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ABSTRACT 

 

Structure Property Relationships for Dirhodium Antitumor Active 

Compounds: Reactions with Biomolecules and In Cellulo Studies.  

(December 2009) 

Jessica Dafhne Aguirre Flores, B.S., Pontificia Universidad Católica del Perú 

Chair of Advisory Committee: Dr. Kim R. Dunbar 

 

The molecular characteristics that affect the activity of various 

dirhodium complexes are reported. The importance of the axial position in 

the action of dirhodium compounds was studied. Three dirhodium complexes 

with increasing number of accessible axial coordination sites were 

synthesized and characterized. In cis-[Rh2(μ-OAc)2(np)2]2+ (np = 1,8-

naphthyridine) both axial sites are available for coordination, whereas for 

cis-[Rh2(μ-OAc)2(np)(pynp)]+2 (pynp = 2-(2-pyridyl)1,8-naphthyridine) and 

cis-[Rh2(μ-OAc)2(pynp)2]+2 the pyridyl arm on the ligand pynp blocks one and 

two axial sites, respectively. The availability of the axial positions affects the 

in vitro and in cellulo activity of these complexes demonstrating that open 

axial coordination sites are necessary for biological activity. 

The inhibitory activity of derivatives of dirhodium-dppz complexes 

(dppz = dipyrido[3,2-a:2´,3´-c]phenazine) has also been investigated. The 

dppz derivatives included compounds with electron-withdrawing (Cl, CN, 

and NO2) as well as electro-donating (MeO and Me) substituents. These 

compounds inhibit transcription of T7-RNA polymerase by reducing 

accessible cysteine residues. The activity correlates with the electron-
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withdrawing character of the substituent on the dppz ligand. Density 

functional theory (DFT) calculations reveal that the lowest unoccupied 

molecular orbitals (LUMOs) in the series are ligand-based * orbitals 

localized on the phenazine ring. These complexes represent the first family 

of dirhodium complexes whose inhibitory ability can be tuned by controlling 

their redox properties. 

The effect of the presence of diimine ligands in the dirhodium core in 

both in vitro and in cellulo activity is discussed. The presence of one diimine 

ligand allows for dual binding, intercalation and covalent, as observed by 

melting temperature and relative viscosity measurements, as well as 

electrophoretic mobility shift assay (EMSA). The mono-substituted 

dirhodium complexes are effective against HeLa and COLO-316 cell lines, 

with [Rh2(μ-O2CCH3)2(η1-O2CCH3)(dppz)]+ being the most effective compound 

of the series. Results of the comet assay indicate that all of the mono-

substituted complexes studied damage nuclear DNA, although in different 

degrees. The cytotoxic effect of these complexes is not affected by the 

presence of glutathione. The addition of the second diimine ligand hinders 

the ability of the complexes to damage DNA. The bis-substituted complexes 

are also slightly less cytotoxic than their mono-substituted congeners. Thus, 

the number of equatorial positions occupied by diimine ligands play a critical 

role in the mechanism of cytotoxicity of dirhodium(II,II) complexes.  

Finally, the results also demonstrate that improving the 

internalization of the dirhodium complexes can be achieved by co-incubation 

with cell penetrating peptides. This work provides a foundation for the 

preparation of new and more effective dirhodium complexes. 
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CHAPTER I 
 

INTRODUCTION 
 
 

Medicinal Inorganic Chemistry 

A New Field or an Old Concept? 

The field of modern medicinal inorganic chemistry was officially 

launched at the end of the 1970’s with the introduction of cisplatin for the 

treatment of various forms of reproductive cancers, most notably that of 

testicular tumors.1  Medicinal inorganic chemistry, however, has been 

around for a long time.2, 3 In fact there is documented evidence that 

inorganic compounds have been used for medicinal purposes for over 5000 

years. In Egypt, for example, copper was used to sterilize water, and zinc 

compounds were used to heal wounds.2 Meanwhile, gold was very popular in 

Arabia and China for a variety of medical applications.4 During the 

Renaissance period, Europeans used mercury in the form of mercurous 

chloride as a diuretic and recognized the nutritional value of iron.2, 4-6   

During the early 1900’s, the development of biologically active 

inorganic compounds began to be explored in a rational manner. Notable 

among these efforts is the use of K[Au(CN)2] for tuberculosis and various 

gold salts as antibacterial agents,4, 6 as well as the implementation of 

antimony-based compounds to treat leishmaniasis,4, 7, 8  a parasitic disease 

spread by the bite of the sandfly.9, 10 Paul Ehrlich, known as the father of 

chemotherapy, was the first scientist to establish structure-activity 

relationship (SAR) studies, a method that is widely used in modern 

pharmacology.7, 11  Early on, Ehrlich realized that certain dyes were able to  

 
This dissertation follows the style and format of the Journal of the American 
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stain specific microbes. He then proposed that they could be chemically 

modified to be pharmacologically active for killing harmful microbes without 

endangering the host. He discovered that trypan red had activity against 

sleeping sickness caused by the protozoa trypanosome brucei gambiense in 

chickens (Figure I-1). Ehrlich hypothesized that the azo group (-N=N-) was 

key to the activity of the dye and he decided to study other compounds 

containing this moiety. The position of arsenic in the periodic table, just 

under nitrogen, was the main reason that Ehrlich began studying arsenic 

derivatives. Several hundreds of arsenic based compounds were synthesized 

and their biological activity and cytotoxicity were tested. Atoxyl, arsacetin 

and arsenophenylglycine (Figure I-2), all arsenic compounds, were the first 

hugely successful compounds used to treat sleeping sickness protozoa. These 

compounds were also found to be active against Spirochaeta pallidum, the 

organism that causes syphilis. In particular, Ehrlich observed that the 

compound arsephanamine was able to cure the blood infection spirillosis and 

relapsing fever in chickens as well as to heal rabbits infected with syphilis. 

The compound was given the name Salvarsan, which derives from the Latin 

word salvus, meaning alive and well.7, 9, 11-14 

Despite the long history of salvarsan, its structure has been a source 

of much controversy. Ehrlich believed that the molecule was a dimer joined 

by a double As=As bond.5  In the early 1980’s, the structure was proposed to 

be a linear polymer.5 Finally, in 2005, there was sufficient evidence to 

conclude that there is no simple structure to describe Salvarsan. In reality, 

the active compound is a mixture of cyclic structures, predominantly three 

and five membered rings, with significant presence of four, six or even larger 

As rings (Figure I-3).15 
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Figure I-1. Schematic representation of the structure of trypan red. 

 

 

 

 

Figure I-2. Schematic representations of arsenic base drugs used to treat 
sleeping sickness. 
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Figure I-3. Schematic representations of Salvarsan’s proposed structures. 
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As the understanding of inorganic compounds in biological 

environments is expanding, the clinical use of inorganic compounds with 

medicinal applications is also being introduced, although very slowly, by 

pharmaceutical companies. Still, sometimes the fact that an inorganic 

compound is used as a main ingredient or active ingredient is concealed. The 

reluctance of using inorganic based drugs is mainly due to the lack of 

information about the fate and behavior of inorganic compounds in vivo.2, 3 

There is a general belief that all inorganic compounds are highly toxic.2 The 

dictionary defines toxicity as containing or being a poisonous material 

especially when capable of causing death or serious debilitation.16 In a 

scientific context, however, toxicity is a relative term. Any compound, 

regardless of its origin, organic or inorganic, synthetic or natural, has an 

inherent toxicity that depends on its concentration.2, 17 The physiological 

effect of a compound varies non-monotonically with its concentration, as first 

noted and formalized by the French nutritionist Gabriel Bertrand in 1912.18 

A general Bertrand diagram is shown in Figure I-4, where the parameters of 

the function are specific to particular compounds or elements.17  

One of the advantages of inorganic compounds is that their optimum 

physiological response profile can be varied depending on the type of metal 

ion, oxidation state and the ligands surrounding the metal ion or ions. 

Ligand modification plays an important role since they can help in the 

refinement of the biological properties of the metal complex, its delivery and 

absorption. Currently there are numerous inorganic compounds that are 

used as medicinal agents for the management and diagnosis of numerous 

diseases and dysfunctions,2, 3, 19-21 and as main ingredients in every day 

cosmetics and toiletries.2, 5 Excellent examples of the former type are lithium 

carbonate for the treatment of depression;22-24 and barium sulfate (BaSO4) as 

a radiocontrast agent for gastrointestinal X-ray imaging.3, 25 In the field of  
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Figure I-4. Bertrand diagram illustrating the relationship between benefit 
and detriment from an element and its concentration.2 
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radiopharmaceutical diagnostics, α-emitting radiopharmaceuticals based on 

99mTc are widely employed.5, 26 Additionally, drugs containing gold, such as 

K[Au(CN)2], are used to treat tuberculosis.27 There are also many diseases in 

which the only line of defense is an inorganic-based drug, such as in the case 

of various tropical maladies that are only treated with arsenic and tin 

complexes.8, 28 In this vein, arsenic trioxide (Trisenox®) was recently 

approved by the FDA as the only treatment for acute promyelocytic leukemia 

(APL).14, 28, 29  

Finally, compounds of aluminum and bismuth are also employed in 

antacids, whereas fluorine, zinc, strontium and tin are typical ingredients in 

toothpaste.3 A great variety of antiperspirants contain aluminum and 

zirconium as ingredients in their formulations.5 Magnesium, selenium and 

zinc are also common ingredients in antiseborrheic products.5 Zinc is also 

employ in healing ointments (Zincofax®), and tin is used in formulations for 

the treatment of boils and acne (Stanoxyl®).3, 5, 19  
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Cisplatin 

A Serendipitous Beginning 

Cis-diamminodichloro platinum (II), cisplatin, the most successful 

inorganic drug in history, was first synthesized and characterized by 

Peyrone in 1845. Later on, in 1983, Alfred Werner deduced its structure and 

separated it from its trans isomer. During the mid-1960s, the biological 

activity of cisplatin was accidentally discovered by Bernard Rosenberg and 

Loretta van Camp.30 Initially, Rosenberg wanted to study how cell mitosis 

was affected by electromagnetic radiation of a resonant frequency. In order 

to test their initial set up, Escherichia coli bacterial cells were used instead 

of mammalian cells, which are more difficult to handle. The experimental 

design included a pair of platinum electrodes; which were chosen due to the 

fact that platinum is normally a chemically “inert” metal, and in this way 

Rosenberg wished to avoid any side chemical reaction on the electrodes. The 

results revealed that the bacterial cells formed rod-like filaments (Figure I-

5), a characteristic of bacteria that are not able to divide (DNA inhibition but 

not protein synthesis). Numerous control experiments supported the 

conclusion that the source of the halted cell division of the bacteria was 

caused by Pt(NH4)2Cl2, a compound generated by an electrochemical reaction 

between the cell culture media and the platinum electrode.30  

After the identity of the active compound was determined, several 

other platinum derivatives were tested along with other transition metal 

compounds including platinum group metals and non-platinum group metals 

such as cobalt (Co), iridium (Ir), nickel (Ni), osmium (Os), palladium (Pd), 

rhodium (Rh), and ruthenium (Ru). The complexes tested were divided in 

three groups, depending on their effects on bacterial growth (Table I-1).  The 

first group included compounds that were able to cause elongation of the  
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Figure I-5. Scanning electron photography of E. coli. Top picture: normal E. 
coli (Gram-negative rods). Bottom picture:  E. coli grown in a medium 
containing a low concentration of cisplatin.30 
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bacterial cells. The second, compounds with no effect and the final class were 

toxic to the cells. Interestingly, these studies revealed that rhodium 

compounds were nearly as effective as the platinum compounds being 

analyzed.1  

 

Table I-1. Effects of transition metal compounds on bacterial growth. 

Caused elongation Caused no change Caused bacterial death 

K2[PtCl6] [Co(NH3)6]Cl2 CoCl2 

(NH4)2[PtCl6] K2Ir(NO2)6 (NH4)2IrCl6 

H2[PtCl6] [Ni(NH3)6]Cl2 NiCl2 

(NH4)2PtBr6 Cis-[Rh(en)2Cl2]NO3 (NH4)2OsCl6 

(NH4)2PtI6 Trans-[Rh(en)2Cl2]NO3 (NH4)2PdCl4 

[Pt(en)3]Cl4  [Rh(NH3)5Cl]Cl2 

RhCl3  PdCl2 

(NH4)3RhCl6   

[Ru(NH3)4ClOH]Cl   

 
  

After these unprecedented results, the in vitro activity against two 

murine cancer lines, namely Sarcoma 180 and Leukemia L1210, of four 

platinum complexes, cis-PtIV(NH3)2Cl4, cis-PtII(NH3)2Cl2, 

PtII(NH2CH2CH2NH2)Cl2, and PtIV(NH2CH2CH2NH2)Cl4, was investigated in 

mice. The cis-PtII(NH3)2Cl2 complex proved to be the most successful at 

reducing the size of the tumor and curing the mouse completely.1 These 

results prompted clinical studies that wound up with FDA (Food and Drug 

Administration) approval of the first platinum anti-tumor agent, cisplatin 

(Platinol®, Bristol-Myers Squibb) in 1979. Since that time, cisplatin has been 

shown to have a 90% success rate to treat testicular cancer and it is used in 
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the treatment of ovarian, cervical, bladder, head and neck, esophageal and 

small cell lung cancer.19, 31, 32 

Despite the success of cisplatin in the treatment of cancer, its use is 

still problematic due to its toxicity and side effects such as nephrotoxicity, 

ototoxicity, neurotoxicity and emesis (vomiting).31-33 Another problem 

associated with the use of cisplatin is that certain tumors that are initially 

sensitive to the treatment become resistant.32, 33 Carboplatin,34 Oxaliplatin35, 

36 and Nedaplatin37-39 belong to the second generation of cisplatin derivatives 

that are currently in use (Table I-2, Figure I-6).21, 32, 34-40 Carboplatin 

(Paraplatin®, Bristol-Myers Squibb) was approved in 1989 by the FDA,21, 34, 

40 while Oxaliplatin (Eloxatin®, Sanofi-Synthelabo) was first approved by the 

European Agency for the evaluation of Medicinal Products (EMEA) in 1986; 

however, it was not until 2002 that the FDA granted its approval in the 

United States.21, 35, 36, 40 Nedaplatin (Aqupla®, Shionogi & Co) is another 

derivative that has been used in Japan since 1995 to treat ovarian and 

cervical cancer, but it is still undergoing clinical trials in the United 

States.21, 37-40 Other derivatives in clinical trials are Lobaplatin and 

Heptaplatin (Figure I-6), both of which are commercially available in China 

and South Korea respectively. Both compounds are more soluble than 

cisplatin and have shown better activity against human lung, gastric, 

testicular, and ovarian cancer xenografts.40  

 
 
Table I-2. Spectrum of activity and side effects of commercially available 
platinum-based drugs. 

Compound Spectrum of Activity Side Effects 

Cisplatin lung, ovarian, and germ cell tumors Damage to the nerves and to 
the kidneys 

Carboplatin ovarian and lung cancers 
Cumulative dose-related 
toxicity resulting in slow bone 
marrow recovery 

Oxaliplatin colorectal cancer Peripheral nerve damage 
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Figure I-6. Schematic representation of platinum based drugs commercially 
available. 
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Figure I-7. Schematic representation of platinum compounds currently 
undergoing clinical trials. 
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Figure I-8. Platinum compounds that differ from the classical cisplatin 
model. 
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After many years of research, it is evident that, in order to overcome 

the side effects and to circumvent the intrinsic and acquired resistance 

associated with the use of these platinum-based drugs, new compounds, that 

are structurally different (non-classical platinum derivatives) from the lead 

compound cisplatin, should be studied. Several platinum derivatives both 

mononuclear and polynuclear, compounds with oxidation states of IV and 

even with trans- geometries have been investigated and found to be active; 

several of these compounds are undergoing clinical trials at the present time 

(Figures I-7 and I-8).21, 33, 40-42 These compounds have been shown to hold 

certain advantages over the classical platinum derivatives currently used, 

such as increased activity (Picoplatin-JM473), improved water solubility 

(Iroplatin, Satraplatin-JM216), and activity against cisplatin-resistant 

tumors (Ormaplatin, trans-platinum derivatives) (Figure I-7).21, 40  

Compounds from the main group metals such as gallium,43-47 

germanium,46, 48 tin49, 50 and bismuth46, 51 are also being investigated. 

Vanadium, titanium, niobium, molybdenum, rhenium, ruthenium, rhodium, 

iridium, copper and gold are among the transition metals whose complexes 

have been studied and found to be active (Figure I-9).3, 6, 20, 40, 41, 46, 52-58 The 

most exciting results are observed with ruthenium derivatives such as 

NAMI-A (imidazolium [trans-tetrachloro(dimethylsulfoxide)-

imidazoleruthenate(III)]) and KP1019 (indazolium [transtetrachlorobis) 1H-

indazole)ruthenate(III)] that are currently undergoing clinical trials.59 

Despite their structural similarities (Figure I-9) and the fact that both can 

target DNA, these two compounds seem to have a different biological 

activity. NAMI-A has a low impact on primary tumors, but it inhibits their 

growth and reduces their ability to metastasize.6, 21, 58, 60, 61 The compound 

KP1019, with a lower cytotoxicity than cisplatin, is active against primary 

tumors, especially colorectal cancer.21, 40, 41  
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Figure I-9. Schematic representation of inorganic complexes that exhibit 
anticancer activity. 
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Mechanism of Action of Cisplatin 

What Is Known to Date 

 Almost 40 years have passed since the introduction of cisplatin 

to the chemotherapeutic drug market. Despite its great success in the 

treatment of a variety of cancers that include testicular, ovarian, bladder, 

cervical, head and neck, oesophageal and small cell lung cancer, the 

mechanism of action is still under investigation.31-33, 42 Studies have showed 

that, depending on the type of cancer cells and maturity of the tumor, 

cisplatin can cause necrosis or apoptosis.62 Of general consensus is the fact 

that cisplatin and other platinum based drugs form cross-links with DNA, 

and in this way interfere with the mechanisms of DNA replication and 

transcription, which in turn, leads to cell death.31, 33, 41  

The detailed nature of the mechanism is not completely known in part 

due to the lack of methodologies and also because the biochemical behavior 

of inorganic compounds is extremely complicated. The active form of the 

compound may differ greatly from the original compound. The rich chemistry 

of the cellular media can change the oxidation state and ligand substitutions 

can occur. In addition, many cancer cells can become resistant to the drug.42  

Upon administration of an intravenous saline solution, cisplatin is 

initially distributed to all tissues and accumulates especially in the kidneys, 

liver, muscle and skin. Approximately 90 % of the total cisplatin is 

deactivated in the blood stream due to reactions with the sulfur rich plasma 

proteins.31, 63, 64 Cisplatin is able to transverse the cell membrane, either as a 

neutral specie or as a cation, through multiple pathways including passive 

diffusion42 and active transporters such as copper homeostasis proteins 

(CTR1)65, 66 and organic cation transporters (OCT) (Figure I-10).33, 42, 63-66 

During passive diffusion some cisplatin is deactivated due to coordination 
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with constituents of the lipid bilayer, in particular with nitrogen, sulfur and 

phosphorous atoms present in glycoproteins, phospholipids and 

phosphatidylserine, decreasing its uptake and causing changes in the 

membrane protein that eventually lead to cell damage and increased side 

effects.33, 63 

Once inside the cell, the lower concentration of chloride ions in the 

cytosol promotes hydrolysis of cisplatin (activated cisplatin) allowing the 

formation of highly reactive aquo species. Activated cisplatin can effectively 

react with nuclear DNA, but it can also react with important cellular 

components such as peptides, proteins, cytoskeletal microfilaments and 

RNA.  Reactions with proteins occur through the nitrogen atoms of histidine 

residues and sulfur atoms of cysteine and methionine residues. RNA 

coordinates to cisplatin mainly through its phosphorous atoms. Two 

important components of the cellular milieu that bind preferentially to 

cisplatin are metallothionein (MT) and glutathione (GSH). These molecules 

are responsible for the efflux of cisplatin, and are found in increased levels in 

several cancer cell lines resistant to cisplatin.33, 63 It is important to note that 

the binding of cisplatin to the sulfur atoms of MT and GSH is under kinetic 

and not under a thermodynamic control. Because of this, the migration of 

platinum from sulfur donor ligands to DNA bases is possible, the result of 

which is that MT and GSH act as platinum reservoirs.33  

After reaching the nucleus, cisplatin binds to DNA and forms several 

types of adducts. The main products are 1,2-GpG intrastrand (~65%), 1,2-

ApG intrastrand (~25%), and 1,3-GpXpG (~5%). There is also a small, but 

important, percentage of monofunctional adducts and ternary complexes 

between DNA, platinum and protein that have been indicated to cause 

damage to the cell (Figure I-11).33, 63, 64   
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Figure I-10. Scheme that depicts the proposed mechanism of cisplatin action.  

Metallothionein

GSH

Passive diffusion

CTR1
OCT

Proteins

Proteins

RNA

DNA

Cell nucleus

GSH

H2O H2O



20 
 

 

 

 
 
 
Figure I-11. Adducts formed after binding of cisplatin to DNA. 
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Medicinal Applications of Dirhodium Compounds 
 

Dirhodium tetraacetate was first synthesized in 1963, but it was not 

until 1970 that the structure was definitively characterized by X-ray 

crystallography.67 The complex Rh2(-O2CCH3)4 and its derivatives exhibit a 

paddlewheel structure in which four bridging ligands span the equatorial 

positions of the two rhodium atoms and the axial positions are often occupy 

by solvent molecules (Figure I-12).67, 68 A distinctive characteristic of these 

compounds is the sensitivity of their electronic spectral properties in the 

visible region (i.e., colors) due to the nucleophilic nature of the axial ligand. 

This sensitivity is due to the influence on the energy of the LUMO (*) 

orbital. Oxygen donors produce blue or green adducts, nitrogen donors 

generate red or violet, whereas sulfur and phosphorous donors deliver 

burgundy and orange adducts, respectively. The length of the Rh – Rh single 

bond, 2.35 – 2.45 Å, is not particularly sensitive to the nature of the -donor 

axial ligands.67  

Despite the fact that these compounds, with their lantern-type 

structures and high molecular weights, defy the most traditional 

considerations of medicinal chemistry, they have shown that they not only 

exhibit activity against various cancer lines, but in many cases they have 

proven to be less toxic than cisplatin. 

The first dirhodium complexes to be studied are the carboxylate 

derivatives of general formula Rh2(-O2CR)4 (R= CH3, C2H5, C3H7).69, 70 

These dirhodium carboxylate compounds showed activity against Ehrlich 

ascites tumor,69, 71, 72 Leukemia L1210,73 and sarcoma 180 cell lines.69, 71 It 

was observed that the activity in the series increases as the hydrophobicity 

of the R group increases. The results also showed that further lengthening of 

the carboxylate group beyond the pentanoate group was detrimental to the 
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efficacy of the complexes, a finding that highlights the importance of the 

delicate balance between hydrophobicity and activity.72  

Further studies revealed that the substitution of the acetate bridging 

groups with ligands possessing more electron withdrawing groups renders 

compounds with better activity. The trifluoroacetate derivative increases the 

survival rate of mice bearing Ehrlich ascites tumor74 while the 

trifluoroacetamide derivative not only increases the survival rate of the mice 

population on 90 % but also has LD50 values of the same order as that of 

cisplatin in vitro.75, 76 Conversely, substitution of the four carboxylate ligands 

with the formamidinate ligands DTolF (DTolF= (p-CH3C6H4N)2CH-) did not 

result in any biological activity. It is worth mentioning, that later studies on 

the heteroleptic compound Rh2(µ-O2CCF3)2(DTolF)2 showed that this 

compound has an antitumor activity comparable to that of cispaltin against 

Yoshida ascites and T8 sarcomas with considerably reduced toxicity.77  

During the early 1980’s, the cationic Rh2(µ-O2CCH3)2(diimine)2 

complexes, (where diimine = 2,2′-bipyridine (bpy) and 1,10-phenantroline 

(phen)) were developed and quickly tested for anticancer activity.78 These 

molecules were shown to be more effective than the neutral parent 

compound, being active against human oral carcinoma KB cell lines.79 

Additionally, these compounds were also observed to have antibacterial 

activity.78-80 
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Figure I-12. Schematic representation of dirhodium tetracarboxylate (Top). 
Bridging ligands of compounds studied as anticancer agents (Bottom). 
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Interaction of Dirhodium Complexes and Nucleobases, Dinucleosides 

and Dinucleotides  

 

Model systems of nucleic acid binding to metal complexes have proven 

to be invaluable tools as they provide excellent illustrations of the diverse 

nucleobase chemistry of these compounds. In the case of dirhodium 

compounds, adenine and guanine binding has been found to occur either 

through the axial position or in a bridging fashion through the equatorial 

sites.69, 71, 81-86 

Rh2(μ-O2CCH3)4 binds to 1-methyladenosine, a model of adenosine,  

through the axial position.83 This is possible due to the existence of 

hydrogen-bonding interactions between the exocyclic amine group and an 

oxygen atom from the carboxylato bridge as observed in a crystallographic 

study of the bis(1-methyladenosine) adduct of Rh2(μ-O2CCH3)4 (Figure I-

13).83, 84 In the case of guanosine/guanine, the use of model compounds failed 

to produce axial adducts with Rh2(μ-O2CCH3)4. It was hypothesized that this 

was a result of repulsive interactions between the O6 of the purine and the 

carboxylate oxygen atoms.84, 87 On the other hand, when Rh2(μ-

HNOCCF3)2(μ-O2CCH3)2 was reacted with 9-ethylguanine, Aoki was able to 

observe an axial adduct (Figure I-14). This was possible since in this case, 

the guanine O6 can form a hydrogen bond with the trifluoroacetamido 

bridge.88 

Reactions of Rh2(μ-O2CCH3)4 with 9-ethylguanine produce a dimetal 

complex with the two rhodium atoms bridged via N7/O6 of the nucleobase 

derivative (Figure I-15).87 A similar product has been observed when Rh2(μ-

O2CCF3)4 reacts with two equivalents of 9-ethylguanine.87 
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Figure I-13. Schematic representation of the adduct formed between Rh2(μ-
O2CCH3)4 and 1-methyladenosine.  

 

 

 

 

 

 

Figure I-14. Schematic representation of the repulsive interaction (shown in 
red) between Rh2(μ-O2CCH3)4 and the O6 of 9-ethylguanine. 
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Figure I-15. Molecular structure of (a) H-T cis-[ Rh2(μ-O2CCH3)2(9-EtGua)2 

(CH3OH)2]  and (b) H-H cis-[ Rh2(μ-O2CCH3)2(9-EtGua)2((CH3)2CO)(H2O)]2+. 
 

(a) 

(b) 



27 
 

 

Adenine can also bind equatorially to the dirhodium unit. Reactions of 

[Rh2(DTolF)2(CH3CN)6](BF4)2 with two equivalents of 9-EtAdeH afford cis-

[Rh2(DTolF)2(9-EtAdeH)2(CH3CN)](BF4)2 with the 9-EtAdeH molecules 

bridging at eq sites via N7/N6 (Figure I-16).89, 90 1H-NMR studies indicate 

that in cis-[Rh2(DTolF)2(9-EtAdeH)2(CH3CN)](BF4)2, 9-EtAdeH is stabilized in 

its less common imino form.89 If this adduct is also form in vivo, it will alter 

the hydrogen bonding scheme of the nucleobase resulting in its mispairing 

and the appearance of cell mutations that could be deleterious to cells (Figure 

I-17).91 

The reactions of Rh2(μ-O2CCH3)4 and [Rh2(DTolF)2(CH3CN)6](BF4)2 

with the dinucleotides d(GpG) and d(pGpG) have been studied in the Dunbar 

group and they have revealed that the bridging binding mode of guanine is 

also possible when the two guanine bases are joined by a phosphodiester 

bond.92-94 These adducts are very similar to those formed by cisplatin. Even 

more important is the fact that the aforementioned results provide evidence 

that these adducts might also exist in vivo.92, 93  
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Figure I-16. Molecular structure of H-T cis-[Rh2(DTolF)2(9-
EtAdeH)2(CH3CN)]2+. 
 

 

 

 

 

Figure I-17. Amino and imino structures in adenine. 
 

 

 



29 
 

 

Dirhodium Complexes and Their Interactions with Double-stranded 

DNA  

Reactions of Rh2(μ-O2CCH3)4, [Rh2(μ-O2CCH3)2(CH3CN)6]2+, and Rh2(μ-

O2CCF3)4 with single-stranded oligonucleotide tetramers, octamers, and 

dodecamers have also been studied.95 Due to the complexity of these 

reactions, matrix-assisted laser desorption ionization (MALDI) and 

nanoelectrospray ionization (nanoESI) coupled to time-of-flight mass 

spectrometry (TOF MS) were used to elucidate the products formed. The 

sequences were designed to contain AA, GG, GA, and AG dipurine sites to 

gain information on the site preference of these dirhodium complexes. The 

study established that both GG, as well as AA sites are the targeted residues 

in these oligomers. It also revealed that the the dirhodium bis-acetate 

oligonucleotide adducts are the main products of the reactions.95 From these 

studies, a relative order of reactivity of the dirhodium complexes studied as 

well as cisplatin and cis-[Pt(NH3)2(OH2)2]2+ (activated cisplatin) was 

established: cis-[Pt(NH3)2(OH2)2]2+ ~  Rh2(μ-O2CCF3)4 > cis-[Pt(NH3)2Cl2] 

(cisplatin) >> [Rh2(μ-O2CCH3)2(CH3CN)6]2+ > Rh2(μ-O2CCH3)4.96 This order of 

reactivity correlates with the known relative lability of the leaving group(s) 

for each complex.  

Collaborative work in the Dunbar and Dunham laboratories has 

established that dirhodium tetraacetate, and its derivatives are capable of 

forming DNA interstrand crosslinks (Figure I-18). The study investigated the 

interactions of dsDNA with the dirhodium carboxylate compounds Rh2(μ-

O2CCH3)4, Rh2(μ-O2CCF3)4, and [Rh2(μ-O2CCH3)2(CH3CN)6]2+ (Figure I-18). 

Besides the DNA interstrand crosslinks, other adducts were also observed 

Monofunctional and intrastrand adducts are also formed during the 

reaction.97  
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Figure I-18. Denaturating PAGE (5%) of reactions between cisplatin (cis-
DDP), Rh2(μ-O2CCH3)4 (Rh1), [Rh2(μ-O2CCH3)2(CH3CN)6]2+ (Rh2), and  
Rh2(μ-O2CCF3)4 (Rh3) (taken from ref. 97). 
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Inhibition of Transcription by Dirhodium Complexes  

  Recently, it has been reported that several dirhodium compounds 

inhibit transcription, a process by which cells produce RNA from a DNA 

template by action of RNA polymerase.98, 99 A collaborative effort 

between the Turro and Dunbar groups found that two dirhodium 

complexes, Rh2(μ-O2CCH3)4  and cis-[Rh2(μ-O2CCH3)2(phen)2]2+ (phen = 1,10-

phenanthroline), were able to inhibit transcription in vitro (Figure I-19).98 

Interestingly, it was also observed that, unlike cisplatin, the mechanism of 

the inhibition of transcription by Rh2(μ-O2CCH3)4 and cis-[Rh2(μ-

O2CCH3)2(phen)2]2+ involves the binding of the complexes to the enzyme T7-

RNA polymerase (T7-RNAP).98 Additional studies have shown that the 

mechanism of inhibition depends on the coordination sphere of the dirhodium 

core. For example, Rh2(μ-O2CCF3)4, Rh2(μ-HNOCCF3)4, and cis-[Rh2(μ-

O2CCH3)2(CH3CN)6]2+ inhibit T7-RNAP in a manner similar to Rh2(μ-

O2CCH3)4 and cis-[Rh2(μ-O2CCH3)2(phen)2]2+, whereas Rh2(μ-HNOCCH3)4 

does not bind T7-RNAP.99  
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Figure I.19. Agarose gel of transcribed RNA in the presence of cis-[Rh2(μ-
O2CCH3)2(phen)2]2+at various complex/[template DNA base] ratios, R. Lanes 
1-6, R = 0.0000, 0.0005, 0.0010, 0.0015, 0.0020, 0.0025 (taken from ref. 98). 
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Photodynamic Therapy 

The observation of a transient species formed upon excitation of 

Rh2(μ-O2CCH3)4(L)2 (L = CH3OH, tetrahydrofuran, PPh3, pyridine) with a 

short laser pulse have resulted on a new research avenue for dirhodium 

complexes.100 Turro et al. have investigated the photochemistry of dirhodium 

tetracetate and found that the transient species are long-lived. Although no 

emission from the transient complexes is observed, energy transfer from the 

excited state to the 3* excited state of perylene is possible.100 Further 

studies indicated that excitation of Rh2(μ-O2CCH3)4(H2O)2 with visible light 

in the presence of an electron-acceptor produces the one-electron-oxidized 

complex, [Rh2(μ-O2CCH3)4(H2O)2]+, which efficiently cleaves dsDNA.101  

Later generations have incorporated the electron acceptor in the first 

coordination sphere of the complex.102-104 The Turro and Dunbar groups have 

reported that [Rh2(µ-O2CCH3)2(dppz)2]2+ and  [Rh2(µ-O2CCH3)3(dppz)( 

CH3OH)]+, where dppz =  dipyrido[3,2,2’,3’-phenazine (dppz), have the ability 

to  direct DNA photocleavage upon irradiation with visible light in the 

absence of a electron acceptor molecule.102, 103 Furthermore, these compounds 

photocleave DNA non-stoichiometrically in the presence and absence of 

molecular oxygen. These results hint at the possibility of their use as agents 

for photodynamic therapy (PDT), in particular for the treatment of hypoxic 

cells. Hypoxic cells are difficult to treat by PDT due to the fact that most 

compounds investigated need the presence of O2.104  

Despite the short time since the discovery of the photocleavage 

properties of dirhodium complexes, great advances have been made towards 

the search of a compound with good PDT properties. For example, a 

requirement for compounds to be an adequate PDT agent is to have 

cytotoxicity to photocytotoxicity ratio large enough so the compound does not 

damage any tissues before activation. In this sense, ratios of about 1:5 are 



34 
 

 

considered good.103, 104 Three compounds, [Rh2(µ-O2CCH3)2(dppz)2]2+,  [Rh2(µ-

O2CCH3)3(dppz)(CH3OH)]+ and [Rh2(µ-O2CCH3)2(dppz)(bpy)]2+,  have 

cytotoxicity to photocytotoxicity ratios in that range and are attractive lead 

compounds for the development of a clinically attractive PDT agent (Table I-

3).102-104 

 

 

Table I-3. Comparison of cytotoxicity / photocytotoxicity ratios for leading 
rhodium compounds and hematoporphyrin. 

Compound 
LC50 

μM 

LC*50 

μM 

Ratio  

LC50 / LC*50 

Hematoporphyrin 21 ± 1 3.8 ± 0.2 5.6          

[Rh2(μ-O2CCH3)2](dppz)2]2+ 135 ± 7.2    39 ± 1.3      3.5 

[Rh2(μ-O2CCH3)2](bpy)(dppz)]2+ 208 ± 10 44 ± 2   4.7 

[Rh2(μ-O2CCF3)2](dppz)2]2+ 58 ± 2.9 27 ± 1.4 2.1 
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It is obvious from the research conducted to date, that dirhodium 

(II,II) complexes are a diverse and promising class of cytotoxic compounds. 

Since cellular organization is very complex, the number of biomolecules, 

other than DNA, that can act as possible targets is large. Among other 

biomolecules of high importance RNA, proteins and enzymes directly related 

to the cellular cycle, can be considered possible targets.  In order to obtain 

compounds with improved activity, less toxic towards healthy cells and with 

enhanced cell penetrating ability, the interactions with DNA and other 

biomolecules need to be better understood.  

My research along these years has focused on the study of several 

families of dirhodium compounds both in cell free medium and in cellulo. 

From the introductory remarks, it is clear that the interaction of dirhodium 

complexes with biologically relevant molecules, as well as in cellulo activity 

cannot be generalized since it greatly depends on the coordination sphere of 

the dirhodium core. Therefore, I have divided the dirhodium compounds in 

closely related families and studied their in vitro properties and in cellulo 

behavior. In chapter II, I have focused on the importance of the axial position 

by studying three dirhodium complexes that differ in their availability of the 

axial site. Chapter III uncovers a novel enzyme inhibition strategy through 

tuning of the electronic properties of the metal complex. In chapters IV and 

V, the influence of diimine ligands on the activity of dirhodium complexes is 

revealed. The results show that this influence covers target interaction as 

well as cellular localization of the compounds. Finally, in chapter VI, 

attempts to improve the internalization of dirhodium complexes are 

described. 
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CHAPTER II 
 

ROLE OF THE AXIAL COORDINATION ON THE BIOLOGICAL 

ACTIVITY OF DIRHODIUM (II,II) COMPLEXES* 

 
Introduction 

 Although the antitumor effect of dirhodium carboxylate and 

derivatives has been known since the early 1970’s,67, 68, 71, 105-107 the 

mechanism by which they exert their activity remains unknown.105, 106 

Metal-metal bonded dirhodium (II,II) complexes possess ten possible 

coordination sites, with eight of them being equatorial and two which are 

axial.67 The large number of bonding sites leads to diverse chemistry that 

can be tuned by donor atoms in the two different types of positions, but they 

also result in complications for those who strive to unravel the chemistry 

behind the biological properties of these compounds. Until now, all of the 

structure activity relationship (SAR) studies have focused on the exchange of 

the equatorial ligands, with less interest in the role of the axial positions 

which are considered too weak to have an effect on the activity of dirhodium 

complexes. SAR studies have been performed with different carboxylate 

ligands such as propionate, butyrate, benzoate,72 trichloroacetate,108 

trifluoroacetate,74, 108 as well as many other diverse ligands such as 

formamidinates,109 acetamidinates,75, 76 cyclophosphamides110 and chelating 

nitrogen ligands78 (Figure II-1). 

 
*Reprinted in part from “Effect of Axial Coordination on the Electronic Structure 
and Biological Activity of Dirhodium (II,II) Complexes” J. Dafhne Aguirre, Daniel A. 
Lutterman, Alfredo M. Angeles-Boza, Kim R. Dunbar, and Claudia Turro. Inorg. 
Chem. 2007, 46 (18), 7494 – 7502. Copyright 2007, with permission from the 
American Chemical Society. 
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Figure II-1. Dirhodium compounds that have been studied for their 
antitumor activity. 
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In terms of the axial position and what is known about its importance 

vis-à-vis anticancer properties, it was reported long ago that Rh2(-O2CCH3)4 

used in conjunction with arabinosylcytosine, a DNA polymerase inhibitor, 

was active against L1210 tumors.111, 112 The proposed mechanism suggested 

that Rh2(-O2CCH3)4 was able to inhibit the deammination of 

arabinosylcytosine by cytidine deaminase in cells, thereby increasing the 

efficacy of arabinosylcytosine.112 The synergistic effect was achieved because 

of the ability of Rh2(-O2CCH3)4 to bind near the active site of the cytidine 

deaminase through its axial positions.111, 112 

Later studies revealed that dirhodium complexes bind to 

nucleobases,83, 87, 89, 90, 113-115 dinucleotides,92 and DNA dodecamer single 

strands,95 through both axial and equatorial ligand substitution reactions. It 

is believed, however, that reactions of complexes for which equatorial 

substitution takes place proceed via an initial axial interaction which is 

followed by a rearrangement of the new axial ligand to an equatorial position 

(Figure II-2).116-118  Given this situation, one might expect that the presence 

of strong, non-labile donor ligands in the axial position of a dirhodium(II,II) 

complex would lower the observed bioactivity through decreased interactions 

or binding of the compounds to biomolecules.   
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Figure II-2. Proposed mechanism for the reaction of dirhodium tetraacetate 
with adjacent nucleobases (modified from ref. 117).
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In the present chapter complexes that possess one or two accessible 

axial coordination sites are compared to a compound in which the axial 

positions are blocked. In the case of cis-[Rh2(OAc)2(np)2]2+ (1; np = 1,8-

naphthyridine) both axial sites are available for coordination, whereas for 

cis-[Rh2(OAc)2(np)(pynp)]+2 (2; pynp = 2-(2-pyridyl)1,8-naphthyridine) and 

cis-[Rh2(OAc)2(pynp)2]+2 (3) the bridging pynp ligand blocks one and two of 

the axial coordination sites in the complexes, respectively. The structures of 

1–3 are shown in Figure II-3.  

A variety of properties of these compounds were studied including 

their electrochemical properties, their interactions with biological relevant 

molecules in cell free medium, in assays such as transcription inhibition, 

binding constant, melting temperature and photocleavage. Data gathered 

against a panel of two different cancer cell lines revealed that these 

compounds do not exhibit cytotoxicity at values of up to 400 M. The ability 

of the complexes to inhibit transcription in vitro shows a profound effect on 

the availability of an axial coordination site, indicating the need of metal 

binding for biological activity in these complexes. 
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Figure II-3. Schematic representations of the molecular structures of 1 – 3 
and the np and pynp ligands. 
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Experimental Section 

Materials 

Biotech grade acetonitrile was purchased from Sigma-Aldrich. The 

tetra-n-butylammonium hexafluorophosphate (TBAPF6) salt was purchased 

from Fluka. Agarose, ethidium bromide, EDTA, Tris/HCl, MgCl2, and RNA 

loading solution were purchased from Sigma and used as received.  The 

pGEM linear DNA control template (3,995 bp) was purchased from Promega, 

and the T7-RNA polymerase (50 units/L) and 5x RNA transcription buffer 

were purchased from Life-Technologies (Rockville, MD). The starting 

material RhCl3•xH2O was purchased from Pressure Chemicals and 

Rh2(O2CCH3)4 and cis-[Rh2(O2CCH3)2(CH3CN)6](BF4)2 were prepared 

following literature procedures.119 The bridging ligand np was purchased 

from TCI and the pynp ligand was prepared according to literature 

procedures.120 The compounds cis-[Rh2(-O2CCH3)2(pynp)2]2+ and  cis-[Rh2(-

O2CCH3)2(np)2]2+ were synthesized from cis-[Rh2(-O2CCH3)2(CH3CN)6]2+ 

using a modified literature procedure as described in detail below.120 

Synthesis of cis-[Rh2(-O2CCH3)2(np)2](BF4)2 (1)  

The tetrafluoroborate salt of cis-[Rh2(-O2CCH3)2(CH3CN)6]2+ (0.1 g, 

0.13 mmol)  was dissolved in acetonitrile (20 mL) to  afford a purple solution, 

and two equivalents of the naphthyridine ligand (0.034 g, 0.26 mmol) were 

added. The mixture was refluxed and stirred overnight, the solution was 

evaporated, and a dark red powder was obtained by filtration. The product 

was then dissolved in a minimum amount of acetonitrile, and toluene was 

added to precipitate the orange product, which was then collected and dried 
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(0.074 g, 74%). 1H NMR in CH3CN-d6,  / ppm : 9.05 (q, 4H), 8.37 (d, 4H), 7.61 

(m, 4H), 2.40 (s, 6H). 

Synthesis of cis-[Rh2(-O2CCH3)2(pynp)2](BF4)2 (2)  

A procedure similar to that for the preparation of cis-[Rh2(-

O2CCH3)2(np)2]2+ was used, with the addition of 2 equivalents (0.056 g, 0.27 

mmol) of pynp ligand to cis-[Rh2(-O2CCH3)2(CH3CN)6]2+ (0.1 g, 0.13 mmol) in 

acetonitrile (20 mL), to obtain a dark red solid (0.084 g, 84%). 1H NMR in 

CH3CN-d6,  / ppm (splitting):  9.70 (d, 2H), 8.87 (m, 4H), 8.70(d, 2H) 8.67(m, 

4H), 8.50 (dd, 2H), 8.37 (td, 2H), 7.48 (q, 2H), 2.25 (s, 6H). 

Synthesis of cis-[Rh2(-O2CCH3)2(np)(pynp)](BF4)2 (3)   

A solution of Rh2(-O2CCH3)4 (0.2 g, 0.39 mmol) was stirred overnight 

in acetone (20 mL) in the presence of one equivalent of pynp (0.08 g, 0.39 

mmol). The product precipitated from the reaction mixture and was collected 

by filtration. The solid was suspended in methanol (40 mL) and stirred at r.t. 

until it went into solution. To this solution was added 4 equivalents of NaBF4 

(0.16 g, 1.44 mmol), and one equivalent of np (0.05g, 0.38mmol). The mixture 

was stirred overnight, the volume of the solution was decreased to ~ 6 mL, 

and the solution was filtered through a fine frit. The red/orange solution was 

treated with toluene to afford a red/orange powder (0.06 g, 30%). 1H NMR in 

CH3CN-d6,  / ppm (splitting): 10.04 (d, 1H), 9.81 (d, 1H), 9.71 (d, 1H), 9.02 (d, 

1H), 8.87 (m, 2H), 8.71 (d, 1H), 8.64 (m, 2H), 8.52 (m, 2H), 8.33 (dd, 1H), 8.15 

(dd, 1H), 7.87 (dd, 1H), 7.56 (dd, 1H), 2.21 (s, 6H), 1.82 (s, 6H). MS m/z = 

330.5 ([Rh2(-O2CCH3)2(pynp)(np)]2+). Anal. Calcd for Rh2C25H21N5O4B2F8: C, 

35.97; H, 2.54; N, 8.39. Found: C, 35.93; H, 2.39; N, 8.41. 
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Instrumentation 

X-ray diffraction data were collected on a Bruker SMART 1000 CCD 

diffractometer with graphite monochromated Mo-K radiation ( = 0.71073 

Å).  The frames were integrated with the Bruker SAINT software121 and a 

semi-empirical absorption correction using multiple-measured reflections 

was applied using SADABS.122 The structures were solved and refined using 

X-SEED, a graphical interface to SHELX97.123   

Cyclic voltammetric measurements were performed on a H-CH 

Electrochemical Analyzer model 620A.  Absorption measurements were 

performed on a Shimadzu UV 1601PC spectrophotometer or a HP diode 

array spectrometer (HP 8453) with HP8453 Win System software or a 

Perkin-Elmer Lambda 900 spectrometer.  The ethidium bromide stained 

agarose gels (1%) were imaged on an AlphaImager 2000 transilluminator 

(Alpha Innotech Corporation).  

Methods  

X-Ray Structural Study of cis-[Rh2(-O2CCH3)2(np)2](BF4)2 (1)  

For the X-ray crystallographic analysis, a red prismatic crystal of 1 of 

dimensions:  0.20 x 0.16 x 0.10 mm3 was selected.  The crystal was coated 

with Paratone oil, transferred to a nylon loop, and placed in a cold N2 stream 

at 110(2) K.  An indexing of the preliminary diffraction patterns indicated 

that the crystal was monoclinic. A total of 24,689 reflections was collected in 

the range 2.36 ≤  ≤ 26.37o.  The data collection covered approximately a 

hemisphere of reciprocal space, by a combination of three or four sets of 

exposures; each set had a different  angle for the crystal and each exposure 

covered 0.3º in .  Crystal decay, which was monitored by analyzing duplicate 
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reflections, was found to be less than 1%, therefore, no decay correction was 

applied.  During the final cycles of refinement, all atoms, with the exception 

of hydrogen, were refined anisotropically.   All hydrogen atoms were placed at 

calculated positions.  The structure was solved and refined in the space group 

P21/n.  

Computational Studies 

The molecular and electronic structure calculations were performed 

with density functional theory (DFT) using the Gaussian03 (G03) program 

package.124  The B3LYP125-127 functional along with the 6–31G* basis set was 

used for H, C, N, and O,128 along with the Stuttgart/Dresden (SDD) energy-

consistent pseudopotentials for Rh.129  Formate ligands were used instead of 

acetate ligands in the computationally modeled complexes.   This procedure 

has been found to be acceptable in other reported computational studies.130 

All geometries were fully optimized under the conditions of the respective 

programs.  Orbital analysis was completed with Molekel 4.3.131 Vertical 

electronic transitions were calculated using TDDFT methods implemented 

within G03. All calculations shown in this chapter were performed at The 

Ohio State University by Dr. Daniel Lutterman. 

Electrochemical Characterization 

Electrochemical studies were performed in CH3CN with 0.1 M TBAPF6 

as the supporting electrolyte, a BAS Pt disk as the working electrode, a 

Ag/AgCl reference electrode, and a Pt wire as the auxiliary electrode.  

Ferrocene was used as an internal reference and under the same 

experimental conditions the ferrocene/ferrocenium couple was observed at 
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E1/2 = +0.52 V versus Ag/AgCl electrode.132  The reduction and oxidation 

potentials were converted to SCE by subtraction of 0.45 V.133 

Melting Point Experiments 

The melting temperature experiments were carried out by monitoring 

the absorption change at 260 nm while varying the temperature from 25 °C to 

95 °C at a rate of 0.5 °C/min of a mixture containing 20 M complex and 100 

M ct-DNA in 1 mM phosphate buffer, 2 mM NaCl, pH 7.2. The value of Tm 

was determined as the temperature corresponding to a maximum on the first-

derivative profile of the melting curves.103, 134 

DNA Binding Constant Determination 

The binding constant, Kb, was determined by optically titrating 5 M 

metal complexes in a 5 mM Tris/HCl, pH 7.2 buffer at room temperature with 

ct-DNA up to a final concentration of 200 M. The dilution of the compound 

concentration at the end of each titration was negligible. The Kb values were 

calculated from fits of the absorption changes as a function of DNA to eq 1,103  

a – f     =
    b – (b2 – 2 Kb

2Ct [DNA]t / s)1/2 
(1) 

   b – f   2 KbCt 

where b = 1 + Kb Ct + Kb [DNA]t / 2s, Ct and [DNA]t represent the total 

complex and DNA concentrations, respectively, s is the base pair binding site 

size, and a, f, and b represent the apparent, free complex, and bound 

complex molar extinction coefficients, respectively.  The value of b was 

determined from the plateau of the DNA titration where addition of DNA did 

not result in further changes to the absorption spectrum. 
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Relative Changes in Viscosity Studies 

The relative changes in viscosity were measured on a Cannon-Manning 

semi-micro viscometer. The viscometer was immersed in a constant 

temperature water bath (25 °C) controlled by a Neslab (model RTE-100) 

circulator. Data are presented as: 

3
1

)(



 vs 
 
 DNA

M
 

 = t1 – t2 
0 = tn – t0 

where  is viscosity of DNA in the presence of the complex and 0 is viscosity 

of DNA in the absence of complex.134 

Transcription Inhibition Studies 

The transcription assay has been previously reported.135-137 In the in 

vitro transcription experiment, the pGEM linear DNA template (120 M 

bases) was used with T7-RNAP, resulting in two transcripts of length 1,065 

and 2,346 bases; each trial was conducted three times.  The transcription 

reaction was conducted for 45 min at 37 ºC (40 mM Tris/HCl, pH = 8.0) in 

nuclease-free water in the presence of 1.25 units of T7-RNAP, 25 mM NaCl, 

and 1.0 mM of each ATP, CTP, GTP and UTP.  The inhibition of RNA 

production by the dirhodium complexes was detected in vitro by the 

measurement of the RNA generated upon addition of increasing amounts of 

metal complex to the assay.  The concentration of each complex at which 50% 

of the RNA is transcribed, IC50, was calculated by interpolation of the 

integrated areas of the imaged RNA signal of each lane of the gel conducted 

with various concentrations of a given complex.  Modifications of these 

methods were used in the various control assays, including those designed to 
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determine the role of binding of the complexes to T7-RNAP. All stock 

solutions of the metal complexes were prepared in pure H2O. 

DNA Photocleavage Experiments  

The DNA photocleavage experiments were carried out using 20 µL of 

total sample volume in 0.5 mL transparent eppendorf tubes containing 100 

µM pUC18 plasmid, 25 µM of metal complex and 2 mM of 3-cyano-1-

methylpyridinium tetrafluoroborate (3-CN-1-Me-py+). Irradiation of the 

solutions was performed under a positive pressure of nitrogen or in the 

presence of oxygen. Following irradiation, 5 µl of the DNA gel loading buffer 

was added to each 20 µL of sample. The electrophoresis was carried out using 

1% agarose gel stained with 0.5 mg/L ethidium bromide in 1X TAE buffer (40 

mM tris-acetate, 1 mM EDTA, pH ~ 8.2). 

In Vitro Cytotoxicity 

 The viability of COLO-316 and HeLa cells in the presence of the 

compounds under investigation was tested using the 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) assay (Invitrogen). Subconfluent 

(50-80% confluent) monolayers of cells at a concentration of 5000-10000 

cells/µL were used. Cells were plated in 96-well sterile plates at a density of 

20-30 cells/L (volume of 100 L per well) and were pre-incubated for 48 h. 

After the cells reached 100% confluency, the medium was replaced by 100 L 

of L-15 medium containing different complex concentrations. The plates were 

incubated for either 24 or 48 hours. A 10 L aliquot of fresh MTT solution 

was added, followed by incubation for 3 hours.  A 100L volume of fresh SDS 

solution in 0.01 M HCl was then added and, after 16 hours of incubation, the 

absorbance at 570 nm was measured using a Bio-Rad plate reader. 
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Results and Discussion 

Synthesis and Structural Characterization 

The homoleptic complexes were prepared by substitution of the four 

equatorial CH3CN ligands of cis-[Rh2(-O2CCH3)2(CH3CN)6]2+ with the 

polydentate ligands, np (1,8-naphthyridine) and pynp (2-(2-pyridyl)1,8-

naphthyridine), to generate cis-[Rh2(-O2CCH3)2(np)2]2+ (1) and cis-[Rh2(-

O2CCH3)2(pynp)2]2+ (3), respectively. The synthesis of the new heteroleptic 

complex cis-[Rh2(-O2CCH3)2(np)(pynp)]2+ (2) was carried out by stepwise 

addition of pynp followed by np to an acetone solution of Rh2(-O2CCH3)4 at 

room temperature (Figure II-4).  

The crystal structure of the tetrafluoroborate salt of 1, which has not 

been previously reported, is shown in Figure II-5a. Selected refinement 

parameters are provided in Table II-1. The asymmetric unit contains the 

cationic cis-[Rh2(-O2CCH3)2(np)2]2+ molecule with two chloride ions 

coordinated to the axial positions, and two methanol solvent molecules of 

crystallization.  The final refinement cycle was based on 5,224 unique 

reflections (4,302 with F
 > 2(F

)), 327 parameters, and no restraints (R1 

= 0.0508, wR2 = 0.1193).  The maximum and minimum peaks in the final 

difference Fourier map corresponded to 3.27 and –0.89 e/Å3, respectively, 

with a goodness-of-fit value of 1.158. 
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Figure II-4. Schematic representation of the syntheses of compounds 1 – 3. 
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Table II-1.  Crystal data and structure refinement for compound 1. 

Empirical formula  C46 H41 B F4 N8 O8 Rh2 

Formula weight 719.19 

Crystal system  Monoclinic 

Space group  P21 

Unit cell dimensions a = 8.812 (1) Å = 90° 

 b = 17.293(2) Å = 104.574(2)° 

 c = 17.336(2) Å  = 90° 

Volume 2556.8(5) Å3 

Z 4 
Density (calculated) 1.868 Mg/m3 
Absorption coefficient 1.545 mm-1 
Crystal size 0.20 x 0.16 x 0.10 mm3 
Reflections collected 24689 
Independent reflections 5224 [Rint = 0.0395] 
Goodness-of-fit on F2 1.158 
Final R indices [I>2sigma(I)]a R1 = 0.0508, wR2 = 0.1193 

R indices (all data)a R1 = 0.0604, wR2 = 0.1266 
aR1 = Fo- Fc/Fo; wR2 = [[w(F0

2-Fc
2)2]/[w(F0

2)2]]1/2 
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Figure II-5. X-ray structure of (a) compound 1 and (b) compound 3 (taken 
from ref. 120).  
  

(a) 

(b) 
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The molecular structure of 1, determined by X-ray crystallographic 

methods, consists of a dinuclear Rh2(II,II) core with a pair of bridging 

naphthyridine ligands coordinated to each Rh atom and two bridging acetate 

groups occupying the remaining equatorial sites. Two chloride ions complete 

a distorted octahedral coordination sphere around each Rh atom. The 

structure of 1 is shown in Figure II-5a and is similar to those reported for 

related dirhodium complexes (Figure. II-5b).120, 138, 139 Selection of bond 

distances and angles are provided in Table II-2 and Table II-3 respectively. 

The Rh-Rh distance in 1, 2.4251(5) Å, is in the expected range for a Rh-Rh 

single bond. The distance is longer than that reported for cis-[Rh2(µ-

O2CCH3)2(pynp)2]2+ (pynp = 2-(2-pyridyl)-1,8-naphtyridine), 2.206(9) Å, and 

shorter than those reported Rh2(µ-O2CCH3)2(phen)2Cl2 (phen = 1,10-

phenanthroline), and [Rh2(np)4(O2CCH3)2]2+, 2.6011(11) and 2.448(1) Å, 

respectively. The average Rh-N bond length in 1, 2.027(4) Å, is similar to 

that of [Rh2(µ-O2CCH3)2(pynp)2]2+, 2.018(4) Å, and longer than the reported 

Rh-Nav distance of 2.010(5) Å in Rh2(µ-O2CCH3)2 (phen)2Cl2 and somewhat 

shorter than that found for [Rh2(np)4(O2CCH3)2]2+, 2.054(3). The average Rh-

axial chloride distance is 2.563(1) Å in 1 as compared to the reported Rh-Cl 

distance for Rh2(µ-O2CCH3)2(phen)2Cl2 which is 2.532(2) Å. This increase of 

0.03 Å, as compared to the bis-phenanthroline analogue, is attributed to the 

presence of the hydrogen atoms on the np ligands pointing towards the 

chloride ions. 
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Table II-2.   Selected bond distances (Å) for compound 1. 

    Bond Distances 

 Rh(1)-Rh(2)   2.4251(5) 

 Rh(1)-N(1)   2.025(4) 

 Rh(1)-N(3)   2.028(4) 

 Rh(2)-N(4)   2.022(4) 

 Rh(2)-N(2)   2.031(4) 

 Rh(1)-O(3)   2.043(3) 

 Rh(1)-O(1)   2.046(3) 

 Rh(2)-O(4)   2.058(3) 

 Rh(2)-O(2)   2.063(3) 
   
   

Table II-3.   Selected bond angles (°) for compound 1. 

    Bond Angles 

 Rh(1)-Cl(1)   2.582(1) 

 Rh(2)-Cl(2)   2.544(1) 

 Rh(2)-Rh(1)-Cl(1)   173.46(3) 

 Rh(1)-Rh(2)-Cl(2)   171.92(3) 

 N(1)-Rh(1)-N(3)   92.2 (2) 

 O(3)-Rh(1)-O(1)   87.5(1) 

 N(4)-Rh(2)-N(2)   88.9(2) 

 O(4)-Rh(2)-O(2)   89.0(1) 
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Electronic Absorption Spectroscopy and Electrochemistry 

The absorption maxima and molar extinction coefficients of complexes 

1 – 3 are listed in Table II-4.  Given that the free np ligand exhibits * 

transitions at 258, 300, and 309 nm in CH3OH/H2O (50:50 v:v), it is likely 

that the peaks observed in 1 at 268 and 307 nm are centered on the np 

ligand.  Similarly, the free pynp ligand exhibits absorption maxima at 271, 

322, and 333(sh) nm (CH3OH/H2O 50:50 v:v), which leads to the assignment 

of the peaks at 316  and 329 nm in 3 as ligand-centered. In the mixed-ligand 

complex 2, the peaks observed at 266 and 320 nm are likely due to a 

superposition of  transitions of the np and pynp ligands.  Additional 

absorption peaks in the UV and near-UV region are observed with maxima at 

315 nm ( = 5,830 M-1cm-1) in 1 and at 356 nm in 2 ( = 5,410 M-1cm-1) and 3 ( 

= 12,790 M-1cm-1), which are attributed to MLCT transitions.  The latter is 

likely to be due to Rh2pynp, which is expected to occur at a lower energy 

than the corresponding MLCT transition involving the np ligand in 1. 

Complexes 1 – 3 also exhibit an absorption peak in the 393 to 465 nm region 

with intensities that range from 3,380 to 4,880 M-1cm-1. In the related 

complex Rh2(-O2CCH3)4, the transitions observed in water in the visible 

region are weak (441 nm,  = 106 M-1cm-1 and 585 nm,  = 241 M-1cm-1); these 

absorptions were previously assigned to Rh–O()Rh2(*) and 

Rh2(*)Rh2(*) transitions respectively.120, 140 Owing to the intensity of the 

transitions observed in 1 – 3 in the visible region, the transitions can be 

assigned as arising from MLCT from Rh2 to the np and/or pynp ligand, 

depending on the complex. The positions and intensities of these transitions 

are comparable to those observed for cis-[Rh2(-O2CCH3)2(bpy)2]2+ (bpy = 2,2´-
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bipyridine, abs = 408 nm,  = 2,920 M-1cm-1 in CH3CN) and cis-[Rh2(-

O2CCH3)2(phen)2]2+ (phen = 1,10-phenanthroline, abs = 408 nm,  = 3,050 M-

1cm-1 in CH3CN), which also possess aromatic ligands coordinated to the 

dirhodium core and have been previously assigned as MLCT transitions from 

the Rh2 to the bpy and phen ligand, respectively.141  

Additional evidence for the assignment of the lowest energy transition 

in complexes 1 – 3 as MLCT can be found by examining the spectra of 1 with 

axially coordinated pyridine (py). The presence of strong -donor axial ligands 

has been shown to have a profound effect on the electronic structure of 

dirhodium complexes. For example, in Rh2(-O2CCH3)4, addition of ligands 

that bind to the axial positions result in a blue-shift of the lowest energy, 

Rh2()Rh2() metal-centered (MC) transition.142-145  This shift is due to 

interaction of the antisymmetric linear combination of the filled orbitals on 

the axial ligands with the Rh2() molecular orbital, which raises the energy 

of the latter.130, 140, 146, 147 Addition of excess py (547 M) to 1 (22 M) in H2O 

does not result in spectral shifts in the UV/visible regions. This result is 

consistent with the assignment of these low energy transitions as Rh2np 

MLCT, which are not expected to be affected greatly by the presence of axial 

ligands. 

The reduction and oxidation potentials of 1 – 3 are listed in Table II-4. 

The first reduction is dependent on the identity of the aromatic ligand.  

Complexes 2 and 3, with one and two coordinated pynp ligands, respectively, 

exhibit E1/2 ~ –0.64 V vs SCE. In contrast, complex 1 is more difficult to 

reduce by ~0.17 V, with the first reduction being observed at –0.82 V vs SCE. 

Free pynp ligand is easier to reduce than np, with E1/2 values of –1.68 and –
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1.88 vs SCE (CH3CN, 0.1 M Bu4NPF6), respectively. The difference in the 

reduction potentials of the free ligands, 0.20 V, is comparable to that between 

1 and complexes 2 and 3. The values of the first reduction waves of complexes 

1 – 3 are similar to those reported for other dirhodium complexes possessing 

aromatic ligands, such as cis-[Rh2(-O2CCH3)2(bpy)2]2+ (E1/2 = –0.93 vs SCE in 

CH3CN) and cis-[Rh2(-O2CCH3)2(phen)2]2+ (E1/2 = –0.87 vs SCE in CH3CN).  

The oxidation potentials of 1 – 3 range from +1.30 to +1.50 vs SCE and are 

quasi-reversible or irreversible. These values are similar to those previously 

reported for the metal-centered oxidation of related dirhodium complexes, 

such as Rh2(-O2CCH3)4, with E1/2  = +1.17 V vs SCE in CH3CN.148 These 

results support the conclusion that the oxidations for 1 – 3 are centered on 

the dirhodium core. 

Electronic Structure Calculations 

Electronic structure calculations were conducted in order to aid in the 

assignments of the absorption spectra and electrochemistry of complexes 1 – 

3, and comparisons can be made regarding the structural and electronic 

changes that take place upon axial coordination of solvent and as the 

bridging ligands are varied.  As shown in Figure II-6, the electronic 

structures of the model complexes cis-[Rh2(-O2CH)2(np)2]2+ (1a) and cis-

[Rh2(-O2CH)2(pynp)(np)]2+ (2a) are sensitive to the nature of the coordinating 

solvent in the axial position, as previously reported for other dirhodium 

complexes.130 
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Table II-4.  Electronic absorption and electrochemical properties of 1 – 3. 

Complex abs / nm (ε / M–1cm–1) a E1/2 / V b 

1 268 (16,260), 307 (5,980), 315 (5,830), –0.82 

2 266 (21,320), 320 (19,490), 356 (5,410), –0.63, –1.35 

3 316 (31,390), 329 (31,400), 356 (12,790), –0.64, –1.03 

aIn CH3OH/H2O (50:50 v/v).  bIn acetonitrile with 0.1 M Bu4NPF6; vs SCE.  
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Figure II-6. MO diagrams of (a) 1a and 1a–(H2O)2, (b) 2a and 2a–(H2O), 
and (c) 3a. For reference, the Rh2(*) MO in 1a was set to 0 eV. 

 

 

 

 

 

 

 

 

 

In aqueous solution, water molecules coordinate to the open axial sites 

of 1a and 2a, generating 1a–(H2O)2 and 2a-H2O, respectively (Figure II-6). 
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Interaction of the symmetric and antisymmetric linear combinations of the 

axial water molecules with metal-centered MOs in 1a result in the 

destabilization the Rh2()and Rh2(*) orbitals in 1a–(H2O)2 (Figure II-6a). 

As shown in Figure II-6a, these axial interactions change the identity of the 

LUMO from Rh2(*) in 1a to np(π*) in 1a–(H2O)2. The electronic structure 

calculations with NCH axial ligands as models for acetonitrile molecules also 

result in np(π*) LUMO in 1a–(NCH)2.  These results are in agreement with 

the observation of ligand-centered reduction of 1 in CH3CN. DFT 

calculations on 2a, 2a–(H2O), and cis-[Rh2(µ-O2CH)2(pynp)2]2+ (3a) also 

result in ligand-centered LUMO, in agreement with the electrochemical 

reduction discussed above (Figure II-6). It should be noted that the 

calculations also predict that the reduction potentials of 2 and 3 should be 

similar in a coordinating solvent, whereas 1 should be more difficult to 

reduce (Figure II-6). Selected molecular orbitals of 1a–(H2O)2, 2a–(H2O), and 

3a are shown in Figure II-7. 

 

 

 

 

 

 

 
  



61 
 

 

 
 

   

   

 
 

 

Figure II-7.  Selected molecular orbital representations of (a) 1a–(H2O)2, (b) 
2a–(H2O), and (c) 3a drawn with isovalues = 0.4. 
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The changes to the orbital energies of 1a–(H2O)2 upon the substitution 

of one and two np ligand(s) for pynp to generate 2a–H2O and 3a, 

respectively, are also shown in Figure II-6. In order to make a semi-

quantitative comparison among the complexes, the energy of the Rh2 (δ*) 

MO of 1a was set to 0.0 eV. In addition, the lowest energy np(π*) orbitals of 

1a, 1a–(H2O)2, 2a, and 2a–(H2O) were matched in energy in Figure II-6, 

since this orbital is not expected to be affected by axial substitution. 

Similarly, the lowest energy pynp(π*) in 2a–(H2O) and 3a were set to the 

same energy. As expected, substitution of H2O molecules in the axial position 

for the stronger pyridine portion of the pynp ligand results in an increase in 

the energy of both the Rh2() and Rh2(δ*) MOs (Figure II-6). 

Time-dependent DFT (TDDFT) calculations can be used to predict 

observed transition energies and can be used to elucidate their parentage. As 

discussed above, the peaks observed in UV region can be ascribed to  

transitions centered on the aromatic ligands, while the two lowest energy 

transitions were assigned as Rh2np/pynp MLCT.  In general, the MCLT 

peaks red-shift across the series 1 – 3 (Table II-4).  TDDFT calculations on 

1a–(H2O)2 predict a strong np-centered transition at 259 nm and four 

weaker ones in the 261– 275 nm range.  Two low energy vertical 

Rh2(π*)np(π*) MLCT transitions are calculated at 402 nm and 410  nm. 

The latter exhibits the highest oscillator strength (Table II-5) and may be 

correlated to the peak observed at 393 nm in the complex (Table II-4). In 3a, 

MLCT transitions from Rh2() and Rh2(*) to pynp(π*) are calculated at 

466 nm and 489 nm, respectively (Table II-5), which is correlated with the 

absorption peak with maximum at 465 nm in 3. Additional MLCT 
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transitions of 3a are predicted at 315 nm, 320 nm, and 331 nm, however, a 

very strong pynp-centered transition of significantly greater intensity is 

calculated at 326 nm (Table II-5). The latter is associated with the observed 

peak at 356 nm in 3. A transition at 340 nm calculated to exhibit both MLCT 

and LC character in 3a may also contribute to the peak observed at 356 nm 

in 3.  Owing to the presence of both np and pynp ligands in the heteroleptic 

complex, there is a greater number of calculated transitions for 2a–(H2O) in 

the same energy range.  Two low-lying MLCT transitions of similar intensity 

from Rh2() to pynp() and np() are calculated at 471 nm and 423 nm, 

respectively.  These occur at significantly lower energies than the MLCT 

peak observed for 2 with a maximum at 398 nm (Table II-4).  A fairly strong 

pynp  transition is calculated at 342 nm for 2a–(H2O) with several 

additional peaks with MLCT character between 318 nm and 335 nm.  Owing 

to the number of calculated peaks, a correlation with the experiment in 

solution in this complex is not possible, but it is noted that the calculated 

transitions lie in the region where peaks are observed. As previously 

assigned, the calculations show that the lowest energy transition in each of 

these complexes is MLCT in character.  

As discussed above, the metal-centered Rh2()Rh2() transition of 

the parent complex Rh2(-O2CCH3)4 is known to shift to higher energy as a 

function of the axial ligands.149, 150 Although this weak transition is not 

observed experimentally in complexes 2 and 3 because of the overlapping 

high intensity MLCT peaks, its position can be calculated. As expected, the 

calculated energy of Rh2()Rh2() transition shifts as the number of 

pynp ligands with strong axial coordination is increased in the series 1a–
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(H2O)2, 2a–(H2O), and 3a, with predicted maxima at 521 nm (ƒ = 0.0011), 

474 nm (ƒ = 0.0022), and 455 nm (ƒ = 0.0008), respectively.  The calculated 

maximum of the metal-centered transition for 1a–(H2O)2 agrees well with 

the observed shoulder for 1 in water at ~519 nm.   

 

 

Table II-5.  Calculated vertical singlet excitations, oscillator strength (ƒ), 
and assignments for 1a-(H2O)2, 2a-(H2O), and 3a.a 

1a-(H2O)2 2a-(H2O) 3a 

abs / nm (ƒ) Assignment b abs / nm (ƒ)  Assignment b abs / nm (ƒ)  Assignment b 

259 (0.1108) * 318 (0.1495) MLCT 306 (0.0117) MLCT 

259 (0.0148) MLCT 322 (0.0345) MLCT 315 (0.0688) MLCT 

261 (0.0175) * 327 (0.0111) MLCT 320 (0.0490) MLCT 

262 (0.0143) * 335 (0.0107) MLCT 326 (0.2520) MLCT / * 

273 (0.0362) * 342 (0.0586) pynp * 331 (0.0110) MLCT 

275 (0.0545) * 417 (0.0181) MLCT 340 (0.0217) MLCT / * 

402 (0.0431) MLCT 423 (0.0374) MLCT 466 (0.0182) MLCT 

410 (0.0855) MLCT 471 (0.0521) MLCT 489 (0.0871) MLCT 

aOnly transitions with ƒ ≥ 0.01 are listed. bAssignments were made from the character 
of the orbitals with greatest contribution to each transition. 
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DNA Binding 

The binding constants of 1 – 3 to DNA, Kb, determined from fits of the 

changes in the absorption of each complex as a function of nucleic acid 

concentration (Figures II-8 – II-10) are listed in Table II-6.  The values of Kb 

vary with the availability of the axial position.  For complex 1, with both axial 

positions available for coordination with Lewis bases, Kb = 5.6105 M-1 (s = 

1.1) was measured, while Kb = 3.4105 M-1 (s = 0.9) was calculated for 2.  The 

value of Kb measured for 3, 5.9103 M-1 (s = 1.2), which has the two axial 

positions blocked by the pynp ligand, is approximately two orders of 

magnitude smaller than the DNA binding constants of 1 and 2.  The 

magnitude of Kb obtained for 3 is consistent with electrostatic interactions 

with DNA; similar values have been reported in the literature for 

[Ru(tpy)(bpy)OH]+ (Kb = 1.3104 M-1), [Ru(tpy)(bpy)(OH2)]2+ (tpy = [2,2´; 

6’,2´´]-terpyridine, Kb = 6.6102 M-1), and [Ru(bpy)3]2+ (Kb = 6.8102 M-1), 

respectively, which bind DNA through electrostatic interactions.151, 152  For 

comparison, the DNA binding constant for the partial intercalator 

[Ru(phen)3]2+  was reported151 to be 4.8103 M-1, while a Kb value of 1.7105 

M-1 has been reported for the intercalator ethidium bromide.153, 154 Since 

complexes 1 – 3 have the same overall charge, the differences in measured Kb 

values are not due to electrostatic interactions. Previous reports have shown 

that dirhodium compounds can interact with DNA forming a variety of 

interstrand crosslink adducts.97 Therefore, it is possible that there is a 

covalent interaction between the open axial position of the compound and the 

DNA, such that the decrease in the value of the binding constant from 1 to 2 

is related to the difference in the number of open axial positions.  
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Figure II-8. Changes to the absorption of 5 M 1 monitored at 390 nm upon 
addition of DNA in 5 mM Tris, pH = 7.5, 50 mM NaCl. 
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Figure II-9. Changes to the absorption of 5 M 2 monitored at 390 nm 
upon addition of DNA in 5 mM Tris, pH = 7.5, 50 mM NaCl. 
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Figure II-10. Changes to the absorption of 5 M 3 monitored at 390 nm 
upon addition of DNA in 5 mM Tris, pH = 7.5, 50 mM NaCl. 
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Table II-6. DNA binding constants, Tm values, and IC50 of 1 – 3. 

Complex b / M–1 Tm / oC a IC50 / Mb 

1 5.9103 10.3 3.4 

2 3.4105 7.0 54 

3 5.6105 4.2 >600 

aTm = 61(1) °C was measured for DNA alone. bThe value measured for 
cisplatin under the same experimental conditions is 4.1 M. 

 

The shift in the melting temperature of 100 M DNA, Tm, in the 

presence of each complex (20 M) was measured relative to that of DNA 

alone, for which Tm = 61(1) °C (1 mM phosphate buffer, 2 mM NaCl, pH 7.2).  

The largest shift, Tm = +10(2) °C, was observed for compound 1, followed by 

2 with Tm = +7(2) °C. Only a modest shift in the DNA melting temperature 

was measured for 3, Tm = +4(2) °C (Figure II-12). Intercalating complexes 

possessing a phi (phi = 9,10-phenanthrenequinone diimine) ligand in their 

coordination sphere, such as [Rh(phen)2phi]3+ and [Ru(phen)2phi]2+, have 

been shown to raise the melting temperature of the duplex by 7 oC and 11 

°C, respectively.136 Similar stabilization of the DNA double helix has been 

reported for other intercalators, such as [Ru(bpy)2(DAP)]2+ (DAP = 1,12-

diazaperylene) and ethidium bromide.134  Therefore, it is possible that the 

shift in Tm observed for 1 is due to DNA intercalation by the complex.  

Intercalation of molecules between DNA bases is known to increase the 

viscosity of the solution due to unwinding and elongation of the double 

helix.155 Experiments using 1 mM herring sperm DNA in the presence of up 

to 300 M of 1 did not result in an increase of the relative viscosity of the 

solution (Figure II-11).  Since relative viscosity measurements are the most 

reliable means to determine intercalation,155 these results indicate that the 
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greater DNA binding constant and Tm value measured for 1 is not due to 

intercalation.  

A possible explanation for these observations is the presence of one 

and two axial sites available for coordination in 1 and 2, respectively, while 

the two rhodium centers in 3 are coordinatively saturated, since the pynp 

ligands blocks both axial sites in the complex.  It is well known that cations, 

such as Na+ and Mg2+, stabilize the duplex DNA structure by charge 

screening through interaction with the anionic phosphate groups in the 

phosphodiester backbone. It has been previously shown that divalent 

alkaline earth ions are able to stabilize the duplex structure to a 

significantly greater extent than monovalent cations.156-158 For example, the 

melting temperature of a duplex composed of the sequence d(GCCAGTTAA) 

and its complementary strand was reported to increase from 32.0 oC in the 

presence of 100 mM NaCl (10 mM Na2HPO4, 1 mM Na2EDTA, pH = 7.0) to 

39.0 °C in 100 mM MgCl2 (10 mM sodium cacodylate, pH = 7.0). A similar 

shift in Tm was measured for the same duplex in the presence of 10 mM 

MgCl2 (Tm = 36.0 °C), and in mixtures of 100 mM NaCl with 10 mM MgCl2 

(Tm = 35.1 °C) and with 100 mM MgCl2 (Tm = 38.5 °C).159 These results show 

the greater activity of divalent ions in duplex stablization as compared to 

monovalent cations.  In contrast to the increase in the DNA melting 

temperature typically observed for divalent alkaline earth ions, transition 

metal cations, such as Co2+, Ni2+, and Cd2+ result in destabilization of the 

duplex.160 It is believed that cations which are capable of interacting with 

the phosphate backbone stabilize the duplex DNA structure, while those that 

coordinate to the nucleobases exert a destabilizing effect.160 
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Figure II-11.  Relative viscosity measurements of 1 mM sonicated herring 
sperm DNA (50 mM NaCl, 5 mM tris, pH = 7.5) upon addition of increasing 
concentrations of ethidium bromide (●), Hoecht 33258 (○), 1 (◊), 2 (×), 3 (+), 4 
(∆) and 5 (♦).  
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Similarly, non-intercalating mononuclear cationic transition metal 

complexes that interact with the phosphodiester backbone of duplex DNA 

exhibit positive  Tm values consistent with electrostatic screening of the 

negative phosphate charges charges.161, 162 Modest increases in DNA melting 

temperature, +5 °C, were previously reported for [Ru(phen)3]2+ and 

Rh(phen)3]3+.136  Monofunctional cationic complexes, such as [Pt(NH3)3Cl]+ 

and [Pt(dien)Cl]+ (dien = diethylenetriamine) that interact through 

coordination to the N7 position of guanine typically shift the Tm values to 

lower temperatures.163-165 In these systems, however, the destabilization 

results from conformational changes that take place upon guanine 

coordination competes with electrostatic screening, thus making shifts in Tm 

highly dependent on nucleic acid sequence and salt concentration.164, 165 

Complexes 1 and 2 may be able to efficiently screen the charge on the 

DNA backbone through axial interactions with the oxygen atoms of the 

phosphodiester backbone of the duplex, thus resulting in Tm values of 

+10(2) °C and + 7(2) °C, respectively. The blue-shift in the Rh2()Rh2() 

transition observed in the absorption spectrum of Rh2(µ-O2CCH3)4 upon 

addition of DNA is indicative of axial coordination,166 however, due to its 

neutral charge, no shift in the DNA melting temperature was observed. The 

lower shift in Tm of 3, +4 °C, may be due to the inability of the complex to 

interact effectively with the DNA backbone, thus reducing charge screening.  
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Figure II-12. Melting temperature profile of 100 M calf-thymus DNA 
(1mM phosphate, 2mM NaCl, pH = 7.2) alone ( - ), and with 20 M 1 ( - ), 
2 ( - ) and 3 ( - ). 
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Transcription Inhibition 

The inhibition of transcription by each metal complex was determined 

by recording the imaged RNA produced during the transcription reaction as 

a function of complex concentration, while keeping the concentrations of all 

other components constant.  For complex 1 (Figure II-13), the RNA produced 

decreases relative to the control lane (no metal complex, Lane 1) as the 

complex concentration is increased from 1.5 to 7.5 M (Lanes 2 – 5).  In 

contrast, no decrease in the RNA transcribed is observed upon addition of up 

to 300 M of 3 (Figure II-14).  The concentration of each complex required to 

inhibit 50% of the transcription, IC50, was determined from interpolation of 

plots of percent inhibition as a function of increasing complex concentration. 

The value of IC50 for 1 and 2 are 3.4 M and 54 M, respectively, while that 

of 3 could not be measured but is greater than 300 M (Table II-6).  

A strong correlation between the DNA melting temperature of 

mononuclear Ru(II) and Rh(III) complexes with transcription inhibition has 

been previously reported.136 It is believed that the stabilization of the DNA 

duplex structure suppresses bubble formation, thus reducing the amount of 

transcribed RNA.   In the present work, this trend is also observed, with an 

increase in transcription inhibition with greater duplex stabilization. 
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Figure II-13.  Ethidium bromide stained agarose gel showing RNA 
produced in the transcription reaction in the absence (lane 1) and in the 
presence of 2 M (lane 2), 4 M (lane 3), 6 M (lane 4), and 10 M (lane 5) 
complex 1. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure II-14. Ethidium bromide stained agarose gels showing RNA 
produced in the transcription in the presence of complex 3:  (a) lane 1, 0 M; 
lane 2, 10 M, lane 3, 20 M; lane 4, 30 M; (b) lane 1, 0 M; lane 2, 50 M; 
lane 3, 100 M; lane 4 300 M.  
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DNA Photocleavage Experiments  

As the data in Figure II-15 attest, compound 1 photocleaves plasmid 

DNA upon absorption of photons in the visible region (irr ≥ 395 nm, 15 min) 

and in the presence of an electron acceptor (3-CN-1-Me-py+). The control line 

in Figure II-15 (Line 1), which contains 100 µM pUC18 plasmid alone in the 

dark, shows the position of the undamaged supercoiled pUC18 plasmid 

(Form I) with a small amount of nicked, circular DNA (Form II). It is evident 

from Lanes 2 and 5 that exposure of 100 µM pUC18 plasmid to 25 µM 1 and 

3 in the dark, respectively, and in presence of an electron acceptor, does not 

result in DNA cleavage. Irradiation of 100 µM pUC18 in the presence of 25 

µM 1 (irr ≥ 395 nm, 15 min) results in the formation of nicked DNA (Form 

II) as shown in Lanes 3 and 4, either in presence or absence of oxygen, 

respectively. Compound 3, with no open axial positions, does not show DNA 

cleavage in presence or absence of oxygen, as observed from the results in 

Lanes 6 and 7. 

    

 

 

 

 

 

 



77 
 

 

 

 

 

 

 

 

 

 

Figure II-15. Ethidium bromide agarose gel (1%) of 100 µM pUC18 plasmid 
in the presence of 25 µM metal complex in 5 mM Tris, 50 mM NaCl (pH = 
7.5) and 2 mM of 3-CN-1-Me-py+, irradiated with irr ≥ 395 nm. Lane 1: 
plasmid only, dark; Lane 2: plasmid + 1, dark; Lane 3: plasmid + 1, irr. 15 
min in the presence of oxygen; Lane 4: plasmid + 1, irr. 15 min in the 
absence of oxygen; Lane 5: plasmid + 3, dark; Lane 6: plasmid + 3, irr. 15 
min in the presence of oxygen; Lane 7: plasmid + 3, irr. 15 min in the 
absence of oxygen. 
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In Vitro Cytotoxicity 

The compounds in this study were tested using the MTT cell 

proliferation assay on two human cell lines, viz., HeLa and COLO-316.  Cells 

were incubated with different concentrations of compounds for 24 h and 48 

h, determination of a LC50 value was not possible due to the low cytotoxicity 

of these compounds. As shown in Table II-7, none of the compounds are able 

to kill more than 15% of either cancer cell lines at concentrations as high as 

400 M even at 48 h incubation. It also seems that COLO-316 cells are more 

sensitive than HeLa cells to this series of compounds (Table II-7).  

  

 
Table II-7. Percentage of death cells after incubation with compounds 1 – 
3 compared with a control of 100 % live cells. 

Complex 
HeLa COLO-316 

24 h 48 h 24 h 48 h 

1 10.0 % 13.2 % 11.7 % 14.3 % 

2 9.6 % 12.4 % 9.8 % 10.3 % 

3 9.6 % 12.3 % 9.1 % 9.9 % 
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Conclusions 

The properties of dirhodium(II,II) complexes that possess one or two 

accessible axial coordination sites, cis-[Rh2(µ-O2CCH3)2(np)2]2+ (1) and cis-

[Rh2(µ-O2CCH3)2(np)(pynp)]2+ (2), respectively, were compared to a 

compound in which the axial sites positions are blocked, namely cis-[Rh2(µ-

O2CCH3)2(pynp)2]2+ (3). In the latter compound, the bridging pynp ligand 

blocks both the axial coordination sites.  The electronic and electrochemical 

properties of the complexes were investigated, and TDDFT calculations were 

used to aid in the assignments.  The ability of the complexes to stabilize 

duplex DNA and to inhibit transcription in vitro show a profound effect on 

the availability of an axial coordination site on reactivity toward 

biomolecules.  

The importance of the availability of a free axial coordination posititon 

is also evident from the photocleavage studies. DNA photocleavage activity is 

only observed with compound 1 in the presence of an electron acceptor, 

whereas compound 3 does not nick the plasmid DNA. In cellulo studies were 

not conclusive due to the lack of an LC50 value. Compounds with LC50 

values higher than 500 µM are not very appealing to the medicinal 

chemistry arena, since they are considered to be no-toxic towards cancer 

cells. From the MTT assay it could be inferred that compound 1, with both 

axial positions free, has the most potential to become cytotoxic. The combine 

results agree with the fact that an accessible axial position is required for 

the complex to interact with DNA and/or accomplish biological functions.  
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CHAPTER III 

ROLE OF THE DISTAL SUBSTITUENT ON THE BIOLOGICAL 

ACTIVITY OF DIRHODIUM (II,II) COMPLEXES* 

 

Introduction 

Anti-cancer agents such as actinomycin D,167-170 anthracyclines,171-173 

daunorubicin,174-176 and cisplatin,42, 177 among others178-189 have been shown 

to inhibit transcription. In general, the mechanism of transcription 

inhibition by these drugs takes place via their modification of, interaction 

with, or damage of template DNA.42, 167-177 In other cases, the mechanism 

involves the binding of the drug to the active site of RNA polymerase, 

blocking of the DNA/RNA channel,190, 191 or by targeting transcription 

factors.192  In recent years, studies have shown that several dirhodium 

compounds are capable of inhibiting the synthesis of RNA in vitro when 

linear DNA template and T7-RNA polymerase (T7-RNAP) are used.98, 99 

Studies aimed at unearthing the mechanism of transcription 

inhibition by dirhodium complexes revealed that this mechanism is 

dependent on the coordination environment of the dirhodium core, and that 

it involves the binding of the compound to either the DNA template or the 

polymerase.98, 99 Specifically, the complexes Rh2(µ-O2CCF3)4, Rh2(µ-

HNCOCF3)4 and [Rh2(µ-O2CCH3)2(CH3CN)6]2+ appear to inhibit transcription 

via binding to the enzyme T7-RNAP, whereas Rh2(µ-HNCOCH3)4 does not 

proceed in a similar fashion.99  Table III-1 lists a compilation of the known 

targets for various transcription inhibitors including dirhodium complexes.  

*Reprinted in part from “Redox-regulated Inhibition of T7 RNA Polymerase via 
Establishment of Disulfide Linkages by Substituted DPPZ Dirhodium (II,II) 
Complexes” J. Dafhne Aguirre, Helen T. Chifotides, Alfredo M. Angeles-Boza, 
Abdellatif Chouai, Claudia Turro, and Kim R. Dunbar. Inorg. Chem. 2009, 48 (10), 
4435 – 4444. Copyright 2009, with permission from the American Chemical Society. 
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Table III-1.   Transcription Inhibition of Various Compounds and their 
Binding Mechanism. 

Compound Binding 
Actinomycin D DNA Template181, 193 
Anthracycline DNA Template181 
Daunorubicin DNA Template181 

Cisplatin DNA Template42 
Rh2(µ-O2CCF3)4 T7-RNAP99 

Rh2(µ-HNCOCF3)4 T7-RNAP99 
[Rh2(µ-O2CCH3)2(CH3CN)6]2+ T7-RNAP99 

Rh2(µ-O2CCH3)4 T7-RNAP98, 99 
cis-[Rh2(O2CCH3)2(phen)2]2+ T7-RNAP98 

Rifampicima DNA/RNA channel190 
Captanb DNA/RNA channel191 

Flavopiridolc Transcription factors169, 185, 192 
aRifampicim is an antituberculosis agent, bCaptan is a fungicide, 
cFlavopiridol is anticancer and anti HIV agent. 
 

 

This chapter presents the results of a study aimed at probing the 

effect of a series of cationic dirhodium complexes on the transcription 

process. The cis-[Rh2(μ-O2CCH3)2(R1R2dppz)2]2+ (R1R2dppz = substituted 

dppz; Figure III-1) compounds used in this study are equipped with dppz 

ligands that have either electron donating or withdrawing substituents on 

the ring (Figure III-2). A combination of DFT calculations, EPR spectroscopy 

and electrochemistry were used to probe the electronic/redox effect of the 

electron withdrawing or donating substituent ligand on the transcription 

inhibition experiment.  
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Figure III-1. Dirhodium complexes cis-[Rh2(O2CCH3)2(R1R2dppz)2]2+. 
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Figure III-2. Structure of ligands described in this chapter. 
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Experimental Section 

Materials  

Agarose, ethidium bromide, EDTA, Tris/HCl and RNA loading 

solution were purchased from Sigma and used as received. The pGEM 

linear DNA control template (3995 bp) was purchased from Promega; the 

T7-RNAP (50 units/µL) and 5X RNA transcription buffer were purchased 

from Invitrogen. The protein marker Precision ‘Plus Protein Dual Color 

Standards’ was purchased from Bio-Rad. 

The reagents 1,10-phenanthroline, 1,2-phenylenediamine, nitric 

acid, sulfuric acid and potassium bromide were purchased from Acros. 

Anhydrous (99.9%) DMF (N,N-dimethylformamide) was purchased from 

Aldrich. The reagents 4,5-dimethoxy-1,2-phenylenediamine dihydrochloride 

and 4,5-dichloro-1,2-phenylenediamine were obtained from Alfa-Aesar. The 

reagents 4,5-dimethyl-1,2-phenylenediamine and 4-cyano-o-

phenylenediamine were purchased from TCI and Sigma-Aldrich, 

respectively. The complex RhCl3·H2O was purchased from Pressure 

Chemicals. The ligands phendione, dipyrido[3,2-:2´,3´-c]phenazine 

(dppz),194 7,8-dimethyldipyrido[3,2-:2´,3´-c]phenazine (Me2dppz),195 7,8-

dinitrodipyrido[3,2-:2´,3´-c]phenazine ((NO2)2dppz),196 and 7,8-

dichlorodipyrido[3,2-:2´,3´-c]phenazine (Cl2dppz)197 were prepared 

according to published literature procedures. The compounds Rh2(µ-

O2CCH3)4(CH3OH)2198 and cis-[Rh2(µ-O2CCH3)2(dppz)2](O2CCH3)2103 (1) 

were prepared according to published procedures.194-197 
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Synthesis of cis-{Rh2(O2CCH3)2[(OMe)2dppz]2}(O2CCH3)2 (2)  

A solution of Rh2(O2CCH3)4 (161 mg, 0.36 mmol) in acetonitrile (12 mL) 

was treated with solid (OMe)2dppz (250 mg, 0.73 mmol) and the suspension 

was refluxed for 24 h under nitrogen. After this time period, the resulting 

brown solid was collected by filtration in air, washed with acetonitrile and 

dried under vacuo (81% yield). ESI-MS for {Rh2(O2CCH3)2[(OMe)2dppz]2}2+ 

m/z: 504.1. 1H NMR (CD3OD), δ (ppm): 1.70 (s, 6H, CH3CO2), 2.60 (s, 6H, 

CH3CO2), 4.0 (s, 12H, OMe), 7.10 (s, 4H, dppz), 7.71 (m, 4H, dppz), 8.58 (m, 

4H, dppz), 8.98 (m, 4H, dppz). Elemental, Calculated for 

Rh2C48H40N8O12.8H2O: C 45.36, N 8.82, H 4.44. Found: C 45.00, N 8.91, H 

4.25. 

Synthesis of cis-{Rh2(O2CCH3)2(Me2dppz)2}(O2CCH3)2 (3)  

A solution of Rh2(O2CCH3)4(CH3OH)2 (163 mg, 0.32 mmol) in 

acetonitrile (12 mL) was treated with solid Me2dppz (200 mg, 0.65 mmol) and 

the suspension was refluxed for 24 h under nitrogen. The resulting brown-red 

solid was collected by suction filtration in air, washed with acetonitrile and 

dried in vacuo (84% yield). ESI-MS for [Rh2(O2CCH3)2(Me2dppz)2]2+ m/z: 

472.0  1H NMR (CD3OD), δ (ppm): 1.75 (s, 6H, CH3CO2), 2.58 (s, 12H, Me), 

2.60 (s, 6H, CH3CO2), 7.50 (s, 4H, dppz), 7.71 (m, 4H, dppz), 8.60 (m, 4H, 

dppz), 8.93 (m, 4H, dppz). Elemental, Calculated for Rh2C48H40N8O8.10H2O: C 

41.39, N 8.04, H 3.62. Found: C 41.99, N 8.01, H 3.75. 

Synthesis of cis-{Rh2(O2CCH3)2(Cl2dppz)2}(O2CCH3)2 (4)  

A solution of Rh2(O2CCH3)4(CH3OH)2 (72 mg, 0.14 mmol) in 

acetonitrile (12 mL) was treated with solid Cl2dppz (100 mg, 0.28 mmol) and 

the suspension was refluxed for 24 h under nitrogen. The dark brown product 
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was collected by suction filtration, washed with acetonitrile and dried in 

vacuo (96% yield). ESI-MS for [Rh2(O2CCH3)2(Cl2dppz)2]2+ m/z: 512.9 

Elemental, Calculated for Rh2C44H28N8O8Cl4.7H2O: C 38.03, N 8.05, H 2.76. 

Found: C 38.42, N 8.16, H 2.56. 

Synthesis of cis-{Rh2(O2CCH3)2(CNdppz)2}(O2CCH3)2 (5)  

A solution of Rh2(O2CCH3)4 (100 mg, 0.23 mmol) in acetonitrile (12 mL) 

was treated with solid CNdppz (139 mg, 0.45 mmol) and the suspension was 

refluxed for 24 h under nitrogen. The brown solid was collected by suction 

filtration, washed with acetonitrile and dried in vacuo (86% yield). ESI-MS 

for [Rh2(O2CCH3)2(CNdppz)2]2+ m/z: 469.0. 1H NMR (CD3OD), δ (ppm): 1.62 

(s, 6H, CH3CO2), 2.60 (s, 6H, CH3CO2), 7.78, 7.95, 8.18, 8.30, 8.72, 8.98, 9.08, 

9.18 (dppz).  Elemental, Calculated for Rh2C46H30N10O8.3H2O.CH3CN: C 

48.17, N 12.87, H 3.03. Found: C 47.95, N 12.30, H 3.11. 

Synthesis of cis-{Rh2(O2CCH3)2[(NO2)2dppz]2}(O2CCH3)2 (6) 

 A solution of Rh2(O2CCH3)4(CH3OH)2 (68 mg, 0.13 mmol) in 

acetonitrile (12 mL) was treated with solid (NO2)2dppz (100 mg, 0.27 mmol) 

and the suspension was refluxed for 24 h under nitrogen. The resulting dark 

brown/black suspension was cooled to room temperature and filtered. The 

resulting product was washed with acetonitrile and dried to afford a dark 

brown solid (91% yield). Elemental, Calculated for 

Rh2C44H28N12O16.4H2O.CH3CN: C 40.63, N 13.39, H 2.59. Found: C 40.91, N 

13.77, H 2.68. 

Instrumentation  

The 1H NMR spectra were recorded on Varian 300 MHz spectrometers 

and referenced to the residual proton impurities in the relevant deuterated 
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solvents. The UV absorption measurements were performed with a 

Shimadzu UV 1601PC spectrophotometer. X-band EPR spectra were 

recorded on a Bruker EMX spectrometer using a Hewlett-Packard 5352B 

microwave frequency counter, the ER4102 ST cavity and the Oxford 

Instruments ESR 900 Cryostat. The ethidium bromide stained agarose gels 

(1 %) were imaged on an AlphaImager 2000 transilluminator (Alpha 

Innotech Corporation).  

Methods  

Cyclic Voltammetric Measurements  

Electrochemical measurements were carried out by using an H-CH 

Electrochemical Analyzer model 620A. The cyclic voltammetric experiments 

were performed in 99.9% dry dimethylformamide (DMF), with 0.2 M tetra-n-

butyl ammonium hexafluorophosphate (TBAPF6) as the supporting 

electrolyte. The working electrode was a BAS Pt disk electrode, the reference 

electrode was Ag/AgCl (in a saturated NaCl solution) and the auxiliary 

electrode was a Pt wire. 

Density Functional Theory (DFT) Calculations  

DFT calculations were performed on the dirhodium complexes 1-6 

with the hybrid Becke-3 parameter exchange functional and the Lee-Yang-

Parr non-local correlation functional (B3LYP) implemented in the Gaussian 

98 program suite.124, 126, 127 Geometry optimizations were carried out using 

the SDD basis set-relativistic effective core potential (RECP), which 

combines the Huzinaga–Dunning double- basis set on the main group 

elements with the Stuttgart–Dresden basis set-RECP combination for the 

rhodium atoms, while for all other atoms, the 6-311G(d) basis set was 
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employed.129 Formate ligands were used instead of acetates in the 

computationally modeled complexes to simplify the calculations. The 

molecules were embedded in a dielectric medium as an approximation to 

include solvent polarization effects. The inclusion of the dielectric medium 

was considered using the Tomasi’s Polarized Continuum Model (PCM) 

reaction field model for the optimization of the molecular geometry.199, 200 All 

calculations were performed on an Altix 3700 128-processor SGI computer or 

a p575 640-processor IBM computer located at the Laboratory for Molecular 

Simulations at Texas A&M University. 

Transcription Inhibition Experiments  

In vitro transcription experiments were conducted by triplicate using 

T7-RNAP (2.3 units). The DNA template was the pGEM linear plasmid (120 

µM bases) which results in two transcripts of length 1065 and 2346 bases. 

The transcription reaction was performed for 45 min at 37 ºC using 

transcription buffer (40 mM Tris/HCl pH = 8.0, 8 mM MgCl2, 25 mM NaCl), 

1.0 mM of each ATP, CTP, GTP and UTP. The inhibition of mRNA 

production by the dirhodium compounds was detected in vitro by the 

measurement of the RNA generated upon addition of increasing amounts of 

metal complex to the assay. The concentration of each complex at which 50% 

of the RNA is transcribed, IC50, was calculated by interpolation of the 

integrated areas of the imaged RNA signal of each lane of the gel conducted 

with various concentrations of a given complex. All stock solutions of the 

metal complexes were prepared in 1% DMSO in double-distilled H2O 

(ddH2O). For the experiments, the metal stock solutions were diluted 100 

fold with ddH2O making them 0.01% in DMSO. Control experiments indicate 
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that the amount of DMSO introduced into each transcription assay does not 

interfere with the process. All water used during the assay and for dilution 

of the compounds was nuclease free grade. The concentration of T7-RNAP 

purchased from Invitrogen was determined by measuring the absorbance at 

280 nm with an extinction coefficient ε280 = 1.4 x 105 M-1 cm-1;201, 202 the T7-

RNAP concentration in each well for the transcription assays was 

approximately 10 µM. 

Electrophoretic Mobility Shift Assay  

Aliquots of 1.5 µL of T7-RNAP were incubated with the dirhodium 

complexes at a concentration equal to their IC50 value calculated from the 

transcription inhibition assay (for each complex), 3.5 µL transcription buffer 

and water to a total volume of 15 µL. After incubation for 1 hour at 37 °C, 

the samples were mixed with 5X loading buffer and loaded on a non-

denaturing 10% polyacrylamide gel. Electrophoresis was run at 120 V for a 

period of 5 hours. The gel was stained with Brilliant Blue solution and 

subsequently imaged.   
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Results and Discussion 

Synthesis and Characterization 

The dirhodium complexes 1-6 were prepared by refluxing Rh2(μ-

O2CCH3)4(CH3OH)2 with the appropriate dppz ligand (Figure III-3); the 

reactions involve substitution of two acetate groups on the dirhodium core 

by the unsubstituted/substituted dppz ligands (Figure III-2).  

Complexes 1-6 were characterized by MS, 1H NMR and UV 

spectroscopies. The UV/Vis data for the ligands from the present or 

previous spectroscopic studies are listed in Table III-2. The absorption 

bands of the ligands and the complexes in the 360-370 nm region are 

assigned to dppz π-π* ligand centered (LC) transitions. Stronger LC 

transitions are observed at energies higher than 300 nm. Apart from the 

LC transitions, the complexes exhibit several broad and intense bands that 

may are assigned as MLCT bands. 

Electrochemistry  

Electrochemical data for the dppz ligands are summarized in Table 

III-3. As expected, substitution of positions 7,8 of dppz with electron 

withdrawing  groups (Cl, CN and NO2) results in less negative reduction 

potentials as compared to unsubstituted dppz, whereas electron donating 

groups (OMe, Me) in the same positions have the opposite effect.203, 204 For 

the investigated region in DMF (1.3 – -2.0 V), the ligands CNdppz and 

(NO2)2dppz, exhibit two reversible reduction processes (Table III-3). All of 

the other ligands, namely Cl2dppz, dppz, (OMe)2dppz and (Me)2dppz exhibit 

a single reversible one-electron reduction process. 
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Figure III-3. Schematic representation of the syntheses of compounds 1 – 6. 
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Table III-2. Electronic absorption data for Dppz ligands and dirhodium 
complexes 
Compound max/nm (ε/104M-1 cm-1) Solvent Ref. 

(OMe)2dppz 280 (3.62), 379 (1.22), 400 (2.23) CH2Cl2 Pres. work 

2 213 (7.96), 295 (9.0), 396 (3.75) MeOH Pres. work 

Me2dppz 274 (6.11), 347 (0.75), 355 (0.95), 

366 (1.39), 374 (1.22), 386 (1.82) 

CH2Cl2 197,203 

3 210 (63.2), 285 (10.68), 380 (18.7) MeOH Pres. work 

dppz 269 (5.12), 343 (0.91), 351 (1.01), 

360 (1.23), 368 (1.11), 379 (1.29) 

CH2Cl2 203 

1 203 (6.94), 276 (8.64), 363 (1.52), 

434 (0.55) 

H2O 103 

Cl2dppz 272 (5.39), 370 (1.54), 391 (2.13) CH2Cl2 197 

4 218 (3.5), 279 (6.85), 371 (1.56), 

391 (1.55) 

 Pres. work 

CNdppz 271 (5.86), 295 (3.79), 305 (2.7), 

367 (1.7), 387 (1.8) 

CH2Cl2  Pres. work 

5 211 (9.81), 271 (16.87), 347 (2.89) MeOH Pres. work 

(NO2)2dppz 228 (5.45), 233 (5.25), 249 (4.40), 

293 (2.01), 304 (1.67), 389 (0.61) 

CH2Cl2 196 

6 284 (9.77), 387 (2.18) MeOH Pres. work 
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The ligand-based reduction potentials of complexes 1-6 are expected 

to follow the same trend as the corresponding ligands. It is well established 

that, for complexes with ligand-based reductions, binding of the metal 

centers shifts the reductions to more positive potentials197, 203, 205 thus 

giving rise to the corresponding order 2 < 3 < 1 < 4 < 5 < 6 for the ease of 

reduction for the series of dirhodium compounds under investigation.  
 

 

 

Table III-3. Electrochemical reduction potentials (vs. Ag/AgCl) in dry DMF 
for substituted Dppz ligands. 

L Ered (V)a 

(OMe)2dppz 1.25 

Me2dppz 1.14 

dppz 1.06 

Cl2dppz 0.83 

CNdppz 0.74,   1.50 

(NO2)2dppz +0.10,  0.27 

aThe reduction potentials were measured in dry DMF with a Ag/AgCl 
reference electrode. All reduction processes were reversible. 
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Transcription Inhibition  

The effect of the distal substituent on the efficiency of each 

dirhodium complex to inhibit transcription was studied using a T7-RNA 

polymerase transcription system. Due to the fact that the compounds are 

not very soluble in water, a study about the effect of the solvent on the 

transcription reaction was performed (Figure III-4). Solvents in which 

usually dirhodium compounds are the most soluble were chosen to perform 

this assay. Different percentages of acetonitrile, DMSO and methanol were 

used. A concentration of up to 3.5% DMSO used for the transcription 

reaction does not cause a significant reduction in the transcription 

efficiency (Figure III-4).  

The inhibition of transcription was determined by recording the 

imaged RNA produced during the transcription reaction as a function of 

complex concentration, while keeping the concentrations of all other 

components constant. Figure III-5 shows a typical imaged gel obtained for 

cis-{Rh2(O2CCH3)2(Cl2dppz)2}(O2CCH3)2 (4); the produced RNA decreases 

relative to the control lane (no metal complex, lane 1) as the complex 

concentration  increases (lanes 2 – 5). The IC50 values, the concentration of 

each complex required to inhibit 50% of the transcription in vitro, are listed 

in Table III-4.  For the sake of comparison, the transcription inhibition 

assay was conducted in the presence of increasing amounts of cisplatin and 

dirhodium tetraacetate. The measured IC50 values for cisplatin and 

dirhodium tetraacetate are 10.9 and 13.6 µM, respectively under the same 

experimental conditions as for compounds 1-6. 
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Figure III-4. Solvent effect on the transcription reaction. 
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Figure III-5. Ethidium bromide stained agarose gel (1%) of transcribed 
RNA produced from the transcription reaction in the absence (lane 1; 
control) and in the presence of increasing concentrations of compound 4 in 
μM. 
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Table III-4. IC50 values for compounds 1-6. 

Complex L IC50 (µM)a 

2 (OMe)2dppz 1.1 

3 Me2dppz 1.5 

1 dppz 2.0 

4 Cl2dppz 2.4 

5 CNdppz 2.5b 

6 (NO2)2dppz 3.2 

aThe complex solutions were prepared in 1% DMSO/99% H2O; The IC50 values 
recorded for cisplatin and dirhodium tetraacetate under the same 
experimental conditions are 10.9 and 13.6 μM, respectively. bIf the complex is 
dissolved in 1% MeOH/99% H2O, the IC50 value is the same. 

 

An assessment of the IC50 values for the complexes studied in this 

chapter (Table III-4) reveals that a higher concentration of dirhodium 

complex is required to inhibit the transcription reaction as the substituents 

on the dppz ligand become more electron-withdrawing. A mechanism of 

transcription inhibition that involves binding of complexes 1-6 to the DNA 

was ruled out for several reasons. Previous studies in our laboratories with 

the unsubstituted bis dppz complex cis-[Rh2(μ-O2CCH3)2(dppz)2]2+ showed 

that it does not intercalate between the DNA bases.103 Additionally, binding 

of 1-6 to the NTP’s can be ruled out as a mechanism of transcription 

inhibition because each NTP is present in large excess (1 mM) relative to the 

concentration of the metal complexes (< 5 µM) in the transcription assays. 

The aforementioned observations for 1-6 along with the good electron-

accepting properties of dppz,203, 206, 207 led us to consider an alternative 
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mechanism of transcription inhibition involving redox reactions with the 

cysteine residues of T7-RNA. 

Interaction of Dirhodium Complexes with Sulfhydryl Groups 

The T7-RNA polymerase, a relative easy and fairly well studied 

system,208-214 has 12 cysteine residues in the free sulfhydryl forms.202, 215 

Studies have shown that substitution of seven of these residues with serine 

residues can be accomplished without considerable reduction of the activity, 

while substitution of the remaining five resulted in complete loss of 

activity.216 Moreover, reactions of the enzyme with sulfhydryl binding 

compounds such as iodoacetamide217, 218 or p-hydroxymercuribenzoate219 

resulted in complete inactivation of the T7-RNAP enzyme as well. Given this 

information, the interaction of the complexes with cysteine was studied by 

assessing their effect on the cysteine residues of T7-RNAP by PAGE mobility 

shift assay. These studies were complemented with an analysis of the 

product of reduction of the compounds after interaction with cysteine by ESI-

MS spectrometry.  

Formation of disulfide bonds in T7-RNAP after incubation with the 

dirhodium complexes at a concentration equal to their IC50 at 37 ºC for 1h, 

was evaluated by polyacrylamide gel electrophoresis under non-reducing 

conditions. Migration on the PAGE gel is sensitive to modifications in the 

conformation of the protein. Formation of intraprotein disulfide bonds 

between proximal cysteine thiol groups220, 221 and other oxidized related 

species such as sulfenic (S-OH)/sulfinic (SO2H) acids and disulfide S-oxide,220, 

221leads to species that migrate slightly slower on the gel than the reduced 

enzyme.222  Formation of high molecular  weight  species such as trimers is 
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Figure III-6. PAGE non-denaturing gel; Protein marker (lane 1; labeled on 
the side in kDa); T7 RNPA incubated at 37 ºC (lane 2); T7 RNPA incubated 
at 37 ºC in the presence of 1 (lane 3); T7 RNPA incubated at 37 ºC in the 
presence of 1 followed by addition of DTT (dithiothreitol) (lane 4); T7 RNPA 
incubated at 37 ºC in the presence of 2 (lane 5); T7 RNPA incubated at 37 ºC 
in the presence of 2 followed by addition of DTT  (lane 6). 
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also possible due to the formation of interprotein disulfide bonds between the 

cysteine thiol groups on the surface of T7-RNAP.220 For the dirhodium 

species under investigation, the formation of all of the aforementioned high 

molecular species is feasible to conclude from the data in Figure III-6. 

Figure III-6 shows a native PAGE gel of the reaction product after 

incubation of T7-RNAP with compounds 1 and 2. In lanes 3 and 5, the 

product of reaction of the compound and the enzyme migrates slightly slower 

as compared to the native enzyme in lane 2. Additionally, at the top of these 

lanes, two new bands appear at higher molecular weights (> 250 kDa) than 

T7-RNAP. Upon addition of the reducing agent dithiothreitol (DTT) to the 

incubated reaction solutions of the dirhodium compounds (lanes 4 and 6), the 

intermolecular disulfide cross-links responsible for the high molecular weight 

bands of the T7-RNAP disappear, thus indicating that the interprotein 

disulfide bonds are completely cleaved by reduction. The oxidation products 

in the bands close to the 100 kDa marker are only partially reversed. Similar 

results for the PAGE gels were recorded for complexes 3-6. These findings 

indicate that the oxidation products formed between T7-RNAP and 

complexes 1-6 are partially or completely reversible. 

The oxidizing capability of complexes 1-6 was also monitored by mass 

spectrometry. Accordingly, each complex was reacted with cysteine in a 1:1 

ratio and the resulting paramagnetic reduction products were immediately 

subjected to mass spectrometry analysis. Addition of cysteine to the red-

brown dirhodium solutions leads to the instantaneous appearance of an 

intensely colored blue/violet solution with an intense absorption band at ~ 

800 nm. An analogous intense blue color was previously reported for the 
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reduced dirhodium species [Rh2(O2CCH3)2(bpy)2(MeCN)2]+.141 The ESI-MS 

spectra for these reactions contains a peak corresponding to the [Rh2(μ-

O2CCH3)2(R1R2dppz)2(Cyst) + 1]+ species (Figure III-7). The appearance of 

this peak suggest that the dirhodium product is axially coordinated to the 

cysteine thiol, which leads to an electron transfer to the dirhodium species to 

form the radical species [Rh2(O2CCH3)2(Me2dppz)2]+. Subsequently the thiyl 

radical (RS) is released and couples with another thiyl radical to form the 

cysteine disulfide product (RS-RS).221, 223 As has been suggested in other 

cases, thiol oxidation can also take place in two steps through oxidation to 

the sulfenic acid (S-OH) or the disulfide S-oxide.220, 221, 223 

Density Functional Theory (DFT) Calculations  

Electronic structure calculations were conducted on the cations 

[Rh2(O2CCH3)2(R1R2dppz)2]2+ (R1 and R2 defined in Figure III-1) to assess the 

effect of the R1R2 groups of the dppz ligands on the molecular orbitals of 1-6. 

As indicated from the results in Table III-5 and visualized from the orbitals 

depicted in Figure III-8, in general, all of the complexes possess LUMO 

orbitals that are primarily of ligand (dppz) character (> 95%), with 1-3 having 

a slightly higher metal contribution as compared to 4-6 which possess 

electron-donating substitutents on the dppz ligand (Table III-5). In particular, 

it is obvious that the LUMO orbitals of the complexes are phenazine-

centered203, 206, 207 with the percent phenazine contribution increasing as the 

electron-donating character of the dppz-substituents increases (Table III-6).  
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Figure III-7. ESI-MS spectrum for the reaction of [Rh2(O2CCH3)2(Me2dppz)2]2+ with cysteine  [peak at m/z 
1064 corresponding to [Rh2(O2CCH3)2(Me2dppz)2(Cyst) + 1]+.]  
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Figure III-8. HOMO and LUMO Orbitals for Compounds 1-6. 
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Table III-5. Metal orbital contribution to the HOMO’s and LUMO’s of 1-6. 

Complex L HOMO (%) LUMO (%) 

2 (OMe)2dppz 6.7 4.3 
3 Me2dppz 0.4 1.7 
1 dppz 74.8 1.2 

4 Cl2dppz 73.8 0.6 

5 CNdppz 79.7a, 79.8b 0.6,a 0.6b 

6 (NO2)2dppz 82.4 0.4 
aCalculated for the anti isomer. bCalculated for the syn isomer. 

 

Table III-6. Phenazine orbital contribution to the LUMO’s of complexes 1-
6. 

Complex L phenazine 
(%) 

2 (OMe)2dppz 51.3 
3 Me2dppz 75.9 

1 dppz 80.7 

4 Cl2dppz 87.2 

5 CNdppz 87.8,a 69.5b 
6 (NO2)2dppz 90.8 

aCalculated for the anti isomer. bCalculated for the syn isomer. 
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Conclusions 

In the present study, the combined application of electrochemical,  

spectroscopic, computational and biochemical methods has established that 

the dirhodium complexes cis-[Rh2(O2CCH3)2(R1R2dppz)2]2+ (R1R2dppz = 

substituted dppz, Figure III-1) comprise a sensitive redox-regulated series of 

T7-RNAP inhibitors. The behavior can be readily tuned by changing the 

electron–withdrawing or –donating ability of the dppz substituents which 

affects the ease of the complex reduction and ultimately their reactivity with 

the T7-RNAP accessible thiol groups. The process of transcription is 

inhibited in vitro by small amounts of 1-6 via formation of intra- and inter-

protein disulfide bonds that affect the critical sulfhydryl cysteine groups of 

the T7-RNAP. The dominant phenazine character of the LUMO orbitals for 

the complexes 1-6 was corroborated by electronic structure calculations 

which demonstrated that the unpaired electron is completely delocalized in 

the phenazine orbitals in the case of 4-6 which possess electron withdrawing 

substituents on the dppz ligands. The high sensitivity of these dirhodium 

complexes and the potential to tune their redox activity towards T7-RNAP 

by modifying the dppz substituents render them promising candidates for 

the control and/or inhibition of other important biochemical processes. 
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CHAPTER IV 

MONOSUBSTITUTED DIRHODIUM (II,II) COMPLEXES :  

TARGETING NUCLEAR DNA* 

Introduction 

Dirhodium carboxylate complexes are among the most promising non-

platinum compounds known to date, but the mechanism of their antitumor 

activity has not been elucidated.69, 71, 106, 112, 224, 225 The first study aimed at 

revealing the cellular target(s) of these complexes focused on the binding 

affinity of  Rh2(μ-O2CCH3)4 towards biological relevant molecules such as 

DNA, ribonuclease, and albumin among others.69, 71 The experiment revealed 

the affinity of Rh2(μ-O2CCH3)4 as follows: poly-C < native DNA ≤ poly-G < 

albumin < denature DNA < ribonuclease A << poly-A.69 Because of this 

result, native DNA was dismissed as a possible target in a cellular 

environment for all dirhodium complexes,225-227    not taking into account the 

differences in reactivity among the distinct dirhodium compounds. 

In 2005,  a study aimed at investigating the interactions of ds-DNA 

and dirhodium carboxylate compounds revealed that Rh2(μ-O2CCH3)4, Rh2(μ-

O2CCF3)4, and [Rh2(μ-O2CCH3)2(CH3CN)6]2+ are capable of forming DNA 

interstrand crosslinks.97 It was also observed that other adducts, namely 

monofunctional  and  intrastrand adducts,  are formed during the reaction 

 

*Reprinted in part from “Live Cell Cytotoxicity Studies: Documentation of the 
Interactions of Antitumor Active Dirhodium Compounds with Nuclear DNA” J. 
Dafhne Aguirre, Alfredo M. Angeles-Boza, Abdellatif Chouai, Jean-Philippe Pellois, 
Claudia Turro, and Kim R. Dunbar. J. Am. Chem. Soc. 2009, 131 (32), 11353 – 
11360. Copyright 2009, with permission from the American Chemical Society.  
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between these complexes and DNA. The adducts formed between DNA and 

the dirhodium core most likely involve the full variety of coordination modes 

observed in model complexes, including axial/axial (ax/ax), axial/equatorial  

(ax/eq), and equatorial/equatorial (eq/eq).96, 97 All these experiments, 

however, were performed in cell free media using a 123 bp DNA sequence, 

and the issue that they could reach nuclear DNA was still under debate. 

It is possible to increase the affinity of a dirhodium complex for DNA 

by attaching a small organic molecule that will impart the compound with 

properties that differ from the parent Rh2(μ-O2CCH3)4. The ligand dppz has 

been shown to be an effective ligand for binding to DNA, by interacting 

through intercalation,102, 228, 229 which is a mode of binding characteristic of a 

large number of drugs that target DNA. The intercalating driving force 

added to the charge of the dirhodium compounds and their ability to form 

covalent interactions with DNA,230 render it possible to design compounds 

with different biological properties and improved cytotoxicity. 

The research described in this chapter involves the reactivity of a 

series of complexes [Rh2(μ-O2CCH3)2(η1-O2CCH3)(L)]+, where L= bpy (2,2'-

bipyridine) (1), phen (1,10-phenanthroline) (2), dpq (dipyrido[3,2-f:2',3'-

h]quinoxaline) (3), dppz (dipyrido[3,2-a:2',3'-c]phenazine) (4), dppn 

(benzo[i]dipyrido[3,2-a:2',3'-c]phenazine) (5) and dap (4,7-

dihydrodibenzo[de,gh][1,10]phenanthroline ) (6) (Figure IV-1) with DNA in 

cell free medium as in cellulo. The effect of the diimine ligand on the 

biological properties of the compounds, the impact of the hydrophobicity as 

well as the effect of glutathione on the in cellulo activity of these complexes 

were also explored.   
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Figure IV-1. Structures of Compounds 1-6 (L = CH3OH). 
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Experimental Section 

Materials 

The reagents 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 

diaminoethylene and 2,3-diaminonaphthalene were purchased from Acros. 

Calf thymus DNA, ethidium bromide, Hoechst 33258, n-octanol, 1,10-

phenantroline-5,6-dione, L-buthionine-sulfoximine (BSO) and N-acetyl-L-

cysteine (NAC) were purchased from Sigma-Aldrich and used as received.  

The circular plasmid pUC18 was purchased from Fermentas. The DNA 

oligonucleotide (5’-ATCACCTAAAATGGCG-3’) and its complementary 

strand were purchased from The Midland Certified Reagent Company 

(Midland, TX) as pure materials. The starting material RhCl3.H2O was 

purchased from Pressure Chemicals and was used as received. 

The ligands pyrazino[2,3-f][1,10]phenanthroline (dpq),231 dipyrido[3,2-

a:2′,3′-c]phenazine (dppz),232 benzodipyrido[3,2-a:2′,3′-c]phenazine (dppn),233 

and 4,7-dihydrodibenzo [de,gh][1,10]phenanthroline (dap)234 were 

synthesized according to reported procedures.231-234 The complexes Rh2(μ-

O2CCH3)4,198 cis-[Rh2(μ-O2CCH3)2(η1-O2CCH3)(bpy)(CH3OH)](O2CCH3) (1),117 

cis-[Rh2(μ-O2CCH3)2(η1-O2CCH3)(phen)(CH3OH)](O2CCH3) (2),117 cis-[Rh2(μ-

O2CCH3)2(η1-O2CCH3)(dppz)(CH3OH)](O2CCH3) (4),102, 104 cis-[Rh2(μ-

O2CCH3)2(η1-O2CCH3)(dppn)(CH3OH)](O2CCH3) (5)235 and cis-[Rh2(μ-

O2CCH3)2(η1-O2CCH3)(dap)(CH3OH)](O2CCH3) (6)230 were all prepared 

according to previously described procedures. 
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Synthesis of cis-[Rh2(μ-O2CCH3)2(η1-O2CCH3)(dpq)(CH3OH)][O2CCH3] 

(3)  

A suspension of dpq (200 mg, 0.86 mmol) and Rh2(μ-O2CCH3)4(CH3OH)2 (381 

mg, 0.86 mmol) in acetone (30 mL) was stirred at room temperature under N2 

for 48 h. The resulting green precipitate was collected by filtration in air and 

washed with acetone (3 × 5 mL). The solid was suspended in CH3OH (50 mL) 

and stirred at room temperature for 24 h. The resulting green solution was 

filtered and concentrated under reduced pressure to 2 mL, and the product 

was precipitated by addition of Et2O. The green solid was collected by 

filtration, washed with Et2O, and dried in vacuum (260 mg, 47%). ESI-MS: 

m/z 646.93 ([Rh2(μ-O2CCH3)2(η1-O2CCH3)(dpq)(CH3OH)]+) 614.85 ([Rh2(μ-

O2CCH3)2(η1-O2CCH3)(dpq)]+). 1H NMR (CD3OD) δ (ppm): 1.07 (s, 3H, 

CH3CO2), 1.88 (s, 3H, CH3CO2), 2.34 (s, 3H, CH3CO2), 2.40 (s, 3H, CH3CO2), 

3.31 (s, 3H, CH3OH), 8.14 (m, 2H, dpq), 8.86 (dd, 2H, dpq), 9.22 (s, 2H, dpq), 

9.643 (m, 2H, dpq). Anal. Calc.: C, 38.95; H, 3.27; N, 8.66. Found: C, 39.27; H, 

4.09; N, 8.41. 

Instrumentation  

The 1H NMR spectra of the new complexes were recorded on a Varian 

spectrometer at 300 MHz and referenced to the residual proton impurities in 

the deuterated solvents. Mass spectra were acquired on a PE SCIEX QSTAR 

Pulsar electrospray ionization mass spectrometer at Texas A & M 

University. Elemental analyses were performed by Atlantic Microlab Inc., 

P.O. Box 2288, Norcross, GA 30091. The UV-visible measurements were 

performed on a UV-1601PC Shimadzu spectrophotometer or on a Cary 100 

Bio Thermal UV/vis Spectrometer equipped with a Cary temperature 



111 
 

 

controller for thermal denaturation studies. The ethidium bromide stained 

agarose gels were imaged on an Alpha Imager 2000 transilluminator (Alpha 

Innotech Corporation). Confocal microscopy was performed using an 

Olympus IX81 Confocal microscope.  

Methods  

DNA Binding Constant Determination 

Binding titration experiments were performed by titrating a fixed 

concentration of calf thymus DNA (120 μM) and increasing the concentration 

of metal complex (0 to 100 μM) in 5 mM Tris/HCl buffer, pH 7.5, 20 mM 

NaCl. The dilution of metal complex concentration at the end of each titration 

was negligible.  The DNA binding constant, Kb, was determined from fits of 

the change in the absorption of each complex as a function of the DNA 

concentration using eq 1,103  

a – f     =
    b – (b2 – 2 Kb

2Ct [DNA]t / s)1/2 
(1) 

  b – f   2 KbCt 

where b = 1 + Kb Ct + Kb [DNA]t / 2s, Ct and [DNA]t represent the total 

complex and DNA concentrations, respectively, s is the base pair binding site 

size, and a, f, and b represent the apparent, free complex, and bound 

complex molar extinction coefficients, respectively.  The value of εb was 

determined from the plateau of the DNA titration at which point addition of 

DNA did not result in further changes to the absorption spectrum. 

Relative Changes in Viscosity Studies  

The relative change in viscosity was measured using an Ubbelodhe 

viscometer maintained at constant temperature (27 °C) in a thermostatic 

bath. Sonicated herring sperm DNA (200 μM), 5mM Tris/HCl, 20 mM NaCl, 
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pH 7.5, and increasing concentrations of complexes were used.134 Data are 

presented as: 

3
1

)(



 vs 
 
 DNA

M
 

η = t1 – t2 

η0 = tn – t0 

where η is viscosity of DNA in the presence of the complex and η0 is viscosity 

of DNA in the absence of complex. 

Melting Temperature Experiments  

Melting temperature experiments were recorded by measuring the 

absorbance at 260 nm. The experiment was performed using 20 μM complex 

and a 100 μM solution of DNA (5’-ATCACCTAAAATGGCG-3’) in 1 mM 

phosphate buffer, 2 mM NaCl at a pH of 7.2. The value of Tm was determined 

as the temperature corresponding to a maximum on the first-derivative 

profile of the melting curves.103, 134  

Electrophoretic Mobility Shift Assay  

Aliquots of 50 μM native pUC18 were incubated in the dark with 

different compound concentrations (5, 10 and 25 μM) at room temperature 

using a 10 mM phosphate buffer. After incubation for 24 h, electrophoresis 

was carried out using 1% agarose gel, 1X TAE buffer (40 mM tris-acetate, 1 

mM EDTA, pH ~ 8.2). The applied voltage was 40 V and the gels were run for 

a period of 16 h. After electrophoresis, the gels were stained with 0.5 mg/L 

ethidium bromide and imaged under UV light.236-239 
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Partition Coefficient Determination 

The lipophilicity of the complexes was determined by the “shake flask” 

method using a pH 7.4 phosphate buffer (0.129 M NaCl) and n-octanol as 

solvents.240 Each compound was dissolved in the phase in which it is most 

soluble, resulting in typical concentrations of 50 to 350 μM. Duplicate 

determinations using three different solvent ratios were performed for each 

complex.  Following mixing and phase separation according to literature 

methods,240 each phase was analyzed for solute content and the concentration 

was determined using spectrophotometric methods. All the n-octanol/water 

partition coefficients were determined by UV/vis spectroscopy. Octanol and 

buffer solutions were pre-saturated with each other prior to use. Fifty 

rotations were performed by hand followed by one hour of settling time. 

Equilibration and absorption measurements were made at 20 °C.235  

Cell Culture  

The HeLa cell line was obtained from the American Type Culture 

Collection, cell line CCL-2. COLO-316 cell line was kindly provided by Robert 

Burghardt (Texas A&M, Department of Veterinary Anatomy and Public 

Health). Both cells lines were cultured in Dulbecco’s modified Eagle medium, 

containing 10% fetal bovine serum (Invitrogen), 50 μg/mL gentamicin, 4.5 

mg/mL glucose, and 4 mM L-glutamine (Invitrogen). Cell cultures were 

incubated in a humidified atmosphere containing 5% CO2 at 37 °C. 

In Vitro Cytotoxicity  

The viability of COLO-316 and HeLa cells in the presence of the 

compounds under investigation was tested using the 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) assay241 (Invitrogen). 
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Subconfluent (50-80% confluent) monolayers of cells at a concentration of 

5000-10000 cells/µL were used. Cells were plated in 96-well sterile plates, at 

a density of 20-30 cells/ μL (volume of 100 μL per well) and were pre-

incubated for 48 h. After the cells reached 100% confluency, the medium was 

replaced by 100 μL of L-15 medium containing different complex 

concentrations. The plates were incubated for 24 hours. 10 μL of fresh MTT 

solution was added, followed by incubation for 4 hours. A 100 μL aliquot of 

fresh SDS solution in 0.01 M HCl was added, and after 16 hours of incubation 

absorbance at 570 nm was measured using a Bio-Rad plate reader. 

Alkaline Comet Assay  

Single cell gel electrophoresis was performed using a commercially 

available kit (R&D Systems). HeLa cells were incubated with metal 

complexes at a concentration that allows for 75% viability. After 4 h, cells 

were harvested and embedded in 0.75% low-melting point agarose at a 

volume of 1:10 on microscope slides. Cells were lysed in the dark for a 

minimum of 1 h at 4 °C. Cells were incubated in an alkaline solution 

containing NaOH (0.3 M), for a period of 1 h. Electrophoresis was performed 

for 30 min, at 28 V, in TBE buffer (pH=13). After electrophoresis, the cells 

were stained with SYBR® green dye and imaged using an inverted 

microscope. A total of 100 cells were scored per sample, using the 

CometScore® software.242  

Glutathione Modulation  

COLO-316 cells were plated in 96-well sterile plates, at a density of 20-

30 cell/μL (volume of 100 μL per well) and were pre-incubated for 48 h. After 

the cells reached 100% confluency, the medium was replaced by 100 μL of 



115 
 

 

fresh medium containing either 500 μM of L-buthionine-sulfoximine (BSO) or 

5 mM of N-acetyl-L-cysteine (NAC). Incubation with NAC was performed for 

a period of 2 h whereas BSO-containing plates were incubated overnight. 

After the respective incubation period, cells were washed twice with sterile 

PBS and L-15 medium containing a concentration of the dirhodium complex 

corresponding to its LC50 was added and cells incubated overnight. To assess 

cell viability, an MTT assay was performed as described above. 

SYTOX® Blue Assay  

HeLa cells, at a concentration of 5000-10000 cell/µL, were harvested, 

75 μL of cells were seeded in an 8-well sterile plate, and 125 μL of fresh 

medium was added to give a total volume of 250 μL. Cells were pre-incubated 

at 37 °C. After 24 h, cells were washed with sterile PBS and the medium was 

replaced by 250 μL of L-15 medium containing the different complexes at 

their LC50 concentration. Plates were incubated for 4 h after which time they 

were treated with 5 μL of a 5 mM SYTOX® Blue solution and incubated for 5 

minutes before imaging.  

Cell Morphology Changes  

HeLa cells at a concentration of 5000-10000 cell/µL were harvested, 75 

μL of cells were plated in two 8-well sterile plates, and 125 μL of fresh 

medium was added to give a total volume of 250 μL. Cells were pre-incubated 

at 37 °C. After 24 h, cells were washed with sterile PBS and the medium was 

replaced by 250 μL of L-15 medium containing complex 4 at its LC50 

concentration. Imaging was performed at different times for a total time of 4 

hours. 
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Results and Discussion 

Syntheses and Characterization of the Mono-Substituted Dirhodium 

Complexes  

Compounds 1, 2, 4, 5 and 6 have all been reported previously.102, 104, 117, 

230, 235 The cis-[Rh2(μ-O2CCH3)2(η1-O2CCH3)(dpq)(CH3OH)](O2CCH3) (3) 

compound was synthesized in ~ 47% yield by the reaction of Rh2(μ-

O2C2H3)4(CH3OH)2  with 1 equivalent of the dpq ligand (Figure IV-2). The 

reaction was performed in two steps. Solvent, temperature and time for the 

first step are all important factors for the overall yield. The mixture was not 

heated in order to avoid the formation of the bis-substitued derivative or 

other undesired by-products. The preparation of mono-substituted compounds 

using CH2Cl2 has also been reported, but, in this case, acetone was the 

solvent of choice because the reaction is less temperature sensitive with this 

solvent. The reaction mixture was stirred for 48 h, an optimal reaction time 

for maximum yield. During the course of the reaction, a green precipitate was 

obtained, which is the intermediate Rh2(μ-O2CCH3)2(η2-O2CCH3)(η1-

O2CCH3)(dpq) in which an acetate ion that occupies an ax and an eq positions 

of one rhodium atom. After the intermediate was stirred in methanol for 24 h, 

the chelating acetate group is displaced by methanol and the diimine ligand 

rearranges to an eq/eq binding mode as found in the final product.   
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Figure IV-2. Schematic representation of the synthesis of compounds 1-6 (L 
= CH3OH). 
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Interactions with DNA in Cell Free Media 

The binding constants (Kb) of this family of dirhodium complexes were 

measured by titrating a fixed concentration of DNA with increasing 

concentrations of complex. The Kb values (Table IV-1) were determined from 

fits of the change in the absorption of each complex as a function of the DNA 

concentration. As expected, compounds 4 and 5, viz., those with the largest 

intercalating ligands, interact with DNA to the greatest degree with binding 

constants, Kb, of 4.4  105 M-1 and 9.7  105 M-1, respectively. These values are 

typical for metal complexes that bind to DNA via intercalation. For example, 

values of Kb = 1.24  105 M-1 and Kb = 2.0  105 M-1 were reported for 

[Ru(NH3)4(dppz)]2+,229 and [(η6-C6Me6)RuCl(dppz)]+,228 respectively. Similarly, 

3 and 6 exhibit binding constants of the same order of magnitude (Table IV-

1). The values of Kb for 1 (3.2  104 M-1) and 2 (3.2  104 M-1) are an order of 

magnitude lower than the other members of the series. Metal complexes that 

exhibit binding constants of the same order of magnitude as 1 and 2 have 

been identified in the literature as intercalating agents,243 but an inspection 

of the structure of the two compounds clearly reveals that it would be 

impossible for these compounds to intercalate without a major change in the 

ligand binding. 
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Table IV-1. DNA binding constants and ΔTm of compounds 1-6 

Compound Kb, M-1 ΔTm, °C 

1 3.2  104 2 ± 1 

2 3.2  104 4 ± 1 

3 3.5  105 16 ± 1 

4 4.4  105 18 ± 1 

5 9.7  105 24 ± 1 

6 3.6  105 10 ± 1 

a Binding constants were measured using 1 mM phosphate buffer, 2 mM 
NaCl, pH  7.2. b Melting temperature experiments were performed using 1 
mM phosphate buffer, 2 mM NaCl, pH  7.2. 

 
 

The melting temperature, Tm, of a 16mer DNA sequence (5’-

ATCACCTAAAATGGCG-3’) in the presence of 20 µM of each complex was 

measured and compared to that of DNA alone, which is Tm = 53 °C (Figure 

IV-3). When a compound intercalates into DNA it stabilizes the base stacking 

which leads to an increase in the DNA melting temperature. The largest 

difference in melting temperature was recorded for compound 5 (ΔTm = 24 

°C), which has the largest planar surface area in the series. Compounds 1 and 

2 with less extended planar ligands show a modest shift, +2 °C and +4 °C, 

respectively, which is likely due to the ionic character of the compounds. 

These shifts are comparable to values obtained for species such as 

[Ru(tpy)(bpy)OH2]2+ (ΔTm = 2 °C), and [Ru(tpy)(phen)OH2]2+ (ΔTm = 7.2 °C) 

that are known to interact with DNA solely through electrostatic 

interactions.244 Compounds 3, 4, and 6 also exhibit large ΔTm values (> 10 °C). 

The values obtained in the present study are in accordance with those 

observed in the literature for intercalators.137 For example, the known 
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metallointercalators [Rh(phi)2phen]3+ and [Ru(phi)2phen]2+, (phi = 9,10-

phenanthrenequinone diimine), increase the melting temperature of a 15-mer 

duplex by 21 °C and 15 °C, respectively.137 It is important to note that 

compound 6 has been previously reported to have a change of ΔTm = -6 °C, 

but, in this case, compound 6 was first covalently bound to one of the strands 

of the DNA sequence and then the product was annealed to its 

complementary strand.230 

Relative viscosity measurements have proven to be a reliable method 

for the assignment of the mode of binding of compounds to DNA.155 

Intercalation of molecules between DNA bases causes a change in the relative 

viscosity of solutions due to the unwinding and elongation of the double 

helix.155 For compounds 1 and 2, no change in the relative viscosity was 

observed after their addition. This behavior is similar to what one observes 

with the minor groove binder Hoescht 33258.245 The addition of compounds 3-

4 and 6 increases the relative viscosity of the solution, although to a lesser 

extent than the changes observed with ethidium bromide.245 Similar 

increases in relative viscosity have been documented for other intercalating 

metal complexes, for example [(η6-C6Me6)RuCl(dpq)](CF3SO3) and [(η6-

C6Me6)RuCl(dppz)](CF3SO3).228 Finally, compound 5 produces a larger change 

in the viscosity of DNA as compared to other members of the series with 

behavior that is similar to the change observed with the intercalator EtBr153, 

154 (Figure IV-4). 
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Figure IV-3. Melting profile of compounds 1-6. DNA (○), 1 (□), 2 (◊),3 (×),4  
(■), 5 (∆) and 6 (●). 
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Figure IV-4. Relative viscosity changes of solutions containing 200 µM 
sonicated herring sperm DNA as the concentration of EtBr (●), 1 (×), 2 (+), 3 
(∆), 4 (○), 5 (◊), 6 (■) and Hoechst 33258 (◊) is increased. 
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To further evaluate the formation of adducts with DNA, an 

electrophoretic mobility shift assay (EMSA) was performed.236, 237 The binding 

of molecules such as methylating246 or intercalating agents236, 237 to the 

covalent closed circular (CCC) plasmid DNA generates topoisomers that will 

migrate at different rates. As the binding increases, the mobility of the CCC 

topoisomer decreases. In the case of compounds that can potentially both 

intercalate and bind covalently to DNA, it has been observed that the 

migration increases as the binding mode progresses from monofunctional 

(covalent) binding to bifunctional (covalent and intercalating) binding.238 The 

incubation was performed in the dark to avoid DNA cleavage by the 

compounds. This was particularly important for compound 5, as it is known 

to be a photocleavage agent.103 After 24 h of incubation, the solution was 

loaded into a 1% agarose gel and electrophoresis was carried out for a period 

of 16 h. The electrophoresis voltage was maintained at a low value (40 V) to 

ensure a visible shift of the formed adducts. As evidenced by a shift of the 

DNA on the electrophoresis gel (Figure IV-5 and Figure IV-6), all of the 

dirhodium complexes in the series were found to form DNA adducts.  The 

most significant shifts were observed with compounds 4 and 5 (Figure IV-5). 

Compounds 1 and 2 show some degree of interaction although to a lesser 

extent than the other member of the series (Figure IV-6). Similar shifts have 

been reported in the literature for the parent compound Rh2(µ-

O2CCH3)4(CH3OH)2.247  
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Figure IV-5. Ethidium bromide agarose gel (1%) 100 µM pUC18 incubated 
with compounds 3-5 at different concentrations. Lane 1, 14: Standard 1 kb 
leader marker. Lane 2, 6, 10: Native pUC 18, control. Lane 3-5: increasing 
amounts of compound 3. Line 7-9: increasing amounts of compound 4. Line 
11-13: increasing amounts of compound 5. 

 

 

 

 

 

 

 

 

Figure IV-6. Ethidium bromide agarose gel (1%) of 100 μM pUC18 
incubated with compounds 1,2 and 6 at different concentrations. Lane 1, 14: 
Standard 1kb leader marker. Lane 2, 6, 10: Native pUC 18, control. Lane 3-
5: increasing amounts of compound 1. Line 7-9: increasing amounts of 
compound 2. Line 11-13: increasing amounts of compound 6. 

OC 
 
 
CCC 

[ ] µM           0     5     10    25    0      5    10    25    0     5    10    25 

M         1   2    6        M 

[ ] µM          0     5    10   25    0     5    10   25    0     5   10   25 

OC 
 
 
CCC 

 M        3           4            5  M 
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The collective aforementioned data support the notion that the 

progressively increasing ligand size for the series results in a larger affinity 

for DNA and a change in the binding mode from primarily electrostatic 

(compounds 1 and 2) to primarily intercalative (compounds 3-6) in the initial 

stages of their interaction. As we have previously observed, mono-

substituted diimine complexes of this class are capable of simultaneously 

intercalating between DNA bases and binding covalently to DNA.230 

Compound 5 exhibits the strongest interactions of the group with the DNA 

double helix (Table IV-1; Figures IV-3, IV-4 IV-5 and IV-6). 

In vitro Cytotoxicity   

The compounds were tested in a cell proliferation assay on two human 

cell lines, viz., HeLa and COLO-316.  The LC50 values were calculated after 

24 h of incubation with complexes 1-6 and are listed in Table IV-2. For this 

particular dirhodium family, it is obvious that the human ovarian carcinoma 

cells COLO-316 are more sensitive than HeLa cells. Compound 4 exhibits the 

highest activity with LC50 values of 86 ± 4 µM and 54 ± 1 µM for HeLa and 

COLO-316 cell lines, respectively. Any further modification of the ligand 

length or width leads to a decrease in the activity of the dirhodium complex 

with HeLa cells. When the size of the intercalating moiety was reduced, as in 

the case of compounds 1 (LC50 = 120 ± 4 µM), 2 (LC50 = 129 ± 6 µM), and 3 

(LC50 = 128 ± 5 µM), the cytotoxicity towards HeLa cells was diminished by 

approximately 1.5 fold. A similar reduction of the activity was observed when 

the ligand was expanded either in length or width, as in 5 (LC50 = 120 ± 7 

µM) and 6 (LC50 = 130 ± 3 µM), respectively. In the case of COLO-316 cells, a 

decrease or increase in the length of the aromatic moiety results in lower 
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activity, approximately 1.3 fold. Compound 6, however, exhibits activity 

similar to compound 4 in this cell line.  

Partition Coefficient Determination  

Compound 5, which displays the highest affinity towards DNA in cell 

free media, is not the most cytotoxic of the series in either HeLa or COLO-316 

cell lines. It is possible that this dichotomy is due to the difference in the 

ability of the compounds to cross the cellular plasma membrane.  Thus 

hydrophobic interactions appear to be an important factor for the eventual 

DNA binding affinity of this family of complexes. Many studies over the years 

support the conclusion that reactivity and affinity of a compound are not the 

only important factors in inhibiting a cellular process, but that the 

availability of the agent to interact with its target also plays an important 

role.235 To address this issue, the values of the partition coefficient, log P, 

between n-octanol and water of compounds 1-6 were measured (Table IV-2). 

The P measurements are based on the difference in solubility that a given 

compound exhibits in an aqueous medium and in a lipid medium.240 The 

correlation of the activity of a compound with its log P value depends on the 

solvent system used as a model for the membrane.240, 248 The “shake flask” 

method used during the course of these studies has been shown to work well 

for molecules with log P values that range from -2 (most hydrophilic) to +4 

(most hydrophobic).248-251 The values obtained for the members of this series 

range from -1.93 to + 0.91 (Table IV-2). By comparing the partition 

coefficients of these compounds (Table IV-2), it can be seen that the log P 

values become more positive as the π-system of the ligands in the complexes 

is extended. The difference in the log P values of compounds 1 and 2 is small 
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despite the fact that one more ring is added to the system. Subsequent ring 

additions to the system increases the log P values to a greater extent. Adding 

the fourth ring, as in the case of compound 3, increases the log P value in 

0.55, whereas the fifth and sixth rings in compounds 4 and 5 increase the log 

P value in 1.23 and 1.21, respectively. Extending the width of the system has 

a more pronounced effect, as can be observed in the log P difference (2.16) 

between compounds 3 and 6.   
 

Table IV-2. Log P and cytotoxicity values of compounds 1-6 

Compound log P 
LC50 ± SD, µMa 

HeLa COLO-316 

1  1.90 ± 0.03 129 ± 4 70.8 ± 3 

2  1.98 ± 0.02 128 ± 6 73.6 ± 4 

3  1.53 ± 0.03 124 ± 5 71.2 ± 3 

4  0.30 ± 0.02 86 ± 4 54.0 ± 1 

5 0.91 ± 0.01 118 ± 7 71.3 ± 3 

6 0.63 ± 0.02 130 ± 3 54.1 ± 3 

aDetermined using the MTT assay. LC50 values are concentrations of drug 
required to kill 50% of the cells. Experiments were performed in triplicate. 

 

As expected, compounds 1 and 2 are the most hydrophilic compounds 

of the series. The hydrophobicity increases throughout the series as the 

planar aromatic region is expanded and reaches a maximum at compound 5. 

It is a plausible hypothesis that the hydrophobicity of 5 does not permit 

rapid internalization of the compound which would account for the decreased 



128 
 

 

cytotoxicity as compared to 4 in HeLa cells or 4 and 6 in COLO-316. 

Compounds 4 and 6 interact to a lesser degree with DNA but are less 

hydrophobic and might be able to traverse the cellular membrane more 

effectively.  It must be pointed out that, in a previous study, we did not find 

any correlation between the partition coefficient and cytotoxicity of the 

dirhodium complexes studied,235 but this outcome may be due to the 

structural differences among the previous compounds which could translate 

to very different mechanisms of action in live cells. In the present study, 

however, we have focused on a homologous family of dirhodium complexes 

that, due to their similarity, would be expected to behave in a comparable 

manner in the intracellular space. Hence differences in cellular uptake 

should be reflected in the cytotoxicity of the compounds (Figure IV-7). 

Supporting this hypothesis are early data by Bear and coworkers who 

reported for a the family of dirhodium tetracarboxylate complexes Rh2(µ-

O2CR)4 (R = CH3, C2H5, C3H7, and C4H9), an increase in cytotoxicity against 

Ehrlich ascites tumor cell lines in going from the acetate to the butyrate 

derivative; conversely a decrease in cytotoxicity was observed with a further 

lengthening of the R group.72 Similarly, Sheldrick et al., found that the 

family of compounds [(η6-C6Me6)RuCl(pp)]+ (pp = dpq, dppz, and dppn) 

exhibited cytotoxicity increases that correlate with the hydrophobicity and 

the cellular uptake efficiency of the compounds.228 
 

 

 

 

 



129 
 

 

 

 

 

 

 

 

 

 

Figure IV-7. Correlation between cytotoxicity and partition coefficient. 
HeLa () and COLO-316 (■) cells. 
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Alkaline Comet Assay  

An alkaline single cell gel electrophoresis was performed to evaluate 

the ability of these complexes to form DNA adducts in a cellular 

environment.252-255 The Alkaline Comet Assay is a sensitive technique that 

can be used to detect single-, and double-strand breaks, crosslinks, as well as 

alkali-labile sites.252, 253 Assays were performed at a concentration that allows 

for 75% cell viability using HeLa cells. For each compound, one hundred cells 

were scored using the CometScore® software.242 This program allows one to 

quantify the amount of DNA present in the tail of the comet which is 

representative of the amount of DNA damage caused by the added agent.242 

As shown in Figure IV-7, all of the compounds produce more damaged DNA 

(represented as a larger percent of DNA in the tail) than the control.  

Compounds 1, 2, 3, and 6 with 48.5 ± 9.6%, 41.7 ± 10.8%, and 39.2 ± 

14.7% of the DNA being found in the comet tail, respectively, damage only a 

small amount of DNA. In fact, these values are quite similar to that observed 

with Rh2(µ-O2CCH3)4 with a percentage of DNA in the tail equal to 37.9 ± 

5.8%. On the other hand, compounds 4 and 5 led to the highest DNA damage 

with 72.4 ± 7.7% and 80.1 ± 7.4% of the DNA being found in the comet tail, 

respectively. Interestingly, compound 5, which show to be the most reactive 

towards DNA in cell free media, shows a better activity than 4 once inside 

the cell, i.e., this compound causes the greatest amount of DNA damage. The 

level of damage cause by 5 is similar to that observed with a comparable 

amount of added cisplatin is added (% DNA in tail = 79.7 ± 8.0) is used. The 

DNA damage observed in the comet assay could be caused by direct 

interaction of the compound with DNA, or could be due to the formation of 

ROS by the metal complex. 
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Figure IV-8. Percentage of nuclear DNA damaged after treatment with compounds 1-6, dirhodium 
tetracetate and cisplatin; represented as percent of DNA in comet tail. 
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Glutathione Modulation  

Glutathione is the most abundant thiol in cells, present at 

concentrations of 0.5-10 mM depending on the cell type.256 Some of the 

functions of glutathione include protection of the cell integrity from reactive 

oxygen species (ROS) and heavy metal detoxification.257 It has been observed 

in some cisplatin resistant cell lines that their glutathione levels are higher 

than normal.258 Given this fact, it is of considerable interest to determine the 

effects of glutathione modulation on the cytotoxicity of this family of 

dirhodium complexes. 

The molecule N-acetyl-L-cysteine (NAC) is a compound known to 

increase levels of glutathione and radical scavengers in cells.205 The COLO-

316 cells were pre-treated with NAC, then incubated with the dirhodium 

complexes 1-6 and the change in the cytotoxicity of these complexes was 

measured (Figure IV-9). The cells treated with compound 2 showed a slight 

decrease in activity as observed by the increase in cell viability (+32%), 

whereas compounds 3 (-2%) and 5 (-8%) showed the greatest activity 

increase in the series. These variations in activity are considered minimal, 

and correspond to a small effect of the increase of glutathione and radical 

scavenger levels on the cytotoxicity of this family of dirhodium complexes.    

These results dismiss the hypothesis that the cellular DNA damage is 

due to the formation of ROS by the metal complex. If the damage caused by 

the dirhodium complex originated from the presence of ROS, pre-treatment 

with NAC should increase the cell viability, yet, no market changes in the 

cytotoxicity of the complexes were observed  (Figure IV-9).  Therefore,  it is 
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Figure IV-9. Effect of compounds 1-6 on COLO-316 cell after glutathione 
modulation by NAC (increase of cellular glutathione levels) and BSO 
(decrease of glutathione levels). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.00

0.50

1.00

1.50

C 1 2 3 4 5 6N
or
m
al
iz
ed

 C
el
l V

ia
bi
lit
y

Compounds

NAC

BSO



134 
 

 

reasonable to suggest that direct damage of the nuclear DNA occurs, and 

that the dirhodium complexes bind to nuclear DNA in living cells. 

The levels of glutathione were depleted with BSO, a selective inhibitor 

of γ-glutamyl cysteine synthase, a key enzyme in the glutathione 

biosynthetic pathway.256, 259 Upon exposure to BSO for 20-28 h, levels of 

glutathione in COLO-316 cells have been shown to decrease to ~13% of its 

initial value.260, 261 In COLO-316, depletion of glutathione did not have a 

major effect on the cytotoxicity of cisplatin,260 although an increase in 

cisplatin cytotoxicity has been observed in other cell lines.262 In the case of 

the dirhodium complexes used in this study, the depletion of glutathione by 

BSO did not lead to large variations in their cytotoxicity (Figure IV-9). 

Although glutathione, as in the case of cisplatin,263 is likely to play a 

role in dirhodium deactivation, it does not seem to be the sole factor involved 

in this case. The results obtained in the cell viability studies using BSO 

(Figure IV-9) demonstrate that, despite the decrease in glutathione levels, 

more dirhodium compound does not reach its cellular target. We note that, in 

the case of cisplatin, there are other thiols that play a role in its 

deactivation. For example, the low molecular weight protein 

metallothionenin contains 20 cysteine residues and is actively involved in 

the detoxification of heavy metal compounds in cells.263 It is reasonable to 

postulate that this protein could also be involved in the detoxification of cells 

from dirhodium complexes.    
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Cell Death Mechanism  

SYTOX® Blue is a cell impermeable agent that can only enter cells 

when their membranes have been damaged.264 Upon entering the cell, 

SYTOX® Blue binds to nuclear DNA and undergoes a 100-fold increase in 

fluorescence.264 After 4 h of incubation of HeLa cells with the dirhodium 

compound of interest at a concentration equal to their calculated LC50 values, 

~60 % of the cells contain blue stain in their nuclei. This implies that the cells 

treated with compounds 1-6 have been severely compromised or are no longer 

viable. From the pictures in Figure IV-10, it is also possible to see that the 

morphology of the cells differs from that of a viable HeLa cell. 

Cells were incubated with compound 4, the most effective compound of 

the mono-substituted series, and the changes in cell morphology were 

monitored. It was observed that compound 4 starts causing cell death after 

15 minutes. After 2 h of incubation, almost 90 % of the cells appear to be 

compromised and the cells change morphology to a globular shape with the 

appearance of blebs (Figure IV-11). After 4 h incubation, contraction of cell 

volume and membrane blebbing has been extended to almost all of the cells. 

These changes, cell shrinkage and membrane blebbing, are hallmarks of 

apoptosis.265  
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Figure IV-10. Phase contrast and fluorescent image of HeLa cells treated 
with compound 4. Left: Phase contrast. Center: SYTOX® Blue fluorescence 
emission. Right: Overlay of the phase contrast and SYTOX® Blue 
fluorescence emission (pseudo-colored blue) images.  
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Figure IV-11. Phase contrast images of HeLa cells treated with compound 4. Left: Time zero. Center: After 
2 h incubation. Right: After 4 h incubation. 
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Conclusions 

The collective aforementioned data point to the conclusion that this 

specific family of dirhodium complexes does, in fact, reach nuclear DNA in 

living cells triggering apoptosis, which is the first time that the longstanding 

premise of DNA being a target has been verified. The size of the diimine 

ligands bound to the dirhodium core in compounds 1-6 controls the in-vitro 

affinity and interaction with ds-DNA as well as the in cellulo reactivity of 

the complexes. The progressively increasing ligand size for the series results 

in a larger affinity for DNA and a change in the binding mode from primarily 

electrostatic (compounds 1 and 2) to primarily intercalative (compounds 3-6) 

in the initial stages of their interaction. As we have previously observed, 

mono-substituted diimine complexes of this class are capable of 

simultaneously intercalating between DNA bases and binding covalently to 

DNA.  Thus a clear relationship between the interaction of the compounds 

with DNA and their cytotoxicity has been established. Moreover, the ability 

to cross the cellular plasma membrane appears to be another significant 

factor that affects activity of the compounds in live cell assays. Compound 4, 

the most effective dirhodium complex of the series, appears to induce 

apoptosis in HeLa cells. Metal complexes such as 4-6 that can potentially 

intercalate as well as covalently bind to DNA are promising lead compounds 

certainly deserve further scrutiny.  
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CHAPTER V 
 

HETEROLEPTIC RHODIUM COMPLEXES AND THEIR 

INTERACTION WITH CELLULAR DNA* 

 

Introduction 

As outlined in the previous chapter, mono-substituted diimine 

complexes are capable of interacting with DNA both in-vitro and in cellulo. It 

was observed that  the nature of the diimine ligand bound to the dirhodium 

core controls the reactivity of the compound, and the progressive increase of 

the ligand size results in a higher affinity for DNA as well as a change in the 

binding mode from electrostatic to intercalative in the initial stages of the 

interaction. Moreover, the studies supported the conclusion that transport 

through cellular membranes is important and has an effect on the 

cytotoxicity of the dirhodium complexes.  

The membrane permeability can be assessed by measuring the 

lipophilicity of compounds, with the partition coefficient (P) being the most 

common parameter used to estimate lipophilicity.240, 248 The importance of 

lipophilicity in the observed bioactivity has been previously demonstrated in 

the class of dirhodium carboxylate paddlewheel compounds of general 

formula Rh2(µ-O2CR)4 (R = CH3, C2H5, C3H7).72 In this series, the activity 

against Ehrlich ascites tumor, Leukemia L1210, and sarcoma 180 cell lines 

 

 *Reprinted in part from “Anticancer Activity of Heteroleptic Diimine Complexes of 
Dirhodium: A Study of Intercalating Properties, Hydrophobicity and in cellulo 
Activity” J. Dafhne Aguirre, Alfredo M. Angeles-Boza, Abdellatif Chouai, Jean-
Philippe Pellois, Claudia Turro, and Kim R. Dunbar. Dalton. 2009, . Copyright 
2009, with permission from the Royal Society of Chemistry. 
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increases as the hydrophobicity of the R group increases; further lengthening 

of the carboxylate group beyond the pentanoate, however, reduces the 

efficacy.72 

Another important factor that controls biological activity is the 

reactivity of the compound.240 The relative reactivity can be estimated by 

determining the kinetic parameters of binding to biomolecules.240 Recent 

studies of various dirhodium compounds have indicated that there is a 

correlation between their cytotoxic behavior and the lability of the leaving 

groups on the dirhodium core.235 In the series of dirhodium complexes Rh2(µ-

O2CR)4 (R = CH3; R = CF3), [Rh2(µ-O2CR)2(phen)2]2+ (R = CH3; R = CF3) and 

[Rh2(O2CR)2(dppz)2]2+ (R = CH3; R = CF3), the differences in the cytotoxicities 

are correlated to the higher lability of the trifluoroacetate as compared to the 

acetate leaving groups.235 In addition, compounds with one diimine ligand 

possesing a dangling acetate and a solvent molecule in the equatorial 

position such as [Rh2(µ-O2CCH3)2(η-O2CCH3)L(MeOH)]+ (L = dppz; L = 

dppn), were shown to be more cytotoxic as compared to the bis-substituted 

derivatives [Rh2(µ-O2CCH3)2(bpy)L]2+ (L = dppz; L = dppn) and [Rh2(µ-

O2CR)2L2]2+ (L = dppn). This increase in cytotoxicity was correlated to the 

presence of the labile solvent molecules and the monodentate acetate groups 

which provide labile sites for substitution chemistry with biomolecules.235 
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The aim of the present chapter is to explore the properties of 

dirhodium compounds containing two diimine ligands. Specifically the effect 

of the fused ring size of the second diimine ligand (bpy, phen, dpq, dppz, and 

dppn) on the biological activity of the compounds and their ability to form 

adducts with nuclear DNA was investigated for the series of complexes cis-

[Rh2(-O2CCH3)2(dppn)(L)]2+, where dppn = benzo[i]dipyrido[3,2-a:2',3'-c] 

phenazine, and L = bpy (2,2'-bipyridine) (1), phen (1,10-phenanthroline) (2), 

dpq (dipyrido[3,2-f:2',3'-h]quinoxaline) (3), dppz (dipyrido [3,2-a:2',3'-c] 

phenazine) (4), and dppn (5) (Figure V-1). The ability to intercalate DNA due 

to the presence of the dppn ligand bound to one of the rhodium atoms was 

systematically reduced by extending the size of the diimine ligand bound to 

the second rhodium center. The lipophilicity of the compounds was also 

probed as a function of the increase size of one of the ligands. Finally, the 

effect of blocking all the “open sites” on the in cellulo activity of the 

complexes was also studied. 
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Figure V-1. Schematic representation of compounds 1-5 in this study. 
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Experimental Section 

Materials  

The reagents 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 

diaminoethylene and 2,3-diaminonaphthalene were purchased from Acros. 

Calf thymus DNA, ethidium bromide, Hoechst 33258, n-octanol and 1,10-

phenantroline-5,6-dione were purchased from Sigma-Aldrich and used as 

received. The HeLa cell line were obtained from the American Type Culture 

Collection, cell line CCL-2. The COLO-316 cell line was kindly provided by 

Robert Burghardt (Texas A&M University, Department of Veterinary 

Anatomy and Public Health).  

The starting material RhCl3•H2O was purchased from Pressure 

Chemicals and used as received. The ligands pyrazino[2,3-

f][1,10]phenanthroline (dpq),231 dipyrido[3,2-a:2′,3′-c]phenazine (dppz)232 and 

benzodipyrido[3,2-a:2′,3′-c]phenazine (dppn),233 were synthesized according 

to reported procedures.231-233 The dirhodium complexes Rh2(μ-O2CCH3)4,198 

cis-[Rh2(μ-O2CCH3)2(η1-O2CCH3)(bpy)(CH3OH)](O2CCH3),117 cis-[Rh2(μ-

O2CCH3)2(η1-O2CCH3)(phen)(CH3OH)] (O2CCH3),117 cis-[Rh2(μ-O2CCH3)2(η1-

O2CCH3)(dpq)(CH3OH)](O2CCH3),266 cis-[Rh2(μ-O2CCH3)2(dppn)(bpy)] 

(O2CCH3)2 (1),235 and cis-[Rh2(μ-O2CCH3)2(dppn)2](O2CCH3)2 (5)235 were 

synthesized according to published literature procedures.117, 198, 235, 266  
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Synthesis of cis-[Rh2(-O2CCH3)2(dppn)(bpy)](O2CCH3)2 (1)  

A suspension of dppn (161 mg, 0.48 mmol) and cis-[Rh2(-O2CCH3)2(η1-

O2CCH3)(bpy)(CH3OH)](O2CCH3) (161 mg, 0.48 mmol) in acetonitrile (13 mL) 

was refluxed under nitrogen for 24 h. The resulting red precipitate was 

collected by filtration in air, washed with acetonitrile (3 × 5 mL) and Et2O, 

and dried in vacuo (280 mg, 63%). ESI-MS: m/z 405.99 (100%, [Rh2(-

O2CCH3)2(dppn)(bpy)]2+). 1H NMR (CD3OD/CDCl3)  (ppm): 1.96 (s, 6H), 2.65 

(s, 6H), 7.19 (m, 2H), 7.41 (m, 2H), 7.62 (m, 4H),  7.84 (m, 4H), 8.42 (m, 2H), 

8.73 (m, 2H), 9.17 (s, 2H), 9.55 (m, 2H). Calcd for Rh2C40H32O8N6·4H2O: C, 

47.90; H, 4.02; N, 8.38. Found: C, 47.96; H, 3.54; N, 8.69. 

Synthesis of cis-[Rh2(-O2CCH3)2(dppn)(phen)](O2CCH3)2 (2)  

A suspension of dppn (80 mg, 0.24 mmol) and cis-[Rh2(-O2CCH3)2(η1-

O2CCH3)(phen)(CH3OH)](O2CCH3) (150 mg, 0.24 mmol) in acetonitrile (12 

mL) was refluxed under nitrogen for 24 h. The red product was collected by 

filtration, washed with acetonitrile (3 × 5 mL) and Et2O, and dried in vacuo 

(193 mg, 84%). ESI-MS: m/z 417.99 (100%, [Rh2(-O2CCH3)2(dppn)(phen)]2+). 

1H NMR (CD3OD/CDCl3)  (ppm): 1.92 (s, 6H), 2.64 (s, 6H), 7.20 (s, 2H), 7.42 

(m, 2H), 7.72 (m, 4H), 8.04 (m, 2H), 8.18 (m, 2H), 8.36 (m, 2H), 8.70 (m, 2H), 

9.05 (s, 2H), 9.22 (m, 2H). Calcd for Rh2C42H32O8N6·2H2O: C, 50.91; H, 3.66; 

N, 8.49. Found: C, 50.82; H, 3.62; N, 8.75. 

Synthesis of cis-[Rh2(-O2CCH3)2(dppn)(dpq)](O2CCH3)2 (3)  

A suspension of dppn (49.3 mg, 0.15 mmol) and cis-[Rh2(-

O2CCH3)2(η1-O2CCH3)(dpq)(CH3OH)](O2CCH3) (100 mg, 0.15 mmol) in 

acetonitrile (10 mL) was refluxed under nitrogen for 24 h. The red precipitate 

that had formed was collected by filtration, washed with acetonitrile (3 × 5 
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mL) and Et2O, and finally dried in vacuo (115 mg, 76%). ESI-MS: m/z 646.9 

(100%, [Rh2(-O2CCH3)2(dppn)(phen)](O2CCH3)2). 1H NMR (CD3OD)  (ppm): 

1.90 (s, 6H), 2.66 (s, 6H), 7.52 (m, 2H), 7.68 (m, 2H), 7.80 (s, 2H), 8.10 (m, 

2H), 8.30 (s, 2H), 8.39 (m, 2H), 8.63 (m, 2H), 8.71 (m, 2H), 8.99 (m, 2H), 9.08 

(m, 2H). Calcd for Rh2C44H32O8N8·3H2O: C, 49.81; H, 3.61; N, 10.57. Found: 

C, 49.64; H, 3.47; N, 10.32. 

Instrumentation  

The 1H NMR spectra were recorded on a Varian spectrometer at 300 

MHz and referenced to the residual proton impurities in the deuterated 

solvents. Mass spectra were acquired on a PE SCIEX QSTAR Pulsar 

electrospray ionization mass spectrometer at Texas A & M University. 

Elemental analyses were performed by Atlantic Microlab Inc., P.O. Box 

2288, Norcross, GA 30091. The UV-visible measurements were performed on 

a UV-1601PC Shimadzu spectrophotometer. For live-cell imaging, an 

inverted epifluorescence microscope (Model IX81, Olympus, Center Valley, 

PA) equipped with a heating stage maintained at 37°C was used. Images 

were collected using a Rolera-MGI Plus back-illuminated EMCCD camera 

(Qimaging, Surrey, BC, Canada) mounted on the microscope with UPlanFl 

100 / 1.3 NA oil, LCPlan 40 / 0.6 NA, or LCPlan 20 / 0.4 NA objectives.  

 

Methods  

Relative Changes in Viscosity Experiment 

The relative change in viscosity was measured using an Ubbelohde 

viscometer maintained at constant temperature (27 °C) in a thermostatic 

bath. Sonicated herring sperm DNA (200 M), 5mM Tris/HCl, 20 mM NaCl, 



146 
 

 

pH 7.5, and increasing concentrations of complexes were used.134 Data are 

presented as:  

3
1

)(



 vs 
 
 DNA

M
 

η = t1 – t2 

η0 = tn – t0 

where  (t1 – t2) is viscosity of DNA in the presence of the complex, 0 = (tn 

– t0) is viscosity of DNA in the absence of complex. 

Partition Coefficient Determination  

The lipophilicity of the complexes was determined by the “shake flask” 

method using a pH 7.4 phosphate buffer (0.129 M NaCl) and n-octanol as 

solvents.240, 248 Each compound was dissolved in the phase in which it is most 

soluble, resulting in typical concentrations of 50 to 350 M. Duplicate 

determinations using three different solvent ratios were performed for each 

complex.  Following mixing and phase separation according to literature 

methods,248 each phase was analyzed for solute content and the concentration 

was determined using spectrophotometric methods. All the n-octanol/water 

partition coefficients were determined by UV-visible spectroscopy. Octanol 

and buffer solutions were pre-saturated with each other prior to use. Fifty 

rotations were performed by hand followed by one hour of settling time. 

Equilibration and absorption measurements were performed at 20 °C (r. t.).  

Cell Culture  

All cells lines were cultured in Dulbecco’s modified Eagle medium, 

containing 10% fetal bovine serum (Invitrogen), 50 g/mL gentamicin, 4.5 
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mg/mL glucose, and 4 mM L-glutamine (Invitrogen). Cell cultures were 

incubated in a humidified atmosphere containing 5% CO2 at 37 C. 

In Vitro Cytotoxicity  

The viability of COLO-316 and HeLa cells in the presence of the 

compounds under investigation was tested using the 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) assay241 (Invitrogen). 

Subconfluent (50-80% confluent) monolayers of cells at a concentration of 

5000-10000 cell/µl were used. Cells were plated in 96-well sterile plates, at a 

density of 20-30 cell/L (volume of 100 l per well) and were pre-incubated for 

48 h. After the cells reached confluence, the medium was replaced by 100 L 

of L-15 medium containing different complex concentrations. The plates were 

incubated for 24 hours. Fresh MTT solution (10 L) was added, followed by 

incubation for 4 hours.  A 100L aliquot of fresh SDS solution in 0.01 M HCl 

was added and after 16 hours of incubation the absorbance at 570 nm was 

measured using a Bio-Rad plate reader. 

Comet Assay  

Single cell gel electrophoresis was performed using a commercially 

available kit (R&D Systems). HeLa cells were incubated with metal 

complexes at a concentration that allows for 75% viability. After 4 h, cells 

were harvested and embedded in 0.75% low-melting point agarose at a 

volume of 1:10 on microscope slides. Cells were lysed in the dark for a 

minimum of 1 h at 4 °C. Cells were incubated in an alkaline solution 

containing NaOH (0.3 M), for a period of 1 h. Electrophoresis was performed 

for 30 min at 28 V in TBE buffer (pH=13). After electrophoresis, the cells 

were stained with SYBR® green dye and imaged using an inverted 
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microscope. A total of 100 cells were scored per sample, using  the 

CometScore® software.242  

Annexin V  

HeLa cells at a concentration of 5000-10000 cell/µL were harvested, 50 

L of cells were plated in an 8-well sterile plate, and 200 L of fresh medium 

was added to give a total volume of 250 L. Cells were pre-incubated at 37 C 

and, after 24 h, they were washed with sterile PBS and the medium was 

replaced by 250 L of L-15 medium containing the different complexes at 

their LC50 concentration. Plates were incubated for 4 h after which time they 

were treated with Annexin V-Biotin for 15 minutes at 24 °C in the dark. After 

washing, the cells were first stained with streptavidin-fluorescein for 15 

minutes in the dark and then incubated with PI.  

MitoProbe® JC-1 Assay  

HeLa cells at a concentration of 5000-10000 cell/µL were harvested, 75 

μL of cells were plated in two 8-well sterile plates, and 125 μL of fresh 

medium was added to give a total volume of 250 μL. Cells were pre-incubated 

at 37 °C. After 24 h, cells were washed with sterile PBS and the medium was 

replaced by 250 μL of L-15 medium containing the different complexes at 

their LC50 concentration. One plate was incubated for 4 h after which time 

they were treated with 1 μL of a 2 µg/mL JC-1® solution and incubated for 5 

minutes before imaging. A 1 μL aliquot of a 2 µg/mL JC-1® solution was 

added to the second plate and imaging was performed at different time 

periods for a total time of 4 hours. 

 

 



149 
 

 

Results and Discussion 

Synthesis  

The new dirhodium complexes reported in this study were synthesized 

by reacting the monosubstituted complex cis-[Rh2(-O2CCH3)2(η1-

O2CCH3)(diimine)(CH3OH)](O2CCH3), (diimine = bpy, phen, dpq) with 1 

equivalent of dppn in acetonitrile (Chart 2). The reaction mixture was stirred 

and heated under nitrogen for 24 h. The green color of the mixture changes to 

red during the course of the reaction which is a characteristic color for bis-

diimine dirhodium complexes with two carboxylate ligands.103, 235  

Viscosity Measurements  

The relative change in viscosity was measured using sonicated herring 

sperm DNA (200 M bp) with increasing concentrations of compounds 1 – 5 

(Figure V-4). Relative viscosity measurements have proven to be a reliable 

method for assigning the mode of binding of dirhodium compounds with 

extended aromatic ligands to DNA.266 The method is based on the well-known 

fact that intercalation of molecules between DNA bases causes a change in 

the relative viscosity of solutions due to the unwinding and elongation of the 

double helix.155 For compounds 1 and 2, a change in the relative viscosity is 

observed after their addition to the DNA. This behavior is similar to what one 

observes with the standard intercalator ethidium bromide (EtBr)245 as well as 

the complex cis-[Rh2(-O2CCH3)2(η1-O2CCH3)(dppz)(CH3OH)]+,266 which is 

known to intercalate into  DNA. Conversely, the effect of compounds 3 - 5 on 

the relative viscosity of the solution is more reminiscent of that of the minor 

groove binder Hoescht 33258245 as well as cis-[Rh2(-O2CCH3)2(dppz)2]2+ and  
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Figure V-2. Schematic representation of the general synthetic procedure to prepare compounds 1-4. 
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Figure V-3. Schematic representation of the general synthetic procedure to 
prepare compound 5. 
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Figure V-4. Relative viscosity changes of solutions containing 200 
M sonicated herring sperm DNA as the concentration of EtBr 
(●),1 (◊), 2 (×), 3 (∆), 4 (∆), 5 (♦) and Hoechst 33258 (○) is increased. 
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cis-[Rh2(-O2CCH3)2(dppz)(bpy)]2+ which had been previously shown to 

interact with DNA solely by electrostatic interactions. 

Partition Coefficient Determination  

Partition coefficients, P, were measured to help ascertain the ability of 

these dirhodium compounds to cross lipid bilayers. The P measurements are 

based on the difference in solubility that a given compound exhibits in an 

aqueous versus a lipid medium.240 The correlation of the activity of a 

compound with its log P value depends on the solvent system used as a model 

for the membrane. The log P values obtained for compounds 1 - 5 range from 

0.32 to 1.02 (Table V-1). The compounds containing the smallest ligands bpy 

and phen exhibit the lowest values, 0.32 and 0.31, respectively. The 

hydrophobicity increases as the second diimine ligand increases in length, 

although it does not do so in a liner progression as expected. The lipophilicity 

substituent constant of conjugated systems, CH=CHCH=CH, is known to be one 

of the least constitutive, that is to say the effect of adding rings is not greatly 

influenced by the molecule to which it is attached or to its environment.267, 268 

Giving this situation, one would expect that extending the diimine ligand in 

compound 3 by one ring will cause a similar increase in the log P as would 

adding an additional ring as in going from compound 4 to compound 5. As 

shown in Table V-1, however, the increase in the log P for the aforementioned 

additions of rings is 0.2, and 0.4, respectively. It is possible that the presence 

of the dppn ligand directly above the second diimine ligand ameliorates the 

inherent hydrophobicity hence leading to the lack of an additivity effect on 

the lipophilicity substituent constant for this family of dirhodium complexes. 
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Table V-1. Log P and cytotoxicity values for compounds 1-6. 

Compound log P a 
LC50 ± SD, Mb 

HeLa COLO-316 

1  ± 0.03 138.3 ± 6.7  92.2 ± 5.1  

2  ± 0.03 156.6 ± 10.3  87.0 ± 2.8 

3  ± 0.02 135.3 ± 13.9  92.1 ± 4.1  

4 0.63 ± 0.03 81.5 ± 11.1  68.8 ± 1.9  

5 1.02 ± 0.03 209.4 ± 11.0  201.3 ± 15.4  

a Partition coefficient P = Co/Cw (Co and Cw are the complex concentrations 
in n-octanol and water, respectively). b Determined using the MTT assay. 
LC50 values are concentrations of compound required to kill 50% of the cells. 
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Figure V-5. Correlation between cytotoxicity and partition coefficient: HeLa 
(○) and COLO-316 (●) cells. 
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In Vitro Cytotoxicity  

The cytotoxicity of the compounds was determined by the MTT cell 

proliferation assay241 on two human cancer cell lines, viz, HeLa and the 

ovarian carcinoma cells COLO-316.  The LC50 values were calculated after 24 

h of incubation with complexes 1 - 5 and are listed in Table V-1. COLO-316 

cells are more sensitive than HeLa cells to this series of dirhodium 

complexes. A higher sensitivity of COLO-316 cells to dirhodium complexes 

had been observed previously in our laboratories for a family of mono-

substituted dirhodium complexes.266 Compound 4 exhibits the highest 

activity with LC50 values 81.5 µM and 68.8 µM in HeLa and COLO-316 cell 

lines. Compounds 1, 2, and 3 display very similar cytotoxicity values for the 

COLO-316 cell line. In the cases of compounds 1 and 2, these results correlate 

with their similar log P values and DNA binding mode as determined by the 

change in relative viscosity (Figure V-5, Table V-1). Although compound 3 

does not interact with DNA in an analogous fashion as compounds 1 and 2, it 

exhibits similar cytotoxic behavior to the aforementioned compounds, which 

is an indication that specific interactions with DNA are not required in order 

for cellular death to occur in the presence of this family of complexes. 

Compound 5 is the least cytotoxic of the family for both cell lines, a fact that 

is likely related to its hydrophobicity, which is expected to impede its ability 

to cross the cellular membrane. The relationship between the lipophilicity of 

the metal complexes and their activity is shown in Figure V-5. A similar 

decrease in cytotoxicity as the compound becomes more hydrophobic was 

noted previously for a series of mono-substituted dirhodium complexes, as 

well as for other families of metal-based compounds.72, 266, 269 In the case of 



157 
 

 

the family of mono-substituted dirhodium compounds studied previously, the 

maximum of the curve occurs at log P ~ - 0.4,266 whereas in the present case, 

the maximum is at log P ~  0.6. This displacement observed in the maximum 

is suggestion that the two series of compounds likely target different cellular 

compartments. 

Alkaline Comet Assay  

The Alkaline Comet Assay, also known as the alkaline single cell gel 

electrophoresis assay, is a sensitive technique that is used to detect single-, 

double-strand breaks, crosslinks, and alkali-labile sites.252, 253  We had used 

this test in previous studies to evaluate the ability of dirhodium complexes to 

form DNA adducts in a cellular environment.266  Assays were performed on 

HeLa cells at a concentration that allows for 75% cell viability.  For each 

dirhodium complex one hundred cells were scored using the CometScore® 

software.242 This program allows one to quantify the amount of intact DNA 

present in the comet head and that of damaged DNA in the tail of the 

comet.242 As shown in Figure V-6, all of the compounds lead to low levels of 

damaged DNA (represented as a larger percent of DNA in the comet head). 

These values are in contrast to data observed for Rh2(-O2CCH3)4, as well as 

other dirhodium complexes that we have studied, which are known to react 

with nuclear DNA and produce a lower percentage of DNA in the comet 

head.266 The obvious conclusions are either that this family of dirhodium 

complexes does not reach nuclear DNA or that they produce DNA adducts 

that are successfully repaired by the cellular machinery. Although nuclear 

DNA is the target of many transition metal complexes,6, 42 including some 
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Figure V-6. Comet assay results of compounds 1-5 represented as percent of 
DNA in the comet head. 
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dirhodium complexes,266 it is possible that this family of compounds favorably 

reacts with other biological molecules or reaches other compartments in the 

cell. For example, lipophilic cations are known to accumulate in the 

mitochondria due to the negative transmembrane potential leading to cellular 

toxicity.270-274 It is also possible that the current dirhodium complexes slow or 

prohibit important cellular processes from occurring by inhibiting key 

enzymes involved in the cell cycle.    

Annexin V Assay  

During apoptosis, which is programmed cell death, several biochemical 

processes are known to be triggered.265 One of them leads to the exposure of 

phosphatidylserine (PS) on the cell surface, the presence of which is 

commonly used to detect apoptotic events.275, 276 PS is a phospholipid localized 

in the cytosolic side on the surface of the cell. When PS flips and gets exposed 

to the outer leaflet of the cytoplasmic membrane, it can be detected by using 

Annexin V, a protein that reversibly binds PS.275, 276  

To obtain insight into the cell death mechanism arising from exposure 

to the dirhodium compounds in this study, HeLa cells were treated with 

compounds 1 – 5, followed by incubation with Annexin V-Biotin for 15 

minutes. Next, the cells were stained with streptavidin-fluorescein. Cells 

treated with compounds 1 – 4 clearly show green fluorescence localized on the 

outer side of the cellular membrane (Figure V-7a - d). This is indicative of the 

presence of PS on the outer leaflet of the membrane which means that an 

apoptotic mechanism of cell death may be occurring. In contrast, cells 

incubated with compound 5 do not show any degree of staining with the 



160 
 

 

streptavidin-fluorescein probe, a result that suggests that the cells undergo a 

necrotic cell death (Figure V-7e). 

The cells were also simultaneously stained with propidium iodide (PI), 

a dye that crosses the cellular membrane of dead cells only and intercalates 

into DNA (Figure V-7). Because nuclei of normal cells exhibit “structure”, 

slight variations in the hues of the stained nuclei can be observed due to the 

presence of euchromatin and heterochromatin.265, 275 In contrast, apoptotic 

nuclei possess highly condensed chromatin and after staining, they appear as 

bright spherical beads.265 As one can see from the data in Figure V-7, several 

nuclei of the cells treated with compounds 1 - 4, followed by PI staining 

appear to contain two or more bright spheres. This is not the case for the 

more lipophilic dirhodium complex of the group, compound 5. The PI staining 

results in combination with the detection of PS flipping by the annexin V 

assay collectively point towards an apoptotic mechanism of cell death for cells 

treated with compounds 1 – 4, and a necrotic pathway for those treated with 

compound 5.  
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Figure V-7. Confocal microscope images of HeLa cells treated with 
compounds 1 - 5, followed by treatment with Annexin V-Biotin, streptavidin-
fluorescein, and propidium iodide: (a) 1, (b) 2, (c) 3, (d) 4, and (e) 5.  
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Clues about the Target: Mitochondrial Transmembrane Potential 

Disruption  

It has been recently observed that various hydrophobic compounds 

with delocalized positive charges accumulate in the inner mitochondrial 

matrix.270-272, 274, 277 This behavior has been taken into consideration to 

develop a new family of drugs that selectively target the mitochondria.272, 274, 

277-279 The compounds described in this chapter possess the two molecular 

characteristics that cause accumulation in the mitochondria, namely 

hydrophobicity and positive charge.270, 271, 277, 280  Therefore, it is possible that 

the mitochondria are a plausible target of the family of bis-diimine dirhodium 

complexes.   

When compounds accumulate in the mitochondria, they cause 

disruption of the mitochondrial transmembrane potential (ΔΨm).271 JC-1 

(carbony cyanide 3-chlorophenyldydrazone) is a commercially available 

cationic dye that can selectively enter into mitochondria and change color 

when ΔΨm is disrupted.264 In healthy cells, cells with high ΔΨm, JC-1 forms 

complexes (J-aggregates) that posses an intense red fluorescence. In cells 

whose mitochondria have been compromised and their ΔΨm decreased, JC-1 

remains in its monomeric form, which has green fluorescence.  
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Compound 4 induces changes of the mitochondrial membrane 

potential as indicated by the changes in color observed in the time-

dependent experiment (Figure V-9). Although it is possible that compound 4 

is targeting the mitochondria, it is also possible that the decrease of 

transmembrane potential is due to the apoptosis process triggered by this 

dirhodium complex as it is known that this is one of the characteristics of 

programmed cellular death. 

In the case of compound 5, similar changes are observed (Figure V-

10). Nevertheless, as described in the previous section, unlike the other 

members of the series, this compound does not seem to cause apoptosis. 

Therefore, it can be concluded that this compound causes the disruption of 

the mitochondrial membrane potential, and most probably targets these 

organelles.   

It is interesting to mention that during the time dependant 

experiment, it can be observed that both compounds caused different 

changes in the morphology of the cells (Figure V-8). Whereas compound 4 

appears to produce “globular” cells, compound 5 causes the cells to burst out. 

This is indicative of the two different mechanisms by which they cause 

cellular death, apoptosis and necrosis for compounds 4 and 5, respectively. 
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Figure V-8. Phase contrast image of HeLa cells treated with compound 4 
and 5. Left: After 4 h incubation with compound 4. Right: After 4 h 
incubation with compound 5. 
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Figure V-9. Phase contrast and fluorescent image of HeLa cells treated with 
compound 4, time lapse experiment. Left: Red fluorescence emission. 
Center: Phase contrast. Right: Green fluorescence emission. Far Right: 
overlay of phase contrast, red and green fluorescence emission (pseudo 
colored) images. 
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Figure V-10. Phase contrast and fluorescent image of HeLa cells treated 
with compound 5, time lapse experiment. Left: Red fluorescence emission. 
Center: Phase contrast. Right: Green fluorescence emission. Far Right: 
overlay of phase contrast, red and green fluorescence emission (pseudo 
colored) images. 
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Conclusions 

The present study reveals that the family of dppn-diimine-dirhodium 

complexes investigated herein exhibits cytotoxicity towards cancer cell lines. 

Although two of the complexes are capable of intercalating into DNA bases, 

the ultimate target of these dirhodium compounds does not apper to be 

nuclear DNA. Clearly the ability to cross the cellular plasma membrane 

affects the in cellulo activity of the compounds with compound 4 being the 

most effective at inhibiting cell viability of the human cancer cells HeLa and 

COLO-316. Interestingly, compounds 1 – 4 trigger apoptosis, whereas 

compound 5 does not. These findings are quite intriguing as they hint at the 

possibility of being able to exert exquisite control over which process is 

ultimately responsible for cell death.  
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CHAPTER VI 

FACILITATING CELLULAR TRANSLOCATION USING CELL 

PENETRATING PEPTIDES 

 
Introduction 

In the pharmacological arena, one of the main concerns is the 

transport of drugs into the cellular media. Solid tumors are resistant to drug 

penetration through passive diffusion and, in general, drugs have poor 

transport properties since the plasma membrane of cells is a barrier for 

molecules that are typically large and hydrophobic.240, 281, 282 Various delivery 

methods have been developed to transport molecules across cell membranes 

and gain access to the cellular interior.281, 283, 284 For example liposome 

encapsulation, attachment of polyamines and, more recently, the use of cell 

penetrating peptides (CPPs) have been shown to have promising 

applications.281, 283-286 CPPs, also known as protein transduction domains 

(PDTs), are short polypeptide sequences with less than 30 amino acids, and 

with a net positive charge that can facilitate cellular translocation of a 

variety of molecules, ranging from small molecules, proteins and even large 

structures with diameters as large as 200 nm.281, 283-285, 287-289 This class of 

molecules has been shown to promote translocation of their cargo into cells, 

both in vitro and in cellulo.281-285, 289-291 CPPs include natural occurring 

sequences derived from toxins or viruses and synthetic analogues (Table VI-

1).281 Among the most extensively investigated CPPs are the HIV TAT 

sequence GRKKRRQRRRPPQ and its polyarginine derivatives (Table VI-

1).281, 288, 290, 292  
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Table VI-1. CPP sequences commonly used.283, 285, 286, 293  
Name / Sequence Length Origin 

Penetratin (pAntp) 

          RQIKIWFQNRRMKWKK 

16 D. melanogaster transcription 

factor 

HIV TAT peptide 48–60 

          GRKKRRQRRRPPQ 

13 Viral transcriptional regulator 

Map 
          KLALKLALKALKAALKLA-NH2 

18 Synthetic 

Transportan 
          GWTLNSAGYLLGKINLKALAALAKKIL- NH2 

27 Chimeric galanin-mastoparan 

Transportan 10 
          AGYLLGKINLKALAALAKKIL- NH2 

21 Chimeric galanin-mastoparan 

R7 peptide 
          RRRRRRR 

7 Synthetic 

pVEC 
          LLIILRRRIRKQAHAHSK- NH2 

18 Murine sequence of the cell 

adhesion molecule vascular 

endothelial cadherin 

MPG peptide 
          GALFLGWLGAAGSTMGAPKKKRKV- NH2 

24 Chimeric HIV-1 gp41-SV40 

large T antigen 

KALA peptide 
          WEAKLAKALAKALAKHLAKALAKALKACEA 

30  

YTA2  
          YTAIAWVKAFIRKLRK- NH2 

16 Synthetic 

Buforin 2 
          TRSSRAGLQFPVGRVHRLLRK 

21 Synthetic 

Pep-1 
          KETWWETWWTEWSQPKKKRKV 

21 Synthetic 

HSV-1 VP22 peptide 
         DAATATRGRSAASRPTERPRAPARSASRPRRVD 

33 Viral Capsid protein 
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From the in vitro studies described in the previous two chapters, it is 

evident that certain dirhodium compounds have a high affinity for DNA, but 

that they exhibit a low activity according to in cellulo studies. Clearly, in 

order to improve the bio-availability of these dirhodium complexes, their 

transport into living cells needs to be improved. Cytotoxicity studies of 

conjugates formed by tethering organic molecules to CPPs have revealed 

that the cytotoxic activity of the antitumor agent is enhanced as compared to 

the parent compound.292, 294, 295 One disadvantage encountered in this 

approach, however, is the requirement of a chemical bond between the 

peptide sequence and the cargo molecule, an alteration that can change the 

properties of the cargo in terms of its toxicity and localization inside the 

cell.296 To avoid these issues either a bond that is reversible under biological 

conditions such as a disulfide bond or an ester bond susceptible to enzymatic 

hydrolysis has been used with success.  

Recently, several groups have reported that co-incubation of a 

molecule with certain CPP sequences (Table VI-2) is a reliable method to 

help deliver a cargo when chemical coupling is not possible due to the nature 

of the cargo or simply to avoid time consuming procedures.297 The association 

between the CPP used and the cargo molecule is achieved through non-

covalent, electrostatic or hydrophobic interactions. An added advantage of 

this methodology is that once inside the cell, the cargo is not redirected from 

its target by the inherent localization of the peptide.297 Therefore, co-

incubation of dirhodium molecules and CPPs seems like a good alternative to 

avoid purification steps that could modify the coordination sphere of the 

dirhodium core due to acids used in the purification steps of these systems.  
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The research presented in this chapter describes the syntheses and 

characterization of two polyariginine peptide sequences, R9K and R7K. The 

results of the bio-availability changes of five dirhodium compounds as 

modulated by co-incubation with these two sequences are also reported. The 

data, although preliminary, shows an improvement of the cytotoxicity after 

co-incubation as compared to the dirhodium complexes alone. In addition, 

the synthesis of a diimine ligand functionalized with a CPP and the coupling 

of this ligand to a ruthenium center is also reported.  
 
 
Table VI-2. CPP sequences used in co-incubation experiments.297  

Name Sequence 

YTA2 YTAIAWVKAFIRKLRK- NH2 

pVEC LLIILRRRIRKQAHAHSK- NH2 

Pep-1 KETWWETWWTEWSQPKKKRKV 

Pep-2 KETWFETWFTEWSQPKKKRKV 
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Experimental Section 

Materials 

All Fmoc amino acid derivatives and resins were purchased from 

Novabiochem (San Diego, CA). The HeLa cells were obtained from the 

American Type Culture Collection, cell line CCL-2. The COLO-316 cell line 

was kindly provided by Prof. Robert Burghardt (Texas A&M University, 

Department of Veterinary Anatomy and Public Health). 

The starting material RhCl3•H2O was purchased from Pressure 

Chemicals and used as received. The ligands dipyrido[3,2-a:2′,3′-c]phenazine 

(dppz) and benzodipyrido[3,2-a:2′,3′-c]phenazine (dppn), were synthesized 

according to reported procedures. The diimine ligand 2-(2-pyridinyl)-4-

carboxyquinoline (Yle) was synthesized as described previously.298 The 

dirhodium complexes Rh2(μ-O2CCH3)4 (1),198 cis-[Rh2(μ-O2CCH3)2(η1-

O2CCH3)(dppz)(CH3OH)](O2CCH3) (2),102, 104 cis-[Rh2(μ-O2CCH3)2(η1-

O2CCH3)(dppn)(CH3OH)](O2CCH3) (3)235 cis-[Rh2(-O2CCH3)2(dppn)(dppz)] 

(O2CCH3)2 (4),235 and cis-[Rh2(-O2CCH3)2(dppn)2](O2CCH3)2 (5)235 were 

synthesized according to published literature procedures.  

Synthesis of Peptide Sequences  

Cell penetrating peptide sequences R7K and R9K were synthesized 

using the Fmoc synthetic strategy of solid phase peptide synthesis on a rink 

amide resin using DMF as solvent.299 For anchoring of the first amino acid to 

the resin, 740 mg of resin was packed into a SPPS vial and soaked with DMF 

for 30 minutes. All Fmoc deprotection steps were performed twice by 

treatment with 20 % piperidine in DMF. Activation of Fmoc protected amino 
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acids (4 equivalents) was achieved with HBTU (3.9 equivalents) and DIEA 

(10 equivalents) in minimum amount of DMF. The resulting solution was 

added directly into the vial with the resin and the coupling reaction was 

bubbled with a soft nitrogen flow for 4 hours. Completion of each addition 

was monitored by a ninhydrin test. The coupling cycle was repeated until the 

required number of amino acids was attached. 

After completion of the synthesis, the resin was washed with DCM 

and dried under vacuum. The peptide was then cleaved from the resin, and 

the amino acid side chains deprotected by treatment with a mixture of 

trifluoroacetic acid : water : triisopropyl silane (1 000 μl: 15 μl : 15 μl) for 2 - 

3 hours, followed by filtration. Chilled diethylether was added to the filtrate 

to assist in the precipitation of the crude peptide. After centrifugation the 

solution was decanted and the crude peptide was dissolved in 0.1 % 

trifluoroacetic acid in water and dried using a lyophilizer. 

Synthesis of Ru(phen)2(CH3CN)2(PF6)2 

The compound cis-[Ru(phen)2(CH3CN)2](PF6)2 was synthesized by 

mixing cis-Ru(phen)2Cl2 (30 mg, 45 mmol) and an excess of [NH4][PF6] in 

acetonitrile (20 mL) under a nitrogen atmosphere with stirring and refluxing 

for 12 h. The product was isolated by filtration and used without further 

purification. Yield: 75%. Found: C, 40.11; H, 2.47; N, 9.86; calculated for 

C28H16F12N6P2Ru: C, 40.39; H, 2.31; N, 10.10. 

Synthesis of Yle-CPP  

The CPP-diimine ligand  was synthesized by solid phase peptide 

synthesis. The Fmoc-R7K-resin (250 mg) peptide was synthesized as 

described above. After adding the last aminoacid, Fmoc deprotection was 
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performed twice by treatment with 20 % piperidine in DMF. Activation of 

the COOH functional group of 2-(2-pyridinyl)-4-carboxyquinoline was 

performed by mixing the ligand (55.5 mg, 0.2 mmol) with HBTU (70 μL) and 

DIEA (96.65 μL) in a minimum volume of DMF. After 10 minutes of 

activation, the mixture was added to the resin and the coupling reaction 

proceeded for 48 hours under nitrogen flow. The product was cleavage from 

the resin and purified using RP-HPLC.  

Synthesis of Ru(phen)2(Yle-CPP)  

A solution of cis-[Ru(phen)2(CH3CN)2](PF6)2 (10 mg, mmol) in 

methanol was treated with Yle-CPP (mg, mmol). The mixture was stirred at 

37 °C for 25 hours. An alternative method used was to heat the mixture in a 

microwave oven (100 power) for 2 minutes.  

Instrumentation 

Analytical gradient reversed-phase HPLC was performed on a Hewlett-

Packard 1200 series instrument and a Vydac C18 column (5 micron, 4 x 150 

mm). The flow rate was 1 mL/min and detection was performed at 214, 365, 

450 and 525 nm. Preparative HPLC was performed on a Vydac C18 10 × 250 

mm column. The flow rate was 4 mL/min and detection was performed at 214, 

365, 450 and 525 nm. All runs used linear gradients of 0.1% aqueous TFA 

(solvent A) and 90% acetonitrile plus 0.1% TFA (solvent B). The identity of 

the peptides was confirmed by time-of-flight mass spectrometry (MALDI-TOF 

mass spectrometry) using a Shimadzu/Kratos instrument (AXIMA-CFR, 

Shimadzu, Kyoto). The UV absorption measurements were performed with a 

Shimadzu UV 1601PC spectrophotometer. 

 



175 
 

 

Methods  

Cell Culture  

The HeLa and COLO-316 cell lines were cultured in Dulbecco’s 

modified Eagle medium, which contain 10% fetal bovine serum (Invitrogen), 

50 μg/mL gentamicin, 4.5 mg/mL glucose, and 4 mM L-glutamine 

(Invitrogen). Cell cultures were incubated in a humidified atmosphere 

containing 5% CO2 at 37 °C. 

Co-incubation Experiment  

The CPP stock solutions were prepared in ddH20 and stored at – 20 °C. 

Peptides were diluted with water prior to co-incubation. CPPs were mixed 

with each of dirhodium compounds at a concentration that allows for 75% cell 

viability. Co-incubation was performed at 37° C for 10 minutes after which 

time the mixture was added to the COLO-316 or HeLa cells and incubated for 

a period of 3 hours. Cell viability was measured using the MTT assay. Briefly, 

a 10 μL aliquot of fresh MTT solution was added, followed by incubation for 4 

hours.  A 100 μL volume of fresh SDS solution in 0.01 M HCl was then added. 

After 16 hours of incubation the absorbance at 570 nm was measured using a 

Bio-Rad plate reader. 
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Results and Discussion 

Synthesis and Characterization  

The cell penetrating peptide sequences heptaarginine (R7K) and 

nonaarginine (R9K) were synthesized using the Fmoc synthetic strategy of 

solid phase peptide synthesis on a rink amide resin (Figure VI-1).299 The 

peptides were obtained in high yields (~90%) and purified by reverse phase 

HPLC. Polyarginine peptides were chosen for these studies because of their 

improved activity as compared to other CPP sequences. Additionally, they 

were selected because we hypothesized that the guanidine residues of the 

arginine residues would not bind irreversibly to the dirhodium core under 

the conditions used for the synthesis and purification of the complex. 

Interestingly, lack of binding of this residue under similar conditions to 

those used in this study has recently been reported by Ball et al.300 The ESI-

MS spectra of the purified peptides are shown in Figures VI-2 and VI-3. Two 

peaks are observed in each spectrum, one due to the singly protonated 

sequence and one at a higher mass due to the presence of the Na+ peptide 

adduct.   
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Figure VI-1. Schematic representation of the solid phase synthesis of 
peptide sequences used in this study. 
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Figure VI-2. ESI-MS spectra of R7K. Expected mass = 1238.81.  

 

 

 

Figure VI-3. ESI-MS spectra of R9K. Expected mass = 1551.02. 
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Figure VI-4. Schematic representation of the solid phase synthesis of the 
diimine-CPP ligand (Yle-CPP). 
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Figure VI-5. Schematic representation of the coupling reaction of Yle with CPP sequences. 
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Figure VI-6. Schematic representation of synthesis of the ruthenium-CPP conjugate. 
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In the case of the diimine-CPP ligand, 2-(2-pyridinyl)-4-

carboxyquinoline was chosen due to its ease of synthesis and the presence of 

a single carboxylic acid group. By taking advance of the -COOH functional 

group and the solubility of this molecule in DMF, its coupling reaction with 

the CPP sequence was performed by solid phase peptide synthesis (Figure 

IV-4 and Figure IV-5). The reaction proceeds in good yields and affords an 

off-white powder. The final product was purified by reverse phase HPLC 

using the same conditions used for the purification of the other two peptide 

sequences described in this chapter. 

The reaction between the transporter system (Yle-CPP) and the 

ruthenium complex [Ru(phen)2(CH3CN)2](PF6)2 (Figure IV-6) was performed 

under two different conditions, namely incubation at 37 °C for 25 hours or 

heating in a commercial microwave oven (100 power) for 2 minutes. As 

shown in Figure VI-7, the RP-HPLC analysis of the reaction mixture 

indicates that both methods are equally suitable for the synthesis of the 

ruthenium complex, both techniques gave similar yields, but the use of 

microwaves produces faster results. ESI-MS spectrum of the reaction 

mixture is shown is Figure VI-8. 

Reactions between dirhodium carboxylate derivatives were not 

pursued since preliminary evidence showed that the structural integrity of 

dirhodium tetraacetate was compromised during the purification by RP-

HPLC due to the acidic conditions used.  
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Figure VI-7. RP-HPLC chromatograms a) [Ru(phen)2(CH3CN)2]2+ starting 
material. b) Product of the reaction of [Ru(phen)2(CH3CN)2]2+ and Yle-CPP 
using the microwave. c) Product of the reaction of [Ru(phen)2(CH3CN)2]2+ and 
Yle-CPP after heating and stirring at 37 °C for 25 hours. 
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Figure VI-8. ESI-MS spectra of the product of reaction of 
[Ru(phen)2(CH3CN)2]2+ and Yle-CPP. 
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Co-Incubation Experiments 

In order to determine the best concentration of CPP to be used, the 

cytotoxicities of R7K and R9K were studied at different incubation conditions. 

The MTT assay provided evidence that the CPP sequences at concentrations 

of 2.5 μM and 5 μM are not toxic when incubation was performed for less 

than 4 hours. 

The dirhodium compounds (Figure VI-9) were mixed with the CPPs 

for 10 minutes prior to incubation to afford a homogeneous mixture. The 

dirhodium-CPP mixture was then added to the cells. After 3 hours of 

incubation the mortality of the cells increases especially at the highest CPP 

concentration (Table VI-3). As can be seen in Figures VI-10 through VI-13 

co-incubation of the dirhodium complexes 1-5 with the CPPs R7K and R9K 

results in an enhancement of the cytotoxic properties of the complexes. The 

increase in cytotoxicity with R7K is not as prominent as that observed with 

R9K, although a significant increase is observed when 5 μM R7K peptide was 

used.  The delivery using R9K improves the cytotoxicity of the compounds by 

7% to 35% depending on the dirhodium complex when 2.5 μM peptide was 

used. When 5 μM R9K was used, the increase in cytotoxicity was greater, 

reaching as high as 43% as in the case of complex 2.  

As described in chapters IV and V, it was observed that COLO-316 

cells are, in general, more sensitive to the dirhodium compounds studied 

throughout this thesis, but the use of these two CPP sequences, namely R7K 

and R9K, has a greater impact on HeLa cells than on COLO-316. It must be 

noted that differences in delivery by CPPs on different cell lines have been 

previously observed, although no globally accepted explanation as to the 

origin of this effect has been proposed. 
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Figure VI-9. Schematic representation of dirhodium compounds used for 
the co-incubation experiments. 
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Table VI-3. CPP sequences used in co-incubation experiments.  

Compound 
CPP 

Sequence 

CPP 
Concentration 

μM 

% Increase in 
Cytotoxicity 

COLO-316 HeLa 

1 
R7K 

2.5 1.3 13.5 
5 7.9 19.3 

R9K 
2.5 7.9 19.2 
5 19.0 29.0 

2 
R7K 

2.5 4.8 8.6 
5 57.2 59.0 

R9K 
2.5 68.9 70.1 
5 75.7 76.7 

3 
R7K 

2.5 2.4 15.8 
5 5.7 18.6 

R9K 
2.5 15.5 27.1 
5 34.4 43.4 

4 
R7K 

2.5 6.9 10.8 
5 26.0 29.1 

R9K 
2.5 26.7 29.8 
5 41.7 44.1 

5 
R7K 

2.5 3.5 3.8 
5 10.0 10.0 

R9K 
2.5 3.8 7.4 
5 11.0 11.0 
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Figure VI-10. Cell mortality increase (%) as a result of co-incubation of 
compound 1 with the CPPs R7K and R9K. 
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Figure VI-11. Cell mortality increase (%) as a result of co-incubation of 
compound 2 with the CPPs R7K and R9K. 
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Figure VI-12. Cell mortality increase (%) as a result of co-incubation of 
compound 3 with the CPPs R7K and R9K. 
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Figure VI-13. Cell mortality increase (%) as a result of co-incubation of 
compound 4 with the CPPs R7K and R9K. 
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Figure VI-14. Cell mortality increase (%) as a result of co-incubation of 
compound 5 with the CPPs R7K and R9K. 
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Interactions of Dirhodium Complexes with Polyarginine Peptides 

The interactions between compounds 1 – 5 and the CPP sequences 

used for the co-incubation experiments were followed by UV-Vis 

spectroscopy. The solutions studied were prepared using the same 

concentrations used for the co-incubation experiment, for the dirhodium 

complexes the concentrations that allows for 75% cell viability, while 5 µM 

for the CPP sequences.  

UV-Vis spectroscopy is an excellent tool to follow the axial 

coordination of ligands of these compounds due to the sensitivity of their 

electronic spectral properties to the nucleophilic nature of the axial ligand.  

For example, in Rh2(-O2CCH3)4, addition of ligands that bind to the axial 

positions result in a blue-shift of the lowest energy, Rh2()Rh2() metal-

centered (MC) transition.142-145 This shift is due to interaction of the 

antisymmetric linear combination of the filled orbitals on the axial ligands 

with the Rh2() molecular orbital, which raises the energy of the latter.130, 

140, 146, 147 Addition of coordinative solvents also red-shift the MLCT peaks 

described as  transitions centered on the aromatic ligands.  

As observed in Figures VI-15 and VI-16 even after 2 hours of 

incubation of the peptide with the dirhodium complexes no major structural 

changes are observed. In the case of Rh2(-O2CCH3)4 the metal-metal bond is 

still intact since the absorbance at ~ 580 nm decreases in intensity but does 

not disappear completely. For all the other complexes the Rh2()Rh2() 

MC transition cannot be observed since the MLCT spreads as far as where 

this transition appears.301 The slight blue-shift observed in the MLCT 

transition, however, hints towards the conclusion that there is an interaction 

between the peptide and these dirhodium compounds. This interaction does 

not seem to result in dramatic changes in coordination; therefore, it must 

probably arise from axial interactions. 
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Figure VI-15. Changes over time on the Uv-Vis spectrum of compound 2 
when mixed with the CPP R9K.  
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Figure VI-16. Changes over time on the Uv-Vis spectrum of compound 5 
when mixed with the CPP R9K. 
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Conclusions 

Co-incubation of dirhodium complexes with CPP sequences has shown 

to be a good alternative to increase the effectivity of these compounds. All of 

the dirhodium complexes studied here become more cytotoxic after co-

incubation with the CPPs nonaarginine (R9K) and heptaarginine (R7K). 

Preliminary data indicate that the CPPs bind to the dirhodium complexes 

through the axial positions. This binding mode is reversible and the 

dirhodium core can detach from the delivery agent once inside the cell. 

Overall, R9K seems to be more effective than R7K at delivering this type of 

cargo. In general, co-incubation with these CPP sequences render HeLa cells 

more sensitive to dirhodium compounds. Surprisingly, this is not the case for 

Rh2(μ-O2CCH3)4 (1). 
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CHAPTER VII 

CONCLUDING REMARKS AND FUTURE OUTLOOK 

 

Recent studies of various dirhodium compounds have provided clear 

evidence that there is a correlation between their molecular characteristics 

and cytotoxic behavior. These factors include the lability of the groups bound 

to the dirhodium core, the presence of open coordination sites, the overall 

charge of the complex, and the hydrophobicity of the ligands bound to the 

dirhodium core. Tailoring appropriately the groups surrounding the 

dirhodium core in these complexes may lead to more effective and less toxic 

drugs. 

In chapter II, the interactions with DNA in cell free media and in 

cellulo of  dirhodium(II,II) complexes that possess one or two accessible axial 

coordination sites, cis-[Rh2(µ-O2CCH3)2(np)2]2+ and cis-[Rh2(µ-

O2CCH3)2(np)(pynp)]2+, respectively, were compared to a compound in which 

the axial site positions are blocked, namely cis-[Rh2(µ-O2CCH3)2(pynp)2]2+. 

The results agree with the fact that an accessible axial position is required 

for the complex to interact with DNA and/or to accomplish biological 

functions. Whit this knowledge in hand, new compounds can be designed 

wherein the cytotoxicity may be tuned by controlling the availability of the 

axial positions. For example, a bifunctional ligand whit binding sites joined 

together by a flexible linker which forms a strong bond to an equatorial 

position and a weak bond to an axial may lead to “hemilabile” structures 

(ON/OFF) whose properties are different from those for which the axial 

ligand is a permanent leaving group. This design would, in principle, allow 



198 
 

for more exquisite control of the reactivity of the dirhodium complex. Figure 

VII.1 shows a representation of this approach. In terms of photodynamic 

therapy, this approach could render compounds with decreased dark toxicity, 

whereas the photo-cytotoxicity will not be affected since the photochemistry 

will not be modified. 

In chapter III, it has been shown that it is not only possible to modify 

the reactivity of dirhodium carboxylate and derivatives by changing the axial 

and/or equatorial ligands directly attached to the dirhodium core but also by 

adding electron-withdrawing or electron-donating substituents to the dppz 

ligands. These results underscore the fact that the family of dirhodium 

complexes of the type cis-[Rh2(µ-O2CCH3)2(R1R2dppz)2]2+ (R1R2dppz = 

substituted dppz) have a great sensitivity to even subtle changes which 

makes them promising for tunning the activity by modulating the redox 

chemistry. It is plausible that dirhodium complexes could be develop as 

promising candidates for the control of important biochemical processes in 

which enzymes that use oxidizable residues can be inhibited. Ovbiously, 

additional studies are required to test the redox activity of this family of 

compounds in cellulo. Assays such as cytotoxicity should be complemented 

with glutathione modulation experiments to evaluate how the concentration 

of glutathione affects the properties of the complexes. 
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Figure VII-1. Schematic representation of ON and OFF positions of 
proposed compounds whose biological activity can be modulated through the 
control of the availability of the axial position. 
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Figure VII-2. Schematic representation of proposed diimine ligands. 
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Chapter IV focuses the importance of the structure of the dirhodium 

carboxylate compounds. Owing to their particular geometry, these 

compounds are nicely poised for the combination of more than one 

pharmacological property. In the case of [Rh2(µ-O2CCH3)2(η1-

O2CCH3)(diimine)]+, the diimine ligand facilitates the interaction with DNA 

through intercalation while the dangling acetate allows for covalent bonding 

of the molecule with DNA. Throughout chapter IV the affinity of the [Rh2(µ-

O2CCH3)2(η1-O2CCH3)(diimine)]+ family towards DNA was studied. It was 

observed that, as the aromatic size of the diimine ligand increases, the 

higher the affinity for DNA. When the assays were performed in cellulo, with 

the concomitant increase of complexity that exists, other factors such as 

lipophilicity begin to play a more active role. These compounds are able to 

damage nuclear DNA as observed from the Comet assay. The hypothesis 

that DNA damage is caused by ROS and not by direct interaction with the 

compounds was rejected on the basis of the glutathione modulation 

experiments. Levels of ROS can be controlled by amounts of glutathione 

inside the cell, but since there is no effect in the cytotoxicity of the dirhodium 

complexes studied by changing the levels of glutathione, it can be conclude 

that the compounds damage DNA directly. Arguably the most important of 

all the studies presented in chapter IV is the finding that dirhodium 

complexes are able to reach and react with nuclear DNA. This is the first 

time that the longstanding premise of DNA being a target of dirhodium 

complexes in cells has been verified. 

Based on the studies presented in chapter IV, a new family of 

compounds with more flexible diimine ligands ([Rh2(µ-O2CCH3)2(η1-
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O2CCH3)(flexible-diimine)]+) is proposed that could facilitate the 

development of a ternary complex between the dirhodium compound, DNA 

and an enzyme. The idea is that the diimine ligand will still interact with 

DNA through intercalation but the dirhodium core will have the opportunity 

to react with an enzyme as well, thereby stalling the function of the latter. 

This will be possible thanks to the flexibility of the diimine ligand that will 

facilitate the simultaneous interaction of the dirhodium core with the 

proteins and DNA. 

Chapter V describes the family of compounds of the type [Rh2(µ-

O2CCH3)2(diimine)(diimine′)]2+. These derivatives were used to study the 

effect of adding a second diimine and gradually increasing its size. Although 

the cytotoxicity values of this family were similar to those found for the 

mono-substituted family described in chapter IV ([Rh2(µ-O2CCH3)2(η1-

O2CCH3)(diimine)]+) no evidence for nuclear DNA being the possible target 

was found. Once again, the effect of the lipophilic character of the complexes 

underscore the point that a delivery system is crucial to aid the most 

promising complexes to cross the cell membrane where they can interact 

with their cellular targets. 

It is evident from the results reported in chapters IV and V that the 

reactivity of the dirhodium complexes be tuned by modifying their structure. 

Dirhodium carboxylate derivatives with one diimine ligand ([Rh2(µ-O2CCH3)2 

(η1-O2CCH3)(diimine)]+) are able to reach nuclear DNA, whereas the addition 

of a second diimine ligand ([Rh2(µ-O2CCH3)2(diimine)(diimine′)]2+) hinders 

this ability. Moreover, the size of the second diimine ligand is crucial for 

determining the mechanism of activity of this family of compounds. When 
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both diimine ligands are dppn, as in ([Rh2(µ-O2CCH3)2(dppn)2]2+), the 

mechanism of action is necrosis instead of apoptosis as in the other 

complexes studied in Chapter V. It is clear that the family of bis-diimine 

dirhodium complexes deserves more attention with respect to determining 

the cellular target of these compounds. 

Another very important lesson from this work is the usefulness of a 

delivery agent. As demostrated in Chapter VI, co-incubation of these 

compounds with two different CPP sequences improves their efficacy, 

resulting in an increased activity. Although both peptides improved the 

ability of the dirhodium complexes to decrease the cell viability of HeLa and 

COLO-316 cell lines, the nonaarginine peptide was the most effective. This 

peptide was able to increase the cytotoxicity of ([Rh2(µ-O2CCH3)2(η1-

O2CCH3)(dppn)]+ in c.a. 75%. 

Overall, the collective work described in this thesis has improved our 

understanding of the molecular properties that affect the activity of 

dirhodium complexes both in vitro and in cellulo. This knowledge will help in 

the future design of molecules based on these systems with improved 

activity.      
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