eral framework, to examine the interfacial behavior for a representative structure of

graphene and polymer where separation was studied as a combination of both sliding

as well as normal modes. Studies were also made to evaluate the effect of tension

and compression on sliding mode separation, thereby obtaining the response for com-

bined loading. Efforts were made to assess the effects of differences in application of

boundary conditions on the force-separation response of the molecular representative

volume element (RVE). Investigation is also undertaken to determine the minimum
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RVE needed in obtaining cohesive zone parameters namely peak traction and work of

separation that tend to be independent of the size of computational window. This is

an effort towards determining the interfacial constitutive behavior for CNT-polymer

interfaces, which can be utilized in higher scale modeling after appropriate transitions

incorporating curvature and waviness of the CNTs. The separation behavior will be

made applicable to higher scale micromechanical models in the form of separation

laws within a cohesive zone modeling framework. It is for the first time that MD sim-

ulations incorporating atomistic motion have been performed for opening and sliding

separation along with combined loading for the graphene-polymer system to evaluate

interfacial load-displacement behavior.

E. Dissertation outline

Chapter II contains a description of tools required to perform atomistic studies at

the nanoscale. Chapter III describes the atomistic Hessian matrix method and its

application in obtaining elastic stiffness of SWCNTs with numerical examples for

determination of linear elastic stiffness in extension and torsion using the atomistic

Hessian method. The chapter describes the determination of the atomistic Hessian

matrix using experimental data and comparison with that derived from ab initio and

molecular statics methods. Chapter IV describes studies of interfacial behavior of

SWCNT pull out from polymer matrix using molecular dynamics and Chapter V

describes atomistic studies performed to investigate the mechanical behavior of the

graphene polymer interface using molecular dynamics.
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CHAPTER II

TOOLS FOR INVESTIGATING MATERIAL BEHAVIOR AT THE NANOSCALE

A. Atomistic methods to evaluate material behavior at the nanoscale

1. ab-initio methods

The ab-initio methods are computational chemistry based methods that are based

on the fundamental laws of quantum mechanics and use approximation techniques

to solve the fundamental equations [74–76]. In these methods, the electrons are

assumed to possess wave nature and are therefore their behavior is modeled using the

Schrödinger wave equation. Solving the Schrödinger wave equation provides many

physical properties of the atomistic system, including the energy states on which the

electrons exist. The behavior of the nuclei is governed by the Born Oppenheimer

approximation which separates the motion of the electrons with that of the nuclei,

since the nuclei are several orders of magnitude larger than the electrons. The nuclei

are assumed to possess particulate nature.

Solving the Schrödinger wave equation gives the potential energy surface gener-

ated by electrons in a field of fixed nuclei. The nuclei move on this potential energy

surface and this describes vibrational, translational and rotational states of the nu-

clei. The ab-initio methods are computationally very intensive, and can be used to

simulate only up to 500 atoms. In the present research, the ab-initio method called

the Hartree Fock (HF) method has been used.

2. Molecular mechanics

Molecular mechanics treats every atom as a point mass and interactions between

them are described through a potential field, known as a force field. A force field
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Fig. 1.: Components of the force field employed in MD simulations.

is a set of parameters describing the interactions between the atoms which are ob-

tained either using experiments or ab-initio calculations [75] and are interpreted as

springs. The behavior of the atomistic system is then described by Newtons law, by

which static equilibrium can be studied (molecular statics) or incorporating motion,

the dynamic behavior can be analyzed (molecular dynamics). Molecular mechanics

facilitates simulation of larger number of atoms and the behavior of up to a billion

atoms can be computed, using parallel computation architectures.

a. Classical force-fields

Classical force-fields are parametric representations of interatomic bonds that do not

have the capability for bond-dissipation or bond-formation. These force-fields contain

parameters describing covalent bond as a collection of different stiffnesses which are

shown in Fig. 1.

The Consistent Valence Force Field (CVFF) potential [77] employed for modeling

the interactions between atoms in the current study, consists of the following energy

components (Fig. 1):
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Bond stretching potential : This portion of the force-field models the stretch between

two atoms that are covalently bonded. The expression for the bond-stretching energy

is given as

EB =
nB

∑
i=1
K
(i)
B (r

(i) − r(i)0 )
2 (2.1)

where r(i) denotes the separation between the atoms constituting the ith covalent

bond, r
(i)
0 denotes the equilibrium separation, K

(i)
B represents the stiffness of the ith

bond and nB is the total number of covalent bonds.

Angle bending potential : This component models the stiffness of the angle formed by

two covalent bonds of three adjacent atoms. The expression for the angle bending

energy is given as

EA =
nA

∑
i=1
K
(i)
A (θ

(i) − θ(i)0 )
2 (2.2)

where θ(i) is the angle between the ith pair of adjacent covalent bonds which is θ
(i)
0 at

equilibrium, K
(i)
B is the angular stiffness of the ith covalent bond and nA is the total

number covalent bond pairs.

Torsional rotation potential : This term models the stiffness of the angle formed be-

tween four adjacent atoms that are covalently connected. The torsional angle is also

known as the dihedral. The expression for the torsional (dihedral) potential is given

as

ET =
nT

∑
i=1
K
(i)
T [1 + d(i) cosn(i)(φ(i) − φ(i)0 )] (2.3)

where φ(i) is the torsion angle between the planes formed by first-second and second-

third adjacent bonds for which φ
(i)
0 is the equilibrium value. K

(i)
T is the torsional

stiffness of the ith covalent bond, d(i) and n(i) are integers parameterized for specific

atomistic systems and nT is the total number of torsional angles in the system.

Non-bonded (pair) potentials: The non-bond potentials employed for this study are

pair potentials acting between two non covalently bonded atoms. The range of inter-
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action for the non-bond potentials is dictated by the cut-off distance, beyond which

these potentials are switched off to zero. The non-bonded energy comprises of the

Van der Waals potential and the electrostatic potential.

Van der Waals pair potential : The expression for energy associated with atoms con-

nected with Van der Waals interactions is given as

EPV
=

1

2

N

∑
i=1,j≠i

[Aij

r12
ij

−
Bij

r6
ij

] (2.4)

where rij is the distance between the two atoms, N is the total number of atoms in

the atomistic system, Aij =
√
AiAj and Bij =

√
BiBj , and A and B are parameters

for different atom types given by the subscripts i and j.

Electrostatic pair potential : The electrostatic pair potential also known as the Coulom-

bic interaction between a pair of charged atoms is given as

EPC
=

1

2

N

∑
i=1,j≠i

1

4πǫ0

qiqj

rij

(2.5)

where r is the distance between two atoms i and j, qi and qj are the partial charges

on the atoms i and j respectively, ǫ0 is the permittivity of free space, and N is the

total number of atoms in the atomistic system. The factor of 1
2 is introduced in both

the pair potentials to eliminate double counting of pair energies.

The complete potential is represented by the sum of all the components as

E = EB +EA +ET +EPV
+EPC

(2.6)

The parameters in CVFF used to represent interactions between constituent atoms

used in the present work are given in table on page 150.
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b. Reactive force-fields

Traditional force fields do not have the capability to break or create bonds and during

a simulation with the traditional force fields, an atomic bond stretch infinitely if the

atoms are separated. Reactive force fields have been developed to overcome this

limitation such that atomistic properties can be predicted more reasonably without

having to perform computationally intensive quantum level computations.

The Tersoff Brenner Potential [78, 79], the Reactive Empirical Bond Order

(REBO) [80] and the ReaxFF [81] are the commonly used reactive potentials in the

literature. In the present work, the ReaxFF is used to model the interfacial behavior

in carbon nanotube polymer systems. The ReaxFF potential can model the breaking

and formation of chemical bonds depending on the correct energetics of the system

and proximity of atoms.

Many investigations of CNT polymer interaction have been performed [47, 49, 82,

83] using the Tersoff Brenner (TB) potential. The TB potential has been extensively

used for CNT, and CNT polymer systems as it was parameterized for hydrocarbons.

This potential predicts the equilibrated structure of the nanosystem well, however it

does not contain the appropriate information to model bond breaking and formation.

Additionally, the TB potential does not include non-bonded interactions (which act

in the long range) like Van der Waals and Coulombic interactions and for each of

these studies, an additional Lennard-Jones term was added to the TB potential to

incorporte the long range effects.

The reactive force field ReaxFF [81] is a recent advancement in the development

of atomistic potentials which includes both, long range interaction as well description

about bond breaking and formation. The reaction parameters in ReaxFF have been

obtained using quantum level ab initio calculations. At the present time, ReaxFF
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has been parameterized for mainly hydrocarbons and provides accurate hydrocarbon

bond dissociation and reaction information. While the TB potential would cause a

bond to break sharply, the ReaxFF on the other hand would model the bond breaking

event much smoother, consistent with ab initio calculations. In the current work, the

functional form of the potential is used as described in the supplemental material in

the paper [84].

3. Numerical Integration

The total energy of the complete atomistic system, incorporating contributions from

all atoms, is a function of positional coordinates of atoms, represented as

E = E(r(1), r(2), r(3) . . . r(N)) (2.7)

The expression for the potential energy is utilized to evaluate the total force on each

atom

F
(i) = −∇

r
(i)E = F (r(1), r(2), r(3) . . . r(N)) i = 1,2, . . . ,N (2.8)

Given the coordinates of the atoms, both the total energy as well as the force

on individual atoms can be evaluated. The acceleration of an atom is evaluated by

Newton’s law as:

a
i = r̈i =

Fi

mi
(2.9)

where mi is the mass of the ith atom. These are a set of 3N second order ordinary

differential equations and are integrated in time using the velocity-Verlet integration

algorithm [85] given as follows:

At a given time instant t, represented by the nth time step of uniform duration h such

that t = nh, the velocity and accelerations can be approximated using the central
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difference scheme as:

v
i
n = ṙi

n ≈
1

2h
(ri

n+1 − r
i
n−1) (2.10)

a
i
n = r̈i =

Fi
n

mi
≈

1

h2
(ri

n+1 − 2ri
n + r

i
n−1) (2.11)

Treating the expressions as equality, they can be rearranged to give:

r
i
n+1 = r

i
n + hv

i
n +

h2

2

Fi
n

mi
(2.12)

v
i
n+1 = v

i
n +

h

2
(Fi

n+1
mi
+

Fi
n

mi
) (2.13)

At the beginning of the MD simulation, the positions and velocities of all the atoms

are known (initial conditions: ri
0, vi

0, i = 1 . . . N) and the information of positions (ri
0)

allows the evaluation of acceleration for all atoms using Eq. 2.9 (ai
0, i = 1 . . . N). The

positions of atoms at the next time step (ri
1) are evaluated using Eq. 2.12. With the

new positions of atoms, Eq. 2.9 is used to calculate accelerations on all the atoms

(ai
1) and Eq. 2.13 gives the velocities (vi

1) of all atoms at the next time step. In this

way, the updated positions, velocities and accelerations are used to evaluate these

quantities at the next time step. This procedure is carried out for the length of the

simulation.

B. Atomistic analysis of mechanical properties of polymers

The need for investigating interface properties using atomistics is defined by their

applicability to continuum scale models. This exercise of evaluating macro scale

properties using nanoscale attributes has been done mostly for calculating bulk prop-

erties of polymer using MD. To evaluate the bulk mechanical properties of a polymer,

several methods are available in literature as shown in Fig. 2. The molecular statics

method [86–88], consists of equilibrations (energy minimization) at incremental load



16

application, and eventually studying the load-response profile. These simulations dis-

regard contributions due to thermal vibrations of the constituent atoms. Molecular

dynamics methods [37, 89] on the other hand, incorporate the thermal contributions.

The deformation can be applied in stepwise fashion [37] or by constant strain rate

[89]. The united atom method, also known as the coarse grained method [90, 91]

utilizes a simplified potential so that large system volumes can be simulated. Monte

Carlo methods for evaluation of polymer bulk properties [92–94] simulate the mate-

rial behavior in two steps. At the first step, molecular statics is used to investigate

processes or events causing material response to loading. At the next step, the infor-

mation from molecular statics is used to prepare a Monte Carlo (MC) model, where

the evolution of these events is represented over Monte Carlo steps.
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Fig. 2.: Different approaches used in literature to model mechanical properties of

polymers.



18

CHAPTER III

EVALUATION OF MECHANICAL PROPERTIES OF SINGLE WALL CARBON

NANOTUBES∗

This chapter describes the development of a method, termed as the atomistic Hes-

sian matrix method to evaluate mechanical stiffness of nanoscale material systems.

Central to this method is the utilization of the atomistic Hessian matrix evaluated

using an appropriate potential. As an example, evaluating the atomistic Hessian

matrix using the Hartree Fock method, this method is demonstrated for SWCNTs,

where the linear elastic stiffness in extension and torsion are evaluated. Addition-

ally, components of the atomistic Hessian matrix evaluated using the Hartree Fock

method and molecular mechanics methods are compared with those obtained using

experimental information.

The current work describes an alternate method for obtaining the stiffness of

the SWCNT near equilibrium in a way that the discrete character is retained and

at the same time computationally intensive atomistic simulations are performed only

once. The method discussed in this chapter utilizes the atomistic Hessian matrix,

defined as the second derivative of energy with respect to atomic displacements, to

evaluate the linear response of SWCNTs for prescribed loading conditions and sub-

sequent evaluation of structural moduli. The atomistic Hessian was evaluated using

frequency calculations performed on SWCNTs using the Hartree Fock quantum me-

chanical method. The atomistic Hessian matrix was also evaluated analytically using

∗Reprinted with permission from A. P. Awasthi, D. C. Lagoudas, “Calculating
the stiffness of carbon nanotubes and other nanoscale materials using an atomistic
method based on the Hessian matrix”, Physical Review B (under review).
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molecular mechanical calculations through the second derivative of the strain energy

using the TB potential. The components of the atomistic Hessian matrix evaluated

using ab initio calculations and TB potential were compared with experimentally

obtained force-constants. Additionally, quantum mechanical calculations were per-

formed to examine the effect of longitudinal strain on the frequency characteristics of

SWCNT.

A. The atomistic Hessian matrix

This section contains description of the atomistic Hessian matrix and its significance

in theoretical chemistry. Next, a method to evaluate structural stiffness of a material

system at the nanoscale is presented, where the atomistic Hessian matrix is utilized

as the key component.

1. Definition of the atomistic Hessian matrix

Consider a set of N interacting atoms in static equilibrium and the potential energy

of the system be represented by Φ(up
i ), where up

i is the ith component of displacement

of the pth atom, where p = 1 . . . N and i = 1 . . . 3. The components of displacements

are defined relative to static equilibrium at which the potential energy is a minimum.

The atomistic Hessian matrix [K] is the matrix of second derivatives of the potential

energy with respect to atomistic displacements, and the components are given as

[K]pq
ij =

∂2Φ

∂u
p
i ∂u

q
j

∣
u

p
i
=0, u

q
j
=0
, (3.1)

where i, j = 1 . . . 3 and p, q = 1 . . . N . The atomistic Hessian matrix for a system of N

atoms is a symmetric matrix of order 3N .

The atomistic Hessian matrix can be diagonalized to give eigenvalues and eigen-
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vectors which physically represent natural frequencies and modal shapes of vibration

of the constituent atoms. There are 3N − 5 non-zero natural frequencies (and mode

shapes) for a system containing linear chain of atoms and and 3N − 6 those for a

system with general configuration of atoms. This is because there are respectively 5

and 6 rigid body modes for linearly and non-linearly oriented sets of atoms, describ-

ing translation and rotation of the system as a whole, characterized by zero natural

frequencies. If all the eigenvalues of the atomistic Hessian matrix are positive, the

system is interpreted to be stable, while negative eigenvalues pertain to transition

states. In theoretical chemistry, the study of eigenvectors of transition states, char-

acterized by negative eigenvalues is significant [95], as it provides predictability for

chemical reactions.

Typically, the atomistic Hessian matrix is evaluated for the determination of a

minimum energy configuration of a set of atoms and the eigenvalues and eigenvec-

tors are obtained through a procedure of diagonalization [96]. Moreover, given the

complete set of frequencies and mode shapes for a particular atomistic system, the

atomistic Hessian matrix can be evaluated using modal synthesis, as described in

Appendix A. The components of the atomistic Hessian matrix are force constants

representing linear spring-like interactions between pairs of atoms.

2. Force-displacement behavior using the atomistic Hessian matrix

The atomistic Hessian matrix given by eq. 3.1 consists of force constants representing

pair-wise interaction between pairs of atoms in the atomistic system. Fig. 3 shows

how the atomistic Hessian matrix can be used to establish a corresponding spring

mass system for a SWCNT, where every atom is connected to every other atom by

a linear spring. The strength of interactions between pairs of atoms is represented

by the magnitude of the corresponding components of the atomistic Hessian matrix.
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Fig. 3.: The atomistic Hessian matrix represents a system of point masses intercon-

nected by linear springs.

With this equivalence, the atomistic Hessian matrix can also be used to write the

equation of motion for a linear system containing atoms represented by point masses,

given as

[M]ü + [K]u = F. (3.2)

For a system containing N atoms, this is a system of 3N differential equations,

where u = [u1
1, u

1
2, u

1
3, . . . , u

p
1, u

p
2, u

p
3, . . . , u

N
1 , u

N
2 , u

N
3 ]T represents the displacement vec-

tor. [M] is a diagonal matrix known as the mass matrix, in which every atomic mass

repeated thrice along the diagonal, as there are three displacement components for

every atom. F is the force vector, containing components of external forces acting

on each atom, given as F = [f 1
1 , f

1
2 , f

1
3 , . . . , f

p
1 , f

p
2 , f

p
3 , . . . , f

N
1 , f

N
2 , f

N
3 ]T. In this way,

the atomistic Hessian matrix can be interpreted as the force-constant matrix linking

a set of atoms through Newton’s laws connected to each other by linear springs.
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Under static conditions, eq. 3.2 takes the form

[K]u = F, (3.3)

which represents a set of 3N simultaneous equations in 6N variables, 3N of which

are atomic displacements (up
i ) and the rest 3N are external forces on the atoms (f p

i ).

Choosing a combination of atomic displacements and applied external forces, this

system of equations can be solved to obtain the remaining displacements and forces.

Applying specific loading conditions pertaining to standard tests (for evaluation of

structural moduli), the corresponding force-deformation behavior can be obtained

from eq. 3.3. In this way, and as further demonstrated in Section B, the atomistic

Hessian matrix can be utilized to evaluate force-displacement behavior and subse-

quently the structural moduli of a material system at the nanoscale, in addition to

its classical utility in predicting transition states of atomistic configurations.

B. Evaluation of linear structural stiffness of SWCNTs using the atomistic Hessian

matrix

The methodology for evaluation of force-displacement response using the atomistic

Hessian matrix, as described in section 2, is implemented in the current section to ob-

tain linear elastic stiffness in extension and torsion for single walled carbon nanotubes

(SWCNTs). These measures of linear elastic stiffness are similar to Young’s and shear

moduli of elasticity assuming the SWCNT to be homogenized as a continuum.
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1. Modeling of SWCNTs using quantum mechanical calculations and evaluation of

the atomistic Hessian matrix

A quantum mechanical model of a SWCNT was prepared in the Gaussian suite of

programs where the geometry was specified using the z-matrix method [75, 76]. The

z-matrix method incorporates the specification of connectivity between constituent

atoms with respect to a common reference, from which cartesian coordinates can be

derived easily. The advantage of using the z-matrix over specification of cartesian

coordinates is that it allows the evaluation of molecular symmetries, a feature which

simplifies quantum mechanical calculations. For the SWCNT prepared in this work,

the z-matrix was constructed using an initial C-C bond-length of 1.42Å.

(a)

(b)

Fig. 4.: SWCNTs consisting of carbon (grey) and hydrogen (white) (a) two ring (6,0)

SWCNT, (b) seven ring (6,0) SWCNT.
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The structures of SWCNT, were capped with hydrogen atoms, as shown in fig-

ure 4. Zigzag SWCNTs of specification (6,0) and (12,0) were modeled in the present

work, where the nomenclature (n,0) refers to the zigzag nanotube containing n car-

bon atoms along the circumference. Several models of SWCNTs were constructed,

containing up to seven rings, in the case of (6,0) SWCNTs and up to four rings in

the case of (12,0) SWCNTs.

The SWCNT structures were optimized using the Gaussian software for its min-

imum energy and thereafter frequency calculations were performed on the optimized

geometries using the Hartree Fock (HF) quantum mechanical calculations to obtain

natural frequencies and modal shapes for the SWCNT structures[74, 97–99]. The HF

theory was chosen because it models every individual electron in the system using the

Schrödinger wave equation. 3N−6 sets of frequencies and modal shapes were obtained

for the SWCNT and to this set, 6 additional sets were added, characterized by zero

frequency and rigid body modal shape representing translation in 3 directions and

rotation along 3 axes. The non-zero frequencies obtained from the HF calculations

were scaled by a factor of 0.9 [75]. The final set of 3N frequencies and modal shapes

were subjected to modal synthesis (Appendix A) to obtain the atomistic Hessian ma-

trix for the SWCNT. The atomistic Hessian matrix hence obtained was utilized for

performing force-displacement analysis on the SWCNT structure.

2. Evaluation of linear elastic stiffness in extension using the atomistic Hessian

matrix

Figure 5 describes the uniaxial tensile deformation of the SWCNT where boundary

hydrogen atoms were displaced in opposite directions by equal amounts, represen-

tative of axial stretch. For these atoms (refer eq.3.3), only the axial component of

displacements was specified (i.e. uk
z), while the transverse components of the forces
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Fig. 5.: Boundary displacement conditions applied on SWCNT to evaluate the linear

elastic stiffness in extension.

were set to zero (i.e. fk
x = fk

y = 0). Substituting the axial components of displace-

ments, the transverse components of forces for outer atoms, and zero forces in all the

components for the inner atoms, eq. 3.3 can be re-arranged to have all unknowns in

û and all specified fields in f̂ . Thus the set of equations can be represented as follows

[K̂]û = f̂ , (3.4)

where [K̂] is the modified coefficient matrix. This set of equations was solved to obtain

axial force components and transverse displacement components for outer atoms and

all displacement components for inner atoms.

Having obtained all forces and displacements for all the atoms in the SWCNT,

the SWCNT was approximated as a hollow continuum tube. The total axial force, f

on the tube was obtained by summing up the axial component of the forces on the

hydrogen atoms on any one side, f =
(outer)
∑
k

fk
t . The total axial force, f was used to

obtain the linear elastic stiffness in extension, Y , by establishing an equivalence of
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the discrete atomistic structure with a continuum tube[100]

Y =
fl

δA
(3.5)

where l is the un-deformed length of the SWCNT (Figure 5), represented by the

distance between carbon atoms at the opposite ends, δ = (lc − l) is the extension of

the tube, lc is the length of the stretched tube, and A is the cross sectional area of

the SWCNT, which is based on the inter-planer separation in graphite of 3.4Å. The

nominal strain is given as ǫ = δ/l.
The boundary conditions are applied on the outer hydrogen atoms to deform the

system as a whole and thereby the behavior of the inner carbon atoms was analyzed

to evaluate the force-displacement behavior. This methodology, consistent with the

St. Venant’s principle, was adopted to minimize the effect of displacing hydrogen

atoms on the force-displacement response of the SWCNT. However, the presence of

the hydrogen atoms still influences the stiffness of the carbon bonds situated close to

the hydrogen atoms which affects the behavior of the SWCNT as a whole. To address

this feature, SWCNT structures of longer length were analyzed, which contained up

to seven rings for (6,0) SWCNTs and four rings for (12,0) SWCNTs.

The linear elastic stiffness in extension evaluated using the atomistic Hessian ma-

trix method for SWCNTs of different number of rings using the Hartree Fock theory

is plotted in figure 6 along with the predictions of that evaluated by several other

existing models in literature. It can be observed that as the size of the SWCNT is

increased, by addition of rings in the SWCNT structure, the effect of end-capped

hydrogen atoms reduces which causes the linear elastic stiffness in tension to demon-

strate convergent behavior.

The atomistic Hessian matrices, evaluated from the HF method, that were used

to compute the linear elastic stiffness in extension for (6,0) and (12,0) SWCNTs,
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Fig. 6.: Linear elastic stiffness in extension for (6,0) and (12,0) CNTs for different

number of rings evaluated using the atomistic Hessian method and comparison with

other existing models.

can also be utilized to obtain the linear elastic stiffness in torsion for the respective

structures as given in the next subsection.

3. Evaluation of linear elastic stiffness in torsion using the atomistic Hessian matrix

The atomistic Hessian matrix based method can be utilized to evaluate the response

of the SWCNT in shear loading as well. Since the method can accommodate the

application of loads on individual atoms, the shear test was performed by displacing

the outer atoms with the application of a twist. In twisting the SWCNT about the

axis, instead of displacing the hydrogen atoms, the carbon atoms of the outer rings



28

Fig. 7.: Boundary displacement conditions applied on SWCNT to evaluate linear

elastic stiffness in torsion.

were displaced as shown in Fig. 7. These set of boundary conditions were chosen

because applying displacement boundary conditions of twist nature on the hydrogen

atoms would cause significant jump in deformation because the hydrogen-carbon bond

is weaker compared to carbon-carbon bond. The end carbon atoms were displaced

by angular displacement of +φ and −φ external forces on all other atoms were zero,

including the hydrogen atoms, and the resulting system of equations were solved. The

solution of the system of equation gave the tangential forces on the carbon atoms of

the outer rings, which cause the twist. The forces were utilized to obtain the moment,

M(=Mez), causing the twist. Assuming the nanotube to be a homogeneous cylinder

of thickness 3.4Å, the linear elastic stiffness in torsion was evaluated as given by[100]

G =
Ml

Jφ
, (3.6)

where M =
(outer)
∑
k

fk
t r is the sum of moments contributed by the forces acting on

each carbon atom of the outer ring. Moreover, r = 1/2(r0 + ri) where ro is the outer
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radius and ri is the inner radius of the SWCNT, l is the distorted length of the

nanotube (measured between the outer carbon atoms in the unloaded SWCNT), and

J = π/2(r4
0 − r

4
i ) is the polar moment of area of the cross section of the nanotube.

Fig. 8.: Linear elastic stiffness in torsion for (6,0) and (12,0) CNTs for various number

of rings evaluated using the Hessian method and comparison with other existing

models.

Figure 8 shows the linear elastic stiffness in torsion evaluated using the Hessian

matrix method for (6,0) and (12,0) CNTs for rings. Thus, it can be observed that

the atomistic Hessian matrix can be utilized to obtain the linear force-displacement

response of material systems at the nanoscale for a variety of loading conditions

and the main computational effort is concentrated in the evaluation of the atomistic

Hessian matrix. In the next sub-section, a study is performed to investigate the
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impact of the axial strain on the natural frequencies of a SWCNT.

4. Effect of axial stretch on frequencies of SWCNTs

In this sub-section, frequency calculations were performed for a three ring (12,0)
nanotube under axial strain using the HF quantum mechanical calculations. Utilizing

the feature in Gaussian to constrain bond lengths, the SWCNT was stretched by 0.4%

of the initial length. This system was re-optimized for minimum energy configuration,

allowing the inner atoms to relax. After the optimization, a frequency calculation was

performed and the frequencies, ω, of the un-strained and strained structures were

compared.

Fig. 9 shows five different modes of vibration analyzed, and Table I shows the

comparison of frequencies for the five modes. Radial breathing modes are described

by atoms vibrating along the radius of the SWCNT whereas the axial stretch modes

are characterized by vibration of atoms along the axis of the SWCNT. From the

analysis, it was observed that the frequencies of the radial breathing modes increased

on application of positive nominal strain while those of the axial stretch modes de-

creased. Moreover, the magnitude of the shift of the frequencies was lesser for radial

breathing modes as compared to axial stretch modes. These trends in shift for both

radial as well as axial modes were in agreement with experimental measurement of

Raman intensities for CNTs [101, 102], as tabulated in Table II. Moreover, the magni-

tude of the un-strained frequencies of Raman active modes as calculated by quantum

methods lie in the range predicted by the experiments.

The variation of natural frequencies with application of strain shows that the

SWCNT does not exhibit linear behavior for strains even as small as 0.4%. Careful

consideration must be taken on the evaluation of the linear elastic stiffness in exten-

sion while loading the SWCNT to this strain level, because the SWCNT structure
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Fig. 9.: Five modes of vibration selected for investigating the effect of axial deforma-

tion on natural frequencies for a (12,0) SWCNT. The arrows represent eigenvectors.
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Table I.: Comparison of five modal frequencies of a 3-ring (12,0) SWCNT evalu-

ated using HF quantum mechanical method for unstrained and 0.4% axially strained

configurations.

Mode ω for unstrained ω for 0.4% strained shift in ω Percent shift

SWCNT (cm−1) SWCNT (cm−1) (cm−1) (%)
First Radial 235.53 237.46 +1.93 +0.82

Second Radial 244.00 246.50 +2.50 +1.02

First Axial 1066.21 1058.06 -8.15 -0.76

Second Axial 1490.34 1482.41 -7.93 -0.53

Third Axial 1518.34 1512.91 -5.43 -0.36

deviates from linearity and therefore the evaluated modulus will lose accuracy. This

is demonstrated in the following, where the linear elastic stiffness in extension was

evaluated by sequentially deforming a (12,0) 3 ring SWCNT in the axial direction

and evaluating the energy at ±0.3% and ±0.6% strain levels. This is the order of

the strain level that has been applied to the SWCNT for evaluating the linear elastic

stiffness in extension by the energy method [12].

5. Evaluation of linear elastic stiffness in extension using the energy method

For uniaxial deformation, the linear elastic stiffness in extension, Y , is given by

Y = (∂2Φ̂

∂ǫ2
)

ǫ=0
(3.7)

where Φ̂ = Φ/V0 is the strain energy per unit un-deformed volume and ǫ is the axial

strain. The above expression can be rewritten as

Y =
1

V0

(∂2Φ

∂ǫ2
)

ǫ=0
, (3.8)
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Table II.: Comparison of three modal frequencies of a SWCNTs obtained using Ra-

man Spectroscopy for unstrained and 0.45% axially strained SWCNTs.

Mode ω for unstrained ω for 0.45% strained shift in ω Percent shift

SWCNT (cm−1) SWCNT (cm−1) (cm−1) (%)
Radial[102] 272 274 +2 0.74

Axial[101] 1594 1589 -5 -0.31

Axial[102] 1600 1594 -4 -0.25

where V0 is the un-deformed volume.

The atomistic Hessian matrix method and the energy method for evaluating the

linear elastic stiffness in extension are equivalent, as is demonstrated in Appendix B.

To demonstrate the the energy method for evaluating the linear elastic stiffness in

extension, quantum mechanical energy calculations were performed over a 3 ring

(12,0) SWCNT. The SWCNT was first optimized in geometry using the 3-21g basis

sets with the HF quantum mechanical computations. The thresholds for maximum

force and maximum displacement for each atom during optimization was taken to

be the default for Gaussian jobs as 0.00045 a.u. and 0.0018 a.u. respectively. Axial

strain was applied to the SWCNT by a feature provided in the Gaussian program that

facilitates the constraining of several bonds. Starting with the optimized geometry,

strains were applied by fixing the outermost carbon atoms to distances pertaining

to overall tensile and compressive nominal strains of a maximum of 0.6%. These

atoms were fixed throughout the next step of optimization where the inner atoms

were allowed to re-equilibrate. From these set of optimized geometries, the variation

of potential energy was obtained, as plotted in figure 10. The data points were fitted

using least squares method to obtain the second derivative of the energy at zero
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nominal strain. The linear elastic stiffness in extension was evaluated using eq. 3.8

where V0 was computed based on the length of the SWCNT between outermost carbon

atoms. The area of cross-section was assumed to be 3.4Å, equal to the interplanar

spacing in graphite. The modulus value was evaluated to be 820 GPa using the

energy method. It can be observed from Figure 6 that the linear elastic stiffness in

Fig. 10.: Variation of energy with respect to nominal strain evaluated using Hartree

Fock quantum mechanical calculations for a 3 ring (12,0) SWCNT.

extension evaluated from the Hessian method for the (12,0) 3 ring SWCNT using

HF quantum mechanical calculations was 881 GPa, which differs from the energy

method by about 4.7%. Even though the energy method and the atomistic Hessian

method are theoretically equivalent, the application of strains of the order of 0.3–0.6%

introduces error due to loss in linearity which is also demonstrated in the frequency

shifts. The analysis of this sub-section demonstrates that, even though the atomistic

Hessian based method and the energy method are equivalent in theory, the energy
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method should be used with caution for systems that deviate from linearity in the

range of applied deformation.

C. Comparison of the components of the atomistic Hessian matrix

In this section, comparisons are presented for some chosen components of the atom-

istic Hessian matrix, evaluated using quantum mechanical calculations, the Tersoff

Brenner (TB) Potential and an experimentally based method. All calculations were

performed for a (12,0) SWCNT structure.

1. Evaluation of atomistic Hessian matrix using experimental data

In this sub-section, the atomistic Hessian matrix has been evaluated using experimen-

tal data and methodology from Jishi et al.[103] and Dresselhaus et al.[104] which is

referred to as the zone folding method. Using the zone folding method, the atomistic

Hessian matrix for a SWCNT can be evaluated using force constants obtained exper-

imentally for graphene. This method has also been used for structures different from

SWCNT e.g. in the work of Popov[105], where the procedure was implemented for

Boron-Nitride Nanotubes, obtaining experimental data from Boron-Nitride flat sheet

structure.

With reference to the zone folding method [103–105], the expression for Newton’s

law for the static case, (which describes the interaction of atom p in graphene with its

sth nearest neighbor q, where s = 1, . . . ,4 with respect to a local coordinate system)

is assumed to be of the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ
(s)
to 0 0

0 φ
(s)
ti 0

0 0 φ
(s)
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
q
to − u

p
to

u
q
ti − u

p
ti

uq
r − u

p
r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

F
ps
to

F
ps
ti

F ps
r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (3.9)
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where to, ti and r refer to the local coordinate system containing the pair of atoms

p and q, characterized by ‘transverse out-of-plane’, ‘transverse in-plane’ and ‘radial’

directions respectively, up and uq are small the displacements of atoms p and q from

their equilibrium positions and Fpq is the force acting on atom p due to atom q.

Denoting the force constant tensor [104] (which was assumed to be diagonal in the

zone folding method [103–105]) by kps, eq. 3.9 can be rewritten as

k
ps (uq − u

p) = F
pq or, [kps] {uq − up} = {F pq} . (3.10)

This can be rewritten in the global coordinate system by performing a coordinate

transformation mapping graphene to the global coordinate of the (12,0) SWCNT [104]

as follows

[Qq]T[kps][Qq] {uq − up} = {F pq} . (3.11)

Denoting [Qq]T[kps][Qq] by [Kpq], we have

[Kpq] {uq − up} = {F pq} , (3.12)

where the matrix [Kpq] is a sub-matrix of the atomistic Hessian matrix for the (12,0)

SWCNT,

[K]pq
ij = [Kpq]ij . (3.13)

For the zigzag chirality of SWCNTs analyzed in the present work, the zigzag

SWCNT and the corresponding graphene system, have 3 first neighbors, 6 second

neighbors, 3 third neighbors and 6 fourth neighbors. Numbering the neighbors such

that atoms 1, 2 and 3 belong to the first neighbor set (i.e. s = 1), atoms 4 to 9 belong

to the second (s = 2), 10 to 12 belong to the third set (s = 3) and 13 to 18 belong

to the fourth neighbors set (s = 4) (Fig. 11), the total force acting on atom p on the
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Fig. 11.: Eighteen neighboring atoms in a (12,0) SWCNT for an atom p, where

interactions up to fourth nearest neighbor distance have been incorporated.

(12,0) SWCNT due to all the 18 neighboring atoms is given as

{F p} = 18

∑
q=1
[K]pq {uq − up} , (3.14)

where s = 1 for q = 1,2,3, s = 2 for q = 4, . . . ,9, and so on. After simplification, eq. 3.14

results in the following

{F p} = 18

∑
q=1
[Kpq] {uq} − ( 18

∑
q=1
[Kpq]){up} . (3.15)

Thus, the diagonal sub-matrix of the atomistic Hessian matrix Kpp can be written as

[K]pp
ij = −( 18

∑
n=1
[K]pq

ij ) . (3.16)

In the present work, the global atomistic Hessian matrix was evaluated for a (12,0)

SWCNT by assembling the sub-matrices for the constituent atoms by the above

procedure and using the experimental data [104]. Specific sub-matrices of the global

atomistic Hessian matrix ([K]pq) have been tabulated in table III, corresponding to

interactions of atom p with neighbors labeled 1, 4, 10 and 13 (eq. 3.13). The diagonal
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sub-matrix of the atomistic Hessian matrix described by eq. 3.14 was evaluated using

the experimental data and is given in table IV.

2. Evaluation of the atomistic Hessian matrix using the HF method and the TB

potential

This subsection discusses the atomistic Hessian matrix evaluated for a 3 ring (12,0)

SWCNT using HF quantum mechanical calculations and a (12,0) periodic SWCNT

using the TB Potential. From the atomistic Hessian matrix for the 3 ring (12,0)

SWCNT, sub-matrices pertaining to interaction of the central atom p with neighbors

labeled 1, 4, 10 and 13 in Fig. 11 were obtained and have been tabulated in Table III.

It was observed that the diagonal sub-matrix of the atomistic Hessian matrix, (de-

noted by [K]pp) as obtained from the quantum mechanical calculations, was equal

to the sum of the force-constant sub-matrices corresponding to interaction of atom p

with all the atoms,

[K]pp
ij =

N

∑
q=1
[K]pq

ij . (3.17)

Table IV shows the diagonal sub-matrix of the atomistic Hessian matrix for a (12,0)

3 ring SWCNT evaluated using the HF method.

For a potential energy function that represents the potential energy of a set of

atoms with respect to their relative positions, analytical second derivatives can be

evaluated using eq. 3.1 to obtain the components of the atomistic Hessian matrix. In

the present work, the TB Potential was chosen to represent the potential energy Φ in

eq. 3.1. The potential was set up to represent a minimum energy configuration of a

(12,0) SWCNT and analytical second derivatives were taken to obtain the components

of the atomistic Hessian matrix. The atomistic Hessian matrix using the quantum

mechanical calculations and the TB Potential are shown in Table III. The terms in
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the atomistic Hessian matrix corresponding to the TB Potential for second neighbors

and beyond are zero due to the cut-off distance employed in the potential.

Table III.: Comparison of Hessian sub-matrices evaluated using experimental data,

the HF method and the T-B potential.

Experimental HF T-B

[K]p1

⎡
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎣

98.20 0.00 0.00

0.00 245.00 0.00

0.00 0.00 365.0

⎤
⎥
⎥
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⎥
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113.00 0.00 5.36

0.00 245.30 0.00

−5.36 0.00 400.90
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0 0 370.09

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[K]p4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−3.94 −0.43 −6.92

−0.43 −0.67 52.54

−6.92 52.54 56.31

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−5.90 −3.29 1.45

−3.60 −44.94 57.48

15.05 58.22 37.45

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

-

[K]p10

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.11 −2.27 −9.06

−2.27 9.96 33.81

−9.06 33.81 −33.07

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

9.32 4.24 0.27

−1.32 14.38 −37.75

−19.11 −32.55 20.15

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

-

[K]p13

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−5.39 −3.11 1.73

−3.11 17.78 −13.16

1.73 −13.16 −14.49

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−12.87 3.34 −5.60

4.40 11.61 12.66

1.64 13.46 −9.89

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

-

This is for the first time that components of the atomistic Hessian matrix eval-

uated using experimental data and atomistic methods have been compared and an-

alyzed. From this comparison it was observed that the elements of the sub-matrix

of atomistic Hessian matrix obtained by experimental data and the HF method had
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Table IV.: Comparison of diagonal sub-matrix of atomistic Hessian matrix for (12,0)

SWCNT evaluated using experimental data and the HF method. The experimental

column corresponds to interactions of atom p with up to fourth neighboring distance

while the HF column incorporates interactions with all other atoms in the SWCNT.

Experimental HF

[K]pp

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

191.01 −0.01 0.00

−0.01 1110.35 −7.80

0.00 −7.80 1057.85

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

285.49 0.00 15.71

0.00 1135.69 0.00

15.71 0.00 1115.10

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

comparable diagonal elements for the first neighbor interaction, [K]p1. Of all the in-

teractions, the one with the first neighbor is the strongest, since it is represented by a

direct covalent bond and hence the force-constants representing this interaction show

agreement between experimentally derived and HF evaluated methods. The atom-

istic Hessian matrix evaluated using the TB Potential showed good comparison for

the axial-stretch component of the first neighbor interaction, while the other two di-

agonal force-constants differed significantly. It can be further observed from Table III

that all the sub-matrices corresponding to the experimental method were symmetric.

This is because these matrices were originally diagonal (eq. 3.9), and obtained sym-

metry after undergoing orthogonal transformation (eq. 3.11). It was further observed

that the individual off-diagonal sub-matrices of the atomistic Hessian, [K]pq, obtained

from the quantum mechanical methods were not symmetric. However the diagonal

sub-matrix [K]pp was observed to be symmetric as shown in Table IV.

The off-diagonal (i, j)th element of the sub-matrix [k]pq (eq. 3.9, i ≠ j), namely
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([k]pq)ij , represents the ith component of the force that acts on atom p when the

atom q is displaced by unit amount in the jth direction and all other atoms are fixed.

The (j, i)th element, ([k]pq)ji, which is the jth component of the force on atom p

due to unit displacement of atom q along ith direction is not related physically to

([k]pq)ij and can therefore be numerically different. In the modeling of the zone fold-

ing method [103, 104] however, the off-diagonal elements in the force-constant matrix

were assumed to be zero, thus enforcing symmetry in the off-diagonal sub-matrices

of the experimentally derived atomistic Hessian matrix (eq. 3.9).

The diagonal sub-matrix of the atomistic Hessian [K]pp, given in Table IV phys-

ically represents the force acting on atom p due to the displacement of atom p, while

all the other atoms are fixed in space. Observing the components of [K]pp, it can

be inferred that the in-plane stiffness of the SWCNT is about the same in y and z

directions, as indicated by the (2,2) and (3,3) components for both experimental as

well as ab initio results. Additionally, the numerical values of the elements of [K]pp

for HF case show that the displacements in x and z are coupled, due to the non-zero

(1,3) and (3,1) component. Physically, this represents a radial deformation coupled

with axial displacement which is the reason for the Poisson’s effect in the SWCNT

structure and is an important observation of the properties of the atomistic Hessian

matrix evaluated using atomistic calculations. It can also be seen that the atomistic

Hessian obtained using experimental data (Table IV) did not possess this structural

property.

Studies have been performed where vibrational frequencies and mode shapes for

SWCNTs were evaluated using tight binding calculations [106] and molecular mechan-

ics based on a force field [107]. These mode shapes and frequencies obtained com-

putationally were compared with those obtained experimentally from Raman spec-

troscopy. In these studies emphasis was placed mainly on the vibrational information
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(which is obtained by diagonalizing the Hessian) rather than on the analysis of the

components of the Hessian matrix itself. The present research focuses on the com-

ponents of the atomistic Hessian matrix and compares the atomistic Hessian matrix

developed using the zone folding method. This gives a more detailed understanding

of both, the interactions between the atoms at the nanoscale in SWCNTs, as well as

the use of experimentally obtained interactions in predicting the mechanical behavior

of SWCNTs.

The atomistic Hessian matrix using quantum mechanical computations provides

a qualitatively more accurate representation of the stiffness of the SWCNT compared

to the experimentally derived analogue. It was demonstrated that the Hessian method

not only provides a computationally more economic and accurate method for evalu-

ating the stiffness of a nanosize material system (as described in Section B) but could

also be used for comparison of atomistic force-constants obtained with experiments.

This feature is a merit over using the the energy method directly, where the homoge-

nization results in the loss of atomistic detail and only the structural modulus could

be compared with experimental data (if available). The atomistic Hessian method

retains the discreteness of the atomistic information which can be utilized for ex-

perimental verification, and can be additionally utilized for evaluating the structural

moduli.

D. Conclusions

A method for evaluating the linear force-displacement response of an atomistic system

was developed, where the atomistic Hessian matrix was utilized for solving structural

boundary value problems. The atomistic Hessian matrix was calculated using modal

synthesis of natural frequencies and mode shapes, obtained for zig-zag SWCNTs from
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quantum mechanical calculations. Linear stiffnesses in extension and torsion of elas-

ticity were evaluated for the zig-zag SWCNTs from the atomistic Hessian matrix using

the force-displacement response. The atomistic Hessian based method is computa-

tionally less demanding compared to the strain energy based method in evaluating

the linear response to prescribed loading conditions, since it overcomes the need to

perform intensive atomistic calculations for each boundary value problem and can

be utilized to obtain stiffness parameters of the system through a variety of loading

conditions. Through this feature, the Hessian method bridges scales and is applicable

in multiscale modeling of linear response of nanoscale materials.

Examination of the frequency characteristics of SWCNT with application of ten-

sile longitudinal strain showed that the frequency shifts for radial and axial modes

were similar to experimental findings of Raman shifts in SWCNTs. The shifts indi-

cate that the atomistic Hessian matrix evaluated at the un-deformed and deformed

configurations is not the same and therefore the SWCNT system is not linear over

even very small strain levels. Thus, the utilization of the energy method for strain

levels at which deviations from linearity are observed leads to inaccuracies in evalu-

ation of stiffnesses. The Hessian based method is therefore more accurate compared

to the energy method prevalent in the literature. Additionally, unlike the energy

method, the atomistic Hessian method retains the degrees of freedom of the atoms

in the system after the homogenization is performed while evaluating the structural

moduli of a material at the nanoscale.

For the first time, components of the atomistic Hessian matrix evaluated using

experimental data (from the zone folding method), quantum mechanical calculations

and the Tersoff Brenner Potential were compared. It was observed that the sub-

matrices of the atomistic Hessian matrix corresponding to the first nearest neighbor

interaction for both zone folding method as well as for quantum mechanically evalu-
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ated atomistic Hessian matrix were in good agreement. It was additionally observed

that the atomistic Hessian matrix obtained using the quantum mechanical calcula-

tions was qualitatively the most accurate and can further explain the Poisson’s effect

in SWCNTs while the zone folding method cannot.
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CHAPTER IV

MECHANICAL BEHAVIOR OF CNT POLYETHYLENE INTERFACE

The previous chapter was about the evaluation of Young’s and shear moduli of elas-

ticity for SWCNTs and it was shown that these material parameters are very high

for SWCNTs. This leads to the vision of using CNTs as reinforcement materials for

composites primarily due to their capability of imparting high mechanical stiffness.

CNTs have been used with polymers [21, 22] to obtain composites with a variety of

processing techniques. One of the main component for developing well tailored com-

posites however is the knowledge of the behavior of the interface between the CNT

and the chosen polymer. With current processing and characterization tools, only

bulk behavior of the composites can be assessed since individual CNTs (and hence

their interfaces) are difficult to be probed by experimentation. The current chapter

is about the utilization of the molecular dynamics (MD) method to investigate the

interfacial behavior of the CNT and polymer in the set up of pull out tests where the

CNT is removed from a film of polymer.

A. Problem setup

This section describes the procedure for developing representative atomistic systems

that were utilized to study the mechanical behavior of the CNT polymer interface. A

description is also given on the constraints applied on the system that provide relative

separation where the SWCNT was pulled out of the polymer. Additional pull out

tests are described where separation was carried out in presence of compressive loads.
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1. Nanoscale RVEs containing SWCNT and polymer

In the present study, two nanoscale unit cells (representative volume elements, RVEs)

were prepared for investigating the mechanical behavior of SWCNTs with the poly-

mer. Both the RVEs consisted of a finite size (non-periodic) model of a SWCNT

surrounded by a thin film of polymer. The polymer chosen was Polyethylene (PE)

because of the simplicity of its structure. The choice of these unit cells was dictated

by the force field used to model the interactions between the atoms and each of the

RVEs is described as follows.

The first RVE was modeled using the CVFF force field [77] and is shown in

Fig. 12a. The CVFF force field is a classical MD force field which has successfully

modeled the properties of several polymers including bio-polymers, however it cannot

model bond breaking and formation. In the model shown in Fig. 12, the polymer PE

is amorphous and composed of straight chains of 60 monomers each. There are 32

such chains, with no covalent chemical bonds connecting them. In total, there are

about 6000 PE atoms in the system and the chains are connected only by non-bonded

interactions namely the Van der Waals and electrostatic components of the force field

(Sect. a). The polymer was prepared first as described in Appendix C and equilibrated

at 100K using the LAMMPS code [108]. The temperature of 100K was chosen because

it is well below the glass transition temperature (Tg) of PE, which ranges between

190-300K. The system includes a (12,0) SWCNT which was chosen because it has a

diameter of 1nm whose ends were capped by hydrogen atoms to complete the valency

requirements. There were 540 carbon atoms and 24 hydrogen atoms in the SWCNT.

The system comprising the SWCNT and the amorphous polymer was re-equilibrated

at 100K for 50ps using LAMMPS to obtain a starting configuration to perform the

pull out test. The equilibrated system occupied a volume of 58.47Å × 56.07Å ×
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56.58Å (measured using atomic coordinates of the farthest atoms) and the length of

the SWCNT in the equilibrated system was 46.87Å. In this model, both the SWCNT

as well the polymer PE have been modeled using the same CVFF force field so as to

capture the interactions between the two phases in full atomistic detail.

The second RVE is shown in Fig. 13 which utilizes the ReaxFF force field to

model the interactions amongst the atoms. The ReaxFF force field is a new atom-

istic potential that has the capability to form and break bonds. This feature of the

ReaxFF force field is utilized in designing the current model wherein bond breaking

and formation is critical. The model in Fig. 13 consists of the polymer PE in network

configuration in which the chains of PE are cross linked by other PE chains. There

were about 2000 PE atoms in the network polymer structure with a cross link density

of (ref). The polymer model was minimized in the beginning and then equilibrated at

100K through a series of steps starting from 0K. The system also consists of a (12,0)

SWCNT, end-capped with hydrogen atoms. There were 360 carbon atoms and 24

hydrogen atoms in the SWCNT. The composite system comprising of the SWCNT

in the network polymer was equilibrated at 100K for 50ps before performing the pull

out tests. Bonds were allowed to be formed between the SWCNT and the network

polymer and in the equilibrated structures there were 35 covalent interconnects join-

ing the network PE with the SWCNT. The equilibrated system occupied a volume

of 32.32Å × 32.53Å × 35.41Å while the length of the SWCNT was 33.75Å. In this

model, both the SWCNT as well as the network PE have been modeled using the

ReaxFF force field. This is the first time that ReaxFF has been utilized to model the

mechanical interactions of the SWCNT-polymer system.
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(a) Front view

(b) Side view

Fig. 12.: Model of a SWCNT embedded in amorphous straight-chain Polyethylene.

No covalent bonds exist amongst the polymer chains and between the polymer and

the SWCNT. The system was modeled using the CVFF Force Field.
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(a) Front view

(b) Side view

Fig. 13.: Model of a SWCNT embedded in network Polyethylene. Covalent bonds

exist amongst the polymer chains as well as between the polymer and the SWCNT.

The system was modeled using the ReaxFF Force Field.
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2. Application of constraints

To investigate separation through a pull out test, the system comprising of the

SWCNT and polymer has to be constrained in a specific way. These constraint con-

ditions have to be imposed on the system or otherwise, the pull out of the SWCNT

will cause all the polymer atoms to move together with the SWCNT due to the

interatomic forces. The applied constraint condition is described in the following.

The SWCNT is pulled out from the polymer, and small portions of the polymer at

the top and bottom are fixed in space. The atoms in the SWCNT as well as

those around it are not kept fixed and can move under the influence of each

other as well as temperature.

This represents a system where the polymer is contained between two SWCNTs

and application of symmetrical boundary conditions causes the polymer in between

the SWCNTs to remain ideally fixed as shown in Fig. 14. Moreover greater the

distance between the SWCNTs larger will be the portion of the polymer that would

remain fixed.

The constraint condition for the two RVEs is shown in Fig. 15 where the axes of

the SWCNTs coincided with the y axis, and two portions of the polymer above and

below the SWCNT were constrained against movement as shown. The separation

tests of pull out were performed on these systems as explained as follows.

a. Pull out separation under no external load

For pull out separation under no load, systems depicted in Fig. 15 were utilized. The

SWCNT in each of the RVE was separated from the polymer by displacing it in the

y direction. Equal displacement steps of 0.5Å were applied on the SWCNT while the

polymer was restrained by the constrained conditions. For each displacement step,
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Fig. 14.: Schematic of constraint condition where the presence of symmetrical bound-

ary conditions on two SWCNTs causes the polymer atoms in the middle portion to

be ideally fixed in space. The shaded portion represents the fixed polymer.
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the system was equilibrated for 10ps at 100K temperature, which sufficient for the

system to achieve dynamic equilibrium at the temperature of 100K. For the entire

length of the separation process, the polymer atoms in the constrained portion were

kept fixed at their same initial fixed position. The polymer atoms near the SWCNT

were however free to move under the influence of both the displacing SWCNT, as well

as due to the vibrational motion caused by the temperature thermostat of 100K.

b. Pull out separation under transverse load

In this case, the two constrained portions of the polymer was displaced towards the

SWCNT causing compression in the z direction. The pull out test was performed in

presence of the transverse load that resulted due to the application of the compression.

This test analyzes the effect of combined loading where SWCNT is pulled out from

the polymer which was loaded by compression in a direction transverse to the pull

out direction. In these studies, the SWCNT was pulled out from the polymer in equal

displacement steps of 0.5Å with equilibration time of 10ps while the temperature of

the system was held at 100K.

B. Results for SWCNT pull out from PE matrix under no external load

This section describes the results for the case when SWCNT pull out tests are per-

formed without external load. Both RVEs, one modeled by the CVFF force field and

another modeled by the ReaxFF force field, were utilized to perform the pull out

tests.



53

(a) Constraint condition for system modeled with the
CVFF force field

(b) Constraint condition for system modeled with the
ReaxFF force field

Fig. 15.: Constraint conditions for the two model RVEs investigated. Shaded portions

represent fixed atoms.
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1. Results for atomistic RVE modeled by CVFF

Fig. 16 represents the pull out tests performed on the RVE modeled by the CVFF

force field. The individual frames are shown at different displacement steps while the

SWCNT was pulled out from the polymer. Frame (a) shows the atomistic config-

uration of the system in the beginning, before the SWCNT was displaced and the

remaining frames shown in the figure are the atomistic configurations at displacement

steps of 10Å, 20Å, 30Å, 40Åand 50Å. As the SWCNT was pulled out from PE, the y

component of forces acting on all the atoms in the SWCNT was monitored. Summing

up these individual force components, the y component of total force acting on the

SWCNT was obtained. This total force component was normalized by the surface

area of the SWCNT to evaluate the shear traction on the SWCNT. The variation of

the shear traction on the SWCNT with the displacement of SWCNT is plotted in

Fig. 17 and the individual frames of Fig. 16 are also indicated by the corresponding

letters.

It can be observed from Fig. 17 that the total shear traction at frame (a), which

represents the equilibrium configuration at the start of the test, is not zero. This is

because the atoms of the SWCNT were vibrating under the influence of temperature

and this motion caused a small net force. It can further be observed that with a

very small pull out displacement of the SWCNT, the traction displacement response

sharply increases, and reaches a maximum. The maximum shear traction is actually

the minimum shear traction needed to separate the SWCNT from the polymer. With

further displacement of the SWCNT, the traction displacement response fluctuates

due to thermal motion and falls in magnitude. As the SWCNT separates from PE, it

interacts with lesser PE atoms, reducing the y component of the force of interaction

between the SWCNT and PE, thus reducing the shear traction. With increasing pull
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Fig. 16.: SWCNT pull out from an amorphous PE matrix with no transverse loads ap-

plied to the polymer, modeled by only non bonded interactions between the SWCNT

and PE using the CVFF force field.

out displacement, the shear traction reduced further and fluctuated at a low mag-

nitude finally reducing to almost zero when the SWCNT was completely separated

from the influence of PE. The energy of shear separation was evaluated as the area

under the traction displacement and was calculated to be 0.26 J/m2.



56

Fig. 17.: Traction displacement response of the SWCNT during pull out from PE

modeled by CVFF force field.

2. Results for atomistic RVE modeled by ReaxFF

The behavior of SWCNT pull out from the network PE model is shown in Fig. 18

and Fig. 18 which show the atomistic detail of the separation process at different

pull out displacements of the SWCNT. It can be observed that as the SWCNT was

displaced away from the matrix, a portion of the networked PE would follow the

movement of the SWCNT, because of the covalent bonding in the interconnects that

join the SWCNT with the PE. With increasing displacement of the SWCNT, it was

observed that covalent linkages broke, and the fragments of the interconnects occupied

the SWCNT surface. It was further observed that bond breaking occurred not only
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at the interconnects, but also within the polymer network structure. This caused

the formation of dangling polymer chains and some of which that were close to the

SWCNT surface, moved with the SWCNT.

Fig. 18.: SWCNT pull out from an networked PE matrix with no transverse loads

applied to the polymer, modeled by using the ReaxFF force field, having capability

of bond breaking and formation.

The traction displacement response of the SWCNT was evaluated in the same was

as for the RVE modeled with the CVFF force field and is shown in Fig. 19. From the

traction displacement response, it can be observed that the peak traction was about

two orders of magnitude greater than the case with no bond breaking (Fig. 17). Sharp

drops in shear traction were observed, which were typically due to bond breaking
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Fig. 18.: Continued.
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Fig. 19.: Traction displacement response of the SWCNT during pull out from PE

modeled by ReaxFF force field.

events occurring either at the SWCNT surface or within the polymer network. With

further displacement of the SWCNT and as the interconnects broke, the SWCNT

was progressively lesser influenced by the networked PE, causing the shear traction

to fall. When the SWCNT was completely separated from the networked PE, the

shear traction dropped to almost zero as shown in Fig. 19.

C. Results for SWCNT pull out from PE matrix under transverse external load

This section describes studies in which SWCNT pull out simulations were conducted

in presence of transverse external load acting on the polymer. The behavior of both

RVEs, one modeled using the CVFF force field and another with the ReaxFF force

field were utilized to perform these tests.
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1. Results for atomistic RVE modeled by CVFF

In investigating pull out separation of the SWCNT from the polymer matrix in pres-

ence of external transverse load, the RVE modeled by CVFF (shown in Fig. 12) was

subject to compression along the z direction. The constrained portion of the polymer

above the SWCNT was displaced in the −z direction and that below the SWCNT

was displaced in +z direction to create transverse compression on the SWCNT. The

sample for investigation was prepared by displacing the polymer by a total of 12% of

the thickness of the polymer in the z direction. Starting from the RVE of Fig. 12,

the constrained portions of the polymer both above and below the SWCNT were

respectively displaced in −z and +z directions by steps of 0.25Å. For each step, the

system was dynamically equilibrated at 100K for 10ps and these steps were carried

out until 12% compression was obtained. During these steps, the SWCNT was not

constrained and was allowed to deform under the influence of the external load. The

pull out stages are shown in Fig. 20.

Fig. 21 shows superimposed traction displacement responses for SWCNT pull out

with and without transverse compression. It was observed that the peak shear traction

for the case with transverse compression was higher than that with no transverse

compression. The reason was the increase in the number of polymer atoms that come

under the influence of the SWCNT in the present model. This also caused a longer

response wherein the shear traction continued to be non zero at the point where it

was zero for the case of separation under no transverse compression. The energy of

shear separation was evaluated for this case to be 0.30 J/m2.
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Fig. 20.: SWCNT pull out from an amorphous PE matrix with transverse load applied

to the polymer. Only non bonded interactions exist between the SWCNT and PE

and the CVFF force field used to model the system.

2. Results for atomistic RVE modeled by ReaxFF

In the case of studying the effect of transverse loading on the behavior of SWCNT

pull out from networked PE using ReaxFF force field, the RVE shown in Fig. 13 was

utilized. The constrained polymer atoms above the SWCNT were displaced in −z

and ones below the SWCNT were displaced in +z directions in steps of 0.25Å, and

dynamically equilibrating the system at 100K for 10ps. This procedure was utilized

to prepare two samples, one with compression level 12% of the polymer thickness in

the z direction and another with that of 20%.

The behavior of the system with 20% compression level is shown in Figs. 22 and



62

Fig. 21.: Results for SWCNT pull out from an amorphous PE matrix with transverse

load applied to the polymer.

22. It can be seen that compression of the polymer results in causing the SWCNT to

deform. With application of pull out displacement on the SWCNT, it was observed

that the load transfer caused the polymer network to deform in the y direction. With

increase in the pull out displacement of the SWCNT, chemical bonds at the interfacial

interconnects broke, causing fragments of polymer chains to get severed from the

polymer material which stick to the SWCNT surface. It was also observed that

the portion of the SWCNT outside the influence of transverse compressed polymer,

regained its cylindrical shape (Fig. 22c and Fig. 22d). Further pull out of the SWCNT

caused rupture of bonds on the SWCNT surface (Fig. 22e) which deformed its shape

even after it eventually separated fully from the polymer material (Fig. 22f).

The shear traction versus displacement response of the two systems, namely with

12% and 20% compression are shown in Fig. 23 along with that of no compression.

It can be observed that the peak shear traction for the case with 12% compression is
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Fig. 22.: SWCNT pull out from a networked PE matrix with transverse load of 20%

compression applied on the polymer. ReaxFF force field used to model the system.
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Fig. 22.: Continued.

Fig. 23.: Results for SWCNT pull out from an amorphous PE matrix with transverse

load applied to the polymer.
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Fig. 24.: Variation of peak shear traction on SWCNT with transverse compression of

polymer for RVE modeled by the ReaxFF force field.

greater than that of no compression. Additionally the peak shear traction of the case

of 20% compression is greater than that of 12% compression. It was further observed

that the increase in compression causes more fluctuations in the traction separation

response, because of greater interaction of SWCNT with the polymer atoms and more

bond breaking events occurring. The response length increased with the compression

level, indicating the enhanced interaction of SWCNT with the network PE.

The variation of the peak shear traction with transverse compression is shown

in Fig. 24 and the area under the respective curves, also interpreted as the energy of

separation is shown in Fig. 25.

D. Discussion of results

MD studies of SWCNT pull out have been performed for a periodic system consisting

of a non-functionalized SWCNT embedded in a polyethylene matrix [50]. In these
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Fig. 25.: Variation of energy of separation with transverse compression of polymer

for RVE modeled by the ReaxFF force field.
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studies, the SWCNT interacted with the polymer by Van der Waals forces and the

displacement of the SWCNT with respect to the polymer did not cause the SWCNT to

completely separate from the polymer due to the imposed periodicity of the structure.

In the current study, pull out test was conducted using a non periodic system and

the SWCNT completely separated from the polymer. The shear traction necessary

to cause the relative slippage evaluated in [50] was about two orders of magnitude

lesser compared to the present study (of about 250 MPa) with the CVFF unit cell.

When the SWCNT is displaced with respect to the polymer in a periodic system, it

experiences both a net pulling force due to the applied load, as well as a net pushing

force due to the periodic presence of polymer atoms. The resultant effect of these two

forces which are opposite in direction, causes the maximum shear traction to be less.

Experimental pullout tests have been performed [61] where unfunctionalized

CNTs were pulled out from epoxy matrix using a Scanning Probe Microscope (SPM).

The peak shear traction was observed to lie between 25 MPa and 350 MPa for different

sets of pull out experiments. The peak shear traction evaluated from the present study

(about 25 MPa) lies within the experimentally observed value. Though the material

systems composing the matrix material are different (epoxy versus polyethylene), the

Van der Waals interactions will be similar, hence the comparison can be valid. The

energy of separation for non-bonded interface as evaluated in the present work is

within the order of magnitude of that previously calculated by Jiang and coworkers

[53] using MD simulations for complete pull out of a SWCNT from an epoxy matrix.

Experimental studies of CNT pullout from a polymeric matrix [109, 110] have

measured the fracture energy of functionalized nanotubes to vary between 4 and 70

J/m2, which lies within the predicted energy of separation for the unit cell modeled

with ReaxFF (about 11 J/m2). MD studies of SWCNT pullout from polymer matrix

using reactive force fields have analyzed periodic systems only and have predicted the
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interfacial shear strength to range between 30 and 110 MPa.

In the present work, the SWCNT was displaced in steps of 0.50 Åand for each

step the system was dynamically equilibrated for 10 ps. Dividing the displacement

with the time gives 5 m/s as the displacement rate, which is very high compared to

laboratory conditions. It should be noted, however, that the time of 10 ps is chosen

to allow the system achieve a dynamic equilibrium at the chosen temperature and

pressure conditions. Therefore the pullout tests essentially represent a set of step-wise

quasi-static loadings.

MD studies have shown that the presence of covalent bonds on the CNT surface

causes a degradation in the elastic modulus [49, 111], strength [111] and strain at

fracture [111] with increase in functionalization. This effect was evident in the present

study where chemical bonds in the SWCNT broke on application of sufficient pressure.

The shear traction versus displacement response of the ReaxFF unit cell, as given

in Fig. 19 shows sharp fluctuations of the shear traction as it falls rapidly on events of

bond breaking. These events can be resolved more effectively by choosing a smaller

timestep of MD. In all MD studies carried out in this dissertation, the MD timestep

was consistently chosen to be 1 fs as this is sufficient to resolve atomic vibrations. A

smaller time step, of the order of 0.1 fs can provide better precision of bond breaking

and formation events and thereby decrease the sharp fluctuations in the response.

The results presented in this chapter pertain to atomistic level phenomena, lo-

calized at the interface between the SWCNT and polymer. However, interpretation

or applicability of the atomistic data at the continuum level, can only be made after

a size dependence study of the interfacial model. Additionally, MD can only model

system sizes as large as 100,000 to up to 1 million which again is limited in capturing

non-local contributions to the continuum parameters such as the energy of separa-

tion. In a real nanocomposite system, there are many other dissipation sources, in
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addition to nanoscale separation, that contribute to the measurements made at the

macroscale. These are hard to be captured or resolved by MD simulations presented

in the present study.
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CHAPTER V

ATOMISTIC MODELING OF MECHANICAL BEHAVIOR OF GRAPHENE

POLYMER INTERFACE∗

In the previous chapter, interfacial interactions between polymer and SWCNT were

analyzed through shear separation by means of a pull out test. In the present chapter,

the mechanical behavior of the CNT-polymer interface is described in more detail,

focussing at different modes in which separation can occur, namely opening and

sliding modes. Separation is studied by constructing unit cells of different periodicity

and simulating separation by relative displacement of the two phases. The behavior

of the interface is first studied with respect to Van der Waals interaction only, and

later, a more complex system is analyzed wherein chemical bonding at the interface

is incorporated.

A. Problem setup

This section describes the procedure for preparing representative MD models for

the interface between the filler and polymeric matrix in the nanocomposite. A list

of necessary tools needed to model these systems has been mentioned. The effect

of boundary conditions on the separation response is studied by applying specific

constraints on the atoms in the model. Separation behavior is simulated by additional

constraints, which represent relative separation of the graphene layer from polymer.

These constraint conditions are described for opening mode separation, sliding mode

separation and sliding mode separation in the presence of tensile and compressive

∗Reprinted with permission from A. P. Awasthi, D. C. Lagoudas, D. C. Ham-
merand, “Modeling of graphene-polymer interfacial mechanical behavior using molec-
ular dynamics”, Modelling and Simulation in Materials Science and Engineering, vol.
17, pp. 015002 (37pp), 2009.
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Fig. 26.: Modeling of mechanical behavior of CNT nanocomposite with interfacial

effects: (a) nanocomposite at macroscale, (b) molecular detail of CNT and polymer,

(c) nanoscale interfacial RVE consisting of graphene and polymer chosen to perform

simulations of separation.

normal tractions.

1. Nanoscale RVEs

The graphic presented in Figure 26 represents the framework of modeling the me-

chanical behavior of CNT polymer nanocomposites, with incorporation of interfacial

behavior between CNTs and polymer. Figure 26a depicts the nanocomposite at the

macroscale, consisting of CNTs dispersed in the polymer, in aligned or random ori-

entations, and Figure 26b shows the molecular detail of the interfacial system. The

complexity of the CNT-polymer interface is a result of the amorphous nature of the

polymer and there is no unique polymer structure that may describe the polymer in
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equilibrium with the CNT. The separation behavior at the interface is influenced by

individual lengths of the polymeric chains and their orientations, near the vicinity of

the CNTs. Additionally, the nanocomposite may contain CNTs of different sizes and

chiralities that add to the complexity of the nanocomposite interface. In order to re-

duce the complexity of the system, to be able to represent it by a simpler structure, a

model system was identified from Figure 26b and represented by a polymer-graphene

system, shown in Figure 26c since graphene has local structural morphology similar

to carbon atoms in the CNT.

In order to simulate long polymeric chains, the computational cost is tradition-

ally economized by coarse graining the polymer, wherein groups of neighboring atoms

are treated as individual units which are modelled by computationally simpler force-

fields. Grouping neighboring sets of atoms reduces computational cost, but results in

loss of atomistic detail. In the current study, short polymeric chains, 60 monomers

long (oligomeric length) were chosen, in order to keep polymer lengths in the same

length scale as the graphene nanostructure, thereby treating both graphene as well the

polymer with the same force-field and thus being able to capture the separation be-

havior with atomistic detail. This choice of polymer-graphene model also economized

the computational cost at the same time and was utilized to conduct MD simula-

tions to obtain interfacial parameters for separation in opening, sliding and combined

loading modes. Incorporating the curvature and waviness of the CNT, the results of

separation response could be utilized as input to higher scale micromechanical models

to obtain bulk mechanical response of the nanocomposite.

2. Nanoscale unit cell modeled with CVFF

A unit cell of the model system is shown in Figure 27, which consists of the graphene

layer, assumed flat, interacting with a film of polymer molecules in the near vicinity.
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Also indicated are the periodicity conditions employed in the structure to represent a

large domain. The graphene layer was represented with periodicity in its plane and the

polymer layer was set up with the same periodicity as graphene, as shown in the figure.

No periodicity was assumed in the direction normal to the plane of graphene. This

model essentially assumes that, for a low weight percent nanocomposite, interactions

among the dispersed filler material are negligible, since they would be scattered by

relatively large distances, far from each other. In the present work, it is assumed that

there is no functionalization between the graphene and polymer phases and that no

chemical bonds exist between the graphene and polymer phases.

Based on its simple chemical structure, polyethylene (PE) was chosen as the

polymer matrix material in the present work. The monomer of PE consists of three

atoms: an sp 3 hybridized carbon atom which is linked to two hydrogen atoms repre-

sented as –(CH 2)–. The remaining valence of the carbon atom gets satisfied through

polymerization, where additional monomeric units link each other, forming a straight

chain. In the present work, the two terminal carbon atoms of each polymer chain

are each connected to one hydrogen atom each, making the terminal group –(CH3).

The polymer structure is therefore CH3–(CH2)n–CH3, and in this work, the number

of monomer units, n has been kept fixed to be 60. The objective of the current

work was to investigate interfacial interactions of graphene with amorphous glassy

PE. The glass transition temperature (Tg) of PE is typically in the regime 190-300K,

and therefore in present research, the simulations were done at 100K, to conduct

separation studies below the Tg of PE. Graphene is a flat structure and consists of

sp2 hybridized carbon atoms forming a planar network, where each carbon atom is

connected to three other carbon atoms, forming an angle of 120○ between the bonds.

Materials Studio Modeling [112] and Cerius2 [113] were used to prepare atomistic

structures, and LAMMPS [108] was used perform molecular dynamics simulations.
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Graphics for atomistic representations were generated using Materials Studio Model-

ing and VMD [114]. The Consistent Valence Force Field (CVFF) [77] was chosen to

model interactions between atoms in the present work. This force field is a classical

force field and contains parameters for a variety of systems. It is widely used because

it has been optimized for organic and polymeric systems including proteins.

The preparation of the periodic structure was dictated by the periodicity of

graphene as well as the capability of the MD simulation solver. Fig. 28 shows the

different repeat units that can be employed to generate the periodicity inherent in

graphene. From the figure, it is evident that the smallest repeat unit needed to

generate the graphene geometry using only translation would have non-orthogonal

lattice vectors and after replicating the geometry, the graphene layer would be non-

orthogonal as well. At the time that this research was performed, the MD solver

LAMMPS was not equipped with the capability to perform simulations on non-

orthogonal cells and hence, the orthogonal repeat unit of graphene was chosen to

prepare the graphene layer in the nanoscale RVE for performing separation tests.

In order to prepare the atomistic structures for simulations in LAMMPS, a model

of the polymer independent of graphene was prepared at first, having 3D periodicity.

This procedure is described in C where the equilibrium structure of neat polymer was

obtained for a chosen set of temperature and pressure conditions. This equilibrated

structure was amorphous and in order to verify that the structure was representative

in a mechanical sense, the bulk properties (density and moduli) were determined as

presented in C. The computational domain (atomistic RVE) up to this point was a

3D periodic cube with edge-lengths given in Table V. At the next step, 3D periodicity

conditions were eliminated, and the periodic repeat unit of the polymer was obtained.

The computational domain was reconstructed by enclosing the polymer repeat unit

within a rectangular prism. Periodic conditions were implemented on this structure
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Fig. 27.: Nanoscale RVE with periodic structure in 2D.

Fig. 28.: Periodic repeat units of graphene geometry, (a) cell ABC is the unit cell

which can produce graphene geometry, which utilizes both symmetry as well as trans-

lation; cell DEFC is the smallest repeat unit which utilizes only translation, (b) cell

PQRS is the smallest repeat unit for producing graphene geometry by translation in

orthogonal directions.
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along the length and width of the prism (x and y directions), and no periodicity was

applied along the height (z direction), which resulted in a 2D periodic RVE. A sheet

of 2D periodic graphene was introduced in the x−y plane adjacent to the 2D periodic

polymer and the system was re-equilibrated as described in D. No chemical bonds

were broken in the polymer chains while transitioning from 3D to 2D periodicity

and, additionally, no chemical bonds were created between graphene and polymer

since the mode of interaction between the graphene and polymer was assumed to be

only given by the non-bonded (Van der Waals and electrostatic) type interactions.

The equilibrated model containing polymer and graphene in 2D periodicity shown

in Figure 27, contains approximately 1500 atoms, of which 240 of the atoms are the

carbon atoms of graphene. This model, consisting of periodicity in two directions,

was used to study opening mode separation behavior where the graphene layer was

displaced with respect to the polymer in the −z direction.

Table V.: Equilibrated cell parameters and density.

Approx. Number of Equilibrated Number of

total atoms polymer chains box size (Å side) graphene atoms

1500 8 23.34 240

3000 16 29.51 336

6000 32 37.19 540

9000 48 42.57 680

The modeling of separation in sliding mode was investigated using two different

cases. The first case describes the situation where graphene is embedded entirely in

the polymer, while experiencing separation in the sliding mode. As graphene displaces

with respect to the polymer in the sliding mode, it comes under the influence of
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Fig. 29.: Nanoscale RVE with periodic structure in 1D.

new polymer molecules along the displacement direction. Further displacement of

graphene causes previous polymer neighbor molecules to be replaced by new polymer

molecules. This relative separation has been modelled using the 2D periodic unit

cell of Figure 27 where the graphene layer was displaced in the −y direction. Since

y direction is the direction of periodicity of the graphene lattice, both graphene as

well as polymer atoms moving past the periodic faces of the unit cell reappear on the

opposite side.

Another mode of separation in sliding mode can be described where the graphene

sheet separates from the polymer entirely. To study this case, a new model was con-

structed, using the 2D periodic model of Figure 27. Eliminating the periodicity in the

y direction, as shown in Figure 29, a 1D periodic structure was obtained. In preparing

this 1D periodic model, some chemical bonds had to be broken in the polymeric struc-

ture, in order to contain the polymeric chains over the area of graphene. The portions

of the chains that extended beyond the non-periodic dimension of graphene were cut.
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In this process, whatever chemical bonds had to be broken for both the graphene

layer as well as the polymer chains, were completed by hydrogen atoms to satisfy

the valence conditions. The process of breaking chemical bonds resulted in creating

smaller chain fragments about 10-15 monomer lengths out of the 60 monomers origi-

nal length. On average about one fourth of the total number of chains were affected

in this way. These small fragments were eliminated from the system and resulting

structure was re-equilibrated to 100K temperature and 1 atmospheric pressure. In

both the sliding mode separation models (2D periodic and 1D periodic structures),

the graphene sheet was displaced in the −y direction relative to the polymer.

Transitioning from 3D to 2D periodicity was straightforward and the systems

were monodisperse, wherein all polymer chains had the same length. Performing the

same procedure for transitioning from 2D to 1D resulted in polymer chains being irreg-

ularly arranged over the graphene. This caused several problems with re-equilibration,

as the chains would go below the graphene and therefore a test system was difficult to

obtain. Thus, a different procedure was adopted wherein the 2D structure was used

as the starting configuration and polymer chains outside the periodic edge were cut

off, to obtain the required periodicity conditions.

It can be visualized, that after the onset of separation, chains near the interface

would largely dominate the separation response; and therefore, to maintain consis-

tency in the current study, separation was investigated keeping polymer chains equal

in lengths. In all the samples, the length of the polymer chains was fixed at 60

monomers. In the present study, opening and sliding separation studies were per-

formed over the four system sizes given in table V. The atomistic sizes of the four

systems were chosen based on the number of polymer chains in each system. The

polymer thickness in each of the samples was approximately equal to the box dimen-

sion corresponding to bulk 3D polymer sample as mentioned in Table V.
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In all the cases considered in this work, the graphene layer completely occupied

a face of the computational domain and the polymer atoms always stayed on one

side of the graphene plane and did not cross it. This provided a natural basis to

perform surface averaging to obtain interfacial parameters, as opposed to volumetric

homogenization where explicit motion of all atoms in the whole computational domain

would have to be incorporated.

3. Nanoscale unit cell modeled by ReaxFF

To model separation using the capability to break and create bonds at the graphene

PE interface as well as PE bulk, a unit cell consisting of network PE was used. The

description of preparing this unit cell is described in Appendix F. To introduce a

layer of graphene to the network polymer, in order to create a 2D periodic unit cell,

the periodicity of the polymer in the z direction (separation direction) was eliminated

and the resulting free bonds were completed by hydrogen atoms. To create bonds

for graphene at the interface, several dangling units of PE monomers were attached

to the non-periodic PE surface. The valencies of the end atoms of these units were

chosen such that they can form an sp3 bond with the graphene sheet. At the next

step, the 2D periodic graphene layer was introduced at a suitable proximity which

was approximately equal to a sp3 bond length. This is shown in Fig. 30.

4. Application of constraint conditions

Experimental observations of separation between nanotubes and polymer chains in

nanocomposites are limited at present, due to experimental difficulties in probing

nanoscale phenomena. The separation studies undertaken in the present research

using MD simulations assume, that interfacial separation is a combination of opening

and sliding separation processes, characteristic of a realistic system. Constraint cases
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Fig. 30.: Atomistic unit cell chosen to model opening mode separation in 2D with

network PE.

Fig. 31.: Three different constraint conditions employed to study separation. Shaded

portion represents fixed atoms. In all cases graphene atoms are incrementally dis-

placed.
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have to be imposed in order to separate the two phases from each other, otherwise,

moving the graphene will cause all polymer atoms to move together with the graphene

and there will be no separation.

Interfacial separation studies were conducted by subjecting the unit cell to the

following boundary conditions (Figure 31):

Case A: graphene is separated from the polymer, and a portion of the polymer at

the top is fixed in space.

Case B: graphene is separated from the polymer, and a portion of the polymer near

the graphene surface is fixed in space, and

Case C: graphene is separated from the polymer keeping all polymer atoms fixed.

Case A is representative of a system where the polymer is constrained between

two graphene layers, and the graphene sheets are subjected to symmetrical boundary

conditions (Fig. 32). In this system, polymer molecules located near the graphene

layer are influenced the most by the displacement of graphene. As the distance

from graphene increases, the movement of polymer molecules under the influence of

graphene reduces. Polymer molecules situated at the center of the polymer region

stay fixed with respect to graphene due to symmetrical boundary conditions applied

to the system. Case B is a hypothetical system where polymer atoms in close vicinity

of graphene are constrained against movement, forcing separation to occur at the

interface. Further, Case C is an extension of Case B, where all polymer atoms are

fixed and despite interactions occurring between graphene and polymer, the polymer

atoms are constrained to stay fixed and force separation to occur at the interface.

It can be seen that Cases B and C do not incorporate atomic motion of polymer

chains at the interface during separation, and are therefore less realistic compared

to Case A, which allows the atomic motion of the polymer chain to be incorporated



82

Fig. 32.: Description of Case A constraint condition where a graphene sheet, repre-

senting the wall of a SWCNT is separated from another similar SWCNT surface by a

large distance. The central portion of the polymer layer is unaffected by symmetrical

boundary conditions.
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in the separation process. Constraining the polymer atoms in these different ways,

separation is performed by displacing the graphene sheet relative to the polymer by

applying boundary conditions as given in the following.

a. Opening mode separation

Opening mode separation is characterized by relative movement of phases in directions

normal to the interfacial surface. To study the separation in opening mode, graphene

was displaced along the −z direction using the 2D periodic RVE of Figure 27. The

separation was performed in steps, where the graphene was displaced by 0.25Å in

each step. For Case C, the simulation was static, as none of the atoms were allowed

to move after initial equilibration. For Cases A and B, at every displacement step,

the system was allowed to dynamically equilibrate for 10 picoseconds. Displacement

of 0.25Å in time 10 picoseconds is equivalent to a separation rate of 2.5m/s, which

is very high compared to standard laboratory tests. However it was noticed that 10

picoseconds was sufficient to dynamically equilibrate the system (D) and thus the

separation could be approximated to be quasi-static for the timescales involved with

the atomistic potentials. For all the simulations, a Nose-Hoover thermostat [115] was

used to keep the temperature at 100K (except Case C where all atoms were fixed).

The influence of polymer on graphene was assessed by monitoring the z component

of the total force acting on the graphene obtained by summing the individual forces

on each atom. Case A was utilized in simulating various system sizes (table V), to

investigate size-dependence on the load-displacement response.

b. Sliding mode separation

Sliding mode separation is characteristic of relative movement of phases parallel to

the interface. To obtain information for separation in sliding mode, graphene was



84

displaced in the −y direction. The response of separation was evaluated by monitoring

the y component of total force acting on graphene obtained by summing the individual

forces on each atom. Cases A and C were simulated using the 2D unit cell of Figure 27

representative of an infinite plane of graphene sliding along an infinite film of polymer.

Case A was simulated using the 1D unit cell of Figure 29 to study complete separation

and to investigate the effect of system size on the load-displacement behavior. The

displacement rate of graphene during sliding mode separation simulations was kept

the same as in opening mode separation simulations to be 2.5m/s.

c. Sliding mode separation under normal tractions

Sliding mode separation was investigated further and the influence of normally ap-

plied tensile and compressive tractions was studied. Case A was utilized to examine

this problem, where the fixed set of atoms of the polymer were displaced in a direc-

tion normal to the graphene surface, namely the z direction. Compressive tractions

were applied by displacing the fixed atoms in the −z direction while tensile tractions

were represented by displacing the fixed atoms in the +z direction. In this way the

interface was studied for combined loading comprising of both normal as well as shear

components.

In all the simulations, the separation tests were performed to represent a quasi-

static process wherein graphene was displaced in normal or shear directions away

from the polymer in steps of 0.25Å and the system was dynamically equilibrated at

that step before the next displacement step was applied. For simulations pertaining

to Case A, all polymeric atoms within a layer of 10Å at the top portion were fixed.

In standard MD codes, a set of atoms are fixed in space by assigning zero forces to

them at the beginning of every time step. During the course of simulation, however,

finite forces are evaluated on the fixed atoms due to the underlying MD theory. At
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the end of the current time step and right before the next time step, the constraint

condition automatically assigns zero forces to these fixed atoms, and this information

of zero forces is carried over to the next time step and printed in the output script. In

the current work, the LAMMPS code was modified to print the finite forces evaluated

on the fixed atoms, right before the constraint conditions were applied, and in this

way, forces on fixed graphene atoms were obtained for all time steps.

B. Results for opening mode separation

Figure 33 demonstrates the behavior of the interface for separation in opening mode

for Case A for the 1500 atom system. The individual images in Figure 33a are

atomic configurations of the polymer-graphene system at different displacement steps

of graphene, as it was displaced in the −z direction, away from the polymer. Frame (1)

was the structure at the beginning of the simulation, representing equilibrium where

the graphene experienced zero average force due to the polymer layer. As the graphene

layer was displaced in the −z direction, while the top layer of the polymer was kept

fixed, the polymer film underwent stretch, as shown in frames (2) and (3) in Fig-

ure 33a. As the graphene sheet displaced further, the polymer chains separated from

each other leading to the formation of a distinctive void evident in frame (4). With

further displacement of graphene, the void grew in size as observable in frame (5).

Continued separation of graphene, (frame (6)) showed that one chain of the polymer

moved together with the graphene sheet, separating from the original polymer, while

another chain connected the rest of the polymer with the separated chain. As the

graphene sheet was separated further, the chains slipped past each other (frame (7))

leading to complete separation as shown in frame (8) where one polymer chain stayed

adhered to the graphene sheet, and having separated from the parent polymer layer,
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(a)

(b)

Fig. 33.: Opening mode separation for model containing approx. 1500 atoms with

constraint conditions of Case A: (a) structural changes in the polymer during sepa-

ration. (b) force-displacement behavior of interface during separation.



87

completely. It should be noted that the polymer chain that got separated from the

parent polymer, did not result from the breaking of chemical bonds. The separation

occurred due to the sliding motion of the chains as they were held together by Van

der Waals forces.

The total force on the graphene atoms was monitored, as graphene was displaced

from the equilibrium state. Figure 33b shows the force acting on the graphene atoms

normalized by the number of graphene atoms for the duration of the simulation. The

individual snapshots shown in Figure 33(a) are also labeled on the force-displacement

plot. It can be seen that as graphene was retracted from the polymer, the force per

atom increased linearly at first, and reached a maximum of about 6 pN/atom at only

2Å separation (point 2). With further separation of graphene, the force per atom

showed a drop at point (3), beyond which it reduced sharply at point (4) indicating

reduced interaction between graphene and the polymer, as fewer polymer atoms were

available to interact with the graphene. As the graphene sheet was separated further,

voids created in the polymer bulk led to lower force, (point (5) and (6)). Beyond

point (5), the force per atom continued to be small, mainly governed by the single

dangling chain of the polymer. Further displacement of the graphene layer caused

complete slippage of the dangling chain which eventually lead to complete separation

at point (8). At complete separation, the force per atom went to zero. It was also

observed that the length of interaction depended on the length of the polymer chains,

more specifically on the length of the chain that separated at the end.

For Cases B and C, the responses are plotted in Figure 34 and it can be seen

that they were almost identical. As the graphene was initially separated from the

polymer, the force per atom rose to a maximum of about 35 pN/atom. With further

separation, this force gradually decayed and went to zero. The similarity of response

of Cases B and C indicates that the thermal motion of the free atoms far away from
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Fig. 34.: Comparison of load-displacement response for Cases B and C for opening

mode separation.

the graphene layer do not contribute to the average force response and that, the

interaction largely depends on the atoms closest to the graphene layer.

Case C is similar to the system chosen by some researchers [53], [54] and [60],

where motion of atoms near the surface is not incorporated. The response obtained in

these researches is qualitatively similar to Case C, because it is the nature of the Van

der Waals potential that governs the force-displacement response, refer Fig. 35. Since

the system is fully constrained, the motion of polymer atoms does not enter into the

analysis. Comparing the response with Case A, it can be seen that allowing atoms

near the interaction zone to be unconstrained, random instabilities can be captured

representing a more realistic situation.

The maximum average force is referred to as the peak average force and the dis-

placement of graphene corresponding to complete separation is defined as the critical

separation. Figure 36 compares the force-displacement response for all three cases
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Fig. 35.: Qualitative variation of potential energy and force with respect to distance,

r, for two atoms connected through the Van der Waals potential. r0 pertains to the

minimum energy configuration for which the force is zero.

of separation in opening mode. It can be observed that the unconstrained influence

of the polymer with the graphene layer in Case A tends to appreciably reduce the

peak force per atom, but provide a higher critical separation as compared to Cases

B and C. Thus, constraint conditions play a significant role in deciding the force-

separation response and are critical in extracting cohesive zone information from the

simulations. Case A corresponds to a realistic separation process because it takes

into consideration the interactions of molecular chains with the graphene layer and

amongst themselves while the boundary conditions are applied far from the interface.

Cases B and C do not admit this feature and force the polymer phase to separate
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Fig. 36.: Comparison of load-displacement response for Cases A, B and C in opening

mode separation.

from the graphene layer, however they are investigated for comparison with Case A.

Case A was subsequently used to simulate the separation behavior for larger

system sizes as identified in Table V. To make the separation response applicable

for models at higher length scales, the forces were represented as tractions on the

graphene surface. This was performed by normalizing the total force on the graphene

sheet by the area occupied by the graphene sheet. The response for different system

sizes is shown in Figure 37. The responses are plotted against real displacement of

graphene in Å(lower x–axis), as well as normalized displacement of graphene (upper

x–axis), where the real displacement is divided by the length of polymer chain which

is a constant in the present research.

It can be observed for all cases that the nature of the response was nearly the

same - consisting of an initial linear response, which continued up to a peak traction,

dropped down sharply and gradually reduced to zero. The exact details of the re-
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Fig. 37.: Size dependent behavior of traction-displacement response in opening mode

using Case A.

sponse may differ from sample to sample for the same case. This variation is caused

due to randomness in thermal fluctuations and the polymer configurations at the

start of the simulations. It can be further observed that all the curves went to zero at

approximately the same displacement of graphene. This is attributed to the length

of the chains, which in the present study was taken to be equal in all simulations. It

was noticed that the peak traction for simulation sizes with 1500 and 3000 atoms was

approximately equal and larger compared to that obtained from the 6000 and 9000

for which almost similar response was observed. Note that the 1500, 3000 and 6000

curves vary in detail, however, the 6000 and 9000 cases show an appreciable overlap.

This indicates that, at the 6000 atom size, the system begins to show a converged

response for separation in opening mode.

While increasing the size of the system, two contradictory effects occur: increase
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in thickness of the polymer layer brings in more atoms to interact with graphene

which causes an increase in the total force per atom. However as the size of the

graphene layer increases, normalization tends to have a reducing effect on the traction.

The effect of these two opposing factors diminishes beyond 6000 atoms indicating

that the response begins to get independent of the size of the simulation cell. This

is an important consideration while obtaining continuum properties using atomistic

simulations.

It can be inferred from Figure 33a that, in a real system, consisting of polymer

lengths of several sizes, the critical separation distance would depend on the length

of the polymeric chains present just near the interface. During separation, the chains

near the interface uncoil and straighten, and therefore govern the critical separation.

In the present exercise, for consistent comparisons, all chains of the polymer were

taken to be of equal length. Normalization of the displacement of graphene by the

size of the straight chain length preserves the response such that it is valid for chains

of different sizes.

C. Results for sliding mode separation

For the sliding mode, the separation process is presented for both 2D as well as 1D

periodicity representative of situations where the graphene layer is embedded within

the matrix and gets fully separated from the matrix, respectively.

1. Sliding mode separation using 2D periodic RVE

Shear mode separation in 2D corresponds to the case where the graphene moves in a

shear mode while being fully embedded in the polymer. As a consequence of motion,

the graphene would lose its immediate neighbors, makes new neighbors and never
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Fig. 38.: Sliding mode separation using the 2D periodic unit cell and constraint

condition of Case A.

separates from polymer entirely. The 2D periodicity ensures that atoms which move

outside the unit cell, reappear at the symmetrically opposite face.

For separation in sliding mode, the graphene layer was displaced in −y direction

and the y component of the total force on the graphene layer was analyzed. Figure 38

shows simulation of sliding mode separation behavior for Case A for the model con-

taining about 1500 atoms. Here, polymer atoms in the top layer were fixed while

those near graphene were free to move. The graphene layer was displaced in uniform

steps along the sliding direction (−y direction). The pattern was similar to the case

of fully constrained case, containing both positive and negative contributions.

Simulation performed on the 2D periodic system in sliding mode separation for

Case C is shown in Figure 39 for a model containing about 1500 atoms. All atoms of

the polymer (and graphene) were fixed and not allowed any motion, while graphene

was displaced as a rigid body in successive steps in the sliding direction (−y direction).

Due to periodicity, whatever atoms left the boundary at one edge, they reappeared on
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Fig. 39.: Sliding mode separation using the 2D periodic unit cell and Case C constraint

condition. Also shown in the graphene structure for reference; the periodicity of the

response is same as the periodicity of the graphene structure.

the opposite edge. This gave rise to the positive and negative force values and it can

be also noted that the position of the peaks and zeros on the plot were separated by

distances inherent in the graphene geometry. (Notice that the force at zero displace-

ment is not exactly zero. This value depends directly on the minimization tolerance

chosen - a more tighter tolerance tends to limit it closer to zero. In the current work

the tolerance was chosen to be 0.0001 Kcal/mol.)

Figure 40 compares the magnitude of the tractions acting on the graphene layer

for opening and sliding mode cases for the case of 2D periodicity. The curve for

opening mode separation, averaged by the area of graphene has been taken from

Case C in Figure 34 and that for sliding mode case has been taken from Figure 39.

The peak traction is about 13 times higher in opening mode compared to sliding

mode for the same system.
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Fig. 40.: Comparison of traction magnitudes obtained using constraint condition of

Case C in opening and sliding separation modes.

2. Sliding mode separation using 1D periodic RVE

To obtain the traction-displacement response for the situation where graphene com-

pletely separates from the polymer in sliding mode, periodicity was broken in the

direction of sliding separation (y direction) as depicted in Figure 29. In this model,

the graphene sheet completely disengages from the influence of polymer. Figure 41

depicts a typical 1D separation case for Case A. The response consisted of an initial

steady growth of force per atom, followed by several fluctuations representative of

instabilities at the interface. The force-displacement response gradually diminished,

and eventually, at the end of the separation process, one polymer chain remains with

the graphene layer after separating from the bulk polymer. For both opening as

well as sliding separation in the current work, it can be noticed that separation oc-

curs within the polymer material (Figure 33 and Figure 41). This feature has also

been observed experimentally in Transmission Electron Microscopy (TEM) imaging

of CNT-polymer nanocomposites [29]. It should be noted that these effects are likely
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Fig. 41.: Sliding mode separation using the 1D periodic unit cell and constraint

conditions of Case A.
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Fig. 42.: Comparison of traction-separation response in opening and sliding separation

modes for Case A constraint condition.

to be captured when a complete dynamics incorporating motion of atoms near the

interface is performed together with the utilization of a full force field. Studying sep-

aration without incorporating the dynamics at the interface does not provide these

features. In Figure 42 comparison is made between the opening and sliding separation

responses both obtained for Case A. It can be noted that the peak normal traction

was only about three times in magnitude, compared with the shear traction. This

shows that the fully constrained system (Figure 40), where this ratio was about 13,

over-predicts the response. The size dependent study performed with various system

sizes of table V for sliding mode separation using Case A is shown in Figure 43, with

the responses plotted against both the real shear displacement of graphene (in Å) as

well as the real displacement normalized by the fixed length of polymer chain.

When the size of the atomistic RVE is small, the traction-separation response

is more sensitive to the random fluctuations in the polymeric structure adjacent to
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Fig. 43.: Size dependent behavior of traction-separation response in sliding mode

separation using Case A constraint condition.

graphene. However, as the size of the computational domain is increased, the effect of

these fluctuations is diminished, since the average traction on graphene is evaluated

from the forces on all graphene atoms. However, there is still a difference in the

results between RVEs containing 6000 and 9000 atoms indicating that in order for

full convergence to be achieved, a larger RVE is necessary.

The shape of the force-displacement response in complete separation cases of

both opening as well as sliding modes as studied above, resembles the cohesive law in

quasi-brittle materials [116]. The response comprises of an initial linear part, leading

to the peak force and then gradually decays, ultimately leading to separation. As

observed from the size dependence studies, beyond a certain number of atoms, the

system response approaches limiting behavior. This shows that the phenomenon of

interest, i.e. the separation process, ceases to depend on the size of the system for the
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chosen set of boundary conditions. The separation law eventually tends to behave as

a system property and gives justification to connect to higher scale modeling.

Table VI.: Cohesive zone model parameters for opening mode separation using con-

straint conditions of Case A.

No. of Work of separation Peak Traction

atoms (mJ/m2) (MPa)

1500 129.108 224.432

3000 276.065 252.319

6000 265.924 181.427

9000 246.525 170.616

The cohesive zone parameters, namely peak force and work of separation, are

shown in tables VI and VII for opening and sliding modes of separation, respectively.

Figure 44 and Figure 45 show the variation of the cohesive zone parameters with

system size. Also shown are opening mode separation parameters evaluated by [54]

using the methodology of [53] (where the model consisted of an infinitely long CNT

surrounded by polymer) and case C for 1500 atoms. It can be observed that despite

the large difference between peak tractions, the cohesive energies are closer together.

The fully constrained case has higher peak tractions and smaller cut off interaction

distances, which together result in the work of separation being comparable.

D. Results for sliding mode separation under normal tractions

The results of previous sections were special cases where the graphene sheet was free of

any normal loads through the polymer layer. However in a real system, the interface

undergoes combined loading, and separation occurs under the influence of tractions.
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Fig. 44.: Cohesive zone parameters for opening mode separation obtained using dif-

ferent system sizes and constraint condition of Case A (a) peak normal traction, (b)

energy of separation.

Table VII.: Cohesive zone model parameters for separation in sliding mode using

constraint conditions of Case A.

No. of Work of separation Peak Traction

atoms (mJ/m2) (MPa)

1500 165.871 74.938

3000 591.568 154.525

6000 473.821 116.466

9000 331.650 108.276
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Fig. 45.: Cohesive zone parameters for sliding mode separation obtained using dif-

ferent system sizes and constraint condition of Case A (a) peak shear traction, (b)

energy of separation.

Fig. 46.: Schematic of sliding mode separation under normal traction. Fixed layer of

polymer in Case A displaced in +z direction to apply compressive, and −z direction

to apply tensile loading on graphene. Graphene displaced in −y direction to represent

sliding mode separation.
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In this section, results are presented for the case where graphene is separated from the

polymer in sliding mode while being loaded with tractions in the normal direction.

Normal tractions were applied by imposing compressive and tensile displacements on

the polymer in the normal direction (Figure 46). Case A was utilized to study the

influence of combined loading, and the fixed set of atoms (represented by the shaded

region in Figure 46) were displaced by amount c along −z direction, and by t along

+z to apply the compressive and tensile loadings respectively. The magnitude of c

was chosen to be proportional to the thickness of the polymer layer (d) , which is

also representative of the size of the RVE. Both 2D as well as 1D periodic systems of

sections 1 and 2 respectively were undertaken for study.

1. Sliding mode separation under normal tractions for 2D periodic RVE

The RVE of 2D periodicity models the situation where graphene is always in the

influence of the polymer and never separates completely from it. This RVE is appro-

priate for modeling of interfacial constitutive behavior of nanocomposites. Using the

nanocomposite RVE of section 1, the top (fixed) layer of polymer was displaced by

amount c in the −z direction. At first the atomistic model for c equal to 0.04d was

prepared. The total displacement of 0.04d was performed by successively displacing

the fixed layer of atoms in the polymer model for Case A by 10 equal steps of 0.004d,

and for each step, the system was dynamically equilibrated for 100K and 1 atmo-

spheric pressure over 10ps time intervals. This process of applying total displacement

in small successive steps represents a quasistatic process and prevents to expose the

system to any sudden changes. After reaching the equilibrated compression of 0.04d,

the sliding test was simulated as before, by displacing graphene in −y direction. This

process of displacing the fixed layer of atoms of polymer and performing sliding mode

separation tests was performed for different compression levels, for c equal to 0.08d,
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Fig. 47.: Traction-displacement response for sliding mode separation with compressive

normal loading for the system containing 1500 atoms, constraint condition of Case A

and 2D periodicity.
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Fig. 48.: Variation of (a) peak traction and (b) energy, with compression of polymer

layer for system containing 1500 atoms with 2D periodicity using constraint conditions

of Case A.

0.12d, 0.16d and 0.20d. The individual responses are shown in Figure 47 along with

the response for no normal loading (responses for c equal to 0.08d and 0.16d are not

shown for clarity). Qualitatively, the response for all compression levels is similar

to that with no loading, comprising of repeated increase and drop in shear traction,

which changes direction, due to the periodic boundary conditions employed. The

absolute value of the peak traction for the different levels of compression is plotted

in Figure 48a. It is observed that the peak initially shows a rise with the compres-

sion level, reaching a maximum at compression level corresponding to c = 0.16d, and

begins to drop with further compression. The initial rise can be attributed to more

polymer atoms participating in interaction with the graphene layer, but with added

normal loading, the compressed polymer phase gets distributed more uniformly over

the graphene layer. Since the boundary is periodic, and interactions at the interface

are through Van der Waals forces, a graphene atom begins to experience uniform

interactions in the y direction from the polymer atoms which leads to canceling of

the y component of force and results in an overall drop in traction (Figure 47) and
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hence the peak traction as well (Figure 48a).

Table VIII.: Effect of compression on peak traction and energy for opening mode

separation for the 2D periodic RVE containing approx. 1500 atoms using constraint

conditions of Case A.

Compression, c 0 0.04d 0.08d 0.12d 0.16d 0.20d

Energy (mJ/m2) 2.069 2.045 3.012 5.044 2.255 2.244

Peak traction (MPa) 24.168 29.251 50.300 55.938 38.924 30.069

To obtain the measure of energy expended in displacing the graphene in sliding

mode for the model with 2D periodicity, the maximum area under the traction-

displacement plot was calculated. It was observed that the maximum area corre-

sponded to the part of response having the peak traction. Energy evaluated for

different levels of compression is plotted in Figure 48b and the trend of the energy

is same as that of the peak traction, rising up to the compression level of c = 0.16d

and falling thereafter to almost the same value as that for the case with no normal

loading. Table VIII presents the numerical values of energy and peak tractions for

this case.

The load-displacement response for tension was studied by investigating ten sys-

tems, which were individually set up by displacing the fixed top portion of the poly-

mer in the +z direction in increments of 0.04d reaching up to 0.40d. The traction-

displacement response for sliding separation under the influence of tensile tractions,

is shown in Figure 49, for normal tensile loadings up to 0.20d, and Figure 50, for

loadings from 0.24d to 0.40d. The peak traction and energy are plotted in Figure 51a

and Figure 51b respectively and presented in table IX. The energy values correspond

to the part of the response consisting of peak traction and are observed to follow
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Fig. 49.: Traction-displacement response for sliding mode separation with tensile

normal loading for the system containing 1500 atoms with constraint condition of

Case A and using the 2D periodic unit cell. Results shown for tensile loading up to

20% of the thickness of the polymer layer.

Fig. 50.: Traction-displacement response for sliding mode separation with tensile

normal loading for the system containing 1500 atoms with constraint condition of

Case A and using the 2D periodic unit cell. Results shown for tensile loading from

24% to 40% of the thickness of the polymer layer.
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Fig. 51.: Variation of (a) peak shear traction and (b) energy, with tension of polymer

layer for system containing 1500 atoms with 2D periodicity and constraint condition

of Case A.

a similar trend as peak traction. As the top fixed portion of the polymer was dis-

placed in a direction away from graphene, two processes occur simultaneously. The

polymer chains near the graphene sheet get distributed less uniformly which causes

tractions to increase, while separation between graphene and polymer atoms reduces

the forces of interaction causing the tractions to drop. Eventually, at large separation,

the tractions and energy values, show a decreasing trend, as the interaction between

the polymer atoms and graphene atoms reduces appreciably.

2. Sliding mode separation under normal tractions for 1D periodic RVE

The RVE of 1D periodicity pertains to the situation wherein graphene eventually sep-

arates from the the influence of the polymer, completely. The effect of normal loading

was investigated by starting with the model systems of section 2, and subjecting the

fixed sheet of graphene to compression and tension by displacing the fixed layer of

the polymer in −z and +z directions respectively by 0.04d, 0.08d, 0.12d, 0.16d and

0.20d. This procedure was performed for the 1D periodic model-RVEs consisting of
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Table IX.: Effect of tension on peak traction and energy for opening mode separation

for the 2D periodic RVE containing approx. 1500 atoms using constraint conditions

of Case A.

Tension, t 0 0.04d 0.08d 0.12d 0.16d 0.20d

Energy (mJ/m2) 2.044 3.805 1.523 1.961 4.014 1.719

Peak traction (MPa) 24.168 37.156 19.278 28.112 33.247 19.183

Tension, t 0.24d 0.28d 0.32d 0.36d 0.40d

Energy (mJ/m2) 0.649 2.418 1.245 0.932 0.840

Peak traction (MPa) 22.271 20.940 11.759 6.048 6.874

Fig. 52.: Traction-displacement response for sliding mode separation with compressive

normal loading for the system with 1500 atoms, constraint condition of Case A using

the 1D periodic RVE.
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Fig. 53.: Variation of (a) peak traction and (b) energy, with compression of polymer

layer for system containing 1500 atoms with 1D periodicity and Case A constraint

condition.

1500 and 3000 atoms. Figure 52 shows the response for sliding mode separation for

the 1D RVE containing 1500 atoms using constraint conditions of Case A, with com-

pressive displacements of 0.04d, 0.12d and 0.20d applied on the fixed set of polymer

atoms. Table X shows the numerical values of the peak shear traction and energy

of separation for compressive displacements of 0.04d, 0.08d, 0.12d, 0.16d and 0.20d

RVEs containing 1500 and 3000 atoms. Figure 53a shows the trend of peak traction

for compressive loading for RVEs consisting of 1500 and 3000 atoms, and it can be

observed that compression causes an overall increase in the peak traction. Energy of

separation for compression loading, plotted in Figure 53b for RVEs with 1500 and

3000 atoms, is represented by the area under the corresponding traction-displacement

response. It was observed that, as the polymer was sequentially compressed against

the graphene sheet, more polymer molecules were interacting with the graphene.

Since energy of interaction is largely governed by the polymer chains separating at

the end, this feature was random and therefore no overall trend was observed in the

energy variation of the case with 3000 atoms.

Figure 54 shows the traction-separation response for the 1500 atom model for
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sliding mode separation in 1D periodic unit cell with tensile loaded applied in the

+z direction. The peak shear tractions and energies of separation obtained for RVEs

containing 1500 and 3000 atoms are tabulated in table XI. Figure 55a shows the

variation of peak traction and Figure 55b that of energy of separation respectively,

for models containing 1500 and 3000 atoms. It can be observed that the application

of tensile loads causes both the peak traction as well as the energy to reduce with

load.

Table X.: Effect of compression on peak traction and energy for opening mode sepa-

ration for 1D periodic RVE containing approx. 1500 and 3000 atoms using constraint

conditions of Case A.

1500 atoms 3000 atoms

Peak traction Energy Peak traction Energy

Compression, c (MPa) (mJ/m2) (MPa) (mJ/m2)

0 74.938 165.871 154.525 592.342

0.04d 87.136 167.353 62.240 119.538

0.08d 89.429 162.705 118.260 201.944

0.12d 98.333 196.459 102.771 229.234

0.16d 111.618 140.045 213.756 568.582

0.20d 113.675 205.883 180.309 523.680

The peak traction evaluated from 1D periodic RVE is about 5 times higher as

compared to that from the 2D periodic RVE. This is because the graphene atoms in

the 2D periodic RVE always have interactions with polymer atoms lying on both +y

as well as −y directions and thus the overall force reduces due to contributions from

each side, whereas in the case of 1D periodic RVE, sliding displacement causes the
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Fig. 54.: Traction-displacement response for sliding mode separation with tensile

normal loading for the system with 1500 atoms, constraint conditions of Case A

using the 1D periodic unit cell.

Fig. 55.: Variation of (a) peak traction and (b) energy, with tension of polymer

layer for system containing 1500 atoms with 1D periodicity and Case A constraint

condition.
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Table XI.: Effect of tension on peak traction and energy for opening mode separa-

tion for 1D periodic RVE for RVEs containing approx. 1500 and 3000 atoms using

constraint conditions of Case A.

1500 atoms 3000 atoms

Peak traction Energy Peak traction Energy

Tension, t (MPa) (mJ/m2) (MPa) (mJ/m2)

0 74.938 165.871 154.525 592.342

0.04d 73.331 169.420 88.408 203.298

0.08d 69.173 121.003 79.916 215.751

0.12d 63.511 133.681 80.736 185.966

0.16d 57.716 136.824 104.403 229.283

0.20d 50.882 112.140 94.884 143.823

graphene to shift to one side of the polymer and thus all the forces of interaction are

lined up in one direction. In the case of energy, the values for 1D periodic RVE is 100

times higher compared to the 2D periodic RVE. For the 1D periodic RVE, only the

part of the response containing the peak traction is considered, because the response

is both positive as well as negative while the graphene is always interacting with the

polymer. This contribution is small compared to the case of 1D periodic cell where

the graphene separates from the polymer completely.

E. Discussion of results

MD simulations were performed to examine the interfacial behavior in the graphene-

polymer system to model the constitutive mechanical behavior of the interface. A

small atomistic window near the interface was analyzed for interfacial separations
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using molecular dynamics simulations. Assuming the separation process to be a

combination of opening and sliding modes, simulations were performed with different

constraints, periodicities and loading conditions. The load-displacement response of

the system was primarily studied and separation parameters were obtained. These

are appropriate to be utilized in higher level continuum or micromechanics model to

predict the overall behavior of a system containing large number of such sub-systems.

The molecular dynamics simulations described above form the first phase of

material analysis and simulation. Though termed as the RVE, the simulation window

actually represents local interactions near the interface. To describe a continuum

level, both localization as well as independence of unit-cell size have to be included.

Since the mechanism of separation at the nanoscale is not fully understood by either

theory or experiment, it was proposed that the actual process could be a combination

of the opening and sliding mode separations. The models of CNT-polymer interface

currently available in the literature only deal with the sliding mode separation within

the ideology of a pullout test. In the model of [47], the CNT is bonded to fixed polymer

short-chains by covalent chemical bonds. The peak traction was demonstrated to be

about 5GPa when 85 chemical linkages were attached to the CNT as short polymer

chains, and 0.5GPa when the number of such polymer attachments was reduced to

5. The calculations in the present work, which are based on absence of covalent

interactions, predict the peak traction to be about 108 MPa for a 9000 atom case.

In [47] the separation force is directly obtained from the bond-energy of the covalent

linkage. This methodology does not incorporate polymer morphology, which plays

a vital part in the separation process. As observed in the present work, different

boundary conditions influence the response differently (figures 36, 40 and 42) and the

response is mainly governed by the polymer morphology and atomistic motion during

separation (figures 33 and 41), thus demonstrating that complete polymer structure
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must be accounted for, while studying such atomistic systems.

The current research has led to not only new predictions of material behavior,

but also new comparisons with experimental data. In an experimental setup, [61]

evaluated the peak shear traction for nanotubes by performing pull out tests from a

polymer matrix. MWCNTs were dispersed in the polymer matrix and there were no

functional linkages joining the MWCNTs with the matrix so interaction between the

phases was essentially by Van der Waals forces. Individual MWCNTs were pulled

out from the matrix using the tip of the scanning probe microscope (SPM). It was

observed that application of pullout force on the outermost CNT caused the entire

MWCNT to get pulled out from the matrix, thus showing that inner tubes of the

MWCNT were adhered to the outer layers and had lesser interaction with the polymer

matrix. The pull out experiment was performed for MWCNTs of different diameters

using the SPM tip and the peak shear traction measured for large diameters MWCNTs

up to 24nm was found to be 96±15 MPa. In the present research, peak shear traction

evaluated for complete separation of graphene (which is ideally a tube of infinite

radius) from the polymer was 108 MPa (table VII). This comparison serves to be a

preliminary validation of the MD model used in the present study.

The energy of interaction evaluated by [60] in which static separation tests were

performed for systems comprising of graphite interacting with polymer, occurs in the

range 0.1–0.2 J/m2 and is similar to that evaluated in the present study (Fig. 44,

table VI) of about 0.209 J/m2. [53] and [54], who also evaluated the energy of sepa-

ration for the graphene polymer system without incorporating true motion of atoms

evaluated this figure as 0.107 J/m2. It was demonstrated in the present research, that

performing static separation studies by forcing separation at the interface (Case C)

causes the peak force to get appreciably high, yet the energy evaluated by the force-

displacement plot is about the same as compared with case when full atomic motion
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is incorporated (Case A). This occurs because the critical separation is reduced signif-

icantly (Fig. 36) when the motion of atoms near the interface is not incorporated. It

should be noted that for the fully constrained cases in which the interaction between

the phases is non-bonded, the response is actually that of the atomistic potential

used to model the interactions. Thus, Case C of the present work, the models of [53],

[54] and [60] all show the functional form of the potential used, because the models

considered in the respective studies do not incorporate explicit motion of the atoms.

When motion of atoms near the interface is incorporated, the model conforms more

to a realistic system and therefore suitable for evaluating interfacial parameters.

The work of separation or the cohesive energy evaluated in the present research

( 0.2 – 0.3 J/m2) is smaller than experimental observations of functionalized nanocom-

posites by about two orders of magnitude. The separation tests performed in the

current exercise have considered only non-bonded interactions (Van der Waals and

electrostatic) at the interface. Energetically the non-bonded interactions are very

weak compared to covalent bond interactions, and since the non-bonded interactions

are the dominant interactions at the interface in the current model, they largely

govern the response.

In connecting the nanoscale effects to higher level length scale models, this work

addresses the effect of size of the simulation window over the response. This step is

important because nanoscale simulations are very sensitive to the size of the simula-

tion box and the number of interacting atoms. This step also becomes critical since

the connection has to be made to continuum level properties. Moreover, as the size is

increased, it was noticed that the response approached limiting behavior. The simu-

lations for combined loading showed a trend in sliding separation behavior as normal

loads were applied in compressive and tensile modes. For the case when the filler

material was embedded inside the matrix, it was seen that compressive loads cause
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an increase in the peak traction up to a threshold beyond which the peak traction

decreased. This behavior was primarily influenced by the periodicity of the model

and non-bonded interactions between the matrix and filler. Combined loading for the

case when the filler separated entirely from the matrix (representative of a pull out

test), however, showed that normal compression caused an increase in peak traction

and normal tension resulted in decreasing the peak traction.

F. Summary and conclusions

In this research, molecular dynamics was used to study the graphene-polyethylene

interfacial mechanical behavior. Periodic unit cells of 2D and 1D periodicity were

utilized to model the graphene-polymer interface. Using the Consistent Valence Force

Field, separation tests were performed for this interface in opening and sliding modes.

The influence of different boundary conditions on separation was examined. Sepa-

ration in sliding mode was studied together with normal loading and size depen-

dence studies were conducted to obtain limiting behavior in the force-displacement

responses. This information was used to obtain separation parameters namely peak

force and work of separation.

MD simulations performed on the graphene-polymer interface system indicated

that separation occurred within the polymer phase. During the separation process, a

few polymer chains, particulary those near the graphene surface, stayed adhered to

graphene and slipped away from the remaining polymer. This caused voids to form

in the polymer region which grew in size leading to complete separation. Though

the interface modeled in the study was characterized by non-bonded Van der Waals

potential and did not contain any covalent linkages, yet, separation was found to

occur within the polymer region and not at the interface. This showed that mechanical
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interactions between graphene and polymer chains are stronger than those among the

polymer chains. It was also observed that the choice of constraint conditions had a

significant impact on the force-displacement response for the interface. Incorporation

of motion of the polymer atoms near the interface captured the instabilities occurring

during the separation process. It was also inferred that the critical separation distance

in the force-displacement response would depend over the lengths of the polymer

chains separating at the end of the separation process.

Predictions of the current research have led to new comparisons with experi-

mental work. The interfacial peak shear traction evaluated for the graphene-polymer

interface in this research was found comparable with that of the multi-walled carbon

nanotube-polymer interface, measured experimentally from a pull out test. Addition-

ally, interfacial behavior leading to separation occurring within the polymer region,

as observed in the simulations in the present research, was found to be consistent

with experimental findings.
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CHAPTER VI

OVERALL CONCLUSIONS

The linear force-displacement response of single walled carbon nanotubes (SWCNTs)

was studied by developing the atomistic Hessian matrix method. This method was

utilized for solving structural boundary value problems leading to the evaluation of

linear moduli of the SWCNTs. The atomistic Hessian matrix, traditionally used to

perform transition state and vibrational analysis on nanoscale systems, was shown to

be useful in evaluating the linear stiffness of these systems as well.

The present research enabled the comparison of the atomistic Hessian matrix

evaluated using experimental data (from the zone folding method), quantum me-

chanical calculations and the Tersoff Brenner Potential. It was observed that the

sub-matrices of the atomistic Hessian matrix corresponding to the first nearest neigh-

bor interaction for both zone folding method as well as for quantum mechanically

evaluated atomistic Hessian matrix were in good agreement. The components of

the atomistic Hessian evaluated from the Tersoff Brenner potential differed signifi-

cantly from the other two except the component corresponding to the Carbon-Carbon

bond stretching mode, which was comparable. It was additionally observed that the

atomistic Hessian matrix obtained using the quantum mechanical calculations was

qualitatively more accurate in explaining the Poisson’s effect in SWCNTs compared

to the experimentally derived Hessian in the zone folding method.

The computation of the Hessian matrix using quantum level calculations, though

an expensive calculation, yet, once evaluated, the atomistic Hessian matrix method

can be used to compute the linear force displacement behavior of atomistic systems

for a variety of boundary conditions and hence compute the structural stiffness in

different modes. More importantly, the atomistic Hessian matrix method has the
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additional advantage over the energy method wherein individual components of the

Hessian matrix evaluated from quantum calculations can be compared with force

constants obtained from experimental observations. Vibration analysis using quan-

tum mechanical calculations on SWCNTs showed that application of very small axial

strains leads to shifts in natural frequencies consistent with experimental observa-

tions. The frequency shifts demonstrate that SWCNTs deviate from exhibiting linear

behavior even for very small strain levels and therefore the energy method should be

used with caution.

To analyze interfacial behavior of carbon nanotubes (CNTs) in their applications

as filler materials in nanocomposites, molecular dynamics was used to study the CNT-

polyethylene and graphene-polyethylene interfacial mechanical behavior. Using the

Consistent Valence Force Field to model system with no bond breaking, and the

ReaxFF Force Field to incorporate bond breaking, detailed separation tests were

performed on these interfaces. Interfaces of CNT and graphene with both straight

chain as well as cross linked polyethylene (PE) were modeled in the separation tests.

Mechanical behavior in different modes of separation, including opening and sliding

mode was observed for a variety of constraint conditions, including combined loading.

The information generated was used to obtain separation parameters namely peak

force and work of separation under different loading environments and this knowledge

has applicability to continuum level models.

Simulations of CNT pull out from network polymer using ReaxFF Force Field

showed that bond breaking events occur both at the interface as well as in the polymer

away from the interface. It was observed that the peak traction for opening mode

separation was two orders of magnitude greater for bonded interface compared to

the un-bonded interface, modeled using the CVFF Force Field. Pull out tests with

transverse load for a bonded interface modeled using ReaxFF Force Field showed that
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the interface can cause the rupture of CNT bonds during pull out.

The MD simulations on graphene-polymer interface system with straight chain

polyethylene showed that separation phenomenon occurred within the polyethylene

phase. Even though the interface was characterized by non-bonded Van der Waals

potential, yet, separation occurred within the polymer region and not at the interface,

indicating that mechanical interactions between graphene and polymer chains are

stronger than those among the polymer chains. It was also observed that the choice

of constraint conditions played a significant role on the force-displacement response

for the interface. Incorporation of motion of the polymer atoms near the interface

captured the instabilities occurring during the separation process and was a major

finding of the present research. It was also inferred that the critical separation distance

in the force-displacement response would depend over the lengths of the polymer

chains separating at the end of the separation process.

To refine the interfacial model, future work will be focused on additional studies

to determine the effect of separation rates on the mechanical behavior. Addition-

ally, size dependence studies have to be performed on the atomistic RVEs containing

cross linked polymer to obtain the optimum size of the interfacial model necessary

for continuum modeling. Predictions of the current research have led to new com-

parisons with experimental work. The interfacial peak shear traction evaluated for

the graphene-polymer interface in this research was found comparable with that of

the multi-walled carbon nanotube-polymer interface, measured experimentally from

a pull out test. Additionally, the behavior of the polymer region during separation

for both straight chain as well as cross linked polymer, as observed in the simulations

in the present research, was consistent with a few experimental observations.
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APPENDIX A

EVALUATION OF HESSIAN MATRIX FROM MODAL SYNTHESIS

This appendix describes the procedure of modal synthesis, wherein the Hessian matrix

for a linear mass-spring system is evaluated utilizing the corresponding mass matrix,

the vibrational frequencies and the mode shapes obtained from the free vibration

behavior.

Consider an N mass (atoms) system, free to vibrate in three-dimensional space.

Let the displacement vector corresponding to the modal shape {ψα} be

u
α = eiωαt{ψα}, α = 1,2,⋯,3N, (A.1)

where ωα is the natural frequency corresponding to {ψα}. Substituting eq. A.1 into

eq. 3.2 with zero force (F = {0}), yeilds

(−(ωα)2[M] + [K]) {ψα} = {0}. (A.2)

Pre-multiplying by {ψβ}T, eq. A.2 is written as

{ψβ}T (−(ωα)2[M] + [K]) {ψα} = 0. (A.3)

Similarly,

{ψα}T (−(ωβ)2[M] + [K]) {ψβ} = 0. (A.4)

Transposing eq. A.4 and subtracting from eq. A.3, taking into account that [M] and

[K] are symmetric, leads to

((ωα)2 − (ωβ)2) {ψβ}T [M] {ψα} = 0. (A.5)
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It is clear from eq. A.5 that

{ψβ}T [M] {ψα} = 0, for α ≠ β, (A.6)

{ψβ}T [M] {ψα} ≡ m̃α, for α = β. (A.7)

Using eq. A.3 and eq. A.6 yields

{ψβ}T [K] {ψα} = 0, for α ≠ β, (A.8)

{ψβ}T [K] {ψα} = m̃αωα2, for α = β, (A.9)

which can be written in a condensed form as

[Ψ]T [K] [Ψ] ≡ [K] , (A.10)

where [Ψ] is the modal matrix containing all the mode shapes as columns,

[Ψ] = [{ψ1},{ψ2},{ψ3},⋯,{ψ3N}], (A.11)

and

Kij = 0, for i ≠ j, (A.12)

Kij = m̃i(ωi)2, for i = j. (A.13)

Since [Ψ] is orthonormal, it follows from eq. A.10 that

[K] ≡ [Ψ] [K] [Ψ]T . (A.14)
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APPENDIX B

EQUIVALENCE OF ENERGY AND HESSIAN METHODS

Consider a SWCNT oriented along the z axis with the origin of coordinate system

located at the center of one of its ends. Imposing axial stretch on the SWCNT in the

z direction gives the following displacement field

up
z = ǫz

p, (B.1)

up
x = − νǫx

p,and (B.2)

up
y = − νǫy

p, (B.3)

where ǫ is the nominal strain, up
x, u

p
y, and u

p
z are respectively the x, y and z compo-

nents of the pth atom and p = 1 . . . N , N is the number of atoms in the SWCNT.

Differentiating eq. B.1 with respect to up
z gives

∂ǫ

∂u
p
z

=
1

zp
. (B.4)

Re-arranging eq. 3.8,

∂2Φ

∂ǫ2
= V0Y. (B.5)

Integrating this expression with respect to ǫ gives

∂Φ

∂ǫ
= V0Y ǫ + c1, (B.6)

where c1 is a constant. At equilibrium, described by ǫ = 0, the potential energy is a

minimum and therefore the first derivative is zero, which results in c1 = 0. Integrating

once more with respect to ǫ gives

Φ =
1

2
V0Y ǫ

2 + c2, (B.7)
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which represents the assumed quadratic nature of the potential energy near equilib-

rium. Integrating eq. 3.1 with respect to up
i , gives

∂Φ

∂u
p
i

= K
pq
ij u

q
j + c3. (B.8)

In this expression, ∂Φ
∂u

p
i

= f
p
i which represents the ith component of force on the pth

atom (i = x, y, z and p=1. . . N), and c3 = 0 as dictated by equilibrium, which assumes

zero forces for zero displacements for an elastic body. This gives,

∂Φ

∂u
p
i

= K
pq
ij u

q
j (B.9)

The z component of force on an atom p that lies at the edge of the SWCNT, given

as f
p
z can be written using eq. B.7, as

f
p
z =

∂Φ

∂u
p
z

=
∂

∂u
p
z

(1
2
V0Y ǫ

2 + c2) (B.10)

= V0Y ǫ
∂ǫ

∂u
p
z

. (B.11)

Using eq. B.4, this can be rewritten as

f
p
z = V0Y ǫ

1

zp
. (B.12)

f
p
z can also be expressed using the atomistic Hessian matrix using eq. B.9, as

f
p
z =

∂Φ

∂u
p
z

= K
pq
zju

q
j . (B.13)

Using the expression for f
p
z from eqs. B.12 and B.13 we have

f
p
z =

∂Φ

∂u
p
z

= K
pq
zju

q
j = V0Y ǫ

1

zp
. (B.14)

Dividing by the area of cross-section A to get the axial traction Tz

Tz =
f
p
z

A
=

K
pq
zju

q
j

A
=

1

A
V0Y ǫ

1

zp
. (B.15)
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The un-deformed volume V0 = Azp, therefore eq. B.16 can be written as

Tz =
K

pq
zju

q
j

A
= Y ǫ, (B.16)

which gives the linear elastic stiffness in extension

Tz

ǫ
=

K
pq
zju

q
j

Aǫ
= Y. (B.17)

Hence, theoretically, the energy method and the atomistic Hessian matrix based

method are equivalent in evaluating the linear elastic stiffness in extension.
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APPENDIX C

PREPARATION OF AMORPHOUS POLYMER STRUCTURE

To equilibrate the polymer at chosen temperature and pressure conditions, the

methodology of [88] was adopted. In this method, a periodic model of the polymer

at very low density is utilized as the starting structure. Temperature annealing cy-

cles, interspersed with volume shrinkage steps cause the polymer model to undergo

structural transitions. This is followed by dynamic equilibration of the model at the

required temperature and pressure conditions for sufficient time, finally providing the

necessary equilibrated sample. The polymer chosen was polyethylene (PE), having

the structure CH3–(CH2)n–CH3, where n was taken to be 60.

The polymer chains were prepared using the polymer builder in MS Modeling

[112] which was given the amorphous structure using the Amorphous Cell module

in MS Modeling, starting with 8 straight chains of CH3–(CH2)60–CH3. The total

number of atoms in the amorphous 3D periodic structure was 1456. These chains

were enclosed in a periodic box with a prescribed starting density of 0.60g/cm3.

Charge Equilibration module in Cerius2 [113] was used to equilibrate the charges in

the model. The velocity-Verlet integration algorithm was employed for performing

all of the dynamics runs and energy minimization was carried out using the Hessian-

free truncated Newton method in LAMMPS. Fig. 56 shows the periodic structure

of PE as modeled in molecular dynamics. The locations of individual atoms are

represented by unique Cartesian coordinates in a simulation box and the periodicity

of the structure is managed by the lattice constants of the box. For the atoms

that fall outside of the unit cell (simulation box), a periodic image is replicated by

utilizing the periodicity on the opposite side of the box, such that they fall inside
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(a) (b)

(c)

Fig. 56.: Periodic unit cell of amorphous polyethylene (PE), 56a: 3D periodic repeat-

ing unit, 56b: unit cell replicated in two directions and 56c: orthographic projection

of the unit cell replicated by two cells in all three directions.



144

the simulation box. Similarly, during the course of MD simulation, any atoms that

drift outside the unit cell, get represented inside the simulation box by utilizing the

periodicity. Periodicity ensures that the total number of atoms are always conserved

during the course of the simulation, as none of the atoms fall outside the unit cell. The

main objective of utilizing periodicity is that, studies can be performed to represent

properties of a bulk material. However, careful consideration must be given on the

choice of the size of the system. For example, a periodic dimension smaller than the

MD cutoff parameter will produce infinite images of all the constituent atoms. The

size of the periodic box should be sufficiently large such that the effect of periodic

edges is reduced to a minimum; such studies have been described in Sect. 1.

Fig. 57.: Volume and density equilibration. (a-b), (c-d), (e-f) and (g-h) are volume

shrinkage steps; (b-c), (d-e), (f-g) and (h-i) are NVT equilibration steps; (i-j) is the

NPT step giving the final volume.

PE was chosen to be equilibrated at a temperature of 100K, (which is well below

its glass transition temperature (Tg) of about room temperature), and pressure of 1

atmosphere, which is about room-pressure. Annealing was performed by alternatively

raising the temperature to 600K, well above the Tg and bringing it back to 100K. The
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process of annealing followed by equilibration is shown in Fig. 57a and Fig. 57b. Point

a represents the starting structure at a density of 0.60 g/cm3 which was subjected to

volume shrinkage under the NVT ensemble, keeping the temperature at 100K. The

volume was reduced by shrinking all sides of the rectangular periodic box by equal

amounts at a uniform rate (point b) and the structure was minimized for energy.

Point b – point c represents constant volume annealing, wherein the sample was

subjected to two cycles of 600K and back to 100K. This was followed by volume

reduction and subsequent energy minimization of the structure (point c – point d).

This process of volume reduction and temperature annealing was carried out to a point

little beyond the equilibrium density, where large fluctuations in temperature and

pressure were noticed (point i). To obtain the desired structure, the NPT ensemble

was employed at point i, prescribing the temperature to be 100K and pressure to be

1 atmosphere. This was carried out for a long time and is represented by point j at

which it was assumed that the polymer was in equilibrium with the chosen conditions

of temperature and pressure. At the end of the equilibration, the lattice parameter

for each side of the periodic box had an average dimension of 23.34Å and the density

stabilized at about 0.88g/cm2. It should be noted that the density arising from

this equilibration process may not exactly match experimental data (0.88 – 1.6g/cm2

for PE), because the simulations ideally deal with a material free from mechanical

defects. The simulations are also affected by the size of the computational domain and

accuracy of the parametrization in the potential (force-field). Charge equilibration

may also introduce errors. Nevertheless, we perform the bulk tests and separation

tests on this sample as a first approximation.
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Tensile test: uniaxial loading with stepwise deformation

Tensile tests were carried out by loading the polymer along one of the axes. This was

done by extending the length of the box size in steps of 0.25% longitudinal strain.

Along other directions, the pressure was kept fixed at a very low level of 1 atm

(Fig. 58). The system was re-minimized, keeping the box size temporarily fixed, and

then subjected to a long dynamics run at constant temperature to equilibrate the

stresses. In all the simulations, the stresses were calculated by the virial definition

[117].

This process of straining the box was re-performed over a few strain levels, with

the incremental value of 0.25%. Fig. 58 shows the last 20ps of the dynamics run vs.

the tensile stress in the system for a few strain levels. The average of the 20ps stress

response is used to graph the inset in Fig. 58. The slope, obtained by curve fitting this

response provides the estimate of the Young’s Modulus EY of the polymer. The value

hence calculated is about 2GPa. Experimentally, PE exhibits a Young’s Modulus in

the range 0.8GPa-1.6GPa.

Volumetric deformation tests

This exercise was carried out to evaluate the bulk modulus of the polymer. The

sample was compressed and expanded hydrostatically to measure the volumetric re-

sponse. The procedure is shown in Fig. 59 where the computational domain was

subjected to equal tensile and compressive pressures on all the faces. The tensile and

compressive loading conditions were incrementally applied one at a time, starting

with room pressure conditions. In the given description, pressure was assumed to

be negative for compressive loading and positive for tensile. In the simulations, the

system was allowed to equilibrate for 10ps at a fixed pressure. The temperature was
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Fig. 58.: Uniaxial tensile test with stepwise deformation.

kept at 100K as before. It was observed that the density decreased with application

of tensile pressure and increased for the case of compressive. To evaluate the bulk

modulus, the following relationship was used:

K = −ρ(∂p
∂ρ
) (C.1)

where ρ is the equilibrium value of density at room pressure and given temperature

(100K). The linear part of the response, approximated as the line AB in Fig. 59 was

used to provide the slope at small deformation. Using the equilibrium value of density

ρ as 0.88g/cm2, the bulk modulus was evaluated to be about 7.5GPa.

Experimentally, PE exhibits a bulk modulus of about 3Gpa. The procedure we

used here was similar to [88] in which a similar discrepancy between the theoret-

ical and experimental values of bulk properties is mentioned. The main reason is

attributed to the fact that in MD we are using a defect free system whereas a real

sample may consist of several inhomogeneities that cannot be fully captured by the
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Fig. 59.: Volumetric extension and compression tests and evaluation of bulk modulus

near the linear regime.

MD tests.

Assuming that the polymer sample be isotropic, using the values of Young’s

modulus and bulk modulus, the Poisson’s ratio can be evaluated using

ν =
3K −E

6K
(C.2)

as 0.46.

The calculation of equilibrium density and investigation of mechanical tests gives

us a confidence over the simulations, since they predict properties which are the

same order of magnitude as experimental results. This is important, as the later

investigation of interface properties will have significant credibility. This is attributed

to the full force field that was as well as stepwise deformation method that was chosen

for all the simulations.



149

APPENDIX D

EQUILIBRATION OF INTERFACIAL SYSTEM

Fig. 60.: Temperature and energy profiles for interfacial system, during dynamical

equilibration.

After introducing the graphene layer adjacent to the polymer, the graphene-polymer

system was statically equilibrated (energy minimization at 0K), and thereafter sub-

jected to dynamic equilibration at 100K. Fig. 60 shows the temperature and energy

profiles for the graphene-polymer system monitored up to 50,000 MD steps which

actually represent 50 picoseconds in real-time (a single MD step is 1 femtosecond in

duration). It can be inferred that the system reached a steady state at the end of 50

picoseconds and could be used to perform separation tests. Moreover, the trends indi-

cate that the system had already equilibrated within the first 10 picoseconds (10,000

MD steps). Therefore, subsequent MD simulations of separation were carried out for

10 picoseconds only.
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APPENDIX E

CVFF PARAMETERS

Table XII.: CVFF parameters used in the graphene-polymer system

Masses
Atom Atomic Mass (amu)

C 12.011150
H 1.007970

Bond Parameters
Bond type r0 KB

(Å) (Kcal/mole)
C-H (PE)1 1.105 340.6175
C-C (PE) 1.526 322.7158

C-C (graphene) 1.3400 480.0000
Angle Parameters

Angle type θ0 KA

(degrees) (Kcal/mole)
C-C-C (PE) 110.5 46.6
H-C-C (PE) 110.0 44.4
H-C-H (PE) 106.4 39.5

C-C-C (graphene) 120.0 90.0
Torsion Parameters

Angle type φ0 n KT

(degrees) (Kcal/mole)
–C–C– (PE) 0 3 0.158

–C–C– (graphene) 180 2 3.000
Van der Waals Parameters

Atom type A B
C(PE) 1,981,049.2250 1,125.99800
H(PE) 7,108.4660 32.87076

C(graphene) 2,968,753.3590 1,325.70810
Cut-off distance in all simulations = 10Å

LAMMPS uses the Van der Waals energy expression EpairV DW
= 4ǫ [(σ

r
)12 − (σ

r
)6].

Expressing σ and ǫ in terms of CVFF parameters (refer 2.4): σ = (AiAj

BiBj
)1/12 and

ǫ = 1
4

BiBj√
AiAj

.

1Polyethylene
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APPENDIX F

PREPARATION OF NETWORK POLYMER STRUCTURE

In this section, details are presented pertaining to the the preparation of network

polyethylene (PE). The network polymer described here is a 3D structure of cross

linked PE. A schematic is shown in Fig. 61 which is a 2D projection of the 3D

structure, shown for clarity.

Fig. 61.: Schematic of network polymer.

The whole structure consists of a periodically repeating unit, shown in the boxed

frame which is a 3D periodic unit. To create this periodic unit, we begin with two

horizontal straight chains of PE. These chains were cross linked by adding two vertical

PE chains. This structure was repeated in the plane of the figure to generate an

additional set of cross linked chains similar to the first one. The two sets were
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joined by PE chains to create a 3D network. In order to make the whole structure

periodic, additional chains were added to the structure at the junction atoms such

that periodicity was ascertained. The resulting 3D periodic structure was replicated

in all the 3 directions to obtain the final structure is shown in Fig. 62.

Fig. 62.: Network polyethylene in 3D periodic geometry.

This structure consisted of about 2400 atoms and had one cross link at every 6

monomer units.
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APPENDIX G

REAXFF FORCE FIELD PARAMETERS

Table XIII.: ReaxFF force field file used by LAMMPS. Set I.

Serial No. Description Parameter
1 Overcoordination parameter 50.0000
2 Overcoordination parameter 9.5469
3 Valency angle conjugation parameter 127.8302
4 Triple bond stabilisation parameter 3.0000
5 Triple bond stabilisation parameter 6.5000
6 C2-correction 0.0000
7 Undercoordination parameter 1.0496
8 Triple bond stabilisation parameter 9.0000
9 Undercoordination parameter 11.5054
10 Undercoordination parameter 13.4059
11 Triple bond stabilization energy 0
12 Lower Taper-radius 0
13 Upper Taper-radius 10
14 Not used 2.8793
15 Valency undercoordination 33.8667
16 Valency angle/lone pair parameter 7.0994
17 Valency angle 1.0563
18 Valency angle parameter 2.0384
19 Not used 6.1431
20 Double bond/angle parameter 6.929
21 Double bond/angle parameter: overcoord 0.3989
22 Double bond/angle parameter: overcoord 3.9954
23 Not used -2.4837
24 Torsion/BO parameter 5.7796
25 Torsion overcoordination 10
26 Torsion overcoordination 1.9487
27 Conjugation 0 (not used) -1.2327
28 Conjugation 2.1645
29 vdWaals shielding 1.5591
30 Cutoff for bond order (*100) 0.1
31 Valency angle conjugation parameter 2.0038
32 Overcoordination parameter 0.6121
33 Overcoordination parameter 1.2172
34 Valency/lone pair parameter 1.8512
35 Not used 0.5
36 Not used 20
37 Molecular energy (not used) 5
38 Molecular energy (not used) 0
39 Valency angle conjugation parameter 3.6942

Table XIV.: ReaxFF force field file used by LAMMPS. Set II.

cov.r valency a.m Rvdw Evdw gammaEEM cov.r2 # alfa
gammavdW valency Eunder Eover chiEEM etaEEM n.u.cov r3 Elp
Heat inc. n.u. n.u. n.u. n.u.ov/un val1 n.u. val3,vval4

C 1.3763 4 12 1.8857 0.1818 0.8712 1.2596 4
9.5928 2.0784 4 22.6732 79.5548 5.7254 6.9235 0
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1.2065 0 -0.8579 4.9417 28.3475 11.9957 0.8563 0
-2.8846 4.159 1.0564 4 2.9663 0 0 0

H 0.6646 1 1.008 1.603 0.06 0.7625 -0.1 1
9.3951 4.4187 1 0 121.125 3.8196 9.8832 1
-0.1 0 -0.1339 3.5803 2.8733 1 1.0698 0
-13.0615 3.0626 1.0338 1 2.8793 0 0 0

Table XV.: ReaxFF force field file used by LAMMPS. Set III.

Edis1 LPpen n.u. pbe1 pbo5 13corr pbo6 pbe2
pbo3 pbo4 n.u. pbo1 pbo2 ovcorr

C C 145.4070 103.0681 73.7841 0.2176 -0.7816 1.0000 28.4167 0.3217
0.1111 -0.1940 8.6733 1.0000 -0.0994 5.9724 1.0000 0.0000

C H 167.1752 0.0000 0.0000 -0.4421 0.0000 1.0000 6.0000 0.5969
17.4194 1.0000 0.0000 1.0000 -0.0099 8.5445 0.0000 0.0000

H H 188.1606 0.0000 0.0000 -0.3140 0.0000 1.0000 6.0000 0.6816
8.6247 1.0000 0.0000 1.0000 -0.0183 5.7082 0.0000 0.0000

Table XVI.: ReaxFF force field file used by LAMMPS. Set IV.

Ediss Ro gamma rsigma rpi rpi2
C H 0.0455 1.7218 10.4236 1.0379 -1.0000 -1.0000

Table XVII.: ReaxFF force field file used by LAMMPS. Set V.

Thetao o ka kb pv1 pv2
C C C 70.0265 13.6338 2.1884 0.0000 0.1676 26.3587 1.0400
C C H 69.7786 10.3544 8.4326 0.0000 0.1153 0.0000 1.0400
H C H 74.6020 11.8629 2.9294 0.0000 0.1367 0.0000 1.0400
C H H 0.0000 0.0000 6.0000 0.0000 0.0000 0.0000 1.0400
C H C 0.0000 3.4110 7.7350 0.0000 0.0000 0.0000 1.0400
H H H 0.0000 27.9213 5.8635 0.0000 0.0000 0.0000 1.0400

Table XVIII.: ReaxFF force field file used by LAMMPS. Set VI.

V1 V2 V3 V2(BO) vconj n.u n
C C C C 0.0000 23.2168 0.1811 -4.6220 -1.9387 0.0000 0.0000
C C C H 0.0000 45.7984 0.3590 -5.7106 -2.9459 0.0000 0.0000
H C C H 0.0000 44.6445 0.3486 -5.1725 -0.8717 0.0000 0.0000
φ C H φ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
φ H H φ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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